1
|
Yang X, Jia S, Xia C, Yang Y. Discovery of novel β-carboline/melatonin hybrids as STAT3 inhibitors for the treatment of lung cancer via increasing DNA damage. Bioorg Med Chem 2025; 127:118227. [PMID: 40354674 DOI: 10.1016/j.bmc.2025.118227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/26/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025]
Abstract
Based on the facts that significant synergistic effects exist between STAT3 inhibitors and DNA damage agents, we herein designed and synthesized a series of β-carboline/melatonin hybrids as STAT3 inhibitors via increasing DNA damage. Among them, DT10 exhibited superior in vitro antitumor potency against A549 and HepG2 cells, with IC50 values of 0.44 and 1.89 μM, respectively. Mechanistic investigations revealed that DT10 could reduce p-STAT3 levels, inhibit STAT3 nuclear translocation (IC50 = 2.06 ± 0.55 μM), and upregulate the DNA damage markers γ-H2AX and 53BP1 in A549 cells. Additionally, DT10 suppressed the migration and promoted the apoptosis of A549 cells. Overall, DT10 has a strong anticancer effect and is a candidate therapeutic target for human lung cancer.
Collapse
Affiliation(s)
- Xiaojuan Yang
- School of Pharmacy, Xinxiang University, Xinxiang 453003, China.
| | - Shuting Jia
- Jincheng People's Hospital, Jincheng 048026, China
| | - Chao Xia
- School of Pharmacy, Xinxiang University, Xinxiang 453003, China
| | - Yuping Yang
- School of Pharmacy, Xinxiang University, Xinxiang 453003, China
| |
Collapse
|
2
|
Vutla A, Saxena D, Maitra R, Chopra S, Batra S. Synthesis and Bio-Evaluation of Quaternized Fused-β-Carbolines as Anti-MRSA Agents. ChemMedChem 2025; 20:e202400955. [PMID: 39948749 DOI: 10.1002/cmdc.202400955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/26/2025]
Abstract
The drastic increase in the emergence of methicillin and vancomycin resistant S. aureus has resulted in almost negligible treatment options available to tackle these drug-resistant strains and therefore, search for newer antibiotics is essential. In this context, a new series of quaternized fused β-carbolines was synthesized and evaluated for its anti-bacterial potential. Several compounds from the series displayed potent anti-bacterial activity against Gram-positive bacteria including the drug-resistant strains with minimal cytotoxicity and promising bactericidal action.
Collapse
Affiliation(s)
- Adilakshmi Vutla
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow, 226031, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Deepanshi Saxena
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow, 226031, Uttar Pradesh, India
| | - Rahul Maitra
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow, 226031, Uttar Pradesh, India
| | - Sidharth Chopra
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow, 226031, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sanjay Batra
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow, 226031, Uttar Pradesh, India
| |
Collapse
|
3
|
Gao A, Qi Y, Luo Y, Hu X, Jiang R, Chang S, Zhou X, Liu L, Zhu L, Feng X, Jiang L, Zhong H. Mass spectrometric monitoring of redox transformation and arylation of tryptophan. Anal Chim Acta 2025; 1349:343822. [PMID: 40074454 DOI: 10.1016/j.aca.2025.343822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/27/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025]
Abstract
Tryptophan (Trp) is an essential amino acid obtained from human diet. It is involved not only in de novo biosynthesis of proteins but also in complex metabolic pathways. Redox transformation of tryptophan is under-explored in comparison with kynurenine, serotonin and indole pyruvate pathways. We described herein a mass spectrometric approach that can not only detect electron transfer-associated changes in masses and charges, but also identify electron-directed bond cleavages and radical-radical cross-coupling reactions in redox transformation of tryptophan. Photoactive TiO2 that is widely applied in cosmetic products is used as electron donor and receptor because of the capability to generate photoelectrons and holes. It was demonstrated tryptophan undergoes redox transformation through the removal of an electron from amino nitrogen atom by hole oxidization along with an electron capture in the indole ring. The back and forth electron-shuttle converts electric energy into chemical energy that enforces bond cleavages. Sodium-coupled electron transfer (SCET) was found in complementary with proton-coupled electron transfer in tryptophan. The movement of sodium ions avoids electric charge buildup caused by electron transfer. Various redox products were detected on both light irradiated TiO2 and skins, among which β-carboline shows extensive radical scavenging ability for diverse cross-coupling with indole derivatives. Light-independent redox products have been detected in vivo such as in mouse brain, indicating the presence of in vivo electron transfer-directed redox transformation. It has also been revealed that tryptophan can be arylated on Cα and Cβ atoms in response to the exposure of halogenated aromatics.
Collapse
Affiliation(s)
- Anji Gao
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yinghua Qi
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Yixiang Luo
- Medical College of Guangxi University, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Xiaoyuan Hu
- Medical College of Guangxi University, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Ruowei Jiang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Shao Chang
- College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Xin Zhou
- Medical College of Guangxi University, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Linhui Liu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Luping Zhu
- College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Xue Feng
- Center for Instrumental Analysis, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Ling Jiang
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Hongying Zhong
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, Guangxi, 530004, PR China; College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, PR China; Medical College of Guangxi University, Guangxi University, Nanning, Guangxi, 530004, PR China; Center for Instrumental Analysis, Guangxi University, Nanning, Guangxi, 530004, PR China.
| |
Collapse
|
4
|
Sulaiman NF, Zulkifli SZ, Saaidin AS, Lekkala R, Izzaty Hassan N, Pungot NH. Exploring β-carboline hybrids and their derivatives: A review on synthesis and anticancer efficiency. Eur J Med Chem 2025; 288:117412. [PMID: 39987835 DOI: 10.1016/j.ejmech.2025.117412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/28/2025] [Accepted: 02/15/2025] [Indexed: 02/25/2025]
Abstract
β-Carboline is a crucial compound in medicinal chemistry known for its versatile pharmacological activities. Recent research has focused on hybrid molecules incorporating a β-carboline scaffold linked to other pharmacophore moieties. These hybrid compounds have demonstrated diverse therapeutic properties, including anticancer, antianxiety, antimalarial, antidepressant, anti-inflammatory, antileishmanial, and antioxidant effects. This review highlights studies conducted from 2014 to the present with a particular emphasis on the development of β-carboline hybrid compounds and their derivatives as potent anticancer agents. The structure-activity relationship (SAR) analysis reveals that these hybrids exhibit significant cytotoxicity against various cancer cell lines. This review aims to inspire further research into the novel synthesis and evolution of β-carboline hybrids and their derivatives, potentially leading to new therapeutic advancements.
