1
|
Elkamhawy A, Oh JM, Kim M, El-Halaby LO, Abdellattif MH, Al-Karmalawy AA, Kim H, Lee K. Rational design, synthesis, biological evaluation, and molecular modeling of novel naphthamide derivatives possessing potent, reversible, and competitive inhibitory mode of action over human monoamine oxidase. Mol Divers 2025; 29:179-193. [PMID: 38727994 DOI: 10.1007/s11030-024-10841-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/07/2024] [Indexed: 02/02/2025]
Abstract
Herein, a novel series of naphthamide derivatives has been rationally developed, synthesized, and evaluated for their inhibitory activity against monoamine oxidase (MAO) and cholinesterase (ChE) enzymes. Compared to the reported naphthalene-based hit IV, the new naphthamide hybrids 2a, 2c, 2g and 2h exhibited promising MAO inhibitory activities; with an IC50 value of 0.294 μM, compound 2c most potently inhibited MAO-A, while compound 2g exhibited most potent MAO-B inhibitory activity with an IC50 value of 0.519 μM. Compounds 2c and 2g showed selectivity index (SI) values of 6.02 for MAO-A and 2.94 for MAO-B, respectively. On the other hand, most compounds showed weak inhibitory activity against ChEs except 2a and 2h over butyrylcholinesterase (BChE). The most potent compounds 2c and 2g were found to be competitive and reversible MAO inhibitors based on kinetic and reversibility studies. Plausible interpretations of the observed biological effects were provided through molecular docking simulations. The drug-likeness predicted by SwissADME and Osiris property explorer showed that the most potent compounds (2a, 2c, 2g, and 2h) obey Lipinski's rule of five. Accordingly, in the context of neurological disorders, hybrids 2c and 2g may contribute to the identification of safe and potent therapeutic approaches in the near future.
Collapse
Affiliation(s)
- Ahmed Elkamhawy
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Jong Min Oh
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Minkyoung Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Lamiaa O El-Halaby
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Magda H Abdellattif
- Chemistry Department, College of Sciences, University College of Taraba, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, 34518, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, 12566, Giza, Egypt
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922, Republic of Korea.
| | - Kyeong Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea.
| |
Collapse
|
2
|
Zarrilli B, Giacomet C, Cossa F, Federici M, Berretta N, Mercuri NB. Functional efficacy of the MAO-B inhibitor safinamide in murine substantia nigra pars compacta dopaminergic neurons in vitro: A comparative study with tranylcypromine. Parkinsonism Relat Disord 2024; 128:107158. [PMID: 39326285 DOI: 10.1016/j.parkreldis.2024.107158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/17/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
Safinamide (SAF) is currently used to treat Parkinson's disease (PD) symptoms based on its theoretical ability to potentiate the dopamine (DA) signal, blocking monoamine oxidase (MAO) B. The present work aims to highlight the functional relevance of SAF as an enhancer of the DA signal, by evaluating its ability to prolong recovery from DA-mediated firing inhibition of DAergic neurons of the substantia nigra pars compacta (SNpc), compared to another MAO antagonist, tranylcypromine (TCP). Using multielectrode array (MEA) and single electrode extracellular recordings of spontaneous spikes from presumed SNpc DAergic cells in vitro, we show that SAF (30 μM) mildly prolongs the DA-mediated firing inhibition, as opposed to the profound effect of TCP (10 μM). In patch-clamp recordings, we found that SAF (30 μM) significantly reduced the number of spikes evoked by depolarizing currents in SNpc DAergic neurons, in a sulpiride (1 μM) independent manner. According to our results, SAF marginally potentiates the DA signal in SNpc DAergic neurons, while exerting an inhibitory effect on the postsynaptic excitability acting on membrane conductances. Thus, we propose that the therapeutic effects of SAF in PD patients partially depends on MAO inhibition, while other MAO-independent sites of action could be more relevant.
Collapse
Affiliation(s)
- Beatrice Zarrilli
- Department of Experimental Neuroscience, Santa Lucia Foundation IRCCS, Via del Fosso di Fiorano, 64, 00143, Rome, Italy; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Cecilia Giacomet
- Department of Experimental Neuroscience, Santa Lucia Foundation IRCCS, Via del Fosso di Fiorano, 64, 00143, Rome, Italy; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Francesca Cossa
- Department of Experimental Neuroscience, Santa Lucia Foundation IRCCS, Via del Fosso di Fiorano, 64, 00143, Rome, Italy; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Mauro Federici
- Department of Experimental Neuroscience, Santa Lucia Foundation IRCCS, Via del Fosso di Fiorano, 64, 00143, Rome, Italy; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Nicola Berretta
- Department of Experimental Neuroscience, Santa Lucia Foundation IRCCS, Via del Fosso di Fiorano, 64, 00143, Rome, Italy; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.
| | - Nicola B Mercuri
- Department of Experimental Neuroscience, Santa Lucia Foundation IRCCS, Via del Fosso di Fiorano, 64, 00143, Rome, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier, 1, 00133, Rome, Italy; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.
| |
Collapse
|
3
|
Lv Y, Fan M, He J, Song X, Guo J, Gao B, Zhang J, Zhang C, Xie Y. Discovery of novel benzimidazole derivatives as selective and reversible monoamine oxidase B inhibitors for Parkinson's disease treatment. Eur J Med Chem 2024; 274:116566. [PMID: 38838545 DOI: 10.1016/j.ejmech.2024.116566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/22/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta. The development of novel scaffolds for human monoamine oxidase B (hMAO-B) inhibitors with reversible properties represents an important strategy to improve the efficacy and safety for PD treatment. In the current work, we have devised and assessed two innovative derivative series serving as hMAO-B inhibitors. These series have utilized benzimidazole as a scaffold and strategically incorporated a primary amide group, which is recognized as a pivotal pharmacophore in subsequent activity screening and reversible mode of action. Among these compounds, 16d has emerged as the most potent hMAO-B inhibitor with an IC50 value of 67.3 nM, comparable to safinamide (IC50 = 42.6 nM) in vitro. Besides, 16d demonstrated good selectivity towards hMAO-B isoenzyme with a selectivity index over 387. Importantly, in line with the design purpose, 16d inhibited hMAO-B in a competitive and reversible manner (Ki = 82.50 nM). Moreover, 16d exhibited a good safety profile in both cellular and acute toxicity assays in mice. It also displayed ideal pharmacokinetic properties and blood-brain barrier permeability in vivo, essential prerequisites for central nervous system medicines. In the MPTP-induced PD mouse model, 16d significantly alleviated the motor impairment, especially muscle relaxation and motor coordination. Therefore, 16d, serving as a lead compound, holds instructive significance for subsequent investigations regarding its application in the treatment of PD.
Collapse
Affiliation(s)
- Yangjing Lv
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Miaoliang Fan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jiayan He
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiaoxin Song
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jianan Guo
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Bianbian Gao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jingqi Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Changjun Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - YuanYuan Xie
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceutical, Zhejiang University of Technology, Hangzhou, 310014, China; Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, China; Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, China.
| |
Collapse
|
4
|
Bastos IM, Rebelo S, Silva VLM. A comprehensive review on phosphatidylinositol-3-kinase (PI3K) and its inhibitors bearing pyrazole or indazole core for cancer therapy. Chem Biol Interact 2024; 398:111073. [PMID: 38823538 DOI: 10.1016/j.cbi.2024.111073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Cancer is a complex and multifaceted group of diseases with a high mortality rate characterized by uncontrolled proliferation of abnormal cells. Dysregulation of normal signalling pathways in cancer contributes to the different hallmarks of this disease. The signalling pathway of which phosphatidylinositol 3-kinase (PI3K) is a part is not an exception. In fact, dysregulated activation of PI3K signalling pathways can result in unbridled cellular proliferation and enhanced cell survival, thereby fostering the onset and advancement of cancer. Therefore, there is substantial interest in developing targeted therapies specifically aimed at inhibiting the PI3K enzyme and its associated pathways. Also, the therapeutic interest on pyrazoles and indazoles has been growing due to their various medicinal properties, namely, anticancer activity. Derivatives of these compounds have been studied as PI3K inhibitors, and they showed promising results. There are already some PI3K inhibitors approved by Food and Drug Administration (FDA), such as Idelalisib (Zydelig®) and Alpelisib (Piqray®). In this context, this review aims to address the importance of PI3K in cellular processes and its role in cancer. Additionally, it aims to report a comprehensive literature review of PI3K inhibitors, containing the pyrazole and indazole scaffolds, published in the last fifteen years, focusing on structure-activity relationship aspects, thus providing important insights for the design of novel and more effective PI3K inhibitors.
Collapse
Affiliation(s)
- Inês M Bastos
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Sandra Rebelo
- Institute of Biomedicine-iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Vera L M Silva
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
5
|
Lomiwes D, Günther CS, Bloor SJ, Trower TM, Ngametua N, Kanon AP, Jensen DA, Lo K, Sawyer G, Walker EG, Hedderley D, Cooney JM. Identification of Sarmentosin as a Key Bioactive from Blackcurrants ( Ribes nigrum) for Inhibiting Platelet Monoamine Oxidase in Humans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16777-16789. [PMID: 39028868 PMCID: PMC11299169 DOI: 10.1021/acs.jafc.4c03802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/21/2024]
Abstract
Previous clinical studies indicate that monoamine oxidase-B (MAO-B) inhibition by blackcurrants must be predominantly attributed to bioactives other than anthocyanins. In this natural products discovery study, MAO-A/B inhibitory phytochemicals were isolated from blackcurrants, and a double-blind crossover study investigated the efficacy of freeze-dried whole-fruit blackcurrant powder in inhibiting MAO-B compared with blackcurrant juice in healthy adults. Platelet MAO-B inhibition was comparable between powder (89% ± 6) and juice (91% ± 4), and it was positively correlated with MAO-modulated plasma catecholamines, subjective alertness, and reduced mental fatigue, assessed using the Bond-Lader questionnaire. Sarmentosin, a nitrile glycoside, and its hydroxycinnamoyl esters were identified as novel MAO-A/B inhibitors from blackcurrant in vitro, and sarmentosin was demonstrated to inhibit platelet MAO-B activity in vivo. These findings confirm sarmentosin as the primary bioactive for MAO-A/B inhibition in blackcurrants, as well as its bioavailability and stability during freeze-drying, and suggest that consuming blackcurrant powder and juice may positively affect mood in healthy adults.
