1
|
Mir MA, Banik BK. Heterocyclic Phytochemicals as Anticancer Agents. Curr Top Med Chem 2025; 25:533-553. [PMID: 39350414 DOI: 10.2174/0115680266314693240914070250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/08/2024] [Accepted: 08/29/2024] [Indexed: 04/25/2025]
Abstract
Cancer continues to be a major global health challenge, driving the need for the discovery of novel therapeutic agents. Among these, heterocyclic phytochemicals have gained significant attention for their potential as anticancer agents. This review offers a detailed analysis of various classes of heterocyclic compounds with proven anticancer properties, shedding light on their mechanisms of action. The study draws from a diverse array of natural product sources, detailing the chemical structures and bioactivities of these compounds. Key heterocyclic classes such as alkaloids, flavonoids, coumarins, and terpenoids are emphasized due to their potent anticancer effects. Heterocyclic phytochemicals exhibit diverse anticancer mechanisms, including the modulation of cellular pathways like apoptosis, angiogenesis, and cell cycle progression. The combination of heterocyclic phytochemicals with conventional cancer therapies has shown promising synergistic effects, enhanced treatment efficacy and reducing side effects. The review systematically evaluates both preclinical and clinical studies, revealing the efficacy, safety profiles, and pharmacokinetics of selected heterocyclic compounds. The promising outcomes highlighted in this review underscore the critical need for ongoing research to fully realize the therapeutic potential of heterocyclic phytochemicals in cancer treatment.
Collapse
Affiliation(s)
- M Amin Mir
- Department of Chemistry, Prince Mohammad Bin Fahd University, AL Khobar, Saudi Arabia
| | - Bimal Krishna Banik
- Department of Chemistry, Prince Mohammad Bin Fahd University, AL Khobar, Saudi Arabia
| |
Collapse
|
2
|
Ponraj P, Rajendran S. Design and synthesis of a novel curcumin-combretastatin A4 molecular skeleton: two pharmacophores. RSC Adv 2024; 14:37227-37233. [PMID: 39569108 PMCID: PMC11578218 DOI: 10.1039/d4ra06618a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024] Open
Abstract
The logical design and synthesis of a novel compound combretastatin A-4-integrated curcumin is presented. Claisen condensation of phenylacetone with ethyl acetates formed 1,5-diphenylpentane-2,4-dione. Condensation of the dione with benzaldehyde via a modified Pabon procedure formed combretastatin A-4-integrated curcumin. The single-crystal X-ray structure of one of the CA-4 integrated CURs was established as a representative example. Curcumin (CUR) and combretastatin A-4 (CA-4) are well-known bioactive natural products; however, their poor pharmacokinetic profiles and cis-trans isomerization under in vivo conditions, respectively, have limited their biological applications. Herein, coupling of an aryl group at the olefinic C2 and/or C6 position of CUR integrates a CA-4-like structure with cis-configuration locked to CUR. At the same time, aryl coupling created steric hindrance around the olefinic bond and could resist the reductive metabolism of CUR and contribute to a better pharmacokinetic profile. Remarkably, this modification did not disturb the functional groups in both the natural products (CUR and CA-4), which is promising for their therapeutic effects. Thus, the synthesized CA-4-integrated CUR molecular architecture offers a new molecular skeleton to be explored for bio-application.
Collapse
Affiliation(s)
- Pravinkamaraj Ponraj
- Dept. of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Chennai Campus, Vandalur-Kelambakkam Road Chennai 600127 Tamil Nadu India +91 44 3993 2555 +91 44 3993 1479
| | - Saravanakumar Rajendran
- Dept. of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Chennai Campus, Vandalur-Kelambakkam Road Chennai 600127 Tamil Nadu India +91 44 3993 2555 +91 44 3993 1479
| |
Collapse
|
3
|
Ahmadi SE, Rahimian E, Rahimi S, Zarandi B, Bahraini M, Soleymani M, Safdari SM, Shabannezhad A, Jaafari N, Safa M. From regulation to deregulation of p53 in hematologic malignancies: implications for diagnosis, prognosis and therapy. Biomark Res 2024; 12:137. [PMID: 39538363 PMCID: PMC11565275 DOI: 10.1186/s40364-024-00676-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
The p53 protein, encoded by the TP53 gene, serves as a critical tumor suppressor, playing a vital role in maintaining genomic stability and regulating cellular responses to stress. Dysregulation of p53 is frequently observed in hematological malignancies, significantly impacting disease progression and patient outcomes. This review aims to examine the regulatory mechanisms of p53, the implications of TP53 mutations in various hematological cancers, and emerging therapeutic strategies targeting p53. We conducted a comprehensive literature review to synthesize recent findings related to p53's multifaceted role in hematologic cancers, focusing on its regulatory pathways and therapeutic potential. TP53 mutations in hematological malignancies often lead to treatment resistance and poor prognosis. Current therapeutic strategies, including p53 reactivation and gene therapy, show promise in improving treatment outcomes. Understanding the intricacies of p53 regulation and the consequences of its mutations is essential for developing effective diagnostic and therapeutic strategies in hematological malignancies, ultimately enhancing patient care and survival.
Collapse
Affiliation(s)
- Seyed Esmaeil Ahmadi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Elahe Rahimian
- Department of Medical Translational Oncology, National Center for Tumor Diseases (NCT) Dresden, Dresden, Germany
| | - Samira Rahimi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Bahman Zarandi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehran Bahraini
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maral Soleymani
- Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Mehrab Safdari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ashkan Shabannezhad
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Niloofar Jaafari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Brustolin Braga C, Milan JC, Andrade Meirelles M, Zavan B, Ferreira-Silva GÁ, Caixeta ES, Ionta M, Pilli RA. Furoxan-piplartine hybrids as effective NO donors and ROS inducers in PC3 cancer cells: design, synthesis, and biological evaluation. RSC Med Chem 2024:d4md00281d. [PMID: 39290383 PMCID: PMC11403579 DOI: 10.1039/d4md00281d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
Conjugation of the naturally occurring product piplartine (PPT, 1), which is a potent cytotoxic compound and ROS inducer, with a diphenyl sulfonyl-substituted furoxan moiety (namely, 3,4-bis(phenylsulfonyl)-1,2,5-oxadiazole-2-oxide), an important type of NO donor, via an ether linker of different chain lengths is described, characterized and screened for the anticancer potential. The cytotoxicity of the new hybrids was evaluated on a panel of human cancer cell lines (MCF-7, PC3 and OVCAR-3) and two non-cancer human cells (MCF10A and PNT2). In general, the synthesized hybrids were more cytotoxic and selective compared to their furoxan precursors 4-6 and PPT in the above cancer cells. Particularly, PC3 cells are the most sensitive to hybrids 7 and 9 (IC50 values of 240 nM and 50 nM, respectively), while a lower potency was found for the prostate normal cells (IC50 = 17.8 μM and 14.1 μM, respectively), corresponding to selectivity indices of ca. 75 and 280, respectively. NO generation by the PPT-furoxan compounds in PC3 cells was confirmed using the Griess reaction. Furthermore, the cell growth inhibitory effect of 9 was significantly attenuated by the NO scavenger carboxy-PTIO. The intracellular ROS generation by 7 and 9 was also verified, and different assays showed that co-treatment with the antioxidant N-acetyl-l-cysteine (NAC) provided protection against PPT-induced ROS generation. Further mechanistic studies revealed that 7 and 9 had strong cytotoxicity to induce apoptosis in PC3 cells, being mediated, at least in part, by the NO-release and increase in ROS production. Notably, the ability of 9 to induce apoptosis was stronger than that of 7, which may be attributed to higher levels of NO released by 9. Compounds 7 and 9 modulated the expression profiles of critical regulators of cell cycle, such as CDKN1A (p21), c-MYC, and CCND1 (cyclin D1), as well as induced DNA damage. Overall, tethering the furoxan NO-releasing moiety to the cytotoxic natural product PPT had significant impact on the potential anticancer activity and selectivity of the novel hybrid drug candidates, especially 9, as a result of synergistic effects of both furoxan and PPT's ability to release NO, generate ROS, induce DNA damage, and trigger apoptosis.
Collapse
Affiliation(s)
- Carolyne Brustolin Braga
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas UNICAMP CEP 13083-970 Campinas Sao Paulo Brazil
| | - Julio Cesar Milan
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas UNICAMP CEP 13083-970 Campinas Sao Paulo Brazil
| | - Matheus Andrade Meirelles
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas UNICAMP CEP 13083-970 Campinas Sao Paulo Brazil
| | - Bruno Zavan
- Institute of Biomedical Sciences, Federal University of Alfenas UNIFAL-MG 37130-001 Alfenas Minas Gerais Brazil
| | | | - Ester Siqueira Caixeta
- Institute of Biomedical Sciences, Federal University of Alfenas UNIFAL-MG 37130-001 Alfenas Minas Gerais Brazil
| | - Marisa Ionta
- Institute of Biomedical Sciences, Federal University of Alfenas UNIFAL-MG 37130-001 Alfenas Minas Gerais Brazil
| | - Ronaldo A Pilli
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas UNICAMP CEP 13083-970 Campinas Sao Paulo Brazil
| |
Collapse
|
5
|
Swain SS, Sahoo SK. Piperlongumine and its derivatives against cancer: A recent update and future prospective. Arch Pharm (Weinheim) 2024; 357:e2300768. [PMID: 38593312 DOI: 10.1002/ardp.202300768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 04/11/2024]
Abstract
Piperlongumine, or piplartine (PL), is a bioactive alkaloid isolated from Piper longum L. and a potent phytoconstituent in Indian Ayurveda and traditional Chinese medicine with a lot of therapeutic benefits. Apart from all of its biological activities, it demonstrates multimodal anticancer activity by targeting various cancer-associated pathways and being less toxic to normal cells. According to their structure-activity relationship (SAR), the trimethylphenyl ring (cinnamoyl core) and 5,6-dihydropyridin-2-(1H)-one (piperdine core) are responsible for the potent anticancer activity. However, it has poor intrinsic properties (low aqueous solubility, poor bioavailability, etc.). As a result, pharmaceutical researchers have been trying to optimise or modify the structure of PL to improve the drug-likeness profiles. The present review selected 26 eligible research articles on PL derivatives published between 2012 and 2023, followed by the preferred reporting items for systematic reviews and meta-analyses (PRISMA) format. We have thoroughly summarised the anticancer potency, mode of action, SAR and drug chemistry of the proposed PL-derivatives against different cancer cells. Overall, SAR analyses with respect to anticancer potency and drug-ability revealed that substitution of methoxy to hydroxyl, attachment of ligustrazine and 4-hydroxycoumarin heterocyclic rings in place of phenyl rings, and attachment of heterocyclic rings like indole at the C7-C8 olefin position in native PL can help to improve anticancer activity, aqueous solubility, cell permeability, and bioavailability, making them potential leads. Hopefully, the large-scale collection and critical drug-chemistry analyses will be helpful to pharmaceutical and academic researchers in developing potential, less-toxic and cost-effective PL-derivatives that can be used against different cancers.
