1
|
Lv J, Zhou Y, Jin S, Fu C, Shen Y, Liu B, Li M, Zhang Y, Feng N. WGCNA-ML-MR integration: uncovering immune-related genes in prostate cancer. Front Oncol 2025; 15:1534612. [PMID: 40260298 PMCID: PMC12009700 DOI: 10.3389/fonc.2025.1534612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/21/2025] [Indexed: 04/23/2025] Open
Abstract
Background Prostate cancer is one of the most common tumors in men, with its incidence and mortality rates continuing to rise year by year. Prostate-specific antigen (PSA) is the most commonly used screening indicator, but its lack of specificity leads to overdiagnosis and overtreatment. Therefore, identifying new biomarkers related to prostate cancer is crucial for the early diagnosis and treatment of prostate cancer. Methods This study utilized datasets from the Gene Expression Omnibus (GEO) to screen for differentially expressed genes (DEGs) and employed Weighted Gene Co-expression Network Analysis (WGCNA) to identify driver genes highly associated with prostate cancer within the modules. The intersection of differentially expressed genes and driver genes was taken, and Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses were performed. Furthermore, a machine learning algorithm was used to screen for core genes and construct a diagnostic model, which was then validated in an external validation dataset. The correlation between core genes and immune cell infiltration was analyzed, and Mendelian randomization (MR) analysis was conducted to identify biomarkers closely related to prostate cancer. Results This study identified six core biomarkers: SLC14A1, ARHGEF38, NEFH, MSMB, KRT23, and KRT15. MR analysis demonstrated that MSMB may be an important protective factor for prostate cancer. In q-PCR experiments conducted on tumor tissues and adjacent non-cancerous tissues from prostate cancer patients, it was found that: compared to the adjacent non-cancerous tissues, the expression level of ARHGEF38 in prostate cancer tumor tissues significantly increased, while the expression levels of SLC14A1, NEFH, MSMB, KRT23, and KRT15 significantly decreased. To further validate these findings at the protein level, we conducted Western blot analysis, which corroborated the q-PCR results, demonstrating consistent expression patterns for all six biomarkers. IHC results confirmed that ARHGEF38 protein was highly expressed in tumor tissues, while MSMB expression was markedly reduced. Conclusion Our study reveals that SLC14A1, ARHGEF38, NEFH, MSMB, KRT23, and KRT15 are potential diagnostic biomarkers for prostate cancer, among which MSMB may play a protective role in prostate cancer.
Collapse
Affiliation(s)
- Jing Lv
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Department of Urology, Jiangnan University Medical Center, Wuxi, China
| | - Yuhua Zhou
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Department of Urology, Jiangnan University Medical Center, Wuxi, China
| | - Shengkai Jin
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Department of Urology, Jiangnan University Medical Center, Wuxi, China
| | - Chaowei Fu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Department of Urology, Jiangnan University Medical Center, Wuxi, China
| | - Yang Shen
- Department of Urology, Jiangnan University Medical Center, Wuxi, China
- Department of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Bo Liu
- Department of Urology, Jiangnan University Medical Center, Wuxi, China
- Department of Clinical Medicine, Nantong University Medical School, Nantong, China
| | - Menglu Li
- Department of Urology, Jiangnan University Medical Center, Wuxi, China
| | - Yuwei Zhang
- Department of Urology, Jiangnan University Medical Center, Wuxi, China
- Department of Clinical Medicine, Nantong University Medical School, Nantong, China
| | - Ninghan Feng
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Department of Urology, Jiangnan University Medical Center, Wuxi, China
- Department of Clinical Medicine, Nantong University Medical School, Nantong, China
| |
Collapse
|
2
|
Turlej E, Domaradzka A, Radzka J, Drulis-Fajdasz D, Kulbacka J, Gizak A. Cross-Talk Between Cancer and Its Cellular Environment-A Role in Cancer Progression. Cells 2025; 14:403. [PMID: 40136652 PMCID: PMC11940884 DOI: 10.3390/cells14060403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 03/27/2025] Open
Abstract
The tumor microenvironment is a dynamic and complex three-dimensional network comprising the extracellular matrix and diverse non-cancerous cells, including fibroblasts, adipocytes, endothelial cells and various immune cells (lymphocytes T and B, NK cells, dendritic cells, monocytes/macrophages, myeloid-derived suppressor cells, and innate lymphoid cells). A constantly and rapidly growing number of studies highlight the critical role of these cells in shaping cancer survival, metastatic potential and therapy resistance. This review provides a synthesis of current knowledge on the modulating role of the cellular microenvironment in cancer progression and response to treatment.
Collapse
Affiliation(s)
- Eliza Turlej
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Aleksandra Domaradzka
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Justyna Radzka
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Dominika Drulis-Fajdasz
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Julita Kulbacka
- Departament of Molecular and Cellular Biology, Faculty of Pharmacy, Wrocław Medical University, Borowska 211A, 50-556 Wrocław, Poland;
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania
| | - Agnieszka Gizak
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| |
Collapse
|
3
|
Novysedlak R, Guney M, Al Khouri M, Bartolini R, Koumbas Foley L, Benesova I, Ozaniak A, Novak V, Vesely S, Pacas P, Buchler T, Ozaniak Strizova Z. The Immune Microenvironment in Prostate Cancer: A Comprehensive Review. Oncology 2024:1-25. [PMID: 39380471 DOI: 10.1159/000541881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024]
Abstract
BACKGROUND Prostate cancer (PCa) is a malignancy with significant immunosuppressive properties and limited immune activation. This immunosuppression is linked to reduced cytotoxic T cell activity, impaired antigen presentation, and elevated levels of immunosuppressive cytokines and immune checkpoint molecules. Studies demonstrate that cytotoxic CD8+ T cell infiltration correlates with improved survival, while increased regulatory T cells (Tregs) and tumor-associated macrophages (TAMs) are associated with worse outcomes and therapeutic resistance. Th1 cells are beneficial, whereas Th17 cells, producing interleukin-17 (IL-17), contribute to tumor progression. Tumor-associated neutrophils (TANs) and immune checkpoint molecules, such as PD-1/PD-L1 and T cell immunoglobulin-3 (TIM-3) are also linked to advanced stages of PCa. Chemotherapy holds promise in converting the "cold" tumor microenvironment (TME) to a "hot" one by depleting immunosuppressive cells and enhancing tumor immunogenicity. SUMMARY This comprehensive review examines the immune microenvironment in PCa, focusing on the intricate interactions between immune and tumor cells in the TME. It highlights how TAMs, Tregs, cytotoxic T cells, and other immune cell types contribute to tumor progression or suppression and how PCa's low immunogenicity complicates immunotherapy. KEY MESSAGES The infiltration of cytotoxic CD8+ T cells and Th1 cells correlates with better outcomes, while elevated T regs and TAMs promote tumor growth, metastasis, and resistance. TANs and natural killer (NK) cells exhibit dual roles, with higher NK cell levels linked to better prognoses. Immune checkpoint molecules like PD-1, PD-L1, and TIM-3 are associated with advanced disease. Chemotherapy can improve tumor immunogenicity by depleting T regs and myeloid-derived suppressor cells, offering therapeutic promise.
Collapse
Affiliation(s)
- Rene Novysedlak
- Third Department of Surgery, 1st Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Miray Guney
- Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Majd Al Khouri
- Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Robin Bartolini
- Lausanne Center for Immuno-oncology Toxicities (LCIT), Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Lily Koumbas Foley
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Iva Benesova
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Andrej Ozaniak
- Third Department of Surgery, 1st Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Vojtech Novak
- Department of Urology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Stepan Vesely
- Department of Urology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Pavel Pacas
- Department of Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Tomas Buchler
- Department of Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Zuzana Ozaniak Strizova
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| |
Collapse
|
4
|
Semancik CS, Zhao N, Koestler DC, Boerwinkle E, Bressler J, Buchsbaum RJ, Kelsey KT, Platz EA, Michaud DS. DNA Methylation-Derived Immune Cell Proportions and Cancer Risk in Black Participants. CANCER RESEARCH COMMUNICATIONS 2024; 4:2714-2723. [PMID: 39324671 PMCID: PMC11484294 DOI: 10.1158/2767-9764.crc-24-0257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/31/2024] [Accepted: 09/24/2024] [Indexed: 09/27/2024]
Abstract
SIGNIFICANCE This study describes associations between immune cell types and cancer risk in a Black population; elevated regulatory T-cell proportions that were associated with increased overall cancer and lung cancer risk, and elevated memory B-cell proportions that were associated with increased prostate and all cancer risk.
Collapse
Affiliation(s)
- Christopher S. Semancik
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Tufts University, Boston, Massachusetts.
| | - Naisi Zhao
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Tufts University, Boston, Massachusetts.
| | - Devin C. Koestler
- The University of Kansas Cancer Center, Kansas City, Kansas.
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, Kansas.
| | - Eric Boerwinkle
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas.
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas.
| | - Jan Bressler
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas.
| | - Rachel J. Buchsbaum
- Division of Hematology and Oncology, Tufts Medical Center, Boston, Massachusetts.
| | - Karl T. Kelsey
- Department of Epidemiology, Brown University, Providence, Rhode Island.
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island.
| | - Elizabeth A. Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland.
| | - Dominique S. Michaud
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Tufts University, Boston, Massachusetts.
- Department of Epidemiology, Brown University, Providence, Rhode Island.
| |
Collapse
|
5
|
Molina OE, LaRue H, Simonyan D, Hovington H, Vittrant B, Têtu B, Fradet V, Lacombe L, Bergeron A, Fradet Y. Regulatory and memory T lymphocytes infiltrating prostate tumors predict long term clinical outcomes. Front Immunol 2024; 15:1372837. [PMID: 38887294 PMCID: PMC11180786 DOI: 10.3389/fimmu.2024.1372837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/13/2024] [Indexed: 06/20/2024] Open
Abstract
Introduction The localization, density but mostly the phenotype of tumor infiltrating lymphocytes (TIL) provide important information on the initial interaction between the host immune system and the tumor. Our objective was to assess the prognostic significance of T (CD3+), T regulatory (Treg) (FoxP3+) and T memory (Tmem) (CD45RO+) infiltrating lymphocytes and of genes associated with TIL in prostate cancer (PCa). Methods Immunohistochemistry (IHC) was used to assess the infiltration of CD3+, FoxP3+ and CD45RO+ cells in the tumor area, tumor margin and adjacent normal-like epithelium of a series of 98 PCa samples with long clinical follow-up. Expression of a panel of 31 TIL-associated genes was analyzed by Taqman Low-Density Array (TLDA) technology in another series of 50 tumors with long clinical follow-up. Kaplan-Meier and Cox proportional hazards regression analyses were performed to determine association of these markers with biochemical recurrence (BCR), need for definitive androgen deprivation therapy (ADT) or lethal PCa. Results TIL subtypes were present at different densities in the tumor, tumor margin and adjacent normal-like epithelium, but their density and phenotype in the tumor area were the most predictive of clinical outcomes. In multivariate analyses, a high density of Treg (high FoxP3+/CD3+ cell ratio) predicted a higher risk for need of definitive ADT (HR=7.69, p=0.001) and lethal PCa (HR=4.37, p=0.04). Conversely, a high density of Tmem (high CD45RO+/CD3+ cell ratio) predicted a reduced risk of lethal PCa (HR=0.06, p=0.04). TLDA analyses showed that a high expression of FoxP3 was associated with a higher risk of lethal PCa (HR=5.26, p=0.02). Expression of CTLA-4, PD-1, TIM-3 and LAG-3 were correlated with that of FoxP3. Amongst these, only a high expression of TIM-3 was associated with a significant higher risk for definitive ADT in univariate Cox regression analysis (HR=3.11, p=0.01). Conclusion These results show that the proportion of Treg and Tmem found within the tumor area is a strong and independent predictor of late systemic progression of PCa. Our results also suggest that inhibition of TIM-3 might be a potential approach to counter the immunosuppressive functions of Treg in order to improve the anti-tumor immune response against PCa.
Collapse
Affiliation(s)
- Oscar Eduardo Molina
- Axe oncologie, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de recherche sur le cancer de l’Université Laval, Québec, QC, Canada
| | - Hélène LaRue
- Axe oncologie, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de recherche sur le cancer de l’Université Laval, Québec, QC, Canada
| | - David Simonyan
- Plateforme de recherche clinique et évaluative, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
| | - Hélène Hovington
- Axe oncologie, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de recherche sur le cancer de l’Université Laval, Québec, QC, Canada
| | - Benjamin Vittrant
- Axe oncologie, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de recherche sur le cancer de l’Université Laval, Québec, QC, Canada
| | - Bernard Têtu
- Axe oncologie, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de recherche sur le cancer de l’Université Laval, Québec, QC, Canada
- Département de pathologie, CHU de Québec-Université Laval, Québec, QC, Canada
| | - Vincent Fradet
- Axe oncologie, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de recherche sur le cancer de l’Université Laval, Québec, QC, Canada
- Département de chirurgie, Université Laval, Québec, QC, Canada
| | - Louis Lacombe
- Axe oncologie, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de recherche sur le cancer de l’Université Laval, Québec, QC, Canada
- Département de chirurgie, Université Laval, Québec, QC, Canada
| | - Alain Bergeron
- Axe oncologie, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de recherche sur le cancer de l’Université Laval, Québec, QC, Canada
- Département de chirurgie, Université Laval, Québec, QC, Canada
| | - Yves Fradet
- Axe oncologie, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de recherche sur le cancer de l’Université Laval, Québec, QC, Canada
- Département de chirurgie, Université Laval, Québec, QC, Canada
| |
Collapse
|
6
|
Semancik CS, Zhao N, Koestler DC, Boerwinkle E, Bressler J, Buchsbaum RJ, Kelsey KT, Platz EA, Michaud DS. DNA Methylation-Derived Immune Cell Proportions and Cancer Risk, Including Lung Cancer, in Black Participants. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.09.24307118. [PMID: 38766207 PMCID: PMC11100922 DOI: 10.1101/2024.05.09.24307118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Prior cohort studies assessing cancer risk based on immune cell subtype profiles have predominantly focused on White populations. This limitation obscures vital insights into how cancer risk varies across race. Immune cell subtype proportions were estimated using deconvolution based on leukocyte DNA methylation markers from blood samples collected at baseline on participants without cancer in the Atherosclerosis Risk in Communities (ARIC) Study. Over a mean of 17.5 years of follow-up, 668 incident cancers were diagnosed in 2,467 Black participants. Cox proportional hazards regression was used to examine immune cell subtype proportions and overall cancer incidence and site-specific incidence (lung, breast, and prostate cancers). Higher T regulatory cell proportions were associated with statistically significantly higher lung cancer risk (hazard ratio = 1.22, 95% confidence interval = 1.06-1.41 per percent increase). Increased memory B cell proportions were associated with significantly higher risk of prostate cancer (1.17, 1.04-1.33) and all cancers (1.13, 1.05-1.22). Increased CD8+ naïve cell proportions were associated with significantly lower risk of all cancers in participants ≥55 years (0.91, 0.83-0.98). Other immune cell subtypes did not display statistically significant associations with cancer risk. These results in Black participants align closely with prior findings in largely White populations. Findings from this study could help identify those at high cancer risk and outline risk stratifying to target patients for cancer screening, prevention, and other interventions. Further studies should assess these relationships in other cancer types, better elucidate the interplay of B cells in cancer risk, and identify biomarkers for personalized risk stratification.