Collapse
Affiliation(s)
- Dominic Lomiwes
- The
New Zealand Institute for Plant and Food Research Limited, Palmerston North Campus, 23 Batchelar
Road, Fitzherbert, Palmerston North 4410, New Zealand
| | - Catrin S. Günther
- The
New Zealand Institute for Plant and Food Research Limited, Ruakura Campus, Bisley Road, Hamilton 3214, New Zealand
| | - Stephen J. Bloor
- Callaghan
Innovation, 69 Gracefield Road, P.O. Box 31310, Lower
Hutt 5040, New Zealand
| | - Tania M. Trower
- The
New Zealand Institute for Plant and Food Research Limited, Ruakura Campus, Bisley Road, Hamilton 3214, New Zealand
| | - Nayer Ngametua
- The
New Zealand Institute for Plant and Food Research Limited, Palmerston North Campus, 23 Batchelar
Road, Fitzherbert, Palmerston North 4410, New Zealand
| | - Alexander P. Kanon
- The
New Zealand Institute for Plant and Food Research Limited, Palmerston North Campus, 23 Batchelar
Road, Fitzherbert, Palmerston North 4410, New Zealand
| | - Dwayne A. Jensen
- The
New Zealand Institute for Plant and Food Research Limited, Ruakura Campus, Bisley Road, Hamilton 3214, New Zealand
| | - Kim Lo
- The
New Zealand Institute for Plant and Food Research Limited, Auckland Campus, 120 Mount Albert
Road, Sandringham, Auckland 1025, New Zealand
| | - Greg Sawyer
- The
New Zealand Institute for Plant and Food Research Limited, Palmerston North Campus, 23 Batchelar
Road, Fitzherbert, Palmerston North 4410, New Zealand
| | - Edward G. Walker
- The
New Zealand Institute for Plant and Food Research Limited, Auckland Campus, 120 Mount Albert
Road, Sandringham, Auckland 1025, New Zealand
| | - Duncan Hedderley
- The
New Zealand Institute for Plant and Food Research Limited, Palmerston North Campus, 23 Batchelar
Road, Fitzherbert, Palmerston North 4410, New Zealand
| | - Janine M. Cooney
- The
New Zealand Institute for Plant and Food Research Limited, Ruakura Campus, Bisley Road, Hamilton 3214, New Zealand
| |
Collapse
|
6
|
Sequeira L, Benfeito S, Fernandes C, Lima I, Peixoto J, Alves C, Machado CS, Gaspar A, Borges F, Chavarria D. Drug Development for Alzheimer's and Parkinson's Disease: Where Do We Go Now? Pharmaceutics 2024; 16:708. [PMID: 38931832 PMCID: PMC11206728 DOI: 10.3390/pharmaceutics16060708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Neurodegenerative diseases (NDs) are a set of progressive, chronic, and incurable diseases characterized by the gradual loss of neurons, culminating in the decline of cognitive and/or motor functions. Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common NDs and represent an enormous burden both in terms of human suffering and economic cost. The available therapies for AD and PD only provide symptomatic and palliative relief for a limited period and are unable to modify the diseases' progression. Over the last decades, research efforts have been focused on developing new pharmacological treatments for these NDs. However, to date, no breakthrough treatment has been discovered. Hence, the development of disease-modifying drugs able to halt or reverse the progression of NDs remains an unmet clinical need. This review summarizes the major hallmarks of AD and PD and the drugs available for pharmacological treatment. It also sheds light on potential directions that can be pursued to develop new, disease-modifying drugs to treat AD and PD, describing as representative examples some advances in the development of drug candidates targeting oxidative stress and adenosine A2A receptors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Fernanda Borges
- CIQUP-IMS—Centro de Investigação em Química da Universidade do Porto, Institute of Molecular Sciences, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Daniel Chavarria
- CIQUP-IMS—Centro de Investigação em Química da Universidade do Porto, Institute of Molecular Sciences, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
7
|
Mousavi H, Rimaz M, Zeynizadeh B. Practical Three-Component Regioselective Synthesis of Drug-Like 3-Aryl(or heteroaryl)-5,6-dihydrobenzo[ h]cinnolines as Potential Non-Covalent Multi-Targeting Inhibitors To Combat Neurodegenerative Diseases. ACS Chem Neurosci 2024; 15:1828-1881. [PMID: 38647433 DOI: 10.1021/acschemneuro.4c00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Neurodegenerative diseases (NDs) are one of the prominent health challenges facing contemporary society, and many efforts have been made to overcome and (or) control it. In this research paper, we described a practical one-pot two-step three-component reaction between 3,4-dihydronaphthalen-1(2H)-one (1), aryl(or heteroaryl)glyoxal monohydrates (2a-h), and hydrazine monohydrate (NH2NH2•H2O) for the regioselective preparation of some 3-aryl(or heteroaryl)-5,6-dihydrobenzo[h]cinnoline derivatives (3a-h). After synthesis and characterization of the mentioned cinnolines (3a-h), the in silico multi-targeting inhibitory properties of these heterocyclic scaffolds have been investigated upon various Homo sapiens-type enzymes, including hMAO-A, hMAO-B, hAChE, hBChE, hBACE-1, hBACE-2, hNQO-1, hNQO-2, hnNOS, hiNOS, hPARP-1, hPARP-2, hLRRK-2(G2019S), hGSK-3β, hp38α MAPK, hJNK-3, hOGA, hNMDA receptor, hnSMase-2, hIDO-1, hCOMT, hLIMK-1, hLIMK-2, hRIPK-1, hUCH-L1, hPARK-7, and hDHODH, which have confirmed their functions and roles in the neurodegenerative diseases (NDs), based on molecular docking studies, and the obtained results were compared with a wide range of approved drugs and well-known (with IC50, EC50, etc.) compounds. In addition, in silico ADMET prediction analysis was performed to examine the prospective drug properties of the synthesized heterocyclic compounds (3a-h). The obtained results from the molecular docking studies and ADMET-related data demonstrated that these series of 3-aryl(or heteroaryl)-5,6-dihydrobenzo[h]cinnolines (3a-h), especially hit ones, can really be turned into the potent core of new drugs for the treatment of neurodegenerative diseases (NDs), and/or due to the having some reactionable locations, they are able to have further organic reactions (such as cross-coupling reactions), and expansion of these compounds (for example, with using other types of aryl(or heteroaryl)glyoxal monohydrates) makes a new avenue for designing novel and efficient drugs for this purpose.
Collapse
Affiliation(s)
- Hossein Mousavi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia 5756151818, Iran
| | - Mehdi Rimaz
- Department of Chemistry, Payame Noor University, P.O. Box 19395-3697, Tehran 19395-3697, Iran
| | - Behzad Zeynizadeh
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia 5756151818, Iran
| |
Collapse
|
8
|
Bastos IM, Rebelo S, Silva VLM. A review of poly(ADP-ribose)polymerase-1 (PARP1) role and its inhibitors bearing pyrazole or indazole core for cancer therapy. Biochem Pharmacol 2024; 221:116045. [PMID: 38336156 DOI: 10.1016/j.bcp.2024.116045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/10/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
Cancer is a disease with a high mortality rate characterized by uncontrolled proliferation of abnormal cells. The hallmarks of cancer evidence the acquired cells characteristics that promote the growth of malignant tumours, including genomic instability and mutations, the ability to evade cellular death and the capacity of sustaining proliferative signalization. Poly(ADP-ribose) polymerase-1 (PARP1) is a protein that plays key roles in cellular regulation, namely in DNA damage repair and cell survival. The inhibition of PARP1 promotes cellular death in cells with homologous recombination deficiency, and therefore, the interest in PARP protein has been rising as a target for anticancer therapies. There are already some PARP1 inhibitors approved by Food and Drug Administration (FDA), such as Olaparib and Niraparib. The last compound presents in its structure an indazole core. In fact, pyrazoles and indazoles have been raising interest due to their various medicinal properties, namely, anticancer activity. Derivatives of these compounds have been studied as inhibitors of PARP1 and presented promising results. Therefore, this review aims to address the importance of PARP1 in cell regulation and its role in cancer. Moreover, it intends to report a comprehensive literature review of PARP1 inhibitors, containing the pyrazole and indazole scaffolds, published in the last fifteen years, focusing on structure-activity relationship aspects, thus providing important insights for the design of novel and more effective PARP1 inhibitors.
Collapse
Affiliation(s)
- Inês M Bastos
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Sandra Rebelo
- Institute of Biomedicine-iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Vera L M Silva
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
9
|
Mathew B, Oh JM, Parambi DGT, Sudevan ST, Kumar S, Kim H. Enzyme Inhibition Assays for Monoamine Oxidase. Methods Mol Biol 2024; 2761:329-336. [PMID: 38427248 DOI: 10.1007/978-1-0716-3662-6_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Monoamine oxidase (MAO) catalyzes the oxidative deamination of monoamines with two isoforms, namely, MAO-A and MAO-B, in mitochondrial outer membranes. These two types of MAO-A and MAO-B participate in changes in levels of neurotransmitter such as serotonin (5-hydroxytryptamine) and dopamine. Selective MAO-A inhibitors have been targeted for anti-depression treatment, while selective MAO-B inhibitors are targets of therapeutic agents for Alzheimer's disease and Parkinson's disease. For this reason, study on the development of MAO inhibitors has recently become important. Here, we describe methods of MAO activity assay, especially continuous spectrophotometric methods, which give relatively high accuracy. MAO-A and MAO-B can be assayed using kynuramine and benzylamine as substrates, respectively, at 316 nm and 250 nm, respectively, to measure their respective products, 4-hydroxyquinoline and benzaldehyde. Inhibition degree and pattern can be analyzed by using the Lineweaver-Burk and secondary plots in the presence of inhibitor, and reversibility of inhibitor can be determined by using the dialysis method.
Collapse
Affiliation(s)
- Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India.
| | - Jong Min Oh
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | | | - Sachithra Thazhathuveedu Sudevan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Sunil Kumar
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea.
| |
Collapse
|
10
|
Kim KT, Cho DW, Cho JW, Im WJ, Kim DH, Park JH, Park KD, Yang YS, Han SC. Two weeks dose range-finding and four weeks repeated dose oral toxicity study of a novel reversible monoamine oxidase B inhibitor KDS2010 in cynomolgus monkeys. Toxicol Res 2023; 39:693-709. [PMID: 37779583 PMCID: PMC10541392 DOI: 10.1007/s43188-023-00182-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 03/05/2023] [Accepted: 04/04/2023] [Indexed: 10/03/2023] Open
Abstract
A novel reversible monoamine oxidase B inhibitor, KDS2010, has been developed as a therapeutic candidate for neurodegenerative diseases. This study investigated its potential toxicity in non-human primates before human clinical trials. Daily KDS2010 doses (25, 50, or 100 mg/kg) were orally administered to cynomolgus monkeys (1 animal/sex/group, 4 males and 4 females) for 2 weeks to determine the dose range. One male was moribund, and one female was found dead in the 100 mg/kg/day group. One male was also found dead in the 50 mg/kg/day group. The death was considered an adverse effect in both sexes since distal tubules/collecting duct dilation and hypertrophy in the epithelium of the papillary duct were observed in their kidneys. Based on dose range finding results, KDS2010 (10, 20, or 40 mg/kg/day) was administered orally for 4 weeks, and animals were given 2 weeks for recovery. No significant changes were observed during daily clinical observations and macro-and microscopic examinations, including body weight, food consumption, hematology, clinical chemistry, and organ weight. And, the kidney was seen as the primary target organ of KDS2010 in the 2 weeks study, but no adverse effect was observed in the 4 weeks study. Therefore, 40 mg/kg/day is considered the no-observed-adverse-effect level in both sexes of cynomolgus monkeys. Supplementary Information The online version contains supplementary material available at 10.1007/s43188-023-00182-4.
