1
|
Mishra G, Jaiswal AK, Kushawaha AK, Kumar A, Bhatt H, Ansari A, Bisen AC, Hansda R, Agrawal S, Acharjee P, Guha R, Bhatta RS, Purkait B, Sashidhara KV. Exploring indole-dihydropyrimidinone derivatives: Design, synthesis, biological assessment, SAR analysis, and evaluation of mode of action in experimental visceral leishmaniasis. Eur J Med Chem 2025; 293:117667. [PMID: 40344736 DOI: 10.1016/j.ejmech.2025.117667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/17/2025] [Accepted: 04/19/2025] [Indexed: 05/11/2025]
Abstract
The emergence of drug resistance and the non-availability of vaccines encouraged us to identify novel chemical scaffolds as new anti-leishmanial agents. In doing so, a series of thirty-four indole-dihydropyrimidinone hybrid compounds were synthesized using the Biginelli multicomponent reaction. These synthesized compounds were tested against L. donovani in vitro and in vivo in experimental golden hamster model of visceral leishmaniasis. Compounds 4f and 4m were found to have promising anti-leishmanial properties against intracellular amastigotes (IC504.54 & 5.05 μM, respectively) with minimal cytotoxicity against J774.1 macrophage. 4f and 4m were tested in vivo, and only 4f effectively cleared the parasite burden (>65 %) in infected golden hamsters. Mode of action studies discloses that 4f induces oxidative stress-mediated mitochondrial dysfunction and impairment of ATP production and triggers apoptosis. SAR and PK studies revealed that compound 4f (indole-dihydropyrimidinone hybrid) may be used as a lead for developing future chemotherapeutic options for VL.
Collapse
Affiliation(s)
- Garvita Mishra
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, BS, 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Arvind Kumar Jaiswal
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS, 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Ajay Kishor Kushawaha
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS, 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Abhishek Kumar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS, 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Hemlata Bhatt
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS, 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Alisha Ansari
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS, 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Amol Chhatrapati Bisen
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India; Pharmaceutics and Pharmacokinetics Division, CSIR- Central Drug Research Institute, BS, 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Sophisticated Analytical Instrument Facility & Research, CSIR-Central Drug Research Institute, BS, 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Rupa Hansda
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, BS, 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Sristi Agrawal
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India; Pharmaceutics and Pharmacokinetics Division, CSIR- Central Drug Research Institute, BS, 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Payel Acharjee
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, BS, 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Rajdeep Guha
- Laboratory Animal Facility Division, CSIR-Central Drug Research Institute, BS, 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Rabi Sankar Bhatta
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India; Pharmaceutics and Pharmacokinetics Division, CSIR- Central Drug Research Institute, BS, 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Bidyut Purkait
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, BS, 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| | - Koneni V Sashidhara
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS, 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India; Sophisticated Analytical Instrument Facility & Research, CSIR-Central Drug Research Institute, BS, 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India.
| |
Collapse
|
2
|
Wang Y, Ding N, Zhao Y, Wang F, Liu W, Chen Z, Sun W, Gu L, Zhang Y. Design, synthesis, and biological evaluation of β-carboline derivatives as ABCB1 inhibitors for reversing multidrug resistance. Eur J Med Chem 2025; 288:117390. [PMID: 39965407 DOI: 10.1016/j.ejmech.2025.117390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/30/2025] [Accepted: 02/10/2025] [Indexed: 02/20/2025]
Abstract
The scarcity of ATP-binding cassette subfamily B member 1 (ABCB1, also known as P-glycoprotein, P-gp) inhibitors suitable for clinical application in improving multidrug resistance (MDR) promotes the development of drugs aimed at reversing MDR. In this work, we reported a comprehensive study for the first time about the reversal activity of β-carboline derivatives on ABCB1-mediated MDR. Among 48 synthesized derivatives, compound K27 significantly increased the sensitivity of ABCB1-mediated MDR SW620/AD300 cells to paclitaxel (PTX) (IC50 = 15.33 ± 5.4 nM, RF = 171.2) and hardly showed toxicity even at a high concentration of 20 μM when used alone. The in vitro studies indicated that compound K27 distinctly enhanced the arresting effect of PTX on the SW620/AD300 cell cycle, thereby inhibiting their proliferation. Mechanistically, compound K27 was confirmed to directly bind to ABCB1 to inhibit efflux function, reducing cellular efflux and ensuring stable intracellular concentration of PTX without affecting ABCB1's normal expression. Importantly, the combination of compound K27 and PTX exhibited potent tumor suppression in vivo without generating toxicity. These results demonstrated that β-carboline compounds represented by compound K27 may be potent ABCB1 inhibitors with considerable potential in effectively reversing ABCB1-mediated MDR, showing promising prospects.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Nanjin Ding
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yunpeng Zhao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fengqing Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wen Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhe Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weiguang Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Lianghu Gu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
3
|
Rehman MU, Zuo Y, Tu N, Guo J, Liu Z, Cao S, Long S. Diverse pharmacological activities of β-carbolines: Substitution patterns, SARs and mechanisms of action. Eur J Med Chem 2025; 287:117350. [PMID: 39933403 DOI: 10.1016/j.ejmech.2025.117350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/26/2025] [Accepted: 01/30/2025] [Indexed: 02/13/2025]
Abstract
β-Carbolines, a class of indole-containing heterocyclic alkaloids, are widely distributed in nature and possess diverse bioactivities, making them promising drug candidates against a wide range of diseases. The remarkable medicinal potential of β-carbolines has spurred the pharmaceutical research community to study their derivatives extensively. This review updates the development of β-carboline derivatives in recent years (2015-2024), particularly with a focus on their anticancer, antiparasitic, antimicrobial, antiviral, and neuroprotective properties, based on the modification approaches such as substitution on indole N (ring B), pyridine or its reduced forms (ring C), and dimerization of β-carbolines. Moreover, the mechanisms of action and structure-activity relationships of these β-carboline derivatives are highlighted to offer valuable insights on the design and development of new β-carbolines with better pharmacological activities.
