1
|
Naeem N, Sadiq A, Othman GA, Yassin HM, Mughal EU. Exploring heterocyclic scaffolds in carbonic anhydrase inhibition: a decade of structural and therapeutic insights. RSC Adv 2024; 14:35769-35970. [PMID: 39534850 PMCID: PMC11555472 DOI: 10.1039/d4ra06290f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Heterocyclic compounds represent a prominent class of molecules with diverse pharmacological activities. Among their therapeutic applications, they have gained significant attention as carbonic anhydrase (CA) inhibitors, owing to their potential in the treatment of various diseases such as epilepsy, cancer and glaucoma. CA is a widely distributed zinc metalloenzyme that facilitates the reversible interconversion of carbon dioxide and bicarbonate. This reaction is essential for numerous physiological and pathological processes. In humans, CA exists in sixteen different isoforms, labeled hCA-I to hCA-XV, each distributed across various tissues and organs and involved in crucial physiological functions. Clinically utilized CA inhibitors, such as brinzolamide, dorzolamide and acetazolamide, exhibit poor selectivity, leading to undesirable side effects. A significant challenge in designing effective CA inhibitors is achieving balanced isoform selectivity, prompting the exploration of new chemotypes. This review compiles recent strategies employed by various researchers in developing CAIs across different structural classes, including pyrazoline, quinoline, imidazole, oxadiazole, pyrimidine, coumarin, chalcone, rhodanine, phthalazine, triazole, isatin, and indole. Additionally, the review summarizes structure-activity relationship (SAR) analyses, isoform selectivity evaluations, along with mechanistic and in silico investigations. Insights derived from SAR studies provide crucial directions for the rational design of next-generation heterocyclic CA inhibitors, with improved therapeutic efficacy and reduced side effects. To the best of our knowledge, for the first time, we have comprehensively summarized all known isoforms of CA in relation to various heterocyclic motifs. This review examines the use of different heterocycles as CA inhibitors, drawing on research published over the past 11 years. It offers a valuable resource for early-career researchers, encouraging further exploration of synthetic heterocycles in the development of CA inhibitors.
Collapse
Affiliation(s)
- Nafeesa Naeem
- Department of Chemistry, University of Gujrat Gujrat 50700 Pakistan
| | - Amina Sadiq
- Department of Chemistry, Govt. College Women University Sialkot 51300 Pakistan
| | - Gehan Ahmed Othman
- Biology Department, College of Science, King Khalid University Abha 61421 Saudi Arabia
| | - Habab M Yassin
- Biology Department, College of Science, King Khalid University Abha 61421 Saudi Arabia
| | | |
Collapse
|
2
|
Abdoli M, Bonardi A, Supuran CT, Žalubovskis R. Synthesis and Carbonic Anhydrase I, II, IX, and XII Inhibition Studies with a Series of Cyclic Sulfonyl Guanidines. ChemMedChem 2024; 19:e202400197. [PMID: 38923747 DOI: 10.1002/cmdc.202400197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
A series of thirteen cyclic sulfonyl guanidines were prepared and evaluated against tumor-associated human (h) carbonic anhydrase (CA, EC 4.2.1.1) isoforms hCA IX and hCA XII, as well as against off-target cytosolic isoforms hCA I and hCA II. The compounds reported here were generally inactive against both off-target isoforms (KI>100 μM), while all of them moderately inhibited both target isoforms hCA IX and XII in the submicromolar to micromolar ranges in which KI values spanned from 0.57 to 8.4 μM against hCA IX and from 0.34 to 9.7 against hCA XII. Due to the notable selectivity of the title compounds toward isoforms hCA IX and XII, they can be considered as useful scaffolds for further chemical optimization to develop new highly selective antitumor agents.
Collapse
Affiliation(s)
- Morteza Abdoli
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, P. Valdena iela 3, LV-1048, Riga, Latvia
| | - Alessandro Bonardi
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, 50019, Florence, Italy
| | - Claudiu T Supuran
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, 50019, Florence, Italy
| | - Raivis Žalubovskis
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, P. Valdena iela 3, LV-1048, Riga, Latvia
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006, Riga, Latvia
| |
Collapse
|
3
|
Bendi A, Taruna, Rajni, Kataria S, Singh L, Kennedy JF, Supuran CT, Raghav N. Chemistry of heterocycles as carbonic anhydrase inhibitors: A pathway to novel research in medicinal chemistry review. Arch Pharm (Weinheim) 2024; 357:e2400073. [PMID: 38683875 DOI: 10.1002/ardp.202400073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 05/02/2024]
Abstract
Nowadays, the scientific community has focused on dealing with different kinds of diseases by exploring the chemistry of various heterocycles as novel drugs. In this connection, medicinal chemists identified carbonic anhydrases (CA) as one of the biologically active targets for curing various diseases. The widespread distribution of these enzymes and the high degree of homology shared by the different isoforms offer substantial challenges to discovering potential drugs. Medicinal and synthetic organic chemists have been continuously involved in developing CA inhibitors. This review explored the chemistry of different heterocycles as CA inhibitors using the last 11 years of published research work. It provides a pathway for young researchers to further explore the chemistry of a variety of synthetic as well as natural heterocycles as CA inhibitors.
Collapse
Affiliation(s)
- Anjaneyulu Bendi
- Department of Chemistry, Presidency University, Bengaluru, Karnataka, India
| | - Taruna
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana, India
| | - Rajni
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana, India
| | - Sweety Kataria
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana, India
| | - Lakhwinder Singh
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana, India
| | | | - Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Neutraceutical Section, University of Florence, Florence, Italy
| | - Neera Raghav
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| |
Collapse
|
4
|
Capasso C, Supuran CT. Carbonic anhydrase and bacterial metabolism: a chance for antibacterial drug discovery. Expert Opin Ther Pat 2024; 34:465-474. [PMID: 38506448 DOI: 10.1080/13543776.2024.2332663] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/08/2024] [Indexed: 03/21/2024]
Abstract
INTRODUCTION Carbonic anhydrases (CAs, EC 4.2.1.1) play a pivotal role in the regulation of carbon dioxide , bicarbonate, and hydrogen ions within bacterial cells, ensuring pH homeostasis and facilitating energy production. We conducted a systematic literature search (PubMed, Web of Science, and Google Scholar) to examine the intricate interplay between CAs and bacterial metabolism, revealing the potential of CA inhibitors (CAIs) as innovative therapeutic agents against pathogenic bacteria. AREA COVERED Inhibition of bacterial CAs was explored in various pathogens, emphasizing the CA roles in microbial virulence, survival, and adaptability. Escherichia coli, a valid and convenient model microorganism, was recently used to investigate the effects of acetazolamide (AAZ) on the bacterial life cycle. Furthermore, the effectiveness of CAIs against pathogenic bacteria has been further substantiated for Vancomycin-Resistant Enterococci (VRE) and antibiotic-resistant Neisseria gonorrhoeae strains. EXPERT OPINION CAIs target bacterial metabolic pathways, offering alternatives to conventional therapies. They hold promise against drug-resistant microorganisms such as VRE and N. gonorrhoeae strains. CAIs offer promising avenues for addressing antibiotic resistance and underscore their potential as novel antibacterial agents. Recognizing the central role of CAs in bacterial growth and pathogenicity will pave the way for innovative infection control and treatment strategies possibly also for other antibiotic resistant species.
Collapse
Affiliation(s)
- Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, Institute of Biosciences and Bioresources, CNR, Napoli, Italy
| | - Claudiu T Supuran
- NEUROFARBA Department, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy
| |
Collapse
|
5
|
Nocentini A, Capasso C, Supuran CT. Carbonic Anhydrase Inhibitors as Novel Antibacterials in the Era of Antibiotic Resistance: Where Are We Now? Antibiotics (Basel) 2023; 12:antibiotics12010142. [PMID: 36671343 PMCID: PMC9854953 DOI: 10.3390/antibiotics12010142] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 12/29/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
Resistance to antibiotic treatment developed by bacteria in humans and animals occurs when the microorganisms resist treatment with clinically approved antibiotics. Actions must be implemented to stop the further development of antibiotic resistance and the subsequent emergence of superbugs. Medication repurposing/repositioning is one strategy that can help find new antibiotics, as it speeds up drug development phases. Among them, the Zn2+ ion binders, such as sulfonamides and their bioisosteres, are considered the most promising compounds to obtain novel antibacterials, thus avoiding antibiotic resistance. Sulfonamides and their bioisosteres have drug-like properties well-known for decades and are suitable lead compounds for developing new pharmacological agent families for inhibiting carbonic anhydrases (CAs). CAs are a superfamily of metalloenzymes catalyzing the reversible reaction of CO2 hydration to HCO3- and H+, being present in most bacteria in multiple genetic families (α-, β-, γ- and ι-classes). These enzymes, acting as CO2 transducers, are promising drug targets because their activity influences microbe proliferation, biosynthetic pathways, and pathogen persistence in the host. In their natural or slightly modified scaffolds, sulfonamides/sulfamates/sulamides inhibit CAs in vitro and in vivo, in mouse models infected with antibiotic-resistant strains, confirming thus their role in contrasting bacterial antibiotic resistance.
Collapse
Affiliation(s)
- Alessio Nocentini
- NEUROFARBA Department, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, 50019 Firenze, Italy
| | - Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, Institute of Biosciences and Bioresources, CNR, 80131 Napoli, Italy
- Correspondence: (C.C.); (C.T.S.)
| | - Claudiu T. Supuran
- NEUROFARBA Department, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, 50019 Firenze, Italy
- Correspondence: (C.C.); (C.T.S.)
| |
Collapse
|
6
|
Kolade SO, Izunobi JU, Gordon AT, Hosten EC, Olasupo IA, Ogunlaja AS, Asekun OT, Familoni OB. N-Cycloamino substituent effects on the packing architecture of ortho-sulfanilamide molecular crystals and their in silico carbonic anhydrase II and IX inhibitory activities. Acta Crystallogr C Struct Chem 2022; 78:730-742. [PMID: 36468556 PMCID: PMC9720883 DOI: 10.1107/s2053229622010130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
In the search for new `sulfa drugs' with therapeutic properties, o-nitrosulfonamides and N-cycloamino-o-sulfanilamides were synthesized and characterized using techniques including 1H NMR, 13C NMR and FT-IR spectroscopy, and single-crystal X-ray diffraction (SC-XRD). The calculated density functional theory (DFT)-optimized geometry of the molecules showed similar conformations to those obtained by SC-XRD. Molecular docking of N-piperidinyl-o-sulfanilamide and N-indolinyl-o-sulfanilamide supports the notion that o-sulfanilamides are able to bind to human carbonic anhydrase II and IX inhibitors (hCA II and IX; PDB entries 4iwz and 5fl4). Hirshfeld surface analyses and DFT studies of three o-nitrosulfonamides {1-[(2-nitrophenyl)sulfonyl]pyrrolidine, C10H12N2O4S, 1, 1-[(2-nitrophenyl)sulfonyl]piperidine, C11H14N2O4S, 2, and 1-[(2-nitrophenyl)sulfonyl]-2,3-dihydro-1H-indole, C14H12N2O4S, 3} and three N-cycloamino-o-sulfanilamides [2-(pyrrolidine-1-sulfonyl)aniline, C10H14N2O2S, 4, 2-(piperidine-1-sulfonyl)aniline, C11H16N2O2S, 5, and 2-(2,3-dihydro-1H-indole-1-sulfonyl)aniline, C14H14N2O2S, 6] suggested that forces such as hydrogen bonding and π-π interactions hold molecules together and further showed that charge transfer could promote bioactivity and the ability to form biological interactions at the piperidinyl and phenyl moieties.
