1
|
Keshk RM, Salama ZA, Elsaedany SK, ElRehim EMA, Beltagy DM. Synthesis, antimicrobial, anti-inflammatory, antioxidant and cytotoxicity of new pyrimidine and pyrimidopyrimidine derivatives. Sci Rep 2025; 15:9328. [PMID: 40102434 PMCID: PMC11920053 DOI: 10.1038/s41598-025-92066-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 02/25/2025] [Indexed: 03/20/2025] Open
Abstract
A series of novel pyrimidine and pyrimidopyrimidine analogs were synthesized in good yield from 6-amino-4-aryl-2-oxo-pyrimidine-5-carbonitrile (1a-d). The synthesized compounds were characterized using various spectral studies, including FT-IR, 1H NMR, 13C NMR, mass spectrometry, and elemental analysis. Newly synthesized pyrimidopyrimidines and 2-(substituted-pyrazolyl)pyrimidine derivatives were assessed in vitro for their cytotoxic activities against three cancerous cell lines: colorectal carcinoma (HCT-116), mammary gland breast cancer (MCF-7), and hepatocellular carcinoma (HEPG-2), as well as normal fibroblasts (W138). The results indicated that compounds 3b, 10b, and 10c exhibited the highest cytotoxic activities, with IC50 values very close to those of the reference drug (doxorubicin) across all studied cancerous cell lines, while also demonstrating good safety effects on the normal human lung fibroblast cell line. Furthermore, all the synthesized compounds were examined for their antimicrobial activity against two Gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis), one Gram negative bacterium (Escherichia coli) and two fungal species (Candida albicans and Aspergillus flavus). The antimicrobial results of the synthesized compounds, when compared with the reference drugs ampicillin and clotrimazole, revealed that compounds 3a, 3b, 3d, 4a-d, 9c and 10b exhibited excellent antimicrobial activities. Moreover, membrane stabilization or anti-hemolytic activity was employed as a method to study the in vitro anti-inflammatory activity of the prepared heterocyclic compounds. Antioxidant activities were also assessed by measuring the percentage of free radical scavenging. Compounds 4b, 10c and 11a-c demonstrated strong anti-hemolytic and antioxidant effects, which can be attributed to their ability to protect red blood cells from hemolysis.
Collapse
Affiliation(s)
- Reda Mohammed Keshk
- Chemistry Department, Faculty of Science, Damanhour University, Damanhour, 22511, Egypt.
| | - Zeinab Ahmed Salama
- Chemistry Department, Faculty of Science, Damanhour University, Damanhour, 22511, Egypt
| | - Samir Kamel Elsaedany
- Chemistry Department, Faculty of Science, Alexandaria University, Alexandaria, Egypt
| | | | - Doha Mohammad Beltagy
- Biochemistry Department, Faculty of Science, Damanhour University, Damanhour, 22511, Egypt
| |
Collapse
|
2
|
ElHady AK, El-Gamil DS, Abadi AH, Abdel-Halim M, Engel M. An overview of cdc2-like kinase 1 (Clk1) inhibitors and their therapeutic indications. Med Res Rev 2023; 43:343-398. [PMID: 36262046 DOI: 10.1002/med.21928] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 06/07/2022] [Accepted: 09/11/2022] [Indexed: 02/05/2023]
Abstract
Over the past decade, Clk1 has been identified as a promising target for the treatment of various diseases, in which deregulated alternative splicing plays a role. First small molecules targeting Clk1 are in clinical trials for the treatment of solid cancer, where variants of oncogenic proteins derived from alternative splicing promote tumor progression. Since many infectious pathogens hi-jack the host cell's splicing machinery to ensure efficient replication, further indications in this area are under investigation, such as Influenza A, HIV-1 virus, and Trypanosoma infections, and more will likely be discovered in the future. In addition, Clk1 was found to contribute to the progression of Alzheimer's disease through causing an imbalance of tau splicing products. Interestingly, homozygous Clk1 knockout mice showed a rather mild phenotype, opposed to what might be expected in view of the profound role of Clk1 in alternative splicing. A major drawback of most Clk1 inhibitors is their insufficient selectivity; in particular, Dyrk kinases and haspin were frequently identified as off-targets, besides the other Clk isoforms. Only few inhibitors were shown to be selective over Dyrk1A and haspin, whereas no Clk1 inhibitor so far achieved selectivity over the Clk4 isoform. In this review, we carefully compiled all Clk1 inhibitors from the scientific literature and summarized their structure-activity relationships (SAR). In addition, we critically discuss the available selectivity data and describe the inhibitor's efficacy in cellular models, if reported. Thus, we provide a comprehensive overview on the current state of Clk1 drug discovery and highlight the most promising chemotypes.
Collapse
Affiliation(s)
- Ahmed K ElHady
- Department of Organic and Pharmaceutical Chemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, Cairo, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Dalia S El-Gamil
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt.,Department of Chemistry, Faculty of Pharmacy, Ahram Canadian University, Cairo, Egypt
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Matthias Engel
- Department of Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
| |
Collapse
|
3
|
Yang Y, Fan X, Liu Y, Ye D, Liu C, Yang H, Su Z, Zhang Y, Liu Y. Function and Inhibition of DYRK1A: emerging roles of treating multiple human diseases. Biochem Pharmacol 2023; 212:115521. [PMID: 36990324 DOI: 10.1016/j.bcp.2023.115521] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) is an evolutionarily conserved protein kinase and the most studied member of the Dual-specificity tyrosine-regulated kinase (DYRK) family. It has been shown that it participates in the development of plenty of diseases, and both the low or high expression of DYRK1A protein could lead to disorder. Thus, DYRK1A is recognized as a key target for the therapy for these diseases, and the studies on natural or synthetic DYRK1A inhibitors have become more and more popular. Here, we provide a comprehensive review for DYRK1A from the structure and function of DYRK1A, the roles of DYRK1A in various types of diseases, including diabetes mellitus, neurodegenerative diseases, and kinds of cancers, and the studies of its natural and synthetic inhibitors.
Collapse
|
4
|
Fatykhov RF, Khalymbadzha IA, Sharapov AD, Potapova AP, Mochulskaya NN, Tsmokalyuk AN, Ivoilova AV, Mozharovskaia PN, Santra S, Chupakhin ON. MnO 2-Mediated Oxidative Cyclization of "Formal" Schiff's Bases: Easy Access to Diverse Naphthofuro-Annulated Triazines. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27207105. [PMID: 36296698 PMCID: PMC9611995 DOI: 10.3390/molecules27207105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022]
Abstract
A different type of MnO2-induced oxidative cyclization of dihydrotriazines has been developed. These dihydrotriazines are considered as a "formal" Schiff's base. This method provided easy access to naphthofuro-fused triazine via the C-C/C-O oxidative coupling reaction. The reaction sequence comprised the nucleophilic addition of 2-naphthol or phenol to 1,2,4-triazine, followed by oxidative cyclization. The scope and limitations of this novel coupling reaction have been investigated. Further application of the synthesized compound has been demonstrated by synthesizing carbazole-substituted benzofuro-fused triazines. The scalability of the reaction was demonstrated at a 40 mmol load. The mechanistic study strongly suggests that this reaction proceeds through the formation of an O-coordinated manganese complex.