Collapse
Affiliation(s)
- Muneeb Ur Rehman
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Yujie Zuo
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Ni Tu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Ju Guo
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Ziwei Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Shuang Cao
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China.
| | - Sihui Long
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China.
| |
Collapse
|
4
|
Yu L, Shen N, Ren J, Xin H, Cui Y. Resource distribution, pharmacological activity, toxicology and clinical drugs of β-Carboline alkaloids: An updated and systematic review. Fitoterapia 2025; 180:106326. [PMID: 39645053 DOI: 10.1016/j.fitote.2024.106326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/29/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
β-Carboline alkaloids are a broad class of indole alkaloids that were first isolated from Peganum harmala L., a traditional Chinese herbal remedy. β-Carboline alkaloids have been found to have many pharmacological activities, including anti-inflammatory, antioxidant, and anti-cancer properties. β-Carboline alkaloids have been studied, and nine therapeutic medications based on its structural skeleton have been utilized to treat a range of illnesses. These compounds' potent pharmacological action and high druggability have garnered a lot of interest. This review systematically summarized resource distribution, pharmacological activity, toxicology and clinical drugs of β-Carboline alkaloids. These alkaloids are mostly found in plants, particularly (Peganum harmala L.), although they are also present in food, bacteria, fungus, and animals. By inhibiting NF-κB, MAPKs, and PI3K-AKT multiple signal pathways, they demonstrate a wide range of pharmacological activities, including anti-inflammatory, oxidative, neurological, cancer, fungal, and leishmania pharmacological activity. Toxicology revealed that β-Carboline alkaloids can produce confusion, irritability, dyskinesia, nausea, vomiting, and audiovisual hallucinations in addition to stimulating the central nervous system and inhibiting metabolism. Clinical drugs based on β-Carboline alkaloids have been used for clinical treatment of arrhythmia, cerebrovascular diseases and dysfunction, hypertension, epilepsy, malaria and mydriasis diseases. It will prompt us to redefine β-Carboline alkaloids. For β-Carboline alkaloids that inspires pharmacological applications in medicine and the development of novel medications containing these alkaloids, it will be a useful resource.
Collapse
Affiliation(s)
- Lili Yu
- School of Medicine, Linyi University, Linyi 276000, Shandong, China
| | - Na Shen
- School of Medicine, Linyi University, Linyi 276000, Shandong, China
| | - Jiani Ren
- School of Medicine, Linyi University, Linyi 276000, Shandong, China
| | - Huawei Xin
- School of Medicine, Linyi University, Linyi 276000, Shandong, China.
| | - Yulei Cui
- School of Medicine, Linyi University, Linyi 276000, Shandong, China.
| |
Collapse
|
5
|
Singh A, Beg MA, Jamal S, Khan A, Rahman A, Selvapandiyan A, Shafi S, Hoda N. Robust leishmanicidal upshot of some new diphenyl triazine-based molecules. RSC Adv 2024; 14:22587-22597. [PMID: 39021460 PMCID: PMC11253633 DOI: 10.1039/d4ra01904k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/03/2024] [Indexed: 07/20/2024] Open
Abstract
Amongst the neglected tropical diseases, leishmaniasis alone causes 30 000 deaths annually due to the protozoan parasite genus Leishmania. Existing therapies have serious drawbacks in safety, drug resistance, field-adapted application and cost. Therefore, new safer and shorter treatments are an urgent need of the time. Herein, we report the synthesis of fifteen novel diphenyl triazine and diphenyl triazine pyrimidine derivatives and their antileishmanial properties against Leishmania donovani, that causes fatal visceral leishmaniasis. Most of the synthesized analogues exhibited more than 90% inhibition against the promastigote stage of the parasite. Moreover, compounds T4 and T7 showed potent activity against extracellular promastigote (IC50 = 1.074 μM and IC50 = 1.158 μM) as compared to miltefosine (IC50 = 1.477 μM) and is nontoxic towards the host THP-1 macrophage cell line. Interestingly, compound T4 exhibited significant activity against amastigotes (7.186 μM) and induced the macrophages to prevent the survival of the parasite. Our results indicate that T4 represents a new structural lead for this serious and neglected disease.
Collapse
Affiliation(s)
- Anju Singh
- Department of Chemistry, Drug Design and Synthesis Lab., Jamia Millia Islamia Jamia Nagar New Delhi 110025 India +0091-11-26985507 +0091-9910200655
| | - Mirza Adil Beg
- Department of Molecular Medicine, Jamia Hamdard New Delhi 110062 India
| | - Samra Jamal
- Department of Biotechnology, Jamia Hamdard New Delhi 110062 India
| | - Arif Khan
- Department of Chemistry, SCLS, Jamia Hamdard New Delhi 110062 India
| | - Abdur Rahman
- Department of Chemistry, Drug Design and Synthesis Lab., Jamia Millia Islamia Jamia Nagar New Delhi 110025 India +0091-11-26985507 +0091-9910200655
| | | | - Syed Shafi
- Department of Chemistry, SCLS, Jamia Hamdard New Delhi 110062 India
| | - Nasimul Hoda
- Department of Chemistry, Drug Design and Synthesis Lab., Jamia Millia Islamia Jamia Nagar New Delhi 110025 India +0091-11-26985507 +0091-9910200655
| |
Collapse
|
6
|
Kumawat J, Jain S, Misra N, Dwivedi J, Kishore D. 1,3,5-Triazine: Recent Development in Synthesis of its Analogs and Biological Profile. Mini Rev Med Chem 2024; 24:2019-2071. [PMID: 38847171 DOI: 10.2174/0113895575309800240526180356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/19/2024] [Accepted: 04/30/2024] [Indexed: 10/25/2024]
Abstract
Triazine is an important pharmacophore in the field of research for the development of novel medications due to its presence in numerous powerful physiologically active compounds with significant medical potential, such as anti-tumor, anti-viral, anti-inflammatory, anti-microbial, anti- HIV, anti-leishmanial and others. The easy availability of triazine, high reactivity, simple synthesis of their analog, and their notable broad range of biological activities have garnered chemist interest in designing s-triazine-based drugs. The interest of medicinal chemists has been sparked by the structure-activity relationship of these biologically active entities, leading to the discovery of several promising lead molecules. Its importance for medicinal chemistry research is demonstrated by the remarkable progress made with triazine derivatives in treating a variety of disorders in a very short period. Authors have collated and reviewed the medicinal potential of s-triazine analogous to afford medicinal chemists with a thorough and target-oriented overview of triazine-derived compounds. We hope the present compilation will help people from the industry and research working in the medicinal chemistry area.