Collapse
Affiliation(s)
- Nur Fatihah Sulaiman
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, 40450, Malaysia
| | - Siti Zafirah Zulkifli
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, 40450, Malaysia; Organic Synthesis Laboratory, Institute of Science, Universiti Teknologi MARA, Cawangan Selangor, Bandar Puncak Alam, Selangor, 42300, Malaysia
| | - Aimi Suhaily Saaidin
- Organic Synthesis Laboratory, Institute of Science, Universiti Teknologi MARA, Cawangan Selangor, Bandar Puncak Alam, Selangor, 42300, Malaysia
| | - Ravindar Lekkala
- Department of Chemical Sciences, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, Bandar Baru Bangi, Selangor, 43600, Malaysia
| | - Nurul Izzaty Hassan
- Department of Chemical Sciences, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, Bandar Baru Bangi, Selangor, 43600, Malaysia
| | - Noor Hidayah Pungot
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, 40450, Malaysia; Organic Synthesis Laboratory, Institute of Science, Universiti Teknologi MARA, Cawangan Selangor, Bandar Puncak Alam, Selangor, 42300, Malaysia.
| |
Collapse
|
5
|
Wang Y, Ding N, Zhao Y, Wang F, Liu W, Chen Z, Sun W, Gu L, Zhang Y. Design, synthesis, and biological evaluation of β-carboline derivatives as ABCB1 inhibitors for reversing multidrug resistance. Eur J Med Chem 2025; 288:117390. [PMID: 39965407 DOI: 10.1016/j.ejmech.2025.117390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/30/2025] [Accepted: 02/10/2025] [Indexed: 02/20/2025]
Abstract
The scarcity of ATP-binding cassette subfamily B member 1 (ABCB1, also known as P-glycoprotein, P-gp) inhibitors suitable for clinical application in improving multidrug resistance (MDR) promotes the development of drugs aimed at reversing MDR. In this work, we reported a comprehensive study for the first time about the reversal activity of β-carboline derivatives on ABCB1-mediated MDR. Among 48 synthesized derivatives, compound K27 significantly increased the sensitivity of ABCB1-mediated MDR SW620/AD300 cells to paclitaxel (PTX) (IC50 = 15.33 ± 5.4 nM, RF = 171.2) and hardly showed toxicity even at a high concentration of 20 μM when used alone. The in vitro studies indicated that compound K27 distinctly enhanced the arresting effect of PTX on the SW620/AD300 cell cycle, thereby inhibiting their proliferation. Mechanistically, compound K27 was confirmed to directly bind to ABCB1 to inhibit efflux function, reducing cellular efflux and ensuring stable intracellular concentration of PTX without affecting ABCB1's normal expression. Importantly, the combination of compound K27 and PTX exhibited potent tumor suppression in vivo without generating toxicity. These results demonstrated that β-carboline compounds represented by compound K27 may be potent ABCB1 inhibitors with considerable potential in effectively reversing ABCB1-mediated MDR, showing promising prospects.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Nanjin Ding
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yunpeng Zhao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fengqing Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wen Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhe Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weiguang Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Lianghu Gu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
6
|
Sun J, Xiao D, Lang M, Xu X. Novel sulfonyl hydrazide based β-carboline derivatives as potential α-glucosidase inhibitors: design, synthesis, and biological evaluation. Mol Divers 2025; 29:1669-1681. [PMID: 39141208 DOI: 10.1007/s11030-024-10943-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/19/2024] [Indexed: 08/15/2024]
Abstract
A series of novel sulfonyl hydrazide based β-carboline derivatives (SX1-SX32) were designed and synthesized, and their structures were characterized on NMR and HRMS. Their α-glucosidase inhibitory screening results found that compounds (SX1-SX32) presented potential α-glucosidase inhibitory: IC50 values being 2.12 ± 0.33-19.37 ± 1.49 μM. Compound SX29 with a para-phenyl (IC50: 2.12 ± 0.33 μM) presented the strongest activity and was confirmed as a noncompetitive inhibitor. Fluorescence spectra, CD spectra and molecular docking were conducted to describe the inhibition mechanism of SX29 against α-glucosidase. Cells cytotoxicity indicated SX29 (0-32 μM) had no cytotoxicity on 293T cells. In particular, in vivo experiments revealed that oral administration of SX29 could regulate hyperglycemia and glucose tolerance of diabetic mice. These achieved findings indicated that sulfonyl hydrazide based β-carboline derivatives bore promising potential for discovering new α-glucosidase inhibitors with hypoglycemic activity.
Collapse
Affiliation(s)
- Jinping Sun
- School of Pharmacy and Food Engineering & Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Di Xiao
- School of Pharmacy and Food Engineering & Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Ming Lang
- School of Pharmacy and Food Engineering & Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China.
| | - Xuetao Xu
- School of Pharmacy and Food Engineering & Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China.
| |
Collapse
|
7
|
Chen YH, Hsieh CY, Chiou CT, Caro EJGV, Tayo LL, Tsai PW. In Vitro and In Silico Studies on the Anti-H1N1 Activity of Bioactive Compounds from Marine-Derived Streptomyces ardesiacus. Mar Drugs 2025; 23:149. [PMID: 40278270 PMCID: PMC12028705 DOI: 10.3390/md23040149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/26/2025] Open
Abstract
This study explores the potential anti-H1N1 Influenza A activity of bioactive compounds extracted from Streptomyces ardesiacus, a marine-derived microorganism known for producing diverse secondary metabolites. Four major compounds-1-acetyl-β-carboline, 1H-indole-3-carbaldehyde, anthranilic acid, and indole-3-carboxylic acid-were isolated and characterized through NMR. Among these, the identified structure of 1-acetyl-β-carboline showed the highest IC50 effect, with a dose of 9.71 μg/mL in anti-influenza assays. Using network pharmacology and molecular docking analyses, the interactions of these compounds with key proteins involved in H1N1 pathogenesis were examined. Protein-protein interaction (PPI) networks and Gene Ontology enrichment analysis revealed CDC25B, PARP1, and PTGS2 as key targets, associating these compounds with pathways related to catalytic activity, inflammation, and cell cycle regulation. The molecular docking results demonstrated that 1-acetyl-β-carboline exhibited binding affinities comparable to Tamiflu, the positive control drug, with LibDock scores of 81.89, 77.49, and 89.21 for CDC25B, PARP1, and PTGS2, respectively, compared to Tamiflu's scores of 84.34, 86.13, and 91.29. These findings highlight the potential of the active compound 1-acetyl-β-carboline from S. ardesiacus as a novel anti-influenza agent, offering insights into their molecular mechanisms of action. The results support further in vitro and in vivo studies to validate the observed inhibitory mechanisms and therapeutic applications against H1N1 Influenza A.