Collapse
Affiliation(s)
- Kyung-Tai Kim
- Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeonbuk, 56212 Republic of Korea
| | - Doo-Wan Cho
- Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeonbuk, 56212 Republic of Korea
| | - Jae-woo Cho
- Department of Advanced Toxicology Research, Korea Institute of Toxicology (KIT), 141 Gajeong-Ro, Yuseong-Gu, Daejeon, Republic of Korea
| | - Wan-Jung Im
- Department of Advanced Toxicology Research, Korea Institute of Toxicology (KIT), 141 Gajeong-Ro, Yuseong-Gu, Daejeon, Republic of Korea
| | - Da-Hee Kim
- Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeonbuk, 56212 Republic of Korea
| | - Jong-Hyun Park
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul, 02792 Republic of Korea
| | - Ki Duk Park
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul, 02792 Republic of Korea
| | - Young-Su Yang
- Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeonbuk, 56212 Republic of Korea
| | - Su-Cheol Han
- Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeonbuk, 56212 Republic of Korea
| |
Collapse
|
11
|
Kühl T, Georgieva MG, Hübner H, Lazarova M, Vogel M, Haas B, Peeva MI, Balacheva AA, Bogdanov IP, Milella L, Ponticelli M, Garev T, Faraone I, Detcheva R, Minchev B, Petkova-Kirova P, Tancheva L, Kalfin R, Atanasov AG, Antonov L, Pajpanova TI, Kirilov K, Gastreich M, Gmeiner P, Imhof D, Tzvetkov NT. Neurotensin(8-13) analogs as dual NTS1 and NTS2 receptor ligands with enhanced effects on a mouse model of Parkinson's disease. Eur J Med Chem 2023; 254:115386. [PMID: 37094450 DOI: 10.1016/j.ejmech.2023.115386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/15/2023] [Accepted: 04/16/2023] [Indexed: 04/26/2023]
Abstract
The modulatory interactions between neurotensin (NT) and the dopaminergic neurotransmitter system in the brain suggest that NT may be associated with the progression of Parkinson's disease (PD). NT exerts its neurophysiological effects by interactions with the human NT receptors type 1 (hNTS1) and 2 (hNTS2). Therefore, both receptor subtypes are promising targets for the development of novel NT-based analogs for the treatment of PD. In this study, we used a virtually guided molecular modeling approach to predict the activity of NT(8-13) analogs by investigating the docking models of ligands designed for binding to the human NTS1 and NTS2 receptors. The importance of the residues at positions 8 and/or 9 for hNTS1 and hNTS2 receptor binding affinity was experimentally confirmed by radioligand binding assays. Further in vitro ADME profiling and in vivo studies revealed that, compared to the parent peptide NT(8-13), compound 10 exhibited improved stability and BBB permeability combined with a significant enhancement of the motor function and memory in a mouse model of PD. The herein reported NTS1/NTS2 dual-specific NT(8-13) analogs represent an attractive tool for the development of therapeutic strategies against PD and potentially other CNS disorders.
Collapse
Affiliation(s)
- Toni Kühl
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany
| | - Maya G Georgieva
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, Sofia, 1113, Bulgaria
| | - Harald Hübner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander- Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, D-91058, Erlangen, Germany
| | - Maria Lazarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113, Sofia, Bulgaria
| | - Matthias Vogel
- Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Bodo Haas
- Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Martina I Peeva
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, Sofia, 1113, Bulgaria
| | - Aneliya A Balacheva
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, Sofia, 1113, Bulgaria
| | - Ivan P Bogdanov
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, Sofia, 1113, Bulgaria
| | - Luigi Milella
- Department of Science, University of Basilicata, V.le dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Maria Ponticelli
- Department of Science, University of Basilicata, V.le dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Tsvetomir Garev
- UMBALSM "N. I. Pirogov"-Hospital, 1606 Pette Kyosheta, Sofia, Bulgaria
| | - Immacolata Faraone
- Department of Science, University of Basilicata, V.le dell'Ateneo Lucano 10, 85100, Potenza, Italy; Innovative Startup Farmis s.r.l., Via Nicola Vaccaro 40, 85100, Potenza, Italy
| | - Roumyana Detcheva
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, Sofia, 1113, Bulgaria
| | - Borislav Minchev
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113, Sofia, Bulgaria
| | - Polina Petkova-Kirova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113, Sofia, Bulgaria
| | - Lyubka Tancheva
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113, Sofia, Bulgaria; Weizmann Institute of Science, 234 Herzl St., Rehovot, 7610001, Israel
| | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113, Sofia, Bulgaria
| | - Atanas G Atanasov
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria; Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552, Magdalenka, Poland
| | - Liudmil Antonov
- Institute of Electronics, Bulgarian Academy of Sciences, Blvd. Tsarigradsko Chaussee 72, 1784, Sofia, Bulgaria
| | - Tamara I Pajpanova
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, Sofia, 1113, Bulgaria
| | - Kiril Kirilov
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, Sofia, 1113, Bulgaria; Department of Natural Sciences, New Bulgarian University, 21 Montevideo Str., Sofia, 1618, Bulgaria
| | - Marcus Gastreich
- BioSolveIT GmbH, An der Ziegelei 79, 53757 St. Augustin, Germany
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander- Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, D-91058, Erlangen, Germany
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany
| | - Nikolay T Tzvetkov
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, Sofia, 1113, Bulgaria.
| |
Collapse
|
12
|
Discovery of novel 2-hydroxyl-4-benzyloxybenzyl aniline derivatives as potential multifunctional agents for the treatment of Parkinson's disease. Eur J Med Chem 2023; 249:115142. [PMID: 36716641 DOI: 10.1016/j.ejmech.2023.115142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/06/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
To discover novel multifunctional agents for the treatment of Parkinson's disease, a series of 2-hydroxyl-4-benzyloxybenzyl aniline derivatives was designed, synthesized and evaluated. The biological screening indicated that representative compound 6h possessed excellent MAO-B inhibition (IC50 = 0.014 μM), high antioxidant activity (ORAC = 2.14 Trolox equivalent), good metal chelating ability, appropriate BBB permeability and significant neuroprotective effect. Additionally, 6h exhibited great ability to alleviate the neuroinflammtion by suppressing the activation of NF-κB pathway in vitro. Furthermore, 6h can also ameliorate MPTP induced Parkinson's disease symptoms in mice by improving the dopamine level and repressing oxidative damage. These results indicated that compound 6h was a promising candidate for further development against PD.
Collapse
|
13
|
Alov P, Stoimenov H, Lessigiarska I, Pencheva T, Tzvetkov NT, Pajeva I, Tsakovska I. In Silico Identification of Multi-Target Ligands as Promising Hit Compounds for Neurodegenerative Diseases Drug Development. Int J Mol Sci 2022; 23:13650. [PMID: 36362434 PMCID: PMC9655539 DOI: 10.3390/ijms232113650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 09/29/2023] Open
Abstract
The conventional treatment of neurodegenerative diseases (NDDs) is based on the "one molecule-one target" paradigm. To combat the multifactorial nature of NDDs, the focus is now shifted toward the development of small-molecule-based compounds that can modulate more than one protein target, known as "multi-target-directed ligands" (MTDLs), while having low affinity for proteins that are irrelevant for the therapy. The in silico approaches have demonstrated a potential to be a suitable tool for the identification of MTDLs as promising drug candidates with reduction in cost and time for research and development. In this study more than 650,000 compounds were screened by a series of in silico approaches to identify drug-like compounds with predicted activity simultaneously towards three important proteins in the NDDs symptomatic treatment: acetylcholinesterase (AChE), histone deacetylase 2 (HDAC2), and monoamine oxidase B (MAO-B). The compounds with affinities below 5.0 µM for all studied targets were additionally filtered to remove known non-specifically binding or unstable compounds. The selected four hits underwent subsequent refinement through in silico blood-brain barrier penetration estimation, safety evaluation, and molecular dynamics simulations resulting in two hit compounds that constitute a rational basis for further development of multi-target active compounds against NDDs.
Collapse
Affiliation(s)
- Petko Alov
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 105, 1113 Sofia, Bulgaria
| | - Hristo Stoimenov
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 105, 1113 Sofia, Bulgaria
| | - Iglika Lessigiarska
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 105, 1113 Sofia, Bulgaria
| | - Tania Pencheva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 105, 1113 Sofia, Bulgaria
| | - Nikolay T. Tzvetkov
- Institute of Molecular Biology “Acad. Roumen Tsanev”, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Ilza Pajeva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 105, 1113 Sofia, Bulgaria
| | - Ivanka Tsakovska
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 105, 1113 Sofia, Bulgaria
| |
Collapse
|
14
|
Bhawna, Kumar A, Bhatia M, Kapoor A, Kumar P, Kumar S. Monoamine oxidase inhibitors: A concise review with special emphasis on structure activity relationship studies. Eur J Med Chem 2022; 242:114655. [PMID: 36037788 DOI: 10.1016/j.ejmech.2022.114655] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 12/29/2022]
Abstract
Monoamine oxidase enzyme is necessary for the management of brain functions. It oxidatively metabolizes monoamines and produces ammonia, aldehyde and hydrogen peroxide as by-products. Excessive production of by-products of monoamine metabolism generates free radicals which cause cellular apoptosis and several neurodegenerative disorders for example Alzheimer's disease, Parkinson's disease, depression and autism. The inhibition of MAOs is an attractive target for the treatment of neurological disorders. Clinically approved MAO inhibitors for example selegiline, rasagiline, clorgyline, pargyline etc. are irreversible in nature and cause some adverse effects while recently studied reversible MAO inhibitors are devoid of harmful effects of old monoamine oxidase inhibitors. In this review article we have listed various synthesized molecules containing different moieties like coumarin, chalcone, thiazole, thiourea, caffeine, pyrazole, chromone etc. along with their activity, mode of action, structure activity relationship and molecular docking studies.