Collapse
Affiliation(s)
- Christopher S. Semancik
- Department of Public Health & Community Medicine, Tufts University School of Medicine, Tufts University, Boston, MA, USA
| | - Naisi Zhao
- Department of Public Health & Community Medicine, Tufts University School of Medicine, Tufts University, Boston, MA, USA
| | - Devin C. Koestler
- The University of Kansas Cancer Center, Kansas City, KS, USA
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS, USA
| | - Eric Boerwinkle
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Jan Bressler
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - Karl T. Kelsey
- Department of Epidemiology, Brown University, Providence, RI, USA
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Elizabeth A. Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Dominique S. Michaud
- Department of Public Health & Community Medicine, Tufts University School of Medicine, Tufts University, Boston, MA, USA
| |
Collapse
|
7
|
Lachance G, Robitaille K, Laaraj J, Gevariya N, Varin TV, Feldiorean A, Gaignier F, Julien IB, Xu HW, Hallal T, Pelletier JF, Bouslama S, Boufaied N, Derome N, Bergeron A, Ellis L, Piccirillo CA, Raymond F, Fradet Y, Labbé DP, Marette A, Fradet V. The gut microbiome-prostate cancer crosstalk is modulated by dietary polyunsaturated long-chain fatty acids. Nat Commun 2024; 15:3431. [PMID: 38654015 DOI: 10.1038/s41467-024-45332-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 01/17/2024] [Indexed: 04/25/2024] Open
Abstract
The gut microbiota modulates response to hormonal treatments in prostate cancer (PCa) patients, but whether it influences PCa progression remains unknown. Here, we show a reduction in fecal microbiota alpha-diversity correlating with increase tumour burden in two distinct groups of hormonotherapy naïve PCa patients and three murine PCa models. Fecal microbiota transplantation (FMT) from patients with high PCa volume is sufficient to stimulate the growth of mouse PCa revealing the existence of a gut microbiome-cancer crosstalk. Analysis of gut microbial-related pathways in mice with aggressive PCa identifies three enzymes responsible for the metabolism of long-chain fatty acids (LCFA). Supplementation with LCFA omega-3 MAG-EPA is sufficient to reduce PCa growth in mice and cancer up-grading in pre-prostatectomy PCa patients correlating with a reduction of gut Ruminococcaceae in both and fecal butyrate levels in PCa patients. This suggests that the beneficial effect of omega-3 rich diet is mediated in part by modulating the crosstalk between gut microbes and their metabolites in men with PCa.
Collapse
Affiliation(s)
- Gabriel Lachance
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
- Centre de recherche de l'IUCPQ, Québec, QC, Canada
| | - Karine Robitaille
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
| | - Jalal Laaraj
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
| | - Nikunj Gevariya
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
| | | | - Andrei Feldiorean
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Division of Urology, Department of Surgery, McGill University, Montréal, QC, Canada
| | - Fanny Gaignier
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
| | - Isabelle Bourdeau Julien
- Institute of nutrition and functional foods (INAF) and NUTRISS Center - Nutrition, health and society of Université Laval, Québec, QC, Canada
| | - Hui Wen Xu
- Department of Mathematics and Statistics, Université Laval, Québec, QC, Canada
| | - Tarek Hallal
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada
| | - Jean-François Pelletier
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
| | - Sidki Bouslama
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Nadia Boufaied
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Nicolas Derome
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
- Department of Biology, Université Laval, Québec, QC, Canada
| | - Alain Bergeron
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
| | - Leigh Ellis
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Ciriaco A Piccirillo
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
| | - Frédéric Raymond
- Institute of nutrition and functional foods (INAF) and NUTRISS Center - Nutrition, health and society of Université Laval, Québec, QC, Canada
| | - Yves Fradet
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
| | - David P Labbé
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Division of Urology, Department of Surgery, McGill University, Montréal, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada
| | | | - Vincent Fradet
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada.
- Centre de recherche sur le Cancer de l'Université Laval, Québec, QC, Canada.
- Institute of nutrition and functional foods (INAF) and NUTRISS Center - Nutrition, health and society of Université Laval, Québec, QC, Canada.
| |
Collapse
|
8
|
Sadasivan SM, Loveless IM, Chen Y, Gupta NS, Sanii R, Bobbitt KR, Chitale DA, Williamson SR, Rundle AG, Rybicki BA. Patterns of B-cell lymphocyte expression changes in pre- and post-malignant prostate tissue are associated with prostate cancer progression. Cancer Med 2024; 13:e7118. [PMID: 38523528 PMCID: PMC10961600 DOI: 10.1002/cam4.7118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/04/2023] [Accepted: 12/10/2023] [Indexed: 03/26/2024] Open
Abstract
BACKROUND Inflammation characterized by the presence of T and B cells is often observed in prostate cancer, but it is unclear how T- and B-cell levels change during carcinogenesis and whether such changes influence disease progression. METHODS The study used a retrospective sample of 73 prostate cancer cases (45 whites and 28 African Americans) that underwent surgery as their primary treatment and had a benign prostate biopsy at least 1 year before diagnosis. CD3+, CD4+, and CD20+ lymphocytes were quantified by immunohistochemistry in paired pre- and post-diagnostic benign prostate biopsy and tumor surgical specimens, respectively. Clusters of similar trends of expression across two different timepoints and three distinct prostate regions-benign biopsy glands (BBG), tumor-adjacent benign glands (TAG), and malignant tumor glandular (MTG) regions-were identified using Time-series Anytime Density Peaks Clustering (TADPole). A Cox proportional hazards model was used to estimate the hazard ratio (HR) of time to biochemical recurrence associated with region-specific lymphocyte counts and regional trends. RESULTS The risk of biochemical recurrence was significantly reduced in men with an elevated CD20+ count in TAG (HR = 0.81, p = 0.01) after adjusting for covariates. Four distinct patterns of expression change across the BBG-TAG-MTG regions were identified for each marker. For CD20+, men with low expression in BBG and higher expression in TAG compared to MTG had an adjusted HR of 3.06 (p = 0.03) compared to the reference group that had nominal differences in CD20+ expression across all three regions. The two CD3+ expression patterns that featured lower CD3+ expression in the BBG compared to the TAG and MTG regions had elevated HRs ranging from 3.03 to 4.82 but did not reach statistical significance. CONCLUSIONS Longitudinal and spatial expression patterns of both CD3+ and CD20+ suggest that increased expression in benign glands during prostate carcinogenesis is associated with an aggressive disease course.
Collapse
Affiliation(s)
- Sudha M. Sadasivan
- Department of Public Health SciencesHenry Ford HospitalHenry Ford Health + Michigan State University Health SciencesDetroitMichiganUSA
| | - Ian M. Loveless
- Department of Public Health SciencesHenry Ford HospitalHenry Ford Health + Michigan State University Health SciencesDetroitMichiganUSA
| | - Yalei Chen
- Department of Public Health SciencesHenry Ford HospitalHenry Ford Health + Michigan State University Health SciencesDetroitMichiganUSA
| | - Nilesh S. Gupta
- Department of PathologyHenry Ford HospitalDetroitMichiganUSA
| | - Ryan Sanii
- Department of Public Health SciencesHenry Ford HospitalHenry Ford Health + Michigan State University Health SciencesDetroitMichiganUSA
| | - Kevin R. Bobbitt
- Department of Public Health SciencesHenry Ford HospitalHenry Ford Health + Michigan State University Health SciencesDetroitMichiganUSA
| | | | | | - Andrew G. Rundle
- Department of Epidemiology, Mailman School of Public HealthColumbia UniversityNew YorkNew YorkUSA
| | - Benjamin A. Rybicki
- Department of Public Health SciencesHenry Ford HospitalHenry Ford Health + Michigan State University Health SciencesDetroitMichiganUSA
| |
Collapse
|
9
|
Chen Z, Yang X, Chen Z, Li M, Wang W, Yang R, Wang Z, Ma Y, Xu Y, Ao S, Liang L, Cai C, Wang C, Deng T, Gu D, Zhou H, Zeng G. A new histone deacetylase inhibitor remodels the tumor microenvironment by deletion of polymorphonuclear myeloid-derived suppressor cells and sensitizes prostate cancer to immunotherapy. BMC Med 2023; 21:402. [PMID: 37880708 PMCID: PMC10601128 DOI: 10.1186/s12916-023-03094-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/26/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Prostate cancer (PCa) is the most common malignancy diagnosed in men. Immune checkpoint blockade (ICB) alone showed disappointing results in PCa. It is partly due to the formation of immunosuppressive tumor microenvironment (TME) could not be reversed effectively by ICB alone. METHODS We used PCa cell lines to evaluate the combined effects of CN133 and anti-PD-1 in the subcutaneous and osseous PCa mice models, as well as the underlying mechanisms. RESULTS We found that CN133 could reduce the infiltration of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs), and CN133 combination with anti-PD-1 could augment antitumor effects in the subcutaneous PCa of allograft models. However, anti-PD-1 combination with CN133 failed to elicit an anti-tumor response to the bone metastatic PCa mice. Mechanistically, CN133 could inhibit the infiltration of PMN-MDSCs in the TME of soft tissues by downregulation gene expression of PMN-MDSC recruitment but not change the gene expression involved in PMN-MDSC activation in the CN133 and anti-PD-1 co-treatment group relative to the anti-PD-1 alone in the bone metastatic mice model. CONCLUSIONS Taken together, our work firstly demonstrated that combination of CN133 with anti-PD-1 therapy may increase the therapeutic efficacy to PCa by reactivation of the positive immune microenvironment in the TME of soft tissue PCa.
Collapse
Affiliation(s)
- Zude Chen
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Xiaoshuang Yang
- Department of Plastic Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zugen Chen
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Minzhao Li
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wei Wang
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing, China
| | - Riwei Yang
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zuomin Wang
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuxiang Ma
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yulong Xu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Shan Ao
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Leqi Liang
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chao Cai
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Changning Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Tuo Deng
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Di Gu
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Hongqing Zhou
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing, China.
| | - Guohua Zeng
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
10
|
Mo X, Yuan K, Hu D, Huang C, Luo J, Liu H, Li Y. Identification and validation of immune-related hub genes based on machine learning in prostate cancer and AOX1 is an oxidative stress-related biomarker. Front Oncol 2023; 13:1179212. [PMID: 37583929 PMCID: PMC10423936 DOI: 10.3389/fonc.2023.1179212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/12/2023] [Indexed: 08/17/2023] Open
Abstract
To investigate potential diagnostic and prognostic biomarkers associated with prostate cancer (PCa), we obtained gene expression data from six datasets in the Gene Expression Omnibus (GEO) database. The datasets included 127 PCa cases and 52 normal controls. We filtered for differentially expressed genes (DEGs) and identified candidate PCa biomarkers using a least absolute shrinkage and selector operation (LASSO) regression model and support vector machine recursive feature elimination (SVM-RFE) analyses. A difference analysis was conducted on these genes in the test group. The discriminating ability of the train group was determined using the area under the receiver operating characteristic curve (AUC) value, with hub genes defined as those having an AUC greater than 85%. The expression levels and diagnostic utility of the biomarkers in PCa were further confirmed in the GSE69223 and GSE71016 datasets. Finally, the invasion of cells per sample was assessed using the CIBERSORT algorithm and the ESTIMATE technique. The possible prostate cancer (PCa) diagnostic biomarkers AOX1, APOC1, ARMCX1, FLRT3, GSTM2, and HPN were identified and validated using the GSE69223 and GSE71016 datasets. Among these biomarkers, AOX1 was found to be associated with oxidative stress and could potentially serve as a prognostic biomarker. Experimental validations showed that AOX1 expression was low in PCa cell lines. Overexpression of AOX1 significantly reduced the proliferation and migration of PCa cells, suggesting that the anti-tumor effect of AOX1 may be attributed to its impact on oxidative stress. Our study employed a comprehensive approach to identify PCa biomarkers and investigate the role of cell infiltration in PCa.
Collapse
Affiliation(s)
- Xiaocong Mo
- Department of Oncology, the First Affiliated Hospital of Jinan University, Jinan University, Guangdong, Guangzhou, China
| | - Kaisheng Yuan
- Department of Metabolic and Bariatric Surgery, the First Affiliated Hospital of Jinan University, Jinan University, Guangdong, Guangzhou, China
| | - Di Hu
- Department of Neurology and Stroke Centre, the First Affiliated Hospital of Jinan University, Jinan University, Guangdong, Guangzhou, China
| | - Cheng Huang
- Department of Neurology and Stroke Centre, the First Affiliated Hospital of Jinan University, Jinan University, Guangdong, Guangzhou, China
| | - Juyu Luo
- Department of Neurology and Stroke Centre, the First Affiliated Hospital of Jinan University, Jinan University, Guangdong, Guangzhou, China
| | - Hang Liu
- Department of Urology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Yin Li
- Department of Oncology, the First Affiliated Hospital of Jinan University, Jinan University, Guangdong, Guangzhou, China
| |
Collapse
|
11
|
Lin M, Sun X, Lv L. New insights and options into the mechanisms and effects of combined targeted therapy and immunotherapy in prostate cancer. Mol Ther Oncolytics 2023; 29:91-106. [PMID: 37215386 PMCID: PMC10199166 DOI: 10.1016/j.omto.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023] Open
Abstract
Chronic inflammation is believed to drive prostate carcinogenesis by producing reactive oxygen species or reactive nitrogen species to induce DNA damage. This effect might subsequently cause epigenetic and genomic alterations, leading to malignant transformation. Although established therapeutic advances have extended overall survival, tumors in patients with advanced prostate cancer are prone to metastasis, transformation into metastatic castration-resistant prostate cancer, and therapeutic resistance. The tumor microenvironment (TME) of prostate cancer is involved in carcinogenesis, invasion and drug resistance. A plethora of preclinical studies have focused on immune-based therapies. Understanding the intricate TME system in prostate cancer may hold much promise for developing novel therapies, designing combinational therapeutic strategies, and further overcoming resistance to established treatments to improve the lives of prostate cancer patients. In this review, we discuss nonimmune components and various immune cells within the TME and their putative roles during prostate cancer initiation, progression, and metastasis. We also outline the updated fundamental research focusing on therapeutic advances of targeted therapy as well as combinational options for prostate cancer.
Collapse
Affiliation(s)
- Mingen Lin
- Nourse Centre for Pet Nutrition, Wuhu 241200, China
| | - Xue Sun
- Nourse Centre for Pet Nutrition, Wuhu 241200, China
| | - Lei Lv
- Nourse Centre for Pet Nutrition, Wuhu 241200, China
- Shanghai Chowsing Pet Products Co., Ltd, Shanghai 201103, China
| |
Collapse
|
12
|
Obradovic A, Ager C, Turunen M, Nirschl T, Khosravi-Maharlooei M, Iuga A, Jackson CM, Yegnasubramanian S, Tomassoni L, Fernandez EC, McCann P, Rogava M, DeMarzo AM, Kochel CM, Allaf M, Bivalacqua T, Lim M, Realubit R, Karan C, Drake CG, Califano A. Systematic elucidation and pharmacological targeting of tumor-infiltrating regulatory T cell master regulators. Cancer Cell 2023; 41:933-949.e11. [PMID: 37116491 PMCID: PMC10193511 DOI: 10.1016/j.ccell.2023.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 09/13/2022] [Accepted: 04/06/2023] [Indexed: 04/30/2023]
Abstract
Due to their immunosuppressive role, tumor-infiltrating regulatory T cells (TI-Tregs) represent attractive immuno-oncology targets. Analysis of TI vs. peripheral Tregs (P-Tregs) from 36 patients, across four malignancies, identified 17 candidate master regulators (MRs) as mechanistic determinants of TI-Treg transcriptional state. Pooled CRISPR-Cas9 screening in vivo, using a chimeric hematopoietic stem cell transplant model, confirmed the essentiality of eight MRs in TI-Treg recruitment and/or retention without affecting other T cell subtypes, and targeting one of the most significant MRs (Trps1) by CRISPR KO significantly reduced ectopic tumor growth. Analysis of drugs capable of inverting TI-Treg MR activity identified low-dose gemcitabine as the top prediction. Indeed, gemcitabine treatment inhibited tumor growth in immunocompetent but not immunocompromised allografts, increased anti-PD-1 efficacy, and depleted MR-expressing TI-Tregs in vivo. This study provides key insight into Treg signaling, specifically in the context of cancer, and a generalizable strategy to systematically elucidate and target MR proteins in immunosuppressive subpopulations.
