1
|
Zhang B, Qi T, Lin J, Zhai S, Wang X, Zhou L, Deng X. KLF6-mediated recruitment of the p300 complex enhances H3K23su and cooperatively upregulates SEMA3C with FOSL2 to drive 5-FU resistance in colon cancer cells. Exp Mol Med 2025; 57:667-685. [PMID: 40082673 PMCID: PMC11958781 DOI: 10.1038/s12276-025-01424-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 11/17/2024] [Accepted: 12/23/2024] [Indexed: 03/16/2025] Open
Abstract
Histone lysine succinylation, an emerging epigenetic marker, has been implicated in diverse cellular functions, yet its role in cancer drug resistance is not well understood. Here we investigated the genome-wide alterations in histone 3 lysine 23 succinylation (H3K23su) and its impact on gene expression in 5-fluorouracil (5-FU)-resistant HCT15 colon cancer cells. We utilized CUT&Tag assays to identify differentially enriched regions (DERs) of H3K23su in 5-FU-resistant HCT15 cells via integration with ATAC-seq and RNA sequencing data. The regulatory network involving transcription factors (TFs), notably FOSL2 and KLF6, and their downstream target genes was dissected using motif enrichment analysis and chromatin immunoprecipitation assays. Our results revealed a strong positive correlation between H3K23su DERs, differentially expressed genes (DEGs) and H3K27ac, indicating that H3K23su enrichment is closely related to gene activation. The DEGs associated with the H3K23su GAIN regions were significantly enriched in pathways related to colorectal cancer, including the Wnt, MAPK and p53 signaling pathways. FOSL2 and KLF6 emerged as pivotal TFs potentially modulating DEGs associated with H3K23su DERs and were found to be essential for sustaining 5-FU resistance. Notably, we discovered that FOSL2 and KLF6 recruit the PCAF-p300/CBP complex to synergistically regulate SEMA3C expression, which subsequently modulates the canonical Wnt-β-catenin signaling pathway, leading to the upregulation of MYC and FOSL2. This study demonstrated that H3K23su is a critical epigenetic determinant of 5-FU resistance in colon cancer cells, exerting its effects through the modulation of critical genes and TFs. These findings indicate that interventions aimed at targeting TFs or enzymes involved in H3K23su modification could represent potential therapeutic strategies for treating colorectal cancers that are resistant to 5-FU treatment.
Collapse
Affiliation(s)
- Bishu Zhang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tuoya Qi
- Jinshan Hospital of Fudan University, Shanghai, China
| | - Jiewei Lin
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shuyu Zhai
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xuelong Wang
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Lingang laboratory, Shanghai, China.
| | - Leqi Zhou
- Shanghai Changhai Hospital, Naval Medical University, Shanghai, China.
| | - Xiaxing Deng
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China.
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
2
|
El Menshawe SF, Shalaby K, Elkomy MH, Aboud HM, Ahmed YM, Abdelmeged AA, Elkarmalawy M, Abou Alazayem MA, El Sisi AM. Repurposing celecoxib for colorectal cancer targeting via pH-triggered ultra-elastic nanovesicles: Pronounced efficacy through up-regulation of Wnt/β-catenin pathway in DMH-induced tumorigenesis. Int J Pharm X 2024; 7:100225. [PMID: 38230407 PMCID: PMC10788539 DOI: 10.1016/j.ijpx.2023.100225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/16/2023] [Accepted: 12/17/2023] [Indexed: 01/18/2024] Open
Abstract
Celecoxib (CLX), a selective inhibitor for cyclooxygenase 2 (COX-2), has manifested potential activity against diverse types of cancer. However, low bioavailability and cardiovascular side effects remain the major challenges that limit its exploitation. In this work, we developed ultra-elastic nanovesicles (UENVs) with pH-triggered surface charge reversal traits that could efficiently deliver CLX to colorectal segments for snowballed tumor targeting. CLX-UENVs were fabricated via a thin-film hydration approach. The impact of formulation factors (Span 80, Tween 80, and sonication time) on the nanovesicular features was evaluated using Box-Behnken design, and the optimal formulation was computed. The optimum formulation was positively coated with polyethyleneimine (CLX-PEI-UENVs) and then coated with Eudragit S100 (CLX-ES-PEI-UENVs). The activity of the optimized nano-cargo was explored in 1,2-dimethylhydrazine-induced colorectal cancer in Wistar rats. Levels of COX-2, Wnt-2 and β-catenin were assessed in rats' colon. The diameter of the optimized CLX-ES-PEI-UENVs formulation was 253.62 nm, with a zeta potential of -23.24 mV, 85.64% entrapment, and 87.20% cumulative release (24 h). ES coating hindered the rapid release of CLX under acidic milieu (stomach and early small intestine) and showed extended release in the colon section. In colonic environments, the ES coating layer was removed due to high pH, and the charge on the nanovesicular corona was shifted from negative to positive. Besides, a pharmacokinetics study revealed that CLX-ES-PEI-UENVs had superior oral bioavailability by 2.13-fold compared with CLX suspension. Collectively, these findings implied that CLX-ES-PEI-UENVs could be a promising colorectal-targeted nanoplatform for effective tumor management through up-regulation of the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Shahira F. El Menshawe
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Khaled Shalaby
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Mohammed H. Elkomy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Heba M. Aboud
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Yasmin M. Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | | | - Marwa Elkarmalawy
- Department of Pharmaceutics and Drug Manufacturing, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | | | - Amani M. El Sisi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
3
|
Wang Y, Chen S, Bao S, Yao L, Wen Z, Xu L, Chen X, Guo S, Pang H, Zhou Y, Zhou P. Deciphering the fibrotic process: mechanism of chronic radiation skin injury fibrosis. Front Immunol 2024; 15:1338922. [PMID: 38426100 PMCID: PMC10902513 DOI: 10.3389/fimmu.2024.1338922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
This review explores the mechanisms of chronic radiation-induced skin injury fibrosis, focusing on the transition from acute radiation damage to a chronic fibrotic state. It reviewed the cellular and molecular responses of the skin to radiation, highlighting the role of myofibroblasts and the significant impact of Transforming Growth Factor-beta (TGF-β) in promoting fibroblast-to-myofibroblast transformation. The review delves into the epigenetic regulation of fibrotic gene expression, the contribution of extracellular matrix proteins to the fibrotic microenvironment, and the regulation of the immune system in the context of fibrosis. Additionally, it discusses the potential of biomaterials and artificial intelligence in medical research to advance the understanding and treatment of radiation-induced skin fibrosis, suggesting future directions involving bioinformatics and personalized therapeutic strategies to enhance patient quality of life.
Collapse
Affiliation(s)
- Yiren Wang
- School of Nursing, Southwest Medical University, Luzhou, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Shouying Chen
- School of Nursing, Southwest Medical University, Luzhou, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Shuilan Bao
- School of Nursing, Southwest Medical University, Luzhou, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Li Yao
- School of Nursing, Southwest Medical University, Luzhou, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Zhongjian Wen
- School of Nursing, Southwest Medical University, Luzhou, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Lixia Xu
- School of Nursing, Southwest Medical University, Luzhou, China
| | - Xiaoman Chen
- School of Nursing, Southwest Medical University, Luzhou, China
| | - Shengmin Guo
- Department of Nursing, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Haowen Pang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yun Zhou
- School of Medical Information and Engineering, Southwest Medical University, Luzhou, China
| | - Ping Zhou
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
4
|
He K, Gan WJ. Wnt/β-Catenin Signaling Pathway in the Development and Progression of Colorectal Cancer. Cancer Manag Res 2023; 15:435-448. [PMID: 37250384 PMCID: PMC10224676 DOI: 10.2147/cmar.s411168] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/18/2023] [Indexed: 05/31/2023] Open
Abstract
The Wnt/β-catenin signaling pathway is a growth control pathway involved in various biological processes as well as the development and progression of cancer. Colorectal cancer (CRC) is one of the most common malignancies in the world. The hyperactivation of Wnt signaling is observed in almost all CRC and plays a crucial role in cancer-related processes such as cancer stem cell (CSC) propagation, angiogenesis, epithelial-mesenchymal transition (EMT), chemoresistance, and metastasis. This review will discuss how the Wnt/β-catenin signaling pathway is involved in the carcinogenesis and progression of CRC and related therapeutic approaches.
Collapse
Affiliation(s)
- Kuang He
- Department of Pathology, Dushu Lake Hospital Affiliated of Soochow University, Suzhou, Jiangsu, People’s Republic of China
| | - Wen-Juan Gan
- Department of Pathology, Dushu Lake Hospital Affiliated of Soochow University, Suzhou, Jiangsu, People’s Republic of China
| |
Collapse
|
5
|
Xu W, Du X, Li J, Zhang Z, Ma X, Luo D, Xiao M, Sun Q. SiNiSan alleviates liver injury by promoting hepatic stem cell differentiation via Wnt/β-catenin signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:153969. [PMID: 35183930 DOI: 10.1016/j.phymed.2022.153969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 12/11/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND SiNiSan, a Traditional Chinese Medicine containing Radix Bupleuri, Radix Paeoniae Alba, Fructus Aurantii Immaturus, and Radix Glycyrrhizae, has been shown to be clinically effective in treating liver damage, its underlying molecular mechanisms however remains unclear. PURPOSE The aim of the current study was to understand the molecular mechanisms of SiNiSan in the treatment of liver damage utilizing mice and cell culture models. METHODS Here, mice were gavaged with 0.2% CCl4 to obtain acute liver injury model and with alcohol to obtain chronic liver injury model. H&E staining was performed to detect liver histomorphology. HPLC-MS was performed to analyze the composition of SiNiSan decoction and SiNiSan-medicated serum (SMS). In addition, western blots were done to analyze the representative protein expression in Wnt/β-catenin signaling. Immunofluorescence staining was done to analyze the protein levels in WB-F344 cells. Finally, in an attempt to measure the influence of SiNiSan on liver regeneration in rats, we constructed a rats partial hepatectomy models. RESULTS We demonstrated that SiNiSan treatment mitigated liver damage in mice, as evidenced by the decrease in serum AST and ALT levels, as well as improved liver tissue morphology. HPLC-MS results showed that SMS contained a variety of components from the SiNiSan decoction. Next, our results showed that SMS reduced the expression of α-fetoprotein (AFP) and enhanced the expression of albumin (ALB) and cytokeratin 19 (CK19) in WB-F344 cells. Further, SMS treatment induced the accumulation of β-catenin. After 14 days of SMS treatment, β-catenin protein underwent nuclear translocation and bound to the LEF1 receptor in the nucleus, which regulated c-Myc and Cyclin D1 factors to activate Wnt/β-catenin signaling and promoted differentiation of WB-F344 cells. In addition, we demonstrated that SiNiSan increased liver regeneration in rat hepatectomy. CONCLUSION Collectively, the current study revealed that SiNiSan alleviated the acute liver injury induced by CCl4 as well as the chronic liver damage triggered by alcohol and sucrose in vitro. Concurrently, SMS treatment induced hepatic stem cell differentiation by activating Wnt/β-catenin signaling in vivo. Further study showed that SiNiSan promoted the regeneration of rats liver. The current study provides a theoretical basis for the clinical treatment of liver-related diseases with SiNiSan.
Collapse
Affiliation(s)
- Weidong Xu
- Department of Traditional Chinese Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang 212013, China; School of Pharmacy, Jiangsu University, Zhenjiang 212013, China; Hepatic Disease Institute, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430061, China
| | - Xia Du
- The Fourth People's Hospital of Zhenjiang, Zhenjiang 212013, China
| | - Jiayao Li
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Zhiyi Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Xiaoyuan Ma
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Dan Luo
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Mingzhong Xiao
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan 430074, China.
| | - Quancai Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
6
|
Lyapichev KA, Sakhdari A, Khoury JD, O'Malley DP, El Hussein S, Yin CC, Patel KP, Thakral B, Young KH, Medeiros LJ, Konoplev S. Lymphoid enhancer binding factor 1 (LEF1) expression is significantly higher in Hodgkin lymphoma associated with Richter syndrome relative to de novo classic Hodgkin lymphoma. Ann Diagn Pathol 2020; 49:151636. [PMID: 32977233 DOI: 10.1016/j.anndiagpath.2020.151636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022]
Abstract
Lymphoid enhancer binding factor 1 (LEF1) is consistently upregulated in chronic lymphocytic leukemia (CLL) and in a subset of large B cell lymphoma. Knowledge of LEF1 expression in Hodgkin lymphoma is limited. In this study, we used immunohistochemistry to survey LEF1 expression in various subsets of Hodgkin lymphoma, de novo classic Hodgkin lymphoma (CHL) (n = 43), Hodgkin lymphoma associated with Richter syndrome (HL-RS) (n = 20), and nodular lymphocyte predominant Hodgkin lymphoma (NLPHL) (n = 9). LEF1 expression was significantly higher in HL-RS compared with de novo CHL (12/20, 60% vs. 12/43, 28%; p = 0.0248). Only a single case (1/9; 11%) of NLPHL showed LEF1 expression. Epstein-Barr virus encoded RNA (EBER) was detected in 17 (40%) cases of de novo CHL and 14 (70%) HL-RS. Notably, we identified a correlation between LEF1 expression and EBER positivity (p = 0.0488). We concluded that LEF1 is commonly positive in CHL but not in NLPHL, and such a distinction may be helpful in this differential diagnosis. The higher frequency of LEF1 upregulation in HL-RS relative to de novo CHL suggests that these neoplasms might have different underlying pathogenic mechanisms and warrants further investigation.
