1
|
Wilson EN, Umans J, Swarovski MS, Minhas PS, Mendiola JH, Midttun Ø, Ulvik A, Shahid-Besanti M, Linortner P, Mhatre SD, Wang Q, Channappa D, Corso NK, Tian L, Fredericks CA, Kerchner GA, Plowey ED, Cholerton B, Ueland PM, Zabetian CP, Gray NE, Quinn JF, Montine TJ, Sha SJ, Longo FM, Wolk DA, Chen-Plotkin A, Henderson VW, Wyss-Coray T, Wagner AD, Mormino EC, Aghaeepour N, Poston KL, Andreasson KI. Parkinson's disease is characterized by vitamin B6-dependent inflammatory kynurenine pathway dysfunction. NPJ Parkinsons Dis 2025; 11:96. [PMID: 40287426 PMCID: PMC12033312 DOI: 10.1038/s41531-025-00964-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 04/08/2025] [Indexed: 04/29/2025] Open
Abstract
Recent studies demonstrate that Parkinson's disease (PD) is associated with dysregulated metabolic flux through the kynurenine pathway (KP), in which tryptophan is converted to kynurenine (KYN), and KYN is subsequently metabolized to neuroactive compounds quinolinic acid (QA) and kynurenic acid (KA). Here, we used mass-spectrometry to compare blood and cerebral spinal fluid (CSF) KP metabolites between 158 unimpaired older adults and 177 participants with PD. We found increased neuroexcitatory QA/KA ratio in both plasma and CSF of PD participants associated with peripheral and cerebral inflammation and vitamin B6 deficiency. Furthermore, increased QA tracked with CSF tau, CSF soluble TREM2 (sTREM2) and severity of both motor and non-motor PD clinical symptoms. Finally, PD patient subgroups with distinct KP profiles displayed distinct PD clinical features. These data validate the KP as a site of brain and periphery crosstalk, integrating B-vitamin status, inflammation and metabolism to ultimately influence PD clinical manifestation.
Collapse
Affiliation(s)
- Edward N Wilson
- Neurology & Neurological Sciences, Stanford University, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
- The Phil & Penny Knight Initiative for Brain Resilience, Stanford University, Stanford, CA, USA.
| | - Jacob Umans
- Neurology & Neurological Sciences, Stanford University, Stanford, CA, USA
| | | | - Paras S Minhas
- Neurology & Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Justin H Mendiola
- Neurology & Neurological Sciences, Stanford University, Stanford, CA, USA
| | | | | | | | - Patricia Linortner
- Neurology & Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Siddhita D Mhatre
- Neurology & Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Qian Wang
- Neurology & Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Divya Channappa
- Neurology & Neurological Sciences, Stanford University, Stanford, CA, USA
- Pathology, Stanford University, Stanford, CA, USA
| | - Nicole K Corso
- Neurology & Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Lu Tian
- Biomedical Data Science and Statistics, Stanford University, Stanford, CA, USA
| | | | - Geoffrey A Kerchner
- Pharma Research and Early Development, F. Hoffmann-La Roche, Ltd., Basel, Switzerland
| | | | - Brenna Cholerton
- Neurology & Neurological Sciences, Stanford University, Stanford, CA, USA
| | | | - Cyrus P Zabetian
- VA Puget Sound Health Care System, Seattle, WA, USA
- Neurology, University of Washington, Seattle, WA, USA
| | - Nora E Gray
- Neurology, Oregon Health & Sciences University, Portland, OR, USA
| | - Joseph F Quinn
- Neurology, Oregon Health & Sciences University, Portland, OR, USA
- Neurology, Portland VA Medical Center, Portland, OR, USA
| | | | - Sharon J Sha
- Neurology & Neurological Sciences, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Frank M Longo
- Neurology & Neurological Sciences, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - David A Wolk
- Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Victor W Henderson
- Neurology & Neurological Sciences, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Tony Wyss-Coray
- Neurology & Neurological Sciences, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- The Phil & Penny Knight Initiative for Brain Resilience, Stanford University, Stanford, CA, USA
| | - Anthony D Wagner
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Psychology, Stanford University, Stanford, CA, USA
| | - Elizabeth C Mormino
- Neurology & Neurological Sciences, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Nima Aghaeepour
- Biomedical Data Science and Statistics, Stanford University, Stanford, CA, USA
- Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, USA
- Neonatal & Developmental Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
- Biomedical Informatics, Stanford University, Stanford, CA, USA
| | - Kathleen L Poston
- Neurology & Neurological Sciences, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- The Phil & Penny Knight Initiative for Brain Resilience, Stanford University, Stanford, CA, USA
- Neurosurgery, Stanford University, Stanford, CA, USA
| | - Katrin I Andreasson
- Neurology & Neurological Sciences, Stanford University, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
- The Phil & Penny Knight Initiative for Brain Resilience, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
2
|
Gáspár R, Nógrádi-Halmi D, Demján V, Diószegi P, Igaz N, Vincze A, Pipicz M, Kiricsi M, Vécsei L, Csont T. Kynurenic acid protects against ischemia/reperfusion injury by modulating apoptosis in cardiomyocytes. Apoptosis 2024; 29:1483-1498. [PMID: 39153038 PMCID: PMC11416393 DOI: 10.1007/s10495-024-02004-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2024] [Indexed: 08/19/2024]
Abstract
Acute myocardial infarction, often associated with ischemia/reperfusion injury (I/R), is a leading cause of death worldwide. Although the endogenous tryptophan metabolite kynurenic acid (KYNA) has been shown to exert protection against I/R injury, its mechanism of action at the cellular and molecular level is not well understood yet. Therefore, we examined the potential involvement of antiapoptotic mechanisms, as well as N-methyl-D-aspartate (NMDA) receptor modulation in the protective effect of KYNA in cardiac cells exposed to simulated I/R (SI/R). KYNA was shown to attenuate cell death induced by SI/R dose-dependently in H9c2 cells or primary rat cardiomyocytes. Analysis of morphological and molecular markers of apoptosis (i.e., membrane blebbing, apoptotic nuclear morphology, DNA double-strand breaks, activation of caspases) revealed considerably increased apoptotic activity in cardiac cells undergoing SI/R. The investigated apoptotic markers were substantially improved by treatment with the cytoprotective dose of KYNA. Although cardiac cells were shown to express NMDA receptors, another NMDA antagonist structurally different from KYNA was unable to protect against SI/R-induced cell death. Our findings provide evidence that the protective effect of KYNA against SI/R-induced cardiac cell injury involves antiapoptotic mechanisms, that seem to evoke independently of NMDA receptor signaling.
Collapse
Affiliation(s)
- Renáta Gáspár
- Metabolic Diseases and Cell Signaling Research Group, Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, Dóm Tér 9, 6720, Szeged, Hungary
- Interdisciplinary Centre of Excellence, University of Szeged, Szeged, Hungary
| | - Dóra Nógrádi-Halmi
- Metabolic Diseases and Cell Signaling Research Group, Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, Dóm Tér 9, 6720, Szeged, Hungary
- Interdisciplinary Centre of Excellence, University of Szeged, Szeged, Hungary
| | - Virág Demján
- Metabolic Diseases and Cell Signaling Research Group, Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, Dóm Tér 9, 6720, Szeged, Hungary
- Interdisciplinary Centre of Excellence, University of Szeged, Szeged, Hungary
| | - Petra Diószegi
- Metabolic Diseases and Cell Signaling Research Group, Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, Dóm Tér 9, 6720, Szeged, Hungary
- Interdisciplinary Centre of Excellence, University of Szeged, Szeged, Hungary
| | - Nóra Igaz
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Anna Vincze
- Metabolic Diseases and Cell Signaling Research Group, Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, Dóm Tér 9, 6720, Szeged, Hungary
| | - Márton Pipicz
- Metabolic Diseases and Cell Signaling Research Group, Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, Dóm Tér 9, 6720, Szeged, Hungary
- Interdisciplinary Centre of Excellence, University of Szeged, Szeged, Hungary
| | - Mónika Kiricsi
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Albert Szent-Györgyi Health Centre, University of Szeged, Szeged, Hungary
- HUN-REN-SZTE-Neuroscience Research Group, Szeged, Hungary
| | - Tamás Csont
- Metabolic Diseases and Cell Signaling Research Group, Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, Dóm Tér 9, 6720, Szeged, Hungary.
- Interdisciplinary Centre of Excellence, University of Szeged, Szeged, Hungary.
| |
Collapse
|
3
|
Wilson E, Umans J, Swarovski M, Minhas P, Midttun Ø, Ulvik AA, Shahid-Besanti M, Linortner P, Mhatre S, Wang Q, Channappa D, Corso N, Tian L, Fredericks C, Kerchner G, Plowey E, Cholerton B, Ueland P, Zabetian C, Gray N, Quinn J, Montine T, Sha S, Longo F, Wolk D, Chen-Plotkin A, Henderson V, Wyss-Coray T, Wagner A, Mormino E, Aghaeepour N, Poston K, Andreasson K. Parkinson's disease is characterized by vitamin B6-dependent inflammatory kynurenine pathway dysfunction. RESEARCH SQUARE 2024:rs.3.rs-4980210. [PMID: 39399688 PMCID: PMC11469709 DOI: 10.21203/rs.3.rs-4980210/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Parkinson's disease (PD) is a complex multisystem disorder clinically characterized by motor, non-motor, and premotor manifestations. Pathologically, PD involves neuronal loss in the substantia nigra, striatal dopamine deficiency, and accumulation of intracellular inclusions containing aggregates of α-synuclein. Recent studies demonstrate that PD is associated with dysregulated metabolic flux through the kynurenine pathway (KP), in which tryptophan is converted to kynurenine (KYN), and KYN is subsequently metabolized to neuroactive compounds quinolinic acid (QA) and kynurenic acid (KA). This multicenter study used highly sensitive liquid chromatography-tandem mass-spectrometry to compare blood and cerebral spinal fluid (CSF) KP metabolites between 158 unimpaired older adults and 177 participants with PD. Results indicate that increased neuroexcitatory QA/KA ratio in both plasma and CSF of PD participants associated with peripheral and cerebral inflammation and vitamin B6 deficiency. Furthermore, increased QA tracked with CSF tau and severity of both motor and non-motor PD clinical dysfunction. Importantly, plasma and CSF kynurenine metabolites classified PD participants with a high degree of accuracy (AUC = 0.897). Finally, analysis of metabolite data revealed subgroups with distinct KP profiles, and these were subsequently found to display distinct PD clinical features. Together, these data further support the hypothesis that the KP serves as a site of brain and periphery crosstalk, integrating B-vitamin status, inflammation and metabolism to ultimately influence PD clinical manifestation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Cyrus Zabetian
- VA Puget Sound Health Care System and University of Washington Seattle
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Zhang X, Ge R, Wu J, Cai X, Deng G, Lv J, Ma M, Yu N, Yao L, Peng D. Structural characterization and improves cognitive disorder in ageing mice of a glucomannan from Dendrobium huoshanense. Int J Biol Macromol 2024; 269:131995. [PMID: 38692529 DOI: 10.1016/j.ijbiomac.2024.131995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 04/01/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
In the present work, a neutral polysaccharide (DHP-2W) with attenuating cognitive disorder was identified from Dendrobium huoshanense and its structure was clarified. The polysaccharide was successfully purified from D. huoshanense by column chromatography and its activity was evaluated. With a molecular weight of 508.934kDa, this polysaccharide is composed of mannose and glucose at a molar ratio of 75.81: 24.19. Structural characterization revealed that DHP-2W has a backbone consisting of 4)-β-D-Manp-(1 and 4)-β-D-Glcp-(1. In vivo experiments revealed that DHP-2W improved cognitive disorder in D-galactose treated mice and relieved oxidative stress and inflammation. DHP-2W attenuates D-galactose-induced cognitive disorder by inhibiting the BCL2/BAX/CASP3 pathway and activating the AMPK/SIRT pathway, thereby inhibiting apoptosis. Furthermore, DHP-2W had a significant effect on regulating the serum levels of Flavin adenine dinucleotide, Shikimic acid, and Kynurenic acid in aged mice. These, in turn, had a positive impact on AMPK/SIRT1 and BCL2/BAX/CASP3, resulting in protective effects against cognitive disorder.