Collapse
Affiliation(s)
- Sherif O. Kolade
- Department of Chemistry, University of Lagos, Akoka-Yaba, Lagos, Nigeria
- Department of Chemistry, Nelson Mandela University, Port Elizabeth, 6031, South Africa
| | | | - Allen T. Gordon
- Department of Chemistry, Nelson Mandela University, Port Elizabeth, 6031, South Africa
| | - Eric C. Hosten
- Department of Chemistry, Nelson Mandela University, Port Elizabeth, 6031, South Africa
| | - Idris A. Olasupo
- Department of Chemistry, University of Lagos, Akoka-Yaba, Lagos, Nigeria
| | - Adeniyi S. Ogunlaja
- Department of Chemistry, Nelson Mandela University, Port Elizabeth, 6031, South Africa
| | - Olayinka T. Asekun
- Department of Chemistry, University of Lagos, Akoka-Yaba, Lagos, Nigeria
| | | |
Collapse
|
7
|
Abdoli M, Giovannuzzi S, Supuran CT, Žalubovskis R. 4-(3-Alkyl/benzyl-guanidino)benzenesulfonamides as selective carbonic anhydrase VII inhibitors. J Enzyme Inhib Med Chem 2022; 37:1568-1576. [PMID: 35635139 PMCID: PMC9154774 DOI: 10.1080/14756366.2022.2080816] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Affiliation(s)
- Morteza Abdoli
- Faculty of Materials Science and Applied Chemistry, Institute of Technology of Organic Chemistry, Riga Technical University, Riga, Latvia
| | - Simone Giovannuzzi
- Neurofarba Department, Universita Degli Studi di Firenze, Florence, Italy
| | - Claudiu T. Supuran
- Neurofarba Department, Universita Degli Studi di Firenze, Florence, Italy
| | - Raivis Žalubovskis
- Faculty of Materials Science and Applied Chemistry, Institute of Technology of Organic Chemistry, Riga Technical University, Riga, Latvia
- Latvian Institute of Organic Synthesis, Riga, Latvia
| |
Collapse
|
8
|
Han Mİ, Küçükgüzel ŞG. Thioethers: An Overview. Curr Drug Targets 2022; 23:170-219. [DOI: 10.2174/1389450122666210614121237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 11/22/2022]
Abstract
:
Spreading rapidly in recent years, cancer has become one of the causes of the highest mor-tality rates after cardiovascular diseases. The reason for cancer development is still not clearly under-stood despite enormous research activities in this area. Scientists are now working on the biology of cancer, especially on the root cause of cancer development. The aim is to treat the cancer disease and thus cure the patients. The continuing efforts for the development of novel molecules as potential anti-cancer agents are essential for this purpose. The main aim of this review was to present a survey on the medicinal chemistry of thioethers and provide practical data on their cytotoxicities against various cancer cell lines. The research articles published between 2001-2020 were consulted to pre-pare this review article; however, patent literature has not been included. The thioether-containing heterocyclic compounds may emerge as a new class of potent and effective anti-cancer agents in the future.
Collapse
Affiliation(s)
- M. İhsan Han
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Talas, 38050, Kayseri, Turkey
| | - Ş. Güniz Küçükgüzel
- Vocational School of Health Services, Fenerbahçe University, Ataşehir, 34758, İstanbul, Turkey
| |
Collapse
|
9
|
Fatima A, Singh M, Singh N, Savita S, Verma I, Siddiqui N, Javed S. Investigations on experimental, theoretical spectroscopic, electronic excitations, molecular docking of Sulfaguanidine (SG): An antibiotic drug. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.139049] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
10
|
Nocentini A, Supuran CT, Capasso C. An overview on the recently discovered iota-carbonic anhydrases. J Enzyme Inhib Med Chem 2021; 36:1988-1995. [PMID: 34482770 PMCID: PMC8425729 DOI: 10.1080/14756366.2021.1972995] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Carbonic anhydrases (CAs, EC 4.2.1.1) have been studied for decades and have been classified as a superfamily of enzymes which includes, up to date, eight gene families or classes indicated with the Greek letters α, β, γ, δ, ζ, η, θ, ι. This versatile enzyme superfamily is involved in multiple physiological processes, catalysing a fundamental reaction for all living organisms, the reversible hydration of carbon dioxide to bicarbonate and a proton. Recently, the ι-CA (LCIP63) from the diatom Thalassiosira pseudonana and a bacterial ι-CA (BteCAι) identified in the genome of Burkholderia territorii were characterised. The recombinant BteCAι was observed to act as an excellent catalyst for the physiologic reaction. Very recently, the discovery of a novel ι-CAs (COG4337) in the eukaryotic microalga Bigelowiella natans and the cyanobacterium Anabaena sp. PCC7120 has brought to light an unexpected feature for this ancient superfamily: this ι-CAs was catalytically active without a metal ion cofactor, unlike the previous reported ι-CAs as well as all known CAs investigated so far. This review reports recent investigations on ι-CAs obtained in these last three years, highlighting their peculiar features, and hypothesising that possibly this new CA family shows catalytic activity without the need of metal ions.
Collapse
Affiliation(s)
- Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| | - Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, Institute of Biosciences and Bioresources, CNR, Napoli, Italy
| |
Collapse
|
11
|
Barišić D, Cindro N, Vidović N, Bregović N, Tomišić V. Protonation and anion-binding properties of aromatic sulfonylurea derivatives. RSC Adv 2021; 11:23992-24000. [PMID: 35479025 PMCID: PMC9039416 DOI: 10.1039/d1ra04738h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
In this work the anion-binding properties of three aromatic sulfonylurea derivatives in acetonitrile and dimethyl sulfoxide were explored by means of NMR titrations. It was found that the studied receptors effectively bind anions of low basicity (Cl-, Br-, I-, NO3 - and HSO4 -). The stoichiometry of the complexes with receptors containing one binding site was 1 : 1 exclusively, whereas in the case of the receptor containing two sulfonylurea groups 1 : 2 (receptor : anion) complexes were also detected in some cases. The presence of strongly basic anions (acetate and dihydrogen phosphate) led to the deprotonation of the sulfonylurea moiety. This completely hindered its anion-binding properties in DMSO and only proton transfer occurred upon the addition of basic anions to the studied receptors. In MeCN, a complex system of equilibria including both ligand deprotonation and anion binding was established. Since ionisation of receptors was proven to be a decisive factor defining the behaviour of the sulfonylurea receptors, their pK a values were determined using several deprotonation agents in both solvents. The results were interpreted in the context of receptor structures and solvent properties and applied for the identification of the interactions with basic anions.
Collapse
Affiliation(s)
- D Barišić
- Department of Chemistry, Faculty of Science, University of Zagreb Horvatovac 102/A 10000 Zagreb Croatia .,Division of Physical Chemistry, Ruđer Bošković Institute Bijenička cesta 54 10000 Zagreb Croatia
| | - N Cindro
- Department of Chemistry, Faculty of Science, University of Zagreb Horvatovac 102/A 10000 Zagreb Croatia
| | - N Vidović
- Department of Chemistry, Faculty of Science, University of Zagreb Horvatovac 102/A 10000 Zagreb Croatia .,Institute of Agriculture and Tourism K. Huguesa 8 52440 Poreč Croatia
| | - N Bregović
- Department of Chemistry, Faculty of Science, University of Zagreb Horvatovac 102/A 10000 Zagreb Croatia
| | - V Tomišić
- Department of Chemistry, Faculty of Science, University of Zagreb Horvatovac 102/A 10000 Zagreb Croatia
| |
Collapse
|
12
|
Camadan Y, Çiçek B, Adem Ş, Çalişir Ü, Akkemik E. Investigation of in vitro and in silico effects of some novel carbazole Schiff bases on human carbonic anhydrase isoforms I and II. J Biomol Struct Dyn 2021; 40:6965-6973. [PMID: 33645441 DOI: 10.1080/07391102.2021.1892527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Carbonic anhydrases (CAs, EC4.2.1.1) are metalloenzymes that catalyse reversible hydration reaction of carbon dioxide to bicarbonate and protons. In recent years, there has been a great interest in inhibitors/activators of carbonic anhydrase isoenzymes. Therefore, we investigated the effects of four different carbazole Schiff base derivatives, which are believed to have a potential to be used as a drug, on human carbonic anhydrase (hCA) isoenzymes I and II under in vitro conditions. The IC50 values of carbazole Schiff base derivatives were found to be in the range of 32.09-151.2 μM for hCA isoenzyme I and 21.82-40.54 μM for hCA isoenzyme II. Among all compounds, (E)-3-(((9-Octyl-9H-carbazole-3-yl)imino)methyl)benzene-1,2-diol (C3) had the strongest inhibitory effect on hCA isoenzyme II. It was determined that 2,3,4-trimethoxy and 4-hydroxy phenyl containing carbazole compounds have selective inhibition against hCA II isoenzyme. Docking studies were performed against hCA I and II receptors using induced-fit docking method. The compounds had affinity scores varying from -7.74 ± 0.27 to -6.27 ± 0.07 kcal/mol for hCA I and from -8.04 ± 0.17 to -7.27 ± 0.18 kcal/mol for hCA II.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yasemin Camadan
- Vocational School of Health Services, Artvin Coruh University, Artvin, Turkey
| | - Baki Çiçek
- Faculty Arts and Sciences, Chemistry Department, Balıkesir University, Balıkesir, Turkey
| | - Şevki Adem
- Faculty Arts and Sciences, Chemistry Department, Cankiri Karatekin University, Cankiri, Turkey
| | - Ümit Çalişir
- Science and Technology Research and Application Center, Siirt University, Siirt, Turkey
| | - Ebru Akkemik
- Science and Technology Research and Application Center, Siirt University, Siirt, Turkey.,Faculty of Engineering, Food Engineering, Siirt University, Siirt, Turkey
| |
Collapse
|
13
|
Krasavin M, Kalinin S, Sharonova T, Supuran CT. Inhibitory activity against carbonic anhydrase IX and XII as a candidate selection criterion in the development of new anticancer agents. J Enzyme Inhib Med Chem 2020; 35:1555-1561. [PMID: 32746643 PMCID: PMC7470080 DOI: 10.1080/14756366.2020.1801674] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 07/21/2020] [Indexed: 12/19/2022] Open
Abstract
Analysis of the literature data reveals that while inhibition of cancer-related carbonic anhydrase IX and XII isoforms continues to be an important enrichment factor for designing anticancer agent development libraries, exclusive reliance on the in vitro inhibition of these two recombinant isozymes in nominating candidate compounds for evaluation of their effects on cancer cells may lead not only to identifying numerous compounds devoid of the desired cellular efficacy but also to overlooking many promising candidates which may not display the best potency in biochemical inhibition assay. However, SLC-0111, now in phase Ib/II clinical trials, was developed based on the excellent agreement between the in vitro, in vivo and more recently, in-patient data.