Collapse
Affiliation(s)
- Kirill A Lyapichev
- Department of Hematopathology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ali Sakhdari
- Department of Hematopathology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Hematopathology, University of Toronto, Canada
| | - Joseph D Khoury
- Department of Hematopathology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dennis P O'Malley
- Department of Hematopathology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA; NeoGenomics, Aliso Viejo, CA, USA
| | - Siba El Hussein
- Department of Hematopathology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cameron C Yin
- Department of Hematopathology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Keyur P Patel
- Department of Hematopathology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Beenu Thakral
- Department of Hematopathology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ken H Young
- Department of Hematopathology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Pathology and Hematopathology Division, Duke University School of Medicine, Duke Medical Center and Cancer Institute, Durham, NC, USA
| | - L Jeffrey Medeiros
- Department of Hematopathology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sergej Konoplev
- Department of Hematopathology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
7
|
Cardona-Echeverry A, Prada-Arismendy J. Deciphering the role of Wnt signaling in acute myeloid leukemia prognosis: how alterations in DNA methylation come into play in patients' prognosis. J Cancer Res Clin Oncol 2020; 146:3097-3109. [PMID: 32980885 DOI: 10.1007/s00432-020-03407-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 09/21/2020] [Indexed: 10/23/2022]
Abstract
Acute myeloid leukemia (AML) is a malignant clonal disorder affecting myeloid differentiation through mechanisms that include epigenetic dysregulation. Abnormal changes in DNA methylation and gene expression profiles of pathways involved in hematopoietic development, such as Wnt/β-catenin, contribute to the transformation, development, and maintenance of leukemic cells. This review summarizes the alterations of Wnt signaling-related genes at the epigenetic and transcriptional level and their implications for AML prognosis. Among the implications of epigenetic alterations in AML, methylation of Wnt antagonists is related to poor prognosis, whereas their upregulation has been associated with a better clinical outcome. Furthermore, Wnt target genes c-Myc and LEF-1 present distinct implications. LEF-1 expression positively influences the patient overall survival. c-Myc upregulation has been associated with treatment resistance in AML, although c-Myc expression is not exclusively dependent of Wnt signaling. Understanding the signaling abnormalities could help us to further understand leukemogenesis, improve the current risk stratification for AML patients, and even serve to propose novel therapeutic targets.
Collapse
Affiliation(s)
- Andrés Cardona-Echeverry
- Grupo de Investigación e innovación Biomédica-GI2B, Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano-ITM, 050034, Medellín, Colombia
| | - Jeanette Prada-Arismendy
- Grupo de Investigación e innovación Biomédica-GI2B, Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano-ITM, 050034, Medellín, Colombia.
| |
Collapse
|
8
|
Dixit R, Pandey M, Tripathi SK, Dwivedi AND, Shukla VK. Genetic mutational analysis of β-catenin gene affecting GSK-3β phosphorylation plays a role in gallbladder carcinogenesis: Results from a case control study. Cancer Treat Res Commun 2020; 23:100173. [PMID: 32344182 DOI: 10.1016/j.ctarc.2020.100173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/21/2020] [Accepted: 03/24/2020] [Indexed: 02/06/2023]
Abstract
UNLABELLED This manuscript has reported different mutations of β-catenin gene in gallbladder cancer patients which affect GSK-3β phosphorylation site. PURPOSE Gallbladder carcinoma (GBC) is a relatively rare and fatal cancer with poor prognosis. The molecular mechanism of gallbladder carcinogenesis is still not clear. Wnt signaling pathway is a highly conserved pathway that regulates proliferation, differentiation, migration, genetic stability, apoptosis, and stem cell renewal. β-catenin plays major role in Wnt signaling and aberrations in β-catenin has found to be involved in several cancers pathogenesis. This study was carried out to document the mutations of β-catenin gene in gallbladder cancer and to evaluate its possible role in gallbladder carcinogenesis. METHODS PCR-SSCP (Single Stranded Conformation Polymorphism) for ctnnb1 was performed in 50 patients each of gallbladder cancer, cholelithiasis and 50 healthy controls. Samples that showed variation in banding pattern were sequenced. RESULTS Variation in banding pattern was observed in 9 (18%) samples of GBC, 4 (8%) of cholelithiasis and 2 (4%) of control. Sequencing analysis showed 9 novel mutations of ctnnb1 in exon 3 in 18% of gallbladder cancer (χ2 = 5.778; p < 0.05). Six point mutations, 1 deletion and 1 insertion mutation were found in 9 cases of gallbladder cancer. All point mutations were mis-sense mutation that affected highly conserved serine or threonine region that is important for GSK-3β phosphorylation. CONCLUSION Findings of the study suggests that high frequency of non synonymous mutations of β-catenin gene (ctnnb1) occurs in patients with gallbladder cancer. As these mutations mainly effect GSK 3β phosphorylation, it may be concluded that this might be an important step in gallbladder carcinogenesis. These β-catenin mutations lead to Wnt pathway activation and appear to have a role in progression from inflammation to cancer in gallbladder.
Collapse
Affiliation(s)
- Ruhi Dixit
- Department of General Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221 005, India
| | - Manoj Pandey
- Department of Surgical Oncology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221 005, India
| | - Sunil Kumar Tripathi
- Department of Forensic Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221 005, India
| | - Amit Nandan Dhar Dwivedi
- Department of Radio Diagnosis, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221 005, India
| | - Vijay Kumar Shukla
- Department of General Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221 005, India.
| |
Collapse
|
9
|
Non-coding RNAs: Regulators of glioma cell epithelial-mesenchymal transformation. Pathol Res Pract 2019; 215:152539. [DOI: 10.1016/j.prp.2019.152539] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/29/2019] [Accepted: 07/12/2019] [Indexed: 12/14/2022]
|
10
|
Nek2B activates the wnt pathway and promotes triple-negative breast cancer chemothezrapy-resistance by stabilizing β-catenin. J Exp Clin Cancer Res 2019; 38:243. [PMID: 31174562 PMCID: PMC6556028 DOI: 10.1186/s13046-019-1231-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/13/2019] [Indexed: 11/18/2022] Open
Abstract
Background The chemotherapy-resistance of triple-negative breast cancer (TNBC) remains a major challenge. The Nek2B kinase and β-catenin serve as crucial regulators of mitotic processes. The aim of this study was to test the correlation between Nek2B and TNBC chemotherapy sensitivity, and to determine the regulation of Nek2B on β-catenin and wnt/β-catenin signal pathway. Methods Gene Expression Omnibus(GEO) databases were used to gather gene exprsssion data of TNBC patients who undergoing chemotherapy. The co-expression of Nek2B and β-catenin in TNBC surgical sections and cells were analysed by immunohistochemistry, Q-RT-PCR, Western-blot and immunofluorescent staining. The impact of the expression of Nek2B and β-catenin in prognosis was also assessed using the Kaplan-Meier curves. CCK8 assay was used to detect the IC50 value of TNBC cell line. The endogenous binding capacity of Nek2B and β-catenin and phosphorylation of β-catenin by Nek2B were detected using co-immunoprecipitation (CO-IP). Chromatin immune-precipitation (ChIP) analysis and Luciferase Assays were used to evaluate the binding ability of the Nek2B, β-catenin and TCF4 complex with LEF-1 promoter. Nek2B-siRNA and Nek2B plasmid were injected into nude mice, and tumorigenesis was monitored. Results We found that overexpression of Nek2B and β-catenin in TNBC samples, was associated with patients poor prognosis. Patients with positive Nek2B expression were less sensitive to paclitaxel-containing neoadjuvant chemotherapy. Interestingly, in a panel of established TNBC cell line, Nek2B and β-catenin were highly expressed in cells exhibiting paclitaxel resistance. Our data also suggest that β-catenin binded to and was phosphorylated by Nek2B, and was in a complex with TCF4. Nek2B mainly regulates the expression of β-catenin in TNBC nucleus. Nek2B, β-catenin and TCF4 can be binded with the WRE functional area of LEF-1 promoter. Nek2B can activite wnt signaling pathway and wnt downstream target genes. The tumors treated by Nek2B siRNA associated with paclitaxel were the smallest in nude mouse, and Nek2B can regulate the expression of β-catenin and wnt downstream target genes in vivo. Conclusion Our study suggested that Nek2B can bind to β-catenin and the co-expression correlated with TNBC patients poor prognosis. It appears that Nek2B and β-catenin might synergize to promote chemotherapy resistance.
Collapse
|
11
|
Tham SY, Loh HS, Mai CW, Fu JY. Tocotrienols Modulate a Life or Death Decision in Cancers. Int J Mol Sci 2019; 20:372. [PMID: 30654580 PMCID: PMC6359475 DOI: 10.3390/ijms20020372] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/05/2019] [Accepted: 01/10/2019] [Indexed: 02/06/2023] Open
Abstract
Malignancy often arises from sophisticated defects in the intricate molecular mechanisms of cells, rendering a complicated molecular ground to effectively target cancers. Resistance toward cell death and enhancement of cell survival are the common adaptations in cancer due to its infinite proliferative capacity. Existing cancer treatment strategies that target a single molecular pathway or cancer hallmark fail to fully resolve the problem. Hence, multitargeted anticancer agents that can concurrently target cell death and survival pathways are seen as a promising alternative to treat cancer. Tocotrienols, a minor constituent of the vitamin E family that have previously been reported to induce various cell death mechanisms and target several key survival pathways, could be an effective anticancer agent. This review puts forward the potential application of tocotrienols as an anticancer treatment from a perspective of influencing the life or death decision of cancer cells. The cell death mechanisms elicited by tocotrienols, particularly apoptosis and autophagy, are highlighted. The influences of several cell survival signaling pathways in shaping cancer cell death, particularly NF-κB, PI3K/Akt, MAPK, and Wnt, are also reviewed. This review may stimulate further mechanistic researches and foster clinical applications of tocotrienols via rational drug designs.
Collapse
Affiliation(s)
- Shiau-Ying Tham
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia Campus, Jalan Broga, Semenyih 43500, Selangor, Malaysia.
| | - Hwei-San Loh
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia Campus, Jalan Broga, Semenyih 43500, Selangor, Malaysia.
- Biotechnology Research Centre, University of Nottingham Malaysia Campus, Jalan Broga, Semenyih 43500, Selangor, Malaysia.
| | - Chun-Wai Mai
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia.
- Centre for Cancer and Stem Cell Research, Institute for Research, Development and Innovation, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia.
| | - Ju-Yen Fu
- Nutrition Unit, Product Development and Advisory Services Division, Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, Kajang 43000, Selangor, Malaysia.
| |
Collapse
|
12
|
Olabi S, Ucar A, Brennan K, Streuli CH. Integrin-Rac signalling for mammary epithelial stem cell self-renewal. Breast Cancer Res 2018; 20:128. [PMID: 30348189 PMCID: PMC6198444 DOI: 10.1186/s13058-018-1048-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 09/04/2018] [Indexed: 01/08/2023] Open
Abstract
Background Stem cells are precursors for all mammary epithelia, including ductal and alveolar epithelia, and myoepithelial cells. In vivo mammary epithelia reside in a tissue context and interact with their milieu via receptors such as integrins. Extracellular matrix receptors coordinate important cellular signalling platforms, of which integrins are the central architects. We have previously shown that integrins are required for mammary epithelial development and function, including survival, cell cycle, and polarity, as well as for the expression of mammary-specific genes. In the present study we looked at the role of integrins in mammary epithelial stem cell self-renewal. Methods We used an in vitro stem cell assay with primary mouse mammary epithelial cells isolated from genetically altered mice. This involved a 3D organoid assay, providing an opportunity to distinguish the stem cell- or luminal progenitor-driven organoids as structures with solid or hollow appearances, respectively. Results We demonstrate that integrins are essential for the maintenance and self-renewal of mammary epithelial stem cells. Moreover integrins activate the Rac1 signalling pathway in stem cells, which leads to the stimulation of a Wnt pathway, resulting in expression of β-catenin target genes such as Axin2 and Lef1. Conclusions Integrin/Rac signalling has a role in specifying the activation of a canonical Wnt pathway that is required for mammary epithelial stem cell self-renewal. Electronic supplementary material The online version of this article (10.1186/s13058-018-1048-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Safiah Olabi
- Wellcome Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Ahmet Ucar
- Wellcome Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Keith Brennan
- Wellcome Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Charles H Streuli
- Wellcome Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
13
|
Fang Y, Kang Y, Zou H, Cheng X, Xie T, Shi L, Zhang H. β-elemene attenuates macrophage activation and proinflammatory factor production via crosstalk with Wnt/β-catenin signaling pathway. Fitoterapia 2018; 124:92-102. [PMID: 29066299 DOI: 10.1016/j.fitote.2017.10.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 10/10/2017] [Accepted: 10/20/2017] [Indexed: 11/27/2022]
Abstract
β-elemene, extracted from Rhizoma zedoariae, has been widely used as a traditional medicine for its antitumor activity against a broad range of cancers. However, the effect of β-elemene in inflammation disorders has yet to be determined. The present study was designed to investigate the anti-inflammatory effects and potential molecular mechanisms of β-elemene in lipopolysaccharide (LPS)-induced murine macrophage cells RAW264.7. We found that the production of pro-inflammatory mediators, including interleukin-6(IL-6), tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), induced by LPS was significantly suppressed by β-elemene in a dose-dependent manner in RAW264.7 macrophage cell line. Also, β-elemene inhibited LPS-induced nitric oxide synthase (iNOS) and interleukin-10 (IL-10) expression by RAW264.7, which was related to the down-regulation of Wnt/β-catenin signaling pathway. Importantly, this study demonstrates that β-catenin was significantly inhibited by β-elemene, which appeared to be largely responsible for the down-regulation of Wnt/β-catenin signaling pathway. Accordingly, the deletion of β-catenin in primary macrophages reversed β-catenin-elicited inhibition of immune response. Furthermore, β-catenin expression and Wnt/β-catenin signaling pathway induced by LPS in RAW264.7 was also significantly inhibited by α-humulene, one isomeric sesquiterpene of β-elemene. α-humulene was also found to significantly inhibit LPS-induced production of proinflammatory cytokines. However, α-humulene showed more cytotoxic ability than β-elemene. Collectively, our data illustrated that β-elemene exerted a potent inhibitory effect on pro-inflammatory meditator and cytokines production via the inactivation of β-catenin, and also demonstrated the protective functions of β-elemene in endotoxin-induced inflammation. β-elemene may serve as potential nontoxic modulatory agents for the prevention and treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Yangyi Fang
- Key Laboratory of Immunology and Molecular Medicine, Division of Basical Medicine, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yanhua Kang
- Key Laboratory of Immunology and Molecular Medicine, Division of Basical Medicine, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China; Department of Immunology, School of Basic Medical Science, Nanjing University of Chinese Medicine, Nanjing, China
| | - Han Zou
- Key Laboratory of Immunology and Molecular Medicine, Division of Basical Medicine, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xiaxuan Cheng
- Key Laboratory of Immunology and Molecular Medicine, Division of Basical Medicine, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China; Department of Biochemistry and Molecular Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Tian Xie
- Institute of Holistic Integrative Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China; Institute of Holistic Integrative Oncology, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Liyun Shi
- Key Laboratory of Immunology and Molecular Medicine, Division of Basical Medicine, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China; Department of Immunology, School of Basic Medical Science, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Hang Zhang
- Key Laboratory of Immunology and Molecular Medicine, Division of Basical Medicine, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China; Institute of Holistic Integrative Oncology, Hangzhou Normal University, Hangzhou, Zhejiang, China.