Collapse
Affiliation(s)
- Xiaoqian Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China; Anhui Academy of Chinese Medicine, Hefei, China.
| | - Ruipeng Ge
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China; Anhui Academy of Chinese Medicine, Hefei, China
| | - Jing Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China; Anhui Academy of Chinese Medicine, Hefei, China
| | - Xiao Cai
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China; Anhui Academy of Chinese Medicine, Hefei, China
| | - Guanghui Deng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China; Anhui Academy of Chinese Medicine, Hefei, China
| | - Jiahui Lv
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China; Anhui Academy of Chinese Medicine, Hefei, China
| | - Mengzhen Ma
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China; Anhui Academy of Chinese Medicine, Hefei, China
| | - Nianjun Yu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China; Anhui Academy of Chinese Medicine, Hefei, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China; Anhui Province Key Laboratory for Research and Development of Research & Development of Chinese Medicine, Hefei, China.
| | - Liang Yao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China; Anhui Academy of Chinese Medicine, Hefei, China.
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China; Anhui Academy of Chinese Medicine, Hefei, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China; Anhui Province Key Laboratory for Research and Development of Research & Development of Chinese Medicine, Hefei, China.
| |
Collapse
|
5
|
Sheibani M, Shayan M, Khalilzadeh M, Soltani ZE, Jafari-Sabet M, Ghasemi M, Dehpour AR. Kynurenine pathway and its role in neurologic, psychiatric, and inflammatory bowel diseases. Mol Biol Rep 2023; 50:10409-10425. [PMID: 37848760 DOI: 10.1007/s11033-023-08859-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/27/2023] [Indexed: 10/19/2023]
Abstract
Tryptophan metabolism along the kynurenine pathway is of central importance for the immune function. It prevents hyperinflammation and induces long-term immune tolerance. Accumulating evidence also demonstrates cytoprotective and immunomodulatory properties of kynurenine pathway in conditions affecting either central or peripheral nervous system as well as other conditions such as inflammatory bowel disease (IBD). Although multilevel association exists between the inflammatory bowel disease (IBD) and various neurologic (e.g., neurodegenerative) disorders, it is believed that the kynurenine pathway plays a pivotal role in the development of both IBD and neurodegenerative disorders. In this setting, there is strong evidence linking the gut-brain axis with intestinal dysfunctions including IBD which is consistent with the fact that the risk of neurodegenerative diseases is higher in IBD patients. This review aims to highlight the role of kynurenine metabolic pathway in various neurologic and psychiatric diseases as well as relationship between IBD and neurodegenerative disorders in the light of the kynurenine metabolic pathway.
Collapse
Affiliation(s)
- Mohammad Sheibani
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Razi Drug Research Centre, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Shayan
- Experimental Medicine Research Centre, Tehran University of Medical Sciences, Tehran, MS, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Khalilzadeh
- Experimental Medicine Research Centre, Tehran University of Medical Sciences, Tehran, MS, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Ebrahim Soltani
- Experimental Medicine Research Centre, Tehran University of Medical Sciences, Tehran, MS, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Jafari-Sabet
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Razi Drug Research Centre, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Ghasemi
- Department of Neurology, Lahey Hospital and Medical Center, 41 Mall Road, Burlington, MA, 01803, USA.
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Centre, Tehran University of Medical Sciences, Tehran, MS, Iran.
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Lee TK, Ashok Kumar K, Huang CY, Liao PH, Ho TJ, Kuo WW, Liao SC, Hsieh DJY, Chiu PL, Chang YM, Ju DT. Garcinol protects SH-SY5Y cells against MPP+-induced cell death by activating DJ-1/SIRT1 and PGC-1α mediated antioxidant pathway in sequential stimulation of p-AMPK mediated autophagy. ENVIRONMENTAL TOXICOLOGY 2023; 38:857-866. [PMID: 36629037 DOI: 10.1002/tox.23737] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/14/2022] [Accepted: 12/25/2022] [Indexed: 06/17/2023]
Abstract
Parkinson's disease (PD), a chronic and progressive neurodegenerative disease, can reduce the population of dopaminergic neurons in the substantia nigra. The cause of this neuronal death remains unclear. 1-Methyl-4-phenylpyridinium ion (MPP+) is a potent neurotoxin that can destroy dopaminergic (DA) neurons and promote PD. Garcinol, a polyisoprenylated benzophenone derivative, was extracted from Garcinia indica and is an important active compound it has been used as an anticancer, antioxidant, and anti-inflammatory, agent and it can suppress reactive oxygen species (ROS) mediated cell death in a PD model. Human neuroblastoma (SH-SY5Y) cells (1 × 105 cells) were treated with MPP+ (1 mM) for 24 h to induce cellular ROS production. The formation of ROS was suppressed by pretreatment with different concentrations of garcinol (0.5 and 1.0 μM) for 3 h in SH-SY5Y cells. The present study found that MPP+ treatment increased the formation of reactive oxygen species (ROS), and the increased ROS began to promote cell death in SH-SY5Y cells. However, our natural compound garcinol effectively blocked MPP+-mediated ROS formation by activating the DJ-1/SIRT1 and PGC-1α mediated antioxidant pathway. Further findings indicate that the activated SIRT1 can also regulate p-AMPK-mediated autophagy to protect the neurons from the damage it concludes that garcinol sub-sequential regulates intracellular autophagy in this model, and the productive efficacy of garcinol was confirmed by western blot analysis and MitoSOX DCFDA and MTT assays. The results showed garcinol increased protection due to the prevention of MPP+-induced ROS and the promotion of cell survival.
Collapse
Affiliation(s)
- Tian-Kuo Lee
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Hualien, Taiwan
| | - K Ashok Kumar
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
- Holistic Education Center, Tzu Chi University of Science and Technology, Hualien, Taiwan
- Cardiovascular and Mitochondria Related Diseases Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Po-Hsiang Liao
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Shih-Chieh Liao
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
| | - Dennis Jine-Yuan Hsieh
- Department of Medical Laboratory and Biotechnology|, Chung Shan Medical University, Taichung, Taiwan
| | | | - Yung-Ming Chang
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan
- Chinese Medicine Department, E-DA Hospital, Kaohsiung, Taiwan
- 1PT Biotechnology Co., Ltd., Taichung, Taiwan
| | - Da-Tong Ju
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
7
|
Hyon JY, Lee HJ, Yun SH, Han EH, Chung YH. Comparative proteomics study of mitochondrial electron transport system modulation in SH-SY5Y cells following MPP+ versus 6-OHDA-induced neurodegeneration. J Anal Sci Technol 2023. [DOI: 10.1186/s40543-022-00365-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
AbstractParkinson’s disease (PD) is the second-most common neurodegenerative disease worldwide. Several studies have investigated PD for decades; however, the exact mechanism of disease development remains unknown. To study PD, SH-SY5Y cells are often treated with 6-hydroxydopamine (6-OHDA) or 1-methyl-4-phenylpyridinium (MPP+) to induce PD. To understand the mechanism of PD pathogenesis, we confirmed protein changes between 6-OHDA- and MPP+-treated SH-SY5Y cells via proteomics analysis using liquid chromatography coupled with tandem mass spectrometry. 6-OHDA-treated SH-SY5Y cells showed increased expression of electron transporter-related proteins compared to that in the control group, along with decreased expression in MPP+-treated SH-SY5Y cells. However, both down- and upregulation of electron transporter-related proteins increased mitochondrial dysfunction and apoptosis. These proteins were confirmed via protein–protein interaction network analysis using IPA and STRING to induce mitochondrial dysfunction and apoptosis. Cell-based experiments using flow cytometry verified that apoptosis and mitochondrial membrane potential were increased in both 6-OHDA- and MPP+-treated SH-SY5Y cells. Our results provide new insights into PD pathogenesis, thereby contributing to the understanding of the mechanisms of PD development.
Collapse
|
8
|
Wyant GA, Yu W, Doulamis IIP, Nomoto RS, Saeed MY, Duignan T, McCully JD, Kaelin WG. Mitochondrial remodeling and ischemic protection by G protein-coupled receptor 35 agonists. Science 2022; 377:621-629. [PMID: 35926043 DOI: 10.1126/science.abm1638] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Kynurenic acid (KynA) is tissue protective in cardiac, cerebral, renal, and retinal ischemia models, but the mechanism is unknown. KynA can bind to multiple receptors, including the aryl hydrocarbon receptor, the a7 nicotinic acetylcholine receptor (a7nAChR), multiple ionotropic glutamate receptors, and the orphan G protein-coupled receptor GPR35. Here, we show that GPR35 activation was necessary and sufficient for ischemic protection by KynA. When bound by KynA, GPR35 activated Gi- and G12/13-coupled signaling and trafficked to the outer mitochondria membrane, where it bound, apparantly indirectly, to ATP synthase inhibitory factor subunit 1 (ATPIF1). Activated GPR35, in an ATPIF1-dependent and pertussis toxin-sensitive manner, induced ATP synthase dimerization, which prevented ATP loss upon ischemia. These findings provide a rationale for the development of specific GPR35 agonists for the treatment of ischemic diseases.