Collapse
Affiliation(s)
- Ramil F. Fatykhov
- Department of Organic and Biomolecular Chemistry, Chemical Engineering Institute, Ural Federal University, 19 Mira Str., 620002 Ekaterinburg, Russia
| | - Igor A. Khalymbadzha
- Department of Organic and Biomolecular Chemistry, Chemical Engineering Institute, Ural Federal University, 19 Mira Str., 620002 Ekaterinburg, Russia
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22 S. Kovalevskaya Str., 620990 Ekaterinburg, Russia
| | - Ainur D. Sharapov
- Department of Organic and Biomolecular Chemistry, Chemical Engineering Institute, Ural Federal University, 19 Mira Str., 620002 Ekaterinburg, Russia
| | - Anastasia P. Potapova
- Department of Organic and Biomolecular Chemistry, Chemical Engineering Institute, Ural Federal University, 19 Mira Str., 620002 Ekaterinburg, Russia
| | - Nataliya N. Mochulskaya
- Department of Organic and Biomolecular Chemistry, Chemical Engineering Institute, Ural Federal University, 19 Mira Str., 620002 Ekaterinburg, Russia
| | - Anton N. Tsmokalyuk
- Department of Organic and Biomolecular Chemistry, Chemical Engineering Institute, Ural Federal University, 19 Mira Str., 620002 Ekaterinburg, Russia
| | - Alexandra V. Ivoilova
- Department of Organic and Biomolecular Chemistry, Chemical Engineering Institute, Ural Federal University, 19 Mira Str., 620002 Ekaterinburg, Russia
| | - Polina N. Mozharovskaia
- Department of Organic and Biomolecular Chemistry, Chemical Engineering Institute, Ural Federal University, 19 Mira Str., 620002 Ekaterinburg, Russia
| | - Sougata Santra
- Department of Organic and Biomolecular Chemistry, Chemical Engineering Institute, Ural Federal University, 19 Mira Str., 620002 Ekaterinburg, Russia
- Correspondence:
| | - Oleg N. Chupakhin
- Department of Organic and Biomolecular Chemistry, Chemical Engineering Institute, Ural Federal University, 19 Mira Str., 620002 Ekaterinburg, Russia
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22 S. Kovalevskaya Str., 620990 Ekaterinburg, Russia
| |
Collapse
|
5
|
A critical update on the strategies towards small molecule inhibitors targeting Serine/arginine-rich (SR) proteins and Serine/arginine-rich proteins related kinases in alternative splicing. Bioorg Med Chem 2022; 70:116921. [PMID: 35863237 DOI: 10.1016/j.bmc.2022.116921] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 11/02/2022]
Abstract
>90% of genes in the human body undergo alternative splicing (AS) after transcription, which enriches protein species and regulates protein levels. However, there is growing evidence that various genetic isoforms resulting from dysregulated alternative splicing are prevalent in various types of cancers. Dysregulated alternative splicing leads to cancer generation and maintenance of cancer properties such as proliferation differentiation, apoptosis inhibition, invasion metastasis, and angiogenesis. Serine/arginine-rich proteins and SR protein-associated kinases mediate splice site recognition and splice complex assembly during variable splicing. Based on the impact of dysregulated alternative splicing on disease onset and progression, the search for small molecule inhibitors targeting alternative splicing is imminent. In this review, we discuss the structure and specific biological functions of SR proteins and describe the regulation of SR protein function by SR protein related kinases meticulously, which are closely related to the occurrence and development of various types of cancers. On this basis, we summarize the reported small molecule inhibitors targeting SR proteins and SR protein related kinases from the perspective of medicinal chemistry. We mainly categorize small molecule inhibitors from four aspects, including targeting SR proteins, targeting Serine/arginine-rich protein-specific kinases (SRPKs), targeting Cdc2-like kinases (CLKs) and targeting dual-specificity tyrosine-regulated kinases (DYRKs), in terms of structure, inhibition target, specific mechanism of action, biological activity, and applicable diseases. With this review, we are expected to provide a timely summary of recent advances in alternative splicing regulated by kinases and a preliminary introduction to relevant small molecule inhibitors.
Collapse
|
6
|
AlNajjar YT, Gabr M, ElHady AK, Salah M, Wilms G, Abadi AH, Becker W, Abdel-Halim M, Engel M. Discovery of novel 6-hydroxybenzothiazole urea derivatives as dual Dyrk1A/α-synuclein aggregation inhibitors with neuroprotective effects. Eur J Med Chem 2022; 227:113911. [PMID: 34710745 DOI: 10.1016/j.ejmech.2021.113911] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 12/20/2022]
Abstract
A role of Dyrk1A in the progression of Down syndrome-related Alzheimer's disease (AD) is well supported. However, the involvement of Dyrk1A in the pathogenesis of Parkinson's disease (PD) was much less studied, and it is not clear whether it would be promising to test Dyrk1A inhibitors in relevant PD models. Herein, we modified our previously published 1-(6-hydroxybenzo[d]thiazol-2-yl)-3-phenylurea scaffold of Dyrk1A inhibitors to obtain a new series of analogues with higher selectivity for Dyrk1A on the one hand, but also with a novel, additional activity as inhibitors of α-synuclein (α-syn) aggregation, a major pathogenic hallmark of PD. The phenyl acetamide derivative b27 displayed the highest potency against Dyrk1A with an IC50 of 20 nM and high selectivity over closely related kinases. Furthermore, b27 was shown to successfully target intracellular Dyrk1A and to inhibit SF3B1 phosphorylation in HeLa cells with an IC50 of 690 nM. In addition, two compounds among the Dyrk1A inhibitors, b1 and b20, also suppressed the aggregation of α-synuclein (α-syn) oligomers (with IC50 values of 10.5 μM and 7.8 μM, respectively). Both compounds but not the Dyrk1A reference inhibitor harmine protected SH-SY5Y neuroblastoma cells against α-syn-induced cytotoxicity, with b20 exhibiting a higher neuroprotective effect. Compound b1 and harmine were more efficient in protecting SH-SY5Y cells against 6-hydroxydopamine-induced cell death, an effect that was previously correlated to Dyrk1A inactivation in cells but not yet verified using chemical inhibitors. The presented dual inhibitors exhibited a novel activity profile encouraging for further testing in neurodegenerative disease models.
Collapse
Affiliation(s)
- Yasmeen T AlNajjar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt
| | - Moustafa Gabr
- Department of Radiology, Stanford University, CA, 94305, United States
| | - Ahmed K ElHady
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt; School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, Cairo, Egypt
| | - Mohamed Salah
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, October University for Modern Sciences and Arts, Cairo, 12451, Egypt
| | - Gerrit Wilms
- Institute of Pharmacology and Toxicology, Medical Faculty of the RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt
| | - Walter Becker
- Institute of Pharmacology and Toxicology, Medical Faculty of the RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt.
| | - Matthias Engel
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123, Saarbrücken, Germany.
| |
Collapse
|
7
|
Pucelik B, Barzowska A, Dąbrowski JM, Czarna A. Diabetic Kinome Inhibitors-A New Opportunity for β-Cells Restoration. Int J Mol Sci 2021; 22:9083. [PMID: 34445786 PMCID: PMC8396662 DOI: 10.3390/ijms22169083] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/13/2021] [Accepted: 08/18/2021] [Indexed: 01/03/2023] Open
Abstract
Diabetes, and several diseases related to diabetes, including cancer, cardiovascular diseases and neurological disorders, represent one of the major ongoing threats to human life, becoming a true pandemic of the 21st century. Current treatment strategies for diabetes mainly involve promoting β-cell differentiation, and one of the most widely studied targets for β-cell regeneration is DYRK1A kinase, a member of the DYRK family. DYRK1A has been characterized as a key regulator of cell growth, differentiation, and signal transduction in various organisms, while further roles and substrates are the subjects of extensive investigation. The targets of interest in this review are implicated in the regulation of β-cells through DYRK1A inhibition-through driving their transition from highly inefficient and death-prone populations into efficient and sufficient precursors of islet regeneration. Increasing evidence for the role of DYRK1A in diabetes progression and β-cell proliferation expands the potential for pharmaceutical applications of DYRK1A inhibitors. The variety of new compounds and binding modes, determined by crystal structure and in vitro studies, may lead to new strategies for diabetes treatment. This review provides recent insights into the initial self-activation of DYRK1A by tyrosine autophosphorylation. Moreover, the importance of developing novel DYRK1A inhibitors and their implications for the treatment of diabetes are thoroughly discussed. The evolving understanding of DYRK kinase structure and function and emerging high-throughput screening technologies have been described. As a final point of this work, we intend to promote the term "diabetic kinome" as part of scientific terminology to emphasize the role of the synergistic action of multiple kinases in governing the molecular processes that underlie this particular group of diseases.
Collapse
Affiliation(s)
- Barbara Pucelik
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland; (B.P.); (A.B.)
| | - Agata Barzowska
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland; (B.P.); (A.B.)
| | - Janusz M. Dąbrowski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Anna Czarna
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland; (B.P.); (A.B.)
| |
Collapse
|
8
|
ElHady AK, El-Gamil DS, Chen PJ, Hwang TL, Abadi AH, Abdel-Halim M, Engel M. 5-Methoxybenzothiophene-2-Carboxamides as Inhibitors of Clk1/4: Optimization of Selectivity and Cellular Potency. Molecules 2021; 26:molecules26041001. [PMID: 33668683 PMCID: PMC7918793 DOI: 10.3390/molecules26041001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 02/04/2023] Open
Abstract
Clks have been shown by recent studies to be promising targets for cancer therapy, as they are considered key regulators in the process of pre-mRNA splicing, which in turn affects every aspect of tumor biology. In particular, Clk1 and -4 are overexpressed in several human tumors. Most of the potent Clk1 inhibitors reported in the literature are non-selective, mainly showing off-target activity towards Clk2, Dyrk1A and Dyrk1B. Herein, we present new 5-methoxybenzothiophene-2-carboxamide derivatives with unprecedented selectivity. In particular, the introduction of a 3,5-difluoro benzyl extension to the methylated amide led to the discovery of compound 10b (cell-free IC50 = 12.7 nM), which was four times more selective for Clk1 over Clk2 than the previously published flagship compound 1b. Moreover, 10b showed an improved growth inhibitory activity with T24 cells (GI50 = 0.43 µM). Furthermore, a new binding model in the ATP pocket of Clk1 was developed based on the structure-activity relationships derived from new rigidified analogues.