| |
Collapse
|
14
|
Wei LH, Lin JM, Chu JF, Chen HW, Li QY, Peng J. Scutellaria barbata D. Don inhibits colorectal cancer growth via suppression of Wnt/β-catenin signaling pathway. Chin J Integr Med 2017; 23:858-863. [PMID: 29080197 DOI: 10.1007/s11655-017-2775-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Indexed: 01/05/2023]
Abstract
OBJECTIVE To investigate the effect of the ethanol extract of Scutellaria barbata D. Don (EESB) on colorectal cancer (CRC) growth and Wnt/β-catenin signaling pathway in vivo and in vitro. METHODS In vivo experiment, CRC xenograft mouse model was constructed with injection of HT-29 cells. Following xenograft implantation, twenty mice were randomly divided into EESB-treated group (n=10) and control group (n=10) by a random number table, and were given with intra-gastric administration of 2 g/kg EESB or saline, 5 days a week for 16 days, respectively. At the end of experiment, tumors were removed and weighed by electronic scales. The proliferation biomarker Ki-67 of tumor was evaluated by immunohistochemistry (IHC) assay. In vitro study, HT-29 cells were treated with 0, 0.5, 1.5, 2.5 mg/mL EESB for 24 h. At the end of the treatment, the viability and survival of HT-29 cells were determined by methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay and colony formation assay, respectively. The mRNA expression of c-Myc, Survivin and adenomatous polyposis coli (APC) was examined by reverse transcription-polymerase chain reaction (RT-PCR) both in tumor tissues of CRC xenograft mice and HT-29 cells. Protein expression of c-Myc, Survivin, APC, and β-catenin as well as β-catenin phosphorylation level were evaluated by IHC assay or Western blotting. RESULTS EESB significantly reduced tumor weight in CRC xenografts mice, compared with the control group (P<0.05). IHC assay showed that EESB significantly inhibited protein expression of Ki-67 in tumor tissues (P<0.05). MTT assay showed that EESB significantly reduced HT-29 cell viability in a dose-dependent manner (P<0.05). Colony formation assay showed that EESB dose-dependently decreased the survival of HT-29 cells (P<0.05). In addition, RT-PCR assay showed that EESB decreased the mRNA expression of c-Myc and Survivin and increased APC expression, both in tumor tissues of CRC xenograft mice and HT-29 cells (P<0.05). IHC assay or Western blotting showed that EESB decreased protein expression of β-catenin, c-Myc and Survivin, as well as increased APC expression and β-catenin phosphorylation in tumor tissues or HT-29 cells (P<0.05). CONCLUSIONS EESB significantly reduced tumor growth in CRC xenografts mice, and inhibited the viability and survival of HT-29 cells. EESB could suppress the activation of the Wnt/β-catenin pathway, which might be one of the mechanisms whereby Scutellaria barbata D. Don exerts its anticancer activity.
Collapse
Affiliation(s)
- Li-Hui Wei
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Jiu-Mao Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Jian-Feng Chu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Hong-Wei Chen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Qing-Yu Li
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| |
Collapse
|
15
|
Identification of differentially expressed genes regulated by molecular signature in breast cancer-associated fibroblasts by bioinformatics analysis. Arch Gynecol Obstet 2017; 297:161-183. [PMID: 29063236 DOI: 10.1007/s00404-017-4562-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 09/21/2017] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Breast cancer is a severe risk to public health and has adequately convoluted pathogenesis. Therefore, the description of key molecular markers and pathways is of much importance for clarifying the molecular mechanism of breast cancer-associated fibroblasts initiation and progression. Breast cancer-associated fibroblasts gene expression dataset was downloaded from Gene Expression Omnibus database. METHODS A total of nine samples, including three normal fibroblasts, three granulin-stimulated fibroblasts and three cancer-associated fibroblasts samples, were used to identify differentially expressed genes (DEGs) between normal fibroblasts, granulin-stimulated fibroblasts and cancer-associated fibroblasts samples. The gene ontology (GO) and pathway enrichment analysis was performed, and protein-protein interaction (PPI) network of the DEGs was constructed by NetworkAnalyst software. RESULTS Totally, 190 DEGs were identified, including 66 up-regulated and 124 down-regulated genes. GO analysis results showed that up-regulated DEGs were significantly enriched in biological processes (BP), including cell-cell signalling and negative regulation of cell proliferation; molecular function (MF), including insulin-like growth factor II binding and insulin-like growth factor I binding; cellular component (CC), including insulin-like growth factor binding protein complex and integral component of plasma membrane; the down-regulated DEGs were significantly enriched in BP, including cell adhesion and extracellular matrix organization; MF, including N-acetylgalactosamine 4-sulfate 6-O-sulfotransferase activity and calcium ion binding; CC, including extracellular space and extracellular matrix. WIKIPATHWAYS analysis showed the up-regulated DEGs were enriched in myometrial relaxation and contraction pathways. WIKIPATHWAYS, REACTOME, PID_NCI and KEGG pathway analysis showed the down-regulated DEGs were enriched endochondral ossification, TGF beta signalling pathway, integrin cell surface interactions, beta1 integrin cell surface interactions, malaria and glycosaminoglycan biosynthesis-chondroitin sulfate/dermatan sulphate. The top 5 up-regulated hub genes, CDKN2A, MME, PBX1, IGFBP3, and TFAP2C and top 5 down-regulated hub genes VCAM1, KRT18, TGM2, ACTA2, and STAMBP were identified from the PPI network, and subnetworks revealed these genes were involved in significant pathways, including myometrial relaxation and contraction pathways, integrin cell surface interactions, beta1 integrin cell surface interaction. Besides, the target hsa-mirs for DEGs were identified. hsa-mir-759, hsa-mir-4446-5p, hsa-mir-219a-1-3p and hsa-mir-26a-5p were important miRNAs in this study. CONCLUSIONS We pinpoint important key genes and pathways closely related with breast cancer-associated fibroblasts initiation and progression by a series of bioinformatics analysis on DEGs. These screened genes and pathways provided for a more detailed molecular mechanism underlying breast cancer-associated fibroblasts occurrence and progression, holding promise for acting as molecular markers and probable therapeutic targets.
Collapse
|
16
|
Agley CC, Lewis FC, Jaka O, Lazarus NR, Velloso C, Francis-West P, Ellison-Hughes GM, Harridge SDR. Active GSK3β and an intact β-catenin TCF complex are essential for the differentiation of human myogenic progenitor cells. Sci Rep 2017; 7:13189. [PMID: 29030569 PMCID: PMC5640663 DOI: 10.1038/s41598-017-10731-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 08/14/2017] [Indexed: 01/14/2023] Open
Abstract
Wnt-β-catenin signalling is essential for skeletal muscle myogenesis during development, but its role in adult human skeletal muscle remains unknown. Here we have used human primary CD56Pos satellite cell-derived myogenic progenitors obtained from healthy individuals to study the role of Wnt-β-catenin signalling in myogenic differentiation. We show that dephosphorylated β-catenin (active-β-catenin), the central effector of the canonical Wnt cascade, is strongly upregulated at the onset of differentiation and undergoes nuclear translocation as differentiation progresses. To establish the role of Wnt signalling in regulating the differentiation process we manipulated key nodes of this pathway through a series of β-catenin gain-of-function (GSK3 inhibition and β-catenin overexpression) or loss-of-function experiments (dominant negative TCF4). Our data showed that manipulation of these critical pathway components led to varying degrees of disruption to the normal differentiation phenotype indicating the importance of Wnt signalling in regulating this process. We reveal an independent necessity for active-β-catenin in the fusion and differentiation of human myogenic progenitors and that dominant negative inhibition of TCF4 prevents differentiation completely. Together these data add new mechanistic insights into both Wnt signalling and adult human myogenic progenitor differentiation.
Collapse
Affiliation(s)
- C C Agley
- Centre of Human and Aerospace Physiological Sciences, King's College London, London, UK. .,Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
| | - F C Lewis
- Centre of Human and Aerospace Physiological Sciences, King's College London, London, UK.,Stem Cell Institute, King's College London, London, UK
| | - O Jaka
- Centre of Human and Aerospace Physiological Sciences, King's College London, London, UK
| | - N R Lazarus
- Centre of Human and Aerospace Physiological Sciences, King's College London, London, UK
| | - C Velloso
- Centre of Human and Aerospace Physiological Sciences, King's College London, London, UK
| | - P Francis-West
- Department of Craniofacial development and stem cell biology, King's College London, London, UK
| | - G M Ellison-Hughes
- Centre of Human and Aerospace Physiological Sciences, King's College London, London, UK.,Stem Cell Institute, King's College London, London, UK
| | - S D R Harridge
- Centre of Human and Aerospace Physiological Sciences, King's College London, London, UK.,Stem Cell Institute, King's College London, London, UK
| |
Collapse
|
17
|
Chen Y, Rao X, Huang K, Jiang X, Wang H, Teng L. FH535 Inhibits Proliferation and Motility of Colon Cancer Cells by Targeting Wnt/β-catenin Signaling Pathway. J Cancer 2017; 8:3142-3153. [PMID: 29158786 PMCID: PMC5665030 DOI: 10.7150/jca.19273] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 08/28/2017] [Indexed: 12/11/2022] Open
Abstract
Aberrant Wnt/β-catenin pathway activation is frequently observed in human colorectal cancer (CRC) and has become a promising target for CRC treatment. Our study aimed to evaluate the effect of FH535, a small molecule inhibitor of Wnt/β-catenin pathway, on two colon cancer cell lines, HT29 and SW480. We found FH535 significantly inhibited colon cancer cell proliferation in vitro and induced cell cycle arrest. Moreover, FH535 inhibited colon cancer xenograft growth in vivo. Wound-healing assay and Transwell assay revealed that FH535 notably suppressed migration and invasion of SW480 cells. FH535 also repressed expression of cancer stem cell markers, CD24, CD44 and CD133 in HT29 cells. Real time-quantitative PCR and Western blotting revealed that targeting Wnt/β-catenin pathway using FH535 effectively downregulated target genes including cyclin D1 and survivin at mRNA and protein level, which contributed to the FH535-induced inhibitory effect on colon cancer cell proliferation. As mechanisms for suppressing cancer cell motility, FH535 downregulated expression of matrix metalloproteinase-7 and -9, Snail and vimentin. RNA sequencing revealed that FH535 prominently altered multiple biological pathways associated with DNA replication, cell cycle and metabolism. Our study highlights the anti-cancer effect of FH535 on colon cancer and presents its potential in colon cancer treatment.
Collapse
Affiliation(s)
- Yanyan Chen
- Department of Surgical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.,Department of Cell Biology and Program in Molecular Cell Biology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xianping Rao
- Department of Cell Biology and Program in Molecular Cell Biology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Kangmao Huang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
| | - Xiaoxia Jiang
- Department of Surgical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Haohao Wang
- Department of Surgical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Lisong Teng
- Department of Surgical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
18
|
Transcriptional hallmarks of cancer cell lines reveal an emerging role of branched chain amino acid catabolism. Sci Rep 2017; 7:7820. [PMID: 28798381 PMCID: PMC5552680 DOI: 10.1038/s41598-017-08329-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 07/07/2017] [Indexed: 02/06/2023] Open
Abstract
A comparative analysis between cancer cell lines and healthy dividing cells was performed using data (289 microarrays and 50 RNA-seq samples) from 100 different cancer cell lines and 6 types of healthy stem cells. The analysis revealed two large-scale transcriptional events that characterize cancer cell lines. The first event was a large-scale up-regulation pattern associated to epithelial-mesenchymal transition, putatively driven by the interplay of the SP1 transcription factor and the canonical Wnt signaling pathway; the second event was the failure to overexpress a diverse set of genes coding membrane and extracellular proteins. This failure is putatively caused by a lack of activity of the AP-1 complex. It was also shown that the epithelial-mesenchymal transition was associated with the up-regulation of 5 enzymes involved in the degradation of branched chain amino acids. The suitability of silencing one of this enzymes (branched chain amino acid transaminase 2; BCAT2) with therapeutic effects was tested experimentally on the breast cancer cell line MCF-7 and primary cell culture of breast tumor (BCC), leading to lower cell proliferation. The silencing of BCAT2 did not have any significant effect on ASM and MCF10A cells, which were used as models of healthy dividing cells.