Collapse
Affiliation(s)
- Gregory A Wyant
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Wenyu Yu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - IIias P Doulamis
- Department of Cardiac Surgery, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02215, USA
| | - Rio S Nomoto
- Department of Cardiac Surgery, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02215, USA
| | - Mossab Y Saeed
- Department of Cardiac Surgery, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02215, USA
| | - Thomas Duignan
- Department of Cardiac Surgery, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02215, USA
| | - James D McCully
- Department of Cardiac Surgery, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02215, USA
| | - William G Kaelin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
9
|
Ostapiuk A, Urbanska EM. Kynurenic acid in neurodegenerative disorders-unique neuroprotection or double-edged sword? CNS Neurosci Ther 2022; 28:19-35. [PMID: 34862742 PMCID: PMC8673711 DOI: 10.1111/cns.13768] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 12/24/2022] Open
Abstract
AIMS The family of kynurenine pathway (KP) metabolites includes compounds produced along two arms of the path and acting in clearly opposite ways. The equilibrium between neurotoxic kynurenines, such as 3-hydroxykynurenine (3-HK) or quinolinic acid (QUIN), and neuroprotective kynurenic acid (KYNA) profoundly impacts the function and survival of neurons. This comprehensive review summarizes accumulated evidence on the role of KYNA in Alzheimer's, Parkinson's and Huntington's diseases, and discusses future directions of potential pharmacological manipulations aimed to modulate brain KYNA. DISCUSSION The synthesis of specific KP metabolites is tightly regulated and may considerably vary under physiological and pathological conditions. Experimental data consistently imply that shift of the KP to neurotoxic branch producing 3-HK and QUIN formation, with a relative or absolute deficiency of KYNA, is an important factor contributing to neurodegeneration. Targeting specific brain regions to maintain adequate KYNA levels seems vital; however, it requires the development of precise pharmacological tools, allowing to avoid the potential cognitive adverse effects. CONCLUSIONS Boosting KYNA levels, through interference with the KP enzymes or through application of prodrugs/analogs with high bioavailability and potency, is a promising clinical approach. The use of KYNA, alone or in combination with other compounds precisely influencing specific populations of neurons, is awaiting to become a significant therapy for neurodegenerative disorders.
Collapse
Affiliation(s)
- Aleksandra Ostapiuk
- Laboratory of Cellular and Molecular PharmacologyDepartment of Experimental and Clinical PharmacologyMedical University of LublinLublinPoland
- Present address:
Department of Clinical Digestive OncologyKU LeuvenLeuvenBelgium
| | - Ewa M. Urbanska
- Laboratory of Cellular and Molecular PharmacologyDepartment of Experimental and Clinical PharmacologyMedical University of LublinLublinPoland
| |
Collapse
|
10
|
Boros FA, Vécsei L. Tryptophan 2,3-dioxygenase, a novel therapeutic target for Parkinson's disease. Expert Opin Ther Targets 2021; 25:877-888. [PMID: 34720020 DOI: 10.1080/14728222.2021.1999928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Alterations in the activity of tryptophan 2,3-dioxygenase (TDO) cause imbalances in the levels of serotonin and other neuroactive metabolites which can contribute to motor, psychiatric, gastrointestinal, and other dysfunctions often seen in Parkinson's disease (PD). TDO is a key enzyme of tryptophan metabolism at the entry of the kynurenine pathway (KP) which moderates production of neuroactive compounds primarily outside the central nervous system (CNS). Recent data from experimental models indicate that TDO modulation could have beneficial effects on PD symptoms not targeted by traditional dopamine substitution therapies. AREAS COVERED Based on data available in PubMed and ClinicalTrials databases up until 1 August 2021, we summarize current knowledge of KP alterations in relation to PD. We overview effects of TDO inhibition in preclinical models of neurodegeneration and discuss findings of the impact of enzyme inhibition on motor, memory and gastrointestinal dysfunctions, and neuronal cell loss. EXPERT OPINION TDO inhibition potentially alleviates motor and non-motor dysfunctions of PD. However, data suggesting harmful effects of long-term TDO inhibition raise concerns. To exploit possibilities of TDO inhibitory treatment, development of further selective TDO inhibitor compounds with good bioavailability features and models adequately replicating PD symptoms of systemic origin should be prioritized.
Collapse
Affiliation(s)
- Fanni Annamária Boros
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary.,MTA-SZTE, Neuroscience Research Group Szeged Hungary.,Interdisciplinary Excellence Center, Department of Neurology, Szeged, Hungary
| |
Collapse
|
11
|
Behl T, Kaur I, Sehgal A, Singh S, Bhatia S, Al-Harrasi A, Zengin G, Bumbu AG, Andronie-Cioara FL, Nechifor AC, Gitea D, Bungau AF, Toma MM, Bungau SG. The Footprint of Kynurenine Pathway in Neurodegeneration: Janus-Faced Role in Parkinson's Disorder and Therapeutic Implications. Int J Mol Sci 2021; 22:6737. [PMID: 34201647 PMCID: PMC8268239 DOI: 10.3390/ijms22136737] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 02/06/2023] Open
Abstract
Progressive degeneration of neurons and aggravation of dopaminergic neurons in the substantia nigra pars compacta results in the loss of dopamine in the brain of Parkinson's disease (PD) patients. Numerous therapies, exhibiting transient efficacy have been developed; however, they are mostly accompanied by side effects and limited reliability, therefore instigating the need to develop novel optimistic treatment targets. Significant therapeutic targets have been identified, namely: chaperones, protein Abelson, glucocerebrosidase-1, calcium, neuromelanin, ubiquitin-proteasome system, neuroinflammation, mitochondrial dysfunction, and the kynurenine pathway (KP). The role of KP and its metabolites and enzymes in PD, namely quinolinic acid (QUIN), kynurenic acid (KYNA), 3-hydroxykynurenine (3-HK), 3-hydroxyanthranillic acid (3-HAA), kunurenine-3-monooxygenase (KMO), etc. has been reported. The neurotoxic QUIN, N-methyl-D-aspartate (NMDA) receptor agonist, and neuroprotective KYNA-which antagonizes QUIN actions-primarily justify the Janus-faced role of KP in PD. Moreover, KP has been reported to play a biomarker role in PD detection. Therefore, the authors detail the neurotoxic, neuroprotective, and immunomodulatory neuroactive components, alongside the upstream and downstream metabolic pathways of KP, forming a basis for a therapeutic paradigm of the disease while recognizing KP as a potential biomarker in PD, thus facilitating the development of a suitable target in PD management.
Collapse
Affiliation(s)
- Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (I.K.); (A.S.); (S.S.)
| | - Ishnoor Kaur
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (I.K.); (A.S.); (S.S.)
| | - Aayush Sehgal
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (I.K.); (A.S.); (S.S.)
| | - Sukhbir Singh
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (I.K.); (A.S.); (S.S.)
| | - Saurabh Bhatia
- Amity Institute of Pharmacy, Amity University, Gurugram, Haryana 122412, India;
- Natural and Medical Sciences Research Centre, University of Nizwa, P.O. Box 33, PC 616 Birkat Al Mouz, Nizwa 611, Oman;
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Centre, University of Nizwa, P.O. Box 33, PC 616 Birkat Al Mouz, Nizwa 611, Oman;
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University Campus, Konya 42130, Turkey;
| | - Adrian Gheorghe Bumbu
- Department of Surgical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| | - Felicia Liana Andronie-Cioara
- Department of Psycho-Neuroscience and Recovery, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| | - Aurelia Cristina Nechifor
- Analytical Chemistry and Environmental Engineering Department, Polytechnic University of Bucharest, 011061 Bucharest, Romania;
| | - Daniela Gitea
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania; (D.G.); (M.M.T.)
| | | | - Mirela Marioara Toma
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania; (D.G.); (M.M.T.)
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania; (D.G.); (M.M.T.)
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| |
Collapse
|
12
|
Zaiter J, Hibot A, Hafid A, Khouili M, Neves CMB, Simões MMQ, Neves MGPMS, Faustino MAF, Dagci T, Saso L, Armagan G. Evaluation of the cellular protection by novel spiropyrazole compounds in dopaminergic cell death. Eur J Med Chem 2021; 213:113140. [PMID: 33454549 DOI: 10.1016/j.ejmech.2020.113140] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/09/2020] [Accepted: 12/24/2020] [Indexed: 01/09/2023]
Abstract
The loss of neurons is strongly correlated with aging and aging-associated disorders. In this study, cell viability assays and mitochondrial function were performed to evaluate the effect of new spiro-pyrazole derivatives, prepared from aldehydes and 3-amino-1-phenyl-2-pyrazolin-5-one, on neuroprotection in an in vitro model of dopaminergic cell death induced by 1-methyl-4-phenylpyridinium (MPP+). The percentages of neuroprotection by derivatives were found between 21.26% and 52.67% at selected concentrations (10-50 μM) with compound 4d exerting the best neuroprotective effect. The results show that the studied spiropyrazolones perform important roles in dopaminergic neuroprotection and can be used for potential new therapies in the treatment of neurodegenerative disorders including Parkinson's disease.