Collapse
Affiliation(s)
- Bhawna
- Department of Pharmaceutical Sciences,Guru Jambheshwar University of Science and Technology, Hisar, 125001, Haryana, India
| | - Ashwani Kumar
- Department of Pharmaceutical Sciences,Guru Jambheshwar University of Science and Technology, Hisar, 125001, Haryana, India
| | - Meenakshi Bhatia
- Department of Pharmaceutical Sciences,Guru Jambheshwar University of Science and Technology, Hisar, 125001, Haryana, India
| | - Archana Kapoor
- Department of Pharmaceutical Sciences,Guru Jambheshwar University of Science and Technology, Hisar, 125001, Haryana, India
| | - Parvin Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, Haryana, India
| | - Sunil Kumar
- Department of Pharmaceutical Sciences,Guru Jambheshwar University of Science and Technology, Hisar, 125001, Haryana, India.
| |
Collapse
|
15
|
Mal S, Malik U, Mahapatra M, Mishra A, Pal D, Paidesetty SK. A review on synthetic strategy, molecular pharmacology of indazole derivatives, and their future perspective. Drug Dev Res 2022; 83:1469-1504. [PMID: 35971890 DOI: 10.1002/ddr.21979] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/04/2022] [Accepted: 07/22/2022] [Indexed: 11/09/2022]
Abstract
With different nitrogen-containing heterocyclic moieties, Indazoles earn one of the places among the top investigated molecules in medicinal research. Indazole, an important fused aromatic heterocyclic system containing benzene and pyrazole ring with a chemical formula of C7 H6 N2 , is also called benzopyrazole. Indazoles consist of three tautomeric forms in which 1H-tautomers (indazoles) and 2H-tautomers (isoindazoles) exist in all phases. The tautomerism in indazoles greatly influences synthesis, reactivity, physical and even the biological properties of indazoles. The thermodynamic internal energy calculation of these tautomers points view 1H-indazole as the predominant and stable form over 2H-indazole. The natural source of indazole is limited and exists in alkaloidal nature (i.e., nigellidine, nigeglanine, nigellicine, etc.) found from Nigella plants. Some of the FDA-approved drugs like Axitinib, Entrectinib, Niraparib, Benzydamine, and Granisetron are being used to treat renal cell cancer, non-small cell lung cancer (NSCLC), epithelial ovarian cancer, chronic inflammation, chemotherapy-induced nausea, vomiting, and many more uses. Besides all these advantages regarding its biological activity, the main issue about indazoles is the less abundance in plant sources, and their synthetic derivatives also often face problems with low yield. In this review article, we discuss its chemistry, tautomerism along with their effects, different schematics for the synthesis of indazole derivatives, and their different biological activities.
Collapse
Affiliation(s)
- Suvadeep Mal
- Department of Pharmaceutical Chemistry, Siksha 'O' Anusandhan University (Deemed to be University), Bhubaneswar, Odisha, India
| | - Udita Malik
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Monalisa Mahapatra
- Department of Pharmaceutical Chemistry, Siksha 'O' Anusandhan University (Deemed to be University), Bhubaneswar, Odisha, India
| | | | - Dilipkumar Pal
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Sudhir K Paidesetty
- Department of Pharmaceutical Chemistry, Siksha 'O' Anusandhan University (Deemed to be University), Bhubaneswar, Odisha, India
| |
Collapse
|
16
|
Kwon J, Lee K, Hwang H, Kim SH, Park SE, Durai P, Park K, Kim HS, Jang DS, Choi JS, Kwon HC. New Monocyclic Terpenoid Lactones from a Brown Algae Sargassum macrocarpum as Monoamine Oxidase Inhibitors. PLANTS (BASEL, SWITZERLAND) 2022; 11:1998. [PMID: 35956476 PMCID: PMC9370394 DOI: 10.3390/plants11151998] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Algae are unique natural products that can produce various types of biologically active compounds. The 70% ethanol extract of brown algae Sargassum macrocarpum collected from the East Sea of Korea inhibited human monoamine oxidases A and B enzymes (hMAO-A and hMAO-B) at a 50 μg/mL concentration. The bioassay-guided isolation was performed through solid-phase extraction and the Sepbox system followed by serial high-performance liquid chromatography on the reverse phase condition, resulting in the identification of two new monocyclic terpenoid lactones, sargassumins A and B (1 and 2). The planar structures of the compounds were determined by a combination of spectroscopic data. The absolute configurations were determined by the interpretation of circular dichroism data. Compound 1 exhibited mild hMAO-A inhibition (42.18 ± 2.68% at 200 μM) and docked computationally into the active site of hMAO-A (-8.48 kcal/mol). Although compound 2 could not be tested due to insufficient quantity, it docked better into hMAO-A (-9.72 kcal/mol). Therefore, the above results suggest that this type of monocyclic terpenoid lactone could be one of the potential lead compounds for the treatment of psychiatric or neurological diseases.
Collapse
Affiliation(s)
- Jaeyoung Kwon
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung 25451, Korea; (J.K.); (K.L.); (H.H.); (S.-H.K.); (P.D.); (K.P.)
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology (UST), Gangneung 25451, Korea
| | - Kyerim Lee
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung 25451, Korea; (J.K.); (K.L.); (H.H.); (S.-H.K.); (P.D.); (K.P.)
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea;
| | - Hoseong Hwang
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung 25451, Korea; (J.K.); (K.L.); (H.H.); (S.-H.K.); (P.D.); (K.P.)
- Department of Biology, Gangneung-Wonju National University, Gangneung 25457, Korea;
| | - Seong-Hwan Kim
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung 25451, Korea; (J.K.); (K.L.); (H.H.); (S.-H.K.); (P.D.); (K.P.)
| | - Se Eun Park
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, Seoul 05505, Korea;
| | - Prasannavenkatesh Durai
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung 25451, Korea; (J.K.); (K.L.); (H.H.); (S.-H.K.); (P.D.); (K.P.)
| | - Keunwan Park
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung 25451, Korea; (J.K.); (K.L.); (H.H.); (S.-H.K.); (P.D.); (K.P.)
| | - Hyung-Seop Kim
- Department of Biology, Gangneung-Wonju National University, Gangneung 25457, Korea;
| | - Dae Sik Jang
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea;
- College of Pharmacy, Kyung Hee University, Seoul 02447, Korea
| | - Jae Sue Choi
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea
| | - Hak Cheol Kwon
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung 25451, Korea; (J.K.); (K.L.); (H.H.); (S.-H.K.); (P.D.); (K.P.)
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea;
| |
Collapse
|
17
|
Resveratrol-based compounds and neurodegeneration: Recent insight in multitarget therapy. Eur J Med Chem 2022; 233:114242. [DOI: 10.1016/j.ejmech.2022.114242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 01/04/2023]
|
18
|
Grychowska K, Olejarz-Maciej A, Blicharz K, Pietruś W, Karcz T, Kurczab R, Koczurkiewicz P, Doroz-Płonka A, Latacz G, Keeri AR, Piska K, Satała G, Pęgiel J, Trybała W, Jastrzębska-Więsek M, Bojarski AJ, Lamaty F, Partyka A, Walczak M, Krawczyk M, Malikowska-Racia N, Popik P, Zajdel P. Overcoming undesirable hERG affinity by incorporating fluorine atoms: A case of MAO-B inhibitors derived from 1 H-pyrrolo-[3,2-c]quinolines. Eur J Med Chem 2022; 236:114329. [DOI: 10.1016/j.ejmech.2022.114329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 11/16/2022]
|
19
|
Bekircan O, Danış Ö, Şahin ME, Çetin M. Monoamine oxidase A and B inhibitory activities of 3,5-diphenyl-1,2,4-triazole substituted [1,2,4]triazolo[3,4-b][1,3,4]thiadiazole derivatives. Bioorg Chem 2021; 118:105493. [PMID: 34814086 DOI: 10.1016/j.bioorg.2021.105493] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/08/2021] [Accepted: 11/13/2021] [Indexed: 11/02/2022]
Abstract
Monoamine oxidase (EC 1.4.3.4, MAO) is a flavin adenine dinucleotide-containing flavoenzyme located on the outer mitochondrial membrane and catalyzes the oxidative deamination of monoaminergic neurotransmitters and dietary amines. MAO exists in humans as two isoenzymes, hMAO-A and hMAO-B, which are distinguished by their tertiary structures, preferred substrates and inhibitors, and selective inhibition of these isoenzymes are used in the treatment of different diseases such as Alzheimer's, Parkinson's and depression. In the present study, we report the design, synthesis and characterization of 3,5-diphenyl-1,2,4-triazole substituted [1,2,4]triazolo[3,4-b][1,3,4]thiadiazole derivatives as novel and selective inhibitors of hMAO-B. Twenty one compounds (38, 39a-h, 41a-d, 42a-h) were screened for their inhibitory activity against hMAO-A and hMAO-B by using in vitro Amplex Red® reagent based fluorometric method and all compounds were found to be as selective h-MAO-B inhibitors to a different degree. The compound 42e and 42h displayed the highest inhibitory activity against hMAO-B with IC50 values of 2.51 and 2.81 µM, respectively, and more than 25-fold selectivity towards inhibition of hMAO-B. A further kinetic evaluation of the most potent derivative (42e) was also performed and a mixed mode of inhibition of hMAO-B by the compound 42e was determined (Ki = 0,26 µM). According to our findings the [1,2,4]triazolo[3,4-b][1,3,4]thiadiazole emerged as a promising scaffold for the development of novel and selective hMAO-B inhibitors.