Collapse
Affiliation(s)
- Jyoti Kumawat
- Department of Chemistry, Banasthali Vidyapith, Banasthali-304022, India
| | - Sonika Jain
- Department of Chemistry, Banasthali Vidyapith, Banasthali-304022, India
| | - Namita Misra
- Department of Chemistry, Banasthali Vidyapith, Banasthali-304022, India
| | - Jaya Dwivedi
- Department of Chemistry, Banasthali Vidyapith, Banasthali-304022, India
| | - Dharma Kishore
- Department of Chemistry, Banasthali Vidyapith, Banasthali-304022, India
| |
Collapse
|
7
|
Ali MI, Naseer MM. Recent biological applications of heterocyclic hybrids containing s-triazine scaffold. RSC Adv 2023; 13:30462-30490. [PMID: 37854486 PMCID: PMC10580144 DOI: 10.1039/d3ra05953g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/04/2023] [Indexed: 10/20/2023] Open
Abstract
s-Triazine possesses an auspicious status in the field of drug discovery and development owing to its presence in many naturally occurring compounds as well as commercially available drugs like enasidenib, gedatolisib, bimiralisib, atrazine, indaziflam, and triaziflam. Easy, cost-effective, and efficient access to its derivatives in addition to their splendid biological activities such as anticancer, anti-inflammatory, antiviral, anticonvulsant, anti-tubercular, antidiabetic, antimicrobial, makes it an attractive heterocyclic nucleus in the field of medicinal chemistry. Other than the direct access of its derivatives from simple commercially available starting materials like amidine, the s-triazine derivatives have also been obtained starting from an inexpensive commercially available 2,4,6-trichloro-1,3,5-triazine (TCT) commonly known as cyanuric chloride. Owing to the high reactivity and the possibility of sequential substitution of TCT, a variety of biologically active heterocyclic scaffolds have been installed on this nucleus in order to have more potent compounds. These s-triazine-based heterocyclic hybrids have been reported to show enhanced biological activities in recent years. Therefore, it is important to summarize and highlight recent examples of these hybrids which is imperative to attract the attention of the drug development community.
Collapse
Affiliation(s)
- Muhammad Imran Ali
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan +92-5190642241 +92-5190642129
| | - Muhammad Moazzam Naseer
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan +92-5190642241 +92-5190642129
| |
Collapse
|
8
|
Zani CP, Zani AP, Thomazini CM, Retamiro KM, de Oliveira AR, Gonçalves DL, Sarragiotto MH, Garcia FP, de Oliveira Silva S, Nakamura CV, Ueda-Nakamura T. β-Carboline-α-aminophosphonate Derivative: A Promising Antitumor Agent for Breast Cancer Treatment. Molecules 2023; 28:molecules28093949. [PMID: 37175359 PMCID: PMC10179861 DOI: 10.3390/molecules28093949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Breast cancer is the most common type of cancer and the leading cause of cancer mortality among women worldwide. Considering the limitations of the current treatments available, we analyzed the in vitro cytotoxic potential of ((4-Fluoro-phenyl)-{2-[(1-phenyl-9H-β-carboline-3-carbonyl)-amino]-ethylamino}-methyl)-phosphonic acid dibutyl ester (BCP-1) in breast cancer cells (MCF-7 and MDA-MB-231) and in a non-tumor breast cell line (MCF-10A). BCP-1 has an α-aminophosphonate unit linked to the β-carboline nucleus, and the literature indicates that compounds of these classes have high biological potential. In the present study, the mechanism of action of BCP-1 was investigated through methods of spectrofluorimetry, flow cytometry, and protein expression analysis. It was found that BCP-1 inhibited the proliferation of both cancer cell lines. Furthermore, it induced oxidative stress and cell cycle arrest in G2/M. Upregulation of apoptosis-related proteins such as Bax, cytochrome C, and caspases, as well as a decrease in the anti-apoptotic protein Bcl-2, indicated potential induction of apoptosis in the MDA-MB-231 cells. While in MCF-7 cells, BCP-1 activated the autophagic death pathway, which was demonstrated by an increase in autophagic vacuoles and acidic organelles, in addition to increased expression of LC3I/LC3II and reduced SQSTM1/p62 expression. Further, BCP-1 demonstrated antimetastatic potential by reducing MMP-9 expression and cell migration in both breast cancer cell lines. In conclusion, BCP-1 is a promising candidate for breast cancer chemotherapy.
Collapse
Affiliation(s)
- Caroline Pinto Zani
- Laboratory of Technological Innovation in the Development of Pharmaceuticals and Cosmetics, State University of Maringá, Maringá CEP 87020-900, Paraná, Brazil
| | - Aline Pinto Zani
- Laboratory of Technological Innovation in the Development of Pharmaceuticals and Cosmetics, State University of Maringá, Maringá CEP 87020-900, Paraná, Brazil
| | - Cristiane Melissa Thomazini
- Laboratory of Technological Innovation in the Development of Pharmaceuticals and Cosmetics, State University of Maringá, Maringá CEP 87020-900, Paraná, Brazil
| | - Karina Miyuki Retamiro
- Laboratory of Technological Innovation in the Development of Pharmaceuticals and Cosmetics, State University of Maringá, Maringá CEP 87020-900, Paraná, Brazil
| | | | - Débora Laís Gonçalves
- Department of Chemistry, State University of Maringá, Maringá CEP 87020-900, Paraná, Brazil
| | | | - Francielle Pelegrin Garcia
- Laboratory of Technological Innovation in the Development of Pharmaceuticals and Cosmetics, State University of Maringá, Maringá CEP 87020-900, Paraná, Brazil
| | - Sueli de Oliveira Silva
- Laboratory of Technological Innovation in the Development of Pharmaceuticals and Cosmetics, State University of Maringá, Maringá CEP 87020-900, Paraná, Brazil
| | - Celso Vataru Nakamura
- Laboratory of Technological Innovation in the Development of Pharmaceuticals and Cosmetics, State University of Maringá, Maringá CEP 87020-900, Paraná, Brazil
| | - Tania Ueda-Nakamura
- Laboratory of Technological Innovation in the Development of Pharmaceuticals and Cosmetics, State University of Maringá, Maringá CEP 87020-900, Paraná, Brazil
| |
Collapse
|
9
|
Abinaya R, Srinath S, Soundarya S, Sridhar R, Balasubramanian KK, Baskar B. Recent Developments on Synthesis Strategies, SAR Studies and Biological Activities of β-Carboline Derivatives – An Update. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Magalhães TBDS, Silva DKC, Teixeira JDS, De Lima JDT, Barbosa-Filho JM, Moreira DRM, Guimarães ET, Soares MBP. A Betulinic Acid Derivative, BA5, Induces G0/G1 Cell Arrest, Apoptosis Like-Death, and Morphological Alterations in Leishmania sp. Front Pharmacol 2022; 13:846123. [PMID: 35392556 PMCID: PMC8981292 DOI: 10.3389/fphar.2022.846123] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
Leishmaniasis are endemic diseases caused by different species of intracellular parasites of the genus Leishmania. Due to the high toxicity and drug resistance of current antileishmanial drugs, it is necessary to identify new and more effective drugs. Previously, we investigated the immunomodulatory and anti-Trypanosoma cruzi action of BA5, a derivative of betulinic acid. In the present study, we investigated the in vitro activity of BA5 against different species of Leishmania and their action mechanism. BA5 exhibited low cytotoxicity against macrophages and inhibited the proliferation of promastigote forms of Leishmania amazonensis (IC50 = 4.5 ± 1.1 μM), Leishmania major (IC50 = 3.0 ± 0.8 μM), Leishmania braziliensis (IC50 = 0.9 ± 1.1 μM) and Leishmania infantum (IC50 = 0.15 ± 0.05 μM). Incubation with BA5 reduced the percentage of Leishmania amazonensis-infected macrophages and the number of intracellular parasites (IC50 = 4.1 ± 0.7 μM). To understand the mechanism of action underlying BA5 antileishmanial activity (incubation at IC50/2, IC50 or 2xIC50 values of the drug), we investigated ultrastructural changes by scanning electron microscopy and evaluated cell cycle, membrane mitochondrial potential, and cell death against promastigote forms of Leishmania amazonensis by flow cytometry. Promastigotes incubated with BA5 presented membrane blebbing, flagella damage, increased size, and body deformation. Flow cytometry analysis showed that parasite death is mainly caused by apoptosis-like death, arrested cell cycle in G0/G1 phase and did not alter the membrane mitochondrial potential of Leishmania amazonensis. Surprisingly, the combination of BA5 and amphotericin B, an assay used to determine the degree of drug interaction, revealed synergistic effects (CI = 0.15 ± 0.09) on promastigotes forms of Leishmania amazonensis. In conclusion, BA5 compound is an effective and selective antileishmanial agent.