Collapse
|
19
|
Martinez-Font E, Felipe-Abrio I, Calabuig-Fariñas S, Ramos R, Terrasa J, Vögler O, Alemany R, Martín-Broto J, Obrador-Hevia A. Disruption of TCF/β-Catenin Binding Impairs Wnt Signaling and Induces Apoptosis in Soft Tissue Sarcoma Cells. Mol Cancer Ther 2017; 16:1166-1176. [DOI: 10.1158/1535-7163.mct-16-0585] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/13/2016] [Accepted: 03/02/2017] [Indexed: 12/29/2022]
Abstract
Abstract
Soft tissue sarcomas (STS) are malignant tumors of mesenchymal origin and represent around 1% of adult cancers, being a very heterogeneous group of tumors with more than 50 different subtypes. The Wnt signaling pathway is involved in the development and in the regulation, self-renewal, and differentiation of mesenchymal stem cells, and plays a role in sarcomagenesis. In this study, we have tested pharmacologic inhibition of Wnt signaling mediated by disruption of TCF/β-catenin binding and AXIN stabilization, being the first strategy more efficient in reducing cell viability and downstream effects. We have shown that disruption of TCF/β-catenin binding with PKF118-310 produces in vitro antitumor activity in a panel of prevalent representative STS cell lines and primary cultures. At the molecular level, PKF118-310 treatment reduced β-catenin nuclear localization, reporter activity, and target genes, resulting in an increase in apoptosis. Importantly, combination of PKF118-310 with doxorubicin resulted in enhanced reduction of cell viability, suggesting that Wnt inhibition could be a new combination regime in these patients. Our findings support the usefulness of Wnt inhibitors as new therapeutic strategies for the prevalent STS. Mol Cancer Ther; 16(6); 1166–76. ©2017 AACR.
Collapse
Affiliation(s)
- Esther Martinez-Font
- 1Group of Advanced Therapies and Biomarkers in Clinical Oncology, Institut d'Investigació Sanitària de Palma (IdISPa), Palma de Mallorca, Spain
| | - Irene Felipe-Abrio
- 2Group of Molecular Oncology and New Therapies, Oncohematology and Genetics Department, Instituto de Biomedicina de Sevilla (IBiS), Sevilla, Spain
| | - Silvia Calabuig-Fariñas
- 3Molecular Oncology Laboratory, Fundación de Investigación, Hospital General Universitario de Valencia, Valencia, Spain
- 4Department of Pathology, Universitat de Valencia, Valencia, Spain
| | - Rafael Ramos
- 5Department of Pathology, Hospital Universitari Son Espases, Palma de Mallorca, Spain
| | - Josefa Terrasa
- 1Group of Advanced Therapies and Biomarkers in Clinical Oncology, Institut d'Investigació Sanitària de Palma (IdISPa), Palma de Mallorca, Spain
- 6Department of Oncology, Hospital Universitari Son Espases, Palma de Mallorca, Spain
| | - Oliver Vögler
- 1Group of Advanced Therapies and Biomarkers in Clinical Oncology, Institut d'Investigació Sanitària de Palma (IdISPa), Palma de Mallorca, Spain
- 7Group of Clinical and Translational Research, Department of Biology, Institut Universitari d'Investigacions en Ciències de la Salut (IUNICS), University of the Balearic Islands, Spain
| | - Regina Alemany
- 1Group of Advanced Therapies and Biomarkers in Clinical Oncology, Institut d'Investigació Sanitària de Palma (IdISPa), Palma de Mallorca, Spain
- 7Group of Clinical and Translational Research, Department of Biology, Institut Universitari d'Investigacions en Ciències de la Salut (IUNICS), University of the Balearic Islands, Spain
| | - Javier Martín-Broto
- 2Group of Molecular Oncology and New Therapies, Oncohematology and Genetics Department, Instituto de Biomedicina de Sevilla (IBiS), Sevilla, Spain
- 8Department of Oncology, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Antònia Obrador-Hevia
- 1Group of Advanced Therapies and Biomarkers in Clinical Oncology, Institut d'Investigació Sanitària de Palma (IdISPa), Palma de Mallorca, Spain
- 6Department of Oncology, Hospital Universitari Son Espases, Palma de Mallorca, Spain
| |
Collapse
|
20
|
Menter T, Trivedi P, Ahmad R, Flora R, Dirnhofer S, Tzankov A, Naresh KN. Diagnostic Utility of Lymphoid Enhancer Binding Factor 1 Immunohistochemistry in Small B-Cell Lymphomas. Am J Clin Pathol 2017; 147:292-300. [PMID: 28395058 DOI: 10.1093/ajcp/aqw208] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
OBJECTIVES Recent studies have shown that lymphoid enhancer binding factor 1 (LEF1) is a useful marker for chronic lymphocytic B-cell leukemia (CLL)/small lymphocytic lymphoma. Yet, it is not still being widely used in a diagnostic setting. In this study, we document the experience with LEF1 immunohistochemistry during routine diagnostics. METHODS In total, 191 B-cell lymphoma cases from Hammersmith Hospital, Imperial College NHS Healthcare Trust (London, UK) were investigated by immunohistochemistry for LEF1 during routine diagnostic workup. These cases included both bone marrow trephines and lymph node biopsy specimens. The monoclonal antibody clone EPR2029Y was used. RESULTS LEF1 expression was strong and diffuse (>70% of cells) in most cases. Few CLL cases showed a staining in proliferation centers only. Seventy-seven of 80 CLL cases expressed LEF1. Other entities expressing LEF1 included one of 38 follicular lymphomas, two of 33 marginal zone lymphomas, and one diffuse large B-cell lymphoma with a background of follicular lymphoma grade 3B. Sensitivity for LEF1 for the diagnosis of CLL was 0.96, and specificity was 0.93. CONCLUSIONS In this study, we could demonstrate the diagnostic utility of LEF1. LEF1 is a sensitive and specific marker for CLL and is helpful in the diagnosis of diagnostically challenging small B-cell lymphomas.
Collapse
Affiliation(s)
- Thomas Menter
- From the Department of Cellular and Molecular Pathology, Hammersmith Hospital Campus, Imperial College Healthcare NHS Trust, London, UK; and
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Pritesh Trivedi
- From the Department of Cellular and Molecular Pathology, Hammersmith Hospital Campus, Imperial College Healthcare NHS Trust, London, UK; and
| | - Raida Ahmad
- From the Department of Cellular and Molecular Pathology, Hammersmith Hospital Campus, Imperial College Healthcare NHS Trust, London, UK; and
| | - Rashpal Flora
- From the Department of Cellular and Molecular Pathology, Hammersmith Hospital Campus, Imperial College Healthcare NHS Trust, London, UK; and
| | - Stephan Dirnhofer
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Alexandar Tzankov
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Kikkeri N Naresh
- From the Department of Cellular and Molecular Pathology, Hammersmith Hospital Campus, Imperial College Healthcare NHS Trust, London, UK; and
| |
Collapse
|
21
|
Xia S, Ji R, Zhan W. Long noncoding RNA papillary thyroid carcinoma susceptibility candidate 3 (PTCSC3) inhibits proliferation and invasion of glioma cells by suppressing the Wnt/β-catenin signaling pathway. BMC Neurol 2017; 17:30. [PMID: 28187755 PMCID: PMC5303216 DOI: 10.1186/s12883-017-0813-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 02/03/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The dysregulation of long noncoding RNAs (lncRNAs) has been identified in a variety of cancers. An increasing number of studies have found the critical role of lncRNAs in the regulation of cellular processes, such as proliferation, invasion and differentiation. Long noncoding RNA papillary thyroid carcinoma susceptibility candidate 3 (PTCSC3) is a novel lncRNA that was primarily detected in papillary thyroid carcinoma. However, the biological function and molecular mechanism of lncRNA PTCSC3 in glioma are still unknown. METHODS The expression level of lncRNA PTCSC3 in human microglia and glioma cell lines was examined using quantitative real-time polymerase chain reaction (qRT-PCR). The influence of lncRNA PTCSC3 on cell proliferation were studied using the cell counting kit-8, and cell cycle and apoptosis were analyzed by flow cytometry assays. The migration and invasion abilities were investigated by transwell and wound healing assays. The target genes of lncRNA PTCSC3 were explored by qRT-PCR, immunofluorescence and western blot. RESULTS LncRNA PTCSC3 was significantly downregulated in glioma cell lines. The overexpression of lncRNA PTCSC3 suppressed proliferation and induced apoptosis in U87 and U251 cells. Additionally, the overexpression of lncRNA PTCSC3 inhibited the migration and invasion of U87 and U251 cells. Moreover, lncRNA PTCSC3 inhibited the epithelial-mesenchymal transition of U87 cells. The study also demonstrated that LRP6, as a receptor of the Wnt/β-catenin pathway, was a target of lncRNA PTCSC3. By evaluating the expression levels of Axin1, active β-catenin, c-myc, and cyclin D1, the study indicated that lncRNA PTCSC3 inhibited the activation of the Wnt/β-cateninpathway through targeting LRP6. CONCLUSIONS LncRNA PTCSC3 inhibits the proliferation and migration of glioma cells and suppresses Wnt/β-catenin signaling pathway by targeting LRP6. LncRNA PTCSC3 is a potential therapeutic target for treatment of glioma.
Collapse
Affiliation(s)
- Shujun Xia
- Ultrasound Department, Rui Jin Hospital Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Huang Pu District, Shanghai, Zip code: 200025, People's Republic of China
| | - Ri Ji
- Ultrasound Department, Rui Jin Hospital Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Huang Pu District, Shanghai, Zip code: 200025, People's Republic of China
| | - Weiwei Zhan
- Ultrasound Department, Rui Jin Hospital Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Huang Pu District, Shanghai, Zip code: 200025, People's Republic of China.
| |
Collapse
|
22
|
Lai XB, Nie YQ, Huang HL, Li YF, Cao CY, Yang H, Shen B, Feng ZQ. NIMA-related kinase 2 regulates hepatocellular carcinoma cell growth and proliferation. Oncol Lett 2017; 13:1587-1594. [PMID: 28454295 PMCID: PMC5403431 DOI: 10.3892/ol.2017.5618] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 10/27/2016] [Indexed: 12/29/2022] Open
Abstract
NIMA-related kinase 2 (Nek2) is often upregulated in human cancer and is important in regulating the cell cycle and gene expression, and maintaining centrosomal structure and function. The present study aimed to investigate the expression pattern, clinical significance, and biological function of Nek2 in hepatocellular carcinoma (HCC). mRNA and protein levels of Nek2 were examined in HCC and corresponding normal liver tissues. The MTT and soft agar colony formation assays, and flow cytometry were employed to assess the roles of Nek2 in cell proliferation and growth. In addition, western blot analysis was performed to assess the expression of cell cycle- and proliferation-related proteins. The results revealed that Nek2 was upregulated in HCC tissues and cell lines. The clinical significance of Nek2 expression was also analyzed. Inhibiting Nek2 expression by siRNA suppressed cell proliferation, growth, and colony formation in hepatocellular carcinoma cell line HepG2 cells, induced cell cycle arrest in the G2/M phase by retarding the S-phase, and promoted apoptosis. Furthermore, Nek2 depletion downregulated β-catenin expression in HepG2 cells and diminished expression of Myc proto-oncogene protein (c-Myc), cyclins D1, B1, and E and cyclin-dependent kinase 1, whilst increasing protein levels of p27. This demonstrates that overexpression of Nek2 is associated with the malignant evolution of HCC. Targeting Nek2 may inhibit HCC cell growth and proliferation through the regulation of β-catenin by the Wnt/β-catenin pathway and therefore may be developed as a novel therapeutic strategy to treat HCC.