Collapse
Affiliation(s)
- Mikhail Krasavin
- Institute of Chemistry, St. Petersburg State University, St. Petersburg, Russia
| | - Stanislav Kalinin
- Institute of Chemistry, St. Petersburg State University, St. Petersburg, Russia
| | - Tatiana Sharonova
- Institute of Chemistry, St. Petersburg State University, St. Petersburg, Russia
| | - Claudiu T. Supuran
- Neurofarba Department, Section of Pharmaceutical Sciences, University of Florence, Florence, Italy
| |
Collapse
|
14
|
Del Prete S, Nocentini A, Supuran CT, Capasso C. Bacterial ι-carbonic anhydrase: a new active class of carbonic anhydrase identified in the genome of the Gram-negative bacterium Burkholderia territorii. J Enzyme Inhib Med Chem 2020; 35:1060-1068. [PMID: 32314608 PMCID: PMC7191908 DOI: 10.1080/14756366.2020.1755852] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/05/2020] [Indexed: 01/30/2023] Open
Abstract
The carbonic anhydrases (CAs, EC 4.2.1.1) catalyse a simple but physiologically crucial reversible reaction, the carbon dioxide hydration with the production of bicarbonate and protons. In the last years, and especially, to the rapid emergence of the bacterial antibiotic resistance that is occurring worldwide, the understanding of the function of bacterial CAs has increased significantly. Recently, a new CA-class (ι-CA) was discovered in the marine diatom T. pseudonana. It has been reported that bacterial genomes may contain genes with relevant homology to the diatom ι-class CA. Still, the catalytic activity of the enzyme encoded by the gene was not investigated. Thus, herein, for the first time, we cloned, expressed, and purified the recombinant bacterial ι-CA (acronym BteCAι) identified in the genome of Burkholderia territorii. The recombinant BteCAι resulted in a good catalyst for the hydration of CO2 to bicarbonate and protons, with a kcat of 3.0 × 105 s -1 and kcat/KM of 3.9 × 107 M -1 s -1, and is also sensitive to inhibition by the sulphonamide acetazolamide. Furthermore, with the aid of the protonography, it has been demonstrated that BteCAι can be present as a dimer. This result is corroborated by the construction of a molecular model of BteCAι, which showed that the enzyme is formed by two equivalent monomers having a structure similar to a butterfly.
Collapse
Affiliation(s)
- Sonia Del Prete
- Department of Biology, Agriculture and Food Sciences, Institute of Biosciences and Bioresources, CNR, Napoli, Italy
| | - Alessio Nocentini
- Department of NEUROFARBA, University of Florence, Section of Pharmaceutical and Nutraceutical Sciences, Firenze, Italy
| | - Claudiu T. Supuran
- Department of NEUROFARBA, University of Florence, Section of Pharmaceutical and Nutraceutical Sciences, Firenze, Italy
| | - Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, Institute of Biosciences and Bioresources, CNR, Napoli, Italy
| |
Collapse
|
15
|
An R, Lin B, Zhao S, Cao C, Wang Y, Cheng X, Liu Y, Guo M, Xu H, Wang Y, Hou Z, Guo C. Discovery of novel artemisinin-sulfonamide hybrids as potential carbonic anhydrase IX inhibitors with improved antiproliferative activities. Bioorg Chem 2020; 104:104347. [DOI: 10.1016/j.bioorg.2020.104347] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/29/2020] [Accepted: 10/03/2020] [Indexed: 01/13/2023]
|
16
|
Supuran CT, Capasso C. Antibacterial carbonic anhydrase inhibitors: an update on the recent literature. Expert Opin Ther Pat 2020; 30:963-982. [PMID: 32806966 DOI: 10.1080/13543776.2020.1811853] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION The clinically licensed drugs used as antibiotics prevent the microbial growth interfering with the biosynthesis of proteins, nucleic acids, microorganism wall biosynthesis or wall permeability, and microbial metabolic pathways. A serious, emerging problem is the arisen of extensive drug resistance afflicting most countries worldwide. AREAS COVERED An exciting approach to fight drug resistance is the identification of essential enzymes encoded by pathogen genomes. Inhibition of such enzymes may impair microbial growth or virulence due to interference with crucial metabolic processes. Genome exploration of pathogenic and nonpathogenic microorganisms has revealed carbonic anhydrases (CAs, EC 4.2.1.1) as possible antibacterial targets. EXPERT OPINION Balancing the equilibrium between CO2 and HCO3 - is essential for microbial metabolism and is regulated by at least four classes of CAs. Classical CA inhibitors (CAIs) such as ethoxzolamide were shown to kill the gastric pathogen Helicobacter pylori in vitro, whereas acetazolamide and some of its more lipophilic derivatives were shown to be effective against vancomycin-resistant Enterococcus spp., with MICs in the range of 0.007-2 µg/mL, better than linezolid, the only clinically used agent available to date. Such results reinforce the rationale of considering existing and newly designed CAIs as antibacterials with an alternative mechanism of action.
Collapse
|
17
|
Baladi T, Hamouda-Tekaya N, Gonçalves LCP, Rocchi S, Ronco C, Benhida R. Sulfonylguanidine Derivatives as Potential Antimelanoma Agents. ChemMedChem 2020; 15:1113-1117. [PMID: 32347004 DOI: 10.1002/cmdc.202000218] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/26/2020] [Indexed: 12/11/2022]
Abstract
Sulfonylguanidines are interesting bioactive compounds with a broad range of applications in the treatment of different pathologies. 2-Aminobenzazole-based structures are well employed in the development of new anticancer drugs. Two series of novel N-benzazol-2-yl-N'-sulfonyl guanidine derivatives were synthesized with the sulfonylguanidine in either an extra- or intracyclic frame. They were evaluated for their antiproliferative activity against malignant melanoma tumor cells, thus allowing structure-activity relationships to be defined. Additionally, NCI-60 screening was performed for the best analogue to study its efficiency against a panel of other cancer cell lines. The stability profile of this promising compound was then validated. During the synthetic process, an unexpected new deamidination of the sulfonylguanidine towards sulfonamide function was also identified.
Collapse
Affiliation(s)
- Tom Baladi
- Institut de Chimie de Nice CRNS UMR7272, Université Côte d'Azur, 28 Avenue Valrose, 06108, Nice, France
| | - Nedra Hamouda-Tekaya
- Centre Méditerranéen de Médecine Moléculaire (C3M) - INSERM, U1065, Université Côte d'Azur, 151 Route de Saint-Antoine, 06200, Nice, France
| | | | - Stéphane Rocchi
- Centre Méditerranéen de Médecine Moléculaire (C3M) - INSERM, U1065, Université Côte d'Azur, 151 Route de Saint-Antoine, 06200, Nice, France
| | - Cyril Ronco
- Institut de Chimie de Nice CRNS UMR7272, Université Côte d'Azur, 28 Avenue Valrose, 06108, Nice, France
| | - Rachid Benhida
- Institut de Chimie de Nice CRNS UMR7272, Université Côte d'Azur, 28 Avenue Valrose, 06108, Nice, France.,Mohamed VI Polytechnic University, UM6P, 43150, Ben Guerir, Morocco
| |
Collapse
|
18
|
Vullo D, Del Prete S, Osman SM, Alasmary FAS, AlOthman Z, Donald WA, Capasso C, Supuran CT. Comparison of the amine/amino acid activation profiles of the β- and γ-carbonic anhydrases from the pathogenic bacterium Burkholderia pseudomallei. J Enzyme Inhib Med Chem 2018; 33:25-30. [PMID: 29098887 PMCID: PMC6009869 DOI: 10.1080/14756366.2017.1387544] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 09/29/2017] [Accepted: 09/29/2017] [Indexed: 01/04/2023] Open
Abstract
The β-class carbonic anhydrase (CA, EC 4.2.1.1) from the pathogenic bacterium Burkholderia pseudomallei, BpsCAβ, that is responsible for the tropical disease melioidosis was investigated for its activation with natural and non-natural amino acids and amines. Previously, the γ-CA from this bacterium has been investigated with the same library of 19 amines/amino acids, which show very potent activating effects on both enzymes. The most effective BpsCAβ activators were L- and D-DOPA, L- and D-Trp, L-Tyr, 4-amino-L-Phe, histamine, dopamine, serotonin, 2-pyridyl-methylamine, 1-(2-aminoethyl)-piperazine and L-adrenaline with KAs of 0.9-27 nM. Less effective activators were D-His, L- and D-Phe, D-Tyr, 2-(2-aminoethyl)pyridine and 4-(2-aminoethyl)-morpholine with KAs of 73 nM-3.42 µM. The activation of CAs from bacteria, such as BpsCAγ/β, has not been considered previously for possible biomedical applications. It would be of interest to perform studies in which bacteria are cultivated in the presence of CA activators, which may contribute to understanding processes connected with the virulence and colonization of the host by pathogenic bacteria.
Collapse
Affiliation(s)
- Daniela Vullo
- Dipartimento Di Chimica, Laboratorio di Chimica Bioinorganica, Polo Scientifico, Università degliStudi di Firenze, Florence, Italy
| | - Sonia Del Prete
- CNR, Istituto di Bioscienze e Biorisorse, Napoli, Italy
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Florence, Italy
| | - Sameh M. Osman
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Fatmah A. S. Alasmary
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Zeid AlOthman
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - William A. Donald
- School of Chemistry, University of New South Wales, Sydney, New South Wales, Australia
| | | | - Claudiu T. Supuran
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Florence, Italy
- School of Chemistry, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
19
|
Žuvela P, Liu JJ, Yi M, Pomastowski PP, Sagandykova G, Belka M, David J, Bączek T, Szafrański K, Żołnowska B, Sławiński J, Supuran CT, Wong MW, Buszewski B. Target-based drug discovery through inversion of quantitative structure-drug-property relationships and molecular simulation: CA IX-sulphonamide complexes. J Enzyme Inhib Med Chem 2018; 33:1430-1443. [PMID: 30220229 PMCID: PMC6151961 DOI: 10.1080/14756366.2018.1511551] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In this work, a target-based drug screening method is proposed exploiting the synergy effect of ligand-based and structure-based computer-assisted drug design. The new method provides great flexibility in drug design and drug candidates with considerably lower risk in an efficient manner. As a model system, 45 sulphonamides (33 training, 12 testing ligands) in complex with carbonic anhydrase IX were used for development of quantitative structure-activity-lipophilicity (property)-relationships (QSPRs). For each ligand, nearly 5,000 molecular descriptors were calculated, while lipophilicity (logkw) and inhibitory activity (logKi) were used as drug properties. Genetic algorithm-partial least squares (GA-PLS) provided a QSPR model with high prediction capability employing only seven molecular descriptors. As a proof-of-concept, optimal drug structure was obtained by inverting the model with respect to reference drug properties. 3509 ligands were ranked accordingly. Top 10 ligands were further validated through molecular docking. Large-scale MD simulations were performed to test the stability of structures of selected ligands obtained through docking complemented with biophysical experiments.