Collapse
Affiliation(s)
- Aleksandar Obradovic
- Columbia Center for Translational Immunology, Irving Medical Center, New York, NY, USA; Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Casey Ager
- Columbia Center for Translational Immunology, Irving Medical Center, New York, NY, USA; Department of Hematology Oncology, Columbia University Irving Medical Center, New York, NY, USA
| | - Mikko Turunen
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Thomas Nirschl
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Alina Iuga
- Department of Pathology, UNC School of Medicine, Chapel Hill, NC, USA
| | - Christopher M Jackson
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Lorenzo Tomassoni
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Ester Calvo Fernandez
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Patrick McCann
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Meri Rogava
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Angelo M DeMarzo
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christina M Kochel
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mohamad Allaf
- Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Trinity Bivalacqua
- Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael Lim
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, CA, USA
| | - Ronald Realubit
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA; J.P. Sulzberger Columbia Genome Center, Columbia University, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Charles Karan
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA; J.P. Sulzberger Columbia Genome Center, Columbia University, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Charles G Drake
- Columbia Center for Translational Immunology, Irving Medical Center, New York, NY, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrea Califano
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; J.P. Sulzberger Columbia Genome Center, Columbia University, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA; Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA; Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, USA; Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
13
|
Diop MK, Molina OE, Birlea M, LaRue H, Hovington H, Têtu B, Lacombe L, Bergeron A, Fradet Y, Trudel D. Leukocytic Infiltration of Intraductal Carcinoma of the Prostate: An Exploratory Study. Cancers (Basel) 2023; 15:cancers15082217. [PMID: 37190147 DOI: 10.3390/cancers15082217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/03/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
Intraductal carcinoma of the prostate (IDC-P) is an aggressive histological subtype of prostate cancer (PCa) detected in approximately 20% of radical prostatectomy (RP) specimens. As IDC-P has been associated with PCa-related death and poor responses to standard treatment, the purpose of this study was to explore the immune infiltrate of IDC-P. Hematoxylin- and eosin-stained slides from 96 patients with locally advanced PCa who underwent RP were reviewed to identify IDC-P. Immunohistochemical staining of CD3, CD8, CD45RO, FoxP3, CD68, CD163, CD209 and CD83 was performed. For each slide, the number of positive cells per mm2 in the benign tissues, tumor margins, cancer and IDC-P was calculated. Consequently, IDC-P was found in a total of 33 patients (34%). Overall, the immune infiltrate was similar in the IDC-P-positive and the IDC-P-negative patients. However, FoxP3+ regulatory T cells (p < 0.001), CD68+ and CD163+ macrophages (p < 0.001 for both) and CD209+ and CD83+ dendritic cells (p = 0.002 and p = 0.013, respectively) were less abundant in the IDC-P tissues compared to the adjacent PCa. Moreover, the patients were classified as having immunologically "cold" or "hot" IDC-P, according to the immune-cell densities averaged in the total IDC-P or in the immune hotspots. The CD68/CD163/CD209-immune hotspots predicted metastatic dissemination (p = 0.014) and PCa-related death (p = 0.009) in a Kaplan-Meier survival analysis. Further studies on larger cohorts are necessary to evaluate the clinical utility of assessing the immune infiltrate of IDC-P with regards to patient prognosis and the use of immunotherapy for lethal PCa.
Collapse
Affiliation(s)
- Mame-Kany Diop
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (axe Cancer) and Institut du Cancer de Montréal, 900 Saint-Denis, Montréal, QC H2X 0A9, Canada
- Department of Pathology and Cellular Biology, Université de Montréal, 2900 Boulevard Édouard-Montpetit, Montréal, QC H3T 1J4, Canada
| | - Oscar Eduardo Molina
- Centre de Recherche du CHU de Québec-Université Laval (axe Oncologie), Hôpital L'Hôtel-Dieu de Québec, 9 McMahon, Québec, QC G1R 3S3, Canada
| | - Mirela Birlea
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (axe Cancer) and Institut du Cancer de Montréal, 900 Saint-Denis, Montréal, QC H2X 0A9, Canada
| | - Hélène LaRue
- Centre de Recherche du CHU de Québec-Université Laval (axe Oncologie), Hôpital L'Hôtel-Dieu de Québec, 9 McMahon, Québec, QC G1R 3S3, Canada
| | - Hélène Hovington
- Centre de Recherche du CHU de Québec-Université Laval (axe Oncologie), Hôpital L'Hôtel-Dieu de Québec, 9 McMahon, Québec, QC G1R 3S3, Canada
| | - Bernard Têtu
- Centre de Recherche du CHU de Québec-Université Laval (axe Oncologie), Hôpital L'Hôtel-Dieu de Québec, 9 McMahon, Québec, QC G1R 3S3, Canada
- Department of Pathology, CHU de Québec-Université Laval, 11 Côte du Palais, Québec, QC G1R 2J6, Canada
| | - Louis Lacombe
- Centre de Recherche du CHU de Québec-Université Laval (axe Oncologie), Hôpital L'Hôtel-Dieu de Québec, 9 McMahon, Québec, QC G1R 3S3, Canada
- Department of Surgery, Université Laval, 2325 rue de l'Université, Québec, QC G1V 0A6, Canada
| | - Alain Bergeron
- Centre de Recherche du CHU de Québec-Université Laval (axe Oncologie), Hôpital L'Hôtel-Dieu de Québec, 9 McMahon, Québec, QC G1R 3S3, Canada
- Department of Surgery, Université Laval, 2325 rue de l'Université, Québec, QC G1V 0A6, Canada
| | - Yves Fradet
- Centre de Recherche du CHU de Québec-Université Laval (axe Oncologie), Hôpital L'Hôtel-Dieu de Québec, 9 McMahon, Québec, QC G1R 3S3, Canada
- Department of Surgery, Université Laval, 2325 rue de l'Université, Québec, QC G1V 0A6, Canada
| | - Dominique Trudel
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (axe Cancer) and Institut du Cancer de Montréal, 900 Saint-Denis, Montréal, QC H2X 0A9, Canada
- Department of Pathology and Cellular Biology, Université de Montréal, 2900 Boulevard Édouard-Montpetit, Montréal, QC H3T 1J4, Canada
- Department of Pathology, Centre Hospitalier de l'Université de Montréal, 1051 Sanguinet, Montréal, QC H2X 0C1, Canada
| |
Collapse
|
14
|
Adorno Febles VR, Hao Y, Ahsan A, Wu J, Qian Y, Zhong H, Loeb S, Makarov DV, Lepor H, Wysock J, Taneja SS, Huang WC, Becker DJ, Balar AV, Melamed J, Deng FM, Ren Q, Kufe D, Wong KK, Adeegbe DO, Deng J, Wise DR. Single-cell analysis of localized prostate cancer patients links high Gleason score with an immunosuppressive profile. Prostate 2023; 83:840-849. [PMID: 36988342 DOI: 10.1002/pros.24524] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 02/18/2023] [Accepted: 03/02/2023] [Indexed: 03/30/2023]
Abstract
BACKGROUND Evading immune surveillance is a hallmark for the development of multiple cancer types. Whether immune evasion contributes to the pathogenesis of high-grade prostate cancer (HGPCa) remains an area of active inquiry. METHODS Through single-cell RNA sequencing and multicolor flow cytometry of freshly isolated prostatectomy specimens and matched peripheral blood, we aimed to characterize the tumor immune microenvironment (TME) of localized prostate cancer (PCa), including HGPCa and low-grade prostate cancer (LGPCa). RESULTS HGPCa are highly infiltrated by exhausted CD8+ T cells, myeloid cells, and regulatory T cells (TRegs). These HGPCa-infiltrating CD8+ T cells expressed high levels of exhaustion markers including TIM3, TOX, TCF7, PD-1, CTLA4, TIGIT, and CXCL13. By contrast, a high ratio of activated CD8+ effector T cells relative to TRegs and myeloid cells infiltrate the TME of LGPCa. HGPCa CD8+ tumor-infiltrating lymphocytes (TILs) expressed more androgen receptor and prostate-specific membran antigen yet less prostate-specific antigen than the LGPCa CD8+ TILs. The PCa TME was infiltrated by macrophages but these did not clearly cluster by M1 and M2 markers. CONCLUSIONS Our study reveals a suppressive TME with high levels of CD8+ T cell exhaustion in localized PCa, a finding enriched in HGPCa relative to LGPCa. These studies suggest a possible link between the clinical-pathologic risk of PCa and the associated TME. Our results have implications for our understanding of the immunologic mechanisms of PCa pathogenesis and the implementation of immunotherapy for localized PCa.
Collapse
Affiliation(s)
- Victor R Adorno Febles
- Department of Medicine, Laura & Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
- Department of Medicine, Manhattan Campus, VA NY Harbor Health Care System, New York, New York, USA
| | - Yuan Hao
- Applied Bioinformatics Laboratories, New York University Langone Health, New York, New York, USA
| | - Aarif Ahsan
- Department of Medicine, Laura & Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Jiansheng Wu
- Department of Medicine, Laura & Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Yingzhi Qian
- Department of Population Health, NYU Langone Health, New York, New York, USA
| | - Hua Zhong
- Department of Population Health, NYU Langone Health, New York, New York, USA
| | - Stacy Loeb
- Department of Urology, New York University School of Medicine, New York, New York, USA
- Department of Urology, Manhattan Campus, VA NY Harbor Health Care System, New York, New York, USA
| | - Danil V Makarov
- Department of Urology, New York University School of Medicine, New York, New York, USA
- Department of Urology, Manhattan Campus, VA NY Harbor Health Care System, New York, New York, USA
| | - Herbert Lepor
- Department of Urology, New York University School of Medicine, New York, New York, USA
| | - James Wysock
- Department of Urology, New York University School of Medicine, New York, New York, USA
| | - Samir S Taneja
- Department of Urology, New York University School of Medicine, New York, New York, USA
| | - William C Huang
- Department of Urology, New York University School of Medicine, New York, New York, USA
| | - Daniel J Becker
- Department of Medicine, Laura & Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
- Department of Medicine, Manhattan Campus, VA NY Harbor Health Care System, New York, New York, USA
| | - Arjun V Balar
- Department of Medicine, Laura & Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Jonathan Melamed
- Department of Pathology, New York University School of Medicine, New York, New York, USA
| | - Fang-Ming Deng
- Department of Pathology, New York University School of Medicine, New York, New York, USA
| | - Qinghu Ren
- Department of Pathology, New York University School of Medicine, New York, New York, USA
| | - Donald Kufe
- Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Kwok-Kin Wong
- Department of Medicine, Laura & Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Dennis O Adeegbe
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, Florida, USA
| | - Jiehui Deng
- Department of Medicine, Laura & Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - David R Wise
- Department of Medicine, Laura & Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| |
Collapse
|
15
|
Mandl A, Markowski MC, Carducci MA, Antonarakis ES. Role of bromodomain and extraterminal (BET) proteins in prostate cancer. Expert Opin Investig Drugs 2023; 32:213-228. [PMID: 36857796 DOI: 10.1080/13543784.2023.2186851] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
INTRODUCTION The bromodomain and extraterminal (BET) family of proteins are epigenetic readers of acetylated histones and are critical activators of oncogenic networks across many cancers. Therapeutic targeting of BET proteins has been an attractive area of clinical development for metastatic castration-resistant prostate cancer. In recent years, many structurally diverse BET inhibitors have been discovered and tested. Preclinical studies have demonstrated significant antiproliferative activity of BET inhibitors against prostate cancer. However, their clinical success as monotherapies has been limited by treatment-associated toxicities, primary and acquired drug resistance, and a lack of predictive biomarkers of benefit. AREAS COVERED This review provides an overview of advancements in BET inhibitor design, preclinical research, and conclusions from clinical trials in prostate cancer. We speculate on incorporating BET inhibitors into combination regimens with other agents to improve the therapeutic index of BET inhibition in treating prostate cancer. EXPERT OPINION The therapeutic potential of BET inhibitors for prostate cancer has been demonstrated in preclinical studies. However, further research is needed to identify biomarkers that can predict sensitivity to BET inhibitors and to develop novel, highly selective inhibitors to reduce toxicities. Finally, BET inhibitors are likely to hold the most clinical potential in combination with other agents.
Collapse
Affiliation(s)
- Adel Mandl
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins, Baltimore, MD, USA
| | - Mark C Markowski
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins, Baltimore, MD, USA
| | - Michael A Carducci
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins, Baltimore, MD, USA
| | - Emmanuel S Antonarakis
- Department of Medicine, University of Minnesota Masonic Cancer Center, Minneapolis, MN, USA
| |
Collapse
|
16
|
Muacevic A, Adler JR, Magalhães H, Reis F, Mesquita A. Tumor-Infiltrating Lymphocytes in Localized Prostate Cancer: Do They Play an Important Role? Cureus 2023; 15:e34007. [PMID: 36811045 PMCID: PMC9939077 DOI: 10.7759/cureus.34007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2023] [Indexed: 01/21/2023] Open
Abstract
Background Localized prostate cancer is a heterogeneous entity, and new biomarkers are required for risk stratification. This study aimed to characterize tumor-infiltrating lymphocytes (TILs) in localized prostate cancer and assess their potential prognostic markers. Methodology Radical prostatectomy specimens were analyzed to determine infiltration levels of CD4+, CD8+, T cells, and B cells (characterized by CD20+ cells) in the tumor tissue using immunohistochemistry and the recommendations of the International TILs Working Group 2014. The clinical endpoint was biochemical recurrence (BCR), and the study sample was divided into two cohorts (cohort 1: without BCR; cohort 2: with BCR). Prognostic markers were assessed using Kaplan-Meier and univariate/multivariate Cox regression analysis using SPSS version 25 (IBM Corp., Armonk, NY, USA). Results We included 96 patients in this study. BCR occurred in 51% of the patients. Normal TILs infiltration was found in most of the patients (41/31, 87%/63%). T CD4+ infiltration was statistically superior in cohort 2. This enrichment was associated with BCR (p < 0.05; log-rank test). After adjustment for routine clinical variables and Gleason grade groups (grade group ≤2 and grade group ≥3), it remained an independent prognostic variable of early BCR (p < 0.05; multivariate Cox regression). Conclusions This study showed that immune cell infiltration appears to be an important prognostic variable for early recurrence in localized prostate cancer.
Collapse
|
17
|
dos Reis FD, Jerónimo C, Correia MP. Epigenetic modulation and prostate cancer: Paving the way for NK cell anti-tumor immunity. Front Immunol 2023; 14:1152572. [PMID: 37090711 PMCID: PMC10113550 DOI: 10.3389/fimmu.2023.1152572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/06/2023] [Indexed: 04/25/2023] Open
Abstract
Immunoepigenetics is a growing field, as there is mounting evidence on the key role played by epigenetic mechanisms in the regulation of tumor immune cell recognition and control of immune cell anti-tumor responses. Moreover, it is increasingly acknowledgeable a tie between epigenetic regulation and prostate cancer (PCa) development and progression. PCa is intrinsically a cold tumor, with scarce immune cell infiltration and low inflammatory tumor microenvironment. However, Natural Killer (NK) cells, main anti-tumor effector immune cells, have been frequently linked to improved PCa prognosis. The role that epigenetic-related mechanisms might have in regulating both NK cell recognition of PCa tumor cells and NK cell functions in PCa is still mainly unknown. Epigenetic modulating drugs have been showing boundless therapeutic potential as anti-tumor agents, however their role in immune cell regulation and recognition is scarce. In this review, we focused on studies addressing modulation of epigenetic mechanisms involved in NK cell-mediated responses, including both the epigenetic modulation of tumor cell NK ligand expression and NK cell receptor expression and function in different tumor models, highlighting studies in PCa. The integrated knowledge from diverse epigenetic modulation mechanisms promoting NK cell-mediated immunity in various tumor models might open doors for the development of novel epigenetic-based therapeutic options for PCa management.