Collapse
Affiliation(s)
- Tatiana Barbosa Dos Santos Magalhães
- Laboratório de Histotécnica e Cultura Celular, Departamento de Ciências da Vida, Universidade Do Estado da Bahia (UNEB), Salvador, Brazil.,Laboratório de Engenharia Tecidual e Imunofarmacologia, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
| | - Dahara Keyse Carvalho Silva
- Laboratório de Histotécnica e Cultura Celular, Departamento de Ciências da Vida, Universidade Do Estado da Bahia (UNEB), Salvador, Brazil.,Laboratório de Engenharia Tecidual e Imunofarmacologia, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
| | - Jessica da Silva Teixeira
- Laboratório de Histotécnica e Cultura Celular, Departamento de Ciências da Vida, Universidade Do Estado da Bahia (UNEB), Salvador, Brazil.,Laboratório de Engenharia Tecidual e Imunofarmacologia, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
| | - Juliana Dizaira Teles De Lima
- Laboratório de Histotécnica e Cultura Celular, Departamento de Ciências da Vida, Universidade Do Estado da Bahia (UNEB), Salvador, Brazil.,Laboratório de Engenharia Tecidual e Imunofarmacologia, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
| | | | - Diogo Rodrigo Magalhães Moreira
- Laboratório de Engenharia Tecidual e Imunofarmacologia, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
| | - Elisalva Teixeira Guimarães
- Laboratório de Histotécnica e Cultura Celular, Departamento de Ciências da Vida, Universidade Do Estado da Bahia (UNEB), Salvador, Brazil.,Laboratório de Engenharia Tecidual e Imunofarmacologia, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
| | - Milena Botelho Pereira Soares
- Laboratório de Engenharia Tecidual e Imunofarmacologia, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.,Instituto Senai de Inovação Em Sistemas Avançados Em Saúde, SENAI/CIMATEC, Salvador, Brazil
| |
Collapse
|
11
|
Photodynamic Evaluation of Triazine Appended Porphyrins as Anti-Leishmanial and Anti-tumor Agents. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
12
|
Baréa P, Barbosa VA, Yamazaki DADS, Gomes CMB, Novello CR, Costa WFD, Gauze GDF, Sarragiotto MH. Anticholinesterase activity of β-carboline-1,3,5-triazine hybrids. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e19958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
13
|
Paula JC, Fernandes NS, Karam TK, Baréa P, Sarragiotto MH, Ueda-Nakamura T, Silva SO, Nakamura CV. β-carbolines RCC and C5 induce death of Leishmania amazonensis intracellular amastigotes. Future Microbiol 2021; 17:99-110. [PMID: 34913373 DOI: 10.2217/fmb-2020-0263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: Cutaneous leishmaniasis is caused by Leishmania spp., and its treatment is limited. The β-carbolines have shown activity against kinetoplastids. Aim: To evaluate the activity and effects of the β-carbolines, N-{2-[(4,6-bis(isopropylamino)-1,3,5-triazin-2-yl)amino]ethyl}-1-(4-methoxyphenyl)-β-carboline-3-carboxamide (RCC) and N-benzyl-1-(4-methoxy)phenyl-9H-beta-carboline-3-carboxamide (C5), against L. amazonensis intracellular amastigotes and to suggest their mechanism of action. Methods: We analyzed the activity and cytotoxicity of β-carbolines and the morphological alterations by electron microscopy. Mitochondrial membrane potential, production nitric oxide, reactive oxygen species, lipidic bodies, autophagic vacuoles and ATP were also evaluated. Results & conclusion: The results showed that RCC and C5 are active against intracellular amastigotes and were able to induce oxidative stress and ultrastructural alterations such as accumulation of lipid bodies and autophagic vacuoles, leading to parasite death.
Collapse
Affiliation(s)
- Jéssica C Paula
- Programa de Pós-graduação em Ciências Biológicas, Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Universidade Estadual de Maringá, Maringá, Brazil
| | - Nilma S Fernandes
- Programa de Pós-graduação em Ciências Biológicas, Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Universidade Estadual de Maringá, Maringá, Brazil
| | - Thaysa K Karam
- Programa de Pós-graduação em Ciências Biológicas, Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Universidade Estadual de Maringá, Maringá, Brazil
| | - Paula Baréa
- Departamento de Química, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Maria H Sarragiotto
- Departamento de Química, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Tania Ueda-Nakamura
- Programa de Pós-graduação em Ciências Biológicas, Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Universidade Estadual de Maringá, Maringá, Brazil
| | - Sueli O Silva
- Programa de Pós-graduação em Ciências Biológicas, Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Universidade Estadual de Maringá, Maringá, Brazil
| | - Celso V Nakamura
- Programa de Pós-graduação em Ciências Biológicas, Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Universidade Estadual de Maringá, Maringá, Brazil
| |
Collapse
|
14
|
Mahender T, Pankaj W, Kumar SP, Ankur V, Kumar SS. Some Scaffolds as Anti-leishmanial Agents: An Review. Mini Rev Med Chem 2021; 22:743-757. [PMID: 34517799 DOI: 10.2174/1389557521666210913115116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 03/03/2021] [Accepted: 06/06/2021] [Indexed: 11/22/2022]
Abstract
Leishmaniasis is a parasitic infectious neglected tropical disease transmitted to humans by the parasites of Leishmania species. Mainly three types of leishmaniasis cases such as visceral (VL), cutaneous (CL) and mucocutaneous leishmaniasis are usually observed. In many western countries, almost 700,000 to 1million peoples are suffering from leishmaniasis and it is estimated that around 26000 to 65000 deaths occurs annually. For its treatment few drugs are available however none of them are ideal to treat leishmaniasis due to long treatment, discomfort mode of administration, risk of high level toxicity, high resistance against etc. Hence so many patients are unable to take complete treatment due to the high drug resistance. The present review will focus on antileishmanial activity of reported derivatives of betacarboline, chalcone, azole, quinoline, quinazoline, benzimidazole, benzadiazapine, thiaazoles, semicarbazone and hydontoin analogues. We believe that this present study will helpful to researcher to design new antileishmanial agents.