Collapse
Affiliation(s)
- Xiao-Bo Lai
- Department of Gastroenterology and Hepatology, The First Municipal People's Hospital of Guangzhou, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China.,Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, Guangdong 510180, P.R. China
| | - Yu-Qiang Nie
- Department of Gastroenterology and Hepatology, The First Municipal People's Hospital of Guangzhou, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China.,Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, Guangdong 510180, P.R. China
| | - Hong-Li Huang
- Department of Gastroenterology and Hepatology, The First Municipal People's Hospital of Guangzhou, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China.,Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, Guangdong 510180, P.R. China
| | - Ying-Fei Li
- Department of Gastroenterology and Hepatology, The First Municipal People's Hospital of Guangzhou, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China.,Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, Guangdong 510180, P.R. China
| | - Chuang-Yu Cao
- Department of Gastroenterology and Hepatology, The First Municipal People's Hospital of Guangzhou, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China.,Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, Guangdong 510180, P.R. China
| | - Hui Yang
- Department of Gastroenterology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Bo Shen
- Department of Gastroenterology and Hepatology, The First Municipal People's Hospital of Guangzhou, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China.,Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, Guangdong 510180, P.R. China
| | - Zhi-Qiang Feng
- Department of Gastroenterology and Hepatology, The First Municipal People's Hospital of Guangzhou, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China.,Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, Guangdong 510180, P.R. China
| |
Collapse
|
23
|
Jiao S, Li C, Hao Q, Miao H, Zhang L, Li L, Zhou Z. VGLL4 targets a TCF4-TEAD4 complex to coregulate Wnt and Hippo signalling in colorectal cancer. Nat Commun 2017; 8:14058. [PMID: 28051067 PMCID: PMC5216127 DOI: 10.1038/ncomms14058] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 11/23/2016] [Indexed: 12/14/2022] Open
Abstract
Concerted co-regulation of multiple signalling pathways is crucial for tissue homoeostasis and tumorigenesis. Here we report that VGLL4, a previously identified YAP antagonist, also functions as a regulator of Wnt/β-catenin signalling. The expression of VGLL4 is significantly downregulated in clinical colorectal carcinoma (CRC) specimens, positively associated with patient survival rate, and inversely correlated with the expression of Wnt target genes in CRCs. Knockdown of VGLL4 enhances proliferation and tumour formation of CRC cells. A designed peptide mimicking the function of VGLL4 effectively inhibits CRC progression in a de novo mouse model. Mechanistically, TEAD4 associates with TCF4 to form a complex and cobind target genes. VGLL4 targets this TEAD4–TCF4 complex to interfere the functional interplay between TEAD4 and TCF4, suppressing the transactivation of TCF4. Collectively, our study indicates that Wnt/β-catenin and Hippo-YAP signalling are directly linked at transcription factor-level, and VGLL4 can target a TEAD4–TCF4 complex to co-regulate both pathways. The Wnt/β-catenin and YAP signaling pathways have fundamental roles in cancer. Here, the authors show that VGLL4, a known YAP antagonist, also negatively regulates Wnt/β-catenin signaling by targeting TEAD-DNA-TCF4 complex, thereby inhibiting colorectal cancer growth.
Collapse
Affiliation(s)
- Shi Jiao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chuanchuan Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qian Hao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Haofei Miao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lei Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,The School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China
| | - Lin Li
- The School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China.,State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhaocai Zhou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,The School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China
| |
Collapse
|
24
|
Nickho H, Younesi V, Aghebati-Maleki L, Motallebnezhad M, Majidi Zolbanin J, Movassagh Pour A, Yousefi M. Developing and characterization of single chain variable fragment (scFv) antibody against frizzled 7 (Fzd7) receptor. Bioengineered 2016; 8:501-510. [PMID: 27849134 DOI: 10.1080/21655979.2016.1255383] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
ABSTACT Wnt/β-catenin signaling pathway through Frizzled receptors has been shown to play a key role in both normal development and tumorigenesis. Overexpression of Wnt pathway genes, such as Fzd7 in several malignancies is well-documented. Therefore, targeting of Fzd7 and its ligand inhibits cancer cells proliferation metastasis. In the present study we isolated single chain variable fragments (scFvs) against Fzd7 receptor using phage display method. Semi-synthetic human naive antibody libraries (Tomlinson I + J) was employed in panning procedure to isolate specific scFv against specific peptide from extracellular domain of Fzd7 receptor. The reactivity and growth inhibition effects of the selected antibodies was evaluated using enzyme-linked immunosorbent assay (ELISA), MTT and annexin V assays, respectively. Seven scFvs reactive to Fzd7 were selected following 4 rounds of panning. The results showed that the selected scFvs inhibits cell growth through apoptosis cell death in a triple negative breast cancer cells, MDA-MB-231. Given that Fzd7 and Wnt pathway plays a critical role in tumor progression, selected blocking scFvs represent significant potential for immunotherapy of breast cancer cells.
Collapse
Affiliation(s)
- Hamid Nickho
- a Immunology Research Center, Tabriz University of Medical Sciences , Tabriz , Iran.,b Drug Applied Research Center, Tabriz University of Medical Sciences , Tabriz , Iran.,c Department of Immunology , School of Medicine, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Vahid Younesi
- d Pishtaz Teb Zaman Diagnostics , Tehran , Iran.,e Department of Laboratory Sciences , Faculty of Paramedical Sciences, Alborz University of Medical Sciences , Karaj , Iran
| | - Leili Aghebati-Maleki
- a Immunology Research Center, Tabriz University of Medical Sciences , Tabriz , Iran.,b Drug Applied Research Center, Tabriz University of Medical Sciences , Tabriz , Iran.,c Department of Immunology , School of Medicine, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Morteza Motallebnezhad
- a Immunology Research Center, Tabriz University of Medical Sciences , Tabriz , Iran.,b Drug Applied Research Center, Tabriz University of Medical Sciences , Tabriz , Iran.,c Department of Immunology , School of Medicine, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Jafar Majidi Zolbanin
- a Immunology Research Center, Tabriz University of Medical Sciences , Tabriz , Iran.,b Drug Applied Research Center, Tabriz University of Medical Sciences , Tabriz , Iran.,c Department of Immunology , School of Medicine, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Aliakbar Movassagh Pour
- a Immunology Research Center, Tabriz University of Medical Sciences , Tabriz , Iran.,b Drug Applied Research Center, Tabriz University of Medical Sciences , Tabriz , Iran.,c Department of Immunology , School of Medicine, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Mehdi Yousefi
- b Drug Applied Research Center, Tabriz University of Medical Sciences , Tabriz , Iran.,c Department of Immunology , School of Medicine, Tabriz University of Medical Sciences , Tabriz , Iran
| |
Collapse
|
25
|
β-Catenin Expression Negatively Correlates with WIF1 and Predicts Poor Clinical Outcomes in Patients with Cervical Cancer. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4923903. [PMID: 27843945 PMCID: PMC5098059 DOI: 10.1155/2016/4923903] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 09/28/2016] [Indexed: 02/02/2023]
Abstract
Aberrant activation of the canonical Wnt pathway plays a significant role in cervical cancer (CC). However, limited data show the correlation between the cancer clinicopathological characteristics and the key molecules such as β-catenin and Wnt inhibitory factor 1 (WIF1). In this study, β-catenin and WIF1 expression were analyzed by immunohistochemistry for 196 patients with CC, 39 with cervical intraepithelial neoplasia (CIN), and 41 with normal cervical epithelium (NCE). Significant overexpression of β-catenin was detected in CC (67.9%) when compared to CIN (43.6%) or NCE (34.1%), p < 0.01, while low WIF1 expression was detected in CC (24.0%) when compared to CIN (59.0%) or NCE (58.5%), p < 0.001. Negative correlation was shown between β-catenin and WIF1 expression (r = −0.637, p < 0.001). In addition, multivariate analysis revealed that both lymph node metastasis and β-catenin expression were the independent prognostic factors not only for disease-free survival (HR = 5.029, p < 0.001; HR = 2.588, p = 0.035, resp.), but also for overall survival (HR = 5.058, p < 0.001; HR = 2.873, p = 0.031, resp.). Our findings indicate that, besides lymph node metastasis, β-catenin expression may also be a poor prognostic factor for CC while WIF1 could be a potential drug target for treatment of advanced CC.
Collapse
|
26
|
Abstract
OBJECTIVE To explore the role of Traditional Chinese Medicine (TCM) in the prevention and treatment of colorectal cancer and identify possible therapeutic targets of TCM to provide clues for the use of TCM for colorectal cancer prevention and treatment in the clinic and to find novel directions for new drug discovery for colorectal cancer. METHODS We used PubMed and Google to search for and collect scientific publications for a full evalu- ation of current evidence in the literature indicating the potential role of Chinese herbal medicines and their respective ingredients as effective candidates for colorectal cancer prevention and treatment. RESULTS We extracted a detailed description of potential therapeutic Chinese herbal medicines and their constituent ingredients that target different mechanisms in colorectal cancer such as gene mutation, dysregulation of signaling pathways, metabolism disorders, and the inflammatory microenvironment, including both conventional and non-conventional approaches. CONCLUSION TCM may be a promising complementary and alternative therapy for the treatment of colorectal cancer.
Collapse
|
27
|
Wen S, Liu Y, Yang M, Yang K, Huang J, Feng D. Increased NEK2 in hepatocellular carcinoma promotes cancer progression and drug resistance by promoting PP1/Akt and Wnt activation. Oncol Rep 2016; 36:2193-9. [PMID: 27509921 DOI: 10.3892/or.2016.5009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/13/2016] [Indexed: 01/08/2023] Open
Abstract
NIMA-related expressed kinase 2 (NEK2) participates in the carcinogenesis and progression of certain types of cancer, however, its expression and roles in the development of hepatocellular carcinoma (HCC) remains unknown. Here, we found that NEK2 expression was significantly upregulated in both human HCC tissues and cell lines, and increased NEK2 expression in HCC was significantly correlated with clinical progression of HCC in patients. Knockdown of NEK2 in HCC cells inhibited HCC progression, as determined by the suppressed cell proliferation, invasion and metastasis. Furthermore, knockdown of NEK2 inhibited drug resistance of HCC cells, as shown by the promoted suppression of cell viability in 5-fluorouracil (5‑FU)‑treated HCC cells. Mechanistically, protein phosphatase 1 (PP1)/Akt and Wnt signaling activation are significantly inhibited by NEK2 knockdown, which is responsible for the HCC progression and involved in NEK2‑induced cancer cell abnormal biological behavior. Thus, enhanced NEK2 expression in HCC promotes HCC progression and drug resistance by promoting PP1/Akt and Wnt pathway activation, which may represent a new therapeutic target for HCC.
Collapse
Affiliation(s)
- Sailan Wen
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Yuwu Liu
- Department of Morphology, The Institute of Advanced Occupation Technology, Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Manyi Yang
- National Hepatobiliary and Enteric Surgery Research Center, Department of Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Keda Yang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jianghai Huang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Deyun Feng
- Department of Pathology, School of Basic Medical Sciences, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
28
|
Aly RM, Yousef AB. Prognostic significance of lymphoid enhancer-binding factor-1 expression in egyptian adult B-acute lymphocytic leukemia patients. Turk J Haematol 2015; 32:15-20. [PMID: 25805670 PMCID: PMC4439902 DOI: 10.4274/tjh.2013.0140] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Objective: Lymphoid enhancer-binding factor-1 (LEF-1) is a key transcription factor of wingless-type (Wnt) signaling in various tumors and it is associated with a number of malignant diseases such as leukemia. We explored the expression profile of LEF-1 in acute lymphoblastic leukemia (ALL) and determined its specific prognostic significance in this disease. Materials and Methods: We studied LEF-1 expression in 56 newly diagnosed B-acute ALL adult patients using real-time quantitative polymerase chain reaction to investigate whether LEF-1 expression was associated with clinical patient characteristics and treatment outcomes. Results: High LEF-1 expression was associated with significantly poorer disease-free survival (p=0.03) and overall survival (p=0.005). Patients with high LEF-1 expression had a significantly higher relapse rate compared with low LEF-1 expression (p=0.01). Conclusion: We provide evidence that high LEF-1 expression is a prognostic marker in adult B-acute ALL patients.
Collapse
Affiliation(s)
- Rabab M Aly
- Mansoura University Faculty of Medicine, Department of Clinical Pathology, Mansoura, Egypt. E-mail:
| | | |
Collapse
|
29
|
Sui H, Xu H, Ji Q, Liu X, Zhou L, Song H, Zhou X, Xu Y, Chen Z, Cai J, Ji G, Li Q. 5-hydroxytryptamine receptor (5-HT1DR) promotes colorectal cancer metastasis by regulating Axin1/β-catenin/MMP-7 signaling pathway. Oncotarget 2015; 6:25975-25987. [PMID: 26214021 PMCID: PMC4694879 DOI: 10.18632/oncotarget.4543] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 07/06/2015] [Indexed: 01/29/2023] Open
Abstract
Overexpression of 5-hydroxytryptamine (5-HT) in human cancer contributes to tumor metastasis, but the role of 5-HT receptor family in cancer has not been thoroughly explored. Here, we report overexpression of 5-HT(1D) receptor (5-HT(1D)R) was associated with Wnt signaling pathway and advanced tumor stage. The underlying mechanism of 5-HT(1D)R-promoted tumor invasion was through its activation on the Axin1/β-catenin/MMP-7 pathway. In an orthotopic colorectal cancer mouse model, we demonstrated that a 5-HT(1D)R antagonist (GR127935) effectively inhibited tumor metastasis through targeting Axin1. Furthermore, in intestinal epithelium cells, we observed that 5-HT(1D)R played an important role in cell invasion via Axin1/β-catenin/MMP-7 pathway. Together, our findings reveal an essential role of the physiologic level of 5-HT(1D)R in pulmonary metastasis of colorectal cancer.