Collapse
Affiliation(s)
- Filipa D. dos Reis
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Porto, Portugal
- Master Program in Oncology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Porto, Portugal
- Department of Pathology and Molecular Immunology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal
| | - Margareta P. Correia
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Porto, Portugal
- Department of Pathology and Molecular Immunology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal
- *Correspondence: Margareta P. Correia,
| |
Collapse
|
18
|
Cai Y, Lin J, Wang Z, Ma Y, Pan J, Liu Y, Zhao Z. Identification and validation of a lipid metabolism gene signature for predicting biochemical recurrence of prostate cancer after radical prostatectomy. Front Oncol 2022; 12:1009921. [PMID: 36324578 PMCID: PMC9619088 DOI: 10.3389/fonc.2022.1009921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/03/2022] [Indexed: 12/02/2022] Open
Abstract
Background Pro5state cancer is one of the most commonly diagnosed cancers in men worldwide and biochemical recurrence occurs in approximately 25% of patients after radical prostatectomy. Current decisions regarding biochemical recurrence after radical prostatectomy are largely dependent on clinicopathological parameters, which are less accurate. A growing body of research suggests that lipid metabolism influences tumor development and treatment, and that prostate cancer is not only a malignancy but also a lipid metabolism disease. Therefore, this study aimed to identify the prognostic value of lipid metabolism-related gene signaling disease to better predict biochemical recurrence and contribute to clinical decision-making. Methods Expression data and corresponding clinical information were obtained from The Cancer Genome Atlas (TCGA) database and the MSKCC database. Candidate modules closely associated with BCR were screened by univariate and LASSOcox regression analyses, and multivariate Cox regression analyses were performed to construct gene signatures. Kaplan-Meier (KM) survival analysis, time-dependent subject operating curves (ROC), independent prognostic analysis, and Nomogram were also used to assess the prognostic value of the signatures. In addition, Gene Ontology Analysis (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) were used to explore potential biological pathways. Results A 6-gene lipid metabolism-related gene signature was successfully constructed and validated to predict biochemical recurrence in prostate cancer patients. In addition, we identified the 6-gene signature as an independent risk factor. Functional analysis showed that lipid metabolism-related genes were closely associated with arachidonic acid metabolism, PPAR transduction signaling pathway, fatty acid metabolism, peroxisome, and glycerophospholipid metabolism. Prognostic models were associated with immune cell infiltration. Conclusion We have successfully developed a novel lipid metabolism-related gene signature that is highly effective in predicting BCR in patients with limited prostate cancer after RP and created a prognostic Nomogram. Furthermore, the signature may help clinicians to select high-risk subpopulations, predict patient survival, and facilitate more personalized treatment than traditional clinical factors.
Collapse
|
19
|
A Novel Angiogenesis-Related Gene Signature to Predict Biochemical Recurrence of Patients with Prostate Cancer following Radical Therapy. JOURNAL OF ONCOLOGY 2022; 2022:2448428. [PMID: 35799610 PMCID: PMC9256390 DOI: 10.1155/2022/2448428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 11/24/2022]
Abstract
Background Prostate cancer (PCa) is one of the most common malignancies in males; we aim to establish a novel angiogenesis-related gene signature for biochemical recurrence (BCR) prediction in PCa patients following radical therapy. Methods Gene expression profiles and corresponding clinicopathological data were acquired from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database. We quantified the levels of various cancer hallmarks and identified angiogenesis as the primary risk factor for BCR. Then machine learning methods combined with Cox regression analysis were used to screen prognostic genes and construct an angiogenesis-related gene signature, which was further verified in external cohorts. Furthermore, estimation of immune cell abundance and prediction of drug responses were also conducted to detect potential mechanisms. Results Angiogenesis was regarded as the leading risk factor for BCR in PCa patients (HR = 1.58, 95% CI: 1.38–1.81), and a novel prognostic signature based on three genes (NRP1, JAG2, and VCAN) was developed in the training cohort and successfully validated in another three independent cohorts. In all datasets, this signature was identified as a prognostic factor with promising and robust predictive values. Moreover, it also predicted higher infiltration of regulatory T cells and M2-polarized macrophages and increased drug sensitivity of angiogenesis inhibitors in high-risk patients. Conclusions The angiogenesis-related three-gene signature may serve as an independent prognostic factor for BCR, which would contribute to risk stratification and personalized management of PCa patients after radical therapy in clinical practice.
Collapse
|
20
|
Ju M, Fan J, Zou Y, Yu M, Jiang L, Wei Q, Bi J, Hu B, Guan Q, Song X, Dong M, Wang L, Yu L, Wang Y, Kang H, Xin W, Zhao L. Computational Recognition of a Regulatory T-cell-specific Signature With Potential Implications in Prognosis, Immunotherapy, and Therapeutic Resistance of Prostate Cancer. Front Immunol 2022; 13:807840. [PMID: 35812443 PMCID: PMC9259848 DOI: 10.3389/fimmu.2022.807840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
Prostate cancer, recognized as a "cold" tumor, has an immunosuppressive microenvironment in which regulatory T cells (Tregs) usually play a major role. Therefore, identifying a prognostic signature of Tregs has promising benefits of improving survival of prostate cancer patients. However, the traditional methods of Treg quantification usually suffer from bias and variability. Transcriptional characteristics have recently been found to have a predictive power for the infiltration of Tregs. Thus, a novel machine learning-based computational framework has been presented using Tregs and 19 other immune cell types using 42 purified immune cell datasets from GEO to identify Treg-specific mRNAs, and a prognostic signature of Tregs (named "TILTregSig") consisting of five mRNAs (SOCS2, EGR1, RRM2, TPP1, and C11orf54) was developed and validated to monitor the prognosis of prostate cancer using the TCGA and ICGC datasets. The TILTregSig showed a stronger predictive power for tumor immunity compared with tumor mutation burden and glycolytic activity, which have been reported as immune predictors. Further analyses indicate that the TILTregSig might influence tumor immunity mainly by mediating tumor-infiltrating Tregs and could be a powerful predictor for Tregs in prostate cancer. Moreover, the TILTregSig showed a promising potential for predicting cancer immunotherapy (CIT) response in five CIT response datasets and therapeutic resistance in the GSCALite dataset in multiple cancers. Our TILTregSig derived from PBMCs makes it possible to achieve a straightforward, noninvasive, and inexpensive detection assay for prostate cancer compared with the current histopathological examination that requires invasive tissue puncture, which lays the foundation for the future development of a panel of different molecules in peripheral blood comprising a biomarker of prostate cancer.
Collapse
Affiliation(s)
- Mingyi Ju
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Jingyi Fan
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Yuanjiang Zou
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Mingjie Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Longyang Jiang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Qian Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Jia Bi
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Baohui Hu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Qiutong Guan
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Xinyue Song
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Mingyan Dong
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Lin Wang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Lifeng Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Yan Wang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Hui Kang
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Wei Xin
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| |
Collapse
|
21
|
Zhang P, Gao H, Ye C, Yan R, Yu L, Xia C, Yang D. Large-Scale Transcriptome Data Analysis Identifies KIF2C as a Potential Therapeutic Target Associated With Immune Infiltration in Prostate Cancer. Front Immunol 2022; 13:905259. [PMID: 35720323 PMCID: PMC9203693 DOI: 10.3389/fimmu.2022.905259] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/06/2022] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer (PCa) is one of the most prevalent cancers of the urinary system. In previous research, Kinesin family member 2C (KIF2C), as an oncogene, has been demonstrated to have a key role in the incidence and progression of different cancers. However, KIF2C has not been reported in PCa. We combined data from different databases, including The Cancer Genome Atlas, the Cancer Cell Line Encyclopedia, Genotype Tissue-Expression, cBioPortal, and the Genomics of Drug Sensitivity in Cancer database, to explore the potential oncogenic role of KIF2C in PCa through a series of bioinformatics approaches, including analysis of the association between KIF2C and prognosis, clinicopathological features, gene mutations, DNA methylation, immune cell infiltration, and drug resistance. The results showed that KIF2C was significantly up-regulated in PCa. High KIF2C expression was associated with age, pathological stage, lymph node metastases, prostate-specific antigen (PSA), and Gleason score and significantly predicted an unfavorable prognosis in PCa patients. Results from Gene Set Enrichment Analysis (GSEA) suggested that KIF2C was involved in the cell cycle and immune response. KIF2C DNA methylation was reduced in PCa and was inversely linked with KIF2C expression. KIF2C was shown to have a strong relationship with the tumor microenvironment (TME), infiltrating cells, and immune checkpoint genes. Furthermore, high KIF2C expression was significantly resistant to a variety of MAPK signaling pathway-related inhibitors. Our study reveals that KIF2C may be a possible predictive biomarker for assessing prognosis in PCa patients with immune infiltration.
Collapse
Affiliation(s)
- Pingxin Zhang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hang Gao
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chunwei Ye
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ruping Yan
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lu Yu
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chengxing Xia
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Delin Yang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
22
|
Mulvey A, Muggeo-Bertin E, Berthold DR, Herrera FG. Overcoming Immune Resistance With Radiation Therapy in Prostate Cancer. Front Immunol 2022; 13:859785. [PMID: 35603186 PMCID: PMC9115849 DOI: 10.3389/fimmu.2022.859785] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/31/2022] [Indexed: 01/13/2023] Open
Abstract
Prostate cancer is the second most common cancer in men and represents a significant healthcare burden worldwide. Therapeutic options in the metastatic castration-resistant setting remain limited, despite advances in androgen deprivation therapy, precision medicine and targeted therapies. In this review, we summarize the role of immunotherapy in prostate cancer and offer perspectives on opportunities for future development, based on current knowledge of the immunosuppressive tumor microenvironment. Furthermore, we discuss the potential for synergistic therapeutic strategies with modern radiotherapy, through modulation of the tumor microenvironment. Emerging clinical and pre-clinical data suggest that radiation can convert immune desert tumors into an inflamed immunological hub, potentially sensitive to immunotherapy.
Collapse
Affiliation(s)
- Arthur Mulvey
- Department of Oncology, Medical Oncology Service, Lausanne University Hospital, Lausanne, Switzerland.,Department of Oncology, Immuno-Oncology Service, Lausanne University Hospital, Lausanne, Switzerland
| | - Emilien Muggeo-Bertin
- Department of Oncology, Radiation Oncology Service, Lausanne University Hospital, Lausanne, Switzerland
| | - Dominik R Berthold
- Department of Oncology, Medical Oncology Service, Lausanne University Hospital, Lausanne, Switzerland
| | - Fernanda G Herrera
- Department of Oncology, Immuno-Oncology Service, Lausanne University Hospital, Lausanne, Switzerland.,Department of Oncology, Radiation Oncology Service, Lausanne University Hospital, Lausanne, Switzerland.,Ludwig Institute for Cancer Research - Lausanne Branch, Lausanne, Switzerland
| |
Collapse
|
23
|
Inflammation and Prostate Cancer: A Multidisciplinary Approach to Identifying Opportunities for Treatment and Prevention. Cancers (Basel) 2022; 14:cancers14061367. [PMID: 35326519 PMCID: PMC8946208 DOI: 10.3390/cancers14061367] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/03/2022] [Accepted: 03/06/2022] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer is a major cause of disease for men globally. Inflammation, an established hallmark of cancer, is frequently observed in the prostate, though its contribution to prostate cancer risks and outcomes is not fully understood. Prostate cancer is biologically and clinically heterogeneous, and there is now evidence that inflammation and immunological characteristics vary by the genomic and mutational landscape of the tumor. Moreover, it is now recognized that risk factor profiles vary between tumor subgroups, as defined by histopathological and molecular features. Here, we provide a review centered around the relationship between inflammation and prostate cancer, with a consideration of molecular tumor features and a particular focus on the advanced and lethal stages of disease. We summarize findings from epidemiological studies of the etiology and role of inflammation in prostate cancer. We discuss the pathology of prostate inflammation, and consider approaches for assessing the tumor immune microenvironment in epidemiological studies. We review emerging clinical therapies targeting immune biology within the context of prostate cancer. Finally, we consider potentially modifiable risk factors and corresponding lifestyle interventions that may affect prostate inflammation, impacting outcomes. These emerging insights will provide some hints for the development of treatment and prevention strategies for advanced and lethal prostate cancer.
Collapse
|
24
|
Chen N, He D, Cui J. A Neutrophil Extracellular Traps Signature Predicts the Clinical Outcomes and Immunotherapy Response in Head and Neck Squamous Cell Carcinoma. Front Mol Biosci 2022; 9:833771. [PMID: 35252353 PMCID: PMC8894649 DOI: 10.3389/fmolb.2022.833771] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/04/2022] [Indexed: 12/13/2022] Open
Abstract
Background: Neutrophil extracellular traps (NETs) play an important role in the occurrence, metastasis and immune escape of cancers. This study aimed to investigate NET-related genes, their clinical prognostic value and their correlation with immunotherapy and anticancer drugs in patients with head and neck squamous cell carcinoma (HNSCC). Methods: Differentially expressed NET-related genes in HNSCC were identified based on multiple public databases. To improve the clinical practicability and avoid overfitting, univariable, least absolute shrinkage and selection operator (LASSO) and multivariable Cox algorithms were used to construct a prognostic risk model. A nomogram was further used to explore the clinical value of the model. Internal and external validation were conducted to test the model. Furthermore, the immune microenvironment, immunophenoscore (IPS) and sensitivity to anticancer drugs in HNSCC patients with different prognostic risks were explored. Results: Six NET-related genes were screened to construct the risk model. In the training cohort, Kaplan–Meier (K-M) analysis showed that the overall survival (OS) of low-risk HNSCC patients was significantly better than that of high-risk HNSCC patients (p < 0.001). The nomogram also showed a promising prognostic value with a better C-index (0.726 vs 0.640) and area under the curve (AUC) (0.743 vs 0.706 at 3 years, 0.743 vs 0.645 at 5 years) than those in previous studies. Calibration plots and decision curve analysis (DCA) also showed the satisfactory predictive capacity of the nomogram. Internal and external validation further strengthened the credibility of the clinical prognostic model. The level of tumor mutational burden (TMB) in the high-risk group was significantly higher than that in the low-risk group (p = 0.017), and the TMB was positively correlated with the risk score (R = 0.11; p = 0.019). Moreover, the difference in immune infiltration was significant in HNSCC patients with different risks (p < 0.05). Furthermore, the IPS analysis indicated that anti-PD-1 (p < 0.001), anti-CTLA4 (p < 0.001) or combining immunotherapies (p < 0.001) were more beneficial for low-risk HNSCC patients. The response to anticancer drugs was also closely correlated with the expression of NET-related genes (p < 0.001). Conclusion: This study identified a novel prognostic model that might be beneficial to develop personalized treatment for HNSCC patients.
Collapse
Affiliation(s)
- Naifei Chen
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Dongsheng He
- Department of Medical Oncology, The First Hospital of Putian, Teaching Hospital, Fujian Medical University, Putian, China
| | - Jiuwei Cui
- Cancer Center, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Jiuwei Cui,
| |
Collapse
|
25
|
Wang C, Zhang Y, Gao WQ. The evolving role of immune cells in prostate cancer. Cancer Lett 2022; 525:9-21. [PMID: 34715253 DOI: 10.1016/j.canlet.2021.10.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/29/2021] [Accepted: 10/19/2021] [Indexed: 12/22/2022]
Abstract
Prostate cancer is the most commonly diagnosed cancer and the second leading cause of cancer-related death among men in western countries. Androgen deprivation therapy (ADT) is considered the standard therapy for recurrent prostate cancer; however, this therapy may lead to ADT resistance and tumor progression, which seems to be regulated by epithelial-mesenchymal transition (EMT) and/or neuroendocrine differentiation (NED). In addition, recent data suggested the involvement of either adaptive or innate infiltrated immune cells in the initiation, progression, metastasis, and treatment of prostate cancer. In this review, we outlined the characteristics and roles of these immune cells in the initiation, progression, metastasis, and treatments of prostate cancer. We also summarized the current therapeutic strategies in targeting immune cells of the prostate tumor microenvironment.
Collapse
Affiliation(s)
- Chao Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China
| | - Yan Zhang
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Stem Cell Research Center, Ren Ji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, PR China; Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, PR China.