Collapse
Affiliation(s)
- Jamila Zaiter
- Laboratoire de Chimie Organique et Analytique, Faculté des Sciences et Techniques, Université Sultan Moulay Slimane, BP 523, 23000, Beni-Mellal, Morocco
| | - Achraf Hibot
- Laboratoire de Chimie Organique et Analytique, Faculté des Sciences et Techniques, Université Sultan Moulay Slimane, BP 523, 23000, Beni-Mellal, Morocco
| | - Abderrafia Hafid
- Laboratoire de Chimie Organique et Analytique, Faculté des Sciences et Techniques, Université Sultan Moulay Slimane, BP 523, 23000, Beni-Mellal, Morocco
| | - Mostafa Khouili
- Laboratoire de Chimie Organique et Analytique, Faculté des Sciences et Techniques, Université Sultan Moulay Slimane, BP 523, 23000, Beni-Mellal, Morocco
| | - Claudia M B Neves
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Mário M Q Simões
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - M Graça P M S Neves
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - M Amparo F Faustino
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Taner Dagci
- Department of Physiology, Faculty of Medicine, Ege University, 35100, Bornova, Izmir, Turkey
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, P. le Aldo Moro 5, 00185, Rome, Italy
| | - Güliz Armagan
- Department of Biochemistry, Faculty of Pharmacy, Ege University, 35100, Bornova, Izmir, Turkey.
| |
Collapse
|
13
|
Venkatesan D, Iyer M, Narayanasamy A, Siva K, Vellingiri B. Kynurenine pathway in Parkinson's disease-An update. eNeurologicalSci 2020; 21:100270. [PMID: 33134567 PMCID: PMC7585940 DOI: 10.1016/j.ensci.2020.100270] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/05/2020] [Accepted: 08/26/2020] [Indexed: 12/24/2022] Open
Abstract
Parkinson's disease (PD) is a complex multi-factorial neurodegenerative disorder where various altered metabolic pathways contribute to the progression of the disease. Tryptophan (TRP) is a major precursor in kynurenine pathway (KP) and it has been discussed in various in vitro studies that the metabolites quinolinic acid (QUIN) causes neurotoxicity and kynurenic acid (KYNA) acts as neuroprotectant respectively. More studies are also focused on the effects of other KP metabolites and its enzymes as it has an association with ageing and PD pathogenesis. Until now, very few studies have targeted the role of genetic mutations in abnormal KP metabolism in adverse conditions of PD. Therefore, the present review gives an updated research studies on KP in connection with PD. Moreover, the review emphasizes on the urge for the development of biomarkers and also this would be an initiative in generating an alternative therapeutic approach for PD.
Collapse
Key Words
- 3-HAA, 3-hydroxyanthranilic acid
- 3-HK, 3-hydroxykynurenine
- 6-OHDA, 6-hydroxydopamine
- AA, anthranilic acid
- ACMSD, amino-carboxymuconatesemialdehyde decarboxylase
- AD, Alzheimer's disease
- ATP, adenosine triphosphate
- Ageing
- AhR, aryl hydrocarbon receptor
- Biomarkers
- CNS, central nervous system
- CSF, cerebrospinal fluid
- DA, dopaminergic
- FAM, formamidase
- IDO-1, indoleamine-2,3-dioxygenases
- IFN-γ, interferon-γ
- KATs, kynurenine aminotransferases
- KMO, kynurenine −3-monooxygenase
- KP, Kynurenine pathway
- KYN, kynurenine
- KYNA, kynurenic acid
- Kynurenine pathway (KP)
- L-DOPA, L-dopamine
- LID, L-DOPA-induced dyskinesia
- MPTP, 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine
- NAD+, nicotinamide adenine dinucleotide
- NADPH, nicotinamide adenine dinucleotide phosphate
- NFK, N′-formylkynurenine
- NMDA, N-methyl-d-aspartate
- PA, picolinic acid
- PD, Parkinson's disease
- Parkinson's disease (PD)
- QUIN, quinolinic acid
- RBCs, red blood cells
- SNpc, substantianigra pars compacta
- TDO, tryptophan 2,3-dioxygenase
- TRP, tryptophan
- Therapeutics
- XA, xanthurenic acid
- ZNS, zonisamide
- α-synuclein, αSyn
Collapse
Affiliation(s)
- Dhivya Venkatesan
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Mahalaxmi Iyer
- Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641 043, Tamil Nadu, India
| | - Arul Narayanasamy
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Kamalakannan Siva
- National Centre for Disease Control, Ministry of Health and Family Welfare, Government of India, New Delhi 110054, India
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| |
Collapse
|
14
|
Heilman PL, Wang EW, Lewis MM, Krzyzanowski S, Capan CD, Burmeister AR, Du G, Escobar Galvis ML, Brundin P, Huang X, Brundin L. Tryptophan Metabolites Are Associated With Symptoms and Nigral Pathology in Parkinson's Disease. Mov Disord 2020; 35:2028-2037. [PMID: 32710594 PMCID: PMC7754343 DOI: 10.1002/mds.28202] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/10/2020] [Accepted: 06/16/2020] [Indexed: 01/16/2023] Open
Abstract
Background The objective of this study was to determine whether neurotoxic kynurenine metabolites, induced by inflammation, in plasma and cerebrospinal fluid (CSF) are associated with symptom severity and nigral pathology in Parkinson's disease (PD). Methods Clinical and MRI data were obtained from 97 PD and 89 controls. We used ultra‐performance liquid chromatography to quantify kynurenine metabolites and high‐sensitivity multiplex assays to quantify inflammation in plasma and CSF. We evaluated group‐wise differences as well as associations between the biomarkers, motor and nonmotor symptoms, and nigral R2* (MRI metric reflecting iron content). Results PD subjects had >100% higher 3‐hydroxykynurenine and 14% lower 3‐hydroxyanthranilic acid in plasma. The 3‐HK in plasma was closely associated with both symptom severity and disease duration. PD subjects also had 23% lower kynurenic acid in the CSF. Higher CSF levels of the excitotoxin quinolinic acid were associated with more severe symptoms, whereas lower levels of the neuroprotective kynurenic acid were linked to olfactory deficits. An elevated quinolinic acid/picolinic acid ratio in the CSF correlated with higher R2* values in the substantia nigra in the entire cohort. Plasma C‐reactive protein and serum amyloid alpha were associated with signs of increased kynurenine pathway activity in the CSF of PD patients, but not in controls. Conclusions In PD, the kynurenine pathway metabolite levels are altered in both the periphery and the central nervous system, and these changes are associated with symptom severity. Replication studies are warranted in other cohorts, and these can also explore if kynurenine metabolites might be PD biomarkers and/or are involved in PD pathogenesis. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Patrick L Heilman
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Ernest W Wang
- Department of Neurology, Penn State University-Milton S. Hershey Medical Center, Hersey Pennsylvania, USA
| | - Mechelle M Lewis
- Department of Neurology, Penn State University-Milton S. Hershey Medical Center, Hersey Pennsylvania, USA.,Department of Pharmacology, Penn State University-Milton S. Hershey Medical Center, Hersey Pennsylvania, USA
| | | | - Colt D Capan
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Amanda R Burmeister
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Guangwei Du
- Department of Neurology, Penn State University-Milton S. Hershey Medical Center, Hersey Pennsylvania, USA
| | | | - Patrik Brundin
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Xuemei Huang
- Department of Neurology, Penn State University-Milton S. Hershey Medical Center, Hersey Pennsylvania, USA.,Department of Pharmacology, Penn State University-Milton S. Hershey Medical Center, Hersey Pennsylvania, USA.,Department of Neurosurgery, Penn State University-Milton S. Hershey Medical Center, Hersey Pennsylvania, USA.,Department of Radiology, Penn State University-Milton S. Hershey Medical Center, Hersey Pennsylvania, USA.,Department of Kinesiology, Penn State University-Milton S. Hershey Medical Center, Hersey Pennsylvania, USA
| | - Lena Brundin
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, Michigan, USA.,Division of Psychiatry & Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, Michigan, USA
| |
Collapse
|
15
|
Zádor F, Nagy-Grócz G, Dvorácskó S, Bohár Z, Cseh EK, Zádori D, Párdutz Á, Szűcs E, Tömböly C, Borsodi A, Benyhe S, Vécsei L. Long-term systemic administration of kynurenic acid brain region specifically elevates the abundance of functional CB 1 receptors in rats. Neurochem Int 2020; 138:104752. [PMID: 32445659 DOI: 10.1016/j.neuint.2020.104752] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 12/19/2022]
Abstract
Kynurenic acid (KYNA) is one of the most significant metabolite of the kynurenine pathway both in terms of functional and potential therapeutic value. It is an N-methyl-D-aspartate (NMDA) receptor antagonist, but it can also activate the G-protein coupled receptor 35 (GPR35), which shares several structural and functional properties with cannabinoid receptors. Previously our group demonstrated that systemic chronic KYNA treatment altered opioid receptor G-protein activity. Opioid receptors also overlap in many features with cannabinoid receptors. Thus, our aim was to examine the direct in vitro and systemic, chronic in vivo effect of KYNA on type 1 cannabinoid receptor (CB1R) binding and G-protein activity. Based on competition and [35S]GTPγS G-protein binding assays in rat brain, KYNA alone did not show significant binding towards the CB1R, nor did it alter CB1R ligand binding and agonist activity in vitro. When rats were chronically treated with KYNA (single daily, i.p., 128 mg/kg for 9 days), the KYNA plasma and cerebrospinal fluid levels significantly increased compared to vehicle treated group. Furthermore, in G-protein binding assays, in the whole brain the amount of G-proteins in basal and in maximum activity coupled to the CB1R also increased due to the treatment. At the same time, the overall stimulatory properties of the receptor remained unaltered in vehicle and KYNA treated samples. Similar observations were made in rat hippocampus, but not in the cortex and brainstem. In saturation binding assays the density of CB1Rs in rat whole brain and hippocampus were also significantly enhanced after the same treatment, without significantly affecting ligand binding affinity. Thus, KYNA indirectly and brain region specifically increases the abundance of functional CB1Rs, without modifying the overall binding and activity of the receptor. Supposedly, this can be a compensatory mechanism on the part of the endocannabinoid system induced by the long-term KYNA exposure.