Collapse
Affiliation(s)
- Yung-Husan Chen
- Xiamen Key Laboratory of Natural Products Resources of Marine Medicine, Xiamen Medical College, Xiamen 361023, China;
- Fujian Provincial University Marine Biomedical Resources Engineering Research Center, Xiamen Medical College, Xiamen 361023, China
| | - Cheng-Yang Hsieh
- Department of Food Science, National Taiwan Ocean University, Keelung 202, Taiwan;
- Department of Chemical and Materials Engineering, National I-Lan University, Yilan 260, Taiwan
| | - Chun-Tang Chiou
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 112, Taiwan;
| | - Engelo John Gabriel V. Caro
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila 1002, Philippines;
| | - Lemmuel L. Tayo
- Department of Biology, School of Health Sciences, Mapúa University, Makati 1200, Philippines
| | - Po-Wei Tsai
- Department of Food Science, National Taiwan Ocean University, Keelung 202, Taiwan;
| |
Collapse
|
8
|
Kiyama R, Wada-Kiyama Y. Estrogenic actions of alkaloids: Structural characteristics and molecular mechanisms. Biochem Pharmacol 2025; 232:116645. [PMID: 39577707 DOI: 10.1016/j.bcp.2024.116645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/29/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
This comprehensive review of estrogenic alkaloids reveals that although the number is small, they exhibit a wide range of structures, biosynthesis pathways, mechanisms of action, and applications. Estrogenic alkaloids belong to different classes, different biosynthetic pathways, different estrogenic actions (estrogenic/synergistic, anti-estrogenic/antagonistic, biphasic, and acting as a selective estrogen receptor modulator or SERM), different receptor-initiated signaling pathways, different ways of modulations of estrogen action, and different applications. The future applications of estrogenic alkaloids, such as those for diagnostics, drug development, and therapeutics, are considered with the help of new databases containing comprehensive descriptions of their relationships and more elaborate artificial intelligence-based prediction technologies. Structure-activity studies reveal the significance of the nitrogen atom for their structural and functional diversity, which may help support their broader applications. Based on the summary of previous reports, estrogenic alkaloids have significant potential for future applications.
Collapse
Affiliation(s)
- Ryoiti Kiyama
- Dept. of Life Science, Faculty of Life Science, Kyushu Sangyo Univ. 2-3-1 Matsukadai, Higashi-ku, Fukuoka 813-8503, Japan.
| | - Yuko Wada-Kiyama
- Department of Physiology, Nippon Medical School, Bunkyo-ku, Tokyo 113-8602, Japan
| |
Collapse
|
9
|
Yu L, Shen N, Ren J, Xin H, Cui Y. Resource distribution, pharmacological activity, toxicology and clinical drugs of β-Carboline alkaloids: An updated and systematic review. Fitoterapia 2025; 180:106326. [PMID: 39645053 DOI: 10.1016/j.fitote.2024.106326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/29/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
β-Carboline alkaloids are a broad class of indole alkaloids that were first isolated from Peganum harmala L., a traditional Chinese herbal remedy. β-Carboline alkaloids have been found to have many pharmacological activities, including anti-inflammatory, antioxidant, and anti-cancer properties. β-Carboline alkaloids have been studied, and nine therapeutic medications based on its structural skeleton have been utilized to treat a range of illnesses. These compounds' potent pharmacological action and high druggability have garnered a lot of interest. This review systematically summarized resource distribution, pharmacological activity, toxicology and clinical drugs of β-Carboline alkaloids. These alkaloids are mostly found in plants, particularly (Peganum harmala L.), although they are also present in food, bacteria, fungus, and animals. By inhibiting NF-κB, MAPKs, and PI3K-AKT multiple signal pathways, they demonstrate a wide range of pharmacological activities, including anti-inflammatory, oxidative, neurological, cancer, fungal, and leishmania pharmacological activity. Toxicology revealed that β-Carboline alkaloids can produce confusion, irritability, dyskinesia, nausea, vomiting, and audiovisual hallucinations in addition to stimulating the central nervous system and inhibiting metabolism. Clinical drugs based on β-Carboline alkaloids have been used for clinical treatment of arrhythmia, cerebrovascular diseases and dysfunction, hypertension, epilepsy, malaria and mydriasis diseases. It will prompt us to redefine β-Carboline alkaloids. For β-Carboline alkaloids that inspires pharmacological applications in medicine and the development of novel medications containing these alkaloids, it will be a useful resource.
Collapse
Affiliation(s)
- Lili Yu
- School of Medicine, Linyi University, Linyi 276000, Shandong, China
| | - Na Shen
- School of Medicine, Linyi University, Linyi 276000, Shandong, China
| | - Jiani Ren
- School of Medicine, Linyi University, Linyi 276000, Shandong, China
| | - Huawei Xin
- School of Medicine, Linyi University, Linyi 276000, Shandong, China.
| | - Yulei Cui
- School of Medicine, Linyi University, Linyi 276000, Shandong, China.
| |
Collapse
|
10
|
Lu X, Wang X, Liu X, Liu X. The multifaceted interactions between Newcastle disease virus proteins and host proteins: a systematic review. Virulence 2024; 15:2299182. [PMID: 38193514 PMCID: PMC10793697 DOI: 10.1080/21505594.2023.2299182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/20/2023] [Indexed: 01/10/2024] Open
Abstract
Newcastle disease virus (NDV) typically induces severe illness in poultry and results in significant economic losses for the worldwide poultry sector. NDV, an RNA virus with a single-stranded negative-sense genome, is susceptible to mutation and immune evasion during viral transmission, thus imposing enormous challenges to avian health and poultry production. NDV is composed of six structural proteins and two nonstructural proteins that exert pivotal roles in viral infection and antiviral responses by interacting with host proteins. Nowadays, there is a particular focus on the mechanisms of virus-host protein interactions in NDV research, yet a comprehensive overview of such research is still lacking. Herein, we briefly summarize the mechanisms regarding the effects of virus-host protein interaction on viral infection, pathogenesis, and host immune responses. This review can not only enhance the present comprehension of the mechanism underlying NDV and host interplay, but also furnish a point of reference for the advancement of antiviral measures.