Collapse
Affiliation(s)
- Petar Žuvela
- a Department of Chemistry , National University of Singapore , Singapore.,b Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry , Nicolaus Copernicus University , Toruń , Poland
| | - J Jay Liu
- c Department of Chemical Engineering , Pukyong National University , Busan , Korea
| | - Myunggi Yi
- d Department of Biomedical Engineering , Pukyong National University , Busan , Korea
| | - Paweł P Pomastowski
- b Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry , Nicolaus Copernicus University , Toruń , Poland
| | - Gulyaim Sagandykova
- e Interdisciplinary Centre for Modern Technologies, Nicolaus Copernicus University , Toruń , Poland
| | - Mariusz Belka
- f Department of Pharmaceutical Chemistry , Medical University of Gdańsk , Gdańsk , Poland
| | - Jonathan David
- a Department of Chemistry , National University of Singapore , Singapore
| | - Tomasz Bączek
- f Department of Pharmaceutical Chemistry , Medical University of Gdańsk , Gdańsk , Poland
| | - Krzysztof Szafrański
- g Department of Organic Chemistry , Medical University of Gdańsk , Gdańsk , Poland
| | - Beata Żołnowska
- g Department of Organic Chemistry , Medical University of Gdańsk , Gdańsk , Poland
| | - Jarosław Sławiński
- g Department of Organic Chemistry , Medical University of Gdańsk , Gdańsk , Poland
| | - Claudiu T Supuran
- h Dipartimento di Chimica, Universita degli Studi di Firenze , Polo Scientifico, Laboratorio di Chimica Bioinorganica , Sesto Fiorentino (Florence) , Italy.,i NEUROFARBA Department, Sezione di Scienze Farmaceutiche , Università degli Studi di Firenze , Sesto Fiorentino (Florence) , Italy
| | - Ming Wah Wong
- a Department of Chemistry , National University of Singapore , Singapore
| | - Bogusław Buszewski
- b Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry , Nicolaus Copernicus University , Toruń , Poland.,e Interdisciplinary Centre for Modern Technologies, Nicolaus Copernicus University , Toruń , Poland
| |
Collapse
|
20
|
Synthesis of 2-alkylthio- N-(quinazolin-2-yl)benzenesulfonamide derivatives: anticancer activity, QSAR studies, and metabolic stability. MONATSHEFTE FUR CHEMIE 2018; 149:1885-1898. [PMID: 30237621 PMCID: PMC6133092 DOI: 10.1007/s00706-018-2251-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/04/2018] [Indexed: 12/11/2022]
Abstract
Abstract A new series of 2-alkylthio-N-(quinazolin-2-yl)benzenesulfonamide derivatives have been synthesized and evaluated in vitro for their antiproliferative activity by MTT assay against cancer cell lines HCT-116, MCF-7, and HeLa as well as the NCI-60 human tumor cell lines screen. In NCI screen, three compounds inhibited approximately 50% growth of RPMI-8226 and A549/ATCC cell lines. The mean of IC50 calculated in MTT assays for three tested cell lines was about 45 μM for four compounds. The QSAR allowed finding statistically significant OPLS models for HeLa cell line. Metabolic stability in vitro studies indicated favorable and unfavorable structural elements. The good metabolic stability, with t1/2 higher than 40 min, was observed for three derivatives, which together with their antiproliferative activity and good ADMET profile, makes them good leading structures for further research. Graphical abstract ![]()
Collapse
|
21
|
Abstract
INTRODUCTION The hydration/dehydration of CO2 catalyzed by carbonic anhydrases (CAs, EC 4.2.1.1) is a crucial physiological reaction for the survival of all living organisms because it is connected with numerous biosynthetic and biochemical pathways requiring CO2 or HCO3-, such as respiration, photosynthesis, carboxylation reactions, pH homeostasis, secretion of electrolytes, transport of CO2, bicarbonate, etc. AREAS COVERED The bacterial genome encodes CAs belonging to the α-, β-, and γ-CA classes able to ensure the survival and/or satisfying the metabolic needs of the bacteria, as demonstrated by in vivo and in vitro experiments. The discovery of new anti-infectives that target new bacterial pathways, such as those involving CAs, may lead to effective therapies against diseases subject to the antibiotic resistance. This aspect is important in pharmaceutical and biomedical research but received little attention till recently. EXPERT OPINION An overview of the potential use of CAs in biomedical applications, as drug targets, bioindicators, and within artificial organs is presented. The discovery of thermostable bacterial CAs allowed the use of CAs in biotechnological applications, but patents related to the use of bacterial CAs in the development of pharmacological agents are scarce.
Collapse
Affiliation(s)
- Claudiu T Supuran
- a Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche, and Laboratorio di Chimica Bioinorganica, Polo Scientifico , Università degli Studi di Firenze , Florence , Italy
| | | |
Collapse
|
22
|
Synthesis, characterization and biological evaluation of tertiary sulfonamide derivatives of pyridyl-indole based heteroaryl chalcone as potential carbonic anhydrase IX inhibitors and anticancer agents. Eur J Med Chem 2018; 155:13-23. [DOI: 10.1016/j.ejmech.2018.05.034] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/03/2018] [Accepted: 05/20/2018] [Indexed: 02/02/2023]
|
23
|
Nazarshodeh E, Sheikhpour R, Gharaghani S, Sarram MA. A novel proteochemometrics model for predicting the inhibition of nine carbonic anhydrase isoforms based on supervised Laplacian score and k-nearest neighbour regression. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2018; 29:419-437. [PMID: 29882433 DOI: 10.1080/1062936x.2018.1447995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/28/2018] [Indexed: 06/08/2023]
Abstract
Carbonic anhydrases (CAs) are essential enzymes in biological processes. Prediction of the activity of compounds towards CA isoforms could be evaluated by computational techniques to discover a novel therapeutic inhibitor. Studies such as quantitative structure-activity relationships (QSARs), molecular docking and pharmacophore modelling have been carried out to design potent inhibitors. Unfortunately, QSAR does not consider the information of target space in the model. We successfully developed an in silico proteochemometrics model that simultaneously uses target and ligand descriptors to predict the activities of CA inhibitors. Herein, a strong predictive model was built for the prediction of protein-ligand binding affinity between nine human CA isoforms and 549 ligands. We applied descriptors obtained from the PROFEAT webserver for the proteins. Ligands were encoded by descriptors from PaDEL-Descriptor software. Supervised Laplacian score (SLS) and particle swarm optimization were used for feature selection. Models were derived using k-nearest neighbour (KNN) regression and a kernel smoother model. The predictive ability of the models was evaluated by an external validation test. Statistical results (Q2ext = 0.7806, r2test = 0.7811 and RMSEtest = 0.5549) showed that the model generated using SLS and KNN regression outperformed the other models. Consequently, the selectivity of compounds towards these enzymes will be predicted prior to synthesis.
Collapse
Affiliation(s)
- E Nazarshodeh
- a Laboratory of Bioinformatics and Drug Design (LBD), Institute of Biochemistry and Biophysics , University of Tehran , Tehran , Iran
| | - R Sheikhpour
- b Department of Computer Engineering , Yazd University , Yazd , Iran
| | - S Gharaghani
- a Laboratory of Bioinformatics and Drug Design (LBD), Institute of Biochemistry and Biophysics , University of Tehran , Tehran , Iran
| | - M A Sarram
- b Department of Computer Engineering , Yazd University , Yazd , Iran
| |
Collapse
|
24
|
Żołnowska B, Sławiński J, Brzozowski Z, Kawiak A, Belka M, Zielińska J, Bączek T, Chojnacki J. Synthesis, Molecular Structure, Anticancer Activity, and QSAR Study of N-(aryl/heteroaryl)-4-(1 H-pyrrol-1-yl)Benzenesulfonamide Derivatives. Int J Mol Sci 2018; 19:E1482. [PMID: 29772699 PMCID: PMC5983619 DOI: 10.3390/ijms19051482] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/10/2018] [Accepted: 05/11/2018] [Indexed: 11/25/2022] Open
Abstract
A series of N-(aryl/heteroaryl)-4-(1H-pyrrol-1-yl)benzenesulfonamides were synthesized from 4-amino-N-(aryl/heteroaryl)benzenesulfonamides and 2,5-dimethoxytetrahydrofuran. All the synthesized compounds were evaluated for their anticancer activity on HeLa, HCT-116, and MCF-7 human tumor cell lines. Compound 28, bearing 8-quinolinyl moiety, exhibited the most potent anticancer activity against the HCT-116, MCF-7, and HeLa cell lines, with IC50 values of 3, 5, and 7 µM, respectively. The apoptotic potential of the most active compound (28) was analyzed through various assays: phosphatidylserine translocation, cell cycle distribution, and caspase activation. Compound 28 promoted cell cycle arrest in G2/M phase in cancer cells, induced caspase activity, and increased the population of apoptotic cells. Relationships between structure and biological activity were determined by the QSAR (quantitative structure activity relationships) method. Analysis of quantitative structure activity relationships allowed us to generate OPLS (Orthogonal Projections to Latent Structure) models with verified predictive ability that point out key molecular descriptors influencing benzenosulfonamide's activity.
Collapse
Affiliation(s)
- Beata Żołnowska
- Department of Organic Chemistry, Medical University of Gdansk, Al. Gen. J. Hallera 107, 80-416 Gdansk, Poland.
| | - Jarosław Sławiński
- Department of Organic Chemistry, Medical University of Gdansk, Al. Gen. J. Hallera 107, 80-416 Gdansk, Poland.
| | - Zdzisław Brzozowski
- Department of Organic Chemistry, Medical University of Gdansk, Al. Gen. J. Hallera 107, 80-416 Gdansk, Poland.
| | - Anna Kawiak
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, ul. Abrahama 58, 80-307 Gdansk, Poland.
- Laboratory of Human Physiology, Medical University of Gdansk, ul. Tuwima 15, 80-210 Gdansk, Poland.
| | - Mariusz Belka
- Department of Pharmaceutical Chemistry, Medical University of Gdansk, Al. Gen. J. Hallera 107, 80-416 Gdansk, Poland.
| | - Joanna Zielińska
- Department of Pharmaceutical Chemistry, Medical University of Gdansk, Al. Gen. J. Hallera 107, 80-416 Gdansk, Poland.
| | - Tomasz Bączek
- Department of Pharmaceutical Chemistry, Medical University of Gdansk, Al. Gen. J. Hallera 107, 80-416 Gdansk, Poland.
| | - Jarosław Chojnacki
- Department of Inorganic Chemistry, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233 Gdansk, Poland.
| |
Collapse
|
25
|
Ulus R, Esirden İ, Aday B, Turgut GÇ, Şen A, Kaya M. Synthesis of novel acridine-sulfonamide hybrid compounds as acetylcholinesterase inhibitor for the treatment of alzheimer’s disease. Med Chem Res 2018; 27:634-641. [DOI: 10.1007/s00044-017-2088-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
26
|
Tanwar DK, Ratan A, Gill MS. A facile synthesis of sulfonylureas via water assisted preparation of carbamates. Org Biomol Chem 2018; 15:4992-4999. [PMID: 28567464 DOI: 10.1039/c7ob00872d] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A novel and simple approach to the synthesis of sulfonylureas has been reported. It involved the reaction of various amines with diphenyl carbonate to yield the corresponding carbamates, which subsequently reacted with different sulphonamides to produce different sulfonylureas in excellent yields. The first reaction of diphenyl carbonate with amines was carried out in aqueous : organic (H2O : THF, 90 : 10) medium at room temperature to produce carbamates that paved a straightforward route to sulfonylureas after reaction with sulfonamides. The above process avoided traditional multistep protocols and the use of hazardous, irritant, toxic and moisture sensitive reagents such as phosgene, isocyanates and/or chloroformates.