Collapse
Affiliation(s)
- Ahmed K. ElHady
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt; (A.K.E.); (D.S.E.-G.); (A.H.A.); (M.A.-H.)
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, Cairo 11865, Egypt
| | - Dalia S. El-Gamil
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt; (A.K.E.); (D.S.E.-G.); (A.H.A.); (M.A.-H.)
| | - Po-Jen Chen
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (P.-J.C.); (T.-L.H.)
- Department of Cosmetic Science, Providence University, Taichung 433, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (P.-J.C.); (T.-L.H.)
- Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 243, Taiwan
| | - Ashraf H. Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt; (A.K.E.); (D.S.E.-G.); (A.H.A.); (M.A.-H.)
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt; (A.K.E.); (D.S.E.-G.); (A.H.A.); (M.A.-H.)
| | - Matthias Engel
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123 Saarbrücken, Germany
- Correspondence: ; Tel.: +49-681-302-70312; Fax: +49-681-302-70308
| |
Collapse
|
9
|
Singh S, Dhanawat M, Gupta S, Kumar D, Kakkar S, Nair A, Verma I, Sharma P. Naturally Inspired Pyrimidines Analogues for Alzheimer's Disease. Curr Neuropharmacol 2021; 19:136-151. [PMID: 33176653 PMCID: PMC8033975 DOI: 10.2174/1570159x18666201111110136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/28/2020] [Accepted: 11/06/2020] [Indexed: 01/17/2023] Open
Abstract
Alzheimer's disease (AD) is a multifarious and developing neurodegenerative disorder. The treatment of AD is still a challenge and availability of drug therapy on the basis of symptoms is not up to the mark. In the context of existence, which is getting worse for the human brain, it is necessary to take care of all critical measures. The disease is caused due to multidirectional pathology of the body, which demands the multi-target-directed ligand (MTDL) approach. This gives hope for new drugs for AD, summarized here in with the pyrimidine based natural product inspired molecule as a lead. The review is sufficient in providing a list of chemical ingredients of the plant to cure AD and screen them against various potential targets of AD. The synthesis of a highly functionalized scaffold in one step in a single pot without isolating the intermediate is a challenging task. In few examples, we have highlighted the importance of this kind of reaction, generally known as multi-component reaction. Multi-component is a widely accepted technique by the drug discovery people due to its high atom economy. It reduces multi-step process to a one-step process, therefore the compounds library can be made in minimum time and cost. This review has highlighted the importance of multicomponent reactions by giving the example of active scaffolds of pyrimidine/fused pyrimidines. This would bring importance to the fast as well as smart synthesis of bio-relevant molecules.
Collapse
Affiliation(s)
- Shivani Singh
- Department of Pharmaceutical Sciences, Somany College of Pharmacy, Rewari, Haryana, India
- Department of Pharmaceutical Sciences, Maharishi Dayanand University, Rohtak, Haryana, India
| | - Meenakshi Dhanawat
- Department of Pharmaceutical Sciences, M. M. College of Pharmacy, M. M. (Deemed to be University), Mullana, (Ambala), Haryana, India
| | - Sumeet Gupta
- Department of Pharmaceutical Sciences, M. M. College of Pharmacy, M. M. (Deemed to be University), Mullana, (Ambala), Haryana, India
| | - Deepak Kumar
- Department of Pharmaceutical Sciences, Indra Gandhi University, Mirpur, Rewari Haryana, India
| | - Saloni Kakkar
- Department of Pharmaceutical Sciences, Maharishi Dayanand University, Rohtak, Haryana, India
| | - Anroop Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Inderjeet Verma
- Department of Pharmaceutical Sciences, M. M. College of Pharmacy, M. M. (Deemed to be University), Mullana, (Ambala), Haryana, India
| | - Prerna Sharma
- Department of Pharmaceutical Sciences, M. M. College of Pharmacy, M. M. (Deemed to be University), Mullana, (Ambala), Haryana, India
| |
Collapse
|
10
|
Loidreau Y, Dubouilh-Benard C, Nourrisson MR, Loaëc N, Meijer L, Besson T, Marchand P. Exploring Kinase Inhibition Properties of 9 H-pyrimido[5,4- b]- and [4,5- b]indol-4-amine Derivatives. Pharmaceuticals (Basel) 2020; 13:ph13050089. [PMID: 32397570 PMCID: PMC7281298 DOI: 10.3390/ph13050089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/01/2020] [Accepted: 05/08/2020] [Indexed: 11/30/2022] Open
Abstract
We previously highlighted the interest in 6,5,6-fused tricyclic analogues of 4-aminoquinazolines as kinase inhibitors in the micromolar to the nanomolar range of IC50 values. For the generation of chemical libraries, the formamide-mediated cyclization of the cyanoamidine precursors was carried out under microwave irradiation in an eco-friendly approach. In order to explore more in-depth the pharmacological interest in such tricyclic skeletons, the central five member ring, i.e., thiophène or furan, was replaced by a pyrrole to afford 9H-pyrimido[5,4-b]- and [4,5-b]indol-4-amine derivatives inspired from harmine. The inhibitory potency of the final products was determined against four protein kinases (CDK5/p25, CK1δ/ε, GSK3α/β, and DYRK1A). As a result, we have identified promising compounds targeting CK1δ/ε and DYRK1A and displaying micromolar and submicromolar IC50 values.
Collapse
Affiliation(s)
- Yvonnick Loidreau
- Normandie Université, UNIROUEN, INSA Rouen, CNRS, COBRA UMR 6014, F-76000 Rouen, France; (Y.L.); (C.D.-B.)
| | - Carole Dubouilh-Benard
- Normandie Université, UNIROUEN, INSA Rouen, CNRS, COBRA UMR 6014, F-76000 Rouen, France; (Y.L.); (C.D.-B.)
| | - Marie-Renée Nourrisson
- Université de Nantes, Cibles et Médicaments des Infections et du Cancer, IICiMed, EA 1155, F-44000 Nantes, France;
| | - Nadège Loaëc
- Station Biologique de Roscoff, Protein Phosphorylation & Human Disease Group, 29680 Roscoff, France; (N.L.); (L.M.)
| | - Laurent Meijer
- Station Biologique de Roscoff, Protein Phosphorylation & Human Disease Group, 29680 Roscoff, France; (N.L.); (L.M.)
- Perha Pharmaceuticals, Perharidy Peninsula, 29680 Roscoff, France
| | - Thierry Besson
- Normandie Université, UNIROUEN, INSA Rouen, CNRS, COBRA UMR 6014, F-76000 Rouen, France; (Y.L.); (C.D.-B.)
- Correspondence: (T.B.); (P.M.); Tel.: +33-235-522-904 (T.B.); +33-253-009-155 (P.M.)
| | - Pascal Marchand
- Université de Nantes, Cibles et Médicaments des Infections et du Cancer, IICiMed, EA 1155, F-44000 Nantes, France;
- Correspondence: (T.B.); (P.M.); Tel.: +33-235-522-904 (T.B.); +33-253-009-155 (P.M.)
| |
Collapse
|
11
|
Fruit C, Couly F, Bhansali R, Rammohan M, Lindberg MF, Crispino JD, Meijer L, Besson T. Biological Characterization of 8-Cyclopropyl-2-(pyridin-3-yl)thiazolo[5,4- f]quinazolin-9(8 H)-one, a Promising Inhibitor of DYRK1A. Pharmaceuticals (Basel) 2019; 12:ph12040185. [PMID: 31861110 PMCID: PMC6958357 DOI: 10.3390/ph12040185] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/13/2019] [Accepted: 12/14/2019] [Indexed: 12/27/2022] Open
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinases (DYRKs) hyperactivity has been linked to the development of a number of human malignancies. DYRK1A is the most studied family member, and the discovery of novel specific inhibitors is attracting considerable interest. The 8-cyclopropyl-2(pyridin-3-yl)thiazolo[5,4-f]quinazolin-9(8H)-one (also called FC162) was found to be a promising inhibitor of DYRK1A and was characterized in biological experiments, by western transfer and flow cytometry on SH-SY5Y and pre-B cells. Here, the results obtained with FC162 are compared to well-characterized known DYRK1A inhibitors (e.g., Leucettine L41 and EHT1610).
Collapse
Affiliation(s)
- Corinne Fruit
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA UMR 6014, 76000 Rouen, France; (C.F.); (F.C.)
| | - Florence Couly
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA UMR 6014, 76000 Rouen, France; (C.F.); (F.C.)
| | - Rahul Bhansali
- Department of Medicine, Division of Hematology/Oncology, Northwestern University, Chicago, IL 60611, USA; (R.B.); (M.R.); (J.D.C.)