Collapse
Affiliation(s)
- Hua Sui
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hanchen Xu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Chinese medicine, Shanghai 200032, China
| | - Qing Ji
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xuan Liu
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lihong Zhou
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Haiyan Song
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Chinese medicine, Shanghai 200032, China
| | - Xiqiu Zhou
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Chinese medicine, Shanghai 200032, China
| | - Yangxian Xu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Chinese medicine, Shanghai 200032, China
| | - Zhesheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Chinese medicine, Shanghai 200032, China
| | - Qi Li
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
30
|
Menter T, Dirnhofer S, Tzankov A. LEF1: a highly specific marker for the diagnosis of chronic lymphocytic B cell leukaemia/small lymphocytic B cell lymphoma. J Clin Pathol 2015; 68:473-8. [PMID: 25713417 DOI: 10.1136/jclinpath-2015-202862] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 02/05/2015] [Indexed: 11/03/2022]
Abstract
AIMS Chronic lymphocytic B cell leukaemia (CLL)/small lymphocytic B cell lymphoma (SLL) has proven to be not a uniform entity but to consist of various disease subtypes. CLL might also pose diagnostic challenges by demonstrating an uncommon immunohistochemical profile. Recently, the role of lymphocyte enhancer-binding factor 1 (LEF1) in CLL was elucidated being highly expressed and seeming to have a prognostic value. Our aim was to test the applicability of LEF1 as marker for CLL in a diagnostic setting. METHODS We investigated LEF1 expression in lymphomas by immunohistochemistry on tissue microarrays containing several lymphoma entities (altogether 720 cases, including 61 CLL cases). We also separated CLL cases by zeta-chain-associated protein kinase 70 (ZAP70) and CD38 stainings and fluorescence in situ hybridisation analyses for TP53 deletions and trisomy 12 into respective groups and correlated data with LEF1 expression. RESULTS The area under the receiver operating characteristic curve for LEF1 as a diagnostic marker for CLL was 0.815 (95% CI 0.742 to 0.888). The relevant diagnostic cut-off value for LEF1 positivity determined by the Youden's index was 10% (specificity 92%, sensitivity 70%). The majority of CLL cases (70%) expressed LEF1. Eighteen per cent of (transformed) diffuse large B cell lymphoma cases also expressed LEF1. In most other lymphoma entities, LEF1 was negative. There was a positive correlation of LEF1 staining with ZAP70 expression (Spearman's rho: 0.438, p<0.001), but not with CD38 expression, TP53 deletions or trisomy 12. CONCLUSIONS LEF1 is a useful marker in the differential diagnosis of CLL in difficult cases. It shows a high specificity (92%) and a reasonable sensitivity (70%) for this entity.
Collapse
Affiliation(s)
- Thomas Menter
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Stephan Dirnhofer
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Alexandar Tzankov
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
31
|
Fiskus W, Sharma S, Saha S, Shah B, Devaraj SGT, Sun B, Horrigan S, Leveque C, Zu Y, Iyer S, Bhalla KN. Pre-clinical efficacy of combined therapy with novel β-catenin antagonist BC2059 and histone deacetylase inhibitor against AML cells. Leukemia 2014; 29:1267-78. [PMID: 25482131 PMCID: PMC4456205 DOI: 10.1038/leu.2014.340] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 10/10/2014] [Accepted: 10/16/2014] [Indexed: 12/15/2022]
Abstract
The canonical WNT-β-catenin pathway is essential for self-renewal, growth and survival of AML stem/blast progenitor cells (BPCs). Deregulated WNT signaling inhibits degradation of β-catenin, causing increased nuclear translocation and co-factor activity of β-catenin with the transcriptional regulator TCF4/LEF1 in AML BPCs. Here, we determined the pre-clinical anti-AML activity of the anthraquinone oxime-analog BC2059 (BC), known to attenuate β-catenin levels. BC treatment disrupted the binding of β-catenin with the scaffold protein TBL1 (transducin β-like 1) and proteasomal degradation and decline in the nuclear levels of β-catenin. This was associated with reduced transcriptional activity of TCF4 and expression of its target genes, cyclin D1, c-MYC and survivin. BC treatment dose-dependently induced apoptosis of cultured and primary AML BPCs. Treatment with BC also significantly improved the median survival of immune-depleted mice engrafted with either cultured or primary AML BPCs exhibiting nuclear expression of β-catenin. Co-treatment with the pan-histone deacetylase inhibitor panobinostat and BC synergistically induced apoptosis of cultured and primary AML BPCs, including those expressing FLT3-ITD, as well as further significantly improved the survival of immune-depleted mice engrafted with primary AML BPCs. These findings underscore the promising pre-clinical activity and warrant further testing of BC against human AML, especially those expressing FLT3-ITD.
Collapse
Affiliation(s)
- W Fiskus
- Houston Methodist Research Institute, Houston, TX, USA
| | - S Sharma
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - S Saha
- Houston Methodist Research Institute, Houston, TX, USA
| | - B Shah
- Houston Methodist Research Institute, Houston, TX, USA
| | - S G T Devaraj
- Houston Methodist Research Institute, Houston, TX, USA
| | - B Sun
- Houston Methodist Research Institute, Houston, TX, USA
| | - S Horrigan
- Beta Cat Pharmaceutical, Gaithersburg, MD, USA
| | - C Leveque
- Houston Methodist Research Institute, Houston, TX, USA
| | - Y Zu
- Houston Methodist Research Institute, Houston, TX, USA
| | - S Iyer
- Houston Methodist Research Institute, Houston, TX, USA
| | - K N Bhalla
- Houston Methodist Research Institute, Houston, TX, USA
| |
Collapse
|
32
|
Dandekar S, Romanos-Sirakis E, Pais F, Bhatla T, Jones C, Bourgeois W, Hunger SP, Raetz EA, Hermiston ML, Dasgupta R, Morrison DJ, Carroll WL. Wnt inhibition leads to improved chemosensitivity in paediatric acute lymphoblastic leukaemia. Br J Haematol 2014; 167:87-99. [PMID: 24995804 DOI: 10.1111/bjh.13011] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 05/26/2014] [Indexed: 12/14/2022]
Abstract
While childhood acute lymphoblastic leukaemia (ALL) is now highly curable, the dismal prognosis for children who relapse warrants novel therapeutic approaches. Previously, using an integrated genomic analysis of matched diagnosis-relapse paired samples, we identified overactivation of the Wnt pathway as a possible mechanism of recurrence. To validate these findings and document whether Wnt inhibition may sensitize cells to chemotherapy, we analysed the expression of activated β-catenin (and its downstream target BIRC5) using multiparameter phosphoflow cytometry and tested the efficacy of a recently developed Wnt inhibitor, iCRT14, in ALL cell lines and patient samples. We observed increased activation of β-catenin at relapse in 6/10 patients. Furthermore, treatment of leukaemic cell lines with iCRT14 led to significant downregulation of Wnt target genes and combination with traditional chemotherapeutic drugs resulted in a synergistic decrease in viability as well as a significant increase in apoptotic cell death. Finally, pre-treatment of purified blasts from patients with relapsed leukaemia with the Wnt inhibitor followed by exposure to prednisolone, restored chemosensitivity in these cells. Our results demonstrate that overactivation of the Wnt pathway may contribute to chemoresistance in relapsed childhood ALL and that Wnt-inhibition may be a promising therapeutic approach.
Collapse
Affiliation(s)
- Smita Dandekar
- NYU Cancer Institute, NYU Langone Medical Center, New York, NY
| | - Eleny Romanos-Sirakis
- NYU Cancer Institute, NYU Langone Medical Center, New York, NY.,Department of Pediatrics, Staten Island University Hospital
| | - Faye Pais
- Department of Pediatrics, University of California School of Medicine, San Francisco, California
| | - Teena Bhatla
- NYU Cancer Institute, NYU Langone Medical Center, New York, NY
| | - Courtney Jones
- NYU Cancer Institute, NYU Langone Medical Center, New York, NY
| | | | | | | | - Michelle L Hermiston
- Department of Pediatrics, University of California School of Medicine, San Francisco, California
| | - Ramanuj Dasgupta
- NYU Cancer Institute, NYU Langone Medical Center, New York, NY.,Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York, NY
| | | | - William L Carroll
- NYU Cancer Institute, NYU Langone Medical Center, New York, NY.,Department of Pathology, NYU Langone Medical Center, New York, NY
| |
Collapse
|
33
|
Holik AZ, Young M, Krzystyniak J, Williams GT, Metzger D, Shorning BY, Clarke AR. Brg1 loss attenuates aberrant wnt-signalling and prevents wnt-dependent tumourigenesis in the murine small intestine. PLoS Genet 2014; 10:e1004453. [PMID: 25010414 PMCID: PMC4091792 DOI: 10.1371/journal.pgen.1004453] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 05/07/2014] [Indexed: 01/19/2023] Open
Abstract
Tumourigenesis within the intestine is potently driven by deregulation of the Wnt pathway, a process epigenetically regulated by the chromatin remodelling factor Brg1. We aimed to investigate this interdependency in an in vivo setting and assess the viability of Brg1 as a potential therapeutic target. Using a range of transgenic approaches, we deleted Brg1 in the context of Wnt-activated murine small intestinal epithelium. Pan-epithelial loss of Brg1 using VillinCreERT2 and AhCreERT transgenes attenuated expression of Wnt target genes, including a subset of stem cell-specific genes and suppressed Wnt-driven tumourigenesis improving animal survival. A similar increase in survival was observed when Wnt activation and Brg1 loss were restricted to the Lgr5 expressing intestinal stem cell population. We propose a mechanism whereby Brg1 function is required for aberrant Wnt signalling and ultimately for the maintenance of the tumour initiating cell compartment, such that loss of Brg1 in an Apc-deficient context suppresses adenoma formation. Our results highlight potential therapeutic value of targeting Brg1 and serve as a proof of concept that targeting the cells of origin of cancer may be of therapeutic relevance.
Collapse
Affiliation(s)
- Aliaksei Z. Holik
- Cardiff School of Biosciences, Cardiff University, Cardiff, United Kingdom
- Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Madeleine Young
- Cardiff School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Joanna Krzystyniak
- Cardiff School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | | | - Daniel Metzger
- IGBMC, CNRS UMR7104/INSERM U964/Université de Strasbourg, Illkirch, France
| | - Boris Y. Shorning
- Cardiff School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Alan R. Clarke
- Cardiff School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
34
|
Shang D, Bi R, Han T, Wang D, Tian Y, Liu Y. Expression and proliferation-promoting role of lymphoid enhancer-binding factor 1 in human clear cell renal carcinoma. Cancer Invest 2014; 32:368-74. [PMID: 24897388 DOI: 10.3109/07357907.2014.919307] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Lymphoid enhancer-binding factor 1 (LEF1) has been regarded as an important gene for carcinogenesis in many malignancies, however, the role of LEF1 in the progression of human renal cell carcinoma (RCC) has not been well studied. In this study, we investigated the expression of LEF1 in human RCC and the effect on proliferative ability of RCC cells. RCC samples from 138 patients who underwent radical nephrectomy were used in this study, the expression of LEF1 protein was determined by immunohistochemistry and Western blot, mRNA expression was analyzed by RT-PCR and real-time PCR. To investigate the effect of LEF1 on the proliferation of RCC cells, a LEF1 vector was transfected into RCC cells and LEF1 expression was also decreased by using siRNA. Proliferative ability of RCC cells was examined by WST-1 assay and a xenograft study with BALB/C nude mice. Our results indicated that LEF1 expression was significantly increased in stage III, IV and grade 3 RCC than in normal kidney, however, decreased LEF1 expression was found in low-stage and grade RCC compared to that in normal kidney, the expression of LEF1 was correlated to tumor stages, histologic grade, and tumor sizes in RCC. The effect of LEF1 on the proliferation in RCC was also analyzed, our results suggested that RCC cells expressing high levels of LEF1 had significantly increased proliferative ability compared to control cell lines, in contrast, RCC cells with a low LEF1 expression had lower proliferative ability. Moreover, LEF1 promoted proliferation of RCC cells depending on suppressing G2/M cell-cycle arrest. Our study demonstrated that the expression of LEF1 is associated with the progression of RCC and that LEF1 maybe involved in the development of RCC, these suggested LEF1 play a key role and might serve as a therapeutic target in treating advanced RCC.
Collapse
Affiliation(s)
- Donghao Shang
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China1
| | | | | | | | | | | |
Collapse
|
35
|
De Robertis A, Mennillo F, Rossi M, Valensin S, Tunici P, Mori E, Caradonna N, Varrone M, Salerno M. Human Sarcoma growth is sensitive to small-molecule mediated AXIN stabilization. PLoS One 2014; 9:e97847. [PMID: 24842792 PMCID: PMC4026528 DOI: 10.1371/journal.pone.0097847] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 04/25/2014] [Indexed: 11/19/2022] Open
Abstract
Sarcomas are mesenchymal tumors showing high molecular heterogeneity, reflected at the histological level by the existence of more than fifty different subtypes. Genetic and epigenetic evidences link aberrant activation of the Wnt signaling to growth and progression of human sarcomas. This phenomenon, mainly accomplished by autocrine loop activity, is sustained by gene amplification, over-expression of Wnt ligands and co-receptors or epigenetic silencing of endogenous Wnt antagonists. We previously showed that pharmacological inhibition of Wnt signaling mediated by Axin stabilization produced in vitro and in vivo antitumor activity in glioblastoma tumors. Here, we report that targeting different sarcoma cell lines with the Wnt inhibitor/Axin stabilizer SEN461 produces a less transformed phenotype, as supported by modulation of anchorage-independent growth in vitro. At the molecular level, SEN461 treatment enhanced the stability of the scaffold protein Axin1, a key negative regulator of the Wnt signaling with tumor suppressor function, resulting in downstream effects coherent with inhibition of canonical Wnt signaling. Genetic phenocopy of small molecule Axin stabilization, through Axin1 over-expression, coherently resulted in strong impairment of soft-agar growth. Importantly, sarcoma growth inhibition through pharmacological Axin stabilization was also observed in a xenograft model in vivo in female CD-1 nude mice. Our findings suggest the usefulness of Wnt inhibitors with Axin stabilization activity as a potentialyl clinical relevant strategy for certain types of sarcomas.