Collapse
Affiliation(s)
- Ferenc Zádor
- Institute of Biochemistry, Biological Research Centre, Szeged, Temesvári krt. 62, H-6726, Hungary.
| | - Gábor Nagy-Grócz
- Faculty of Health Sciences and Social Studies, University of Szeged, Szeged, Temesvári krt. 31, H-6726, Hungary; Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Semmelweis u. 6, H-6725, Hungary
| | - Szabolcs Dvorácskó
- Institute of Biochemistry, Biological Research Centre, Szeged, Temesvári krt. 62, H-6726, Hungary; Department of Medical Chemistry University of Szeged, Szeged, Dóm tér 8, H-6720, Hungary
| | - Zsuzsanna Bohár
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Semmelweis u. 6, H-6725, Hungary; MTA-SZTE Neuroscience Research Group, University of Szeged, H-6725, Szeged, Hungary
| | - Edina Katalin Cseh
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Semmelweis u. 6, H-6725, Hungary
| | - Dénes Zádori
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Semmelweis u. 6, H-6725, Hungary
| | - Árpád Párdutz
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Semmelweis u. 6, H-6725, Hungary
| | - Edina Szűcs
- Institute of Biochemistry, Biological Research Centre, Szeged, Temesvári krt. 62, H-6726, Hungary; Doctoral School of Theoretical Medicine, Faculty of Medicine, University of Szeged, Dóm tér 10, H-6720, Szeged, Hungary
| | - Csaba Tömböly
- Institute of Biochemistry, Biological Research Centre, Szeged, Temesvári krt. 62, H-6726, Hungary
| | - Anna Borsodi
- Institute of Biochemistry, Biological Research Centre, Szeged, Temesvári krt. 62, H-6726, Hungary
| | - Sándor Benyhe
- Institute of Biochemistry, Biological Research Centre, Szeged, Temesvári krt. 62, H-6726, Hungary
| | - László Vécsei
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Semmelweis u. 6, H-6725, Hungary; MTA-SZTE Neuroscience Research Group, University of Szeged, H-6725, Szeged, Hungary
| |
Collapse
|
16
|
Lee DY, Hong SH, Kim B, Lee DS, Yu K, Lee KS. Neuropeptide Y mitigates ER stress–induced neuronal cell death by activating the PI3K–XBP1 pathway. Eur J Cell Biol 2018; 97:339-348. [DOI: 10.1016/j.ejcb.2018.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 01/17/2023] Open
|
17
|
Sadok I, Gamian A, Staniszewska MM. Chromatographic analysis of tryptophan metabolites. J Sep Sci 2017; 40:3020-3045. [PMID: 28590049 PMCID: PMC5575536 DOI: 10.1002/jssc.201700184] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/15/2017] [Accepted: 05/24/2017] [Indexed: 12/14/2022]
Abstract
The kynurenine pathway generates multiple tryptophan metabolites called collectively kynurenines and leads to formation of the enzyme cofactor nicotinamide adenine dinucleotide. The first step in this pathway is tryptophan degradation, initiated by the rate-limiting enzymes indoleamine 2,3-dioxygenase, or tryptophan 2,3-dioxygenase, depending on the tissue. The balanced kynurenine metabolism, which has been a subject of multiple studies in last decades, plays an important role in several physiological and pathological conditions such as infections, autoimmunity, neurological disorders, cancer, cataracts, as well as pregnancy. Understanding the regulation of tryptophan depletion provide novel diagnostic and treatment opportunities, however it requires reliable methods for quantification of kynurenines in biological samples with complex composition (body fluids, tissues, or cells). Trace concentrations, interference of sample components, and instability of some tryptophan metabolites need to be addressed using analytical methods. The novel separation approaches and optimized extraction protocols help to overcome difficulties in analyzing kynurenines within the complex tissue material. Recent developments in chromatography coupled with mass spectrometry provide new opportunity for quantification of tryptophan and its degradation products in various biological samples. In this review, we present current accomplishments in the chromatographic methodologies proposed for detection of tryptophan metabolites and provide a guide for choosing the optimal approach.
Collapse
Affiliation(s)
- Ilona Sadok
- Laboratory of Separation and Spectroscopic Method Applications, Centre for Interdisciplinary ResearchThe John Paul II Catholic University of LublinLublinPoland
| | - Andrzej Gamian
- Laboratory of Medical MicrobiologyHirszfeld Institute of Immunology and Experimental TherapyPolish Academy of SciencesWroclawPoland
- Department of Medical BiochemistryWroclaw Medical UniversityWroclawPoland
| | - Magdalena Maria Staniszewska
- Laboratory of Separation and Spectroscopic Method Applications, Centre for Interdisciplinary ResearchThe John Paul II Catholic University of LublinLublinPoland
- Laboratory of Medical MicrobiologyHirszfeld Institute of Immunology and Experimental TherapyPolish Academy of SciencesWroclawPoland
| |
Collapse
|
18
|
Involvement of the kynurenine pathway in the pathogenesis of Parkinson’s disease. Prog Neurobiol 2017; 155:76-95. [DOI: 10.1016/j.pneurobio.2015.12.009] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 12/18/2015] [Accepted: 12/30/2015] [Indexed: 12/14/2022]
|
19
|
Lukács M, Warfvinge K, Tajti J, Fülöp F, Toldi J, Vécsei L, Edvinsson L. Topical dura mater application of CFA induces enhanced expression of c-fos and glutamate in rat trigeminal nucleus caudalis: attenuated by KYNA derivate (SZR72). J Headache Pain 2017; 18:39. [PMID: 28337634 PMCID: PMC5364126 DOI: 10.1186/s10194-017-0746-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 03/14/2017] [Indexed: 11/17/2022] Open
Abstract
Background Migraine is a debilitating neurological disorder where trigeminovascular activation plays a key role. We have previously reported that local application of Complete Freund’s Adjuvant (CFA) onto the dura mater caused activation in rat trigeminal ganglion (TG) which was abolished by a systemic administration of kynurenic acid (KYNA) derivate (SZR72). Here, we hypothesize that this activation may extend to the trigeminal complex in the brainstem and is attenuated by treatment with SZR72. Methods Activation in the trigeminal nucleus caudalis (TNC) and the trigeminal tract (Sp5) was achieved by application of CFA onto the dural parietal surface. SZR72 was given intraperitoneally (i.p.), one dose prior CFA deposition and repeatedly daily for 7 days. Immunohistochemical studies were performed for mapping glutamate, c-fos, PACAP, substance P, IL-6, IL-1β and TNFα in the TNC/Sp5 and other regions of the brainstem and at the C1-C2 regions of the spinal cord. Results We found that CFA increased c-fos and glutamate immunoreactivity in TNC and C1-C2 neurons. This effect was mitigated by SZR72. PACAP positive fibers were detected in the fasciculus cuneatus and gracilis. Substance P, TNFα, IL-6 and IL-1β immunopositivity were detected in fibers of Sp5 and neither of these molecules showed any change in immunoreactivity following CFA administration. Conclusion This is the first study demonstrating that dural application of CFA increases the expression of c-fos and glutamate in TNC neurons. Treatment with the KYNA analogue prevented this expression.
Collapse
Affiliation(s)
- M Lukács
- Department of Clinical Sciences, Division of Experimental Vascular Research, Lund University, Lund, Sweden. .,Department of Neurology, University of Szeged, 6725 Semmelweis street nr. 6, Szeged, Hungary.
| | - K Warfvinge
- Department of Clinical Sciences, Division of Experimental Vascular Research, Lund University, Lund, Sweden.,Department of Clinical Experimental Research, Copenhagen University, Glostrup Hospital, Copenhagen, Denmark
| | - J Tajti
- Department of Neurology, University of Szeged, 6725 Semmelweis street nr. 6, Szeged, Hungary
| | - F Fülöp
- Institute of Pharmaceutical Chemistry and MTA-SZTE Research Group for Stereochemistry, University of Szeged, Szeged, Hungary
| | - J Toldi
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary.,MTA SZTE Neuroscience Research Group, Szeged, Hungary
| | - L Vécsei
- Department of Neurology, University of Szeged, 6725 Semmelweis street nr. 6, Szeged, Hungary.,MTA SZTE Neuroscience Research Group, Szeged, Hungary
| | - L Edvinsson
- Department of Clinical Sciences, Division of Experimental Vascular Research, Lund University, Lund, Sweden.,Department of Clinical Experimental Research, Copenhagen University, Glostrup Hospital, Copenhagen, Denmark
| |
Collapse
|
20
|
Jouha J, Loubidi M, Bouali J, Hamri S, Hafid A, Suzenet F, Guillaumet G, Dagcı T, Khouili M, Aydın F, Saso L, Armagan G. Synthesis of new heterocyclic compounds based on pyrazolopyridine scaffold and evaluation of their neuroprotective potential in MPP + -induced neurodegeneration. Eur J Med Chem 2017; 129:41-52. [DOI: 10.1016/j.ejmech.2017.02.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 02/05/2017] [Accepted: 02/07/2017] [Indexed: 12/17/2022]
|
21
|
Chen CM, Chen IC, Chen YL, Lin TH, Chen WL, Chao CY, Wu YR, Lu YT, Lee CY, Chien HC, Chen TS, Lee-Chen GJ, Lee CM. Medicinal herbs Oenanthe javanica (Blume) DC., Casuarina equisetifolia L. and Sorghum bicolor (L.) Moench protect human cells from MPP + damage via inducing FBXO7 expression. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:1422-1433. [PMID: 27765362 DOI: 10.1016/j.phymed.2016.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 07/21/2016] [Accepted: 08/18/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND The F-box protein 7 (FBXO7) mutations have been identified in families with early-onset parkinsonism and pyramidal tract signs, and designated as PARK15. In addition, FBXO7 mutations were found in typical and young onset Parkinson's disease (PD). Evidence has also shown that FBXO7 plays an important role in the development of dopaminergic neurons and increased stability and overexpression of FBXO7 may be beneficial to PD. PURPOSE We screened extracts of medicinal herbs to enhance FBXO7 expression for neuroprotection in MPP+-treated cells. METHODS Promoter reporter assay in HEK-293 cells was used to examine the cis/trans elements controlling FBXO7 expression and to screen extracts of medicinal herbs enhancing FBXO7 expression. MTT assay was performed to assess cell viability of MPP+-treated HEK-293/SH-SY5Y cells. In addition, proteasome activity, mitochondrial membrane potential and FBXO7/TRAF2/GATA2 protein expression were evaluated. RESULTS We demonstrated that -202--57 region of the FBXO7 promoter is likely to contain sequences that are bound by positive trans protein factors to activate FBXO7 expression and GATA2 is the main trans protein factor enhancing FBXO7 expression. Extracts of medicinal herbs Oenanthe javanica (Blume) DC. (Umbelliferae), Casuarina equisetifolia L. (Casuarinaceae), and Sorghum bicolor (L.) Moench (Gramineae) improved cell viability of both MPP+-treated HEK-293 and SH-SY5Y cells, rescued proteasome activity in MPP+-treated HEK-293 cells, and restored mitochondrial membrane potential in MPP+-treated SH-SY5Y cells. These protection effects of herbal extracts are acting through enhancing FBXO7 and decreasing TRAF2 expression, which is probably mediated by GATA2 induction. CONCLUSION Collectively, our study provides new targets, FBXO7 and its regulator GATA2, for the development of potential treatments of PD.