- College of Medicine, University of Illinois, Chicago, IL 60611, USA
| | - Malini Rammohan
- Department of Medicine, Division of Hematology/Oncology, Northwestern University, Chicago, IL 60611, USA; (R.B.); (M.R.); (J.D.C.)
| | - Mattias F. Lindberg
- ManRos Therapeutics & Perha Pharmaceuticals, Perharidy Peninsula, 29680 Roscoff, France; (M.F.L.); (L.M.)
| | - John D. Crispino
- Department of Medicine, Division of Hematology/Oncology, Northwestern University, Chicago, IL 60611, USA; (R.B.); (M.R.); (J.D.C.)
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Laurent Meijer
- ManRos Therapeutics & Perha Pharmaceuticals, Perharidy Peninsula, 29680 Roscoff, France; (M.F.L.); (L.M.)
| | - Thierry Besson
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA UMR 6014, 76000 Rouen, France; (C.F.); (F.C.)
- Correspondence: ; Tel.: +33-(0)-235-522-904
| |
Collapse
|
12
|
Receptor-based pharmacophore modeling, virtual screening, and molecular docking studies for the discovery of novel GSK-3β inhibitors. J Mol Model 2019; 25:171. [PMID: 31129879 DOI: 10.1007/s00894-019-4032-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 04/07/2019] [Indexed: 10/26/2022]
Abstract
Considering the emerging importance of glycogen synthase kinase 3 beta (GSK-3β) inhibitors in treatment of Alzheimer's disease, multi-protein structure receptor-based pharmacophore modeling was adopted to generate a 3D pharmacophore model for (GSK-3β) inhibitors. The generated 3D pharmacophore was then validated using a test set of 1235 compounds. The ZINCPharmer web tool was used to virtually screen the public ZINC database using the generated 3D pharmacophore. A set of 12,251 hits was produced and then filtered according to their lead-like properties, predicted central nervous system (CNS) activity, and Pan-assay interference compounds (PAINS) fragments to 630 compounds. Scaffold Hunter was then used to cluster the filtered compounds according to their chemical structure framework. From the different clusters, 123 compounds were selected to cover the whole chemical space of the obtained hits. The SwissADME online tool was then used to filter out the compounds with undesirable pharmacokinetic properties giving a set of 91 compounds with promising predicted pharmacodynamic and pharmacokinetic properties. To confirm their binding capability to the GSK-3β binding site, molecular docking simulations were performed for the final 91 compounds in the GSK-3β binding site. Twenty-five compounds showed acceptable binding poses that bind to the key amino acids in the binding site Asp133 and Val135 with good binding scores. The quinolin-2-one derivative ZINC67773573 was found to be a promising lead for designing new GSK-3β inhibitors for Alzheimer's disease treatment. Graphical abstract A 3D pharmacophore model for the discovery of novel (GSK-3β) inhibitors.
Collapse
|
13
|
Pathak A, Rohilla A, Gupta T, Akhtar MJ, Haider MR, Sharma K, Haider K, Yar MS. DYRK1A kinase inhibition with emphasis on neurodegeneration: A comprehensive evolution story-cum-perspective. Eur J Med Chem 2018; 158:559-592. [PMID: 30243157 DOI: 10.1016/j.ejmech.2018.08.093] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/15/2018] [Accepted: 08/30/2018] [Indexed: 02/08/2023]
Abstract
Alzheimer, the fourth leading cause of death embodies a key responsible event including formation of β-amyloid protein clustering to amyloid plaque on blood vessels. The origin of above events is Amyloid precursor protein (APP) which is an integral membrane protein known for its function in synapses formation. Modern research had proposed that the over expression of DYRK1A (Dual specificity tyrosine phosphorylation regulated kinase1A, a family of protein kinases, positioned within the Down's syndrome critical region (DSCR) on human chromosome 21causes phosphorylation of APP protein resulting in its cleavage to Aβ 40, 42 and tau proteins (regulated by beta and gamma secretase) which plays critical role in early onset of Alzheimer's disease (AD) detected in Down's syndrome (DS), leading to permanent functional and structural deformities which results ultimately into neuro-degeneration and neuronal death. Therefore, DYRK1A emerges as a potential target for prevention of neuro-degeneration and hence Alzheimer. Presently, the treatment methods for Down's syndrome, as well as Alzheimer's disease are extremely biased and represent a major deficiency for therapeutic necessities. We hereby, focus our review on the current status of the research and contributions in the development of DYRK1A inhibitors.
Collapse
Affiliation(s)
- Ankita Pathak
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Ankit Rohilla
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Tanya Gupta
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Md Jawaid Akhtar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Md Rafi Haider
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Kalicharan Sharma
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Kashif Haider
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - M Shahar Yar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India.
| |
Collapse
|
14
|
Darwish SS, Abdel-Halim M, Salah M, Abadi AH, Becker W, Engel M. Development of novel 2,4-bispyridyl thiophene-based compounds as highly potent and selective Dyrk1A inhibitors. Part I: Benzamide and benzylamide derivatives. Eur J Med Chem 2018; 157:1031-1050. [PMID: 30193214 DOI: 10.1016/j.ejmech.2018.07.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/13/2018] [Accepted: 07/18/2018] [Indexed: 12/20/2022]
Abstract
The protein kinase Dyrk1A modulates several processes relevant to the development or progression of Alzheimer's disease (AD), e. g. through phosphorylation of tau protein, amyloid precursor protein (APP) as well as proteins involved in the regulation of alternative splicing of tau pre-mRNA. Therefore, Dyrk1A has been proposed as a potential target for the treatment of AD. However, the co-inhibition of other closely related kinases of the same family of protein kinases (e.g. Dyrk1B and Dyrk2) or kinases from other families such as Clk1 limits the use of Dyrk1A inhibitors, as this may cause unpredictable side effects especially over long treatment periods. Herein, we describe the design and synthesis of a series of amide functionalized 2,4-bispyridyl thiophene compounds, of which the 4-fluorobenzyl amide derivative (31b) displayed the highest potency against Dyrk1A and remarkable selectivity over closely related kinases (IC50: Dyrk1A = 14.3 nM; Dyrk1B = 383 nM, Clk1 > 2 μM). This degree of selectivity over the frequently hit off-targets has rarely been achieved to date. Additionally, 31b inhibited Dyrk1A in intact cells with high efficacy (IC50 = 79 nM). Furthermore, 31b displayed a high metabolic stability in vitro with a half-life of 2 h. Altogether, the benzamide and benzylamide extension at the 2,4-bispyridyl thiophene core improved several key properties, giving access to compound suitable for future in vivo studies.
Collapse
Affiliation(s)
- Sarah S Darwish
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Mohamed Salah
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123 Saarbrücken, Germany
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Walter Becker
- Institute of Pharmacology and Toxicology, Medical Faculty of the RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | - Matthias Engel
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123 Saarbrücken, Germany.
| |
Collapse
|
15
|
Couly F, Harari M, Dubouilh-Benard C, Bailly L, Petit E, Diharce J, Bonnet P, Meijer L, Fruit C, Besson T. Development of Kinase Inhibitors via Metal-Catalyzed C⁻H Arylation of 8-Alkyl-thiazolo[5,4- f]-quinazolin-9-ones Designed by Fragment-Growing Studies. Molecules 2018; 23:E2181. [PMID: 30158487 PMCID: PMC6225322 DOI: 10.3390/molecules23092181] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 12/14/2022] Open
Abstract
Efficient metal catalyzed C⁻H arylation of 8-alkyl-thiazolo[5,4-f]-quinazolin-9-ones was explored for SAR studies. Application of this powerful chemical tool at the last stage of the synthesis of kinase inhibitors allowed the synthesis of arrays of molecules inspired by fragment-growing studies generated by molecular modeling calculations. Among the potentially active compounds designed through this strategy, FC162 (4c) exhibits nanomolar IC50 values against some kinases, and is the best candidate for the development as a DYRK kinase inhibitor.