Collapse
Affiliation(s)
- Dinesh Kumar Tanwar
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab-160062, India.
| | | | | |
Collapse
|
27
|
Novel 2-(2-arylmethylthio-4-chloro-5-methylbenzenesulfonyl)-1-(1,3,5-triazin-2-ylamino)guanidine derivatives: Inhibition of human carbonic anhydrase cytosolic isozymes I and II and the transmembrane tumor-associated isozymes IX and XII, anticancer activity, and molecular modeling studies. Eur J Med Chem 2018; 143:1931-1941. [DOI: 10.1016/j.ejmech.2017.11.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/26/2017] [Accepted: 11/02/2017] [Indexed: 11/18/2022]
|
28
|
Del Prete S, Vullo D, Caminiti-Segonds N, Zoccola D, Tambutté S, Supuran CT, Capasso C. Protonography and anion inhibition profile of the α-carbonic anhydrase (CruCA4) identified in the Mediterranean red coral Corallium rubrum. Bioorg Chem 2017; 76:281-287. [PMID: 29223031 DOI: 10.1016/j.bioorg.2017.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/06/2017] [Accepted: 12/03/2017] [Indexed: 12/19/2022]
Abstract
CruCA4 is a secreted isoform of the α-carbonic anhydrase (CA, EC 4.2.1.1) family, which has been identified in the octocoral Corallium rubrum. This enzyme is involved in the calcification process leading to the formation of the coral calcium carbonate skeleton. We report here experiments performed on the recombinant CruCA4 with the technique of protonography that can be used to detect in a simple way the enzyme activity. We have also investigated the inhibition profile of CruCA4 with one major class of CA inhibitors, the inorganic anions. A range of weak and moderate inhibitors have been identified having KI in the range of 1-100 mM, among which the halides, pseudohalides, bicarbonate, sulfate, nitrate, nitrite, and many complex inorganic anions. Stronger inhibitors were sulfamide, sulfamate, phenylboronic acid, phenylarsonic acid, and diethylditiocarbamate, which showed a better affinity for this enzyme, with KI in the range of 75 μM-0.60 mM. All these anions/small molecules probably coordinate to the Zn(II) ion within the CA active site as enzyme inhibition mechanism.
Collapse
Affiliation(s)
- Sonia Del Prete
- Istituto di Bioscienze e Biorisorse, CNR, Via Pietro Castellino 111, Napoli, Italy
| | - Daniela Vullo
- Università degli Studi di Firenze, Dipartimento Di Chimica, Laboratorio di Chimica Bioinorganica, Polo Scientifico, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | | | - Didier Zoccola
- Centre Scientifique de Monaco, 8 Quai Antoine 1°, 98 000, Monaco
| | - Sylvie Tambutté
- Centre Scientifique de Monaco, 8 Quai Antoine 1°, 98 000, Monaco
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| | - Clemente Capasso
- Istituto di Bioscienze e Biorisorse, CNR, Via Pietro Castellino 111, Napoli, Italy.
| |
Collapse
|
29
|
Perfetto R, Del Prete S, Vullo D, Sansone G, Barone C, Rossi M, Supuran CT, Capasso C. Biochemical characterization of the native α-carbonic anhydrase purified from the mantle of the Mediterranean mussel, Mytilus galloprovincialis. J Enzyme Inhib Med Chem 2017; 32:632-639. [PMID: 28229634 PMCID: PMC6010126 DOI: 10.1080/14756366.2017.1284069] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 01/16/2017] [Indexed: 01/18/2023] Open
Abstract
A α-carbonic anhydrase (CA, EC 4.2.1.1) has been purified and characterized biochemically from the mollusk Mytilus galloprovincialis. As in most mollusks, this α-CA is involved in the biomineralization processes leading to the precipitation of calcium carbonate in the mussel shell. The new enzyme had a molecular weight of 50 kDa, which is roughly two times higher than that of a monomeric α-class enzyme. Thus, Mytilus galloprovincialis α-CA is either a dimer, or similar to the Tridacna gigas CA described earlier, may have two different CA domains in its polypeptide chain. The Mytilus galloprovincialis α-CA sequence contained the three His residues acting as zinc ligands and the gate-keeper residues present in all α-CAs (Glu106-Thr199), but had a Lys in position 64 and not a His as proton shuttling residue, being thus similar to the human isoform hCA III. This probably explains the relatively low catalytic activity of Mytilus galloprovincialis α-CA, with the following kinetic parameters for the CO2 hydration reaction: kcat = 4.1 × 105 s-1 and kcat/Km of 3.6 × 107 M-1 × s-1. The enzyme activity was poorly inhibited by the sulfonamide acetazolamide, with a KI of 380 nM. This study is one of the few describing in detail the biochemical characterization of a molluskan CA and may be useful for understanding in detail the phylogeny of these enzymes, their role in biocalcification processes and their potential use in the biomimetic capture of the CO2.
Collapse
Affiliation(s)
- Rosa Perfetto
- Istituto di Bioscienze e Biorisorse, CNR, Napoli, Italy
| | - Sonia Del Prete
- Istituto di Bioscienze e Biorisorse, CNR, Napoli, Italy
- Dipartimento Neurofarba, Università degli Studi di Firenze, Sezione di Scienze Farmaceutiche, and Laboratorio di Chimica Bioinorganica, Polo Scientifico, Sesto Fiorentino, Florence, Italy
| | - Daniela Vullo
- Dipartimento Neurofarba, Università degli Studi di Firenze, Sezione di Scienze Farmaceutiche, and Laboratorio di Chimica Bioinorganica, Polo Scientifico, Sesto Fiorentino, Florence, Italy
| | - Giovanni Sansone
- Dipartimento di Biologia, Università degli Studi di Napoli, Federico II, Napoli, Italy
| | - Carmela Barone
- Dipartimento di Agraria, Università degli Studi di Napoli, Federico II, Portici (Napoli), Italy
| | - Mosè Rossi
- Istituto di Bioscienze e Biorisorse, CNR, Napoli, Italy
| | - Claudiu T. Supuran
- Dipartimento Neurofarba, Università degli Studi di Firenze, Sezione di Scienze Farmaceutiche, and Laboratorio di Chimica Bioinorganica, Polo Scientifico, Sesto Fiorentino, Florence, Italy
| | | |
Collapse
|
30
|
QSAR study of pyrazolo[4,3-e][1,2,4]triazine sulfonamides against tumor-associated human carbonic anhydrase isoforms IX and XII. Comput Biol Chem 2017; 71:57-62. [DOI: 10.1016/j.compbiolchem.2017.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 09/03/2017] [Accepted: 09/04/2017] [Indexed: 11/20/2022]
|
31
|
An Overview of the Bacterial Carbonic Anhydrases. Metabolites 2017; 7:metabo7040056. [PMID: 29137134 PMCID: PMC5746736 DOI: 10.3390/metabo7040056] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 11/08/2017] [Accepted: 11/08/2017] [Indexed: 12/12/2022] Open
Abstract
Bacteria encode carbonic anhydrases (CAs, EC 4.2.1.1) belonging to three different genetic families, the α-, β-, and γ-classes. By equilibrating CO2 and bicarbonate, these metalloenzymes interfere with pH regulation and other crucial physiological processes of these organisms. The detailed investigations of many such enzymes from pathogenic and non-pathogenic bacteria afford the opportunity to design both novel therapeutic agents, as well as biomimetic processes, for example, for CO2 capture. Investigation of bacterial CA inhibitors and activators may be relevant for finding antibiotics with a new mechanism of action.
Collapse
|
32
|
Perfetto R, Del Prete S, Vullo D, Carginale V, Sansone G, Barone CMA, Rossi M, Alasmary FAS, Osman SM, AlOthman Z, Supuran CT, Capasso C. Cloning, expression and purification of the α-carbonic anhydrase from the mantle of the Mediterranean mussel, Mytilus galloprovincialis. J Enzyme Inhib Med Chem 2017; 32:1029-1035. [PMID: 28741386 PMCID: PMC6010101 DOI: 10.1080/14756366.2017.1353502] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We cloned, expressed, purified, and determined the kinetic constants of the recombinant α-carbonic anhydrase (rec-MgaCA) identified in the mantle tissue of the bivalve Mediterranean mussel, Mytilus galloprovincialis. In metazoans, the α-CA family is largely represented and plays a pivotal role in the deposition of calcium carbonate biominerals. Our results demonstrated that rec-MgaCA was a monomer with an apparent molecular weight of about 32 kDa. Moreover, the determined kinetic parameters for the CO2 hydration reaction were kcat = 4.2 × 105 s−1 and kcat/Km of 3.5 × 107 M−1 ×s−1. Curiously, the rec-MgaCA showed a very similar kinetic and acetazolamide inhibition features when compared to those of the native enzyme (MgaCA), which has a molecular weight of 50 kDa. Analysing the SDS-PAGE, the protonography, and the kinetic analysis performed on the native and recombinant enzyme, we hypothesised that probably the native MgaCA is a multidomain protein with a single CA domain at the N-terminus of the protein. This hypothesis is corroborated by the existence in mollusks of multidomain proteins with a hydratase activity. Among these proteins, nacrein is an example of α-CA multidomain proteins characterised by a single CA domain at the N-terminus part of the entire protein.