Collapse
Affiliation(s)
- Shasank S Swain
- Biotechnology Research and Innovation Council-Institute of Life Sciences (BRIC-ILS), Nalco Square, Odisha, India
| | - Sanjeeb K Sahoo
- Biotechnology Research and Innovation Council-Institute of Life Sciences (BRIC-ILS), Nalco Square, Odisha, India
| |
Collapse
|
6
|
Baranoski A, Semprebon SC, Biazi BI, Zanetti TA, Corveloni AC, Areal Marques L, Lepri SR, Coatti GC, Mantovani MS. Piperlongumine inhibits antioxidant enzymes, increases ROS levels, induces DNA damage and G2/M cell cycle arrest in breast cell lines. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:294-309. [PMID: 38279841 DOI: 10.1080/15287394.2024.2308801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2024]
Abstract
Piperlongumine (PLN) is a biologically active alkaloid/amide derived from Piper longum, with known promising anticancer activity. The aim of this study was to compare the antiproliferative activity of PLN in human breast MCF-7 adenocarcinoma cell line with effects in HB4a normal mammary epithelial non-tumor cell line. The parameters examined were cell growth, viability, reactive oxygen species (ROS) levels and DNA damage, as well as the effects on the modulating targets responsible through regulation of these pathways. PLN increased ROS levels and expression of the SOD1 antioxidant enzyme. PLN inhibited the expression of the antioxidant enzymes catalase, TRx1, and PRx2. The ability of PLN to inhibit antioxidant enzyme expression was associated with the oxidative stress response. PLN induced genotoxicity in both cell lines and upregulated the levels of GADD45A mRNA and p21 protein. The DNA damage response ATR protein was downregulated in both cell lines and contributed to an enhanced PLN genotoxicity. In HB4a cells, Chk1 protein, and mRNA levels were also decreased. In response to elevated ROS levels and DNA damage induction, the cells were arrested at the G2/M phase, probably in an attempt to promote cell survival. Although cell viability was reduced in both cell lines, only HB4a cells underwent apoptotic cell death, whereas other types of cellular death may be involved in MCF-7 cells. Taken together, these data provide insight into the anticancer mechanisms attributed to PLN effects, which acts as an inhibitor of DNA damage response (DDR) proteins and antioxidant enzymes.
Collapse
Affiliation(s)
- Adrivanio Baranoski
- Centro de Ciências Biológicas, Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Brazil
| | - Simone Cristine Semprebon
- Centro de Ciências Biológicas, Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Brazil
| | - Bruna Isabela Biazi
- Centro de Ciências Biológicas, Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Brazil
| | - Thalita Alves Zanetti
- Centro de Ciências Biológicas, Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Brazil
| | - Amanda Cristina Corveloni
- Centro de Ciências Biológicas, Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Brazil
| | - Lilian Areal Marques
- Centro de Ciências Biológicas, Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Brazil
| | - Sandra R Lepri
- Centro de Ciências Biológicas, Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Brazil
| | - Giuliana Castello Coatti
- Centro de Pesquisa Sobre o Genoma Humano e Células Tronco, Universidade de São Paulo, São Paulo, Brazil
| | - Mário Sérgio Mantovani
- Centro de Ciências Biológicas, Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Brazil
| |
Collapse
|
7
|
Song B, Yang P, Zhang S. Cell fate regulation governed by p53: Friends or reversible foes in cancer therapy. Cancer Commun (Lond) 2024; 44:297-360. [PMID: 38311377 PMCID: PMC10958678 DOI: 10.1002/cac2.12520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 02/10/2024] Open
Abstract
Cancer is a leading cause of death worldwide. Targeted therapies aimed at key oncogenic driver mutations in combination with chemotherapy and radiotherapy as well as immunotherapy have benefited cancer patients considerably. Tumor protein p53 (TP53), a crucial tumor suppressor gene encoding p53, regulates numerous downstream genes and cellular phenotypes in response to various stressors. The affected genes are involved in diverse processes, including cell cycle arrest, DNA repair, cellular senescence, metabolic homeostasis, apoptosis, and autophagy. However, accumulating recent studies have continued to reveal novel and unexpected functions of p53 in governing the fate of tumors, for example, functions in ferroptosis, immunity, the tumor microenvironment and microbiome metabolism. Among the possibilities, the evolutionary plasticity of p53 is the most controversial, partially due to the dizzying array of biological functions that have been attributed to different regulatory mechanisms of p53 signaling. Nearly 40 years after its discovery, this key tumor suppressor remains somewhat enigmatic. The intricate and diverse functions of p53 in regulating cell fate during cancer treatment are only the tip of the iceberg with respect to its equally complicated structural biology, which has been painstakingly revealed. Additionally, TP53 mutation is one of the most significant genetic alterations in cancer, contributing to rapid cancer cell growth and tumor progression. Here, we summarized recent advances that implicate altered p53 in modulating the response to various cancer therapies, including chemotherapy, radiotherapy, and immunotherapy. Furthermore, we also discussed potential strategies for targeting p53 as a therapeutic option for cancer.
Collapse
Affiliation(s)
- Bin Song
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
| | - Ping Yang
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
| | - Shuyu Zhang
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
- The Second Affiliated Hospital of Chengdu Medical CollegeChina National Nuclear Corporation 416 HospitalChengduSichuanP. R. China
- Laboratory of Radiation MedicineNHC Key Laboratory of Nuclear Technology Medical TransformationWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduSichuanP. R. China
| |
Collapse
|
8
|
Siudem P, Szeleszczuk Ł, Paradowska K. Searching for Natural Aurora a Kinase Inhibitors from Peppers Using Molecular Docking and Molecular Dynamics. Pharmaceuticals (Basel) 2023; 16:1539. [PMID: 38004405 PMCID: PMC10674409 DOI: 10.3390/ph16111539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Natural products are the precursors of many medicinal substances. Peppers (Piper, Capsicum, Pimienta) are a rich source of compounds with potential multidirectional biological activity. One of the studied directions is antitumor activity. Little research has been carried out so far on the ability of the compounds contained in peppers to inhibit the activity of Aurora A kinase, the overexpression of which is characteristic of cancer development. In this study, molecular docking methods, as well as molecular dynamics, were used, looking for compounds that could inhibit the activity of Aurora A kinase and trying to determine whether there is a relationship between the stimulation of the TRPV1 receptor and the inhibition of Aurora A kinase. We compared our results with anticancer activity studied earlier on MCF-7 cell lines (breast cancer cells). Our research indicates that the compounds contained in peppers can inhibit Aurora A. Further in vitro research is planned to confirm the obtained results.
Collapse
Affiliation(s)
- Paweł Siudem
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-093 Warsaw, Poland; (Ł.S.); (K.P.)
| | | | | |
Collapse
|
9
|
Lu Y, Wu M, Xu Y, Yu L. The Development of p53-Targeted Therapies for Human Cancers. Cancers (Basel) 2023; 15:3560. [PMID: 37509223 PMCID: PMC10377496 DOI: 10.3390/cancers15143560] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
p53 plays a critical role in tumor suppression and is the most frequently mutated gene in human cancers. Most p53 mutants (mutp53) are missense mutations and are thus expressed in human cancers. In human cancers that retain wtp53, the wtp53 activities are downregulated through multiple mechanisms. For example, the overexpression of the negative regulators of p53, MDM2/MDMX, can also efficiently destabilize and inactivate wtp53. Therefore, both wtp53 and mutp53 have become promising and intensively explored therapeutic targets for cancer treatment. Current efforts include the development of small molecule compounds to disrupt the interaction between wtp53 and MDM2/MDMX in human cancers expressing wtp53 and to restore wtp53-like activity to p53 mutants in human cancers expressing mutp53. In addition, a synthetic lethality approach has been applied to identify signaling pathways affected by p53 dysfunction, which, when targeted, can lead to cell death. While an intensive search for p53-targeted cancer therapy has produced potential candidates with encouraging preclinical efficacy data, it remains challenging to develop such drugs with good efficacy and safety profiles. A more in-depth understanding of the mechanisms of action of these p53-targeting drugs will help to overcome these challenges.
Collapse
Affiliation(s)
- Yier Lu
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Meng Wu
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Yang Xu
- Department of Cardiology, The Second Affiliated Hospital, Cardiovascular Key Lab of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou 310009, China
- Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Lili Yu
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| |
Collapse
|
10
|
Somprasong S, Reis MC, Harutyunyan SR. Catalytic Access to Chiral δ-Lactams via Nucleophilic Dearomatization of Pyridine Derivatives. Angew Chem Int Ed Engl 2023; 62:e202217328. [PMID: 36522289 DOI: 10.1002/anie.202217328] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Nitrogen-bearing rings are common features in the molecular structures of modern drugs, with chiral δ-lactams being an important subclass due to their known pharmacological properties. Catalytic dearomatization of preactivated pyridinium ion derivatives emerged as a powerful method for the rapid construction of chiral N-heterocycles. However, direct catalytic dearomatization of simple pyridine derivatives are scarce and methodologies yielding chiral δ-lactams are yet to be developed. Herein, we describe an enantioselective C4-dearomatization of methoxypyridine derivatives for the preparation of functionalised enantioenriched δ-lactams using chiral copper catalysis. Experimental 13 C kinetic isotope effects and density functional theory calculations shed light on the reaction mechanism and the origin of enantioselectivity.
Collapse
Affiliation(s)
- Siriphong Somprasong
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Marta Castiñeira Reis
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Syuzanna R Harutyunyan
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
11
|
Dwivedi AR, Rawat SS, Kumar V, Kumar N, Kumar V, Yadav RP, Baranwal S, Prasad A, Kumar V. Benzotriazole Substituted 2-Phenylquinazolines as Anticancer Agents: Synthesis, Screening, Antiproliferative and Tubulin Polymerization Inhibition Activity. Curr Cancer Drug Targets 2023; 23:278-292. [PMID: 36306454 DOI: 10.2174/1568009623666221028121906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/25/2022] [Accepted: 09/01/2022] [Indexed: 11/22/2022]
Abstract
AIMS Development of anticancer agents targeting tubulin protein. BACKGROUND Tubulin protein is being explored as an important target for anticancer drug development. Ligands binding to the colchicine binding site of the tubulin protein act as tubulin polymerization inhibitors and arrest the cell cycle in the G2/M phase. OBJECTIVE Synthesis and screening of benzotriazole-substituted 2-phenyl quinazolines as potential anticancer agents. METHODS A series of benzotriazole-substituted quinazoline derivatives have been synthesized and evaluated against human MCF-7 (breast), HeLa (cervical) and HT-29 (colon) cancer cell lines using standard MTT assays. RESULTS ARV-2 with IC50 values of 3.16 μM, 5.31 μM, 10.6 μM against MCF-7, HELA and HT29 cell lines, respectively displayed the most potent antiproliferative activities in the series while all the compounds were found non-toxic against HEK293 (normal cells). In the mechanistic studies involving cell cycle analysis, apoptosis assay and JC-1 studies, ARV-2 and ARV-3 were found to induce mitochondria-mediated apoptosis. CONCLUSION The benzotriazole-substituted 2-phenyl quinazolines have the potential to be developed as potent anticancer agents.