Collapse
Affiliation(s)
- Florence Couly
- Normandie University, UNIROUEN, INSA Rouen, CNRS, COBRA UMR 6014, 76000 Rouen, France.
| | - Marine Harari
- Normandie University, UNIROUEN, INSA Rouen, CNRS, COBRA UMR 6014, 76000 Rouen, France.
| | | | - Laetitia Bailly
- Normandie University, UNIROUEN, INSA Rouen, CNRS, COBRA UMR 6014, 76000 Rouen, France.
| | - Emilie Petit
- Normandie University, UNIROUEN, INSA Rouen, CNRS, COBRA UMR 6014, 76000 Rouen, France.
| | - Julien Diharce
- Institut de Chimie Organique et Analytique (ICOA), Université d'Orléans, UMR CNRS, 7311 BP 6759, 45067 Orléans CEDEX 2, France.
| | - Pascal Bonnet
- Institut de Chimie Organique et Analytique (ICOA), Université d'Orléans, UMR CNRS, 7311 BP 6759, 45067 Orléans CEDEX 2, France.
| | - Laurent Meijer
- ManRos Therapeutics, Perharidy Peninsula, 29680 Roscoff, France.
| | - Corinne Fruit
- Normandie University, UNIROUEN, INSA Rouen, CNRS, COBRA UMR 6014, 76000 Rouen, France.
| | - Thierry Besson
- Normandie University, UNIROUEN, INSA Rouen, CNRS, COBRA UMR 6014, 76000 Rouen, France.
| |
Collapse
|
16
|
Winfield HJ, Cahill MM, O'Shea KD, Pierce LT, Robert T, Ruchaud S, Bach S, Marchand P, McCarthy FO. Synthesis and anticancer activity of novel bisindolylhydroxymaleimide derivatives with potent GSK-3 kinase inhibition. Bioorg Med Chem 2018; 26:4209-4224. [DOI: 10.1016/j.bmc.2018.07.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/07/2018] [Indexed: 12/18/2022]
|
17
|
Benzofuro[3,2-d]pyrimidines inspired from cercosporamide CaPkc1 inhibitor: Synthesis and evaluation of fluconazole susceptibility restoration. Bioorg Med Chem Lett 2018; 28:2250-2255. [DOI: 10.1016/j.bmcl.2018.05.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/20/2018] [Accepted: 05/23/2018] [Indexed: 01/05/2023]
|
18
|
First Metal-Free Synthesis of Tetracyclic Pyrido and Pyrazino Thienopyrimidinone Molecules. Molecules 2018; 23:molecules23051159. [PMID: 29751677 PMCID: PMC6100531 DOI: 10.3390/molecules23051159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/04/2018] [Accepted: 05/08/2018] [Indexed: 11/17/2022] Open
Abstract
We report herein a new metal free synthetic pathway to generate tetracyclic compounds from 3-aminothieno[3,2-b]pyridine-2-carboxylate. To enlarge the molecular diversity, we studied the Suzuki coupling of 9-chloro-6H-pyrido[1,2-a]pyrido[2′,3′:4,5]thieno[3,2-d]pyrimidin-6-one and several boronic acids were easily introduced.
Collapse
|
19
|
Zhou Q, Phoa AF, Abbassi RH, Hoque M, Reekie TA, Font JS, Ryan RM, Stringer BW, Day BW, Johns TG, Munoz L, Kassiou M. Structural Optimization and Pharmacological Evaluation of Inhibitors Targeting Dual-Specificity Tyrosine Phosphorylation-Regulated Kinases (DYRK) and CDC-like kinases (CLK) in Glioblastoma. J Med Chem 2017; 60:2052-2070. [DOI: 10.1021/acs.jmedchem.6b01840] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
| | | | | | | | | | | | | | - Brett W. Stringer
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Queensland 4006, Australia
| | - Bryan W. Day
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Queensland 4006, Australia
| | - Terrance G. Johns
- Oncogenic
Signaling Laboratory, Centre for Cancer Research, Hudson Institute of Medical Research, 27 Wright Street, Clayton, Victoria 3168, Australia
| | | | | |
Collapse
|
20
|
Anis’kova TV, Verevochkin AA, Egorova AY. Synthesis of substituted 3,4-dihydrofuro[2,3-d]pyrimidines from 3-arylmethylidenefuran-2(3H)-ones. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2017. [DOI: 10.1134/s1070428016120290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Exploration of the imidazo[1,2-b]pyridazine scaffold as a protein kinase inhibitor. Eur J Med Chem 2017; 125:696-709. [DOI: 10.1016/j.ejmech.2016.09.064] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 09/19/2016] [Accepted: 09/20/2016] [Indexed: 12/21/2022]
|
22
|
Labrière C, Lozach O, Blairvacq M, Meijer L, Guillou C. Further investigation of Paprotrain: Towards the conception of selective and multi-targeted CNS kinase inhibitors. Eur J Med Chem 2016; 124:920-934. [DOI: 10.1016/j.ejmech.2016.08.069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 08/29/2016] [Accepted: 08/30/2016] [Indexed: 12/21/2022]
|
23
|
Hédou D, Dubouilh-Benard C, Loaëc N, Meijer L, Fruit C, Besson T. Synthesis of Bioactive 2-(Arylamino)thiazolo[5,4-f]-quinazolin-9-ones via the Hügershoff Reaction or Cu- Catalyzed Intramolecular C-S Bond Formation. Molecules 2016; 21:molecules21060794. [PMID: 27322235 PMCID: PMC6272913 DOI: 10.3390/molecules21060794] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/12/2016] [Accepted: 06/13/2016] [Indexed: 11/16/2022] Open
Abstract
A library of thirty eight novel thiazolo[5,4-f]quinazolin-9(8H)-one derivatives (series 8, 10, 14 and 17) was prepared via the Hügershoff reaction and a Cu catalyzed intramolecular C-S bond formation, helped by microwave-assisted technology when required. The efficient multistep synthesis of the key 6-amino-3-cyclopropylquinazolin-4(3H)-one (3) has been reinvestigated and performed on a multigram scale from the starting 5-nitroanthranilic acid. The inhibitory potency of the final products was evaluated against five kinases involved in Alzheimer's disease and showed that some molecules of the 17 series described in this paper are particularly promising for the development of novel multi-target inhibitors of kinases.
Collapse
Affiliation(s)
- Damien Hédou
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000 Rouen, France.
| | | | - Nadège Loaëc
- Protein Phosphorylation & Human Disease group, Station Biologique, 29680 Roscoff, France.
- Manros Therapeutics, Centre de Perharidy, 29680 Roscoff, France.
| | - Laurent Meijer
- Manros Therapeutics, Centre de Perharidy, 29680 Roscoff, France.
| | - Corinne Fruit
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000 Rouen, France.
| | - Thierry Besson
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000 Rouen, France.
| |
Collapse
|
24
|
Synthesis of Thiazolo[5,4-f]quinazolin-9(8H)-ones as Multi-Target Directed Ligands of Ser/Thr Kinases. Molecules 2016; 21:molecules21050578. [PMID: 27144552 PMCID: PMC6273584 DOI: 10.3390/molecules21050578] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 04/22/2016] [Accepted: 04/23/2016] [Indexed: 11/17/2022] Open
Abstract
A library of thirty novel thiazolo[5,4-f]quinazolin-9(8H)-one derivatives belonging to four series designated as 12, 13, 14 and 15 was efficiently prepared, helped by microwave-assisted technology when required. The efficient multistep synthesis of methyl 6-amino-2-cyano- benzo[d]thiazole-7-carboxylate (1) has been reinvestigated and performed on a multigram scale. The inhibitory potency of the final products against five kinases involved in Alzheimer's disease was evaluated. This study demonstrates that some molecules of the 12 and 13 series described in this paper are particularly promising for the development of new multi-target inhibitors of kinases.
Collapse
|
25
|
Stotani S, Giordanetto F, Medda F. DYRK1A inhibition as potential treatment for Alzheimer's disease. Future Med Chem 2016; 8:681-96. [PMID: 27073990 DOI: 10.4155/fmc-2016-0013] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
In total, 47,500,000 people worldwide are affected by dementia and this number is estimated to double by 2030 and triple within 2050 resulting in a huge burden on public health. Alzheimer's disease (AD), a progressive neurodegenerative disorder, is the most common cause of dementia, accounting for 60-70% of all the cases. The cause of AD is still poorly understood but several brain abnormalities (e.g., loss of neuronal connections and neuronal death) have been identified in affected patients. In addition to the accumulation of β-amyloid plaques in the brain tissue, aberrant phosphorylation of tau proteins has proved to increase neuronal death. DYRK1A phosphorylates tau on 11 different Ser/Thr residues, resulting in the formation of aggregates called 'neurofibrillary tangles' which, together with amyloid plaques, could be responsible for dementia, neuronal degeneration and cell death. Small molecule inhibition of DYRK1A could thus represent an interesting approach toward the treatment of Alzheimer's and other neurodegenerative diseases. Herein we review the current progress in the identification and development of DYRK1A inhibitors.
Collapse
Affiliation(s)
- Silvia Stotani
- Medicinal Chemistry, Taros Chemicals GmbH & Co. KG, Emil-Figge-Str. 76a, 44227 Dortmund, Germany
| | - Fabrizio Giordanetto
- Medicinal Chemistry, Taros Chemicals GmbH & Co. KG, Emil-Figge-Str. 76a, 44227 Dortmund, Germany
- DE Shaw Research, 120W 45th Street, New York, NY 10036, USA
| | - Federico Medda
- Medicinal Chemistry, Taros Chemicals GmbH & Co. KG, Emil-Figge-Str. 76a, 44227 Dortmund, Germany
| |
Collapse
|
26
|
Antoine M, Schuster T, Seipelt I, Aicher B, Teifel M, Günther E, Gerlach M, Marchand P. Efficient synthesis of novel disubstituted pyrido[3,4-b]pyrazines for the design of protein kinase inhibitors. MEDCHEMCOMM 2016. [DOI: 10.1039/c5md00424a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Urea and aniline derivatives were active at low micromomolar IC50 values against a panel of seven cancer-related protein kinases.