Collapse
Affiliation(s)
- Olcay Bekircan
- Department of Chemistry, Faculty of Science, Karadeniz Technical University, 61080 Trabzon, Turkey.
| | - Özkan Danış
- Department of Chemistry, Faculty of Arts and Sciences, Marmara University, 34722 Istanbul, Turkey
| | - Mehmet Eren Şahin
- Department of Chemistry, Faculty of Science, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Mert Çetin
- Department of Chemistry, Faculty of Arts and Sciences, Marmara University, 34722 Istanbul, Turkey
| |
Collapse
|
20
|
Mani V, Sajid S, Rabbani SI, Alqasir AS, Alharbi HA, Alshumaym A. Anxiolytic-like and antidepressant-like effects of ethanol extract of Terminalia chebula in mice. J Tradit Complement Med 2021; 11:493-502. [PMID: 34765513 PMCID: PMC8572707 DOI: 10.1016/j.jtcme.2021.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 02/22/2021] [Accepted: 04/27/2021] [Indexed: 11/26/2022] Open
Abstract
Terminalia chebula (T.chebula) fruit is referred as "King of Medicines" in Tibet and is listed as a key plant in "Ayurvedic Materia Medica" due to its diverse pharmacological activity. The present study was aimed to investigate the comorbid antidepressant-like and anxiolytic-like effects of ethanol extract from T.chebula fruit using experimental behavioral tests in mice. In addition, the study explored the effects of extract on monoamine oxidase -A (MAO-A) levels in mouse brain. Two doses of the T.chebula extract (100 or 200 mg/kg, p.o.) were treated continuously for fifteen days to mice. Regarding antidepressant-like effects, the treatment of T.chebula extract at both dose (100 or 200 mg/kg, p.o.) levels resulted with significant (p < 0.001) reduction in duration of immobility time and increase in swimming time as compared to control group in forced swimming test. Moreover, both doses declined the duration of immobility time in the tail suspension test and increased the number of crossing in the center area using open-field test. Additionally, the dose 200 mg/kg treatment showed a significant reduction (p < 0.05) in MAO-A activity in mouse brain. For anxiolytic activity, both doses significantly (p < 0.001) improved the time spent in open arm and the number of head dips in elevated plus maze test. The higher duration of time spent in light chamber and higher number of crossing between the light and dark chambers by extract treatment in light-dark box test also supported the anxiolytic behavior. The obtained results supported the antidepressant-like and anxiolytic-like effects of ethanol extract of T.chebula in mice.
Collapse
Affiliation(s)
- Vasudevan Mani
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Saudi Arabia
| | - Sultan Sajid
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Saudi Arabia
| | - Syed Imam Rabbani
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Saudi Arabia
| | - Abdulrahman Saud Alqasir
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Saudi Arabia
| | - Hani Abdullah Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Saudi Arabia
| | - Abdullah Alshumaym
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
21
|
Osmaniye D, Alaşan R, Sağlık BN, Levent S, Özkay Y, Kaplancıklı ZA. Novel thiazolyl-hydrazone derivatives including piperazine ring: synthesis, in vitro evaluation, and molecular docking as selective MAO-A inhibitor. Z NATURFORSCH C 2021; 77:167-175. [PMID: 34674410 DOI: 10.1515/znc-2021-0223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/30/2021] [Indexed: 11/15/2022]
Abstract
MAO-A inhibitors are used in the treatment of depression. There are many studies showing that the thiazolyl-hydrazone structure is a pharmacophore structure for the MAO enzyme. In previous studies by our team, activity studies were carried out with thiazolyl-hydrazone derivatives containing pyrrolidine, morpholine, and piperazine. All of them were displayed MAO-A selective inhibition profile. Additionally, derivatives containing piperazine ring were most active. For this purpose, thiazolyl-hydrazone derivatives containing piperazine were synthesized, but this time an active group, formyl group, was added to the piperazine ring as a substituent. Based on this view, new thiazolyl-hydrazone compounds were synthesized, characterized, and screened for their hMAO-A and hMAO-B inhibitory activity by an in vitro fluorometric method. The structure of the compound was tried to be fully elucidated using 2D NMR technique. The compound including 2,4-dimethyl substituent (3i) were found to be the most effective agents in the series against MAO-A enzyme with the IC50 value of 0.080 ± 0.003 µM. The docking study of compound 3i revealed that there is a strong interaction between the active sites of hMAO-A and analyzed compound.
Collapse
Affiliation(s)
- Derya Osmaniye
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir26470, Turkey.,Doping and Narcotic Compounds Analysis Laboratory, Faculty of Pharmacy, Anadolu University, Eskişehir26470, Turkey
| | - Ramazan Alaşan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir26470, Turkey
| | - Begüm Nurpelin Sağlık
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir26470, Turkey.,Doping and Narcotic Compounds Analysis Laboratory, Faculty of Pharmacy, Anadolu University, Eskişehir26470, Turkey
| | - Serkan Levent
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir26470, Turkey.,Doping and Narcotic Compounds Analysis Laboratory, Faculty of Pharmacy, Anadolu University, Eskişehir26470, Turkey
| | - Yusuf Özkay
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir26470, Turkey.,Doping and Narcotic Compounds Analysis Laboratory, Faculty of Pharmacy, Anadolu University, Eskişehir26470, Turkey
| | - Zafer Asım Kaplancıklı
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir26470, Turkey
| |
Collapse
|
22
|
Besada P, Viña D, Costas T, Costas-Lago MC, Vila N, Torres-Terán I, Sturlese M, Moro S, Terán C. Pyridazinones containing dithiocarbamoyl moieties as a new class of selective MAO-B inhibitors. Bioorg Chem 2021; 115:105203. [PMID: 34371375 DOI: 10.1016/j.bioorg.2021.105203] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/24/2021] [Accepted: 07/19/2021] [Indexed: 12/31/2022]
Abstract
A novel class of potential MAO-B inhibitors was designed and synthesized in good yield by combining the pyridazinone moiety with the dithiocarbamate framework, two relevant pharmacophores for drug discovery. The biological results obtained for the different pyridazinone/dithiocarbamate hybrids (compounds 8-14) indicated that most of them reversibly and selectively inhibit the hMAO-B in vitro with IC50 values in the µM range and exhibit not significant cellular toxicity. The analogues 9a1, 11a1, 12a2, 12b1 and 12b2, which present the dithiocarbamate fragment derivatized with a piperidin-1-yl or pyrrolidin-1-yl group and placed at C3 or C4 of the diazine ring, were the most attractive compounds of these series. Molecular modeling studies were performed to analyze the binding mode to the enzyme and the structure activity relationships of the titled compounds, as well as to predict their drug-like properties.
Collapse
Affiliation(s)
- Pedro Besada
- Universidade de Vigo, Departamento de Química Orgánica, 36310 Vigo, Spain; Instituto de Investigación Sanitaria Galicia Sur, Hospital Álvaro Cunqueiro, 36213 Vigo, Spain
| | - Dolores Viña
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS) Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain; Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Tamara Costas
- Universidade de Vigo, Departamento de Química Orgánica, 36310 Vigo, Spain; Instituto de Investigación Sanitaria Galicia Sur, Hospital Álvaro Cunqueiro, 36213 Vigo, Spain
| | - María Carmen Costas-Lago
- Universidade de Vigo, Departamento de Química Orgánica, 36310 Vigo, Spain; Instituto de Investigación Sanitaria Galicia Sur, Hospital Álvaro Cunqueiro, 36213 Vigo, Spain
| | - Noemí Vila
- Universidade de Vigo, Departamento de Química Orgánica, 36310 Vigo, Spain; Instituto de Investigación Sanitaria Galicia Sur, Hospital Álvaro Cunqueiro, 36213 Vigo, Spain
| | - Iria Torres-Terán
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS) Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain; Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Mattia Sturlese
- Molecular Modeling Section (MMS), Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, 35131 Padova, Italy
| | - Stefano Moro
- Molecular Modeling Section (MMS), Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, 35131 Padova, Italy
| | - Carmen Terán
- Universidade de Vigo, Departamento de Química Orgánica, 36310 Vigo, Spain; Instituto de Investigación Sanitaria Galicia Sur, Hospital Álvaro Cunqueiro, 36213 Vigo, Spain.
| |
Collapse
|
23
|
Mesiti F, Gaspar A, Chavarria D, Maruca A, Rocca R, Gil Martins E, Barreiro S, Silva R, Fernandes C, Gul S, Keminer O, Alcaro S, Borges F. Mapping Chromone-3-Phenylcarboxamide Pharmacophore: Quid Est Veritas? J Med Chem 2021; 64:11169-11182. [PMID: 34269579 DOI: 10.1021/acs.jmedchem.1c00510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Chromone-3-phenylcarboxamides (Crom-1 and Crom-2) were identified as potent, selective, and reversible inhibitors of human monoamine oxidase B (hMAO-B). Since they exhibit some absorption, distribution, metabolism, and excretion (ADME)-toxicity liabilities, new derivatives were synthesized to map the chemical structural features that compose the pharmacophore, a process vital for lead optimization. Structure-activity relationship data, supported by molecular docking studies, provided a rationale for the contribution of the heterocycle's rigidity, the carbonyl group, and the benzopyran heteroatom for hMAO-B inhibitory activity. From the study, N-(3-chlorophenyl)-4H-thiochromone-3-carboxamide (31) (hMAO-B IC50 = 1.52 ± 0.15 nM) emerged as a reversible tight binding inhibitor with an improved pharmacological profile. In in vitro ADME-toxicity studies, compound 31 showed a safe cytotoxicity profile in Caco-2, SH-SY5Y, HUVEC, HEK-293, and MCF-7 cells, did not present cardiotoxic effects, and did not affect P-gp transport activity. Compound 31 also protected SH-SY5Y cells from iron(III)-induced damage. Collectively, these studies highlighted compound 31 as the first-in-class and a suitable candidate for in vivo preclinical investigation.