Collapse
Affiliation(s)
- Ashish Ranjan Dwivedi
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda-151401, Punjab, India
| | - Suraj Singh Rawat
- School of Basic Sciences, Indian Institute of Technology, Mandi-175005, HP, India
| | - Vijay Kumar
- Department of Chemistry, Laboratory of Organic and Medicinal Chemistry, Central University of Punjab, Bathinda-151401, Punjab, India
| | - Naveen Kumar
- Department of Chemistry, Laboratory of Organic and Medicinal Chemistry, Central University of Punjab, Bathinda-151401, Punjab, India
| | - Vinay Kumar
- Department of Chemistry, Laboratory of Organic and Medicinal Chemistry, Central University of Punjab, Bathinda-151401, Punjab, India
| | - Ravi Prakash Yadav
- Department of Microbiology, School of Biological Sciences, Central University of Punjab, Bathinda-151401, Punjab, India
| | - Somesh Baranwal
- Department of Microbiology, School of Biological Sciences, Central University of Punjab, Bathinda-151401, Punjab, India
| | - Amit Prasad
- School of Basic Sciences, Indian Institute of Technology, Mandi-175005, HP, India
| | - Vinod Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda-151401, Punjab, India.,Department of Chemistry, Laboratory of Organic and Medicinal Chemistry, Central University of Punjab, Bathinda-151401, Punjab, India
| |
Collapse
|
12
|
Teka T, Zhang L, Ge X, Li Y, Han L, Yan X. Stilbenes: Source plants, chemistry, biosynthesis, pharmacology, application and problems related to their clinical Application-A comprehensive review. PHYTOCHEMISTRY 2022; 197:113128. [PMID: 35183567 DOI: 10.1016/j.phytochem.2022.113128] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Stilbenes are some of the important phenolic compounds originating from plant families like Vitaceae, Leguminaceae, Gnetaceae, and Dipterocarpaceae. Structurally, they have a C6-C2-C6 skeleton, usually with two isomeric forms. Stilbenes are biosynthesized due to biotic and abiotic stresses such as microbial infections, high temperatures, and oxidation. This review aims to provide a comprehensive overview of stilbenes' botanical sources, chemistry, biosynthetic pathways, pharmacology, and clinical applications and challenges based on up-to-date data. All included studies were collected from PubMed, ScienceDirect, Google Scholar, and CNKI, and the presented data from these indexed studies were analyzed and summarized. A total of 459 natural stilbene compounds from 45 plant families and 196 plant species were identified. Pharmacological studies also show that stilbenes have various activities such as anticancer, antimicrobial, antioxidant, anti-inflammatory, anti-degenerative diseases, anti-diabetic, neuroprotective, anti-aging, and cardioprotective effects. Stilbene synthase (STS) is the key enzyme involved in stilbene biosynthetic pathways. Studies on the therapeutic application of stilbenes pinpoint that challenges such as low bioavailability and isomerization are the major bottlenecks for their development as therapeutic drugs. Although the medicinal uses of several stilbenes have been demonstrated in vivo and in vitro, studies on the development of stilbenes deserve more attention in the future.
Collapse
Affiliation(s)
- Tekleab Teka
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China; Department of Pharmacy, College of Medicine and Health Sciences, Wollo University, P. O. Box 1145, Dessie, Ethiopia
| | - Lele Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China
| | - Xiaoyan Ge
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China
| | - Yanjie Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China
| | - Lifeng Han
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China.
| | - Xiaohui Yan
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China.
| |
Collapse
|
13
|
NHC Catalyzed β-Carbon functionalization of carboxylic esters towards formation of δ-Lactams: A mechanistic study. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Advanced Strategies for Therapeutic Targeting of Wild-Type and Mutant p53 in Cancer. Biomolecules 2022; 12:biom12040548. [PMID: 35454137 PMCID: PMC9029346 DOI: 10.3390/biom12040548] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/28/2022] [Accepted: 03/06/2022] [Indexed: 02/07/2023] Open
Abstract
TP53 is a tumor suppressor gene that encodes a sequence-specific DNA-binding transcription factor activated by stressful stimuli; it upregulates target genes involved in growth suppression, cell death, DNA repair, metabolism, among others. TP53 is the most frequently mutated gene in tumors, with mutations not only leading to loss-of-function (LOF), but also gain-of-function (GOF) that promotes tumor progression, and metastasis. The tumor-specific status of mutant p53 protein has suggested it is a promising target for cancer therapy. We summarize the current progress of targeting wild-type and mutant p53 for cancer therapy through biotherapeutic and biopharmaceutical methods for (1) boosting p53 activity in cancer, (2) p53-dependent and p53-independent strategies for targeting p53 pathway functional restoration in p53-mutated cancer, (3) targeting p53 in immunotherapy, and (4) combination therapies targeting p53, p53 checkpoints, or mutant p53 for cancer therapy.
Collapse
|
15
|
Amewu RK, Sakyi PO, Osei-Safo D, Addae-Mensah I. Synthetic and Naturally Occurring Heterocyclic Anticancer Compounds with Multiple Biological Targets. Molecules 2021; 26:7134. [PMID: 34885716 PMCID: PMC8658833 DOI: 10.3390/molecules26237134] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 01/09/2023] Open
Abstract
Cancer is a complex group of diseases initiated by abnormal cell division with the potential of spreading to other parts of the body. The advancement in the discoveries of omics and bio- and cheminformatics has led to the identification of drugs inhibiting putative targets including vascular endothelial growth factor (VEGF) family receptors, fibroblast growth factors (FGF), platelet derived growth factors (PDGF), epidermal growth factor (EGF), thymidine phosphorylase (TP), and neuropeptide Y4 (NY4), amongst others. Drug resistance, systemic toxicity, and drug ineffectiveness for various cancer chemo-treatments are widespread. Due to this, efficient therapeutic agents targeting two or more of the putative targets in different cancer cells are proposed as cutting edge treatments. Heterocyclic compounds, both synthetic and natural products, have, however, contributed immensely to chemotherapeutics for treatments of various diseases, but little is known about such compounds and their multimodal anticancer properties. A compendium of heterocyclic synthetic and natural product multitarget anticancer compounds, their IC50, and biological targets of inhibition are therefore presented in this review.
Collapse
Affiliation(s)
- Richard Kwamla Amewu
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 56, Ghana; (R.K.A.); (P.O.S.); (D.O.-S.)
| | - Patrick Opare Sakyi
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 56, Ghana; (R.K.A.); (P.O.S.); (D.O.-S.)
- Department of Chemical Sciences, School of Sciences, University of Energy and Natural Resources, Sunyani P.O. Box 214, Ghana
| | - Dorcas Osei-Safo
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 56, Ghana; (R.K.A.); (P.O.S.); (D.O.-S.)
| | - Ivan Addae-Mensah
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 56, Ghana; (R.K.A.); (P.O.S.); (D.O.-S.)
| |
Collapse
|
16
|
Butturini E, Butera G, Pacchiana R, Carcereri de Prati A, Mariotto S, Donadelli M. Redox Sensitive Cysteine Residues as Crucial Regulators of Wild-Type and Mutant p53 Isoforms. Cells 2021; 10:cells10113149. [PMID: 34831372 PMCID: PMC8618966 DOI: 10.3390/cells10113149] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/25/2022] Open
Abstract
The wild-type protein p53 plays a key role in preventing the formation of neoplasms by controlling cell growth. However, in more than a half of all cancers, the TP53 gene has missense mutations that appear during tumorigenesis. In most cases, the mutated gene encodes a full-length protein with the substitution of a single amino acid, resulting in structural and functional changes and acquiring an oncogenic role. This dual role of the wild-type protein and the mutated isoforms is also evident in the regulation of the redox state of the cell, with antioxidant and prooxidant functions, respectively. In this review, we introduce a new concept of the p53 protein by discussing its sensitivity to the cellular redox state. In particular, we focus on the discussion of structural and functional changes following post-translational modifications of redox-sensitive cysteine residues, which are also responsible for interacting with zinc ions for proper structural folding. We will also discuss therapeutic opportunities using small molecules targeting cysteines capable of modifying the structure and function of the p53 mutant isoforms in view of possible anticancer therapies for patients possessing the mutation in the TP53 gene.
Collapse
Affiliation(s)
| | | | | | | | - Sofia Mariotto
- Correspondence: (S.M.); (M.D.); Tel.: +39-045-8027167 (S.M.); +39-045-8027281 (M.D.)
| | - Massimo Donadelli
- Correspondence: (S.M.); (M.D.); Tel.: +39-045-8027167 (S.M.); +39-045-8027281 (M.D.)
| |
Collapse
|
17
|
Chiang YT, Chien YC, Lin YH, Wu HH, Lee DF, Yu YL. The Function of the Mutant p53-R175H in Cancer. Cancers (Basel) 2021; 13:4088. [PMID: 34439241 PMCID: PMC8391618 DOI: 10.3390/cancers13164088] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/08/2021] [Accepted: 08/11/2021] [Indexed: 12/16/2022] Open
Abstract
Wild-type p53 is known as "the guardian of the genome" because of its function of inducing DNA repair, cell-cycle arrest, and apoptosis, preventing the accumulation of gene mutations. TP53 is highly mutated in cancer cells and most TP53 hotspot mutations are missense mutations. Mutant p53 proteins, encoded by these hotspot mutations, lose canonical wild-type p53 functions and gain functions that promote cancer development, including promoting cancer cell proliferation, migration, invasion, initiation, metabolic reprogramming, angiogenesis, and conferring drug resistance to cancer cells. Among these hotspot mutations, p53-R175H has the highest occurrence. Although losing the transactivating function of the wild-type p53 and prone to aggregation, p53-R175H gains oncogenic functions by interacting with many proteins. In this review, we summarize the gain of functions of p53-R175H in different cancer types, the interacting proteins of p53-R175H, and the downstream signaling pathways affected by p53-R175H to depict a comprehensive role of p53-R175H in cancer development. We also summarize treatments that target p53-R175H, including reactivating p53-R175H with small molecules that can bind to p53-R175H and alter it into a wild-type-like structure, promoting the degradation of p53-R175H by targeting heat-shock proteins that maintain the stability of p53-R175H, and developing immunotherapies that target the p53-R175H-HLA complex presented by tumor cells.
Collapse
Affiliation(s)
- Yen-Ting Chiang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; (Y.-T.C.); (Y.-C.C.); (Y.-H.L.); (H.-H.W.)
| | - Yi-Chung Chien
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; (Y.-T.C.); (Y.-C.C.); (Y.-H.L.); (H.-H.W.)
- Program for Translational Medicine, China Medical University, Taichung 40402, Taiwan
- Institute of New Drug Development, China Medical University, Taichung 40402, Taiwan
- Drug Development Center, Research Center for Cancer Biology, China Medical University, Taichung 40402, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung 40402, Taiwan
| | - Yu-Heng Lin
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; (Y.-T.C.); (Y.-C.C.); (Y.-H.L.); (H.-H.W.)
| | - Hui-Hsuan Wu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; (Y.-T.C.); (Y.-C.C.); (Y.-H.L.); (H.-H.W.)
| | - Dung-Fang Lee
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Center for Precision Health, School of Biomedical Informatics and School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Yung-Luen Yu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; (Y.-T.C.); (Y.-C.C.); (Y.-H.L.); (H.-H.W.)