Collapse
Affiliation(s)
- Thatikayala Mahender
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144401. India
| | - Wadhwa Pankaj
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144401. India
| | - Singh Pankaj Kumar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037. India
| | - Vaidya Ankur
- Pharmacy College Saifai, Uttar Pradesh University of Medical Sciences, Saifai, Etawah (U.P.). India
| | - Sahu Sanjeev Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144401. India
| |
Collapse
|
15
|
Wang X, Xiao H, Wang J, Huang Z, Peng G, Xie W, Bian X, Liu H, Shi C, Yang T, Li X, Gao J, Meng Y, Jiang Q, Chen W, Hu F, Wei N, Wang X, Zhang L, Wang K, Sun Q. Synthesis and Biological Evaluation of Novel Triazine Derivatives as Positive Allosteric Modulators of α7 Nicotinic Acetylcholine Receptors. J Med Chem 2021; 64:12379-12396. [PMID: 34374537 DOI: 10.1021/acs.jmedchem.1c01058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Enhancing neuronal α7 nicotinic acetylcholine receptor (α7 nAChR) function can alleviate cognitive deficits. Here, we report the design, synthesis, and evaluation of N-(4-(trifluoromethoxy)phenyl)-1,3,5-triazin-2-amine derivatives 8-10 as a series of novel α7 nAChR positive allosteric modulators (PAMs). The representative compound 10e functions as a type I PAM with an EC50 of 3.0 μM and approximately 38-fold enhancement of α7 current in the presence of agonist acetylcholine (100 μM). It specifically enhances α7 current with high selectivity. Compound 10e shows good pharmacokinetic property in mice. Intraperitoneal injection of 10e (3 mg/kg) exhibits sufficient blood-brain barrier penetration in mice. Furthermore, 10e can also rescue the auditory gating deficit in mice with schizophrenia-like behavior. Molecular docking of 10e with homopentameric α7 nAChR reveals a new mode of action. These results support the potential of 10e for treatment for schizophrenia and Alzheimer's disease.
Collapse
Affiliation(s)
- Xintong Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Department of Molecualr and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Haoran Xiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jing Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China
| | - Zongze Huang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Geng Peng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wenjun Xie
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Department of Molecualr and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiling Bian
- Department of Molecualr and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Huijie Liu
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China
| | - Cheng Shi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Taoyi Yang
- Department of Molecualr and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xin Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jian Gao
- Department of Molecualr and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ying Meng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qianchen Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wei Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Fang Hu
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China
| | - Ningning Wei
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China
- Institute of Innovative Drugs, Qingdao University, 38 Dengzhou Road, Qingdao 266021, China
| | - Xiaowei Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - KeWei Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China
- Institute of Innovative Drugs, Qingdao University, 38 Dengzhou Road, Qingdao 266021, China
| | - Qi Sun
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
16
|
A comprehensive overview of β-carbolines and its derivatives as anticancer agents. Eur J Med Chem 2021; 224:113688. [PMID: 34332400 DOI: 10.1016/j.ejmech.2021.113688] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 05/05/2021] [Accepted: 07/04/2021] [Indexed: 01/13/2023]
Abstract
β-Carboline alkaloids are a family of natural and synthetic products with structural diversity and outstanding antitumor activities. This review summarizes research developments of β-carboline and its derivatives as anticancer agents, which focused on both natural and synthetic monomers as well as dimers. In addition, the structure-activity relationship (SAR) analysis of β-carboline monomers and dimers are summarized and mechanism of action of β-carboline and its derivatives are also presented. A few possible research directions, suggestions and clues for future work on the development of novel β-carboline-based anticancer agents with improved expected activities and lesser toxicity are also provided.
Collapse
|
17
|
Faheem, Kumar BK, Sekhar KVGC, Kunjiappan S, Jamalis J, Balaña-Fouce R, Sankaranarayanan M. Recent Update on the Anti-infective Potential of β-carboline Analogs. Mini Rev Med Chem 2021; 21:398-425. [PMID: 33001013 DOI: 10.2174/1389557520666201001130114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 11/22/2022]
Abstract
β-Carboline, a naturally occurring indole alkaloid, holds a momentous spot in the field of medicinal chemistry due to its myriad of pharmacological actions like anticancer, antiviral, antibacterial, antifungal, antileishmanial, antimalarial, neuropharmacological, anti-inflammatory and antithrombotic among others. β-Carbolines exhibit their pharmacological activity via diverse mechanisms. This review provides a recent update (2015-2020) on the anti-infective potential of natural and synthetic β-carboline analogs focusing on its antibacterial, antifungal, antiviral, antimalarial, antileishmanial and antitrypanosomal properties. In cases where enough details are available, a note on its mechanism of action is also added.
Collapse
Affiliation(s)
- Faheem
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Vidya Vihar, Pilani-333031, Rajasthan, India
| | - Banoth Karan Kumar
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Vidya Vihar, Pilani-333031, Rajasthan, India
| | - Kondapalli Venkata Gowri Chandra Sekhar
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal, R.R. Dist. Hyderabad, 500078, Telangana, India
| | - Selvaraj Kunjiappan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil 626126, India
| | - Joazaizulfazli Jamalis
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor 81310, Malaysia
| | | | - Murugesan Sankaranarayanan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Vidya Vihar, Pilani-333031, Rajasthan, India
| |
Collapse
|
18
|
Gupta O, Pradhan T, Bhatia R, Monga V. Recent advancements in anti-leishmanial research: Synthetic strategies and structural activity relationships. Eur J Med Chem 2021; 223:113606. [PMID: 34171661 DOI: 10.1016/j.ejmech.2021.113606] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 12/19/2022]
Abstract
Leishmaniasis is a parasitic neglected tropical disease caused by various species of Leishmania parasite. Despite tremendous advancements in the therapeutic sector and drug development strategies, still the existing anti-leishmanial agents are associated with some clinical issues like drug resistance, toxicity and selectivity. Therefore, several research groups are continuously working towards the development of new therapeutic candidates to overcome these issues. Many potential heterocyclic moieties have been explored for this purpose including triazoles, chalcones, chromone, thiazoles, thiosemicarbazones, indole, quinolines, etc. It is evident from the literature that the majority of anti-leishmanial agents act by interacting with key regulators including PTR-I, DHFR, LdMetAP1, MAPK, 14 α-demethylase and pteridine reductase-I, etc. Also, these tend to induce the production of ROS which causes damage to parasites. In the present compilation, authors have summarized various significant synthetic procedures for anti-leishmanial agents reported in recent years. A brief description of the pharmacological potentials of synthesized compounds along with important aspects related to structural activity relationship has been provided. Important docking outcomes highlighting the possible mode of interaction for the reported compounds have also been included. This review would be helpful to the scientific community to design newer strategies and also to develop novel therapeutic candidates against leishmaniasis.