Collapse
Affiliation(s)
- Chiung-Mei Chen
- Department of Neurology, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taipei 10507, Taiwan
| | - I-Cheng Chen
- Department of Neurology, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taipei 10507, Taiwan
| | - Ying-Lin Chen
- Department of Life Science, National Taiwan Normal University, 88 Ting-Chou Road, Section 4, Taipei 11677, Taiwan
| | - Te-Hsien Lin
- Department of Life Science, National Taiwan Normal University, 88 Ting-Chou Road, Section 4, Taipei 11677, Taiwan
| | - Wan-Ling Chen
- Department of Neurology, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taipei 10507, Taiwan
| | - Chih-Ying Chao
- Department of Neurology, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taipei 10507, Taiwan
| | - Yih-Ru Wu
- Department of Neurology, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taipei 10507, Taiwan
| | - Yeah-Ting Lu
- Department of Life Science, National Taiwan Normal University, 88 Ting-Chou Road, Section 4, Taipei 11677, Taiwan
| | - Cheng-Yu Lee
- Center of Excellence for Drug Development, Industrial Technology Research Institute, Hsinchu 31040, Taiwan
| | - Hong-Chi Chien
- Center of Excellence for Drug Development, Industrial Technology Research Institute, Hsinchu 31040, Taiwan
| | - Ting-Shou Chen
- Center of Excellence for Diagnostic Products, Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 31040, Taiwan
| | - Guey-Jen Lee-Chen
- Department of Life Science, National Taiwan Normal University, 88 Ting-Chou Road, Section 4, Taipei 11677, Taiwan.
| | - Chi-Mei Lee
- Department of Life Science, National Taiwan Normal University, 88 Ting-Chou Road, Section 4, Taipei 11677, Taiwan.
| |
Collapse
|
22
|
Oh Y, Jeong K, Kim K, Lee YS, Jeong S, Kim SS, Yoon KS, Ha J, Kang I, Choe W. Cyclophilin B protects SH-SY5Y human neuroblastoma cells against MPP(+)-induced neurotoxicity via JNK pathway. Biochem Biophys Res Commun 2016; 478:1396-402. [PMID: 27569281 DOI: 10.1016/j.bbrc.2016.08.135] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 08/24/2016] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder of aging. PD involves a progressive loss of dopaminergic neurons in the substantia nigra pars compacta. 1-Methyl-4-phenyl-1, 2, 3, 6-tetrahydropyidine (MPTP) and its toxic metabolite 1-methyl-4-phenylpyridinium ion (MPP+) inhibit the complex I of the mitochondrial electron transport chain, and have been widely used to construct PD models. Cyclophilin B (CypB) is an endoplasmic reticulum protein that binds to cyclosporine A as a cyclophilin family member. CypB has peptidyl-prolyl cis-trans isomerase (PPIase) activity. We investigated the protective effects of overexpressed CypB on MPP+-induced neurocytotoxicity in SH-SY5Y human neuroblastoma cells. Overexpressed CypB decreased MPP(+)-induced oxidative stress through the modulation of antioxidant enzymes including manganese superoxide dismutase and catalase, and prevented neurocytotoxicity via mitogen-activated protein kinase, especially the c-Jun N-terminal kinase pathway. In addition, CypB inhibited the activation of MPP(+)-induced the pro-apoptotic molecules poly (ADP-ribose) polymerase, Bax, and Bcl-2, and attenuated MPP(+)-induced mitochondrial dysfunction. The data suggest that overexpressed CypB protects neuronal cells from MPP+-induced dopaminergic neuronal cell death.
Collapse
Affiliation(s)
- Yoojung Oh
- Department of Biomedical Science, Graduate School, Kyung Hee University, Republic of Korea
| | - Kwon Jeong
- Department of Biomedical Science, Graduate School, Kyung Hee University, Republic of Korea
| | - Kiyoon Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Republic of Korea
| | - Young-Seok Lee
- Department of Biomedical Science, Graduate School, Kyung Hee University, Republic of Korea
| | - Suyun Jeong
- Department of Biomedical Science, Graduate School, Kyung Hee University, Republic of Korea
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, Medicine Research Center for Bioreaction of Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Kyung Hee University, Republic of Korea
| | - Kyung-Sik Yoon
- Department of Biochemistry and Molecular Biology, Medicine Research Center for Bioreaction of Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Kyung Hee University, Republic of Korea
| | - Joohun Ha
- Department of Biochemistry and Molecular Biology, Medicine Research Center for Bioreaction of Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Kyung Hee University, Republic of Korea
| | - Insug Kang
- Department of Biochemistry and Molecular Biology, Medicine Research Center for Bioreaction of Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Kyung Hee University, Republic of Korea
| | - Wonchae Choe
- Department of Biochemistry and Molecular Biology, Medicine Research Center for Bioreaction of Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Kyung Hee University, Republic of Korea.
| |
Collapse
|
23
|
Lukács M, Warfvinge K, Kruse LS, Tajti J, Fülöp F, Toldi J, Vécsei L, Edvinsson L. KYNA analogue SZR72 modifies CFA-induced dural inflammation- regarding expression of pERK1/2 and IL-1β in the rat trigeminal ganglion. J Headache Pain 2016; 17:64. [PMID: 27377707 PMCID: PMC4932003 DOI: 10.1186/s10194-016-0654-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 06/21/2016] [Indexed: 12/19/2022] Open
Abstract
Background Neurogenic inflammation has for decades been considered an important part of migraine pathophysiology. In the present study, we asked the question if administration of a novel kynurenic acid analogue (SZR72), precursor of an excitotoxin antagonist and anti-inflammatory substance, can modify the neurogenic inflammatory response in the trigeminal ganglion. Methods Inflammation in the trigeminal ganglion was induced by local dural application of Complete Freunds Adjuvant (CFA). Levels of phosphorylated MAP kinase pERK1/2 and IL-1β expression in V1 region of the trigeminal ganglion were investigated using immunohistochemistry and Western blot. Findings Pretreatment with one dose of SZR72 abolished the CFA-induced pERK1/2 and IL-1β activation in the trigeminal ganglion. No significant change was noted in case of repeated treatment with SZR72 as compared to a single dose. Conclusions This is the first study that demonstrates that one dose of KYNA analog before application of CFA can give anti-inflammatory response in a model of trigeminal activation, opening a new line for further investigations regarding possible effects of KYNA derivates.
Collapse
Affiliation(s)
- M Lukács
- Department of Clinical Sciences, Division of Experimental Vascular Research, Lund University, Lund, Sweden.,Department of Neurology, University of Szeged, Szeged, Hungary
| | - K Warfvinge
- Department of Clinical Sciences, Division of Experimental Vascular Research, Lund University, Lund, Sweden. .,Department of Clinical Experimental Research, Copenhagen University, Glostrup Hospital, Copenhagen, Denmark. .,Department of Medicine, Institute of Clinical Sciences, Lund University, Sölvegatan 17, SE 221 84, Lund, Sweden.
| | - L S Kruse
- Department of Clinical Experimental Research, Copenhagen University, Glostrup Hospital, Copenhagen, Denmark
| | - J Tajti
- Department of Neurology, University of Szeged, Szeged, Hungary
| | - F Fülöp
- Institute of Pharmaceutical Chemistry and MTA-SZTE Research Group for Stereochemistry, University of Szeged, Szeged, Hungary
| | - J Toldi
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary.,MTA SZTE Neuroscience Research Group, Szeged, Hungary
| | - L Vécsei
- Department of Neurology, University of Szeged, Szeged, Hungary.,MTA SZTE Neuroscience Research Group, Szeged, Hungary
| | - L Edvinsson
- Department of Clinical Sciences, Division of Experimental Vascular Research, Lund University, Lund, Sweden.,Department of Clinical Experimental Research, Copenhagen University, Glostrup Hospital, Copenhagen, Denmark
| |
Collapse
|
24
|
Kynurenine-3-monooxygenase: a review of structure, mechanism, and inhibitors. Drug Discov Today 2016; 21:315-24. [DOI: 10.1016/j.drudis.2015.11.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/14/2015] [Accepted: 11/05/2015] [Indexed: 01/04/2023]
|
25
|
Fan HC, Chi CS, Cheng SN, Lee HF, Tsai JD, Lin SZ, Harn HJ. Targeting New Candidate Genes by Small Molecules Approaching Neurodegenerative Diseases. Int J Mol Sci 2015; 17:E26. [PMID: 26712747 PMCID: PMC4730273 DOI: 10.3390/ijms17010026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/10/2015] [Accepted: 12/21/2015] [Indexed: 02/08/2023] Open
Abstract
Neurodegenerative diseases (NDs) are among the most feared of the disorders that afflict humankind for the lack of specific diagnostic tests and effective treatments. Understanding the molecular, cellular, biochemical changes of NDs may hold therapeutic promise against debilitating central nerve system (CNS) disorders. In the present review, we summarized the clinical presentations and biology backgrounds of NDs, including Parkinson's disease (PD), Huntington's disease (HD), and Alzheimer's disease (AD) and explored the role of molecular mechanisms, including dys-regulation of epigenetic control mechanisms, Ataxia-telangiectasia-mutated protein kinase (ATM), and neuroinflammation in the pathogenesis of NDs. Targeting these mechanisms may hold therapeutic promise against these devastating diseases.
Collapse
Affiliation(s)
- Hueng-Chuen Fan
- Department of Pediatrics, Tung's Taichung Metroharbor Hospital, Wuchi, Taichung 435, Taiwan.
- Department of Nursing, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli 356, Taiwan.
| | - Ching-Shiang Chi
- Department of Pediatrics, Tung's Taichung Metroharbor Hospital, Wuchi, Taichung 435, Taiwan.
- Department of Nursing, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli 356, Taiwan.
| | - Shin-Nan Cheng
- Department of Pediatrics, Tung's Taichung Metroharbor Hospital, Wuchi, Taichung 435, Taiwan.
- Department of Nursing, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli 356, Taiwan.
| | - Hsiu-Fen Lee
- Department of Pediatrics, Taichung Veterans General Hospital, Taichung 407, Taiwan.
| | - Jeng-Dau Tsai
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung 402, Taiwan.
| | - Shinn-Zong Lin
- Graduate Institute of Immunology, China Medical University, Taichung 404, Taiwan.
- Center for Neuropsychiatry, China Medical University and Hospital, Taichung 404, Taiwan.
- Department of Neurosurgery, China Medical University Beigang Hospital, Yunlin 651, Taiwan.
| | - Horng-Jyh Harn
- Department of Pathology, China Medical University and Hospital, Taichung 404, Taiwan.
| |
Collapse
|
26
|
The Genetic Link between Parkinson's Disease and the Kynurenine Pathway Is Still Missing. PARKINSONS DISEASE 2015; 2015:474135. [PMID: 25785227 PMCID: PMC4346699 DOI: 10.1155/2015/474135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 02/04/2015] [Accepted: 02/04/2015] [Indexed: 11/17/2022]
Abstract
Background. There is substantial evidence that the kynurenine pathway (KP) plays a role in the normal physiology of the brain and is involved in the pathology of neurodegenerative disorders such as Huntington's disease and Parkinson's disease (PD). Objective. We set out to investigate the potential roles in PD of single nucleotide polymorphisms (SNPs) from one of the key enzymes of the KP, kynurenine 3-monooxygenase (KMO). Methods. 105 unrelated, clinically definitive PD patients and 131 healthy controls were enrolled to investigate the possible effects of the different alleles of KMO. Fluorescently labeled TaqMan probes were used for allele discrimination. Results. None of the four investigated SNPs proved to be associated with PD or influenced the age at onset of the disease. Conclusions. The genetic link between the KP and PD is still missing. The investigated SNPs presumably do not appear to influence the function of KMO and probably do not contain binding sites for regulatory proteins of relevance in PD. This is the first study to assess the genetic background behind the biochemical alterations of the kynurenine pathway in PD, directing the attention to this previously unexamined field.