Collapse
Affiliation(s)
- Xiaolong Lu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
11
|
Shieu MK, Lin CC, Ho HY, Lo YS, Chuang YC, Hsieh MJ. Picrasidine I Regulates Apoptosis in Melanoma Cell Lines by Activating ERK and JNK Pathways and Suppressing AKT Signaling. ENVIRONMENTAL TOXICOLOGY 2024; 39:5309-5320. [PMID: 39194337 DOI: 10.1002/tox.24404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/21/2024] [Accepted: 08/10/2024] [Indexed: 08/29/2024]
Abstract
World Health Organization data indicate a continuous increase in melanoma incidence, with metastatic melanoma characterized by poor prognosis and drug resistance. The exploration of therapeutics derived from natural products remains an active area of in vitro research. The aim of this study was to determine the antitumor effects of picrasidine I, a natural compound extracted from Picrasma quassioides, against two melanoma cell lines. We selected two metastatic melanoma cell lines, HMY-1 and A2058, for molecular studies, including Western blotting, 4',6-diamidino-2-phenylindole staining, and flow cytometry. Picrasidine I demonstrated cytotoxic effects against the HMY-1 and A2058 melanoma cell lines. It induced cell cycle arrest in the sub-G1 phase and downregulated cell cycle-related proteins (e.g., cyclin A2, D1, cyclin-dependent kinases 4, and 6). In the intrinsic apoptosis pathway, picrasidine I activated proapoptotic proteins (e.g., Bax, Bak, t-Bid, BimL/S) and suppressed the expression of antiapoptotic proteins (e.g., Bcl-2, Bcl-xL), with an observed increase in the quantity of depolarized cells. In addition, the apoptotic effects of picrasidine I were linked to the activation of the c-Jun N-terminal kinase and extracellular signal-regulated kinase pathways and the inhibition of the protein kinase B signaling pathway. A human apoptosis array indicated claspin inhibition upon picrasidine I treatment, suggesting the potential involvement of picrasidine I in apoptosis and cell cycle regulation. Our findings suggest that picrasidine I has potential as a candidate for treating advanced melanoma, and thus these findings warrant further investigation. The modulation of claspin expression by picrasidine I could be investigated further as a potential biomarker to predict its efficacy in related to advanced stages of melanoma.
Collapse
Affiliation(s)
- Mu-Kuei Shieu
- Department of Dermatology, Changhua Christian Hospital, Changhua, Taiwan
| | - Chia-Chieh Lin
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Hsin-Yu Ho
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Yu-Sheng Lo
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Yi-Ching Chuang
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Ming-Ju Hsieh
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- Doctoral Program in Tissue Engineering and Regenerative Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| |
Collapse
|
12
|
Barzkar N, Sukhikh S, Babich O. A comprehensive review of marine sponge metabolites, with emphasis on Neopetrosia sp. Int J Biol Macromol 2024; 280:135823. [PMID: 39313052 DOI: 10.1016/j.ijbiomac.2024.135823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
The secondary metabolites that marine sponges create are essential to the advancement of contemporary medicine and are often employed in clinical settings. Over the past five years, microbes associated with sponges have yielded the identification of 140 novel chemicals. Statistics show that most are derived from actinomycetes (bacteria) and ascomycotes (fungi). The aim of this study was to investigate the biological activity of metabolites from marine sponges. Chlocarbazomycins A-D, which are a group of novel chlorinated carbazole alkaloids isolated from the sponge Neopetrosia fennelliae KUFA 0811, exhibit antimicrobial, cytotoxic, and enzyme inhibitory activities. Recently, marine sponges of the genus Neopetrosia have attracted attention due to the unique chemical composition of the compounds they produce, including alkaloids of potential importance in drug discovery. Fridamycin H and fridamycin I are two novel type II polyketides synthesized by sponge-associated bacteria exhibit antitrypanosomal activity. Fintiamin, composed of amino acids and terpenoid moieties, shows affinity for the cannabinoid receptor CB 1. It was found that out of 27 species of Neopetrosia sponges, the chemical composition of only 9 species has been studied. These species mainly produce bioactive substances such as alkaloids, quinones, sterols, and terpenoids. The presence of motuporamines is a marker of the species Neopetrosia exigua. Terpenoids are specific markers of Neopetrosia vanilla species. Although recently discovered, secondary metabolites from marine sponges have been shown to have diverse biological activities, antimicrobial, antiviral, antibacterial, antimicrobial, antioxidant, antimalarial, and anticancer properties, providing many lead compounds for drug development. The data presented in this review on known and future natural products derived from sponges will further clarify the role and importance of microbes in marine sponges and trace the prospects of their applications, especially in medicine, cosmeceuticals, environmental protection, and manufacturing industries.
Collapse
Affiliation(s)
- Noora Barzkar
- Higher Institution Center of Excellence, Borneo Marine Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia.
| | - Stanislav Sukhikh
- SEC "Applied Biotechnologies", Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, Kaliningrad, 236016, Russia
| | - Olga Babich
- SEC "Applied Biotechnologies", Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, Kaliningrad, 236016, Russia
| |
Collapse
|
13
|
Huyen NTT, Phuc BV, Huyen TT, Hong TT, Nguyen H, Nguyen VH, Nguyen MT, Hung TQ, Dinh CP, Dang TT. Design and Synthesis of Novel β-Carboline-Bisindole Hybrids as Potential Anticancer Agents. ChemMedChem 2024; 19:e202400316. [PMID: 38856518 DOI: 10.1002/cmdc.202400316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
We are reporting a short and convenient pathway for the synthesis of novel β-carboline-bisindole hybrid compounds from relatively cheap and commercially available chemicals such as tryptamine, dialdehydes and indoles. These newly designed compounds can also be prepared in high yields with the tolerance of many functional groups under mild conditions. Notably, these β-carboline-bisindole hybrid compounds exhibited some promising applications as anticancer agents against the three common cancer cell lines MCF-7 (breast cancer), SK-LU-1 (lung cancer), and HepG2 (liver cancer). The two best compounds 5 b and 5 g inhibited the aforementioned cell lines with the same IC50 range of the reference Ellipticine at less than 2 μM. A molecular docking study to gain more information about the interactions between the synthesized molecules and the kinase domain of the EGFR was performed. Therefore, this finding can have significant impacts on the development of future research in medicinal chemistry and drug discovery.