Collapse
Affiliation(s)
- Maud Antoine
- Université de Nantes
- Nantes Atlantique Universités
- Laboratoire de Chimie Thérapeutique
- Cibles et Médicaments des Infections et du Cancer IICiMed EA 1155
- UFR des Sciences Pharmaceutiques et Biologiques
| | | | | | | | | | | | | | - Pascal Marchand
- Université de Nantes
- Nantes Atlantique Universités
- Laboratoire de Chimie Thérapeutique
- Cibles et Médicaments des Infections et du Cancer IICiMed EA 1155
- UFR des Sciences Pharmaceutiques et Biologiques
| |
Collapse
|
27
|
Abbassi R, Johns TG, Kassiou M, Munoz L. DYRK1A in neurodegeneration and cancer: Molecular basis and clinical implications. Pharmacol Ther 2015; 151:87-98. [PMID: 25795597 DOI: 10.1016/j.pharmthera.2015.03.004] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 03/06/2015] [Indexed: 01/10/2023]
Abstract
Protein kinases are one of the most studied drug targets in current pharmacological research, as evidenced by the vast number of kinase-targeting agents enrolled in active clinical trials. Dual-specificity Tyrosine phosphorylation-Regulated Kinase 1A (DYRK1A) has been much less studied compared to many other kinases. DYRK1A primary function occurs during early development, where this protein regulates cellular processes related to proliferation and differentiation of neuronal progenitor cells. Although most extensively characterised for its role in brain development, DYRK1A is over-expressed in a variety of diseases including a number of human malignancies, such as haematological and brain cancers. Here we review the accumulating molecular studies that support our understanding of how DYRK1A signalling could underlie these pathological functions. The relevance of DYRK1A in a number of diseases is also substantiated with intensive drug discovery efforts to develop potent and selective inhibitors of DYRK1A. Several classes of DYRK1A inhibitors have recently been disclosed and some molecules are promising leads to develop DYRK1A inhibitors as drugs for DYRK1A-dependent diseases.
Collapse
Affiliation(s)
- Ramzi Abbassi
- Department of Pharmacology, School of Medical Sciences, University of Sydney, NSW 2006, Australia
| | - Terrance G Johns
- MIMR-PHI Institute of Medical Research, 27-31 Wright Street, Clayton, VIC 3168, Australia; Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Michael Kassiou
- School of Chemistry and Faculty of Health Sciences, University of Sydney, NSW 2006, Australia
| | - Lenka Munoz
- Department of Pharmacology, School of Medical Sciences, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
28
|
Rothweiler U, Eriksson J, Stensen W, Leeson F, Engh RA, Svendsen JS. Luciferin and derivatives as a DYRK selective scaffold for the design of protein kinase inhibitors. Eur J Med Chem 2015; 94:140-8. [PMID: 25768698 DOI: 10.1016/j.ejmech.2015.02.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 01/19/2015] [Accepted: 02/19/2015] [Indexed: 12/27/2022]
Abstract
D-Luciferin is widely used as a substrate in luciferase catalysed bioluminescence assays for in vitro studies. However, little is known about cross reactivity and potential interference of D-luciferin with other enzymes. We serendipitously found that firefly luciferin inhibited the CDK2/Cyclin A protein kinase. Inhibition profiling of D-luciferin over a 103-protein kinase panel showed significant inhibition of a small set of protein kinases, in particular the DYRK-family, but also other members of the CMGC-group, including ERK8 and CK2. Inhibition profiling on a 16-member focused library derived from D-luciferin confirms that D-luciferin represents a DYRK-selective chemotype of fragment-like molecular weight. Thus, observation of its inhibitory activity and the initial SAR information reported here promise to be useful for further design of protein kinase inhibitors with related scaffolds.
Collapse
Affiliation(s)
- Ulli Rothweiler
- The Norwegian Structural Biology Centre, Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Jonas Eriksson
- Lytix Biopharma AS, P.O. Box 6447, Tromsø Science Park, N-9294 Tromsø, Norway
| | - Wenche Stensen
- Lytix Biopharma AS, P.O. Box 6447, Tromsø Science Park, N-9294 Tromsø, Norway; Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Frederick Leeson
- Lytix Biopharma AS, P.O. Box 6447, Tromsø Science Park, N-9294 Tromsø, Norway; Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Richard A Engh
- The Norwegian Structural Biology Centre, Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway.
| | - John S Svendsen
- Lytix Biopharma AS, P.O. Box 6447, Tromsø Science Park, N-9294 Tromsø, Norway; Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway.
| |
Collapse
|
29
|
Kettle JG, Ballard P, Bardelle C, Cockerill M, Colclough N, Critchlow SE, Debreczeni J, Fairley G, Fillery S, Graham MA, Goodwin L, Guichard S, Hudson K, Ward RA, Whittaker D. Discovery and optimization of a novel series of Dyrk1B kinase inhibitors to explore a MEK resistance hypothesis. J Med Chem 2015; 58:2834-44. [PMID: 25738750 DOI: 10.1021/acs.jmedchem.5b00098] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Potent and selective inhibitors of Dyrk1B kinase were developed to explore the hypothesis, based on siRNA studies, that Dyrk1B may be a resistance mechanism in cells undergoing a stress response.
Collapse
Affiliation(s)
- Jason G Kettle
- Oncology iMed, AstraZeneca, Alderley Park, Macclesfield, SK10 4TG, United Kingdom
| | - Peter Ballard
- Oncology iMed, AstraZeneca, Alderley Park, Macclesfield, SK10 4TG, United Kingdom
| | - Catherine Bardelle
- Oncology iMed, AstraZeneca, Alderley Park, Macclesfield, SK10 4TG, United Kingdom
| | - Mark Cockerill
- Oncology iMed, AstraZeneca, Alderley Park, Macclesfield, SK10 4TG, United Kingdom
| | - Nicola Colclough
- Oncology iMed, AstraZeneca, Alderley Park, Macclesfield, SK10 4TG, United Kingdom
| | - Susan E Critchlow
- Oncology iMed, AstraZeneca, Alderley Park, Macclesfield, SK10 4TG, United Kingdom
| | - Judit Debreczeni
- Oncology iMed, AstraZeneca, Alderley Park, Macclesfield, SK10 4TG, United Kingdom
| | - Gary Fairley
- Oncology iMed, AstraZeneca, Alderley Park, Macclesfield, SK10 4TG, United Kingdom
| | - Shaun Fillery
- Oncology iMed, AstraZeneca, Alderley Park, Macclesfield, SK10 4TG, United Kingdom
| | - Mark A Graham
- Oncology iMed, AstraZeneca, Alderley Park, Macclesfield, SK10 4TG, United Kingdom
| | - Louise Goodwin
- Oncology iMed, AstraZeneca, Alderley Park, Macclesfield, SK10 4TG, United Kingdom
| | - Sylvie Guichard
- Oncology iMed, AstraZeneca, Alderley Park, Macclesfield, SK10 4TG, United Kingdom
| | - Kevin Hudson
- Oncology iMed, AstraZeneca, Alderley Park, Macclesfield, SK10 4TG, United Kingdom
| | - Richard A Ward
- Oncology iMed, AstraZeneca, Alderley Park, Macclesfield, SK10 4TG, United Kingdom
| | - David Whittaker
- Oncology iMed, AstraZeneca, Alderley Park, Macclesfield, SK10 4TG, United Kingdom
| |
Collapse
|
30
|
Loidreau Y, Deau E, Marchand P, Nourrisson MR, Logé C, Coadou G, Loaëc N, Meijer L, Besson T. Synthesis and molecular modelling studies of 8-arylpyrido[3',2':4,5]thieno[3,2-d]pyrimidin-4-amines as multitarget Ser/Thr kinases inhibitors. Eur J Med Chem 2014; 92:124-34. [PMID: 25549552 DOI: 10.1016/j.ejmech.2014.12.038] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/10/2014] [Accepted: 12/21/2014] [Indexed: 02/07/2023]
Abstract
This paper reports the design and synthesis of a novel series of 8-arylpyrido[3',2':4,5]thieno[3,2-d]pyrimidin-4-amines via microwave-assisted multi-step synthesis. A common precursor of the whole series, 3-amino-5-bromothieno[2,3-b]pyridine-2-carbonitrile, was rapidly synthesized in one step from commercially-available 5-bromo-2-chloronicotinonitrile. Formylation with DMF-DMA led to (E)-N'-(5-bromo-2-cyanothieno[2,3-b]pyridin-3-yl)-N,N-dimethylformimidamide (4) which was conveniently functionalized at position 8 by palladium-catalyzed Suzuki-Miyaura cross-coupling to introduce a heteroaromatic ring. High-temperature formamide-mediated cyclization of the cyanoamidine intermediate gave seventeen 8-arylpyrido[3',2':4,5]thieno[3,2-d]pyrimidin-4-amines. The inhibitory potency of the final products was evaluated against five protein kinases (CDK5/p25, CK1δ/ε, GSK3α/β, DYRK1A and CLK1) and revealed that 8-(2,4-dichlorophenyl)pyrido[3',2':4,5]thieno[3,2-d]pyrimidin-4-amine 1g specifically inhibits CK1δ/ε and CLK1 (220 and 88 nM, respectively) while its 7-(2,4-dichlorophenyl)pyrido[3',2':4,5]thieno[3,2-d]pyrimidin-4-amine isomer 10 showed no activity on the panel of tested kinases. Molecular modelling of 10 and 1g in the ATP binding sites of CK1δ/ε and CLK1 showed that functionalization at position 7 of pyrido[3',2':4,5]thieno[3,2-d]pyrimidin-4-amines is likely to induce a steric clash on the CK1δ/ε P-loop and thus a complete loss of inhibitory activity.