- Program for Translational Medicine, China Medical University, Taichung 40402, Taiwan
- Institute of New Drug Development, China Medical University, Taichung 40402, Taiwan
- Drug Development Center, Research Center for Cancer Biology, China Medical University, Taichung 40402, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung 40402, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
18
|
Zhu P, Qian J, Xu Z, Meng C, Zhu W, Ran F, Zhang W, Zhang Y, Ling Y. Overview of piperlongumine analogues and their therapeutic potential. Eur J Med Chem 2021; 220:113471. [PMID: 33930801 DOI: 10.1016/j.ejmech.2021.113471] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/29/2021] [Accepted: 04/10/2021] [Indexed: 01/18/2023]
Abstract
Natural products have long been an important source for discovery of new drugs to treat human diseases. Piperlongumine (PL) is an amide alkaloid isolated from Piper longum L. (long piper) and other piper plants and has received widespread attention because of its diverse biological activities. A large number of PL derivatives have been designed, synthesized and assessed in many pharmacological functions, including antiplatelet aggregation, neuroprotective activities, anti-diabetic activities, anti-inflammatory activities, anti-senolytic activities, immune activities, and antitumor activities. Among them, the anti-tumor effects and application of PL and its derivatives are most extensively studied. We herein summarize the development of PL derivatives, the structure and activity relationships (SARs), and their therapeutic potential on the treatments of various diseases, especially against cancer. We also discussed the challenges and future directions associated with PL and its derivatives in these indications.
Collapse
Affiliation(s)
- Peng Zhu
- Medical School, Nantong University, Nantong, 226001, China; School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China; State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau
| | - Jianqiang Qian
- Medical School, Nantong University, Nantong, 226001, China; School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Zhongyuan Xu
- Medical School, Nantong University, Nantong, 226001, China; School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Chi Meng
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Weizhong Zhu
- Medical School, Nantong University, Nantong, 226001, China; School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Fansheng Ran
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Wei Zhang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau.
| | - Yanan Zhang
- Medical School, Nantong University, Nantong, 226001, China; School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China.
| | - Yong Ling
- Medical School, Nantong University, Nantong, 226001, China; School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China.
| |
Collapse
|
19
|
Gomes AS, Ramos H, Inga A, Sousa E, Saraiva L. Structural and Drug Targeting Insights on Mutant p53. Cancers (Basel) 2021; 13:3344. [PMID: 34283062 PMCID: PMC8268744 DOI: 10.3390/cancers13133344] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 12/20/2022] Open
Abstract
p53 is a transcription factor with a pivotal role in cell homeostasis and fate. Its impairment is a major event in tumor onset and development. In fact, about half of human cancers bear TP53 mutations that not only halt the normal function of p53, but also may acquire oncogenic gain of functions that favor tumorigenesis. Although considered undruggable for a long time, evidence has proven the capability of many compounds to restore a wild-type (wt)-like function to mutant p53 (mutp53). However, they have not reached the clinic to date. Structural studies have strongly contributed to the knowledge about p53 structure, stability, dynamics, function, and regulation. Importantly, they have afforded relevant insights into wt and mutp53 pharmacology at molecular levels, fostering the design and development of p53-targeted anticancer therapies. Herein, we provide an integrated view of mutp53 regulation, particularly focusing on mutp53 structural traits and on targeting agents capable of its reactivation, including their biological, biochemical and biophysical features. With this, we expect to pave the way for the development of improved small molecules that may advance precision cancer therapy by targeting p53.
Collapse
Affiliation(s)
- Ana Sara Gomes
- LAQV/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (A.S.G.); (H.R.)
| | - Helena Ramos
- LAQV/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (A.S.G.); (H.R.)
| | - Alberto Inga
- Laboratory of Transcriptional Networks, Department CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy;
| | - Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Lucília Saraiva
- LAQV/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (A.S.G.); (H.R.)
| |
Collapse
|
20
|
Peppers: A "Hot" Natural Source for Antitumor Compounds. Molecules 2021; 26:molecules26061521. [PMID: 33802144 PMCID: PMC8002096 DOI: 10.3390/molecules26061521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 12/20/2022] Open
Abstract
Piper, Capsicum, and Pimenta are the main genera of peppers consumed worldwide. The traditional use of peppers by either ancient civilizations or modern societies has raised interest in their biological applications, including cytotoxic and antiproliferative effects. Cellular responses upon treatment with isolated pepper-derived compounds involve mechanisms of cell death, especially through proapoptotic stimuli in tumorigenic cells. In this review, we highlight naturally occurring secondary metabolites of peppers with cytotoxic effects on cancer cell lines. Available mechanisms of cell death, as well as the development of analogues, are also discussed.
Collapse
|
21
|
Wang X, Lei J, Li G, Meng J, Li C, Li J, Sun K. Synthetic methods for compounds containing fluoro-lactam units. Org Biomol Chem 2020; 18:9762-9774. [PMID: 33237116 DOI: 10.1039/d0ob02168g] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
In recent years, considerable attention has been devoted to the exploration of novel synthetic methods for fluoro-lactams due to their significant biological and pharmaceutical activities. This review summarizes recently established strategies for synthesizing fluorine-substituted lactams, including fluoro-β-lactams, fluoro-γ-lactams, and fluoro-δ-lactams. Additionally, the reaction scopes, limitations, and mechanisms are discussed.
Collapse
Affiliation(s)
- Xin Wang
- School of Chemistry and Chemical Engineering, YanTai University, Yantai, 264005, Shandong, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
22
|
Wang X, Qian J, Zhu P, Hua R, Liu J, Hang J, Meng C, Shan W, Miao J, Ling Y. Novel Phenylmethylenecyclohexenone Derivatives as Potent TrxR Inhibitors Display High Antiproliferative Activity and Induce ROS, Apoptosis, and DNA Damage. ChemMedChem 2020; 16:702-712. [PMID: 33085980 DOI: 10.1002/cmdc.202000660] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/12/2020] [Indexed: 02/06/2023]
Abstract
The natural product piperlonguminine (PL) has been shown to exert potential anticancer activity against several types of cancer via elevation of reactive oxidative species (ROS). However, the application of PL has been limited due to its poor water solubility and moderate activity. To improve PL's potency, we designed and synthesized a series of 17 novel phenylmethylenecyclohexenone derivatives and evaluated their pharmacological properties. Most of them exerted antiproliferative activities against four cancer cell lines with IC50 values lower than PL. Among these, compound 10 e not only showed good water solubility and exerted the most potent antiproliferative activity against HGC27 cells (IC50 =0.76 μM), which was 10-fold lower than PL (IC50 =7.53 μM), but also exhibited lower cytotoxicity in human normal gastric epithelial cells GES-1 compared with HGC27 cells. Mechanistically, compound 10 e inhibited thioredoxin reductase (TrxR) activity, increased ROS levels, and diminished mitochondrial transmembrane potential (MTP) in HGC27 cells. Furthermore, 10 e also induced G2 /M cell-cycle arrest, and triggered cancer cell apoptosis through the regulation of apoptotic proteins. Finally, 10 e promoted DNA damage in HGC27 cells via the activation of the H2AX(S139ph) and p53 signaling. In conclusion, 10 e, with prominent tumor selectivity and water solubility, could be a promising candidate for the treatment of cancer and, as such, warrants further investigation.
Collapse
Affiliation(s)
- Xiaomei Wang
- Department of Pharmacy, The People's Hospital of Taizhou, The Fifth Affiliated Hospital of Nantong University, Taizhou, 225300, China.,School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Jianqiang Qian
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Peng Zhu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Rong Hua
- Department of Pharmacy, The People's Hospital of Taizhou, The Fifth Affiliated Hospital of Nantong University, Taizhou, 225300, China
| | - Ji Liu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Jiaying Hang
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Chi Meng
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Wenpei Shan
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Jiefei Miao
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Yong Ling
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| |
Collapse
|
23
|
Feroz W, Sheikh AMA. Exploring the multiple roles of guardian of the genome: P53. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2020. [DOI: 10.1186/s43042-020-00089-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AbstractBackgroundCells have evolved balanced mechanisms to protect themselves by initiating a specific response to a variety of stress. TheTP53gene, encoding P53 protein, is one of the many widely studied genes in human cells owing to its multifaceted functions and complex dynamics. The tumour-suppressing activity of P53 plays a principal role in the cellular response to stress. The majority of the human cancer cells exhibit the inactivation of the P53 pathway. In this review, we discuss the recent advancements in P53 research with particular focus on the role of P53 in DNA damage responses, apoptosis, autophagy, and cellular metabolism. We also discussed important P53-reactivation strategies that can play a crucial role in cancer therapy and the role of P53 in various diseases.Main bodyWe used electronic databases like PubMed and Google Scholar for literature search. In response to a variety of cellular stress such as genotoxic stress, ischemic stress, oncogenic expression, P53 acts as a sensor, and suppresses tumour development by promoting cell death or permanent inhibition of cell proliferation. It controls several genes that play a role in the arrest of the cell cycle, cellular senescence, DNA repair system, and apoptosis. P53 plays a crucial role in supporting DNA repair by arresting the cell cycle to purchase time for the repair system to restore genome stability. Apoptosis is essential for maintaining tissue homeostasis and tumour suppression. P53 can induce apoptosis in a genetically unstable cell by interacting with many pro-apoptotic and anti-apoptotic factors.Furthermore, P53 can activate autophagy, which also plays a role in tumour suppression. P53 also regulates many metabolic pathways of glucose, lipid, and amino acid metabolism. Thus under mild metabolic stress, P53 contributes to the cell’s ability to adapt to and survive the stress.ConclusionThese multiple levels of regulation enable P53 to perform diversified roles in many cell responses. Understanding the complete function of P53 is still a work in progress because of the inherent complexity involved in between P53 and its target proteins. Further research is required to unravel the mystery of this Guardian of the genome “TP53”.
Collapse
|
24
|
Qian J, Xu Z, Meng C, Liu J, Hsu PL, Li Y, Zhu W, Yang Y, Morris-Natschke SL, Lee KH, Zhang Y, Ling Y. Design and synthesis of benzylidenecyclohexenones as TrxR inhibitors displaying high anticancer activity and inducing ROS, apoptosis, and autophagy. Eur J Med Chem 2020; 204:112610. [DOI: 10.1016/j.ejmech.2020.112610] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/12/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023]
|
25
|
Sampath Kumar HM, Herrmann L, Tsogoeva SB. Structural hybridization as a facile approach to new drug candidates. Bioorg Med Chem Lett 2020; 30:127514. [PMID: 32860980 DOI: 10.1016/j.bmcl.2020.127514] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/13/2022]
Abstract
Structural hybridization of preclinically and clinically validated pharmacologically active molecules has emerged as a promising tool to develop new generations of safe and highly efficient drug candidates against various diseases including microbial infections, virus infections and cancer. Strategies of drug-drug combinations have been adopted to generate hybrid conjugates of many clinically used drugs, designed to address inherent problems associated with these drugs. Thus, the design of hybrids was aimed to achieve higher efficacy through possible multi-target interactions, selective delivery of the drug to the site of action with the aim to improve bioavailability, alleviate toxicity and circumvent drug resistances. In this review article, we summarize the progress made in recent years in the rapidly growing field of drug discovery, focusing on the rationality of the hybrid design with particular emphasis on the linker architecture, which plays a crucial role in the overall success of a hybrid drug.