Collapse
Affiliation(s)
- Rosa Perfetto
- a Istituto di Bioscienze e Biorisorse , CNR , Napoli , Italy
| | - Sonia Del Prete
- a Istituto di Bioscienze e Biorisorse , CNR , Napoli , Italy.,b Laboratorio di Chimica Bioinorganica, Polo Scientifico , Università degli Studi di Firenze , Sesto Fiorentino, Florence , Italy
| | - Daniela Vullo
- b Laboratorio di Chimica Bioinorganica, Polo Scientifico , Università degli Studi di Firenze , Sesto Fiorentino, Florence , Italy
| | | | - Giovanni Sansone
- c Dipartimento di Biologia , Università degli Studi di Napoli, Federico II , Napoli , Italy
| | - Carmela M A Barone
- d Dipartimento di Agraria , Università degli Studi di Napoli, Federico II , Portici, Napoli , Italy
| | - Mosè Rossi
- a Istituto di Bioscienze e Biorisorse , CNR , Napoli , Italy
| | - Fatmah A S Alasmary
- e Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche , Università degli Studi di Firenze , Sesto Fiorentino , Florence , Italy
| | - Sameh M Osman
- e Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche , Università degli Studi di Firenze , Sesto Fiorentino , Florence , Italy
| | - Zeid AlOthman
- e Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche , Università degli Studi di Firenze , Sesto Fiorentino , Florence , Italy
| | - Claudiu T Supuran
- b Laboratorio di Chimica Bioinorganica, Polo Scientifico , Università degli Studi di Firenze , Sesto Fiorentino, Florence , Italy.,e Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche , Università degli Studi di Firenze , Sesto Fiorentino , Florence , Italy.,f Department of Chemistry, College of Science , King Saud University , Riyadh , Saudi Arabia
| | | |
Collapse
|
33
|
Perfetto R, Del Prete S, Vullo D, Sansone G, Barone CMA, Rossi M, Supuran CT, Capasso C. Production and covalent immobilisation of the recombinant bacterial carbonic anhydrase (SspCA) onto magnetic nanoparticles. J Enzyme Inhib Med Chem 2017; 32:759-766. [PMID: 28497711 PMCID: PMC6445167 DOI: 10.1080/14756366.2017.1316719] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Carbonic anhydrases (CAs; EC 4.2.1.1) are metalloenzymes with a pivotal potential role in the biomimetic CO2 capture process (CCP) because these biocatalysts catalyse the simple but physiologically crucial reaction of carbon dioxide hydration to bicarbonate and protons in all life kingdoms. The CAs are among the fastest known enzymes, with kcat values of up to 106 s-1 for some members of the superfamily, providing thus advantages when compared with other CCP methods, as they are specific for CO2. Thermostable CAs might be used in CCP technology because of their ability to perform catalysis in operatively hard conditions, typical of the industrial processes. Moreover, the improvement of the enzyme stability and its reuse are important for lowering the costs. These aspects can be overcome by immobilising the enzyme on a specific support. We report in this article that the recombinant thermostable SspCA (α-CA) from the thermophilic bacterium Sulfurihydrogenibium yellowstonense can been heterologously produced by a high-density fermentation of Escherichia coli cultures, and covalently immobilised onto the surface of magnetic Fe3O4 nanoparticles (MNP) via carbodiimide activation reactions. Our results demonstrate that using a benchtop bioprocess station and strategies for optimising the bacterial growth, it is possible to produce at low cost a large amount SspCA. Furthermore, the enzyme stability and storage greatly increased through the immobilisation, as SspCA bound to MNP could be recovered from the reaction mixture by simply using a magnet or an electromagnetic field, due to the strong ferromagnetic properties of Fe3O4.
Collapse
Affiliation(s)
- Rosa Perfetto
- a Istituto di Bioscienze e Biorisorse, CNR , Napoli , Italy
| | - Sonia Del Prete
- a Istituto di Bioscienze e Biorisorse, CNR , Napoli , Italy.,b Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche, and Laboratorio di Chimica Bioinorganica, Polo Scientifico , Università degli Studi di Firenze , Sesto Fiorentino , Italy
| | - Daniela Vullo
- b Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche, and Laboratorio di Chimica Bioinorganica, Polo Scientifico , Università degli Studi di Firenze , Sesto Fiorentino , Italy
| | - Giovanni Sansone
- c Dipartimento di Biologia , Università degli Studi di Napoli, Federico II , Napoli , Italy
| | - Carmela M A Barone
- d Dipartimento di Agraria , Università degli Studi di Napoli, Federico II , Portici , Napoli , Italy
| | - Mosè Rossi
- a Istituto di Bioscienze e Biorisorse, CNR , Napoli , Italy
| | - Claudiu T Supuran
- b Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche, and Laboratorio di Chimica Bioinorganica, Polo Scientifico , Università degli Studi di Firenze , Sesto Fiorentino , Italy
| | | |
Collapse
|
34
|
Pogorzelska A, Sławiński J, Żołnowska B, Szafrański K, Kawiak A, Chojnacki J, Ulenberg S, Zielińska J, Bączek T. Novel 2-(2-alkylthiobenzenesulfonyl)-3-(phenylprop-2-ynylideneamino)guanidine derivatives as potent anticancer agents – Synthesis, molecular structure, QSAR studies and metabolic stability. Eur J Med Chem 2017; 138:357-370. [DOI: 10.1016/j.ejmech.2017.06.059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 06/05/2017] [Accepted: 06/28/2017] [Indexed: 11/25/2022]
|
35
|
Sequence Analysis, Kinetic Constants, and Anion Inhibition Profile of the Nacrein-Like Protein (CgiNAP2X1) from the Pacific Oyster Magallana gigas (Ex-Crassostrea gigas). Mar Drugs 2017; 15:md15090270. [PMID: 28846630 PMCID: PMC5618409 DOI: 10.3390/md15090270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 08/21/2017] [Accepted: 08/23/2017] [Indexed: 12/31/2022] Open
Abstract
The carbonic anhydrase (CA, EC 4.2.1.1) superfamily of metalloenzymes catalyzes the hydration of carbon dioxide to bicarbonate and protons. The catalytically active form of these enzymes incorporates a metal hydroxide derivative, the formation of which is the rate-determining step of catalytic reaction, being affected by the transfer of a proton from a metal-coordinated water molecule to the environment. Here, we report the cloning, expression, and purification of a particular CA, i.e., nacrein-like protein encoded in the genome of the Pacific oyster Magallana gigas (previously known as Crassostrea gigas). Furthermore, the amino acid sequence, kinetic constants, and anion inhibition profile of the recombinant enzyme were investigated for the first time. The new protein, CgiNAP2X1, is highly effective as catalyst for the CO2 hydration reaction, based on the measured kinetic parameters, i.e., kcat = 1.0 × 106 s−1 and kcat/KM = 1.2 × 108 M−1·s−1. CgiNAP2X1 has a putative signal peptide, which probably allows an extracellular localization of the protein. The inhibition data demonstrated that the best anion inhibitors of CgiNAP2X1 were diethyldithiocarbamate, sulfamide, sulfamate, phenylboronic acid and phenylarsonic acid, which showed a micromolar affinity for this enzyme, with KIs in the range of 76–87 μM. These studies may add new information on the physiological role of the molluskan CAs in the biocalcification processes.
Collapse
|
36
|
Carbonic Anhydrase from Porphyromonas Gingivalis as a Drug Target. Pathogens 2017; 6:pathogens6030030. [PMID: 28714894 PMCID: PMC5617987 DOI: 10.3390/pathogens6030030] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 07/11/2017] [Accepted: 07/11/2017] [Indexed: 12/15/2022] Open
Abstract
Periodontitis originates from a microbial synergy causing the development of a mouth microbial imbalance (dysbiosis), consisting of a microbial community composed of anaerobic bacteria. Most studies concerning the treatment of periodontitis have primarily take into account the Gram-negative bacterium Porphyromonas gingivalis, because it is a prominent component of the oral microbiome and a successful colonizer of the oral epithelium. Here, we focus our attention on the study of the carbonic anhydrases (CAs, EC 4.2.1.1) encoded in the genome of this pathogen as a possible drug target. Carbonic anhydrases are a superfamily of metalloenzymes, which catalyze the simple but physiologically crucial reaction of carbon dioxide hydration to bicarbonate and protons. Bacterial CAs have attracted significant attention for affecting the survival, invasion, and pathogenicity of many microorganisms. The P. gingivalis genome encodes for two CAs belonging to β-CA (PgiCAβ) and γ-CA (PgiCAγ) families. These two enzymes were cloned, heterologously expressed in Escherichia coli, and purified to homogeneity. Moreover, they were subject to extensive inhibition studies using the classical CA inhibitors (sulfonamides and anions) with the aim of identifying selective inhibitors of PgiCAβ and PgiCAγ to be used as pharmacological tools for P. gingivalis eradication.
Collapse
|
37
|
Sławiński J, Szafrański K, Pogorzelska A, Żołnowska B, Kawiak A, Macur K, Belka M, Bączek T. Novel 2-benzylthio-5-(1,3,4-oxadiazol-2-yl)benzenesulfonamides with anticancer activity: Synthesis, QSAR study, and metabolic stability. Eur J Med Chem 2017; 132:236-248. [PMID: 28364658 DOI: 10.1016/j.ejmech.2017.03.039] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/30/2017] [Accepted: 03/21/2017] [Indexed: 02/03/2023]
Abstract
A series of novel 2-benzylthio-4-chloro-5-(5-substituted 1,3,4-oxadiazol-2-yl)benzenesulfonamides (4-27) have been synthesized as potential anticancer agents. MTT assay was carried out to determine the cytotoxic activity against three human cancer cell lines: colon cancer HCT-116, breast cancer MCF-7 and cervical cancer HeLa as well as to determine the influence on human keratinocyte cell line HaCaT. Relatively high (IC50: 7-17 μM) cytostatic activity and selectivity against HeLa cell line was found for compounds 6, 7, 9-11 and 16. While compounds 23-27 bearing styryl moieties attached to a 1,3,4-oxadiazole ring at position 5, exhibited significant activity against two and/or three cancer cell lines with IC50: 11-29 μM. Further quantitative structure-activity relationships based on molecular descriptors calculated by DRAGON software, were investigated by Orthogonal Projections to Latent Structures (OPLS) technique and Variable Influence on Projection (VIP) analysis. Considering molecular descriptors with the highest influence on projection (highest VIP values) lipophilicity of tested compounds was pointed as main factor affecting activity towards HCT-116 cell line, while structural parameters associated with presence of styryl substituent in position 5 of 1,3,4-oxadiazole ring were identified as essential for activity towards MCF-7 breast cancer. In vitro tests for metabolic stability in the presences of pooled human liver microsomes and NADPH showed that some of the most active compounds 26 and 27 presented favorable metabolic stability with t1/2 in the range of 28.1-36.0 min.
Collapse
Affiliation(s)
- Jarosław Sławiński
- Department of Organic Chemistry, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland.
| | - Krzysztof Szafrański
- Department of Organic Chemistry, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland
| | - Aneta Pogorzelska
- Department of Organic Chemistry, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland
| | - Beata Żołnowska
- Department of Organic Chemistry, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland
| | - Anna Kawiak
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, ul. Abrahama 58, 80-307 Gdańsk, Poland; Laboratory of Human Physiology, Medical University of Gdańsk, ul. Tuwima 15, 80-210 Gdańsk, Poland
| | - Katarzyna Macur
- Laboratory of Mass Spectrometry, Core Facility Laboratories, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, ul. Abrahama 58, 80-307 Gdańsk, Poland
| | - Mariusz Belka
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland
| | - Tomasz Bączek
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland
| |
Collapse
|
38
|
Kinetic properties and affinities for sulfonamide inhibitors of an α-carbonic anhydrase (CruCA4) involved in coral biomineralization in the Mediterranean red coral Corallium rubrum. Bioorg Med Chem 2017; 25:3525-3530. [PMID: 28501430 DOI: 10.1016/j.bmc.2017.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 04/27/2017] [Accepted: 05/01/2017] [Indexed: 12/11/2022]
Abstract
We report the kinetic properties and sulfonamide inhibition profile of an α-carbonic anhydrase (CA, EC 4.2.1.1), named CruCA4, identified in the red coral Corallium rubrum. This isoform is involved in the biomineralization process leading to the formation of a calcium carbonate skeleton. Experiments performed on the recombinant protein show that the enzyme has a "moderate activity" level. Our results are discussed compared to values obtained for other CA isoforms involved in biomineralization. This is the first study describing the biochemical characterization of an octocoral CA.