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Stem Cell Research Center, Ren Ji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, PR China; Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, PR China.
| |
Collapse
|
26
|
Palicelli A, Croci S, Bisagni A, Zanetti E, De Biase D, Melli B, Sanguedolce F, Ragazzi M, Zanelli M, Chaux A, Cañete-Portillo S, Bonasoni MP, Soriano A, Ascani S, Zizzo M, Castro Ruiz C, De Leo A, Giordano G, Landriscina M, Carrieri G, Cormio L, Berney DM, Gandhi J, Copelli V, Bernardelli G, Santandrea G, Bonacini M. What Do We Have to Know about PD-L1 Expression in Prostate Cancer? A Systematic Literature Review. Part 3: PD-L1, Intracellular Signaling Pathways and Tumor Microenvironment. Int J Mol Sci 2021; 22:12330. [PMID: 34830209 PMCID: PMC8618001 DOI: 10.3390/ijms222212330] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 02/07/2023] Open
Abstract
The tumor microenvironment (TME) includes immune (T, B, NK, dendritic), stromal, mesenchymal, endothelial, adipocytic cells, extracellular matrix, and cytokines/chemokines/soluble factors regulating various intracellular signaling pathways (ISP) in tumor cells. TME influences the survival/progression of prostate cancer (PC), enabling tumor cell immune-evasion also through the activation of the PD-1/PD-L1 axis. We have performed a systematic literature review according to the PRISMA guidelines, to investigate how the PD-1/PD-L1 pathway is influenced by TME and ISPs. Tumor immune-escape mechanisms include suppression/exhaustion of tumor infiltrating cytotoxic T lymphocytes, inhibition of tumor suppressive NK cells, increase in immune-suppressive immune cells (regulatory T, M2 macrophagic, myeloid-derived suppressor, dendritic, stromal, and adipocytic cells). IFN-γ (the most investigated factor), TGF-β, TNF-α, IL-6, IL-17, IL-15, IL-27, complement factor C5a, and other soluble molecules secreted by TME components (and sometimes increased in patients' serum), as well as and hypoxia, influenced the regulation of PD-L1. Experimental studies using human and mouse PC cell lines (derived from either androgen-sensitive or androgen-resistant tumors) revealed that the intracellular ERK/MEK, Akt-mTOR, NF-kB, WNT and JAK/STAT pathways were involved in PD-L1 upregulation in PC. Blocking the PD-1/PD-L1 signaling by using immunotherapy drugs can prevent tumor immune-escape, increasing the anti-tumor activity of immune cells.
Collapse
Affiliation(s)
- Andrea Palicelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (V.C.); (G.B.); (G.S.)
| | - Stefania Croci
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (S.C.); (M.B.)
| | - Alessandra Bisagni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (V.C.); (G.B.); (G.S.)
| | - Eleonora Zanetti
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (V.C.); (G.B.); (G.S.)
| | - Dario De Biase
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy;
| | - Beatrice Melli
- Fertility Centre, Department of Obstetrics and Gynecology, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy;
| | | | - Moira Ragazzi
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (V.C.); (G.B.); (G.S.)
| | - Magda Zanelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (V.C.); (G.B.); (G.S.)
| | - Alcides Chaux
- Department of Scientific Research, School of Postgraduate Studies, Norte University, Asunción 1614, Paraguay;
| | - Sofia Cañete-Portillo
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Maria Paola Bonasoni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (V.C.); (G.B.); (G.S.)
| | - Alessandra Soriano
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA;
- Gastroenterology Division, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Stefano Ascani
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy;
- Haematopathology Unit, CREO, Azienda Ospedaliera di Perugia, University of Perugia, 06129 Perugia, Italy
| | - Maurizio Zizzo
- Surgical Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Carolina Castro Ruiz
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy;
- Surgical Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Antonio De Leo
- Molecular Diagnostic Unit, Azienda USL Bologna, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy;
| | - Guido Giordano
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.G.); (M.L.)
| | - Matteo Landriscina
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.G.); (M.L.)
| | - Giuseppe Carrieri
- Department of Urology and Renal Transplantation, University of Foggia, 71122 Foggia, Italy; (G.C.); (L.C.)
| | - Luigi Cormio
- Department of Urology and Renal Transplantation, University of Foggia, 71122 Foggia, Italy; (G.C.); (L.C.)
| | - Daniel M. Berney
- Barts Cancer Institute, Queen Mary University of London, London EC1M 5PZ, UK;
| | - Jatin Gandhi
- Department of Pathology and Laboratory Medicine, University of Washington, Seattle, WA 98195, USA;
| | - Valerio Copelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (V.C.); (G.B.); (G.S.)
| | - Giuditta Bernardelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (V.C.); (G.B.); (G.S.)
| | - Giacomo Santandrea
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (V.C.); (G.B.); (G.S.)
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy;
| | - Martina Bonacini
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (S.C.); (M.B.)
| |
Collapse
|
27
|
Palicelli A, Croci S, Bisagni A, Zanetti E, De Biase D, Melli B, Sanguedolce F, Ragazzi M, Zanelli M, Chaux A, Cañete-Portillo S, Bonasoni MP, Soriano A, Ascani S, Zizzo M, Castro Ruiz C, De Leo A, Giordano G, Landriscina M, Carrieri G, Cormio L, Berney DM, Gandhi J, Santandrea G, Bonacini M. What Do We Have to Know about PD-L1 Expression in Prostate Cancer? A Systematic Literature Review. Part 4: Experimental Treatments in Pre-Clinical Studies (Cell Lines and Mouse Models). Int J Mol Sci 2021; 22:12297. [PMID: 34830179 PMCID: PMC8618402 DOI: 10.3390/ijms222212297] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 02/05/2023] Open
Abstract
In prostate cancer (PC), the PD-1/PD-L1 axis regulates various signaling pathways and it is influenced by extracellular factors. Pre-clinical experimental studies investigating the effects of various treatments (alone or combined) may discover how to overcome the immunotherapy-resistance in PC-patients. We performed a systematic literature review (PRISMA guidelines) to delineate the landscape of pre-clinical studies (including cell lines and mouse models) that tested treatments with effects on PD-L1 signaling in PC. NF-kB, MEK, JAK, or STAT inhibitors on human/mouse, primary/metastatic PC-cell lines variably down-modulated PD-L1-expression, reducing chemoresistance and tumor cell migration. If PC-cells were co-cultured with NK, CD8+ T-cells or CAR-T cells, the immune cell cytotoxicity increased when PD-L1 was downregulated (opposite effects for PD-L1 upregulation). In mouse models, radiotherapy, CDK4/6-inhibitors, and RB deletion induced PD-L1-upregulation, causing PC-immune-evasion. Epigenetic drugs may reduce PD-L1 expression. In some PC experimental models, blocking only the PD-1/PD-L1 pathway had limited efficacy in reducing the tumor growth. Anti-tumor effects could be increased by combining the PD-1/PD-L1 blockade with other approaches (inhibitors of tyrosine kinase, PI3K/mTOR or JAK/STAT3 pathways, p300/CBP; anti-RANKL and/or anti-CTLA-4 antibodies; cytokines; nitroxoline; DNA/cell vaccines; radiotherapy/Radium-223).
Collapse
Affiliation(s)
- Andrea Palicelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (G.S.)
| | - Stefania Croci
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (S.C.); (M.B.)
| | - Alessandra Bisagni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (G.S.)
| | - Eleonora Zanetti
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (G.S.)
| | - Dario De Biase
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy;
| | - Beatrice Melli
- Fertility Center, Department of Obstetrics and Gynecology, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
- International Doctorate School in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, 41121 Modena, Italy;
| | | | - Moira Ragazzi
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (G.S.)
| | - Magda Zanelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (G.S.)
| | - Alcides Chaux
- Department of Scientific Research, School of Postgraduate Studies, Norte University, Asunción 1614, Paraguay;
| | - Sofia Cañete-Portillo
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Maria Paola Bonasoni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (G.S.)
| | - Alessandra Soriano
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA;
- Gastroenterology Division, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Stefano Ascani
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy;
- Haematopathology Unit, CREO, Azienda Ospedaliera di Perugia, University of Perugia, 06129 Perugia, Italy
| | - Maurizio Zizzo
- Surgical Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Carolina Castro Ruiz
- International Doctorate School in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, 41121 Modena, Italy;
- Surgical Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Antonio De Leo
- Molecular Diagnostic Unit, Azienda USL Bologna, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy;
| | - Guido Giordano
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.G.); (M.L.)
| | - Matteo Landriscina
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.G.); (M.L.)
| | - Giuseppe Carrieri
- Department of Urology and Renal Transplantation, University of Foggia, 71122 Foggia, Italy; (G.C.); (L.C.)
| | - Luigi Cormio
- Department of Urology and Renal Transplantation, University of Foggia, 71122 Foggia, Italy; (G.C.); (L.C.)
| | - Daniel M. Berney
- Barts Cancer Institute, Queen Mary University of London, London EC1M 5PZ, UK;
| | - Jatin Gandhi
- Department of Pathology and Laboratory Medicine, University of Washington, Seattle, WA 98195, USA;
| | - Giacomo Santandrea
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (G.S.)
- International Doctorate School in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, 41121 Modena, Italy;
| | - Martina Bonacini
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (S.C.); (M.B.)
| |
Collapse
|
28
|
Sun BL. Immunotherapy in treatment of metastatic prostate cancer: An approach to circumvent immunosuppressive tumor microenvironment. Prostate 2021; 81:1125-1134. [PMID: 34435699 DOI: 10.1002/pros.24213] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 01/21/2023]
Abstract
Prostate cancer is the second most common cause of cancer-related death in men in the United States and the fifth worldwide. Most prostate cancer arises as an androgen-dependent tumor but eventually progresses into castration-resistance prostate cancer, incurable by the current androgen deprivation therapy and chemotherapy. The development of immunotherapy in cancer treatment has brought an exciting era of antiprostate cancer therapy through antitumor immune responses. Prostate cancer is recognized as a poorly immunogenic tissue with immunological ignorance showing low levels of antigen-presenting process and cytotoxic T-cell activation, high levels of immune checkpoint molecules and immunosuppressive cytokines/chemokines, and recruitment of immunosuppressive cells. Immunotherapies for prostate cancer have been developed to activate the innate and adaptive immune responses, such as vaccines and adoptive CAR-T cells, or to inhibit immunosuppressive molecules, such as immune checkpoint inhibitors or antibodies. The U.S Food and Drug Administration has approved Sipuleucel-T for the treatment of asymptomatic or minimally symptomatic metastatic castrate-resistant prostate cancer (mCRPC) and immune checkpoint inhibitor pembrolizumab for the treatment of all solid tumors, including prostate cancer, with impaired mismatch repair genes/microsatellite instability; however, the current clinical outcomes still need to be improved. As various immunosuppressive mechanisms coexist and cross-interact within the tumor microenvironment, different immunotherapy approaches may have to be combined and selected in a highly personalized way. It is hoped that this rapidly evolving field of immunotherapy will achieve successful treatment for mCRPC and will be applied to a wider range of prostate cancer patients.
Collapse
Affiliation(s)
- Belinda L Sun
- Department of Pathology, Banner-University Medical Center, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
29
|
Liu HY, Pedros C, Kong KF, Canonigo-Balancio AJ, Xue W, Altman A. Leveraging the Treg-intrinsic CTLA4-PKCη signaling pathway for cancer immunotherapy. J Immunother Cancer 2021; 9:jitc-2021-002792. [PMID: 34588224 PMCID: PMC8483050 DOI: 10.1136/jitc-2021-002792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2021] [Indexed: 12/03/2022] Open
Abstract
Background Our previous studies revealed a critical role of a novel CTLA4-protein kinase C-eta (PKCη) signaling axis in mediating the suppressive activity of regulatory T cells (Tregs) in antitumor immunity. These studies have employed adoptive transfer of germline PKCη-deficient (Prkch−/−) Tregs into Prkch+/+ mice prior to tumor implantation. Here, we extended these findings into a biologically and clinically more relevant context. Methods We have analyzed the role of PKCη in antitumor immunity and the tumor microenvironment (TME) in intact tumor-bearing mice with Treg-specific or CD8+ T cell-specific Prkch deletion, including in a therapeutic model of combinatorial treatment. In addition to measuring tumor growth, we analyzed the phenotype and functional attributes of tumor-infiltrating immune cells, particularly Tregs and dendritic cells (DCs). Results Using two models of mouse transplantable cancer and a genetically engineered autochthonous hepatocellular carcinoma (HCC) model, we found, first, that mice with Treg-specific Prkch deletion displayed a significantly reduced growth of B16–F10 melanoma and TRAMP-C1 adenocarcinoma tumors. Tumor growth reduction was associated with a less immunosuppressive TME, indicated by increased numbers and function of tumor-infiltrating CD8+ effector T cells and elevated expression of the costimulatory ligand CD86 on intratumoral DCs. In contrast, CD8+ T cell-specific Prkch deletion had no effect on tumor growth or the abundance and functionality of CD8+ effector T cells, consistent with findings that Prkch−/− CD8+ T cells proliferated normally in response to in vitro polyclonal or specific antigen stimulation. Similar beneficial antitumor effects were found in mice with germline or Treg-specific Prkch deletion that were induced to develop an autochthonous HCC. Lastly, using a therapeutic model, we found that monotherapies consisting of Treg-specific Prkch deletion or vaccination with irradiated Fms-like tyrosine kinase 3 ligand (Flt3L)-expressing B16–F10 tumor cells post-tumor implantation significantly delayed tumor growth. This effect was more pronounced in mice receiving a combination of the two immunotherapies. Conclusion These findings demonstrate the potential utility of PKCη inhibition as a viable clinical approach to treat patients with cancer, especially when combined with adjuvant therapies.
Collapse
Affiliation(s)
- Hsin-Yu Liu
- La Jolla Institute for Immunology, La Jolla, California, USA
| | - Christophe Pedros
- La Jolla Institute for Immunology, La Jolla, California, USA.,CERTIS, San Diego, California, USA
| | - Kok-Fai Kong
- La Jolla Institute for Immunology, La Jolla, California, USA
| | | | - Wen Xue
- University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Amnon Altman
- La Jolla Institute for Immunology, La Jolla, California, USA
| |
Collapse
|
30
|
Takasu C, Miyazaki K, Yoshikawa K, Nishi M, Tokunaga T, Kashihara H, Yoshimoto T, Ogawa H, Morine Y, Shimada M. Effect of TU-100 on Peyer's patches in a bacterial translocation rat model. Ann Gastroenterol Surg 2021; 5:683-691. [PMID: 34585053 PMCID: PMC8452476 DOI: 10.1002/ags3.12460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 02/25/2021] [Accepted: 03/18/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Daikenchuto (TU-100), a Japanese herbal medicine, is widely used for various gastrointestinal diseases. We have previously reported that TU-100 suppresses CPT-11-induced bacterial translocation (BT) by maintaining the diversity of the microbiome. In this study we show that TU-100 modulates the immune response during BT by inducing PD-1 expression in Peyer's patches. METHODS Eighteen male Wistar rats were divided into four groups: a control group; a control + TU-100 group, given TU-100 1000 mg/kg orally for 5 d; a BT group, given CPT-11 250 mg/kg intra-peritoneal for 2 d; and a TU-100 group, given TU-100 1000 mg/kg orally for 5 d with CPT-11 250 mg/kg intra-peritoneal on days 4 and 5. RESULTS The size of Peyer's patch was significantly bigger in the BT group compared to the control group (9.0 × 104 µm2 vs 29.4 × 104 µm2, P < .05), but improved in the TU-100 group (15.4 × 104 µm2, P < .005). TU-100 significantly induced PD-1 expression in Peyer's patch compared to the control group and the BT group (control vs BT vs TU-100 = 4.3 ± 4.9 vs 5.1 ± 10.3 vs 17.9 ± 17.8). The CD4+ cells were increased in the BT group (P < .05) compared to the control group but decreased in the TU-100 group. The Foxp3+ cells were increased in the BT group compared to the control group (P < .05), and further increased in the TU-100 group compared to the BT group. CPT-11 significantly increased TLR4, NF-κβ, TNF-α mRNA expressions in the BT group. TU-100 cotreatment significantly reversed these mRNA expressions. CONCLUSION TU-100 may have a protective effect against BT through PD-1 expression in Peyer's patch.