Collapse
Affiliation(s)
- Francesco Mesiti
- Dipartimento di Scienze della Salute, Università "Magna Græcia" di Catanzaro, Campus "Salvatore Venuta", Catanzaro 88100, Italy.,Net4Science srl, Academic Spinoff, Università "Magna Græcia" di Catanzaro, Campus "Salvatore Venuta", Catanzaro 88100, Italy.,CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto 4169-007, Portugal
| | - Alexandra Gaspar
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto 4169-007, Portugal
| | - Daniel Chavarria
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto 4169-007, Portugal
| | - Annalisa Maruca
- Dipartimento di Scienze della Salute, Università "Magna Græcia" di Catanzaro, Campus "Salvatore Venuta", Catanzaro 88100, Italy.,Net4Science srl, Academic Spinoff, Università "Magna Græcia" di Catanzaro, Campus "Salvatore Venuta", Catanzaro 88100, Italy
| | - Roberta Rocca
- Net4Science srl, Academic Spinoff, Università "Magna Græcia" di Catanzaro, Campus "Salvatore Venuta", Catanzaro 88100, Italy.,Department of Experimental and Clinical Medicine, "Magna Græcia" University of Catanzaro, Campus "S. Venuta", Viale Europa, Germaneto, Catanzaro 88100, Italy
| | - Eva Gil Martins
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto 4050-313, Portugal
| | - Sandra Barreiro
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto 4050-313, Portugal
| | - Renata Silva
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto 4050-313, Portugal
| | - Carlos Fernandes
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto 4169-007, Portugal
| | - Sheraz Gul
- Fraunhofer Institute for Translational Medicine and Pharmacology, Hamburg 22525, Germany.,Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Hamburg Site, Hamburg 22525, Germany
| | - Oliver Keminer
- Fraunhofer Institute for Translational Medicine and Pharmacology, Hamburg 22525, Germany.,Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Hamburg Site, Hamburg 22525, Germany
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università "Magna Græcia" di Catanzaro, Campus "Salvatore Venuta", Catanzaro 88100, Italy
| | - Fernanda Borges
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto 4169-007, Portugal
| |
Collapse
|
24
|
Murugan NA, Muvva C, Jeyarajpandian C, Jeyakanthan J, Subramanian V. Performance of Force-Field- and Machine Learning-Based Scoring Functions in Ranking MAO-B Protein-Inhibitor Complexes in Relevance to Developing Parkinson's Therapeutics. Int J Mol Sci 2020; 21:ijms21207648. [PMID: 33081086 PMCID: PMC7589968 DOI: 10.3390/ijms21207648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/27/2020] [Accepted: 10/08/2020] [Indexed: 01/11/2023] Open
Abstract
Monoamine oxidase B (MAOB) is expressed in the mitochondrial membrane and has a key role in degrading various neurologically active amines such as benzylamine, phenethylamine and dopamine with the help of Flavin adenine dinucleotide (FAD) cofactor. The Parkinson’s disease associated symptoms can be treated using inhibitors of MAO-B as the dopamine degradation can be reduced. Currently, many inhibitors are available having micromolar to nanomolar binding affinities. However, still there is demand for compounds with superior binding affinity and binding specificity with favorable pharmacokinetic properties for treating Parkinson’s disease and computational screening methods can be majorly recruited for this. However, the accuracy of currently available force-field methods for ranking the inhibitors or lead drug-like compounds should be improved and novel methods for screening compounds need to be developed. We studied the performance of various force-field-based methods and data driven approaches in ranking about 3753 compounds having activity against the MAO-B target. The binding affinities computed using autodock and autodock-vina are shown to be non-reliable. The force-field-based MM-GBSA also under-performs. However, certain machine learning approaches, in particular KNN, are found to be superior, and we propose KNN as the most reliable approach for ranking the complexes to reasonable accuracy. Furthermore, all the employed machine learning approaches are also computationally less demanding.
Collapse
Affiliation(s)
- Natarajan Arul Murugan
- Department of Theoretical Chemistry and Biology, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
- Correspondence:
| | | | - Chitra Jeyarajpandian
- Department of Biotechnology, Dr. Umayal Ramanathan College for Women, Karaikudi 630 004, India;
| | | | - Venkatesan Subramanian
- Centre for High Computing, CSIR-Central Leather Research Institute, Adyar, Chennai 600 020, India;
| |
Collapse
|
25
|
Manzoor S, Hoda N. A comprehensive review of monoamine oxidase inhibitors as Anti-Alzheimer's disease agents: A review. Eur J Med Chem 2020; 206:112787. [PMID: 32942081 DOI: 10.1016/j.ejmech.2020.112787] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 07/22/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023]
Abstract
Monoamine oxidases (MAO-A and MAO-B) are mammalian flavoenzyme, which catalyze the oxidative deamination of several neurotransmitters like norepinephrine, dopamine, tyramine, serotonin, and some other amines. The oxidative deamination produces several harmful side products like ammonia, peroxides, and aldehydes during the biochemical reaction. The concentration of biochemical neurotransmitter alteration in the brain by MAO is directly related with several neurological disorders like Alzheimer's disease and Parkinson's disease (PD). Activated MAO also contributes to the amyloid beta (Aβ) aggregation by two successive cleft β-secretase and γ-secretase of amyloid precursor protein (APP). Additionally, activated MAO is also involved in aggregation of neurofibrillary tangles and cognitive destruction through the cholinergic neuronal damage and disorder of the cholinergic system. MAO inhibition has general anti-Alzheimer's disease effect as a consequence of oxidative stress reduction prompted by MAO enzymes. In this review, we outlined and addressed recent understanding on MAO enzymes such as their structure, physiological function, catalytic mechanism, and possible therapeutic goals in AD. In addition, it also highlights the current development and discovery of potential MAO inhibitors (MAOIs) from various chemical scaffolds.
Collapse
Affiliation(s)
- Shoaib Manzoor
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, India
| | - Nasimul Hoda
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
26
|
Is YS, Aksoydan B, Senturk M, Yurtsever M, Durdagi S. Integrated Binary QSAR-Driven Virtual Screening and In Vitro Studies for Finding Novel hMAO-B-Selective Inhibitors. J Chem Inf Model 2020; 60:4047-4055. [PMID: 32672456 DOI: 10.1021/acs.jcim.0c00169] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The increased activity of monoamine oxidase (MAO) enzymes may lead to serious consequences since they reduce the level of neurotransmitters and are associated with severe neurodegenerative diseases. The inhibition of this enzyme, especially the B isoform, plays a vital role in the treatment of Parkinson's disease (PD). This study is aimed to find novel human MAO-B (hMAO-B) selective inhibitors. A total of 256.750 compounds from the Otava small molecules database were virtually screened gradually by employing several screening techniques for this purpose. Initially, a high-throughput virtual screening (HTVS) method was employed, and 10% of the molecules having high docking scores were subjected to binary QSAR models for further screening of their therapeutic activities against PD, Alzheimer's disease (AD), and depression as well as for their toxicity and pharmacokinetic properties. Then, enzyme selectivity of the ligands towards the A and B forms that passed through all the filters were studied using the induced-fit docking method and molecular dynamics simulations. At the end of this exhaustive research, we identified two hit molecules ligand 3 (Otava ID: 7131545) and ligand 4 (Otava ID: 7566820). Based on the in vitro results, these two compounds (ligands 3 and 4) together with ligands 1 and 2 found in our previous study showed activity at the nanomolar (nM) level, and the results indicated that these four ligands inhibit hMAO-B better than the FDA-approved drug selegiline.
Collapse
Affiliation(s)
- Yusuf Serhat Is
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, 34734 Istanbul, Turkey.,Department of Chemistry, Istanbul Technical University, 34467 Istanbul, Turkey.,Department of Chemical Technology, Istanbul Gedik University, 34876 Istanbul, Turkey
| | - Busecan Aksoydan
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, 34734 Istanbul, Turkey.,Neuroscience Program, Graduate School of Health Sciences, Bahçeşehir University, 34349 Istanbul, Turkey
| | - Murat Senturk
- Department of Biochemistry, Faculty of Pharmacy, Agri Ibrahim Cecen University, 04100 Agri, Turkey
| | - Mine Yurtsever
- Department of Chemistry, Istanbul Technical University, 34467 Istanbul, Turkey
| | - Serdar Durdagi
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, 34734 Istanbul, Turkey.,Neuroscience Program, Graduate School of Health Sciences, Bahçeşehir University, 34349 Istanbul, Turkey.,Virtual Drug Screening and Development Laboratory, School of Medicine, Bahcesehir University, 34734 Istanbul, Turkey
| |
Collapse
|
27
|
Tao C, Hu SQ, Chen J, Chen YJ, Sun KH, Cui GZ, Ma M, Wu ZZ. Highly efficient synthesis and monoamine oxidase B inhibitory profile of demethyleneberberine, columbamine and palmatine. Neurochem Int 2020; 139:104807. [PMID: 32711021 DOI: 10.1016/j.neuint.2020.104807] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 01/08/2023]
Abstract
The biosynthesis of berberine alkaloids is thought to begin with the demethylation of berberine followed by methylation reactions to generate other type berberine alkaloids. This seemingly expeditious way to access berberine alkaloids has been stagnated for over half a century due to certain vexing synthetic problems, such as low isolated yield, complex operations and toxic reagents. We further investigated this bioinspired semi-synthesis strategy and significantly improved the synthetic efficacy, by providing a practical synthetic process for demethyleneberberine (DMB), columbamine and palmatine. Furthermore, we found that DMB (IC50, 9.06 μM) inhibited the activity of monoamine oxidase B (MAO-B), an enzyme that deaminates dopamine and is particularly involved in the pathology of Parkinson's disease. Besides, columbamine was able to decrease MAO-B activity by approximately 40%. These findings provide perquisites for further in vivo investigation to confirm the therapeutic potentiality of berberine alkaloids, DMB in particular.
Collapse
Affiliation(s)
- Cheng Tao
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China; Shenzhen Institute of Geriatrics, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Sheng-Quan Hu
- Shenzhen Institute of Geriatrics, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Jian Chen
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China; Shenzhen Institute of Geriatrics, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Yuan-Ji Chen
- Dongguan Institute of Jinan University, Dongguan, China
| | - Ke-Huan Sun
- Shenzhen Institute of Geriatrics, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Guo-Zhen Cui
- Department of Bioengineering, Zunyi Medical University Zhuhai Campus, Zhuhai, China
| | - Min Ma
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China; College of Traditional Chinese Medicine, Jinan University, Guangzhou, China; The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zheng-Zhi Wu
- Shenzhen Institute of Geriatrics, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China; The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
28
|
Naidoo D, Roy A, Slavětínská LP, Chukwujekwu JC, Gupta S, Van Staden J. New role for crinamine as a potent, safe and selective inhibitor of human monoamine oxidase B: In vitro and in silico pharmacology and modeling. JOURNAL OF ETHNOPHARMACOLOGY 2020; 248:112305. [PMID: 31639490 DOI: 10.1016/j.jep.2019.112305] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/30/2019] [Accepted: 10/12/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The development of selective inhibitors of monoamine oxidase B (MAO-B) has been essential in treating Parkinson's disease. However, the apparent hepatotoxicity and drug-drug interactions of current inhibitors accentuate the need for the development of novel pharmacotherapies. Crossyne guttata (L.) D. & U. Müll-Doblies is used frequently by Rastafarian bush doctors to treat alcoholism, a disorder which is also accentuated by MAO. OBJECTIVE The study sought to isolate, identify and characterise the biologically active constituents of C. guttata based on their ability to inhibit the MAO enzymes. MATERIALS AND METHODS Column chromatography was used to isolate the biologically active alkaloids of C. guttata. The ability of the alkaloids to inhibit the biotransformation of 4-aminoantipyrine by the MAO enzymes was evaluated in vitro. In silico docking was conducted using AutoDock Vina server while the pharmacokinetic properties of the compounds were evaluated using SwissADME. RESULTS Chromatographic separation of an ethanolic fraction of C. guttata yielded the alkaloids crinamine 1 and epibuphanisine 2. 1 and 2 along with structurally related alkaloids haemanthamine 3 and haemanthidine 4 were evaluated for their ability to inhibit the action of isozymes of MAO in vitro. Alkaloids effected submicromolar IC50 values against MAO-B, the most potent of which being crinamine 1 (0.014 μM) > haemanthidine 4 (0.017 μM) > epibuphanisine 2 (0.039 μM) > haemanthamine 3 (0.112 μM). Binding energies of the alkaloids correlated well with their inhibitory potential with crinamine displaying the best binding efficacy and binding energy score with MAO-B. DISCUSSION AND CONCLUSION Crinamine and epibuphanisine exhibited potent and selective inhibitory activity towards MAO-B. After comprehensive in silico investigations encompassing robust molecular docking analysis, the drug-like attributes and safety of the alkaloids suggest the crinamine is a potentially safe drug for human application.