Collapse
|
39
|
Huyut Z, Beydemir Ş, Gülçin İ. Inhibition properties of some flavonoids on carbonic anhydrase I and II isoenzymes purified from human erythrocytes. J Biochem Mol Toxicol 2017; 31. [DOI: 10.1002/jbt.21930] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/17/2017] [Accepted: 03/20/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Zübeyir Huyut
- Department of Biochemistry; Medical Faculty, Yuzuncu Yıl University; Van Turkey
| | - Şükrü Beydemir
- Department of Biochemistry; Faculty of Pharmacy, Anadolu University; Eskişehir Turkey
| | - İlhami Gülçin
- Department of Chemistry; Faculty of Sciences, Atatürk University; Erzurum Turkey
| |
Collapse
|
40
|
Vullo D, Del Prete S, Di Fonzo P, Carginale V, Donald WA, Supuran CT, Capasso C. Comparison of the Sulfonamide Inhibition Profiles of the β- and γ-Carbonic Anhydrases from the Pathogenic Bacterium Burkholderia pseudomallei. Molecules 2017; 22:E421. [PMID: 28272358 PMCID: PMC6155308 DOI: 10.3390/molecules22030421] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 02/16/2017] [Accepted: 03/03/2017] [Indexed: 11/25/2022] Open
Abstract
We have cloned, purified, and characterized a β-carbonic anhydrase (CA, EC 4.2.1.1), BpsCAβ, from the pathogenic bacterium Burkholderia pseudomallei, responsible for the tropical disease melioidosis. The enzyme showed high catalytic activity for the physiologic CO₂ hydration reaction to bicarbonate and protons, with the following kinetic parameters: kcat of 1.6 × 10⁵ s-1 and kcat/KM of 3.4 × 10⁷ M-1 s-1. An inhibition study with a panel of 38 sulfonamides and one sulfamate-including 15 compounds that are used clinically-revealed an interesting structure-activity relationship for the interaction of this enzyme with these inhibitors. Many simple sulfonamides and clinically used agents such as topiramate, sulpiride, celecoxib, valdecoxib, and sulthiame were ineffective BpsCAβ inhibitors (KI > 50 µM). Other drugs, such as ethoxzolamide, dorzolamide, brinzolamide, zonisamide, indisulam, and hydrochlorothiazide were moderately potent micromolar inhibitors. The best inhibition was observed with benzene-1,3-disulfonamides-benzolamide and its analogs acetazolamide and methazolamide-which showed KI in the range of 185-745 nM. The inhibition profile of BpsCAβ is very different from that of the γ-class enzyme from the same pathogen, BpsCAγ. Thus, identifying compounds that would effectively interact with both enzymes is relatively challenging. However, benzolamide was one of the best inhibitors of both of these CAs with KI of 653 and 185 nM, respectively, making it an interesting lead compound for the design of more effective agents, which may be useful tools for understanding the pathogenicity of this bacterium.
Collapse
Affiliation(s)
- Daniela Vullo
- Laboratorio di Chimica Bioinorganica, Dipartimento Di Chimica, Università degli Studi di Firenze, Polo Scientifico, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy.
| | - Sonia Del Prete
- Istituto di Bioscienze e Biorisorse, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy.
- Sezione di Scienze Farmaceutiche e Nutraceutiche, Dipartimento Neurofarba, Università degli Studi di Firenze, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| | - Pietro Di Fonzo
- Istituto di Bioscienze e Biorisorse, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy.
| | - Vincenzo Carginale
- Istituto di Bioscienze e Biorisorse, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy.
| | - W Alexander Donald
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia.
| | - Claudiu T Supuran
- Sezione di Scienze Farmaceutiche e Nutraceutiche, Dipartimento Neurofarba, Università degli Studi di Firenze, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia.
| | - Clemente Capasso
- Istituto di Bioscienze e Biorisorse, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy.
| |
Collapse
|
41
|
Del Prete S, Vullo D, di Fonzo P, Carginale V, Supuran CT, Capasso C. Comparison of the anion inhibition profiles of the β- and γ-carbonic anhydrases from the pathogenic bacterium Burkholderia pseudomallei. Bioorg Med Chem 2017; 25:2010-2015. [PMID: 28238511 DOI: 10.1016/j.bmc.2017.02.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 02/13/2017] [Accepted: 02/14/2017] [Indexed: 10/20/2022]
Abstract
We report the cloning, purification and characterization of BpsβCA, a β-class carbonic anhydrase (CA, EC 4.2.1.1) from the pathogenic bacterium Burkholderia pseudomallei, the etiological agent of melioidosis, and compare its activity and inhibition with those of the γ-CA from the same organism, BpsγCA, recently investigated by our groups. BpsβCA showed a significant catalytic activity for the physiologic, CO2 hydration reaction, with the following kinetic parameters, kcat of 1.6×105s-1 and kcat/Km of 3.4×107M-1×s-1. The inhibition of BpsβCA with a group of anions and small molecules was also investigated. The best inhibitors were sulfamide, sulfamic acid and phenylarsonic acid, which showed KIs in the range of 83-92µM, whereas phenylboronic acid, fluoride, cyanide, azide, bisulfite, tetraborate, perrhenate, perruthenate, peroxydisulfate, perchlorate, tetrafluoroborate, fluorosulfonate and hexafluorophosphate showed KIs>100mM. Other inhibitors of this new enzyme were bicarbonate, trithiocarbonate, some complex inorganic anions and N,N-diethyldithiocarbamate, which had inhibition constants of 0.32-8.6mM. As little is known of the life cycle and virulence of this bacterium, this type of study may bring information of interest for the development of novel strategies to fight bacterial infection and drug resistance to commonly used antibiotics.
Collapse
Affiliation(s)
- Sonia Del Prete
- Istituto di Bioscienze e Biorisorse, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy; Università degliStudi di Firenze, Dipartimento Di Chimica, Laboratorio di Chimica Bioinorganica, Polo Scientifico, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Daniela Vullo
- Università degliStudi di Firenze, Dipartimento Di Chimica, Laboratorio di Chimica Bioinorganica, Polo Scientifico, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Pietro di Fonzo
- Istituto di Bioscienze e Biorisorse, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Vincenzo Carginale
- Istituto di Bioscienze e Biorisorse, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Claudiu T Supuran
- Università degliStudi di Firenze, Dipartimento Di Chimica, Laboratorio di Chimica Bioinorganica, Polo Scientifico, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy; Università degli Studi di Firenze, Dipartimento Neurofarba, Sezione di ScienzeFarmaceutiche e Nutraceutiche, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| | - Clemente Capasso
- Istituto di Bioscienze e Biorisorse, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy.
| |
Collapse
|
42
|
Żołnowska B, Sławiński J, Pogorzelska A, Szafrański K, Kawiak A, Stasiłojć G, Belka M, Ulenberg S, Bączek T, Chojnacki J. Novel 5-Substituted 2-(Aylmethylthio)-4-chloro-N-(5-aryl-1,2,4-triazin-3-yl)benzenesulfonamides: Synthesis, Molecular Structure, Anticancer Activity, Apoptosis-Inducing Activity and Metabolic Stability. Molecules 2016; 21:E808. [PMID: 27338337 PMCID: PMC6273912 DOI: 10.3390/molecules21060808] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/08/2016] [Accepted: 06/17/2016] [Indexed: 12/28/2022] Open
Abstract
A series of novel 5-substituted 2-(arylmethylthio)-4-chloro-N-(5-aryl-1,2,4-triazin-3-yl) benzenesulfonamide derivatives 27-60 have been synthesized by the reaction of aminoguanidines with an appropriate phenylglyoxal hydrate in glacial acetic acid. A majority of the compounds showed cytotoxic activity toward the human cancer cell lines HCT-116, HeLa and MCF-7, with IC50 values below 100 μM. It was found that for the analogues 36-38 the naphthyl moiety contributed significantly to the anticancer activity. Cytometric analysis of translocation of phosphatidylserine as well as mitochondrial membrane potential and cell cycle revealed that the most active compounds 37 (HCT-116 and HeLa) and 46 (MCF-7) inhibited the proliferation of cells by increasing the number of apoptotic cells. Apoptotic-like, dose dependent changes in morphology of cell lines were also noticed after treatment with 37 and 46. Moreover, triazines 37 and 46 induced caspase activity in the HCT-116, HeLa and MCF-7 cell lines. Selected compounds were tested for metabolic stability in the presence of pooled human liver microsomes and NADPH, both R² and Ar = 4-CF₃-C₆H₄ moiety in 2-(R²-methylthio)-N-(5-aryl-1,2,4-triazin-3-yl)benzenesulfonamides simultaneously increased metabolic stability. The results pointed to 37 as a hit compound with a good cytotoxicity against HCT-116 (IC50 = 36 μM), HeLa (IC50 = 34 μM) cell lines, apoptosis-inducing activity and moderate metabolic stability.
Collapse
Affiliation(s)
- Beata Żołnowska
- Department of Organic Chemistry, Medical University of Gdańsk, Al. Gen. J. Hallera 107, Gdańsk 80-416, Poland.
| | - Jarosław Sławiński
- Department of Organic Chemistry, Medical University of Gdańsk, Al. Gen. J. Hallera 107, Gdańsk 80-416, Poland.
| | - Aneta Pogorzelska
- Department of Organic Chemistry, Medical University of Gdańsk, Al. Gen. J. Hallera 107, Gdańsk 80-416, Poland.
| | - Krzysztof Szafrański
- Department of Organic Chemistry, Medical University of Gdańsk, Al. Gen. J. Hallera 107, Gdańsk 80-416, Poland.
| | - Anna Kawiak
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, ul. Abrahama 58, Gdańsk 80-307, Poland.
- Laboratory of Human Physiology, Medical University of Gdańsk, ul. Tuwima 15, Gdańsk 80-210, Poland.
| | - Grzegorz Stasiłojć
- Laboratory of Cell Biology, Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology UG-MUG, Medical University of Gdańsk, ul. Dębinki 1, Gdańsk 80-211, Poland.
| | - Mariusz Belka
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Al. Gen. J. Hallera 107, Gdańsk 80-416, Poland.
| | - Szymon Ulenberg
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Al. Gen. J. Hallera 107, Gdańsk 80-416, Poland.
| | - Tomasz Bączek
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Al. Gen. J. Hallera 107, Gdańsk 80-416, Poland.
| | - Jarosław Chojnacki
- Department of Inorganic Chemistry, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk 80-233, Poland.
| |
Collapse
|
43
|
Başar E, Tunca E, Bülbül M, Kaya M. Synthesis of novel sulfonamides under mild conditions with effective inhibitory activity against the carbonic anhydrase isoforms I and II. J Enzyme Inhib Med Chem 2016; 31:1356-61. [PMID: 27541741 DOI: 10.3109/14756366.2015.1134524] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Novel sulfonamide derivatives 6a-i, as new carbonic anhydrase inhibitors which candidate for glaucoma treatment, were synthesized from the reactions of 4-amino-N-(4-sulfamoylphenyl) benzamide 4 and sulfonyl chloride derivatives 5a-i with high yield (71-90%). The structures of these compounds were confirmed by using spectral analysis (FT-IR, (1)H NMR, (13)C NMR, LC/MS and HRMS). The inhibition effects of 6a-i on the hydratase and esterase activities of human carbonic anhydrase isoenzymes, hCA I and II, which were purified from human erythrocytes with Sepharose®4B-l-tyrosine-p-aminobenzene sulfonamide affinity chromatography, were studied as in vitro, and IC50 and Ki values were determined. The results show that newly synthesized compounds have quite powerful inhibitory properties.