Collapse
Affiliation(s)
- Halmuthur M Sampath Kumar
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander University of Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany; CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Lars Herrmann
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander University of Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Svetlana B Tsogoeva
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander University of Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany.
| |
Collapse
|
26
|
Pecyna P, Wargula J, Murias M, Kucinska M. More Than Resveratrol: New Insights into Stilbene-Based Compounds. Biomolecules 2020; 10:E1111. [PMID: 32726968 PMCID: PMC7465418 DOI: 10.3390/biom10081111] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023] Open
Abstract
The concept of a scaffold concerns many aspects at different steps on the drug development path. In medicinal chemistry, the choice of relevant "drug-likeness" scaffold is a starting point for the design of the structure dedicated to specific molecular targets. For many years, the chemical uniqueness of the stilbene structure has inspired scientists from different fields such as chemistry, biology, pharmacy, and medicine. In this review, we present the outstanding potential of the stilbene-based derivatives. Naturally occurring stilbenes, together with powerful synthetic chemistry possibilities, may offer an excellent approach for discovering new structures and identifying their therapeutic targets. With the development of scientific tools, sophisticated equipment, and a better understanding of the disease pathogenesis at the molecular level, the stilbene scaffold has moved innovation in science. This paper mainly focuses on the stilbene-based compounds beyond resveratrol, which are particularly attractive due to their biological activity. Given the "fresh outlook" about different stilbene-based compounds starting from stilbenoids with particular regard to isorhapontigenin and methoxy- and hydroxyl- analogues, the update about the combretastatins, and the very often overlooked and underestimated benzanilide analogues, we present a new story about this remarkable structure.
Collapse
Affiliation(s)
- Paulina Pecyna
- Department of Genetics and Pharmaceutical Microbiology, University of Medical Sciences, Swiecickiego 4 Street, 60-781 Poznan, Poland;
| | - Joanna Wargula
- Department of Organic Chemistry, University of Medical Sciences, Grunwaldzka 6 Street, 60-780 Poznan, Poland;
| | - Marek Murias
- Department of Toxicology, University of Medical Sciences, Dojazd 30 Street, 60-631 Poznan, Poland;
| | - Malgorzata Kucinska
- Department of Toxicology, University of Medical Sciences, Dojazd 30 Street, 60-631 Poznan, Poland;
| |
Collapse
|
27
|
Abstract
The concept of a scaffold concerns many aspects at different steps on the drug development path. In medicinal chemistry, the choice of relevant "drug-likeness" scaffold is a starting point for the design of the structure dedicated to specific molecular targets. For many years, the chemical uniqueness of the stilbene structure has inspired scientists from different fields such as chemistry, biology, pharmacy, and medicine. In this review, we present the outstanding potential of the stilbene-based derivatives. Naturally occurring stilbenes, together with powerful synthetic chemistry possibilities, may offer an excellent approach for discovering new structures and identifying their therapeutic targets. With the development of scientific tools, sophisticated equipment, and a better understanding of the disease pathogenesis at the molecular level, the stilbene scaffold has moved innovation in science. This paper mainly focuses on the stilbene-based compounds beyond resveratrol, which are particularly attractive due to their biological activity. Given the "fresh outlook" about different stilbene-based compounds starting from stilbenoids with particular regard to isorhapontigenin and methoxy- and hydroxyl- analogues, the update about the combretastatins, and the very often overlooked and underestimated benzanilide analogues, we present a new story about this remarkable structure.
Collapse
|
28
|
Patel KR, Patel HD. p53: An Attractive Therapeutic Target for Cancer. Curr Med Chem 2020; 27:3706-3734. [PMID: 31223076 DOI: 10.2174/1573406415666190621094704] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 02/28/2019] [Accepted: 04/16/2019] [Indexed: 02/08/2023]
Abstract
Cancer is a leading cause of death worldwide. It initiates when cell cycle regulatory genes lose their function either by environmental and/or by internal factors. Tumor suppressor protein p53, known as "Guardian of genome", plays a central role in maintaining genomic stability of the cell. Mutation of TP53 is documented in more than 50% of human cancers, usually by overexpression of negative regulator protein MDM2. Hence, reactivation of p53 by blocking the protein-protein interaction between the murine double minute 2 (MDM2) and the tumor suppressor protein p53 has become the most promising therapeutic strategy in oncology. Several classes of small molecules have been identified as potent, selective and efficient p53-MDM2 inhibitors. Herein, we review the druggability of p53-MDM2 inhibitors and their optimization approaches as well as clinical candidates categorized by scaffold type.
Collapse
Affiliation(s)
- Krupa R Patel
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India
| | - Hitesh D Patel
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India
| |
Collapse
|
29
|
Coban MA, Fraga S, Caulfield TR. Structural And Computational Perspectives of Selectively Targeting Mutant Proteins. Curr Drug Discov Technol 2020; 18:365-378. [PMID: 32160847 DOI: 10.2174/1570163817666200311114819] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 11/22/2022]
Abstract
Diseases are often caused by mutant proteins. Many drugs have limited effectiveness and/or toxic side effects because of a failure to selectively target the disease-causing mutant variant, rather than the functional wild type protein. Otherwise, the drugs may even target different proteins with similar structural features. Designing drugs that successfully target mutant proteins selectively represents a major challenge. Decades of cancer research have led to an abundance of potential therapeutic targets, often touted to be "master regulators". For many of these proteins, there are no FDA-approved drugs available; for others, off-target effects result in dose-limiting toxicity. Cancer-related proteins are an excellent medium to carry the story of mutant-specific targeting, as the disease is both initiated and sustained by mutant proteins; furthermore, current chemotherapies generally fail at adequate selective distinction. This review discusses some of the challenges associated with selective targeting from a structural biology perspective, as well as some of the developments in algorithm approach and computational workflow that can be applied to address those issues. One of the most widely researched proteins in cancer biology is p53, a tumor suppressor. Here, p53 is discussed as a specific example of a challenging target, with contemporary drugs and methodologies used as examples of burgeoning successes. The oncogene KRAS, which has been described as "undruggable", is another extensively investigated protein in cancer biology. This review also examines KRAS to exemplify progress made towards selective targeting of diseasecausing mutant proteins. Finally, possible future directions relevant to the topic are discussed.
Collapse
Affiliation(s)
- Mathew A Coban
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, United States
| | - Sarah Fraga
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, United States
| | - Thomas R Caulfield
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, United States
| |
Collapse
|
30
|
Lopes EA, Gomes S, Saraiva L, Santos MM. Small Molecules Targeting Mutant P53: A Promising Approach for Cancer Treatment. Curr Med Chem 2020; 26:7323-7336. [DOI: 10.2174/0929867325666181116124308] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/11/2018] [Accepted: 10/25/2018] [Indexed: 12/17/2022]
Abstract
:
More than half of all human tumors express mutant forms of p53, with the ovary,
lung, pancreas, and colorectal cancers among the tumor types that display the highest prevalence
of p53 mutations. In addition, the expression of mutant forms of p53 in tumors is associated
with poor prognosis due to increased chemoresistance and invasiveness. Therefore, the
pharmacological restoration of wild-type-like activity to mutant p53 arises as a promising therapeutic
strategy against cancer. This review is focused on the most relevant mutant p53 small
molecule reactivators described to date. Despite some of them have entered into clinical trials,
none has reached the clinic, which emphasizes that new pharmacological alternatives, particularly
with higher selectivity and lower adverse toxic side effects, are still required.
Collapse
Affiliation(s)
- Elizabeth A. Lopes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Sara Gomes
- LAQV-REQUIMTE, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Lucília Saraiva
- LAQV-REQUIMTE, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Maria M.M. Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
31
|
O'Boyle NM, Ana G, Kelly PM, Nathwani SM, Noorani S, Fayne D, Bright SA, Twamley B, Zisterer DM, Meegan MJ. Synthesis and evaluation of antiproliferative microtubule-destabilising combretastatin A-4 piperazine conjugates. Org Biomol Chem 2020; 17:6184-6200. [PMID: 31173031 DOI: 10.1039/c9ob00558g] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Microtubules are a validated clinical target for the treatment of many cancers. We describe the design, synthesis, biochemical evaluation, and molecular modelling studies of a series of analogues of the microtubule-destabilising agent, combretastatin A-4 (CA-4). Our series of 33 novel compounds contain the CA-4 core structure with modifications to the stilbene linking group, and are predominantly piperazine derivatives. Synthesis was achieved in a two-step process by firstly obtaining the acrylic acid via a Perkin reaction using microwave enhanced synthesis, followed by coupling using either DCC or Mukaiyama's reagent. All target compounds were screened for antiproliferative activity in MCF-7 breast cancer cells. Hydroxyl derivative (E)-3-(4-hydroxy-3-methoxyphenyl)-1-(4-phenylpiperazin-1-yl)-2-(3,4,5-trimethoxyphenyl) propenone (4m) displayed potent antiproliferative activity (IC50 = 190 nM). Two amino-containing derivatives, (E)-3-(3-amino-4-methoxyphenyl)-1-(4-phenylpiperazin-1-yl)-2-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (4q) and (E)-3-(3-amino-4-methoxyphenyl)-1-(4-(p-tolyl)piperazin-1-yl)-2-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (4x), were the most potent with IC50 values of 130 nM and 83 nM respectively. Representative compounds were shown to depolymerise tubulin, induce G2/M arrest and apoptosis in MCF-7 cells but not peripheral blood mononuclear cells, and induce cleavage of the DNA repair enzyme poly ADP ribose polymerase (PARP) in MCF-7 cells. Modelling studies predict that the compounds bind to tubulin within the colchicine-binding site. These compounds are a valuable addition to the library of CA-4 analogues and 4m, 4q and 4x will be developed further as novel, water-soluble molecules targeting microtubules.
Collapse
Affiliation(s)
- Niamh M O'Boyle
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2 D02 R590, Ireland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Miller JJ, Gaiddon C, Storr T. A balancing act: using small molecules for therapeutic intervention of the p53 pathway in cancer. Chem Soc Rev 2020; 49:6995-7014. [DOI: 10.1039/d0cs00163e] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Small molecules targeting various aspects of the p53 protein pathway have shown significant promise in the treatment of a number of cancer types.
Collapse
Affiliation(s)
| | - Christian Gaiddon
- Inserm UMR_S 1113
- Université de Strasbourg
- Molecular Mechanisms of Stress Response and Pathologies
- ITI InnoVec
- Strasbourg
| | - Tim Storr
- Department of Chemistry
- Simon Fraser University
- Burnaby
- Canada
| |
Collapse
|
33
|
Li H, Zhang J, Tong JHM, Chan AWH, Yu J, Kang W, To KF. Targeting the Oncogenic p53 Mutants in Colorectal Cancer and Other Solid Tumors. Int J Mol Sci 2019; 20:ijms20235999. [PMID: 31795192 PMCID: PMC6929124 DOI: 10.3390/ijms20235999] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/23/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is a kind of solid tumor and the third most common cancer type in the world. It is a heterogeneous disease characterized by genetic and epigenetic aberrations. The TP53 mutation is the key step driving the transition from adenoma to adenocarcinoma. The functional roles of TP53 mutation in tumor development have been comprehensively investigated. In CRC, TP53 mutation was associated with poor prognosis and chemoresistance. A gain of function (GOF) of p53 mutants promotes cell proliferation, migration and invasion through multiple mechanisms. Restoring wild type p53 function, depleting p53 mutants, or intervention by targeting the oncogenic downstreams provides potential therapeutic strategies. In this review, we comprehensively summarize the GOF of p53 mutants in CRC progression as well as in some other solid tumors, and discuss the current strategies targeting p53 mutants in malignancies.