Collapse
Affiliation(s)
- Yvonnick Loidreau
- Normandie Univ, COBRA, UMR 6014 & FR 3038; Univ Rouen; INSA Rouen; CNRS, Bâtiment IRCOF, 1 rue Tesnière, 76821 Mont St Aignan Cedex, France
| | - Emmanuel Deau
- Normandie Univ, COBRA, UMR 6014 & FR 3038; Univ Rouen; INSA Rouen; CNRS, Bâtiment IRCOF, 1 rue Tesnière, 76821 Mont St Aignan Cedex, France
| | - Pascal Marchand
- Université de Nantes, Nantes Atlantique Universités, Laboratoire de Chimie Thérapeutique, Cibles et Médicaments des Infections et du Cancer, IICiMed UPRES EA 1155, UFR des Sciences Pharmaceutiques et Biologiques, 1 rue Gaston Veil, 44035 Nantes, France
| | - Marie-Renée Nourrisson
- Université de Nantes, Nantes Atlantique Universités, Laboratoire de Chimie Thérapeutique, Cibles et Médicaments des Infections et du Cancer, IICiMed UPRES EA 1155, UFR des Sciences Pharmaceutiques et Biologiques, 1 rue Gaston Veil, 44035 Nantes, France
| | - Cédric Logé
- Université de Nantes, Nantes Atlantique Universités, Laboratoire de Chimie Thérapeutique, Cibles et Médicaments des Infections et du Cancer, IICiMed UPRES EA 1155, UFR des Sciences Pharmaceutiques et Biologiques, 1 rue Gaston Veil, 44035 Nantes, France
| | - Gaël Coadou
- Normandie Univ, COBRA, UMR 6014 & FR 3038; Univ Rouen; INSA Rouen; CNRS, Bâtiment IRCOF, 1 rue Tesnière, 76821 Mont St Aignan Cedex, France
| | - Nadège Loaëc
- Protein Phosphorylation & Human Disease Group, Station Biologique, 29680 Roscoff, France; Manros Therapeutics, Centre de Perharidy, 29680 Roscoff, France
| | - Laurent Meijer
- Manros Therapeutics, Centre de Perharidy, 29680 Roscoff, France
| | - Thierry Besson
- Normandie Univ, COBRA, UMR 6014 & FR 3038; Univ Rouen; INSA Rouen; CNRS, Bâtiment IRCOF, 1 rue Tesnière, 76821 Mont St Aignan Cedex, France.
| |
Collapse
|
31
|
Foucourt A, Hédou D, Dubouilh-Benard C, Désiré L, Casagrande AS, Leblond B, Loäec N, Meijer L, Besson T. Design and synthesis of thiazolo[5,4-f]quinazolines as DYRK1A inhibitors, part I. Molecules 2014; 19:15546-71. [PMID: 25268714 PMCID: PMC6270991 DOI: 10.3390/molecules191015546] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/19/2014] [Accepted: 09/22/2014] [Indexed: 11/16/2022] Open
Abstract
The convenient synthesis of a library of novel 6,6,5-tricyclic thiazolo[5,4-f] quinazolines (forty molecules) was achieved mainly under microwave irradiation. Dimroth rearrangement and 4,5-dichloro-1,2,3,-dithiazolium chloride (Appel salt) chemistry were associated for the synthesis of a novel 6-aminobenzo[d]thiazole-2,7-dicarbonitrile (16) a versatile molecular platform for the synthesis of various bioactive derivatives. Kinase inhibition of the final compounds was evaluated on a panel of four Ser/Thr kinases (DYRK1A, CDK5, CK1 and GSK3) chosen for their strong implications in various regulation processes, especially Alzheimer's disease (AD). In view of the results of this preliminary screening, thiazolo[5,4-f]quinazoline scaffolds constitutes a promising source of inspiration for the synthesis of novel bioactive molecules. Among the compounds of this novel chemolibrary, 7i, 8i and 9i inhibited DYRK1A with IC50 values ranging in the double-digit nanomolar range (40, 47 and 50 nM, respectively).
Collapse
Affiliation(s)
- Alicia Foucourt
- Normandie Université, Laboratoire C.O.B.R.A., UMR 6014 and FR 3038; Université de Rouen; INSA de Rouen; CNRS, Bâtiment I.R.C.O.F. rue Tesnière, Mont-Saint-Aignan F-76821, France.
| | - Damien Hédou
- Normandie Université, Laboratoire C.O.B.R.A., UMR 6014 and FR 3038; Université de Rouen; INSA de Rouen; CNRS, Bâtiment I.R.C.O.F. rue Tesnière, Mont-Saint-Aignan F-76821, France.
| | - Carole Dubouilh-Benard
- Normandie Université, Laboratoire C.O.B.R.A., UMR 6014 and FR 3038; Université de Rouen; INSA de Rouen; CNRS, Bâtiment I.R.C.O.F. rue Tesnière, Mont-Saint-Aignan F-76821, France.
| | | | | | | | - Nadège Loäec
- Protein Phosphorylation & Human Disease group, CNRS, Station Biologique, Roscoff F-29680, France.
| | - Laurent Meijer
- ManRos Therapeutics, Centre de Perharidy, Roscoff F-29680, France.
| | - Thierry Besson
- Normandie Université, Laboratoire C.O.B.R.A., UMR 6014 and FR 3038; Université de Rouen; INSA de Rouen; CNRS, Bâtiment I.R.C.O.F. rue Tesnière, Mont-Saint-Aignan F-76821, France.
| |
Collapse
|
32
|
Foucourt A, Hédou D, Dubouilh-Benard C, Girard A, Taverne T, Casagrande AS, Désiré L, Leblond B, Besson T. Design and synthesis of thiazolo[5,4-f]quinazolines as DYRK1A inhibitors, part II. Molecules 2014; 19:15411-39. [PMID: 25264830 PMCID: PMC6271009 DOI: 10.3390/molecules191015411] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/15/2014] [Accepted: 09/16/2014] [Indexed: 12/12/2022] Open
Abstract
The convenient synthesis of a focused library (forty molecules) of novel 6,6,5-tricyclic thiazolo[5,4-f]quinazolines was realized mainly under microwave irradiation. A novel 6-aminobenzo[d]thiazole-2,7-dicarbonitrile (1) was used as a versatile molecular platform for the synthesis of various derivatives. Kinase inhibition, of the obtained final compounds, was evaluated on a panel of two kinases (DYRK1A/1B) together with some known reference DYRK1A and DYRK1B inhibitors (harmine, TG003, NCGC-00189310 and leucettine L41). Compound IC50 values were obtained and compared. Five of the novel thiazolo[5,4-f]quinazoline derivatives prepared, EHT 5372 (8c), EHT 6840 (8h), EHT 1610 (8i), EHT 9851 (8k) and EHT 3356 (9b) displayed single-digit nanomolar or subnanomolar IC50 values and are among the most potent DYRK1A/1B inhibitors disclosed to date. DYRK1A/1B kinases are known to be involved in the regulation of various molecular pathways associated with oncology, neurodegenerative diseases (such as Alzheimer disease, AD, or other tauopathies), genetic diseases (such as Down Syndrome, DS), as well as diseases involved in abnormal pre-mRNA splicing. The compounds described in this communication constitute a highly potent set of novel molecular probes to evaluate the biology/pharmacology of DYR1A/1B in such diseases.