Collapse
Affiliation(s)
- Nguyen Thi Thanh Huyen
- Faculty of Chemistry, VNU-Ha Noi University of Science, 19 Le Thanh Tong, Phan Chu Trinh, Hoan Kiem, Hanoi, Vietnam
| | - Ban Van Phuc
- Institute of Chemistry, Vietnamese Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Hanoi, Vietnam
| | - Tran Thi Huyen
- Faculty of Chemistry, VNU-Ha Noi University of Science, 19 Le Thanh Tong, Phan Chu Trinh, Hoan Kiem, Hanoi, Vietnam
| | - Tran Thi Hong
- Faculty of Chemistry, VNU-Ha Noi University of Science, 19 Le Thanh Tong, Phan Chu Trinh, Hoan Kiem, Hanoi, Vietnam
| | - Hien Nguyen
- Faculty of Chemistry, Hanoi National University of Education (HNUE), Vietnam
| | - Van Ha Nguyen
- Faculty of Chemistry, VNU-Ha Noi University of Science, 19 Le Thanh Tong, Phan Chu Trinh, Hoan Kiem, Hanoi, Vietnam
| | - Minh Tho Nguyen
- Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, 70000, Vietnam
| | - Tran Quang Hung
- Institute of Chemistry, Vietnamese Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Vietnam
| | - Chau Phi Dinh
- NuChem Sciences, a Sygnature Discovery Business, 480 rue Perreault, Lévis, QC, G6 W 7 V6, Canada
| | - Tuan Thanh Dang
- Faculty of Chemistry, VNU-Ha Noi University of Science, 19 Le Thanh Tong, Phan Chu Trinh, Hoan Kiem, Hanoi, Vietnam
| |
Collapse
|
14
|
Dai JK, Dan WJ, Cao YD, Gao JX, Wang JR, Wan JB. Discovery of new quaternized norharmane dimers as potential anti-MRSA agents. J Adv Res 2024; 63:255-267. [PMID: 37931657 PMCID: PMC11380033 DOI: 10.1016/j.jare.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023] Open
Abstract
INTRODUCTION Methicillin-resistant Staphylococcus aureus (MRSA)-caused infections greatly threaten public health. The discovery of natural-product-based anti-MRSA agents for treating infectious diseases has become one of the current research focuses. OBJECTIVES This study aims to identify promising anti-MRSA agents with a clear mechanism based on natural norharmane modified by quaternization or dimerization. METHODS A total of 32 norharmane analogues were prepared and characterized. Their antibacterial activities and resistance development propensity were tested by the broth double-dilution method. Cell counting kit-8 and hemolysis experiments were used to assess their biosafety. The plasma stability, bactericidal mode, and biofilm disruption effects were examined by colony counting and crystal violet staining assays. Fluorescence microscopy, metabolomic analysis, docking simulation and spectra titration revealed its anti-MRSA mechanisms. The mouse skin infection model was used to investigate the in vivo efficacy. RESULTS Compound 5a was selected as a potential anti-MRSA agent, which exhibited potent anti-MRSA activity in vitro and in vivo, low cytotoxicity and hemolysis under an effective dose. Moreover, compound 5a showed good stability in 50% plasma, a low tendency of resistance development and capabilities to disrupt bacterial biofilms. The mechanism studies revealed that compound 5a could inhibit the biosynthesis of bacteria cell walls, damage the membrane, disturb energy metabolism and amino acid metabolism pathways, and interfere with protein synthesis and nucleic acid function. CONCLUSIONS These results suggested that compound 5a is a promising candidate for combating MRSA infections, providing valuable information for further exploiting a new generation of therapeutic antibiotics.
Collapse
Affiliation(s)
- Jiang-Kun Dai
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China; School of Life Science and Technology, Weifang Medical University, Shandong, China
| | - Wen-Jia Dan
- School of Life Science and Technology, Weifang Medical University, Shandong, China
| | - Yi-Dan Cao
- School of Life Science and Technology, Weifang Medical University, Shandong, China
| | - Ji-Xiang Gao
- School of Life Science and Technology, Weifang Medical University, Shandong, China
| | - Jun-Ru Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Shaanxi, China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China.
| |
Collapse
|
15
|
Zhang N, Wang C, Xu H, Zheng M, Jiang H, Chen K, Ma Z. Asymmetric Total Synthesis of Alstrostine G Utilizing a Catalytic Asymmetric Desymmetrization Strategy. Angew Chem Int Ed Engl 2024; 63:e202407127. [PMID: 38818628 DOI: 10.1002/anie.202407127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/01/2024]
Abstract
A highly effective enantioselective monobenzoylation of 1,3-diols has been developed for the synthesis of 1,1-disubstituted tetrahydro-β-carbolines. The chemistry has been successfully applied to the asymmetric total synthesis of (+)-alstrostine G, which also features a cascade Heck/hemiamination reaction enabling facile construction of the pivotal pentacyclic core.
Collapse
Affiliation(s)
- Nanping Zhang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou, 510641, P. R. China
| | - Cheng Wang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou, 510641, P. R. China
| | - Hailong Xu
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou, 510641, P. R. China
| | - Ming Zheng
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou, 510641, P. R. China
| | - Huanfeng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou, 510641, P. R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Zhiqiang Ma
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou, 510641, P. R. China
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, 518055, P. R. China
| |
Collapse
|
16
|
Gu Y, Luo M, Yuan H, Liu G, Wang S. Photocatalytic Enantioselective Radical Cascade Multicomponent Minisci Reaction of β-Carbolines Using Diazo Compounds as Radical Precursors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402272. [PMID: 38639395 PMCID: PMC11220658 DOI: 10.1002/advs.202402272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 03/20/2024] [Indexed: 04/20/2024]
Abstract
Here, a photocatalytic asymmetric multicomponent cascade Minisci reaction of β-carbolines with enamides and diazo compounds is reported, enabling an effective enantioselective radical C─H functionalization of β-carbolines with high yields and enantioselectivity (up to 83% yield and 95% ee). This enantioselective multicomponent Minisci protocol exhibits step economy, high chemo-/enantio-selective control, and good functional group tolerance, allowing access to a variety of valuable chiral β-carbolines. Notably, diazo compounds are suitable radical precursors in enantioselective cascade radical reactions. Moreover, the efficiency and practicality of this approach are demonstrated by the asymmetric synthesis of bioactive compounds and natural products.