Collapse
Affiliation(s)
- Chie Takasu
- Department of SurgeryInstitute of Health BiosciencesTokushima UniversityTokushimaJapan
| | - Katsuki Miyazaki
- Department of SurgeryInstitute of Health BiosciencesTokushima UniversityTokushimaJapan
| | - Kozo Yoshikawa
- Department of SurgeryInstitute of Health BiosciencesTokushima UniversityTokushimaJapan
| | - Masaaki Nishi
- Department of SurgeryInstitute of Health BiosciencesTokushima UniversityTokushimaJapan
| | - Takuya Tokunaga
- Department of SurgeryInstitute of Health BiosciencesTokushima UniversityTokushimaJapan
| | - Hideya Kashihara
- Department of SurgeryInstitute of Health BiosciencesTokushima UniversityTokushimaJapan
| | - Toshiaki Yoshimoto
- Department of SurgeryInstitute of Health BiosciencesTokushima UniversityTokushimaJapan
| | - Hirohisa Ogawa
- Department of Pathology and Laboratory MedicineTokushima University Graduate SchoolTokushimaJapan
| | - Yuji Morine
- Department of SurgeryInstitute of Health BiosciencesTokushima UniversityTokushimaJapan
| | - Mitsuo Shimada
- Department of SurgeryInstitute of Health BiosciencesTokushima UniversityTokushimaJapan
| |
Collapse
|
31
|
Andersen LB, Nørgaard M, Rasmussen M, Fredsøe J, Borre M, Ulhøi BP, Sørensen KD. Immune cell analyses of the tumor microenvironment in prostate cancer highlight infiltrating regulatory T cells and macrophages as adverse prognostic factors. J Pathol 2021; 255:155-165. [PMID: 34255349 DOI: 10.1002/path.5757] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/09/2021] [Accepted: 07/07/2021] [Indexed: 11/11/2022]
Abstract
Improved risk stratification is needed for patients with localized prostate cancer. This study characterized and assessed the prognostic potential of distinct immune cell infiltration patterns in the prostate tumor microenvironment. Using tissue microarrays, multiplex immunohistochemistry/immunofluorescence, and automated digital pathology, we analyzed radical prostatectomy specimens from two large patient cohorts (training: n = 470; validation: n = 333) to determine infiltration levels of seven immune cell types in malignant versus benign prostate tissue: CD3+ CD8- FoxP3- T helper cells, CD3+ CD8+ FoxP3- cytotoxic T cells (CTLs), CD3+ CD8- FoxP3+ regulatory T cells (Tregs ), CD20+ B cells, CD68+ CD163- M1 macrophages, CD68+ CD163+ M2 macrophages, and tryptase+ mast cells. Results were further validated by cell type enrichment analyses of bulk tumor RNAseq data from a third independent patient cohort (n = 99). Prognostic potential was assessed by Kaplan-Meier and uni-/multi-variate Cox regression analyses. Clinical endpoint was biochemical recurrence. All seven immune cell types were enriched in prostate cancer versus benign stroma, while there was selective enrichment for B cells, Tregs , M1 and M2 macrophages, and depletion of mast cells and CTLs in prostate cancer epithelium. In all three cohorts, high levels of infiltrating Tregs , M1, and M2 macrophages in stroma and/or epithelium were associated with biochemical recurrence (p < 0.05; log-rank test). After adjustment for routine clinical variables, Tregs and M2 macrophages remained significant adverse predictors of biochemical recurrence (p < 0.05; multivariate Cox regression). Our comprehensive analyses of immune cell infiltration patterns in the prostate tumor microenvironment highlight infiltrating Tregs , M1, and M2 macrophages as adverse predictors of prostate cancer outcome. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Line B Andersen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Maibritt Nørgaard
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Martin Rasmussen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jacob Fredsøe
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Michael Borre
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Urology, Aarhus University Hospital, Aarhus, Denmark
| | - Benedicte P Ulhøi
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Karina D Sørensen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
32
|
Jiménez-Cortegana C, López-Saavedra A, Sánchez-Jiménez F, Pérez-Pérez A, Castiñeiras J, Virizuela-Echaburu JA, de la Cruz-Merino L, Sánchez-Margalet V. Leptin, Both Bad and Good Actor in Cancer. Biomolecules 2021; 11:913. [PMID: 34202969 PMCID: PMC8235379 DOI: 10.3390/biom11060913] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/04/2021] [Accepted: 06/12/2021] [Indexed: 02/06/2023] Open
Abstract
Leptin is an important regulator of basal metabolism and food intake, with a pivotal role in obesity. Leptin exerts many different actions on various tissues and systems, including cancer, and is considered as a linkage between metabolism and the immune system. During the last decades, obesity and leptin have been associated with the initiation, proliferation and progression of many types of cancer. Obesity is also linked with complications and mortality, irrespective of the therapy used, affecting clinical outcomes. However, some evidence has suggested its beneficial role, called the "obesity paradox", and the possible antitumoral role of leptin. Recent data regarding the immunotherapy of cancer have revealed that overweight leads to a more effective response and leptin may probably be involved in this beneficial process. Since leptin is a positive modulator of both the innate and the adaptive immune system, it may contribute to the increased immune response stimulated by immunotherapy in cancer patients and may be proposed as a good actor in cancer. Our purpose is to review this dual role of leptin in cancer, as well as trying to clarify the future perspectives of this adipokine, which further highlights its importance as a cornerstone of the immunometabolism in oncology.
Collapse
Affiliation(s)
- Carlos Jiménez-Cortegana
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain; (C.J.-C.); (A.L.-S.); (F.S.-J.); (A.P.-P.)
| | - Ana López-Saavedra
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain; (C.J.-C.); (A.L.-S.); (F.S.-J.); (A.P.-P.)
| | - Flora Sánchez-Jiménez
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain; (C.J.-C.); (A.L.-S.); (F.S.-J.); (A.P.-P.)
| | - Antonio Pérez-Pérez
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain; (C.J.-C.); (A.L.-S.); (F.S.-J.); (A.P.-P.)
| | - Jesús Castiñeiras
- Urology Service, Virgen Macarena University Hospital, University of Seville, 41009 Sevilla, Spain;
| | - Juan A. Virizuela-Echaburu
- Medical Oncology Service, Virgen Macarena University Hospital, University of Seville, 41009 Sevilla, Spain; (J.A.V.-E.); (L.d.l.C.-M.)
| | - Luis de la Cruz-Merino
- Medical Oncology Service, Virgen Macarena University Hospital, University of Seville, 41009 Sevilla, Spain; (J.A.V.-E.); (L.d.l.C.-M.)
| | - Víctor Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain; (C.J.-C.); (A.L.-S.); (F.S.-J.); (A.P.-P.)
| |
Collapse
|
33
|
Witt K, Evans-Axelsson S, Lundqvist A, Johansson M, Bjartell A, Hellsten R. Inhibition of STAT3 augments antitumor efficacy of anti-CTLA-4 treatment against prostate cancer. Cancer Immunol Immunother 2021; 70:3155-3166. [PMID: 33786638 PMCID: PMC8505385 DOI: 10.1007/s00262-021-02915-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 03/13/2021] [Indexed: 01/21/2023]
Abstract
There is an urgent need for new treatment options in metastatic drug-resistant prostate cancer. Combining immunotherapy with other targeted therapies may be an effective strategy for advanced prostate cancer. In the present study, we sought to investigate to enhance the efficacy of anti-CTLA-4 therapy against prostate cancer by the combination with STAT3 inhibition. Male C57BL6 mice were subcutaneously inoculated with the murine prostate cancer cell line RM-1. Tumor progression was monitored following treatment with vehicle, the small molecule STAT3 inhibitor GPB730, anti-CTLA-4 or GPB730 + anti-CTLA-4. Treatment with anti-CTLA-4 or anti-CTLA-4 + GPB730 significantly inhibited tumor growth and enhanced survival compared to vehicle. Combining anti-CTLA-4 treatment with GPB730 resulted in a significantly prolonged survival compared to anti-CTLA-4 alone. GPB730 significantly increased infiltration of CD45 + cells in tumors of anti-CTLA-4-treated mice compared to anti-CTLA-4 alone. The levels of tumor-infiltrating Tregs were significantly decreased and the CD8:Treg ratio significantly increased by GPB730 treatment in combination with anti-CTLA-4 compared to anti-CTLA-4 alone. Immunohistochemical analysis showed a significant increase in CD45-positive cells in anti-CTLA-4 and anti-CTLA-4 + GPB730-treated tumors compared to vehicle or GPB730 monotherapy. Plasma levels of IL10 were significantly increased by anti-CTLA-4 compared to vehicle but no increase was observed when combining anti-CTLA-4 with GPB730. In conclusion, STAT3 inhibition by GPB730 enhances the antitumoral activity of anti-CTLA-4 and decreases the intratumoral Treg frequency in a prostate cancer mouse model. These results support the combination of STAT3 inhibition with anti-CTLA-4 therapy to increase clinical responses in patients with prostate cancer.
Collapse
Affiliation(s)
- Kristina Witt
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Department of Medicine, Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Susan Evans-Axelsson
- Division of Urological Cancers, Institution of Translational Medicine, Lund University, Malmö, Sweden
| | - Andreas Lundqvist
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | | | - Anders Bjartell
- Division of Urological Cancers, Institution of Translational Medicine, Lund University, Malmö, Sweden
| | - Rebecka Hellsten
- Division of Urological Cancers, Institution of Translational Medicine, Lund University, Malmö, Sweden.
| |
Collapse
|
34
|
Sutherland SIM, Ju X, Horvath LG, Clark GJ. Moving on From Sipuleucel-T: New Dendritic Cell Vaccine Strategies for Prostate Cancer. Front Immunol 2021; 12:641307. [PMID: 33854509 PMCID: PMC8039370 DOI: 10.3389/fimmu.2021.641307] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/12/2021] [Indexed: 12/12/2022] Open
Abstract
Tumors evade the immune system though a myriad of mechanisms. Using checkpoint inhibitors to help reprime T cells to recognize tumor has had great success in malignancies including melanoma, lung, and renal cell carcinoma. Many tumors including prostate cancer are resistant to such treatment. However, Sipuleucel-T, a dendritic cell (DC) based immunotherapy, improved overall survival (OS) in prostate cancer. Despite this initial success, further DC vaccines have failed to progress and there has been limited uptake of Sipuleucel-T in the clinic. We know in prostate cancer (PCa) that both the adaptive and the innate arms of the immune system contribute to the immunosuppressive environment. This is at least in part due to dysfunction of DC that play a crucial role in the initiation of an immune response. We also know that there is a paucity of DC in PCa, and that those there are immature, creating a tolerogenic environment. These attributes make PCa a good candidate for a DC based immunotherapy. Ultimately, the knowledge gained by much research into antigen processing and presentation needs to translate from bench to bedside. In this review we will analyze why newer vaccine strategies using monocyte derived DC (MoDC) have failed to deliver clinical benefit, particularly in PCa, and highlight the emerging antigen loading and presentation technologies such as nanoparticles, antibody-antigen conjugates and virus co-delivery systems that can be used to improve efficacy. Lastly, we will assess combination strategies that can help overcome the immunosuppressive microenvironment of PCa.
Collapse
Affiliation(s)
- Sarah I. M. Sutherland
- Dendritic Cell Research, ANZAC Research Institute, Concord, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Department of Medical Oncology, Concord Repatriation General Hospital, Concord, NSW, Australia
- Department of Medical Oncology, Chris O'Brien Lifehouse, Camperdown, NSW, Australia
| | - Xinsheng Ju
- Dendritic Cell Research, ANZAC Research Institute, Concord, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - L. G. Horvath
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Department of Medical Oncology, Chris O'Brien Lifehouse, Camperdown, NSW, Australia
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Georgina J. Clark
- Dendritic Cell Research, ANZAC Research Institute, Concord, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
35
|
Ma XB, Xu YY, Zhu MX, Wang L. Prognostic Signatures Based on Thirteen Immune-Related Genes in Colorectal Cancer. Front Oncol 2021; 10:591739. [PMID: 33680920 PMCID: PMC7935549 DOI: 10.3389/fonc.2020.591739] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/29/2020] [Indexed: 12/20/2022] Open
Abstract
Background The immunosuppressive microenvironment is closely related to tumorigenesis and cancer development, including colorectal cancer (CRC). The aim of the current study was to identify new immune biomarkers for the diagnosis and treatment of CRC. Materials and Methods CRC data were downloaded from the Gene Expression Omnibus and The Cancer Genome Atlas databases. Sequences of immune-related genes (IRGs) were obtained from the ImmPort and InnateDB databases. Gene set enrichment analysis (GSEA) and transcription factor regulation analysis were used to explore potential mechanisms. An immune-related classifier for CRC prognosis was conducted using weighted gene co-expression network analysis (WGCNA), Cox regression analysis, and least absolute shrinkage and selection operator (LASSO) analysis. ESTIMATE and CIBERSORT algorithms were used to explore the tumor microenvironment and immune infiltration in the high-risk CRC group and the low-risk CRC group. Results By analyzing the IRGs that were significantly associated with CRC in the module, a set of 13 genes (CXCL1, F2RL1, LTB4R, GPR44, ANGPTL5, BMP5, RETNLB, MC1R, PPARGC1A, PRKDC, CEBPB, SYP, and GAB1) related to the prognosis of CRC were identified. An IRG-based prognostic signature that can be used as an independent potentially prognostic indicator was generated. The ROC curve analysis showed acceptable discrimination with AUCs of 0.68, 0.68, and 0.74 at 1-, 3-, and 5- year follow-up respectively. The predictive performance was validated in the train set. The potential mechanisms and functions of prognostic IRGs were analyzed, i.e., NOD-like receptor signaling, and transforming growth factor beta (TGFβ) signaling. Besides, the stromal score and immune score were significantly different in high-risk group and low-risk group (p=4.6982e-07, p=0.0107). Besides, the proportions of resting memory CD4+ T cells was significantly higher in the high-risk groups. Conclusions The IRG-based classifier exhibited strong predictive capacity with regard to CRC. The survival difference between the high-risk and low-risk groups was associated with tumor microenvironment and immune infiltration of CRC. Innovative biomarkers for the prediction of CRC prognosis and response to immunological therapy were identified in the present study.
Collapse
Affiliation(s)
- Xiao-Bo Ma
- Department of General Surgery, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yuan-Yuan Xu
- Department of Day Surgery Centre, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Meng-Xuan Zhu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lu Wang
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
36
|
Want MY, Tsuji T, Singh PK, Thorne JL, Matsuzaki J, Karasik E, Gillard B, Cortes Gomez E, Koya RC, Lugade A, Odunsi K, Battaglia S. WHSC1/NSD2 regulates immune infiltration in prostate cancer. J Immunother Cancer 2021; 9:jitc-2020-001374. [PMID: 33589522 PMCID: PMC7887377 DOI: 10.1136/jitc-2020-001374] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Immunotherapy in prostate cancer (PCa) lags behind the progresses obtained in other cancer types partially because of its limited immune infiltration. Tumor-resident immune cells have been detected in the prostate, but the regulatory mechanisms that govern tumor infiltration are still poorly understood. To address this gap, we investigated the role of Wolf-Hirschhorn syndrome candidate 1 (WHSC1), a histone methyltransferase enzyme that targets dimethyl and trimethyl H3K36. WHSC1 is known to promote malignant growth and progression in multiple tumors, but its role in the interface between PCa and immune system is unknown. METHODS RNA Sequencing (RNASeq) data from patients with PCa from The Cancer Genome Atlas (TCGA) were collected and divided into top/bottom 30% based on the expression of WHSC1 and disease-free survival was calculated. Publicly available chromatin immunoprecipitation (ChIPSeq) data were obtained from Cistrome and integrated with the available RNASeq data. RNASeq, ATACSeq and methylomic were analyzed using R Bioconductor packages comparing C42 cells with or without stable knockdown on WHSC1. Flow cytometry was used to measure Major Histocompatibility complex (MHC) levels, MHC-bound ovalbumin and tumor infiltration. C57B6 and NOD scid gamma (NSG) mice were subcutaneously grafted with TRansgenic Adenocarcinoma of the Mouse Prostate (TRAMP) C2 cells and treated with MCTP39 (10 mg/kg); tumor size was monitored over time and curves were compared using permutation analyses. All analyses used a significance threshold of 0.05. RESULTS Leveraging TCGA data, we demonstrated that elevated WHSC1 levels positively correlate with the presence of an immunosuppressive microenvironment. We validated those results in vitro, demonstrating that genetic and pharmacological inhibition of WHSC1 restores antigen presentation. This occurs via an elegant epigenetic regulation of gene expression at the chromatin and DNA methylation levels. In vivo studies in immunocompetent mice also show an increased frequency of CD8+ T cells in tumors from mice treated with WHSC1 inhibitor, supporting the hypothesis that the antitumor effect following WHSC1 inhibition requires a fully functional immune system. CONCLUSIONS This study demonstrates a novel role for WHSC1 in defining immune infiltration in PCa, with significant future implications for the use of immunotherapies in prostate malignancies.