Collapse
Affiliation(s)
- Alessandra De Robertis
- Molecular Oncology Unit, Siena Biotech Medicine Research Centre, Siena, Italy
- Department of Pharmacology, Siena Biotech Medicine Research Centre, Siena, Italy
| | - Federica Mennillo
- Molecular Oncology Unit, Siena Biotech Medicine Research Centre, Siena, Italy
- Department of Pharmacology, Siena Biotech Medicine Research Centre, Siena, Italy
| | - Marco Rossi
- Department of Pharmacology, Siena Biotech Medicine Research Centre, Siena, Italy
- In Vivo Pharmacology Unit, Siena Biotech Medicine Research Centre, Siena, Italy
| | - Silvia Valensin
- Molecular Oncology Unit, Siena Biotech Medicine Research Centre, Siena, Italy
- Department of Pharmacology, Siena Biotech Medicine Research Centre, Siena, Italy
| | - Patrizia Tunici
- Department of Pharmacology, Siena Biotech Medicine Research Centre, Siena, Italy
- In Vivo Pharmacology Unit, Siena Biotech Medicine Research Centre, Siena, Italy
| | - Elisa Mori
- Department of Pharmacology, Siena Biotech Medicine Research Centre, Siena, Italy
- Data Analysis Unit, Siena Biotech Medicine Research Centre, Siena, Italy
| | - Nicola Caradonna
- MET Profiling Unit, Siena Biotech Medicine Research Centre, Siena, Italy
| | - Maurizio Varrone
- Department of Medicinal Chemistry, Siena Biotech Medicine Research Centre, Siena, Italy
| | - Massimiliano Salerno
- Molecular Oncology Unit, Siena Biotech Medicine Research Centre, Siena, Italy
- Department of Pharmacology, Siena Biotech Medicine Research Centre, Siena, Italy
- * E-mail:
| |
Collapse
|
36
|
Qu B, Liu BR, DU YJ, Chen J, Cheng YQ, Xu W, Wang XH. Wnt/β-catenin signaling pathway may regulate the expression of angiogenic growth factors in hepatocellular carcinoma. Oncol Lett 2014; 7:1175-1178. [PMID: 24944688 PMCID: PMC3961220 DOI: 10.3892/ol.2014.1828] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 12/17/2013] [Indexed: 12/31/2022] Open
Abstract
The Wnt/β-catenin signaling pathway plays a key role during hepatocellular carcinoma (HCC) genesis and development. The present study aimed to investigate the effects of the Wnt/β-catenin signaling pathway on the expression of angiogenic growth factors involved in HCC. The HCC HepG2 cell line was transfected with small interfering RNA (siRNA) against β-catenin. After 72 and 96 h, protein was extracted and the expression levels of β-catenin, matrix metalloproteinase (MMP)-2, MMP-9, vascular endothelial growth factor (VEGF)-A, VEGF-C and basic fibroblast growth factor (bFGF) were detected by western blot analysis. β-catenin protein expression was inhibited at both time points. Notably, MMP-2, MMP-9, VEGF-A, VEGF-C and bFGF protein expression levels decreased at 72 h and then increased at 96 h after transfection. Our results demonstrated that in HCC cells, the Wnt/β-catenin signaling pathway may regulate the protein expression of the angiogenic factors, MMP-2, MMP-9, VEGF-A, VEGF-C and bFGF. These proteins were downstream of β-catenin signaling and were also regulated by other factors. In conclusion, the Wnt/β-catenin signaling pathway may contribute to the regulation of HCC angiogenesis, infiltration and metastasis through regulating the expression of these angiogenic factors.
Collapse
Affiliation(s)
- Bo Qu
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Bing-Rong Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Ya-Ju DU
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Jing Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Yan-Qiu Cheng
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Wei Xu
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Xin-Hong Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
37
|
Marina M, Saavedra HI. Nek2 and Plk4: prognostic markers, drivers of breast tumorigenesis and drug resistance. Front Biosci (Landmark Ed) 2014; 19:352-65. [PMID: 24389189 DOI: 10.2741/4212] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Nek2 and Plk4 kinases serve as crucial regulators of mitotic processes such as the centrosome duplication cycle and spindle assembly. Deregulation of these processes can trigger chromosome instability and aneuploidy, which are hallmarks of many solid tumors, including breast cancer. Emerging data from the literature illustrated various functions of Nek2 in breast cancer models, with compelling evidence of its prognostic value in breast tumors. The two kinases control distinct steps in the centrosome-centriole cycle and their dysregulation lead to centrosome amplification, marked by the presence of more than two centrosomes within the cell. We found single or composite overexpression of these kinases in breast tumor samples, regardless of subtype, which strongly associated with poor prognosis. Interestingly, in a panel of established cell lines, both kinases are highly expressed in Her2-positive breast cancer cells exhibiting centrosome amplification and trastuzumab resistance. In summary, it appears that Nek2 and Plk4 might synergize to promote breast tumorigenesis and may also be involved in tamoxifen and trastuzumab resistance.
Collapse
Affiliation(s)
- Mihaela Marina
- Department of Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322
| | - Harold I Saavedra
- Department of Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322
| |
Collapse
|
38
|
Wierstra I. The transcription factor FOXM1 (Forkhead box M1): proliferation-specific expression, transcription factor function, target genes, mouse models, and normal biological roles. Adv Cancer Res 2013; 118:97-398. [PMID: 23768511 DOI: 10.1016/b978-0-12-407173-5.00004-2] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
FOXM1 (Forkhead box M1) is a typical proliferation-associated transcription factor, which stimulates cell proliferation and exhibits a proliferation-specific expression pattern. Accordingly, both the expression and the transcriptional activity of FOXM1 are increased by proliferation signals, but decreased by antiproliferation signals, including the positive and negative regulation by protooncoproteins or tumor suppressors, respectively. FOXM1 stimulates cell cycle progression by promoting the entry into S-phase and M-phase. Moreover, FOXM1 is required for proper execution of mitosis. Accordingly, FOXM1 regulates the expression of genes, whose products control G1/S-transition, S-phase progression, G2/M-transition, and M-phase progression. Additionally, FOXM1 target genes encode proteins with functions in the execution of DNA replication and mitosis. FOXM1 is a transcriptional activator with a forkhead domain as DNA binding domain and with a very strong acidic transactivation domain. However, wild-type FOXM1 is (almost) inactive because the transactivation domain is repressed by three inhibitory domains. Inactive FOXM1 can be converted into a very potent transactivator by activating signals, which release the transactivation domain from its inhibition by the inhibitory domains. FOXM1 is essential for embryonic development and the foxm1 knockout is embryonically lethal. In adults, FOXM1 is important for tissue repair after injury. FOXM1 prevents premature senescence and interferes with contact inhibition. FOXM1 plays a role for maintenance of stem cell pluripotency and for self-renewal capacity of stem cells. The functions of FOXM1 in prevention of polyploidy and aneuploidy and in homologous recombination repair of DNA-double-strand breaks suggest an importance of FOXM1 for the maintenance of genomic stability and chromosomal integrity.
Collapse
|
39
|
Xue M, Ge Y, Zhang J, Liu Y, Wang Q, Hou L, Zheng Z. Fucoidan inhibited 4T1 mouse breast cancer cell growth in vivo and in vitro via downregulation of Wnt/β-catenin signaling. Nutr Cancer 2013; 65:460-8. [PMID: 23530646 DOI: 10.1080/01635581.2013.757628] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Fucoidan is a sulfated polysaccharide derived from brown algae and is known to possess anticancer properties. However, the relationship between fucoidan and β-catenin, one of the key components of the Wnt signaling pathway, in mouse breast cancer remains poorly characterized. In this study, mouse breast cancer cells (4T1) were exposed to fucoidan to investigate the relationship between fucoidan and the Wnt/β-catenin signaling pathway in vivo and in vitro. We found that fucoidan significantly inhibited cell growth, increased cell death, and induced G1 cell cycle arrest in 4T1 cells. Fucoidan also reduced β-catenin expression and T cell factor/lymphoid-enhancing factor reporter activity. Furthermore, fucoidan downregulated the expression of downstream target genes such as c-myc, cyclin D1, and survivin. Intraperitoneal injection of fucoidan in tumor-bearing mice reduced the tumor volume and weight. Fucoidan induced aberrant downregulation of β-catenin in tumor tissues with a significant increase in apoptosis. Thus, our data suggested that fucoidan exerts its anticancer activity through downregulation of Wnt/β-catenin signaling. Fucoidan may be an effective therapy for the chemoprevention and treatment of mouse breast cancer.
Collapse
Affiliation(s)
- Meilan Xue
- Department of Biochemistry and Molecular Biology, Medical College, Qingdao University, Qingdao, Shandong Province, China.
| | | | | | | | | | | | | |
Collapse
|
40
|
Chan DW, Mak CSL, Leung THY, Chan KKL, Ngan HYS. Down-regulation of Sox7 is associated with aberrant activation of Wnt/b-catenin signaling in endometrial cancer. Oncotarget 2013; 3:1546-56. [PMID: 23295859 PMCID: PMC3681493 DOI: 10.18632/oncotarget.667] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Although the mortality rate of endometrial cancer is comparatively low in gynecologic malignancies, a rising trend of this cancer has been observed for the past decade. The understanding of the molecular mechanism will favor for the clinical management of this disease. Aberrant activation of Wnt/β-catenin signaling pathway plays a major role in the pathogenesis of endometrioid adenocarcinoma including this cancer type. In this study, we reported that Sox7, one of Sox transcriptional factors, was frequently underexpressed in endometrial cancer and importantly, it was associated with dysregulation of the Wnt/β-catenin signaling activity. Immunohistochemical and quantitative RT-PCR analyses showed that Sox7 was underexpressed and was associated with high-grade tumor (P=0.021), increased expressions of β-catenin (P=0.038) and its downstream targets; CyclinD1 (P<0.001) and FGF9 (P<0.001). In addition, using HEK293T cell model, we found that Sox7 was able to inhibit TCF/LEF-1-dependent luciferase activity induced by Wnt-1. This was further proved by that Sox7 could significantly suppress the expressions of Wnt targets; Cyclin D1 and C-myc in endometrial cells. Immuno-fluorescent microscopy revealed that Sox7 was co-localizaed with either mutant β-catenin or TCF4 protein in nucleus, while co-immunopreciptation assay demonstrated that Sox7 could physically interact with not only wild-type but also mutant β-catenin, as well as TCF4 proteins. Functionally, enforced expression of Sox7 could significantly inhibit endometrial or endometrioid ovarian cancer cells (OEA) harboring either wild-type or mutant β-catenin. These data suggest Sox7 is a negative regulator of Wnt/β-catenin signaling pathway through impeding the transcriptional machinery of β-catenin/TCF/LEF-1 transcriptional complex, and the loss of expression may be involved in the pathogenesis of endometrial cancer.
Collapse
Affiliation(s)
- David W Chan
- Departments of Obstetrics and Gynaecology, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, PRChina
| | | | | | | | | |
Collapse
|
41
|
Regeneration-associated WNT signaling is activated in long-term reconstituting AC133bright acute myeloid leukemia cells. Neoplasia 2013; 14:1236-48. [PMID: 23308055 DOI: 10.1593/neo.121480] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 10/15/2012] [Accepted: 10/18/2012] [Indexed: 11/18/2022] Open
Abstract
Acute myeloid leukemia (AML) is a genetically heterogeneous clonal disorder characterized by two molecularly distinct self-renewing leukemic stem cell (LSC) populations most closely related to normal progenitors and organized as a hierarchy. A requirement for WNT/β-catenin signaling in the pathogenesis of AML has recently been suggested by a mouse model. However, its relationship to a specific molecular function promoting retention of self-renewing leukemia-initiating cells (LICs) in human remains elusive. To identify transcriptional programs involved in the maintenance of a self-renewing state in LICs, we performed the expression profiling in normal (n = 10) and leukemic (n = 33) human long-term reconstituting AC133(+) cells, which represent an expanded cell population in most AML patients. This study reveals the ligand-dependent WNT pathway activation in AC133(bright) AML cells and shows a diffuse expression and release of WNT10B, a hematopoietic stem cell regenerative-associated molecule. The establishment of a primary AC133(+) AML cell culture (A46) demonstrated that leukemia cells synthesize and secrete WNT ligands, increasing the levels of dephosphorylated β-catenin in vivo. We tested the LSC functional activity in AC133(+) cells and found significant levels of engraftment upon transplantation of A46 cells into irradiated Rag2(-/-)γc(-/-) mice. Owing to the link between hematopoietic regeneration and developmental signaling, we transplanted A46 cells into developing zebrafish. This system revealed the formation of ectopic structures by activating dorsal organizer markers that act downstream of the WNT pathway. In conclusion, our findings suggest that AC133(bright) LSCs are promoted by misappropriating homeostatic WNT programs that control hematopoietic regeneration.
Collapse
|
42
|
Porphyromonas gingivalis Lipopolysaccharide Activates Canonical Wnt/β-Catenin and p38 MAPK Signalling in Stem Cells from the Apical Papilla. Inflammation 2013; 36:1393-402. [DOI: 10.1007/s10753-013-9679-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
43
|
Watson AL, Rahrmann EP, Moriarity BS, Choi K, Conboy CB, Greeley AD, Halfond AL, Anderson LK, Wahl BR, Keng VW, Rizzardi AE, Forster CL, Collins MH, Sarver AL, Wallace MR, Schmechel SC, Ratner N, Largaespada DA. Canonical Wnt/β-catenin signaling drives human schwann cell transformation, progression, and tumor maintenance. Cancer Discov 2013; 3:674-89. [PMID: 23535903 DOI: 10.1158/2159-8290.cd-13-0081] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Genetic changes required for the formation and progression of human Schwann cell tumors remain elusive. Using a Sleeping Beauty forward genetic screen, we identified several genes involved in canonical Wnt signaling as potential drivers of benign neurofibromas and malignant peripheral nerve sheath tumors (MPNSTs). In human neurofibromas and MPNSTs, activation of Wnt signaling increased with tumor grade and was associated with downregulation of β-catenin destruction complex members or overexpression of a ligand that potentiates Wnt signaling, R-spondin 2 (RSPO2). Induction of Wnt signaling was sufficient to induce transformed properties in immortalized human Schwann cells, and downregulation of this pathway was sufficient to reduce the tumorigenic phenotype of human MPNST cell lines. Small-molecule inhibition of Wnt signaling effectively reduced the viability of MPNST cell lines and synergistically induced apoptosis when combined with an mTOR inhibitor, RAD-001, suggesting that Wnt inhibition represents a novel target for therapeutic intervention in Schwann cell tumors.