Collapse
Affiliation(s)
- Hui Li
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China; (H.L.); (J.Z.); (J.H.M.T.); (A.W.H.C.)
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China;
- Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, China
| | - Jinglin Zhang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China; (H.L.); (J.Z.); (J.H.M.T.); (A.W.H.C.)
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China;
- Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, China
| | - Joanna Hung Man Tong
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China; (H.L.); (J.Z.); (J.H.M.T.); (A.W.H.C.)
- Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, China
| | - Anthony Wing Hung Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China; (H.L.); (J.Z.); (J.H.M.T.); (A.W.H.C.)
- Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, China
| | - Jun Yu
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China;
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China; (H.L.); (J.Z.); (J.H.M.T.); (A.W.H.C.)
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China;
- Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, China
- Correspondence: (W.K.); (K.F.T.); Tel.: +852-35051505 (W.K. & K.F.T.); Fax: +852-26497286 (W.K. & K.F.T.)
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China; (H.L.); (J.Z.); (J.H.M.T.); (A.W.H.C.)
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China;
- Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, China
- Correspondence: (W.K.); (K.F.T.); Tel.: +852-35051505 (W.K. & K.F.T.); Fax: +852-26497286 (W.K. & K.F.T.)
| |
Collapse
|
34
|
Bratskaya S, Sergeeva K, Konovalova M, Modin E, Svirshchevskaya E, Sergeev A, Mironenko A, Pestov A. Ligand-assisted synthesis and cytotoxicity of ZnSe quantum dots stabilized by N-(2-carboxyethyl)chitosans. Colloids Surf B Biointerfaces 2019; 182:110342. [PMID: 31299538 DOI: 10.1016/j.colsurfb.2019.06.071] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/31/2019] [Accepted: 06/29/2019] [Indexed: 12/18/2022]
Abstract
Here we report a green synthesis of ZnSe quantum dots (QDs) in aqueous solution of polyampholyte chitosan derivative - N-(2-carboxyethyl)chitosan (CEC) with substitution degrees (DS) from 0.7 to 1.3 and molecular weight (MW) of 40 kDa and 150 kDa. We have shown that the maximum intensity of photoluminescence (PL) is exhibited by ZnSe QDs synthesized in solutions of CEC with DS 1 at Se:Zn molar ratio 1:2.5. The defect-related band was predominant in the PL spectra of ZnSe QDs obtained at room temperature; however, hydrothermal treatment at 80-150 °C during 1-2 h significantly increased contribution of exciton emission to the spectra. Cytotoxicity of ZnSe QDs was investigated by MTT assay using cancer cell lines SKOV-3; SkBr-3; PANC-1; Colon-26 and human embryonic kidney cell line HEK293. Cytotoxicity of ZnSe QDs did not depend on MW or DS of CEC but significantly depended on the cell line, being the lowest for normal human cells HEK293 and breast cancer cell line SKOV-3. The hydrothermally treated ZnSe QDs showed higher toxicity toward both normal and cancer cell lines. Since ZnSe QDs were toxic for most of the investigated cancer cell lines, they cannot be used as inert tracers for bioimaging, but can be promising for further investigation for anticancer therapy.
Collapse
Affiliation(s)
- Svetlana Bratskaya
- Institute of Chemistry, Far Eastern Branch of RAS, 159, prosp.100-letiya Vladivostoka, Vladivostok, 690022, Russia.
| | - Kseniya Sergeeva
- Institute of Automation and Control Processes, Far Eastern Branch of RAS, 5, Radio Str., Vladivostok, 690041, Russia
| | - Mariya Konovalova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, 16/10, Miklukho-Maklaya Str., Moscow, 117997, Russia
| | - Evgeny Modin
- CIC nanoGUNE, Donostia - San Sebastian, 20018, Spain
| | - Elena Svirshchevskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, 16/10, Miklukho-Maklaya Str., Moscow, 117997, Russia
| | - Alexander Sergeev
- Institute of Automation and Control Processes, Far Eastern Branch of RAS, 5, Radio Str., Vladivostok, 690041, Russia
| | - Aleksandr Mironenko
- Institute of Chemistry, Far Eastern Branch of RAS, 159, prosp.100-letiya Vladivostoka, Vladivostok, 690022, Russia
| | - Alexandr Pestov
- I. Ya. Postovsky Institute of Organic Synthesis, Ural Branch of RAS, 20, S. Kovalevskoy Str., Yekaterinburg, 620990, Russia
| |
Collapse
|
35
|
Punganuru SR, Madala HR, Arutla V, Srivenugopal KS. Selective killing of human breast cancer cells by the styryl lactone (R)-goniothalamin is mediated by glutathione conjugation, induction of oxidative stress and marked reactivation of the R175H mutant p53 protein. Carcinogenesis 2019; 39:1399-1410. [PMID: 30010803 DOI: 10.1093/carcin/bgy093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 06/21/2018] [Indexed: 01/01/2023] Open
Abstract
The molecular basis of anticancer and apoptotic effects of R-goniothalamin (GON), a plant secondary metabolite was studied. We show that induction of oxidative stress and reactivation of mutant p53 underlie the strong cytotoxic effects of GON against the breast cancer cells. While GON was not toxic to the MCF10a breast epithelial cells, the SKBR3 breast cancer cells harboring an R175H mutant p53 were highly sensitive (IC50 = 7.3 µM). Flow cytometry and other pertinent assays showed that GON-induced abundant reactive oxygen species (ROS), glutathione depletion, protein glutathionylation and activation of apoptotic markers. GON was found to conjugate with glutathione both in vitro and in cells and the product was characterized by mass spectrometry. We hypothesized that the redox imbalance induced by GON may affect the structure of the R175H mutant p53 protein, and account for greater cytotoxicity. Using the SKBR3 breast cancer and p53-null H1299 lung cancer cells stably expressing the R175H p53 mutant protein, we demonstrated that GON triggers the appearance of a wild-type-like p53 protein by using conformation-specific antibodies, immunoprecipitation, DNA-binding assays and target gene expression. p53 restoration was associated with a G2/M arrest, senescence, reduced cell migration, invasion and increased cell death. GON elicited a highly synergistic cytotoxicity with cisplatin in SKBR3 cells. In SKBR3 xenografts developed in nude mice, there was a marked tumor growth delay by GON alone and GON + cisplatin combination. Our studies highlight the impact of tumor redox-stress generated by GON in activating the mutant p53 protein for greater antitumor efficacy.
Collapse
Affiliation(s)
- Surendra R Punganuru
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Hanumantha Rao Madala
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Viswanath Arutla
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Kalkunte S Srivenugopal
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| |
Collapse
|
36
|
Punganuru SR, Madala HR, Arutla V, Zhang R, Srivenugopal KS. Characterization of a highly specific NQO1-activated near-infrared fluorescent probe and its application for in vivo tumor imaging. Sci Rep 2019; 9:8577. [PMID: 31189950 PMCID: PMC6562040 DOI: 10.1038/s41598-019-44111-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 05/09/2019] [Indexed: 12/30/2022] Open
Abstract
The Near-infrared Fluorescence (NIRF) molecular imaging of cancer is known to be superior in sensitivity, deeper penetration, and low phototoxicity compared to other imaging modalities. In view of an increased need for efficient and targeted imaging agents, we synthesized a NAD(P)H quinone oxidoreductase 1 (NQO1)-activatable NIR fluorescent probe (NIR-ASM) by conjugating dicyanoisophorone (ASM) fluorophore with the NQO1 substrate quinone propionic acid (QPA). The probe remained non-fluorescent until activation by NQO1, whose expression is largely limited to malignant tissues. With a large Stokes shift (186 nm) and a prominent near-infrared emission (646 nm) in response to NQO1, NIR-ASM was capable of monitoring NQO1 activity in vitro and in vivo with high specificity and selectivity. We successfully employed the NIR-ASM to differentiate cancer cells from normal cells based on NQO1 activity using fluorescence microscopy and flow cytometry. Chemical and genetic approaches involving the use of ES936, a specific inhibitor of NQO1 and siRNA and gene transfection procedures unambiguously demonstrated NQO1 to be the sole target activating the NIR-ASM in cell cultures. NIR-ASM was successfully used to detect and image the endogenous NQO1 in three live tumor-bearing mouse models (A549 lung cancer, Lewis lung carcinoma, and MDMAMB 231 xenografts) with a high signal-to-low noise ratiometric NIR fluorescence response. When the NQO1-proficient A549 tumors and NQO1-deficient MDA-MB-231 tumors were developed in the same animal, only the A549 malignancies activated the NIR-ASM probe with a strong signal. Because of its high sensitivity, rapid activation, tumor selectivity, and nontoxic properties, the NIR-ASM appears to be a promising agent with clinical applications.
Collapse
Affiliation(s)
- Surendra Reddy Punganuru
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA.
| | - Hanumantha Rao Madala
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Viswanath Arutla
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Ruiwen Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204, USA
| | - Kalkunte S Srivenugopal
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA.
| |
Collapse
|
37
|
Li Y, Wang Z, Chen Y, Petersen RB, Zheng L, Huang K. Salvation of the fallen angel: Reactivating mutant p53. Br J Pharmacol 2019; 176:817-831. [PMID: 30632144 PMCID: PMC6433646 DOI: 10.1111/bph.14572] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/19/2018] [Accepted: 12/02/2018] [Indexed: 12/15/2022] Open
Abstract
The transcription factor p53 is known as the guardian of the genome for its powerful anti-tumour capacity. However, mutations of p53 that undermine their protein structure, resulting in loss of tumour suppressor function and gain of oncogenic function, have been implicated in more than half of human cancers. The crucial role of mutant forms of p53 in cancer makes it an attractive therapeutic target. A large number of candidates, including low MW compounds, peptides, and nucleic acids, have been identified or designed to rescue p53 mutants and reactivate their anti-tumour capacity through a variety of mechanisms. In this review, we summarize the progress made in the reactivation of mutant forms of p53, focusing on the pharmacological mechanisms of the reactivators of p53 mutants.
Collapse
Affiliation(s)
- Yang Li
- Tongji School of Pharmacy, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Zhuoyi Wang
- Tongji School of Pharmacy, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Yuchen Chen
- Tongji School of Pharmacy, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Robert B. Petersen
- Foundational SciencesCentral Michigan University College of MedicineMt. PleasantMichiganUSA
| | - Ling Zheng
- College of Life SciencesWuhan UniversityWuhanHubeiChina
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| |
Collapse
|
38
|
Hybrid cis-stilbene Molecules: Novel Anticancer Agents. Int J Mol Sci 2019; 20:ijms20061300. [PMID: 30875859 PMCID: PMC6471163 DOI: 10.3390/ijms20061300] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/10/2019] [Accepted: 03/11/2019] [Indexed: 12/15/2022] Open
Abstract
The growing interest in anticancer hybrids in the last few years has resulted in a great number of reports on hybrid design, synthesis and bioevaluation. Many novel multi-target-directed drug candidates were synthesized, and their biological activities were evaluated. For the design of anticancer hybrid compounds, the molecules of stilbenes, aromatic quinones, and heterocycles (benzimidazole, imidazole, pyrimidine, pyridine, pyrazole, quinoline, quinazoline) were applied. A distinct group of hybrids comprises the molecules built with natural compounds: Resveratrol, curcumin, coumarin, and oleanolic acid. In this review, we present the studies on bioactive hybrid molecules of a well-known tubulin polymerization inhibitor, combretastatin A-4 and its analogs with other pharmacologically active entities. The mechanism of anticancer activity of selected hybrids is discussed considering the structure-activity relationship.