Collapse
Affiliation(s)
| | - Ekrem Tunca
- b Biochemistry Department , Faculty of Arts and Science, Dumlupınar University , Kütahya , Turkey
| | - Metin Bülbül
- b Biochemistry Department , Faculty of Arts and Science, Dumlupınar University , Kütahya , Turkey
| | - Muharrem Kaya
- b Biochemistry Department , Faculty of Arts and Science, Dumlupınar University , Kütahya , Turkey
| |
Collapse
|
44
|
Berlinck RGS, Romminger S. The chemistry and biology of guanidine natural products. Nat Prod Rep 2016; 33:456-90. [DOI: 10.1039/c5np00108k] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The present review discusses the isolation, structure determination, synthesis, biosynthesis and biological activities of secondary metabolites bearing a guanidine group.
Collapse
Affiliation(s)
| | - Stelamar Romminger
- Instituto de Química de São Carlos
- Universidade de São Paulo
- São Carlos
- Brazil
| |
Collapse
|
45
|
Artunç T, Çetinkaya Y, Göçer H, Gülçin İ, Menzek A, Şahin E, Supuran CT. Synthesis of 4-[2-(3,4-dimethoxybenzyl)cyclopentyl]-1,2-dimethoxybenzene Derivatives and Evaluations of Their Carbonic Anhydrase Isoenzymes Inhibitory Effects. Chem Biol Drug Des 2015; 87:594-607. [PMID: 26642829 DOI: 10.1111/cbdd.12695] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/08/2015] [Accepted: 11/12/2015] [Indexed: 12/11/2022]
Abstract
Rearrangement of 1,6-bis(3,4-dimethoxyphenyl)hexane-1,6-dione (8) gave two isomeric products having cyclopentene moiety. Starting from the major product (3,4-dimethoxyphenyl)[2-(3,4-dimethoxyphenyl)cyclopent-1-en-1-yl]methanone (11), eight new compounds (16-23) were obtained by the reactions such as reduction (by catalytic hydrogenation and NaBH4 ), nitration, 1,4-addition, bromination, and esterification reactions. Carbonic anhydrases (CA, E.C.4.2.1.1) are ubiquitous metalloenzymes present in almost all living organism that catalyze a simple reaction, the conversion of carbon dioxide (CO2 ) and water (H2 O) to bicarbonate ion (HCO3 (-) ) and a proton (H(+) ). CA isoenzymes I and II (hCA I and II) inhibition effects of synthesized eleven new and four known compounds (8-13 and 15-23) were investigated. Inhibition studies of the hCA I and II with 4-[2-(3,4-dimethoxybenzyl)cyclopentyl]-1,2-dimethoxybenzene derivatives revealed that they possess effective inhibitory potency. Cytosolic hCA I and II isoenzymes were potently inhibited by new synthesized 4-[2-(3,4-dimethoxybenzyl)cyclopentyl]-1,2-dimethoxybenzene derivatives with Ki s in the range of 313.16-1537.00 nm against hCA I and in the range of 228.31-1927.31 nm against hCA II, respectively.
Collapse
Affiliation(s)
- Tekin Artunç
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Yasin Çetinkaya
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey.,Department of Food Technology, Oltu Vocational School, Atatürk University, Oltu-Erzurum, Turkey
| | - Hülya Göçer
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey.,Faculty of Sciences and Letters, Aǧri Ibrahim Cecen University, Aǧri, Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey.,Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah Menzek
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Ertan Şahin
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Claudiu T Supuran
- Dipartimento NEUROFARBA, Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, Sesto Fiorentino (Firenze), I-50019, Italy
| |
Collapse
|
46
|
Kose LP, Gulcin İ, Yıldırım A, Atmaca U, Çelik M, Alwasel SH, Supuran CT. The human carbonic anhydrase isoenzymes I and II inhibitory effects of some hydroperoxides, alcohols, and acetates. J Enzyme Inhib Med Chem 2015; 31:1248-53. [DOI: 10.3109/14756366.2015.1120723] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Leyla Polat Kose
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, Turkey,
| | - İlhami Gulcin
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, Turkey,
- Department of Zoology, College of Science, King Saud University, Saudi Arabia,
| | - Alper Yıldırım
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, Turkey,
| | - Ufuk Atmaca
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, Turkey,
| | - Murat Çelik
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, Turkey,
| | - Saleh H. Alwasel
- Department of Zoology, College of Science, King Saud University, Saudi Arabia,
| | - Claudiu T. Supuran
- Dipartimento Di Chimica Ugo Schiff, Università Degli Studi Di Firenze, Firenze, Italy, and
- Neurofarba Department, Section of Pharmaceutical and Nutriceutical Sciences, Università Degli Studi Di Firenze, Florence, Italy
| |
Collapse
|
47
|
Huyut Z, Beydemir Ş, Gülçin İ. Inhibitory effects of some phenolic compounds on the activities of carbonic anhydrase: from in vivo to ex vivo. J Enzyme Inhib Med Chem 2015; 31:1234-40. [PMID: 26670706 DOI: 10.3109/14756366.2015.1117459] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Carbonic anhydrase (CA) inhibitors have been used for more than 60 years for therapeutic purposes in many diseases table such as in medications against antiglaucoma and as diuretics. Phenolic compounds are a new class of CA inhibitor. In our study, we tested the effects of arachidonoyl dopamine, 2,4,6-trihydroxybenzaldehyde and 3,4-dihydroxy-5-methoxybenzoic acid on esterase and the CO2-hydratase activities of CA I and II isozymes purified from in vivo to ex vivo. The Ki values of arachidonoyl dopamine, 2,4,6-trihydroxybenzaldehyde and 3,4-dihydroxy-5-methoxybenzoic acid were 203.80, 1170.00 and 910.00 μM, respectively for hCA I and 75.25, 354.00 and 1510.00 μM, respectively for hCA II. Additionally, IC50 values from in vivo studies were found to be in the range of 173.25-1360.0 μM for CA I and II, respectively, using CO2-hydratase activity methods. These results demonstrated that phenolic compounds used in in vivo studies could be used in different biomedical applications to inhibit approximately 30% of the CO2-hydratase activity of the total CA enzyme of rat erythrocytes.
Collapse
Affiliation(s)
- Zübeyir Huyut
- a Department of Biochemistry , Faculty of Medical, Yüzüncü Yıl University , Van , Turkey
| | - Şükrü Beydemir
- b Department of Chemistry , Faculty of Science, Atatürk University , Erzurum , Turkey , and
| | - İlhami Gülçin
- b Department of Chemistry , Faculty of Science, Atatürk University , Erzurum , Turkey , and.,c Department of Zoology , College of Science, King Saud University , Riyadh , Saudi Arabia
| |
Collapse
|
48
|
Żołnowska B, Sławiński J, Belka M, Bączek T, Kawiak A, Chojnacki J, Pogorzelska A, Szafrański K. Synthesis, Molecular Structure, Metabolic Stability and QSAR Studies of a Novel Series of Anticancer N-Acylbenzenesulfonamides. Molecules 2015; 20:19101-29. [PMID: 26506328 PMCID: PMC6332020 DOI: 10.3390/molecules201019101] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 10/01/2015] [Accepted: 10/12/2015] [Indexed: 11/22/2022] Open
Abstract
A series of novel N-acyl-4-chloro-5-methyl-2-(R1-methylthio)benzenesulfonamides 18–47 have been synthesized by the reaction of N-[4-chloro-5-methyl-2-(R1-methylthio)benzenesulfonyl]cyanamide potassium salts with appropriate carboxylic acids. Some of them showed anticancer activity toward the human cancer cell lines MCF-7, HCT-116 and HeLa, with the growth percentages (GPs) in the range from 7% to 46%. Quantitative structure-activity relationship (QSAR) studies on the cytotoxic activity of N-acylsulfonamides toward MCF-7, HCT-116 and HeLa were performed by using topological, ring and charge descriptors based on the stepwise multiple linear regression technique (MLR). The QSAR studies revealed three predictive and statistically significant models for the investigated compounds. The results obtained with these models indicated that the anticancer activity of N-acylsulfonamides depends on topological distances, number of ring system, maximum positive charge and number of atom-centered fragments. The metabolic stability of the selected compounds had been evaluated on pooled human liver microsomes and NADPH, both R1 and R2 substituents of the N-acylsulfonamides simultaneously affected them.
Collapse
Affiliation(s)
- Beata Żołnowska
- Department of Organic Chemistry, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland.
| | - Jarosław Sławiński
- Department of Organic Chemistry, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland.
| | - Mariusz Belka
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland.
| | - Tomasz Bączek
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland.
| | - Anna Kawiak
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, ul. Kładki 24, 80-822 Gdańsk, Poland.
- Department of Human Physiology, Medical University of Gdańsk, ul. Tuwima 15, 80-210 Gdańsk, Poland.
| | - Jarosław Chojnacki
- Department of Inorganic Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland.
| | - Aneta Pogorzelska
- Department of Organic Chemistry, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland.
| | - Krzysztof Szafrański
- Department of Organic Chemistry, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland.
| |
Collapse
|
49
|
Aday B, Sola P, Çolak F, Kaya M. Synthesis of novel sulfonamide analogs containing sulfamerazine/sulfaguanidine and their biological activities. J Enzyme Inhib Med Chem 2015; 31:1005-10. [DOI: 10.3109/14756366.2015.1079183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
| | | | | | - Muharrem Kaya
- Biochemistry Department, Faculty of Arts and Science, Dumlupınar University, Kütahya, Turkey
| |
Collapse
|
50
|
De Luca V, Del Prete S, Vullo D, Carginale V, Di Fonzo P, Osman SM, AlOthman Z, Supuran CT, Capasso C. Expression and characterization of a recombinant psychrophilic γ-carbonic anhydrase (NcoCA) identified in the genome of the Antarctic cyanobacteria belonging to the genus Nostoc. J Enzyme Inhib Med Chem 2015. [DOI: 10.3109/14756366.2015.1069289] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
| | - Sonia Del Prete
- Istituto di Bioscienze e Biorisorse, CNR, Napoli, Italy,
- Laboratorio di Chimica Bioinorganica, Dipartimento Di Chimica, Polo Scientifico, Università degli Studi di Firenze, Sesto Fiorentino, Florence, Italy,
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche, Polo Scientifico, Sesto Fiorentino, Florence, Italy, and
| | - Daniela Vullo
- Laboratorio di Chimica Bioinorganica, Dipartimento Di Chimica, Polo Scientifico, Università degli Studi di Firenze, Sesto Fiorentino, Florence, Italy,
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche, Polo Scientifico, Sesto Fiorentino, Florence, Italy, and
| | | | | | - Sameh M Osman
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Zeid AlOthman
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Claudiu T Supuran
- Laboratorio di Chimica Bioinorganica, Dipartimento Di Chimica, Polo Scientifico, Università degli Studi di Firenze, Sesto Fiorentino, Florence, Italy,
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche, Polo Scientifico, Sesto Fiorentino, Florence, Italy, and
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|