Collapse
Affiliation(s)
- Alicia Foucourt
- Normandie Univ, Laboratoire C.O.B.R.A., UMR 6014 and FR 3038; Univ Rouen; INSA de Rouen; CNRS, Bâtiment I.R.C.O.F. rue Tesnière, Mont-Saint-Aignan F-76821, France.
| | - Damien Hédou
- Normandie Univ, Laboratoire C.O.B.R.A., UMR 6014 and FR 3038; Univ Rouen; INSA de Rouen; CNRS, Bâtiment I.R.C.O.F. rue Tesnière, Mont-Saint-Aignan F-76821, France.
| | - Carole Dubouilh-Benard
- Normandie Univ, Laboratoire C.O.B.R.A., UMR 6014 and FR 3038; Univ Rouen; INSA de Rouen; CNRS, Bâtiment I.R.C.O.F. rue Tesnière, Mont-Saint-Aignan F-76821, France.
| | | | | | | | | | | | - Thierry Besson
- Normandie Univ, Laboratoire C.O.B.R.A., UMR 6014 and FR 3038; Univ Rouen; INSA de Rouen; CNRS, Bâtiment I.R.C.O.F. rue Tesnière, Mont-Saint-Aignan F-76821, France.
| |
Collapse
|
33
|
Defaux J, Antoine M, Logé C, Le Borgne M, Schuster T, Seipelt I, Aicher B, Teifel M, Günther E, Gerlach M, Marchand P. Discovery of (7-aryl-1,5-naphthyridin-2-yl)ureas as dual inhibitors of ERK2 and Aurora B kinases with antiproliferative activity against cancer cells. Bioorg Med Chem Lett 2014; 24:3748-52. [PMID: 25022204 DOI: 10.1016/j.bmcl.2014.06.078] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 06/24/2014] [Accepted: 06/26/2014] [Indexed: 02/07/2023]
Abstract
A novel series of (7-aryl-1,5-naphthyridin-2-yl)ureas was discovered as dual ERK2 and Aurora B kinases inhibitors. Several analogues were active at micromolar and submicromolar range against ERK2 and Aurora B, associated with very promising antiproliferative activity toward various cancer cell lines. Synthesis, structure activity relationship and docking study are reported. In vitro ADME properties and safety data are also discussed.
Collapse
Affiliation(s)
- Julien Defaux
- Université de Nantes, Nantes Atlantique Universités, Laboratoire de Chimie Thérapeutique, Cibles et Médicaments des Infections et du Cancer IICiMed EA 1155, UFR des Sciences Pharmaceutiques et Biologiques, 1 rue Gaston Veil, 44035 Nantes, France
| | - Maud Antoine
- Université de Nantes, Nantes Atlantique Universités, Laboratoire de Chimie Thérapeutique, Cibles et Médicaments des Infections et du Cancer IICiMed EA 1155, UFR des Sciences Pharmaceutiques et Biologiques, 1 rue Gaston Veil, 44035 Nantes, France
| | - Cédric Logé
- Université de Nantes, Nantes Atlantique Universités, Laboratoire de Chimie Thérapeutique, Cibles et Médicaments des Infections et du Cancer IICiMed EA 1155, UFR des Sciences Pharmaceutiques et Biologiques, 1 rue Gaston Veil, 44035 Nantes, France
| | - Marc Le Borgne
- Université de Nantes, Nantes Atlantique Universités, Laboratoire de Chimie Thérapeutique, Cibles et Médicaments des Infections et du Cancer IICiMed EA 1155, UFR des Sciences Pharmaceutiques et Biologiques, 1 rue Gaston Veil, 44035 Nantes, France
| | - Tilmann Schuster
- Æterna Zentaris GmbH, Weismuellerstrasse 50, 60314 Frankfurt/Main, Germany
| | - Irene Seipelt
- Æterna Zentaris GmbH, Weismuellerstrasse 50, 60314 Frankfurt/Main, Germany
| | - Babette Aicher
- Æterna Zentaris GmbH, Weismuellerstrasse 50, 60314 Frankfurt/Main, Germany
| | - Michael Teifel
- Æterna Zentaris GmbH, Weismuellerstrasse 50, 60314 Frankfurt/Main, Germany
| | - Eckhard Günther
- Æterna Zentaris GmbH, Weismuellerstrasse 50, 60314 Frankfurt/Main, Germany
| | - Matthias Gerlach
- Æterna Zentaris GmbH, Weismuellerstrasse 50, 60314 Frankfurt/Main, Germany
| | - Pascal Marchand
- Université de Nantes, Nantes Atlantique Universités, Laboratoire de Chimie Thérapeutique, Cibles et Médicaments des Infections et du Cancer IICiMed EA 1155, UFR des Sciences Pharmaceutiques et Biologiques, 1 rue Gaston Veil, 44035 Nantes, France.
| |
Collapse
|
34
|
Tell V, Hilgeroth A. Recent developments of protein kinase inhibitors as potential AD therapeutics. Front Cell Neurosci 2013; 7:189. [PMID: 24312003 PMCID: PMC3832900 DOI: 10.3389/fncel.2013.00189] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Indexed: 11/13/2022] Open
Abstract
Present Alzheimer’s disease (AD) therapies suffer from inefficient effects on AD symptoms like memory or cognition, especially in later states of the disease. Used acteylcholine esterase inhibitors or the NMDA receptor antagonist memantine address one target structure which is involved in a complex, multifactorial disease progression. So the benefit for patients is presently poor. A more close insight in the AD progression identified more suggested target structures for drug development. Strategies of AD drug development concentrate on novel target structures combined with the established ones dedicated for combined therapy regimes, preferably by the use of one drug which may address two target structures. Protein kinases have been identified as promising target structures because they are involved in AD progression pathways like pathophysiological tau protein phosphorylations and amyloid β toxicity. The review article will shortly view early inhibitors of single protein kinases like glycogen synthase kinase (gsk3) β and cyclin dependent kinase 5. Novel inhibitors will be discussed which address novel AD relevant protein kinases like dual-specificity tyrosine phosphorylation regulated kinase 1A (DYRK1A). Moreover, multitargeting inhibitors will be presented which target several protein kinases and those which are suspected in influencing other AD relevant processes. Such a multitargeting is the most promising strategy to effectively hamper the multifactorial disease progression and thus gives perspective hopes for a future better patient benefit.
Collapse
Affiliation(s)
- Volkmar Tell
- Research Group of Drug Development and Analysis, Institute of Pharmacy, Martin Luther University Halle-Wittenberg Halle, Germany
| | | |
Collapse
|
35
|
Deau E, Loidreau Y, Marchand P, Nourrisson MR, Loaëc N, Meijer L, Levacher V, Besson T. Synthesis of novel 7-substituted pyrido[2',3':4,5]furo[3,2-d]pyrimidin-4-amines and their N-aryl analogues and evaluation of their inhibitory activity against Ser/Thr kinases. Bioorg Med Chem Lett 2013; 23:6784-8. [PMID: 24176400 DOI: 10.1016/j.bmcl.2013.10.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 10/07/2013] [Accepted: 10/08/2013] [Indexed: 10/26/2022]
Abstract
The efficient synthesis of 7-substituted pyrido[2',3':4,5]furo[3,2-d]pyrimidin-4-amines and their N-aryl analogues is described. 3,5-Dibromopyridine was converted into 3-amino-6-bromofuro[3,2-b]pyridine-2-carbonitrile intermediate which was formylated with DMFDMA. Functionalization at position 7 of the tricyclic scaffold was accomplished, before or after cyclisation step, by palladium-catalyzed Suzuki-Miyaura cross-coupling while the pyrimidin-4-amines and N-aryl counterparts were synthesized by microwave-assisted formamide degradation and Dimroth rearrangement, respectively. The final products were evaluated for their potent inhibition of a series of five Ser/Thr kinases (CDK5/p25, CK1δ/ε, CLK1, DYRK1A, GSK3α/β). Compound 35 showed the best inhibitory activity with an IC50 value of 49 nM and proved to be specific to CLK1 among the panel of tested kinases.
Collapse
Affiliation(s)
- Emmanuel Deau
- Normandie Univ, COBRA, UMR 6014 & FR 3038; Univ Rouen; INSA Rouen; CNRS, Bâtiment IRCOF, 1 rue Tesnière, 76821 Mont St Aignan Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Hédou D, Deau E, Dubouilh-Benard C, Sanselme M, Martinet A, Chosson E, Levacher V, Besson T. Microwave-Assisted [3+2] Cycloaddition and Suzuki-Miyaura Cross-Coupling for a Concise Access to Polyaromatic Scaffolds. European J Org Chem 2013. [DOI: 10.1002/ejoc.201301014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
37
|
Bazin MA, Marhadour S, Tonnerre A, Marchand P. Exploration of versatile reactions on 2-chloro-3-nitroimidazo[1,2-a]pyridine: expanding structural diversity of C2- and C3-functionalized imidazo[1,2-a]pyridines. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.07.113] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Deau E, Hédou D, Chosson E, Levacher V, Besson T. Convenient one-pot synthesis of N3-substituted pyrido[2,3-d]-, pyrido[3,4-d]-, pyrido[4,3-d]-pyrimidin-4(3H)-ones, and quinazolin-4(3H)-ones analogs. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.04.096] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|