Collapse
Affiliation(s)
- Yi‐Jie Gu
- Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdong518055P. R. China
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of EducationSchool of Chemistry and Chemical EngineeringHunan University of Science and TechnologyXiangtan411201P. R. China
| | - Mu‐Peng Luo
- Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdong518055P. R. China
| | - Hua Yuan
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of EducationSchool of Chemistry and Chemical EngineeringHunan University of Science and TechnologyXiangtan411201P. R. China
| | - Guo‐Kai Liu
- School of PharmacyShenzhen University Medical SchoolShenzhen UniversityShenzhenGuangdong518055P. R. China
| | - Shou‐Guo Wang
- Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdong518055P. R. China
| |
Collapse
|
17
|
Gonzalez MM, Vizoso-Pinto MG, Erra-Balsells R, Gensch T, Cabrerizo FM. In Vitro Effect of 9,9'-Norharmane Dimer against Herpes Simplex Viruses. Int J Mol Sci 2024; 25:4966. [PMID: 38732185 PMCID: PMC11084892 DOI: 10.3390/ijms25094966] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Herpes simplex virus (HSV) infections are highly widespread among humans, producing symptoms ranging from ulcerative lesions to severe diseases such as blindness and life-threatening encephalitis. At present, there are no vaccines available, and some existing antiviral treatments can be ineffective or lead to adverse effects. As a result, there is a need for new anti-HSV drugs. In this report, the in vitro anti-HSV effect of 9,9'-norharmane dimer (nHo-dimer), which belongs to the β-carboline (βC) alkaloid family, was evaluated. The dimer exhibited no virucidal properties and did not impede either the attachment or penetration steps of viral particles. The antiviral effect was only exerted under the constant presence of the dimer in the incubation media, and the mechanism of action was found to involve later events of virus infection. Analysis of fluorescence lifetime imaging data showed that the nHo-dimer internalized well into the cells when present in the extracellular incubation medium, with a preferential accumulation into perinuclear organelles including mitochondria. After washing the host cells with fresh medium free of nHo-dimer, the signal decreased, suggesting the partial release of the compound from the cells. This agrees with the observation that the antiviral effect is solely manifested when the alkaloid is consistently present in the incubation media.
Collapse
Affiliation(s)
- María Micaela Gonzalez
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Av. Intendente Marino Km 8.2, CC 164 (B7130IWA), Chascomús 7130, Argentina;
- Escuela de Bio y Nanotecnologías (UNSAM), San Martín 1650, Argentina
| | - Maria Guadalupe Vizoso-Pinto
- Max von Pettenkofer Institute, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU, D-80336 Munich, Germany;
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, San Miguel de Tucumán 4000, Argentina
- Laboratorio Central de Cs. Básicas, Facultad de Medicina, Universidad Nacional de Tucumán, Tucumán 4000, Argentina
| | - Rosa Erra-Balsells
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, 3er P., Ciudad Universitaria, Buenos Aires 1428, Argentina;
- Centro de Investigación en Hidratos de Carbono (CIHIDECAR), CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Naturales Pabellón II, 3er P. Ciudad Universitaria, Buenos Aires 1428, Argentina
| | - Thomas Gensch
- Institute of Biological Information Processing 1 (IBI-1; Molecular and Cellular Physiology), Forschungszentrum Jülich, Wilhelm-Jonen-Straße, 52428 Jülich, Germany
| | - Franco M. Cabrerizo
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Av. Intendente Marino Km 8.2, CC 164 (B7130IWA), Chascomús 7130, Argentina;
- Escuela de Bio y Nanotecnologías (UNSAM), San Martín 1650, Argentina
| |
Collapse
|
18
|
Xiang L, Hu X, Du C, Wu L, Lu Z, Zhou J, Zhang G. N-terminal domain truncation yielded a unique dimer of polysaccharide hydrolase with enhanced enzymatic activity, stability and calcium ion independence. Int J Biol Macromol 2024; 266:131352. [PMID: 38574926 DOI: 10.1016/j.ijbiomac.2024.131352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/26/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
Domain engineering, including domain truncation, fusion, or swapping, has become a common strategy to improve properties of enzymes, especially glycosyl hydrolases. However, there are few reports explaining the mechanism of increased activity from a protein structure perspective. Amy703 is an alkaline amylase with a unique N-terminal domain. Prior studies have shown that N-Amy, a mutant without an N-terminal domain, exhibits improved activity, stability, and calcium ion independence. In this study, we have used X-ray crystallography to determine the crystal structure of N-Amy and used AlphaFold2 to model the Amy703 structure, respectively. We further used size exclusion chromatography to show that Amy703 existed as a monomer, whereas N-Amy formed a unique dimer. It was found that the N-terminus of one monomer of N-Amy was inserted into the catalytic domain of its symmetrical subunit, resulting in the expansion of the catalytic pocket. This also significantly increased the pKa of the hydrogen donor Glu350, thereby enhancing substrate binding affinity and contributing to increased N-Amy activity. Meanwhile, two calcium ions were found to bind to N-Amy at different binding sites, which also contributed to the stability of protein. Therefore, this study provided new structural insights into the mechanisms of various glycosyl hydrolases.
Collapse
Affiliation(s)
- La Xiang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, People's Republic of China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Hubei, People's Republic of China
| | - Xinlin Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Hubei, People's Republic of China
| | - Chao Du
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, People's Republic of China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Hubei, People's Republic of China
| | - Lian Wu
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Shanghai, People's Republic of China
| | - Zhenghui Lu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Hubei, People's Republic of China
| | - Jiahai Zhou
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China.
| | - Guimin Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, People's Republic of China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Hubei, People's Republic of China.