Collapse
|
27
|
Campbell BM, Charych E, Lee AW, Möller T. Kynurenines in CNS disease: regulation by inflammatory cytokines. Front Neurosci 2014; 8:12. [PMID: 24567701 PMCID: PMC3915289 DOI: 10.3389/fnins.2014.00012] [Citation(s) in RCA: 283] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 01/20/2014] [Indexed: 12/27/2022] Open
Abstract
The kynurenine pathway (KP) metabolizes the essential amino acid tryptophan and generates a number of neuroactive metabolites collectively called the kynurenines. Segregated into at least two distinct branches, often termed the “neurotoxic” and “neuroprotective” arms of the KP, they are regulated by the two enzymes kynurenine 3-monooxygenase and kynurenine aminotransferase, respectively. Interestingly, several enzymes in the pathway are under tight control of inflammatory mediators. Recent years have seen a tremendous increase in our understanding of neuroinflammation in CNS disease. This review will focus on the regulation of the KP by inflammatory mediators as it pertains to neurodegenerative and psychiatric disorders.
Collapse
Affiliation(s)
- Brian M Campbell
- Neuroinflammation Disease Biology Unit, Lundbeck Research USA Paramus, NJ, USA
| | - Erik Charych
- Neuroinflammation Disease Biology Unit, Lundbeck Research USA Paramus, NJ, USA
| | - Anna W Lee
- Neuroinflammation Disease Biology Unit, Lundbeck Research USA Paramus, NJ, USA
| | - Thomas Möller
- Neuroinflammation Disease Biology Unit, Lundbeck Research USA Paramus, NJ, USA
| |
Collapse
|
28
|
Pinocembrin protects SH-SY5Y cells against MPP+-induced neurotoxicity through the mitochondrial apoptotic pathway. J Mol Neurosci 2014; 53:537-45. [PMID: 24395092 DOI: 10.1007/s12031-013-0219-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Accepted: 12/18/2013] [Indexed: 12/21/2022]
Abstract
Pinocembrin (PB), the most abundant flavonoid in propolis, has been proven to have neuroprotective property against neurotoxicity in vivo and in vitro. Our recent study demonstrated the neuroprotective effect of PB against Aβ25-35-induced SH-SY5Y neurotoxicity. However, the mechanism as how PB can induce neuroprotection is not known. In the present study, we demonstrate here that PB abrogates the effects of the neurotoxin 1-methyl-4-phenylpyridinium (MPP(+)) which mimics Parkinson's disease (PD) with elevation of intracellular reactive oxygen species (ROS) level and apoptotic death. We found that pretreatment of SH-SY5Y cells with PB significantly reduced the MPP(+)-induced loss of cell viability, the generation of intracellular ROS, apoptotic rate, and the cleavage of caspase-3. PB strikingly inhibited MPP(+)-induced mitochondrial dysfunctions, including lowered membrane potential, decreased Bcl-2/Bax ratio, and the release of cytochrome c. Overall, these results suggest that PB is intimately involved in inhibiting MPP(+)-induced loss of mitochondrial function and induction of apoptosis that contributes toward neuronal survival. These data indicated that PB might provide a valuable therapeutic strategy for the treatment of PD.
Collapse
|
29
|
Ambrosi G, Cerri S, Blandini F. A further update on the role of excitotoxicity in the pathogenesis of Parkinson’s disease. J Neural Transm (Vienna) 2014; 121:849-59. [DOI: 10.1007/s00702-013-1149-z] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/19/2013] [Indexed: 11/30/2022]
|
30
|
Carrillo-Mora P, Silva-Adaya D, Villaseñor-Aguayo K. Glutamate in Parkinson's disease: Role of antiglutamatergic drugs. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.baga.2013.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
31
|
Secalonic acid A protects dopaminergic neurons from 1-methyl-4-phenylpyridinium (MPP⁺)-induced cell death via the mitochondrial apoptotic pathway. Eur J Pharmacol 2013; 713:58-67. [PMID: 23665112 DOI: 10.1016/j.ejphar.2013.04.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 04/11/2013] [Accepted: 04/18/2013] [Indexed: 12/21/2022]
Abstract
Secalonic acid A (SAA) is a natural compound found in marine fungi. We have reported that SAA can attenuate the cytotoxicity of colchicine in rat cortical neurons. Whether SAA can also inhibit the neurotoxicity of 1-methyl-4-phenylpyridinium (MPP(+)) in dopaminergic neurons has not been investigated. Here, we show that pretreatment with 1 μM SAA significantly rescued tyrosine hydroxylase (TH)-positive neurons from MPP(+)-induced neurotoxicity in primary dopaminergic neuron culture. Moreover, SAA at doses of 0.15 mg/kg and 0.75 mg/kg increased the number of dopaminergic neurons and upregulated striatal dopamine in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease mice experiments. We also show that SAA significantly attenuated cytotoxicity induced by 2.5 mM MPP(+) in SH-SY5Y cells. These results indicate that the activation of JNK, p38 mitogen activated protein kinase (MAPK) and caspase-3 during apoptosis triggered by MPP(+) could be suppressed by SAA; on the other hand, an MPP(+)-induced increase in the expression of Bax in SH-SY5Y cells was blocked by SAA. These results indicate that inhibition of the phosphorylation of JNK and p38 MAPK, down-regulation of Bax expression, and suppression of caspase-3 activation are involved in the protective effects of SAA against MPP(+) toxicity in SH-SY5Y cells. SAA may rescue dopaminergic neurons from MPP(+)-induced cell death through the mitochondrial apoptotic pathway.
Collapse
|
32
|
Abstract
Various pathologies of the central nervous system (CNS) are accompanied by alterations in tryptophan metabolism. The main metabolic route of tryptophan degradation is the kynurenine pathway; its metabolites are responsible for a broad spectrum of effects, including the endogenous regulation of neuronal excitability and the initiation of immune tolerance. This Review highlights the involvement of the kynurenine system in the pathology of neurodegenerative disorders, pain syndromes and autoimmune diseases through a detailed discussion of its potential implications in Huntington's disease, migraine and multiple sclerosis. The most effective preclinical drug candidates are discussed and attention is paid to currently under-investigated roles of the kynurenine pathway in the CNS, where modulation of kynurenine metabolism might be of therapeutic value.
Collapse
|
33
|
Some molecular mechanisms of dopaminergic and glutamatergic dysfunctioning in Parkinson’s disease. J Neural Transm (Vienna) 2012. [DOI: 10.1007/s00702-012-0930-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
34
|
Tan L, Yu JT, Tan L. The kynurenine pathway in neurodegenerative diseases: mechanistic and therapeutic considerations. J Neurol Sci 2012; 323:1-8. [PMID: 22939820 DOI: 10.1016/j.jns.2012.08.005] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 07/10/2012] [Accepted: 08/08/2012] [Indexed: 12/11/2022]
Abstract
The kynurenine pathway (KP), the primary route of tryptophan degradation in mammalian cells, consists of many metabolites including kynurenic acid (KYNA), quinolinic acid (QUIN), 3-hydroxykynurenine (3-HK) and picolinic acid (PIC). The former two are neuroactive, while the latter two are molecules with pro-oxidants and antioxidants properties. These agents are considered to be involved in aging and numerous neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and amyotrophic lateral sclerosis (ALS). Several studies have demonstrated that altered kynurenine metabolism plays an important role in the pathogenesis of this group of diseases. The important metabolites and key enzymes show significant importance in those disorders. Both analogs of the neuroprotective metabolites and small molecule enzyme inhibitors preventing the formation of neurotoxic compounds may have potential therapeutic significance. In this review we discuss the mechanistic and therapeutic considerations of KP in aging and the main neurodegenerative diseases and review the updated knowledge in this therapeutic field.
Collapse
Affiliation(s)
- Lin Tan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, China.
| | | | | |
Collapse
|
35
|
Song JX, Shaw PC, Wong NS, Sze CW, Yao XS, Tang CW, Tong Y, Zhang YB. Chrysotoxine, a novel bibenzyl compound selectively antagonizes MPP+, but not rotenone, neurotoxicity in dopaminergic SH-SY5Y cells. Neurosci Lett 2012; 521:76-81. [DOI: 10.1016/j.neulet.2012.05.063] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 05/20/2012] [Accepted: 05/21/2012] [Indexed: 12/21/2022]
|
36
|
Astragaloside IV prevents MPP⁺-induced SH-SY5Y cell death via the inhibition of Bax-mediated pathways and ROS production. Mol Cell Biochem 2012; 364:209-16. [PMID: 22278385 DOI: 10.1007/s11010-011-1219-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 12/21/2011] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD) is characterized by a progressive degeneration of dopaminergic neurons in the substantia nigra. Oxidative stress and neural degeneration are suggested to be involved in the pathogenesis of PD. Previous studies have revealed that Astragaloside IV (AS-IV) can reduce inflammation and oxidation, making it a potential therapeutic agent for neurodegenerative disease. In this study, we investigated whether AS-IV protect against 1-methyl-4-phenylpyridnium ion (MPP(+))-induced dopaminergic neurotoxicity in SH-SY5Y cells and determined the mechanism of AS-IV neuroprotection. We found that pretreatment with AS-IV significantly reversed the loss of cell viability, nuclear condensation, the generation of intracellular reactive oxygen species (ROS), and the increase in Bax/Bcl-2 ratio and the activity of caspase-3 induced by MPP(+). Our study suggests that the neuroprotective effect of AS-IV is related to mechanisms including ROS production and the inhibition of Bax-mediated pathway. The present study supports the notion that AS-IV may be a promising neuroprotective agent for the treatment of neurodegenerative disorders such as PD.