Collapse
Affiliation(s)
- Ojasvi Gupta
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India
| | - Tathagata Pradhan
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India
| | - Rohit Bhatia
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India.
| | - Vikramdeep Monga
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India.
| |
Collapse
|
19
|
Discovery and preliminary mechanism of 1-carbamoyl β-carbolines as new antifungal candidates. Eur J Med Chem 2021; 222:113563. [PMID: 34118721 DOI: 10.1016/j.ejmech.2021.113563] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/04/2021] [Accepted: 05/15/2021] [Indexed: 11/23/2022]
Abstract
Natural β-carboline alkaloids are ideal models for the discovery of pharmaceutically important entities. Various 1-substituted β-carbolines were synthesized from commercially inexpensive tryptophan and demonstrated significant in vitro antifungal activity against G. graminis. Significantly, compound 4m (EC50 = 0.45 μM) with carboxamide at 1-position displayed the best efficacy and nearly 20 folds enhancement in antifungal potential compared to Silthiopham (EC50 = 8.95 μM). Moreover, compounds 6, 7, and 4i exhibited excellent in vitro antifungal activities and in vivo protective and curative activities against B. cinerea and F. graminearum. Preliminary mechanism studies revealed that compound 4m caused reactive oxygen species accumulation, cell membrane destruction, and deregulation of histone acetylation. These findings indicated that 1-carbamoyl β-carboline can be selected as a promising model for the discovery of novel and broad-spectrum fungicide candidates.
Collapse
|
20
|
Singh S, Mandal MK, Masih A, Saha A, Ghosh SK, Bhat HR, Singh UP. 1,3,5-Triazine: A versatile pharmacophore with diverse biological activities. Arch Pharm (Weinheim) 2021; 354:e2000363. [PMID: 33760298 DOI: 10.1002/ardp.202000363] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/05/2021] [Accepted: 02/12/2021] [Indexed: 12/14/2022]
Abstract
1,3,5-Triazine and its derivatives have been the epicenter of chemotherapeutic molecules due to their effective biological activities, such as antibacterial, fungicidal, antimalarial, anticancer, antiviral, antimicrobial, anti-inflammatory, antiamoebic, and antitubercular activities. The present review represents a summarized report of the crucial biological activities possessed by substituted 1,3,5-triazine derivatives, with special attention to the most potent compounds.
Collapse
Affiliation(s)
- Saumya Singh
- Drug Design and Discovery Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology, and Sciences, Allahabad, Uttar Pradesh, India
| | - Milan K Mandal
- Drug Design and Discovery Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology, and Sciences, Allahabad, Uttar Pradesh, India
| | - Anup Masih
- Drug Design and Discovery Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology, and Sciences, Allahabad, Uttar Pradesh, India
| | - Ashmita Saha
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Surajit K Ghosh
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Hans R Bhat
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Udaya P Singh
- Drug Design and Discovery Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology, and Sciences, Allahabad, Uttar Pradesh, India
| |
Collapse
|
21
|
A convenient synthesis of β-carbolines by iron-catalyzed aerobic decarboxylative/dehydrogenative aromatization of tetrahydro-β-carbolines under air. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.131960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
22
|
Sireesha R, Sreenivasulu R, Chandrasekhar C, Jadav SS, Pavani Y, Rao MVB, Subbarao M. Design, synthesis, anti-cancer evaluation and binding mode studies of benzimidazole/benzoxazole linked β-carboline derivatives. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129351] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
DNA interaction analysis with automated biosensor of paraben derivative s-triazines. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
24
|
Samy F, Omar F. Synthesis, characterization, antitumor activity, molecular modeling and docking of new ligand, (2,5-pyrrole)-bis(5,6-diphenyl-[1,2,4]-triazin-3-yl)hydrazone and its complexes. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128910] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
25
|
Ortalli M, Varani S, Cimato G, Veronesi R, Quintavalla A, Lombardo M, Monari M, Trombini C. Evaluation of the Pharmacophoric Role of the O-O Bond in Synthetic Antileishmanial Compounds: Comparison between 1,2-Dioxanes and Tetrahydropyrans. J Med Chem 2020; 63:13140-13158. [PMID: 33091297 PMCID: PMC8018184 DOI: 10.1021/acs.jmedchem.0c01589] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Indexed: 12/17/2022]
Abstract
Leishmaniases are neglected diseases that can be treated with a limited drug arsenal; the development of new molecules is therefore a priority. Recent evidence indicates that endoperoxides, including artemisinin and its derivatives, possess antileishmanial activity. Here, 1,2-dioxanes were synthesized with their corresponding tetrahydropyrans lacking the peroxide bridge, to ascertain if this group is a key pharmacophoric requirement for the antileishmanial bioactivity. Newly synthesized compounds were examined in vitro, and their mechanism of action was preliminarily investigated. Three endoperoxides and their corresponding tetrahydropyrans effectively inhibited the growth of Leishmania donovani promastigotes and amastigotes, and iron did not play a significant role in their activation. Further, reactive oxygen species were produced in both endoperoxide- and tetrahydropyran-treated promastigotes. In conclusion, the peroxide group proved not to be crucial for the antileishmanial bioactivity of endoperoxides, under the tested conditions. Our findings reveal the potential of both 1,2-dioxanes and tetrahydropyrans as lead compounds for novel therapies against Leishmania.