| |
Collapse
|
19
|
Pavić K, Poje G, Pessanha de Carvalho L, Tandarić T, Marinović M, Fontinha D, Held J, Prudêncio M, Piantanida I, Vianello R, Krošl Knežević I, Perković I, Rajić Z. Discovery of harmiprims, harmine-primaquine hybrids, as potent and selective anticancer and antimalarial compounds. Bioorg Med Chem 2024; 105:117734. [PMID: 38677112 DOI: 10.1016/j.bmc.2024.117734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024]
Abstract
Although cancer and malaria are not etiologically nor pathophysiologically connected, due to their similarities successful repurposing of antimalarial drugs for cancer and vice-versa is known and used in clinical settings and drug research and discovery. With the growing resistance of cancer cells and Plasmodium to the known drugs, there is an urgent need to discover new chemotypes and enrich anticancer and antimalarial drug portfolios. In this paper, we present the design and synthesis of harmiprims, hybrids composed of harmine, an alkaloid of the β-carboline type bearing anticancer and antiplasmodial activities, and primaquine, 8-aminoquinoline antimalarial drug with low antiproliferative activity, covalently bound via triazole or urea. Evaluation of their antiproliferative activities in vitro revealed that N-9 substituted triazole-type harmiprime was the most selective compound against MCF-7, whereas C1-substituted ureido-type hybrid was the most active compound against all cell lines tested. On the other hand, dimeric harmiprime was not toxic at all. Although spectrophotometric studies and thermal denaturation experiments indicated binding of harmiprims to the ds-DNA groove, cell localization showed that harmiprims do not enter cell nucleus nor mitochondria, thus no inhibition of DNA-related processes can be expected. Cell cycle analysis revealed that C1-substituted ureido-type hybrid induced a G1 arrest and reduced the number of cells in the S phase after 24 h, persisting at 48 h, albeit with a less significant increase in G1, possibly due to adaptive cellular responses. In contrast, N-9 substituted triazole-type harmiprime exhibited less pronounced effects on the cell cycle, particularly after 48 h, which is consistent with its moderate activity against the MCF-7 cell line. On the other hand, screening of their antiplasmodial activities against the erythrocytic, hepatic, and gametocytic stages of the Plasmodium life cycle showed that dimeric harmiprime exerts powerful triple-stage antiplasmodial activity, while computational analysis showed its binding within the ATP binding site of PfHsp90.
Collapse
Affiliation(s)
- Kristina Pavić
- University of Zagreb Faculty of Pharmacy and Biochemistry, A. Kovačića 1, 10000 Zagreb, Croatia.
| | - Goran Poje
- University of Zagreb Faculty of Pharmacy and Biochemistry, A. Kovačića 1, 10000 Zagreb, Croatia
| | | | - Tana Tandarić
- Department of Cell and Molecular Biology, Uppsala University, 75124 Uppsala, Sweden; Rudjer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Marina Marinović
- University of Zagreb Faculty of Pharmacy and Biochemistry, A. Kovačića 1, 10000 Zagreb, Croatia
| | - Diana Fontinha
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Jana Held
- University of Tübingen, Institute of Tropical Medicine, Wilhelmstraße 27, 72074 Tübingen, Germany; German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | - Miguel Prudêncio
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Ivo Piantanida
- Rudjer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Robert Vianello
- Rudjer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | | | - Ivana Perković
- University of Zagreb Faculty of Pharmacy and Biochemistry, A. Kovačića 1, 10000 Zagreb, Croatia
| | - Zrinka Rajić
- University of Zagreb Faculty of Pharmacy and Biochemistry, A. Kovačića 1, 10000 Zagreb, Croatia.
| |
Collapse
|
20
|
Zhi D, An Z, Li L, Zheng C, Yuan X, Lan Y, Zhang J, Xu Y, Ma H, Li N, Wang J. 3-Amide-β-carbolines block the cell cycle by targeting CDK2 and DNA in tumor cells potentially as anti-mitotic agents. Bioorg Chem 2024; 145:107216. [PMID: 38387396 DOI: 10.1016/j.bioorg.2024.107216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/04/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
β-Carboline alkaloids are natural and synthetic products with outstanding antitumor activity. C3 substituted and dimerized β-carbolines exert excellent antitumor activity. In the present research, 37 β-carboline derivatives were synthesized and characterized. Their cytotoxicity, cell cycle, apoptosis, and CDK2- and DNA-binding affinity were evaluated. β-Carboline monomer M3 and dimer D4 showed selective activity and higher cytotoxicity in tumor cells than in normal cells. Structure-activity relationships (SAR) indicated that the amide group at C3 enhanced the antitumor activity. M3 blocked the A549 (IC50 = 1.44 ± 1.10 μM) cell cycle in the S phase and inhibited A549 cell migration, while D4 blocked the HepG2 (IC50 = 2.84 ± 0.73 μM) cell cycle in the G0/G1 phase, both of which ultimately induced apoptosis. Furthermore, associations of M3 and D4 with CDK2 and DNA were proven by network pharmacology analysis, molecular docking, and western blotting. The expression level of CDK2 was downregulated in M3-treated A549 cells and D4-treated HepG2 cells. Moreover, M3 and D4 interact with DNA and CDK2 at sub-micromolar concentrations in endothermic interactions caused by entropy-driven adsorption processes, which means that the favorable entropy change (ΔS > 0) overcomes the unfavorable enthalpy change (ΔH > 0) and drives the spontaneous reaction (ΔG < 0). Overall, these results clarified the antitumor mechanisms of M3 and D4 through disrupting the cell cycle by binding DNA and CDK2, which demonstrated the potential of M3 and D4 as novel antiproliferative drugs targeting mitosis.
Collapse
Affiliation(s)
- Dongming Zhi
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, China
| | - Zhiyuan An
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, China
| | - Lishan Li
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, China
| | - Chaojia Zheng
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, China
| | - Xiaorong Yuan
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, China
| | - Yu Lan
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, China
| | - Jinghan Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, China
| | - Yujie Xu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, China
| | - Huiya Ma
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, China
| | - Na Li
- College of Chemistry and Life Science, Chifeng University, Inner Mongolia Autonomous Region, China.
| | - Junru Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, China.
| |
Collapse
|
21
|
Alekseeva KA, Fedoseeva MA, Bakhanovich OV, Khrustalev VN, Potkin VI, Zhou H, Nikitina EV, Zaytsev VP, Zubkov FI. One-Pot Reaction Sequence: N-Acylation/Pictet-Spengler Reaction/Intramolecular [4 + 2] Cycloaddition/Aromatization in the Synthesis of β-Carboline Alkaloid Analogues. J Org Chem 2024; 89:3065-3071. [PMID: 38359403 DOI: 10.1021/acs.joc.3c02533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
One-pot synthesis of tetrahydro-β-carbolines, fused with an isoindole core, was proposed starting from maleic anhydride and azomethines easily available from tryptamines and 3-(hetaryl)acroleins. This sequence includes four key steps: an acylation of the aldimine with maleic anhydride, a Pictet-Spengler cyclization, an intramolecular Diels-Alder reaction, and a concluding [1,3]-H shift. As a result, six- or seven-nuclear alkaloid-like heterocyclic systems, containing a benzo[1,2]indolizino[8,7-b]indole fragment annulated with furan, thiophene, or pyrrole, are formed in a diastereoselective manner.