Collapse
Affiliation(s)
- Adrienne L Watson
- Masonic Cancer Center, University of Minnesota, Minneapolis,MN 55455, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Zhou W, Yang Y, Xia J, Wang H, Salama ME, Xiong W, Xu H, Shetty S, Chen T, Zeng Z, Shi L, Zangari M, Miles R, Bearss D, Tricot G, Zhan F. NEK2 induces drug resistance mainly through activation of efflux drug pumps and is associated with poor prognosis in myeloma and other cancers. Cancer Cell 2013; 23:48-62. [PMID: 23328480 PMCID: PMC3954609 DOI: 10.1016/j.ccr.2012.12.001] [Citation(s) in RCA: 242] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2010] [Revised: 03/22/2011] [Accepted: 12/04/2012] [Indexed: 01/07/2023]
Abstract
Using sequential gene expression profiling (GEP) samples, we defined a major functional group related to drug resistance that contains chromosomal instability (CIN) genes. One CIN gene in particular, NEK2, was highly correlated with drug resistance, rapid relapse, and poor outcome in multiple cancers. Overexpressing NEK2 in cancer cells resulted in enhanced CIN, cell proliferation and drug resistance, while targeting NEK2 by NEK2 shRNA overcame cancer cell drug resistance and induced apoptosis in vitro and in a xenograft myeloma mouse model. High expression of NEK2 induced drug resistance mainly through activation of the efflux pumps. Thus, NEK2 represents a strong predictor for drug resistance and poor prognosis in cancer and could be an important target for cancer therapy.
Collapse
Affiliation(s)
- Wen Zhou
- Department of Internal Medicine, Division of Hematology, Oncology, and Blood & Marrow Transplantation, University of Iowa, Iowa City, IA 52242, USA
- Division of Hematology, University of Utah School of Medicine, 30 North 1900 East, Salt Lake City, UT 84132, USA
| | - Ye Yang
- Department of Internal Medicine, Division of Hematology, Oncology, and Blood & Marrow Transplantation, University of Iowa, Iowa City, IA 52242, USA
- Division of Hematology, University of Utah School of Medicine, 30 North 1900 East, Salt Lake City, UT 84132, USA
| | - Jiliang Xia
- Department of Internal Medicine, Division of Hematology, Oncology, and Blood & Marrow Transplantation, University of Iowa, Iowa City, IA 52242, USA
- Division of Hematology, University of Utah School of Medicine, 30 North 1900 East, Salt Lake City, UT 84132, USA
| | - He Wang
- Department of Internal Medicine, Division of Hematology, Oncology, and Blood & Marrow Transplantation, University of Iowa, Iowa City, IA 52242, USA
- Division of Hematology, University of Utah School of Medicine, 30 North 1900 East, Salt Lake City, UT 84132, USA
| | - Mohamed E Salama
- Department of Pathology, University of Utah and ARUP Lab, 500 Chipeta Way, Salt Lake City, UT 84108, USA
| | - Wei Xiong
- Division of Hematology, University of Utah School of Medicine, 30 North 1900 East, Salt Lake City, UT 84132, USA
| | - Hongwei Xu
- Department of Internal Medicine, Division of Hematology, Oncology, and Blood & Marrow Transplantation, University of Iowa, Iowa City, IA 52242, USA
- Division of Hematology, University of Utah School of Medicine, 30 North 1900 East, Salt Lake City, UT 84132, USA
| | - Shashirekha Shetty
- Cleveland Clinic, 9500 Euclid Avenue, Mail Code LL2-2, Cleveland, OH 44195, USA
| | - Tiehua Chen
- Division of Hematology, University of Utah School of Medicine, 30 North 1900 East, Salt Lake City, UT 84132, USA
| | - Zhaoyang Zeng
- Division of Hematology, University of Utah School of Medicine, 30 North 1900 East, Salt Lake City, UT 84132, USA
| | - Lei Shi
- Division of Hematology, University of Utah School of Medicine, 30 North 1900 East, Salt Lake City, UT 84132, USA
| | - Maurizio Zangari
- Division of Hematology, University of Utah School of Medicine, 30 North 1900 East, Salt Lake City, UT 84132, USA
| | - Rodney Miles
- Department of Pathology, University of Utah and ARUP Lab, 500 Chipeta Way, Salt Lake City, UT 84108, USA
| | - David Bearss
- Physiology & Developmental Biology 471 WIDB, Brigham Young University, Provo, UT 84602, USA
| | - Guido Tricot
- Department of Internal Medicine, Division of Hematology, Oncology, and Blood & Marrow Transplantation, University of Iowa, Iowa City, IA 52242, USA
- Correspondence: (F. Z.), (G. T.)
| | - Fenghuang Zhan
- Department of Internal Medicine, Division of Hematology, Oncology, and Blood & Marrow Transplantation, University of Iowa, Iowa City, IA 52242, USA
- Division of Hematology, University of Utah School of Medicine, 30 North 1900 East, Salt Lake City, UT 84132, USA
- Correspondence: (F. Z.), (G. T.)
| |
Collapse
|
45
|
Nagini S, Siddavaram N, Vidya Priyadarsini R, Ramamurthi VP, Veeravarmal V, Veeran V, Mishra R. Chlorophyllin abrogates canonical Wnt/β-catenin signaling and angiogenesis to inhibit the development of DMBA-induced hamster cheek pouch carcinomas. Cell Oncol (Dordr) 2012; 35:385-95. [PMID: 22983718 DOI: 10.1007/s13402-012-0099-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2012] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Chlorophyllin, a water soluble semi-synthetic food-grade derivative is reported to exhibit a wide range of beneficial health effects. We investigated the effect of chlorophyllin supplementation on Wnt/β-catenin and vascular endothelial growth factor (VEGF) signaling in the 7,12-dimethylbenz[a]anthracene (DMBA)-induced hamster buccal pouch (HBP) carcinogenesis model. METHODS AND RESULTS Hamsters were divided into 4 groups. The right buccal pouches of group 1 and 2 hamsters were painted with 0.5 % DMBA for 14 weeks. Group 2 animals received in addition chlorophyllin (4 mg/kg bw) in the diet. Group 3 animals received chlorophyllin alone and group 4 animals served as control. mRNA and protein expression of components of Wnt, VEGF, and PI3K/Akt signaling pathways were analyzed by RT-PCR and Western blot analysis. Dietary chlorophyllin administration suppressed the development of HBP carcinomas by altering the expression of several components of the Wnt/β-catenin signaling pathway. This was associated with inhibition of angiogenesis as evidenced by decreased expression of the proangiogenic factors HIF-1α, VEGF, and VEGFR2. Chlorophyllin administration also downregulated the expression of histone deacetylases involved in epigenetic regulation of tumor angiogenesis. CONCLUSION Dietary chlorophyllin that abrogates Wnt/β-catenin and VEGF signaling by targeting a multitude of key signaling molecules is an attractive candidate for preventing tumor progression.
Collapse
Affiliation(s)
- Siddavaram Nagini
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, 608 002, Tamil Nadu, India.
| | | | | | | | | | | | | |
Collapse
|
46
|
Fiskus W, Ganguly S, Kambhampati S, Bhalla KN. Role of additional novel therapies in myeloproliferative neoplasms. Hematol Oncol Clin North Am 2012; 26:959-80. [PMID: 23009932 DOI: 10.1016/j.hoc.2012.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The recent approval of ruxolitinib (INCB018424) for myelofibrosis and the preclinical/clinical development of several additional janus kinase (JAK)-targeted agents have ushered in an era of novel therapies for advanced myeloproliferative neoplasms (MPN), which are associated with constitutive activation of the JAK-signal transducer and activation of transcription (STAT) signaling pathway. Collectively, these novel therapeutic approaches could rapidly broaden the spectrum of available therapies, with potential for improved clinical outcome for patients with advanced MPN. This review covers the recent developments in the testing of novel therapeutic agents other than JAK inhibitors that target signaling pathways in addition to JAK/STAT, or target the deregulated epigenetic mechanisms in MPN.
Collapse
Affiliation(s)
- Warren Fiskus
- The University of Kansas Medical Center, 3901 Rainbow Boulevard, Robinson Hall 4030, Mail Stop 1027, Kansas City, KS 66160, USA
| | | | | | | |
Collapse
|
47
|
Lundin A, Driscoll B. Lung cancer stem cells: progress and prospects. Cancer Lett 2012; 338:89-93. [PMID: 22906416 DOI: 10.1016/j.canlet.2012.08.014] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 08/06/2012] [Accepted: 08/10/2012] [Indexed: 12/30/2022]
Abstract
Epithelial stem cells are critical for tissue generation during development and for repair following injury. In both gestational and postnatal stages, the highly branched and compartmentalized organization of the lung is maintained by multiple, resident stem/progenitor cell populations that are responsible for the homeostatic maintenance and injury repair of pulmonary epithelium. Though lung epithelial injury in the absence of oncogenic mutation is more commonly expressed as chronic lung disease, lung cancer is the most common form of death worldwide and poses a highly significant risk to human health. Cancer is defined by the cell of origin, responsible for initiating the disease. The Cancer Stem Cell Hypothesis proposes that cancer stem cells, identified by stem-like properties of self-renewal and generation of differentiated progeny, are responsible for propagating growth and spread of the disease. In lung cancer, it is hypothesized that cancer stem cells derive from several possible cell sources. The stem cell-like resistance to injury and proliferative potentials of bronchioalveolar stem cells (BASCs) and alveolar epithelial type II cells (AEC2), as well as cells that express the cancer stem cell marker glycoprotein prominin-1 (CD133) or markers for side populations make them potential reservoirs of lung cancer stem cells. The abnormal activation of pathways that normally regulate embryonic lung development, as well as adult tissue maintenance and injury repair, including the Wnt, Hedgehog (Hh) and Notch pathways, has also been identified in lung tumor cells. It is postulated that therapies for lung cancer that specifically target stem cell signaling pathways utilized by lung cancer stem cells could be beneficial in combating this disease.
Collapse
Affiliation(s)
- Amber Lundin
- Developmental Biology & Regenerative Medicine Program, Department of Surgery, Children's Hospital Los Angeles, , United States
| | | |
Collapse
|
48
|
Xu W, Du M, Zhao Y, Wang Q, Sun W, Chen B. γ-Tocotrienol inhibits cell viability through suppression of β-catenin/Tcf signaling in human colon carcinoma HT-29 cells. J Nutr Biochem 2012; 23:800-7. [DOI: 10.1016/j.jnutbio.2011.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 03/25/2011] [Accepted: 04/06/2011] [Indexed: 01/15/2023]
|
49
|
Overexpression of LEF1 predicts unfavorable outcome in adult patients with B-precursor acute lymphoblastic leukemia. Blood 2011; 118:6362-7. [DOI: 10.1182/blood-2011-04-350850] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Abstract
Aberrant activation of the Wnt pathway plays a pathogenetic role in various tumors and has been associated with adverse outcome in acute lymphoblastic leukemia (ALL). LEF1, a key mediator of Wnt signaling, has been linked to leukemic transformation, and recurrent mutations of LEF1 have been identified in pediatric T-ALL. Here we evaluated the prognostic significance of LEF1 expression in B-precursor ALL patients. LEF1 expression was determined by quantitative real-time RT-PCR in 282 adult B-precursor ALL patients treated on 06/99 and 07/03 GMALL trials. Patients were grouped into quartiles (Q1-Q4) according to LEF1 expression levels (LEF1 high, Q4; n = 71; LEF1 low, Q1-Q3; n = 211). Patients with high LEF1 expression had a significantly shorter relapse-free survival (RFS) compared with low LEF1 expressers (5-year RFS: LEF1 high, 27%; LEF1 low, 47%; P = .05). Importantly, high LEF1 expression was also associated with inferior RFS in standard-risk patients and was independently predictive for RFS (P = .02) in multivariate analyses for this subgroup. Thus, high LEF1 expression identifies B-precursor ALL patients with inferior RFS, supporting a pathogenetic role of Wnt signaling in ALL. Standard-risk patients with high LEF1 expression might benefit from early treatment modifications and new molecular therapies, including agents targeting the Wnt pathway.
Collapse
|
50
|
Thanendrarajan S, Kim Y, Schmidt-Wolf IGH. Understanding and Targeting the Wnt/β-Catenin Signaling Pathway in Chronic Leukemia. LEUKEMIA RESEARCH AND TREATMENT 2011; 2011:329572. [PMID: 23213540 PMCID: PMC3504253 DOI: 10.4061/2011/329572] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 10/14/2011] [Indexed: 12/28/2022]
Abstract
It has been revealed that the Wnt/β-catenin signaling pathway plays an important role in the development of solid tumors and hematological malignancies, particularly in B-cell neoplasia and leukemia. In the last decade there have been made experimental approaches targeting the Wnt pathway in chronic leukemia. In this paper we provide an overview about the current state of knowledge regarding the Wnt/β-catenin signaling pathway in chronic leukemia with special focus on therapeutic options and strategies.
Collapse
Affiliation(s)
- S Thanendrarajan
- Department of Internal Medicine III (Hematology and Oncology), Center for Integrated Oncology (CIO), University of Bonn, Sigmund-Freud Stra β e 25, 53127 Bonn, Germany
| | | | | |
Collapse
|