Collapse
Affiliation(s)
- D Naidoo
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa
| | - A Roy
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa
| | - L Poštová Slavětínská
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo Nám. 2, 16610 Prague-6, Czech Republic
| | - J C Chukwujekwu
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa
| | - S Gupta
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa
| | - J Van Staden
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa.
| |
Collapse
|
29
|
Tzvetkov NT, Stammler HG, Georgieva MG, Russo D, Faraone I, Balacheva AA, Hristova S, Atanasov AG, Milella L, Antonov L, Gastreich M. Carboxamides vs. methanimines: Crystal structures, binding interactions, photophysical studies, and biological evaluation of (indazole-5-yl)methanimines as monoamine oxidase B and acetylcholinesterase inhibitors. Eur J Med Chem 2019; 179:404-422. [DOI: 10.1016/j.ejmech.2019.06.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 12/29/2022]
|
30
|
Guglielmi P, Carradori S, Ammazzalorso A, Secci D. Novel approaches to the discovery of selective human monoamine oxidase-B inhibitors: is there room for improvement? Expert Opin Drug Discov 2019; 14:995-1035. [PMID: 31268358 DOI: 10.1080/17460441.2019.1637415] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Selective monoamine oxidase-B (MAO-B) inhibitors are currently used as coadjuvants for the treatment of early motor symptoms in Parkinson's disease. They can, based on their chemical structure and mechanism of inhibition, be categorized into reversible and irreversible agents. Areas covered: This review provides a comprehensive update on the development state of selective MAO-B inhibitors describing the results, structures, structure-activity relationships (SARs) and Medicinal chemistry strategies as well as the related shortcomings over the past five years. Expert opinion: Researchers have explored and implemented new and old chemical scaffolds achieving high inhibitory potencies and isoform selectivity. Most of them were characterized and proposed as multitarget agents able to act at different levels (including AChE inhibition, H3R or A2AR antagonism, antioxidant and chelating properties, Aβ1-42 aggregation reduction) in the network of aetiologies of neurodegenerative disorders. These results can also be used to avoid 'cheese-reaction' effects and the occurrence of serotonergic syndrome in patients.
Collapse
Affiliation(s)
- Paolo Guglielmi
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma , Rome , Italy
| | - Simone Carradori
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara , Chieti , Italy
| | | | - Daniela Secci
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma , Rome , Italy
| |
Collapse
|
31
|
Yeung AWK, Georgieva MG, Atanasov AG, Tzvetkov NT. Monoamine Oxidases (MAOs) as Privileged Molecular Targets in Neuroscience: Research Literature Analysis. Front Mol Neurosci 2019; 12:143. [PMID: 31191248 PMCID: PMC6549493 DOI: 10.3389/fnmol.2019.00143] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 05/16/2019] [Indexed: 01/04/2023] Open
Abstract
Background: Monoamine oxidases (MAOs) were discovered nearly a century ago. This article aims to analyze the research literature landscape associated with MAOs as privileged class of neuronal enzymes (neuroenzymes) with key functions in the processes of neurodegeneration, serving as important biological targets in neuroscience. With the accumulating publications on this topic, we aimed to evaluate the publication and citation performance of the contributors, reveal the popular research themes, and identify its historical roots. Methods: The electronic database of Web of Science (WoS) Core Collection was searched to identify publications related to MAOs, which were analyzed according to their publication year, authorship, institutions, countries/regions, journal title, WoS category, total citation count, and publication type. VOSviewer was utilized to visualize the citation patterns of the words appearing in the titles and abstracts, and author keywords. CRExplorer was utilized to identify seminal references cited by the MAO publications. Results: The literature analysis was based on 19,854 publications. Most of them were original articles (n = 15,148, 76.3%) and reviews (n = 2,039, 10.3%). The top five WoS categories of the analyzed MAO publications were Pharmacology/Pharmacy (n = 4,664, 23.5%), Neurosciences (n = 4,416, 22.2%), Psychiatry (n = 2,906, 14.6%), Biochemistry/Molecular Biology (n = 2,691, 13.6%), and Clinical Neurology (n = 1,754, 8.8%). The top 10 institutions are scattered in the United States, UK, France, Sweden, Canada, Israel, and Russia, while the top 10 countries/regions with the most intensive research on the field of MAOs are the United States, followed by European and Asian countries. More highly cited publications generally involved neurotransmitters, such as dopamine (DA), serotonin, and norepinephrine (NE), as well as the MAO-A inhibitors moclobemide and clorgyline, and the irreversible MAO-B inhibitors selegiline and rasagiline. Conclusion: Through decades of research, the literature has accumulated many publications investigating the therapeutic effects of MAO inhibitors (MAOIs) on various neurological conditions, such as Alzheimer's disease (AD), Parkinson's disease (PD), and depression. We envision that MAO literature will continue to grow steadily, with more new therapeutic candidates being tested for better management of neurological conditions, in particular, with the development of multi-target acting drugs against neurodegenerative diseases.
Collapse
Affiliation(s)
- Andy Wai Kan Yeung
- Oral and Maxillofacial Radiology, Applied Oral Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Maya G Georgieva
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology Roumen Tsanev, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Atanas G Atanasov
- The Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Magdalenka, Poland.,Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Nikolay T Tzvetkov
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology Roumen Tsanev, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
32
|
Cheng K, Li S, Lv X, Tian Y, Kong H, Huang X, Duan Y, Han J, Xie Z, Liao C. Design, synthesis and biological evaluation of novel human monoamine oxidase B inhibitors based on a fragment in an X-ray crystal structure. Bioorg Med Chem Lett 2019; 29:1012-1018. [DOI: 10.1016/j.bmcl.2019.02.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 01/17/2019] [Accepted: 02/07/2019] [Indexed: 12/30/2022]
|
33
|
Development of piperic acid-based monoamine oxidase inhibitors: Synthesis, structural characterization and biological evaluation. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.01.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
34
|
Bębenek E, Chrobak E, Marciniec K, Kadela-Tomanek M, Trynda J, Wietrzyk J, Boryczka S. Biological Activity and In Silico Study of 3-Modified Derivatives of Betulin and Betulinic Aldehyde. Int J Mol Sci 2019; 20:ijms20061372. [PMID: 30893801 PMCID: PMC6471197 DOI: 10.3390/ijms20061372] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/09/2019] [Accepted: 03/12/2019] [Indexed: 01/08/2023] Open
Abstract
A series of 3-substituted derivatives of betulin and betulinic aldehyde were synthesized as promising anticancer agents. The newly triterpenes were tested against five human cancer cell lines like biphenotypic B myelomonocytic leukaemia (MV-4-11), adenocarcinoma (A549), prostate (Du-145), melanoma (Hs294T), breast adenocarcinoma (MCF-7) and normal human mammary gland (MCF-10A). The compound 9 showed towards Du-145, MCF-7 and Hs294T cells significant antiproliferative activity with IC50 ranging from 7.3 to 10.6 μM. The evaluation of ADME properties of all compounds also includes their pharmacokinetic profile. The calculated TPSA values for synthetized derivatives are in the range between 43.38 Å2 and 55.77 Å2 suggesting high oral bioavailability. The molecular docking calculations showed that triterpene 9 fits the active site of the serine/threonine protein kinase Akt.
Collapse
Affiliation(s)
- Ewa Bębenek
- Medical University of Silesia in Katowice, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Department of Organic Chemistry, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland.
| | - Elwira Chrobak
- Medical University of Silesia in Katowice, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Department of Organic Chemistry, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland.
| | - Krzysztof Marciniec
- Medical University of Silesia in Katowice, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Department of Organic Chemistry, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland.
| | - Monika Kadela-Tomanek
- Medical University of Silesia in Katowice, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Department of Organic Chemistry, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland.
| | - Justyna Trynda
- Wroclaw University of Environmental and Life Science, Department of Experimental Biology, 27b Norwida Str., 50-375 Wrocław, Poland.
| | - Joanna Wietrzyk
- Polish Academy of Sciences, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Department of Experimental Oncology, 12 Rudolfa Weigla Str., 53-114 Wrocław, Poland.
| | - Stanisław Boryczka
- Medical University of Silesia in Katowice, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Department of Organic Chemistry, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland.
| |
Collapse
|
35
|
Tripathi RKP, Ayyannan SR. Monoamine oxidase-B inhibitors as potential neurotherapeutic agents: An overview and update. Med Res Rev 2019; 39:1603-1706. [PMID: 30604512 DOI: 10.1002/med.21561] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 12/13/2018] [Accepted: 12/15/2018] [Indexed: 12/23/2022]
Abstract
Monoamine oxidase (MAO) inhibitors have made significant contributions and remain an indispensable approach of molecular and mechanistic diversity for the discovery of antineurodegenerative drugs. However, their usage has been hampered by nonselective and/or irreversible action which resulted in drawbacks like liver toxicity, cheese effect, and so forth. Hence, the search for selective MAO inhibitors (MAOIs) has become a substantial focus in current drug discovery. This review summarizes our current understanding on MAO-A/MAO-B including their structure, catalytic mechanism, and biological functions with emphases on the role of MAO-B as a potential therapeutic target for the development of medications treating neurodegenerative disorders. It also highlights the recent developments in the discovery of potential MAO-B inhibitors (MAO-BIs) belonging to diverse chemical scaffolds, arising from intensive chemical-mechanistic and computational studies documented during past 3 years (2015-2018), with emphases on their potency and selectivity. Importantly, readers will gain knowledge of various newly established MAO-BI scaffolds and their development potentials. The comprehensive information provided herein will hopefully accelerate ideas for designing novel selective MAO-BIs with superior activity profiles and critical discussions will inflict more caution in the decision-making process in the MAOIs discovery.