Collapse
Affiliation(s)
- Muzamil Y Want
- Center For Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Takemasa Tsuji
- Center For Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Prashant K Singh
- Genomics Shared Resource, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - James L Thorne
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds, West Yorkshire, UK
| | - Junko Matsuzaki
- Center For Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Ellen Karasik
- Department of Pharmacology and Experimental Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Bryan Gillard
- Department of Pharmacology and Experimental Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Eduardo Cortes Gomez
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Richard C Koya
- Center For Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Amit Lugade
- Center For Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Kunle Odunsi
- Center For Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Sebastiano Battaglia
- Center For Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| |
Collapse
|
37
|
Bansal D, Reimers MA, Knoche EM, Pachynski RK. Immunotherapy and Immunotherapy Combinations in Metastatic Castration-Resistant Prostate Cancer. Cancers (Basel) 2021; 13:cancers13020334. [PMID: 33477569 PMCID: PMC7831137 DOI: 10.3390/cancers13020334] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/01/2021] [Accepted: 01/14/2021] [Indexed: 12/21/2022] Open
Abstract
Although most prostate cancers are localized, and the majority are curable, recurrences occur in approximately 35% of men. Among patients with prostate-specific antigen (PSA) recurrence and PSA doubling time (PSADT) less than 15 months after radical prostatectomy, prostate cancer accounted for approximately 90% of the deaths by 15 years after recurrence. An immunosuppressive tumor microenvironment (TME) and impaired cellular immunity are likely largely responsible for the limited utility of checkpoint inhibitors (CPIs) in advanced prostate cancer compared with other tumor types. Thus, for immunologically "cold" malignancies such as prostate cancer, clinical trial development has pivoted towards novel approaches to enhance immune responses. Numerous clinical trials are currently evaluating combination immunomodulatory strategies incorporating vaccine-based therapies, checkpoint inhibitors, and chimeric antigen receptor (CAR) T cells. Other trials evaluate the efficacy and safety of these immunomodulatory agents' combinations with standard approaches such as androgen deprivation therapy (ADT), taxane-based chemotherapy, radiotherapy, and targeted therapies such as tyrosine kinase inhibitors (TKI) and poly ADP ribose polymerase (PARP) inhibitors. Here, we will review promising immunotherapies in development and ongoing trials for metastatic castration-resistant prostate cancer (mCRPC). These novel trials will build on past experiences and promise to usher a new era to treat patients with mCRPC.
Collapse
|
38
|
Yang Y, Attwood K, Bshara W, Mohler JL, Guru K, Xu B, Kalinski P, Chatta G. High intratumoral CD8 + T-cell infiltration is associated with improved survival in prostate cancer patients undergoing radical prostatectomy. Prostate 2021; 81:20-28. [PMID: 33085799 PMCID: PMC9869431 DOI: 10.1002/pros.24068] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/24/2020] [Indexed: 01/26/2023]
Abstract
BACKGROUND A high density of CD8+ tumor infiltrating lymphocytes (TILs) is associated with improved survival in multiple cancers, but its prognostic role in prostate cancer remains controversial. The aim of our study was to evaluate the prognostic value of CD8+ TILs in prostate cancer patients undergoing radical prostatectomy (RP). We hypothesized that elevated density of CD8+ TILs in the RP specimen would correlate with improved clinical outcomes. This information may be helpful for future immunotherapy clinical trial design and treatment selection. METHODS Tumor microarrays constructed from 230 patients with localized prostate cancers who underwent RP from 2006 to 2012 at Roswell Park Comprehensive Cancer Center were analyzed retrospectively using immunohistochemistry. CD8+ cell density was evaluated using a computerized scoring system. The cohorts were separated by CD8+ TIL density at the 25th percentile (i.e., low <quartile 1 and high ≥quartile 1). The quartile 1 threshold was chosen through a "minimal p value approach" based on overall survival with correction of significance to adjust for multiple testing. Clinical outcomes were compared in the high versus low CD8+ TIL density groups. RESULTS One hundred and forty-nine (65%) patients had high risk diseases (Gleason >7 or pT3/4). The median follow-up time was 8.4 years. High CD8+ TIL density was associated with improved 5-year overall survival (98% vs. 91%, p = .01) and prostate cancer-specific survival (99% vs. 95%, p = .04) compared with patients with low CD8+ TIL density. There was a trend toward higher 5-year biochemical recurrence-free survival and metastasis-free survival in the cohort of patients with high CD8+ TIL density (52% vs. 38% and 86% vs. 73%, respectively), although the difference did not reach statistical significance (p = .18 and p = .05, respectively). In a multivariate analysis high CD8+ TIL density was an independent favorable prognostic factor for overall survival (hazards ratio = 0.38; 95% confidence interval: 0.17-0.87; p = .02). In contrast to the prognostic value of CD8+ TIL density, the CD8+ cell density in the matched normal prostate tissue was not associated with any clinical outcomes. CONCLUSION Intratumoral CD8+ T-cell infiltration in the RP specimen is independently associated with improved survival after RP in this high-risk prostate cancer cohort. Pre-RP immunomodulation that promotes intratumoral CD8+ cytotoxic T-cell infiltration may be beneficial for this population.
Collapse
Affiliation(s)
- Yuanquan Yang
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Kristopher Attwood
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Wiam Bshara
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - James L. Mohler
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Khurshid Guru
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Bo Xu
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Pawel Kalinski
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY
- Address Correspondence to: Pawel Kalinski, MD, PhD, Roswell Park Comprehensive Cancer Center, 945 CSC Building, Elm & Carlton Streets, Buffalo, NY 14263, () and Gurkamal Chatta, MD, ()
| | - Gurkamal Chatta
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY
- Address Correspondence to: Pawel Kalinski, MD, PhD, Roswell Park Comprehensive Cancer Center, 945 CSC Building, Elm & Carlton Streets, Buffalo, NY 14263, () and Gurkamal Chatta, MD, ()
| |
Collapse
|
39
|
Takasu C, Nishi M, Yoshikawa K, Tokunaga T, Kashihara H, Yoshimoto T, Shimada M. Impact of sidedness of colorectal cancer on tumor immunity. PLoS One 2020; 15:e0240408. [PMID: 33045001 PMCID: PMC7549786 DOI: 10.1371/journal.pone.0240408] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/26/2020] [Indexed: 12/11/2022] Open
Abstract
Background Clinical and molecular characteristics differ between right-sided and left-sided colorectal cancer (CRC). This study aimed to clarify the correlation between CRC sidedness and tumor immunity. Methods A total of 102 patients who underwent curative colectomy for stage II/III CRC were included in this study. The expression of programmed cell death (PD)-1, PD1-ligand 1 (PD-L1), forkhead box P3 (Foxp3), transforming growth factor (TGF)-β, and indoleamine-pyrrole 2,3-dioxygenase (IDO) were examined using immunohistochemistry and the relationships between sidedness and several prognostic factors were examined. Results Clinicopathological factors were not significantly different between right- and left-sided CRC. The tumor immunity-related molecule PD-L1 was more highly expressed in right-sided than in left-sided CRC (62.9% vs. 30.6%, p<0.01). No significant difference was found in overall survival (OS) and disease-free survival (DFS) by sidedness. PD-1 and Foxp3 expression were significant prognostic factors for OS. Lymph node metastasis (N), lymphatic invasion (ly), and PD-L1 expression were significant prognostic factors for DFS. In right-sided CRC, IDO-positive patients had a poor OS (p<0.05), and IDO was the only independent prognostic indicator for OS. N and venous invasion were identified as independent prognostic indicators for DFS. In left-sided CRC, univariate analysis identified PD-1, PD-L1, and Foxp3 expression as significant predictors of poor OS. Multivariate analysis confirmed PD-L1 expression as an independent prognostic indicator. N, ly, and PD-L1 expression levels were identified as significant predictors of poor DFS. Conclusions The prognostic factors were IDO in right-sided CRC and PD-L1 and Foxp3 in left-sided CRC. These findings indicated that tumor immunity might play different roles depending upon sidedness. Tumor location may be an important factor to consider when assessing immune response and therapeutic decisions in CRC patients.
Collapse
Affiliation(s)
- Chie Takasu
- Department of Surgery, The University of Tokushima, Tokushima, Japan
- * E-mail:
| | - Masaaki Nishi
- Department of Surgery, The University of Tokushima, Tokushima, Japan
| | - Kozo Yoshikawa
- Department of Surgery, The University of Tokushima, Tokushima, Japan
| | - Takuya Tokunaga
- Department of Surgery, The University of Tokushima, Tokushima, Japan
| | - Hideya Kashihara
- Department of Surgery, The University of Tokushima, Tokushima, Japan
| | | | - Mitsuo Shimada
- Department of Surgery, The University of Tokushima, Tokushima, Japan
| |
Collapse
|
40
|
Silva JAF, Calmasini F, Siqueira-Berti A, Moraes-Vieira PMM, Quintar A, Carvalho HF. Prostate immunology: A challenging puzzle. J Reprod Immunol 2020; 142:103190. [PMID: 32853844 DOI: 10.1016/j.jri.2020.103190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/30/2020] [Accepted: 08/11/2020] [Indexed: 12/15/2022]
Abstract
Mucosal immunity defines the relationship of surfaces in contact with the environment and integrates diverse tissues such as epidermis, gum, nose, gut, uterus and prostate with the immune system. Although considered part of a system, each mucosa presents specific immune features beyond the barrier and secretory functions. Information regarding the mucosal immunology of the male reproductive tract and the prostate gland in particular is scarce. In this review, we approach the prostate as an epithelial barrier and as part of the mucosal immune system. Finally, we also raise a series of questions that will improve the understanding of this gland, its role in reproduction and its sensitivity/resistance to disease.
Collapse
Affiliation(s)
- Juliete Aparecida F Silva
- Department of Structural and Functional Biology, State University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - Fabiano Calmasini
- Department of Structural and Functional Biology, State University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - Aline Siqueira-Berti
- Department of Structural and Functional Biology, State University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - Pedro M M Moraes-Vieira
- Department of Genetics, Evolution, Microbiology and Immunology, State University of Campinas, UNICAMP, Campinas, SP, Brazil
| | - Amado Quintar
- Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Hernandes F Carvalho
- Department of Structural and Functional Biology, State University of Campinas - UNICAMP, Campinas, SP, Brazil; National Institute of Science and Technology of Photonics Applied to Cell Biology - INFABiC, Campinas, SP, Brazil.
| |
Collapse
|
41
|
Wu SQ, Su H, Wang YH, Zhao XK. Role of tumor-associated immune cells in prostate cancer: angel or devil? Asian J Androl 2020; 21:433-437. [PMID: 31134920 PMCID: PMC6732889 DOI: 10.4103/aja.aja_47_19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer is the most common malignancy in the reproductive system of older males. Androgen deprivation therapy (ADT) is an important treatment for prostate cancer patients. However, almost all prostate cancer patients unavoidably progress to the castration-resistant stage after ADT treatment. Recent studies have shown that tumor-associated immune cells play major roles in the initiation, progression, and metastasis of prostate cancer. Various phenotypes of tumor-associated immune cells have tumor-promoting or antitumor functions mediated by interacting with tumor cells. Here, we review the current knowledge of tumor-associated immune cells in prostate cancer.
Collapse
Affiliation(s)
- Shui-Qing Wu
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Hao Su
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yin-Huai Wang
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Xiao-Kun Zhao
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| |
Collapse
|
42
|
Zhang D, Lin Z, Zheng Y, Song J, Li J, Zeng Y, Liu X. Ultrasound-Driven Biomimetic Nanosystem Suppresses Tumor Growth and Metastasis through Sonodynamic Therapy, CO Therapy, and Indoleamine 2,3-Dioxygenase Inhibition. ACS NANO 2020; 14:8985-8999. [PMID: 32662971 DOI: 10.1021/acsnano.0c03833] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The rational design of nanoplatforms to bypass reticuloendothelial system (RES) clearance, enhance spatiotemporal controllability, and boost host immune responses to achieve synergized tumor-targeted therapeutic purpose is highly desired. Herein, a biomimetic nanosystem is developed for tumor-targeted in situ delivery of singlet oxygen (1O2) and carbon monoxide (CO) in response to exogenous stimulus ultrasound (US) and endogenous stimulus hydrogen peroxide (H2O2) in tumor microenvironment, respectively. Taking advantages of tumor homing and RES evasion abilities of the macrophage membrane coating, our designed nanosystem shows excellent accumulation at the tumor site and effective suppression of tumor growth through US/H2O2-generated 1O2 and CO to induce cell apoptosis and mitochondrial dysfunction. Furthermore, our nanosystem can induce significant tumor immunogenic death by 1O2/CO therapy, then can achieve effective immune responses and long-term immune memory through the combination of indoleamin 2,3-dioxygenase (IDO) signal blocking to effectively against tumor rechallenge and prevent lung metastasis. Taken together, the here-presented therapeutic strategy based on sonodynamic/CO therapy and IDO signaling inhibition might provide a promising perspective for synergistically treating cancer in future clinical translations.
Collapse
Affiliation(s)
- Da Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, People's Republic of China
- The Key Lab of Analysis and Detection Technology for Food Safety of the MOE, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350002, People's Republic of China
| | - Ziguo Lin
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, People's Republic of China
- Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, People's Republic of China
| | - Youshi Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, People's Republic of China
| | - Jibin Song
- The Key Lab of Analysis and Detection Technology for Food Safety of the MOE, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350002, People's Republic of China
| | - Juan Li
- The Key Lab of Analysis and Detection Technology for Food Safety of the MOE, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350002, People's Republic of China
| | - Yongyi Zeng
- Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, People's Republic of China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, People's Republic of China
| |
Collapse
|
43
|
Rodriguez-Garcia A, Palazon A, Noguera-Ortega E, Powell DJ, Guedan S. CAR-T Cells Hit the Tumor Microenvironment: Strategies to Overcome Tumor Escape. Front Immunol 2020; 11:1109. [PMID: 32625204 PMCID: PMC7311654 DOI: 10.3389/fimmu.2020.01109] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/07/2020] [Indexed: 12/18/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapies have demonstrated remarkable efficacy for the treatment of hematological malignancies. However, in patients with solid tumors, objective responses to CAR-T cell therapy remain sporadic and transient. A major obstacle for CAR-T cells is the intrinsic ability of tumors to evade immune responses. Advanced solid tumors are largely composed of desmoplastic stroma and immunosuppressive modulators, and characterized by aberrant cell proliferation and vascularization, resulting in hypoxia and altered nutrient availability. To mount a curative response after infusion, CAR-T cells must infiltrate the tumor, recognize their cognate antigen and perform their effector function in this hostile tumor microenvironment, to then differentiate and persist as memory T cells that confer long-term protection. Fortunately, recent advances in synthetic biology provide a wide set of tools to genetically modify CAR-T cells to overcome some of these obstacles. In this review, we provide a comprehensive overview of the key tumor intrinsic mechanisms that prevent an effective CAR-T cell antitumor response and we discuss the most promising strategies to prevent tumor escape to CAR-T cell therapy.