Collapse
Affiliation(s)
- Margherita Ortalli
- Unit of Clinical Microbiology, Regional Reference
Centre for Microbiological Emergencies (CRREM), St. Orsola-Malpighi
University Hospital, Via Massarenti 9, 40138 Bologna,
Italy
| | - Stefania Varani
- Unit of Clinical Microbiology, Regional Reference
Centre for Microbiological Emergencies (CRREM), St. Orsola-Malpighi
University Hospital, Via Massarenti 9, 40138 Bologna,
Italy
- Department of Experimental, Diagnostic and Specialty
Medicine, Alma Mater Studiorum - University of Bologna, Via
Massarenti 9, 40138 Bologna, Italy
| | - Giorgia Cimato
- Unit of Clinical Microbiology, Regional Reference
Centre for Microbiological Emergencies (CRREM), St. Orsola-Malpighi
University Hospital, Via Massarenti 9, 40138 Bologna,
Italy
| | - Ruben Veronesi
- Department of Chemistry “G. Ciamician”,
Alma Mater Studiorum - University of Bologna Via Selmi 2,
40126 Bologna, Italy
| | - Arianna Quintavalla
- Department of Chemistry “G. Ciamician”,
Alma Mater Studiorum - University of Bologna Via Selmi 2,
40126 Bologna, Italy
- Centro Interuniversitario di Ricerca sulla Malaria
(CIRM) - Italian Malaria Network (IMN), University of Milan,
20100 Milan, Italy
| | - Marco Lombardo
- Department of Chemistry “G. Ciamician”,
Alma Mater Studiorum - University of Bologna Via Selmi 2,
40126 Bologna, Italy
- Centro Interuniversitario di Ricerca sulla Malaria
(CIRM) - Italian Malaria Network (IMN), University of Milan,
20100 Milan, Italy
| | - Magda Monari
- Department of Chemistry “G. Ciamician”,
Alma Mater Studiorum - University of Bologna Via Selmi 2,
40126 Bologna, Italy
| | - Claudio Trombini
- Department of Chemistry “G. Ciamician”,
Alma Mater Studiorum - University of Bologna Via Selmi 2,
40126 Bologna, Italy
- Centro Interuniversitario di Ricerca sulla Malaria
(CIRM) - Italian Malaria Network (IMN), University of Milan,
20100 Milan, Italy
| |
Collapse
|
26
|
Yan M, Ma R, Chen R, Wang L, Wang Z, Ma Y. Synthesis of 1,2-dihydro-1,3,5-triazine derivatives via Cu(II)-catalyzed C(sp 3)-H activation of N, N-dimethylethanolamine with amidines. Chem Commun (Camb) 2020; 56:10946-10949. [PMID: 32940285 DOI: 10.1039/d0cc03820b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
1,2-Dihydro-1,3,5-triazines and symmetrical 1,3,5-triazines were obtained in up to 81% yields from amidines and N,N-dimethylethanolamine catalyzed by CuCl2. The reaction involves three C-N bond formations during the oxidative annulation process and the mechanism was proposed. This efficient synthesis of 1,2-dihydro-1,3,5-triazines was developed for the first time.
Collapse
Affiliation(s)
- Min Yan
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering, Taizhou University, 1139 Shifu Avenue, Taizhou, 318000, P. R. China. and School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, P. R. China
| | - Renchao Ma
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering, Taizhou University, 1139 Shifu Avenue, Taizhou, 318000, P. R. China.
| | - Rener Chen
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering, Taizhou University, 1139 Shifu Avenue, Taizhou, 318000, P. R. China.
| | - Lei Wang
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering, Taizhou University, 1139 Shifu Avenue, Taizhou, 318000, P. R. China.
| | - Zhiming Wang
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering, Taizhou University, 1139 Shifu Avenue, Taizhou, 318000, P. R. China.
| | - Yongmin Ma
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering, Taizhou University, 1139 Shifu Avenue, Taizhou, 318000, P. R. China. and School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, P. R. China
| |
Collapse
|
27
|
Membrane dynamics in Leishmania amazonensis and antileishmanial activities of β-carboline derivatives. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183473. [PMID: 32937102 DOI: 10.1016/j.bbamem.2020.183473] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 01/18/2023]
Abstract
Two β-carboline compounds, 8i and 6d, demonstrated in vitro antileishmanial activity against Leishmania (L.) amazonensis promastigotes similar to that of miltefosine (MIL). Estimates of the membrane-water partition coefficient (KM/W) and the compound concentrations in the membrane (cm50) and aqueous phase (cw50) for half maximal inhibitory concentration were made. Whereas these biophysical parameters for 6d were not significantly different from those reported for MIL, 8i showed lower affinity for the parasite membrane (lower KM/W) and a lower concentration of the compound in the membrane required to inhibit the growth of the parasite (lower cm50). A 2-hour treatment of Leishmania promastigotes with the compounds 8i and 6d caused membrane rigidity in a concentration-dependent manner, as demonstrated by the electron paramagnetic resonance (EPR) technique and spin label method. This increased rigidity of the membrane was interpreted to be associated with the occurrence of cross-linking of oxidized cytoplasmic proteins to the parasite membrane skeleton. Importantly, the two β-carboline-oxazoline derivatives showed low hemolytic action, both in experiments with isolated red blood cells or with whole blood, denoting their great Leishmania/erythrocyte selectivity index. Using electron microscopy, changes in the membrane of both the amastigote and promastigote form of the parasite were confirmed, and it was demonstrated that compounds 8i and 6d decreased the number of amastigotes in infected murine macrophages. Furthermore, 8i and 6d were more toxic to the protozoa than to J774A.1 macrophages, with treated promastigotes exhibiting a decrease in cell volume, mitochondrial membrane potential depolarization, accumulation of lipid bodies, increased ROS production and changes in the cell cycle.
Collapse
|
28
|
Banoth KK, Faheem, ChandraSekhar KVG, Adinarayana N, Murugesan S. Recent evolution on synthesis strategies and anti-leishmanial activity of β-carboline derivatives - An update. Heliyon 2020; 6:e04916. [PMID: 32995612 PMCID: PMC7501441 DOI: 10.1016/j.heliyon.2020.e04916] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/14/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023] Open
Abstract
Leishmaniasis is the most widespread pathogenic disease in several countries. Currently, no effective vaccines are available, and the control of Leishmaniasis primarily relies on decade-old chemotherapy. The treatment for the Leishmaniasis is not up to the mark. Current therapy for Leishmaniasis is ancient and requires hospitalization for the administration. These medications are also highly toxic and resistant. β-carboline, a natural indole containing alkaloid, holds a vital position in the field of medicinal chemistry with a diversified pharmacological action. The current review focuses mainly on the anti-leishmanial effects of β-carboline analogs and their synthetic strategies, structural activity relationship studies (SAR). The past ten years alterations unveiled by β-carboline analogs present in phytoconstituents and various derivatives of synthesized analogs with the mechanism of action were briefly shortlisted and illustrated.