Collapse
|
39
|
Selvendran S, J B, CS V, Munussami P, Pattusamy N, Chanda K, MM B, Rajendran S. Biological Evaluation of Synthesized N‐Cinnamoyl Phenothiazine Derivatives. ChemistrySelect 2018. [DOI: 10.1002/slct.201803221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Suresh Selvendran
- Chemistry divisionSchool of Advanced Sciences, Vellore Institute of Technology Chennai Campus Chennai- 600 127, Tamilnadu India
| | - Brindha J
- Chemistry divisionSchool of Advanced Sciences, Vellore Institute of Technology Chennai Campus Chennai- 600 127, Tamilnadu India
| | - Vasavi CS
- Bioinformatics divisionSchool of Biosciences and Technology, Vellore Institute of Technology Vellore, Tamilnadu 632 014 India
| | - Punnagai Munussami
- Center for Computational Natural Sciences and BioinformaticsInternational Institute of Information Technology, Gachibowli Hyderabad - 500 032 India
| | - Nithya Pattusamy
- Chemistry divisionSchool of Advanced Sciences, Vellore Institute of Technology Chennai Campus Chennai- 600 127, Tamilnadu India
| | - Kaushik Chanda
- Department of ChemistrySchool of Advanced Sciences, Vellore Institute of Technology Vellore 632 014 India
| | - Balamurali MM
- Chemistry divisionSchool of Advanced Sciences, Vellore Institute of Technology Chennai Campus Chennai- 600 127, Tamilnadu India
| | - Saravanakumar Rajendran
- Chemistry divisionSchool of Advanced Sciences, Vellore Institute of Technology Chennai Campus Chennai- 600 127, Tamilnadu India
| |
Collapse
|
40
|
Binayke A, Mishra S, Suman P, Das S, Chander H. Awakening the "guardian of genome": reactivation of mutant p53. Cancer Chemother Pharmacol 2018; 83:1-15. [PMID: 30324219 DOI: 10.1007/s00280-018-3701-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 09/10/2018] [Indexed: 01/08/2023]
Abstract
The role of tumor suppressor protein p53 is undeniable in the suppression of cancer upon oncogenic stress. It induces diverse conditions such as cell-cycle arrest, cell death, and senescence to protect the cell from carcinogenesis. The rate of mutations in p53 gene nearly accounts for 50% of the human cancers. Upon mutations, the conformation gets altered and becomes non-native. Mutant p53 displays long half-life and accumulates in the nucleus and interacts with oncoproteins to promote carcinogenesis and these interactions present a formidable challenge for clinicians in therapy of the disease. Variety of approaches have been developed, through which native-like function of p53 can be restored, such as restoration of the native-like structure of p53, activating the p53 family members, etc. Modern scientific techniques have led to the discovery of a variety of molecules to reactivate mutant p53 and restore its transcriptional activity. These compounds include small molecules, various peptides, and phytochemicals. In this review article, we comprehensively discuss these molecules to reactivate mutant p53 to restore the normal function with a particular focus on molecular mechanisms.
Collapse
Affiliation(s)
- Akshay Binayke
- Laboratory of Molecular Medicine, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, 151001, India
| | - Sarthak Mishra
- Laboratory of Molecular Medicine, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, 151001, India
| | - Prabhat Suman
- Laboratory of Molecular Medicine, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, 151001, India
| | - Suman Das
- Laboratory of Molecular Medicine, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, 151001, India
| | - Harish Chander
- Laboratory of Molecular Medicine, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, 151001, India.
| |
Collapse
|
41
|
Piska K, Gunia-Krzyżak A, Koczurkiewicz P, Wójcik-Pszczoła K, Pękala E. Piperlongumine (piplartine) as a lead compound for anticancer agents - Synthesis and properties of analogues: A mini-review. Eur J Med Chem 2018; 156:13-20. [PMID: 30006159 DOI: 10.1016/j.ejmech.2018.06.057] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 06/22/2018] [Accepted: 06/23/2018] [Indexed: 10/28/2022]
Abstract
Piperlongumine, also known as piplartine, is an amide alkaloid of Piper longum L. (long piper), a medical plant known from Ayurvedic medicine. Although was discovered well over fifty years ago, its pharmacological properties have been uncovered in the past decade. In particular, piperlongumine has been most extensively studied as a potential anticancer agent. Piperlongumine has exhibited cytotoxicity against a broad spectrum of human cancer cell lines, as well as demonstrated antitumor activity in rodents. Piperlongumine has also been found to be a proapoptotic, anti-invasive, antiangiogenic agent and synergize with modern chemotherapeutic agents. Because of its clinical potential, several studies were undertaken to obtain piperlongumine analogues, which have exhibited more potent activity or more appropriate drug-like parameters. In this review, the synthesis of piperlongumine analogues and piperlongumine-based hybrid compounds, as well as their anticancer properties and the molecular basis for their activity are explored. General structure-activity relationship conclusions are drawn and directions for the future research are indicated.
Collapse
Affiliation(s)
- Kamil Piska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Agnieszka Gunia-Krzyżak
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Paulina Koczurkiewicz
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland.
| | - Katarzyna Wójcik-Pszczoła
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| |
Collapse
|
42
|
Punganuru SR, Madala HR, Mikelis CM, Dixit A, Arutla V, Srivenugopal KS. Conception, synthesis, and characterization of a rofecoxib-combretastatin hybrid drug with potent cyclooxygenase-2 (COX-2) inhibiting and microtubule disrupting activities in colon cancer cell culture and xenograft models. Oncotarget 2018; 9:26109-26129. [PMID: 29899846 PMCID: PMC5995258 DOI: 10.18632/oncotarget.25450] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 05/03/2018] [Indexed: 12/28/2022] Open
Abstract
Tumor heterogeneity and drug resistance pose severe limitations to chemotherapy of colorectal cancers (CRCs) necessitating innovative approaches to trigger multiple cytocidal events for increased efficacy. Here, we developed a hybrid drug called KSS19 by combining the COX-2 selective NSAID rofecoxib with the cis-stilbene found in combretastatin A4 (CA4), a problematic, but potent antimicrotubule and anti-angiogenesis agent. The structural design of KSS19 completely prevented the isomerization of CA4 its biologically inactive trans-form. Molecular modeling showed that KSS19 bound avidly to the COX-2 active site and colchicine -binding site of tubulin, with similar docking scores of rofecoxib and CA4 respectively. KSS-19 showed potent anti-proliferative activity against a panel of colon cancer cell lines; HT29 cells, which are resistant to CA4 were 100 times more sensitive to KSS19. The hybrid drug potently inhibited the tubulin polymerization in vitro and in cells inducing a G2/M arrest and aberrant mitotic spindles. Both the basal and LPS-activated levels of COX-2 in colon cancer cells were highly suppressed by the KSS-19. The cancer cell migration/invasion was inhibited and accompanied by increased E-cadherin levels and activated NF-kB/Snail pathways in KSS19-treated cells. The drug also curtailed the formation of endothelial tubes in three-dimensional cultures of the HUVE cells at 250 nM, indicating strong anti-angiogenic properties. In subcutaneous HT29 colon cancer xenografts, KSS19, as a single agent (25 mg/kg/day) significantly inhibited the tumor growth and downregulated the intratumoral COX-2, Ki-67, the angiogenesis marker CD31, however, the cleaved caspase-3 was elevated. Collectively, KSS19 represents a rational hybrid drug with clinical relevance to CRC.
Collapse
Affiliation(s)
- Surendra R Punganuru
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Hanumantha Rao Madala
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Constantinos M Mikelis
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Anshuman Dixit
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, India
| | - Viswanath Arutla
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Kalkunte S Srivenugopal
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| |
Collapse
|
43
|
Zou Y, Zhao D, Yan C, Ji Y, Liu J, Xu J, Lai Y, Tian J, Zhang Y, Huang Z. Novel Ligustrazine-Based Analogs of Piperlongumine Potently Suppress Proliferation and Metastasis of Colorectal Cancer Cells in Vitro and in Vivo. J Med Chem 2018; 61:1821-1832. [PMID: 29424539 DOI: 10.1021/acs.jmedchem.7b01096] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Piperlongumine 1 increases reactive oxygen species (ROS) levels and preferably induces cancer cell apoptosis by triggering different pathways. However, the poor solubility of 1 limits its intensive investigation and clinical application. Ligustrazine possesses a water-soluble pyrazine skeleton and can inhibit proliferation and metastasis of cancer cells. We synthesized compound 3 by replacement of the trimethoxyphenyl of 1 with ligustrazine moiety and further introduced 2-Cl, -Br, and -I to 3 for synthesis of 4-6, respectively. Compound 4 possessed 14-fold greater aqueous solubility than 1 and increased ROS levels in colorectal cancer HCT-116 cells. Additionally, 4 preferably inhibited proliferation, migration, invasion, and heteroadhesion of HCT-116 cells. Treatment with 4 suppressed tumor growth and lung metastasis in vivo and prolonged the survival of tumor-bearing mice. Furthermore, 4 mitigated TGF-β1-induced epithelial-mesenchymal transition and Wnt/β-catenin activation by inhibiting the Akt and GSK-3β phosphorylation in HCT-116 cells. Collectively, 4 displayed significant antiproliferation and antimetastasis activities, superior to 1.
Collapse
Affiliation(s)
- Yu Zou
- State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing 210009 , P. R. China
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases , China Pharmaceutical University , Nanjing 210009 , P. R. China
- Department of Pharmacy, College of Medicine , Wuhan University of Science and Technology , Wuhan , Hubei Province 430065 , P. R. China
| | - Di Zhao
- State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing 210009 , P. R. China
- Clinical Pharmacokinetics Laboratory, Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy , China Pharmaceutical University , Nanjing 211198 , P. R. China
| | - Chang Yan
- State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing 210009 , P. R. China
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases , China Pharmaceutical University , Nanjing 210009 , P. R. China
| | - Yanpeng Ji
- State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing 210009 , P. R. China
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases , China Pharmaceutical University , Nanjing 210009 , P. R. China
| | - Jin Liu
- State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing 210009 , P. R. China
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases , China Pharmaceutical University , Nanjing 210009 , P. R. China
| | - Jinyi Xu
- State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing 210009 , P. R. China
| | - Yisheng Lai
- State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing 210009 , P. R. China
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases , China Pharmaceutical University , Nanjing 210009 , P. R. China
| | - Jide Tian
- Department of Molecular and Medical Pharmacology , University of California , Los Angeles , California 90095 , United States
| | - Yihua Zhang
- State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing 210009 , P. R. China
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases , China Pharmaceutical University , Nanjing 210009 , P. R. China
| | - Zhangjian Huang
- State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing 210009 , P. R. China
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases , China Pharmaceutical University , Nanjing 210009 , P. R. China
| |
Collapse
|
44
|
Abstract
The tumour suppressor gene TP53 is the most frequently mutated gene in cancer. Wild-type p53 can suppress tumour development by multiple pathways. However, mutation of TP53 and the resultant inactivation of p53 allow evasion of tumour cell death and rapid tumour progression. The high frequency of TP53 mutation in tumours has prompted efforts to restore normal function of mutant p53 and thereby trigger tumour cell death and tumour elimination. Small molecules that can reactivate missense-mutant p53 protein have been identified by different strategies, and two compounds are being tested in clinical trials. Novel approaches for targeting TP53 nonsense mutations are also underway. This Review discusses recent progress in pharmacological reactivation of mutant p53 and highlights problems and promises with these strategies.