Collapse
Affiliation(s)
- Alba Rodriguez-Garcia
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Asis Palazon
- Cancer Immunology and Immunotherapy Laboratory, Ikerbasque Basque Foundation for Science, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Estela Noguera-Ortega
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Daniel J. Powell
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Sonia Guedan
- Department of Hematology and Oncology, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic, Barcelona, Spain
| |
Collapse
|
44
|
Oweida AJ, Darragh L, Phan A, Binder D, Bhatia S, Mueller A, Court BV, Milner D, Raben D, Woessner R, Heasley L, Nemenoff R, Clambey E, Karam SD. STAT3 Modulation of Regulatory T Cells in Response to Radiation Therapy in Head and Neck Cancer. J Natl Cancer Inst 2020; 111:1339-1349. [PMID: 30863843 DOI: 10.1093/jnci/djz036] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/25/2019] [Accepted: 03/11/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Radioresistance represents a major problem in the treatment of head and neck cancer (HNC) patients. To improve response, understanding tumor microenvironmental factors that contribute to radiation resistance is important. Regulatory T cells (Tregs) are enriched in numerous cancers and can dampen the response to radiation by creating an immune-inhibitory microenvironment. The purpose of this study was to investigate mechanisms of Treg modulation by radiation in HNC. METHODS We utilized an orthotopic mouse model of HNC. Anti-CD25 was used for Treg depletion. Image-guided radiation was delivered to a dose of 10 Gy. Flow cytometry was used to analyze abundance and function of intratumoral immune cells. Enzyme-linked immunosorbent assay was performed to assess secreted factors. For immune-modulating therapies, anti-PD-L1, anti-CTLA-4, and STAT3 antisense oligonucleotide (ASO) were used. All statistical tests were two-sided. RESULTS Treatment with anti-CD25 and radiation led to tumor eradication (57.1%, n = 4 of 7 mice), enhanced T-cell cytotoxicity compared with RT alone (CD4 effector T cells [Teff]: RT group mean = 5.37 [ 0.58] vs RT + αCD25 group mean =10.71 [0.67], P = .005; CD8 Teff: RT group mean = 9.98 [0.81] vs RT + αCD25 group mean =16.88 [2.49], P = .01) and induced tumor antigen-specific memory response (100.0%, n = 4 mice). In contrast, radiation alone or when combined with anti-CTLA4 did not lead to durable tumor control (0.0%, n = 7 mice). STAT3 inhibition in combination with radiation, but not as a single agent, improved tumor growth delay, decreased Tregs, myeloid-derived suppressor cells, and M2 macrophages and enhanced effector T cells and M1 macrophages. Experiments in nude mice inhibited the benefit of STAT3 ASO and radiation. CONCLUSION We propose that STAT3 inhibition is a viable and potent therapeutic target against Tregs. Our data support the design of clinical trials integrating STAT3 ASO in the standard of care for cancer patients receiving radiation.
Collapse
|
45
|
Liu J, Muturi HT, Khuder SS, Helal RA, Ghadieh HE, Ramakrishnan SK, Kaw MK, Lester SG, Al-Khudhair A, Conran PB, Chin KV, Gatto-Weis C, Najjar SM. Loss of Ceacam1 promotes prostate cancer progression in Pten haploinsufficient male mice. Metabolism 2020; 107:154215. [PMID: 32209360 PMCID: PMC7283002 DOI: 10.1016/j.metabol.2020.154215] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/10/2020] [Accepted: 03/19/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE PTEN haploinsufficiency plays an important role in prostate cancer development in men. However, monoallelic deletion of Pten gene failed to induce high prostate intraepithelial neoplasia (PIN) until Pten+/- mice aged or fed a high-calorie diet. Because CEACAM1, a cell adhesion molecule with a potential tumor suppression activity, is induced in Pten+/- prostates, the study aimed at examining whether the rise of CEACAM1 limited neoplastic progression in Pten+/- prostates. METHODS Pten+/- were crossbred with Cc1-/- mice harboring a null deletion of Ceacam1 gene to produce Pten+/-/Cc1-/- double mutants. Prostates from 7-month old male mice were analyzed histologically and biochemically for PIN progression. RESULTS Deleting Ceacam1 in Pten+/- mice caused an early development of high-grade PIN in parallel to hyperactivation of PI3 kinase/Akt and Ras/MAP kinase pathways, with an increase in cell proliferation, epithelial-to-mesenchymal transition, angiogenesis and inflammation relative to Pten+/- and Cc1-/- individual mutants. It also caused a remarkable increase in lipogenesis in prostate despite maintaining insulin sensitivity. Concomitant Ceacam1 deletion with Pten+/- activated the IL-6/STAT3 signaling pathways to suppress Irf-8 transcription that in turn, led to a decrease in the expression level of promyelocytic leukemia gene, a well characterized tumor suppressor in prostate. CONCLUSIONS Ceacam1 deletion accelerated high-grade prostate intraepithelial neoplasia in Pten haploinsufficient mice while preserving insulin sensitivity. This demonstrated that the combined loss of Ceacam1 and Pten advanced prostate cancer by increasing lipogenesis and modifying the STAT3-dependent inflammatory microenvironment of prostate.
Collapse
Affiliation(s)
- Jehnan Liu
- Center for Diabetes and Endocrine Research, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Harrison T Muturi
- Center for Diabetes and Endocrine Research, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Saja S Khuder
- Center for Diabetes and Endocrine Research, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Raghd Abu Helal
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Hilda E Ghadieh
- Center for Diabetes and Endocrine Research, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Sadeesh K Ramakrishnan
- Center for Diabetes and Endocrine Research, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Meenakshi K Kaw
- Center for Diabetes and Endocrine Research, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Sumona Ghosh Lester
- Center for Diabetes and Endocrine Research, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Ahmed Al-Khudhair
- Center for Diabetes and Endocrine Research, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA
| | - Philip B Conran
- Department of Pathology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Khew-Voon Chin
- Center for Diabetes and Endocrine Research, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA
| | - Cara Gatto-Weis
- Center for Diabetes and Endocrine Research, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; Department of Pathology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Sonia M Najjar
- Center for Diabetes and Endocrine Research, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA.
| |
Collapse
|
46
|
Shao N, Tang H, Mi Y, Zhu Y, Wan F, Ye D. A novel gene signature to predict immune infiltration and outcome in patients with prostate cancer. Oncoimmunology 2020; 9:1762473. [PMID: 32923125 PMCID: PMC7458664 DOI: 10.1080/2162402x.2020.1762473] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Prostate cancer (PCa) is one of the most common malignancies in male. We aim to establish a novel gene signature for immune infiltration and outcome (biochemical recurrence (BCR) and overall survival (OS)) of patients with prostate cancer (PCa) to augment Gleason patterns for evaluating prognosis and managing patients undergoing radical prostatectomy (RP). Combined with our microarray data and the Cancer Genome Atlas Project (TCGA) database (discovery set), we identified a six-gene signature. The Gene Expression Omnibus (GEO) database served as the test set. The databases of Fudan University Shanghai Cancer Center (FUSCC) and Third Affiliated Hospital of Nantong University (TAHNU) served as an external validation set. Immunohistochemistry was used to investigate the relationship between risk groups and the immune infiltrate. We identified a six-gene signature to predict immune cell infiltration and outcome of PCa patients. The AUC values used to predict early BCR in the discovery, test, FUSCC, and TAHNU sets were 0.73, 0.76, 0.72, and 0.81, respectively. Low-risk score patients in each dataset experienced significantly longer OS (P = .01, 0.04, 0.02, respectively). The signature also predicted high regulatory T cells (Tregs) and M2-polarized macrophages infiltration in high-risk score patients with PCa. Additionally, high mutation load, related signal pathways, and sensitivity to anticancer drugs that correlated with high-risk score of cancer progression and death were also identified. The six-gene signature may improve prognostic information, serve as a prognostic tool to manage patients after RP, and advance basic studies of PCa.
Collapse
Affiliation(s)
- Ning Shao
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hong Tang
- Department of Pathology, The Affiliated WuXi No.2 People's Hospital of Nanjing Medical University, Wuxi, China
| | - Yuanyuan Mi
- Department of Urology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yao Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fangning Wan
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
47
|
Fiedler M, Weber F, Hautmann MG, Bohr C, Reichert TE, Ettl T. Infiltrating immune cells are associated with radiosensitivity and favorable survival in head and neck cancer treated with definitive radiotherapy. Oral Surg Oral Med Oral Pathol Oral Radiol 2020; 129:612-620. [PMID: 32409191 DOI: 10.1016/j.oooo.2020.02.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/24/2019] [Accepted: 02/08/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVES The aim of this study was to investigate the influence of CD4+, CD8+ and Forkhead box protein 3 (FoxP3+) tumor-infiltrating lymphocytes, as well as CD1a+ tumor-infiltrating dendritic cells on the radiosensitivity and survival of primarily chemoirradiated advanced head and neck squamous cell carcinomas. STUDY DESIGN Immunohistochemical staining for CD4, CD8, FoxP3 and CD1a was performed in 82 primarily chemoirradiated head and neck squamous cell carcinomas. Associations with clinicopathologic data, programmed cell death protein-1 (PD-1), programmed cell death ligand-1 (PD-L1), p16, radiation response, and survival were examined. RESULTS High CD4 expression was associated with complete response after radiation (P = .006) and high CD1a expression (P = .024). High CD8+ tumor-infiltrating lymphocyte counts were associated with absence of tumor relapse (P = .032) and better disease-free survival (P = .051). Strong overall T-cell infiltration was found more often in tumors with high-grade differentiation (P = .004), complete response after radiation (P = .022), and better overall survival and disease-specific survival (each P = .052). Tumors with high FoxP3+ T regulatory (Treg) infiltration more often showed high-grade tumor differentiation (P = .017), advanced patient age (P = .02), high PD-1 (P = .007), high CD4 (P = .002), and high CD8 expression (P = .002), as well as better disease-free survival (P = .019). CONCLUSIONS T-cell activation (high CD4, CD8 and FoxP3 expression) is associated with radio response and favorable survival in advanced head and neck cancer treated with definitive chemoradiation.
Collapse
Affiliation(s)
- Mathias Fiedler
- Fellow, Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauß-Allee, Regensburg, Germany
| | | | | | | | | | - Tobias Ettl
- Deputy Chairman, Department of Oral and Maxillofacial Surgery.
| |
Collapse
|
48
|
Trac NT, Chung EJ. Peptide-based targeting of immunosuppressive cells in cancer. Bioact Mater 2020; 5:92-101. [PMID: 31956738 PMCID: PMC6962647 DOI: 10.1016/j.bioactmat.2020.01.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 01/06/2020] [Accepted: 01/09/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer progression is marked by the infiltration of immunosuppressive cells, such as tumor-associated macrophages (TAMs), regulatory T lymphocytes (Tregs), and myeloid-derived suppressor cells (MDSCs). These cells play a key role in abrogating the cytotoxic T lymphocyte-mediated (CTL) immune response, allowing tumor growth to proceed unabated. Furthermore, targeting these immunosuppressive cells through the use of peptides and peptide-based nanomedicine has shown promising results. Here we review the origins and functions of immunosuppressive cells in cancer progression, peptide-based systems used in their targeting, and explore future avenues of research regarding cancer immunotherapy. The success of these studies demonstrates the importance of the tumor immune microenvironment in the propagation of cancer and the potential of peptide-based nanomaterials as immunomodulatory agents.
Collapse
Affiliation(s)
- Noah T. Trac
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Eun Ji Chung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA
- Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Vascular Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
49
|
Kim JH, Hwang J, Jung JH, Lee HJ, Lee DY, Kim SH. Molecular networks of FOXP family: dual biologic functions, interplay with other molecules and clinical implications in cancer progression. Mol Cancer 2019; 18:180. [PMID: 31815635 PMCID: PMC6900861 DOI: 10.1186/s12943-019-1110-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023] Open
Abstract
Though Forkhead box P (FOXP) transcription factors comprising of FOXP1, FOXP2, FOXP3 and FOXP4 are involved in the embryonic development, immune disorders and cancer progression, the underlying function of FOXP3 targeting CD4 + CD25+ regulatory T (Treg) cells and the dual roles of FOXP proteins as an oncogene or a tumor suppressor are unclear and controversial in cancers to date. Thus, the present review highlighted research history, dual roles of FOXP proteins as a tumor suppressor or an oncogene, their molecular networks with other proteins and noncoding RNAs, cellular immunotherapy targeting FOXP3, and clinical implications in cancer progression.
Collapse
Affiliation(s)
- Ju-Ha Kim
- Cancer Molecular Target Herbal Research Lab, College of Korean Medicine, Kyung Hee university, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Jisung Hwang
- Cancer Molecular Target Herbal Research Lab, College of Korean Medicine, Kyung Hee university, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Ji Hoon Jung
- Cancer Molecular Target Herbal Research Lab, College of Korean Medicine, Kyung Hee university, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Hyo-Jung Lee
- Cancer Molecular Target Herbal Research Lab, College of Korean Medicine, Kyung Hee university, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Dae Young Lee
- Department of Herbal Crop Research, Rural Development Administration, National Institute of Horticultural and Herbal Science, Eumseong, 27709, Republic of Korea
| | - Sung-Hoon Kim
- Cancer Molecular Target Herbal Research Lab, College of Korean Medicine, Kyung Hee university, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
50
|
Zhao X, Li Y, Wang X, Wu J, Yuan Y, Lv S, Ren J. Synergistic association of FOXP3+ tumor infiltrating lymphocytes with CCL20 expressions with poor prognosis of primary breast cancer: A retrospective cohort study. Medicine (Baltimore) 2019; 98:e18403. [PMID: 31852159 PMCID: PMC6922488 DOI: 10.1097/md.0000000000018403] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Studies have shown that forkhead/winged helix transcription factor P3 (FOXP3) tumor infiltrating lymphocytes (TILs) are intimately associated with invasion and survival of many invasive tumors. The inflammatory chemokine ligand 20 (CCL20) and its receptor CCR6 were found to be associated with tumor prognosis in some studies. Although increases in FOXP3 TILs infiltration and CCL20 expression have been revealed in several malignancies, their correlation in human breast tumors is as yet unclear.Surgically resected samples from 156 patients with invasive breast cancer (BC) were assessed for the expression of FOXP3 and CCL20 by immunohistochemistry. Correlation between their expressions and the association with clinicopathological characteristics and patient's prognosis were studied. Forty pairs of fresh BC and their nontumor adjacent tissues (NATs) in BC were carried out by real-time quantitative PCR (qRT-PCR) to evaluate the correlation between FOXP3 and CCL20 mRNA expression.CCL20 and FOXP3 TILs mRNA expression in tumor tissue demonstrated a high correlation (rs = 0.359, P < .001) in this cohort of breast cancer patients. Both elevated CCL20 expression and FOXP3 TILs infiltration were significantly correlated with high histological grade, positive human epidermal growth factor receptor-2 (HER2), high Ki67 index, and axillary lymph node metastases. Tumors with concomitant high expressions of both markers had the worst prognosis. Multivariate analysis showed that these 2 markers were independent predictors of overall survival. The patients with axillary lymph node metastases with the concomitant CCL20 high expression and increased FOXP3 TILs infiltration had the worst overall survival (OS) (P < .001), In lymph node-negative breast cancer patients, the status of CCL20 and FOXP3 was not related to OS (P = .22).The results suggest that CCL20 and FOXP3 TILs may have synergistic effects, and their upregulated expressions may lead to immune evasion in breast cancer. Combinatorial immunotherapeutic approaches aiming at blocking CCL20 and depleting FOXP3 might improve therapeutic efficacy in breast cancer patients.
Collapse
Affiliation(s)
- Xia Zhao
- Department of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines
- Department of Surgical Breast Cancer, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yanping Li
- Department of Surgical Breast Cancer, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xiaoli Wang
- Department of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines
| | - Jiangping Wu
- Department of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines
| | - Yanhua Yuan
- Department of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines
| | - Shuzhen Lv
- Department of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines
- Department of Surgical Breast Cancer, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Jun Ren
- Department of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines
- Department of Surgery, Duke University Medical Center, Durham, NC, US
| |
Collapse
|