Collapse
|
37
|
Zádori D, Klivényi P, Toldi J, Fülöp F, Vécsei L. Kynurenines in Parkinson's disease: therapeutic perspectives. J Neural Transm (Vienna) 2011; 119:275-83. [PMID: 21858430 DOI: 10.1007/s00702-011-0697-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 07/29/2011] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a chronic progressive neurodegenerative disorder the pathomechanism of which is not yet fully known. With regard to the molecular mechanism of development of the disease, oxidative stress/mitochondrial impairment, glutamate excitotoxicity and neuroinflammation are certainly involved. Alterations in the kynurenine pathway, the main pathway of the tryptophan metabolism, can contribute to the complex pathomechanism. There are several possibilities for therapeutic intervention involving targeting of this altered metabolic route. The development of synthetic molecules that would shift the altered balance towards the achievement of neuroprotective effects would be of great promise for future clinical studies on PD.
Collapse
Affiliation(s)
- Dénes Zádori
- Department of Neurology, Albert Szent-Györgyi Clinical Centre, University of Szeged, Semmelweis u. 6, Szeged, 6725, Hungary
| | | | | | | | | |
Collapse
|
38
|
14-3-3theta protects against neurotoxicity in a cellular Parkinson's disease model through inhibition of the apoptotic factor Bax. PLoS One 2011; 6:e21720. [PMID: 21799745 PMCID: PMC3140482 DOI: 10.1371/journal.pone.0021720] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 06/09/2011] [Indexed: 12/21/2022] Open
Abstract
Disruption of 14-3-3 function by alpha-synuclein has been implicated in Parkinson's disease. As 14-3-3s are important regulators of cell death pathways, disruption of 14-3-3s could result in the release of pro-apoptotic factors, such as Bax. We have previously shown that overexpression of 14-3-3θ reduces cell loss in response to rotenone and MPP+ in dopaminergic cell culture and reduces cell loss in transgenic C. elegans that overexpress alpha-synuclein. In this study, we investigate the mechanism for 14-3-3θ's neuroprotection against rotenone toxicity. While 14-3-3s can inhibit many pro-apoptotic factors, we demonstrate that inhibition of one factor in particular, Bax, is important to 14-3-3s' protection against rotenone toxicity in dopaminergic cells. We found that 14-3-3θ overexpression reduced Bax activation and downstream signaling events, including cytochrome C release and caspase 3 activation. Pharmacological inhibition or shRNA knockdown of Bax provided protection against rotenone, comparable to 14-3-3θ's neuroprotective effects. A 14-3-3θ mutant incapable of binding Bax failed to protect against rotenone. These data suggest that 14-3-3θ's neuroprotective effects against rotenone are at least partially mediated by Bax inhibition and point to a potential therapeutic role of 14-3-3s in Parkinson's disease.
Collapse
|
39
|
Sun FL, Zhang L, Zhang RY, Li L. Tetrahydroxystilbene glucoside protects human neuroblastoma SH-SY5Y cells against MPP+-induced cytotoxicity. Eur J Pharmacol 2011; 660:283-90. [PMID: 21497157 DOI: 10.1016/j.ejphar.2011.03.046] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2010] [Revised: 03/05/2011] [Accepted: 03/21/2011] [Indexed: 01/15/2023]
Abstract
1-methyl-4-phenylpyridinium (MPP+), an inhibitor of mitochondrial complex I, has been widely used as a neurotoxin for inducing a cell model of Parkinson's disease. This study aimed to evaluate the effects of 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside (TSG), an active component extracted from Polygonum multiflorum, on MPP+-induced cytotoxicity in human dopaminergic neuroblastoma SH-SY5Y cells. The results from the MTT and lactate dehydrogenase (LDH) assays showed that incubating cells with 500 μM MPP+ for 24 h decreased cell viability and increased LDH leakage, whereas preincubating cells with 3.125 to 50 μM TSG for 24 h protected the cells against MPP+-induced cell damage. Using 2',7'-dichlorofluorescin diacetate (DCFH-DA) and rhodamine 123, respectively, we found that TSG inhibited both the elevation of intracellular reactive oxygen species and the disruption of mitochondrial membrane potential induced by MPP+. In addition, TSG suppressed both the upregulation of the ratio of Bax to Bcl-2 and the activation of caspase-3 induced by MPP+, and TSG inhibited apoptosis as detected by flow cytometric analysis using Annexin-V and propidium (PI) label. These results suggest that TSG may protect neurons against MPP+-induced cell death through improving mitochondrial function, decreasing oxidative stress and inhibiting apoptosis, and this may provide a potentially new strategy for preventing and treating neurodegenerative disorders such as Parkinson's disease.
Collapse
Affiliation(s)
- Fang-ling Sun
- Department of Pharmacology, Xuanwu Hospital of Capital Medical University, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | | | | | | |
Collapse
|
40
|
Proteomics analysis of MPP+-induced apoptosis in SH-SY5Y cells. Neurol Sci 2010; 32:221-8. [DOI: 10.1007/s10072-010-0340-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Accepted: 05/22/2010] [Indexed: 01/06/2023]
|
41
|
Davies NW, Guillemin G, Brew BJ. Tryptophan, Neurodegeneration and HIV-Associated Neurocognitive Disorder. Int J Tryptophan Res 2010; 3:121-40. [PMID: 22084594 PMCID: PMC3195234 DOI: 10.4137/ijtr.s4321] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This review presents an up-to-date assessment of the role of the tryptophan metabolic and catabolic pathways in neurodegenerative disease and HIV-associated neurocognitive disorder. The kynurenine pathway and the effects of each of its enzymes and products are reviewed. The differential expression of the kynurenine pathway in cells within the brain, including inflammatory cells, is explored given the increasing recognition of the importance of inflammation in neurodegenerative disease. An overview of common mechanisms of neurodegeneration is presented before a review and discussion of the evidence for a pathogenetic role of the kynurenine pathway in Alzheimer's disease, HIV-associated neurocognitive disorder, Huntington's disease, motor neurone disease, and Parkinson's disease.
Collapse
Affiliation(s)
- Nicholas W.S. Davies
- Department of Neurology, and
- St Vincent’s Centre for Applied Medical Research, St Vincent’s Hospital, Darlinghurst, Sydney, Australia
| | - Gilles Guillemin
- St Vincent’s Centre for Applied Medical Research, St Vincent’s Hospital, Darlinghurst, Sydney, Australia
| | - Bruce J. Brew
- Department of Neurology, and
- St Vincent’s Centre for Applied Medical Research, St Vincent’s Hospital, Darlinghurst, Sydney, Australia
| |
Collapse
|
42
|
Lee DY, Lee KS, Lee HJ, Kim DH, Noh YH, Yu K, Jung HY, Lee SH, Lee JY, Youn YC, Jeong Y, Kim DK, Lee WB, Kim SS. Activation of PERK signaling attenuates Abeta-mediated ER stress. PLoS One 2010; 5:e10489. [PMID: 20463975 PMCID: PMC2864758 DOI: 10.1371/journal.pone.0010489] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 04/05/2010] [Indexed: 01/21/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by the deposition of aggregated beta-amyloid (Abeta), which triggers a cellular stress response called the unfolded protein response (UPR). The UPR signaling pathway is a cellular defense system for dealing with the accumulation of misfolded proteins but switches to apoptosis when endoplasmic reticulum (ER) stress is prolonged. ER stress is involved in neurodegenerative diseases including AD, but the molecular mechanisms of ER stress-mediated Abeta neurotoxicity still remain unknown. Here, we show that treatment of Abeta triggers the UPR in the SK-N-SH human neuroblastoma cells. Abeta mediated UPR pathway accompanies the activation of protective pathways such as Grp78/Bip and PERK-eIF2alpha pathway, as well as the apoptotic pathways of the UPR such as CHOP and caspase-4. Knockdown of PERK enhances Abeta neurotoxicity through reducing the activation of eIF2alpha and Grp8/Bip in neurons. Salubrinal, an activator of the eIF2alpha pathway, significantly increased the Grp78/Bip ER chaperone resulted in attenuating caspase-4 dependent apoptosis in Abeta treated neurons. These results indicate that PERK-eIF2alpha pathway is a potential target for therapeutic applications in neurodegenerative diseases including AD.
Collapse
Affiliation(s)
- Do Yeon Lee
- Department of Anatomy and Cell Biology, College of Medicine, Chung-Ang University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease and is characterized pathologically by selective loss of nigrostriatal dopaminergic neurons and the formation of Lewy bodies. Although in the majority of cases the cause of PD is unknown, mitochondrial dysfunction, environmental toxins, oxidative stress, and abnormal protein accumulation may all be involved in disease pathogenesis. The discovery of genes causing rare familial forms of PD (including alpha-synuclein, parkin, DJ-1, PINK1, and LRRK2) has shed light on our understanding of the molecular mechanisms of the development of the disease. Further studies from transgenic or toxin-induced experimental models have also provided insights into the etiology of human disease. Recently, accumulating evidence has suggested that mitochondrial dysfunction is one of the key players in molecular cell death pathways of PD. In this review, we provide an overview of the role of mitochondria in the pathogenesis of both sporadic and familial forms of PD. We also discuss the links between different pathways and highlight novel therapeutic opportunities which target mitochondria.
Collapse
Affiliation(s)
- Zhi Yao
- UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | | |
Collapse
|
44
|
Wu F, Poon WS, Lu G, Wang A, Meng H, Feng L, Li Z, Liu S. α-Synuclein knockdown attenuates MPP+ induced mitochondrial dysfunction of SH-SY5Y cells. Brain Res 2009; 1292:173-9. [DOI: 10.1016/j.brainres.2009.07.067] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 07/15/2009] [Accepted: 07/16/2009] [Indexed: 11/25/2022]
|
45
|
Alcohol enhances Abeta42-induced neuronal cell death through mitochondrial dysfunction. FEBS Lett 2008; 582:4185-90. [PMID: 19026642 DOI: 10.1016/j.febslet.2008.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2008] [Revised: 11/02/2008] [Accepted: 11/07/2008] [Indexed: 11/21/2022]
Abstract
Mitochondrial dysfunction is a hallmark of beta-amyloid (Abeta)-induced neuronal toxicity in Alzheimer's disease (AD). Epidemiological studies have indicated that alcohol consumption plays a role in the development of AD. Here we show that alcohol exposure has a synergistic effect on Abeta-induced neuronal cell death. Abeta-treated cultured neurons displayed spontaneous generation of reactive oxygen species (ROS), disruption of their mitochondrial membrane potential, induction of caspase-3 and p53 activities, and loss of cell viability. Alcohol exposure facilitated Abeta-induced neuronal cell death. Our study shows that alcohol consumption enhances Abeta-induced neuronal cell death by increasing ROS and mitochondrial dysfunction.
Collapse
|