Collapse
Affiliation(s)
- Karan Kumar Banoth
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, BITS Pilani, Pilani Campus, Pilani, 333031, Rajasthan, India
| | - Faheem
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, BITS Pilani, Pilani Campus, Pilani, 333031, Rajasthan, India
| | | | - Nandikolla Adinarayana
- Department of Chemistry, BITS Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal, R.R. Dist. Hyderabad, 500078, Telangana, India
| | - Sankaranarayanan Murugesan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, BITS Pilani, Pilani Campus, Pilani, 333031, Rajasthan, India
| |
Collapse
|
29
|
Guo H, Diao QP. 1,3,5-Triazine-azole Hybrids and their Anticancer Activity. Curr Top Med Chem 2020; 20:1481-1492. [DOI: 10.2174/1568026620666200310122741] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/12/2020] [Accepted: 02/17/2020] [Indexed: 12/24/2022]
Abstract
1,3,5-Triazine and azole can interact with various therapeutic targets, and their derivatives
possess promising in vitro and in vivo anticancer activity. Hybrid molecules have the potential to enhance
efficiency, overcome drug resistance and reduce side effects, and many hybrid molecules are under
different phases of clinical trials, so hybridization of 1,3,5-triazine with azole may provide valuable
therapeutic intervention for the treatment of cancer. Substantial efforts have been made to develop
azole-containing 1,3,5-triazine hybrids as novel anticancer agents, and some of them exhibited excellent
activity. This review emphasizes azole-containing 1,3,5-triazine hybrids with potential anticancer activity,
and the structure-activity relationships as well as the mechanisms of action are also discussed to
provide comprehensive and target-oriented information for the development of this kind of anticancer
drugs.
Collapse
Affiliation(s)
- Hua Guo
- School of Chemistry and Life Science, Anshan Normal University, Anshan, Liaoning, China
| | - Quan-Ping Diao
- School of Chemistry and Life Science, Anshan Normal University, Anshan, Liaoning, China
| |
Collapse
|
30
|
New 3-tetrazolyl-β-carbolines and β-carboline-3-carboxylates with anti-cancer activity. Eur J Med Chem 2019; 179:123-132. [DOI: 10.1016/j.ejmech.2019.05.085] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/24/2019] [Accepted: 05/29/2019] [Indexed: 12/28/2022]
|
31
|
Upadhyay A, Chandrakar P, Gupta S, Parmar N, Singh SK, Rashid M, Kushwaha P, Wahajuddin M, Sashidhara KV, Kar S. Synthesis, Biological Evaluation, Structure-Activity Relationship, and Mechanism of Action Studies of Quinoline-Metronidazole Derivatives Against Experimental Visceral Leishmaniasis. J Med Chem 2019; 62:5655-5671. [PMID: 31124675 DOI: 10.1021/acs.jmedchem.9b00628] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In our efforts to identify novel chemical scaffolds for the development of antileishmanial agents, a series of quinoline-metronidazole hybrid compounds was synthesized and tested against the murine model of visceral leishmaniasis. Among all synthesized derivatives, 15b and 15i showed significant antileishmanial efficacy against both extracellular promastigote (IC50 9.54 and 5.42 μM, respectively) and intracellular amastigote (IC50 9.81 and 3.75 μM, respectively) forms of Leishmania donovani with negligible cytotoxicity toward the host (J774 macrophages, Vero cells). However, compound 15i effectively inhibited the parasite burden in the liver and spleen (>80%) of infected BALB/c mice. Mechanistic studies revealed that 15i triggers oxidative stress which induces bioenergetic collapse and apoptosis of the parasite by decreasing ATP production and mitochondrial membrane potential. Structure-activity analyses and pharmacokinetic studies suggest 15i as a promising antileishmanial lead and emphasize the importance of quinoline-metronidazole series as a suitable platform for the future development of antileishmanial agents.
Collapse
Affiliation(s)
- Akanksha Upadhyay
- Academy of Scientific and Innovative Research (AcSIR) , Anusandhan Bhawan , New Delhi 110025 , India
| | - Pragya Chandrakar
- Academy of Scientific and Innovative Research (AcSIR) , Anusandhan Bhawan , New Delhi 110025 , India
| | - Sampa Gupta
- Academy of Scientific and Innovative Research (AcSIR) , Anusandhan Bhawan , New Delhi 110025 , India
| | - Naveen Parmar
- Academy of Scientific and Innovative Research (AcSIR) , Anusandhan Bhawan , New Delhi 110025 , India
| | - Sandeep Kumar Singh
- Academy of Scientific and Innovative Research (AcSIR) , Anusandhan Bhawan , New Delhi 110025 , India
| | - Mamunur Rashid
- Academy of Scientific and Innovative Research (AcSIR) , Anusandhan Bhawan , New Delhi 110025 , India
| | - Pragati Kushwaha
- Academy of Scientific and Innovative Research (AcSIR) , Anusandhan Bhawan , New Delhi 110025 , India
| | - Muhammad Wahajuddin
- Academy of Scientific and Innovative Research (AcSIR) , Anusandhan Bhawan , New Delhi 110025 , India
| | - Koneni V Sashidhara
- Academy of Scientific and Innovative Research (AcSIR) , Anusandhan Bhawan , New Delhi 110025 , India
| | - Susanta Kar
- Academy of Scientific and Innovative Research (AcSIR) , Anusandhan Bhawan , New Delhi 110025 , India
| |
Collapse
|
32
|
Synthesis, X-Ray Crystal Structures, and Preliminary Antiproliferative Activities of New s-Triazine-hydroxybenzylidene Hydrazone Derivatives. J CHEM-NY 2019. [DOI: 10.1155/2019/9403908] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We herein report a new small library of Schiff-base compounds that encompasses s-triazine and (2 or 4)-hydroxylbenzylidene derivatives. These compounds were synthesized through a hydrazone linkage connecting both the s-triazine and hydroxybenzylidene derivatives. The synthetic strategy adopted allowed the synthesis of the target compounds with excellent yields and purities as observed from their NMR (1H and 13C) and elemental analysis. Furthermore, 4f, 5b, and 5f were further confirmed by X-ray single crystal diffraction technique. The preliminary antiproliferative activities for the synthesized compounds were tested against two different cancer cell lines including breast cancer (MCF-7) and colon cancer (HCT-116). From the eighteen compounds, which have been examined, only two derivatives having piperidine moiety showed more selectivity against the two cell lines MCF-7 and HCT-116, while the others showed very weak activity. The position of the hydroxyl group in the benzylidine ring and the substituent on the s-triazine moiety has great effect on the activity of the prepared compounds. The IC50 values for the two derivatives 4a and 5a evaluated against breast cancer cells, very close to those for the chemotherapeutic drug cisplatin, are 27 µM (13.3 µg/mL), 17 µM (8.4 µg/mL), and 20 µM (6 µg/mL) for 4a, 5a, and cisplatin, respectively. These results propose the preliminary antiproliferative activity of these two derivatives may deserve further consideration for development of new derivatives as potent anticancer agents.
Collapse
|
33
|
Insights into the current status of privileged N-heterocycles as antileishmanial agents. Mol Divers 2019; 24:525-569. [DOI: 10.1007/s11030-019-09953-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 04/16/2019] [Indexed: 02/04/2023]
|
34
|
Borsari C, Quotadamo A, Ferrari S, Venturelli A, Cordeiro-da-Silva A, Santarem N, Costi MP. Scaffolds and Biological Targets Avenue to Fight Against Drug Resistance in Leishmaniasis. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2018. [DOI: 10.1016/bs.armc.2018.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|