Collapse
Affiliation(s)
- Vladimir J N Bykov
- Karolinska Institutet, Department of Oncology-Pathology, Cancer Center Karolinska (CCK), SE-171 77 Stockholm, Sweden
| | - Sofi E Eriksson
- Karolinska Institutet, Department of Oncology-Pathology, Cancer Center Karolinska (CCK), SE-171 77 Stockholm, Sweden
| | - Julie Bianchi
- Karolinska Institutet, Department of Oncology-Pathology, Cancer Center Karolinska (CCK), SE-171 77 Stockholm, Sweden
| | - Klas G Wiman
- Karolinska Institutet, Department of Oncology-Pathology, Cancer Center Karolinska (CCK), SE-171 77 Stockholm, Sweden
| |
Collapse
|
45
|
Brain- and brain tumor-penetrating disulfiram nanoparticles: Sequence of cytotoxic events and efficacy in human glioma cell lines and intracranial xenografts. Oncotarget 2017; 9:3459-3482. [PMID: 29423059 PMCID: PMC5790476 DOI: 10.18632/oncotarget.23320] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/26/2017] [Indexed: 12/24/2022] Open
Abstract
There is great interest in repurposing disulfiram (DSF), a rapidly metabolizing nontoxic drug, for brain cancers and other cancers. To overcome the instability and low therapeutic efficacy, we engineered passively-targeted DSF-nanoparticles (DSFNPs) using biodegradable monomethoxy (polyethylene glycol) d,l-lactic-co-glycolic acid (mPEG-PLGA) matrix. The physicochemical properties, cellular uptake and the blood brain-barrier permeability of DSFNPs were investigated. The DSFNPs were highly stable with a size of ∼70 nm with a >90% entrapment. Injection of the nanoparticles labeled with HITC, a near-infrared dye into normal mice and tumor-bearing nude mice followed by in vivo imaging showed a selective accumulation of the formulation within the brain and subcutaneous tumors for >24 h, indicating an increased plasma half-life and entry of DSF into desired sites. The DSFNPs induced a potent and preferential killing of many brain tumor cell lines in cytotoxicity assays. Confocal microscopy showed a quick internalization of the nanoparticles in tumor cells followed by initial accumulation in lysosomes and subsequently in mitochondria. DSFNPs induced high levels of ROS and led to a marked loss of mitochondrial membrane potential. Activation of the MAP-kinase pathway leading to a nuclear translocation of apoptosis-inducing factor and altered expression of apoptotic and anti-apoptotic proteins were also observed. DSFNPs induced a powerful and significant regression of intracranial medulloblastoma xenografts compared to the marginal efficacy of unencapsulated DSF. Together, we show that passively targeted DSFNPs can affect multiple targets, trigger potent anticancer effects, and can offer a sustained drug supply for brain cancer treatment through an enhanced permeability retention (EPR).
Collapse
|
46
|
Wei Q, Li J, Tang F, Yin Y, Zhao Y, Yao Q. Synthesis and biological evaluation of novel 2-arylvinyl-substituted naphtho[2,3-d]imidazolium halide derivatives as potent antitumor agents. Eur J Med Chem 2017; 144:504-516. [PMID: 29288947 DOI: 10.1016/j.ejmech.2017.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 12/02/2017] [Accepted: 12/02/2017] [Indexed: 11/27/2022]
Abstract
Two series of novel 2-arylvinyl-naphtho[2,3-d]imidazol-3-ium iodide derivatives and 2-arylvinyl-naphtho[2,3-d]imidazol-3-ium bromide derivatives were designed and synthesized by the structural combination of YM155 with stilbenoids. All compounds were tested for anti-proliferative activity against PC-3, A375 and HeLa human cancer cell lines. Two of the compounds were selected for further investigation: 12b, which showed potent cytotoxicity against the three tested cell lines with IC50 values in the range of 0.06-0.21 μM, and 7l, which displayed excellent selectivity for PC-3 cells with an IC50 of only 22 nM. Western blot analysis results indicated that both 12b and 7l suppress the expression of Bcl-2 and Survivin proteins, which helps induce apoptosis. As determined by the percent of Annexin V-FITC-positive apoptotic cells, 12b was not only significantly more effective than 7l at a concentration of 100 nM in PC-3 cells but also induced apoptosis in a dose-dependent manner with more potency than 7l at a concentration of 1000 nM in A375 cells. Therefore, compound 12b was chosen for further in-depth studies investigating the mechanism of apoptosis. The results showed that it could activate caspase-3, hydrolyze PARP, and even inactivate ERK. Moreover, 12b arrested A375 cells at S phase in a time-dependent and dose-dependent manner, while having a visible effect on microtubule dynamics. In addition, (E)-2-(2-(1H-indol-3-yl)vinyl)-1-benzyl-3-(2-methoxyethyl)-4,9-dioxo-4,9-dihydro-1H-naphtho[2,3-d]imidazol-3-ium bromide (12b) exhibited significant antitumor activity when evaluated in a subcutaneous solid tumor model. Our study reveals that 2-arylvinyl-substituted naphtho[2,3-d]imidazolium scaffolding is a promising new entity for the development of multi-target anticancer drugs.
Collapse
Affiliation(s)
- Qingyun Wei
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Ju Li
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Feng Tang
- MtC Biopharma, Co., Ltd, Nanjing 210042, PR China
| | - Yin Yin
- MtC Biopharma, Co., Ltd, Nanjing 210042, PR China
| | - Yong Zhao
- MtC Biopharma, Co., Ltd, Nanjing 210042, PR China.
| | - Qizheng Yao
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
47
|
Zou Y, Yan C, Zhang H, Xu J, Zhang D, Huang Z, Zhang Y. Synthesis and evaluation of N-heteroaromatic ring-based analogs of piperlongumine as potent anticancer agents. Eur J Med Chem 2017; 138:313-319. [PMID: 28686911 DOI: 10.1016/j.ejmech.2017.06.046] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 12/11/2022]
Abstract
Piperlongumine (PL) selectively targets a wide spectrum of cancer cells and induces their death by triggering various pathways, including apoptosis, necrosis and autophagy. However, the poor solubility is a serious concern for intensive study and clinical application. We synthesized its analogs 1-9 by replacement of the trimethoxyphenyl of PL with an N-heteroaromatic ring and/or not introduction of 2-Cl. These compounds improved aqueous solubility and displayed potent anticancer activity. The most active compound 9 selectively enhanced ROS levels in colon cancer cells and inhibited the cell proliferation but sparing non-tumor colon cells. Importantly, 9 significantly repressed tumor growth in an HCT-116 xenograft mouse model, suggesting that these N-heteroaromatic ring-based analogs of PL warrant further investigation.
Collapse
Affiliation(s)
- Yu Zou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China; Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, PR China
| | - Chang Yan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China; Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, PR China
| | - Huibin Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China; Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jinyi Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Dayong Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China; Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, PR China
| | - Zhangjian Huang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China; Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yihua Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China; Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, PR China
| |
Collapse
|
48
|
Wu S, Zhou Y, Seet D, Li Z. Regio- and Stereoselective Oxidation of Styrene Derivatives to Arylalkanoic AcidsviaOne-Pot Cascade Biotransformations. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700416] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shuke Wu
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585
- Synthetic Biology for Clinical and Technological Innovation (SynCTI); Life Sciences Institute; National University of Singapore; 28 Medical Drive Singapore 117456
| | - Yi Zhou
- Synthetic Biology for Clinical and Technological Innovation (SynCTI); Life Sciences Institute; National University of Singapore; 28 Medical Drive Singapore 117456
| | - Daniel Seet
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585
| | - Zhi Li
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585
- Synthetic Biology for Clinical and Technological Innovation (SynCTI); Life Sciences Institute; National University of Singapore; 28 Medical Drive Singapore 117456
| |
Collapse
|
49
|
Bukhari SNA, Kumar GB, Revankar HM, Qin HL. Development of combretastatins as potent tubulin polymerization inhibitors. Bioorg Chem 2017; 72:130-147. [PMID: 28460355 DOI: 10.1016/j.bioorg.2017.04.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 03/22/2017] [Accepted: 04/13/2017] [Indexed: 11/18/2022]
Abstract
The combretastatins are isolated from South African tree combretum caffrum kuntze. The lead compound combretastatin A-4 has displayed remarkable cytotoxic effect in a wide variety of preclinical tumor models and inhibits tubulin polymerization by interacting at colchicine binding site of microtubule. However, the structural simplicity of C A-4 is favorable for synthesis of various derivatives projected to induce rapid and selective vascular shutdown in tumors. Majority of the molecules have shown excellent antiproliferative activity and are able to inhibit tubulin polymerization as well as possible mechanisms of action have been investigated. In this review article, the synthesis and structure-activity relationships of C A-4 and immense number of its synthetic derivatives with various modifications on the A, B-rings, bridge carbons and their anti mitotic activities are discussed.
Collapse
Affiliation(s)
- Syed Nasir Abbas Bukhari
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China; Department of Pharmaceutical Chemistry, College of Pharmacy, Aljouf University, Aljouf, Sakaka 2014, Saudi Arabia.
| | - Gajjela Bharath Kumar
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China
| | - Hrishikesh Mohan Revankar
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China
| | - Hua-Li Qin
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China.
| |
Collapse
|
50
|
Xu X, Fang X, Wang J, Zhu H. Identification of novel ROS inducer by merging the fragments of piperlongumine and dicoumarol. Bioorg Med Chem Lett 2017; 27:1325-1328. [PMID: 28159415 DOI: 10.1016/j.bmcl.2016.08.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/14/2016] [Accepted: 08/06/2016] [Indexed: 01/05/2023]
Abstract
A series of novel ROS inducers were designed by merging the fragments of piperlongumine and dicoumarol. Most of these derivatives showed potent in vitro activity against three cancer cell lines and good selectivity towards normal lung cells. The most potent and selective compound 3e was proven to exhibit obvious ROS elevation and excellent in vivo antitumor activity with suppressed tumor growth by 48.46% at the dose of 5mg/kg. Supported by these investigation, these findings encourage further investigation around this interesting antitumor chemotype.
Collapse
Affiliation(s)
- Xiaojuan Xu
- School of Chemistry and Chemical Engineering, Yancheng Teachers University, Yancheng, China.
| | - Xia Fang
- School of Chemistry and Chemical Engineering, Yancheng Teachers University, Yancheng, China
| | - Jun Wang
- School of Chemistry and Chemical Engineering, Yancheng Teachers University, Yancheng, China
| | - Hong Zhu
- School of Chemistry and Chemical Engineering, Yancheng Teachers University, Yancheng, China
| |
Collapse
|