Collapse
Affiliation(s)
- Rati Kailash Prasad Tripathi
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, India.,Department of Pharmaceutical Chemistry, Parul Institute of Pharmacy, Parul University, Vadodara, India
| | - Senthil Raja Ayyannan
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| |
Collapse
|
36
|
(Pyrrolo-pyridin-5-yl)benzamides: BBB permeable monoamine oxidase B inhibitors with neuroprotective effect on cortical neurons. Eur J Med Chem 2019; 162:793-809. [DOI: 10.1016/j.ejmech.2018.11.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 11/02/2018] [Accepted: 11/05/2018] [Indexed: 01/06/2023]
|
37
|
Zhang SG, Liang CG, Zhang WH. Recent Advances in Indazole-Containing Derivatives: Synthesis and Biological Perspectives. Molecules 2018; 23:E2783. [PMID: 30373212 PMCID: PMC6278422 DOI: 10.3390/molecules23112783] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 10/14/2018] [Accepted: 10/24/2018] [Indexed: 02/07/2023] Open
Abstract
Indazole-containing derivatives represent one of the most important heterocycles in drug molecules. Diversely substituted indazole derivatives bear a variety of functional groups and display versatile biological activities; hence, they have gained considerable attention in the field of medicinal chemistry. This review aims to summarize the recent advances in various methods for the synthesis of indazole derivatives. The current developments in the biological activities of indazole-based compounds are also presented.
Collapse
Affiliation(s)
- Shu-Guang Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Chao-Gen Liang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Wei-Hua Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
38
|
Natural product-based multitargeted ligands for Alzheimer's disease treatment? Future Med Chem 2018; 10:1745-1748. [DOI: 10.4155/fmc-2018-0146] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
39
|
Is YS, Durdagi S, Aksoydan B, Yurtsever M. Proposing Novel MAO-B Hit Inhibitors Using Multidimensional Molecular Modeling Approaches and Application of Binary QSAR Models for Prediction of Their Therapeutic Activity, Pharmacokinetic and Toxicity Properties. ACS Chem Neurosci 2018; 9:1768-1782. [PMID: 29671581 DOI: 10.1021/acschemneuro.8b00095] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Monoamine oxidase (MAO) enzymes MAO-A and MAO-B play a critical role in the metabolism of monoamine neurotransmitters. Hence, MAO inhibitors are very important for the treatment of several neurodegenerative diseases such as Parkinson's disease (PD), Alzheimer's disease (AD), and amyotrophic lateral sclerosis (ALS). In this study, 256 750 molecules from Otava Green Chemical Collection were virtually screened for their binding activities as MAO-B inhibitors. Two hit molecules were identified after applying different filters such as high docking scores and selectivity to MAO-B, desired pharmacokinetic profile predictions with binary quantitative structure-activity relationship (QSAR) models. Therapeutic activity prediction as well as pharmacokinetic and toxicity profiles were investigated using MetaCore/MetaDrug platform which is based on a manually curated database of molecular interactions, molecular pathways, gene-disease associations, chemical metabolism, and toxicity information. Particular therapeutic activity and toxic effect predictions are based on the ChemTree ability to correlate structural descriptors to that property using recursive partitioning algorithm. Molecular dynamics (MD) simulations were also performed to make more detailed assessments beyond docking studies. All these calculations were made not only to determine if studied molecules possess the potential to be a MAO-B inhibitor but also to find out whether they carry MAO-B selectivity versus MAO-A. The evaluation of docking results and pharmacokinetic profile predictions together with the MD simulations enabled us to identify one hit molecule (ligand 1, Otava ID: 3463218) which displayed higher selectivity toward MAO-B than a positive control selegiline which is a commercially used drug for PD therapeutic purposes.
Collapse
Affiliation(s)
- Yusuf Serhat Is
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul 34353, Turkey
- Department of Chemistry, Istanbul Technical University, Istanbul 34469, Turkey
- Vocational High School, Department of Chemical Technology, Istanbul Gedik University, Istanbul 34876, Turkey
| | - Serdar Durdagi
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul 34353, Turkey
- Neuroscience Program, Graduate School of Health Sciences, Bahcesehir University, Istanbul 34349, Turkey
| | - Busecan Aksoydan
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul 34353, Turkey
- Neuroscience Program, Graduate School of Health Sciences, Bahcesehir University, Istanbul 34349, Turkey
| | - Mine Yurtsever
- Department of Chemistry, Istanbul Technical University, Istanbul 34469, Turkey
| |
Collapse
|
40
|
pH-permeability profiles for drug substances: Experimental detection, comparison with human intestinal absorption and modelling. Eur J Pharm Sci 2018; 123:429-440. [PMID: 30100533 DOI: 10.1016/j.ejps.2018.07.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 06/19/2018] [Accepted: 07/04/2018] [Indexed: 01/05/2023]
Abstract
The influence of pH on human intestinal absorption is frequently not considered in early drug discovery studies in the modelling and subsequent prediction of intestinal absorption for drug candidates. To bridge this gap, in this study, experimental membrane permeability data were measured for current and former drug substances with a parallel artificial membrane permeability assay (PAMPA) at different pH values (3, 5, 7.4 and 9). The presented data are in good agreement with human intestinal absorption, showing a clear influence of pH on the efficiency of intestinal absorption. For the measured data, simple and general quantitative structure-activity relationships (QSARs) were developed for each pH that makes it possible to predict the pH profiles for passive membrane permeability (i.e., a pH-permeability profile), and these predictions coincide well with the experimental data. QSARs are also proposed for the data series of highest and intrinsic membrane permeability. The molecular descriptors in the models were analysed and mechanistically related to the interaction pattern of permeability in membranes. In addition to the regression models, classification models are also proposed. All models were successfully validated and blind tested with external data. The models are available in the QsarDB repository (http://dx.doi.org/10.15152/QDB.203).
Collapse
|
41
|
Zhu J, Sun S, Cheng J. Rh(III)-catalyzed [4 + 1]-annulation of azobenzenes with α- carbonyl sulfoxonium ylides toward 3-acyl-(2H)-indazoles. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.05.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
|
43
|
Design, synthesis and bioevalucation of novel 2,3-dihydro-1 H -inden-1-amine derivatives as potent and selective human monoamine oxidase B inhibitors based on rasagiline. Eur J Med Chem 2018; 145:588-593. [DOI: 10.1016/j.ejmech.2018.01.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 01/08/2018] [Accepted: 01/09/2018] [Indexed: 12/25/2022]
|
44
|
Tripathi AC, Upadhyay S, Paliwal S, Saraf SK. Privileged scaffolds as MAO inhibitors: Retrospect and prospects. Eur J Med Chem 2018; 145:445-497. [PMID: 29335210 DOI: 10.1016/j.ejmech.2018.01.003] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/01/2017] [Accepted: 01/01/2018] [Indexed: 12/24/2022]
Abstract
This review aims to be a comprehensive, authoritative, critical, and readable review of general interest to the medicinal chemistry community because it focuses on the pharmacological, chemical, structural and computational aspects of diverse chemical categories as monoamine oxidase inhibitors (MAOIs). Monoamine oxidases (MAOs), namely MAO-A and MAO-B represent an enormously valuable class of neuronal enzymes embodying neurobiological origin and functions, serving as potential therapeutic target in neuronal pharmacotherapy, and hence we have coined the term "Neurozymes" which is being introduced for the first time ever. Nowadays, therapeutic attention on MAOIs engrosses two imperative categories; MAO-A inhibitors, in certain mental disorders such as depression and anxiety, and MAO-B inhibitors, in neurodegenerative disorders like Alzheimer's disease (AD) and Parkinson's disease (PD). The use of MAOIs declined due to some potential side effects, food and drug interactions, and introduction of other classes of drugs. However, curiosity in MAOIs is reviving and the recent developments of new generation of highly selective and reversible MAOIs, have renewed the therapeutic prospective of these compounds. The initial section of the review emphasizes on the detailed classification, structural and binding characteristics, therapeutic potential, current status and future challenges of the privileged pharmacophores. However, the chemical prospective of privileged scaffolds such as; aliphatic and aromatic amines, amides, hydrazines, azoles, diazoles, tetrazoles, indoles, azines, diazines, xanthenes, tricyclics, benzopyrones, and more interestingly natural products, along with their conclusive SARs have been discussed in the later segment of review. The last segment of the article encompasses some patents granted in the field of MAOIs, in a simplistic way.
Collapse
Affiliation(s)
- Avinash C Tripathi
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Babu Banarasi Das Northern India Institute of Technology, Lucknow 226028, UP, India
| | - Savita Upadhyay
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Babu Banarasi Das Northern India Institute of Technology, Lucknow 226028, UP, India
| | - Sarvesh Paliwal
- Pharmacy Department, Banasthali Vidyapith, Banasthali, Tonk 304022, Rajasthan, India
| | - Shailendra K Saraf
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Babu Banarasi Das Northern India Institute of Technology, Lucknow 226028, UP, India.
| |
Collapse
|
45
|
Tautomerism of N-(3,4-dichlorophenyl)-1H-indazole-5-carboxamide – A new selective, highly potent and reversible MAO-B inhibitor. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.07.108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
46
|
Abid SMA, Younus HA, Al-Rashida M, Arshad Z, Maryum T, Gilani MA, Alharthi AI, Iqbal J. Sulfonyl hydrazones derived from 3-formylchromone as non-selective inhibitors of MAO-A and MAO-B: Synthesis, molecular modelling and in-silico ADME evaluation. Bioorg Chem 2017; 75:291-302. [DOI: 10.1016/j.bioorg.2017.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/23/2017] [Accepted: 10/02/2017] [Indexed: 10/18/2022]
|
47
|
Tzvetkov NT, Antonov L. Subnanomolar indazole-5-carboxamide inhibitors of monoamine oxidase B (MAO-B) continued: indications of iron binding, experimental evidence for optimised solubility and brain penetration. J Enzyme Inhib Med Chem 2017; 32:960-967. [PMID: 28726524 PMCID: PMC6445166 DOI: 10.1080/14756366.2017.1344980] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Pharmacological and physicochemical studies of N-unsubstituted indazole-5-carboxamides (subclass I) and their structurally optimised N1-methylated analogues (subclass II), initially developed as drug and radioligand candidates for the treatment and diagnosis of Parkinson’s disease (PD), are presented. The compounds are highly brain permeable, selective, reversible, and competitive monoamine oxidase B (MAO-B) inhibitors with improved water-solubility and subnanomolar potency (pIC50 >8.8). Using a well-validated, combined X-ray/modelling technology platform, we performed a semi-quantitative analysis of the binding modes of all compounds and investigated the role of the indazole N1 position for their MAO-B inhibitory activity. Moreover, compounds NTZ-1006, 1032, and 1441 were investigated for their ability to bind Fe2+ and Fe3+ ions using UV-visible spectroscopy.
Collapse
Affiliation(s)
| | - Liudmil Antonov
- b Bulgarian Academy of Sciences , Institute of Organic Chemistry, Centre of Phytochemistry , Sofia , Bulgaria
| |
Collapse
|