Collapse
Affiliation(s)
- Kseniya A Alekseeva
- Organic Chemistry Department, Faculty of Science, RUDN University, 6 Miklukho-Maklaya St., Moscow 117198, Russian Federation
| | - Milana A Fedoseeva
- Organic Chemistry Department, Faculty of Science, RUDN University, 6 Miklukho-Maklaya St., Moscow 117198, Russian Federation
| | - Olga V Bakhanovich
- Organic Chemistry Department, Faculty of Science, RUDN University, 6 Miklukho-Maklaya St., Moscow 117198, Russian Federation
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, Prague 166 10, Czech Republic
| | - Victor N Khrustalev
- N. D. Zelinsky Institute of Organic Chemistry of Russian Academy of Sciences, Moscow 119991, Russia
- Inorganic Chemistry Department, Faculty of Science, RUDN University, 6 Miklukho-Maklaya St., Moscow 117198, Russian Federation
| | - Vladimir I Potkin
- Institute of Physical Organic Chemistry of National Academy of Sciences of Belarus, 13 Surganov Street, Minsk 220072, Belarus
| | - Hongwei Zhou
- Jiaxing University, 1 Jiahang Road, Jiaxing, Zhejiang 314001, China
| | - Eugenia V Nikitina
- Organic Chemistry Department, Faculty of Science, RUDN University, 6 Miklukho-Maklaya St., Moscow 117198, Russian Federation
| | - Vladimir P Zaytsev
- Organic Chemistry Department, Faculty of Science, RUDN University, 6 Miklukho-Maklaya St., Moscow 117198, Russian Federation
| | - Fedor I Zubkov
- Organic Chemistry Department, Faculty of Science, RUDN University, 6 Miklukho-Maklaya St., Moscow 117198, Russian Federation
| |
Collapse
|
22
|
Qiu J, Feng X, Chen H, Liu W, Liu W, Wu L, Gao X, Liu Y, Huang Y, Gong H, Qi Y, Xu Z, Zhao Q. Discovery of novel harmine derivatives as GSK-3β/DYRK1A dual inhibitors for Alzheimer's disease treatment. Arch Pharm (Weinheim) 2024; 357:e2300404. [PMID: 38010470 DOI: 10.1002/ardp.202300404] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/22/2023] [Accepted: 11/02/2023] [Indexed: 11/29/2023]
Abstract
Multitarget-directed ligands (MTDLs) have recently attracted significant interest due to their superior effectiveness in multifactorial Alzheimer's disease (AD). Combined inhibition of two important AD targets, glycogen synthase kinase-3β (GSK-3β) and dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A), may be a breakthrough in the treatment of AD. Based on our previous work, we have designed and synthesized a series of novel harmine derivatives, investigated their inhibition of GSK-3β and DYRK1A, and evaluated a variety of biological activities. The results of the experiments showed that most of these compounds exhibited good activity against GSK-3β and DYRK1A in vitro. ZLQH-5 was selected as the best compound due to the most potent inhibitory effect against GSK-3β and DYRK1A. Molecular docking studies demonstrated that ZLQH-5 could form stable interactions with the ATP binding pocket of GSK-3β and DYRK1A. In addition, ZLQH-5 showed low cytotoxicity against SH-SY5Y and HL-7702, good blood-brain barrier permeability, and favorable pharmacokinetic properties. More importantly, ZLQH-5 also attenuated the tau hyperphosphorylation in the okadaic acid SH-SY5Y cell model. These results indicated that ZLQH-5 could be a promising dual-target drug candidate for the treatment of AD.
Collapse
Affiliation(s)
- Jingsong Qiu
- Bei Fang Hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, Shenyang, China
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiangling Feng
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Huanhua Chen
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Wenwu Liu
- Bei Fang Hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, Shenyang, China
| | - Wenjie Liu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Limeng Wu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Xudong Gao
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, China
| | - Yanfang Liu
- Department of Clinical Trial Center, General Hospital of Northern Theater Command, Shenyang, China
| | - Yaoguang Huang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Hao Gong
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Yiming Qi
- Department of Graduate School, Dalian Medical University, Dalian, China
| | - Zihua Xu
- Bei Fang Hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, Shenyang, China
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Qingchun Zhao
- Bei Fang Hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, Shenyang, China
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
23
|
Shome A, Chahat, Chawla V, Chawla PA. Neuroprotective Effect of Natural Indole and β-carboline Alkaloids against Parkinson's Disease: An Overview. Curr Med Chem 2024; 31:6251-6271. [PMID: 37702172 DOI: 10.2174/0929867331666230913100624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/02/2023] [Accepted: 07/21/2023] [Indexed: 09/14/2023]
Abstract
Parkinson's disease (PD) is a devastating neurodegenerative condition that mostly damages dopaminergic neurons in the substantia nigra and impairs human motor function. Males are more likely than females to have PD. There are two main pathways associated with PD: one involves the misfolding of α-synuclein, which causes neurodegeneration, and the other is the catalytic oxidation of dopamine via MAO-B, which produces hydrogen peroxide that can cause mitochondrial damage. Parkin (PRKN), α- synuclein (SNCA), heat shock protein (HSP), and leucine-rich repeat kinase-2 (LRRK2) are some of the target areas for genetic alterations that cause neurodegeneration in Parkinson's disease (PD). Under the impact of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which is also important in Parkinson's disease (PD), inhibition of mitochondrial complex 1 results in enhanced ROS generation in neuronal cells. Natural products are still a superior option in the age of synthetic pharmaceuticals because of their lower toxicity and moderate side effects. A promising treatment for PD has been discovered using betacarboline (also known as "β-carboline") and indole alkaloids. However, there are not many studies done on this particular topic. In the herbs containing β-carbolines and indoles, the secondary metabolites and alkaloids, β-carbolines and indoles, have shown neuroprotective and cognitive-enhancing properties. In this review, we have presented results from 18 years of research on the effects of indole and β-carboline alkaloids against oxidative stress and MAO inhibition, two key targets in PD. In the SAR analysis, the activity has been correlated with their unique structural characteristics. This study will undoubtedly aid researchers in looking for new PD treatment options.
Collapse
Affiliation(s)
- Abhimannu Shome
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab, 142001, India
| | - Chahat
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab, 142001, India
| | - Viney Chawla
- University Institute of Pharmaceutical Sciences and Research, Baba Farid University of Health Sciences, Faridkot, Punjab, India
| | - Pooja A Chawla
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab, 142001, India
| |
Collapse
|
24
|
Pavić K, Poje G, Carvalho LPD, Held J, Rajić Z. Synthesis, antiproliferative and antiplasmodial evaluation of new chloroquine and mefloquine-based harmiquins. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2023; 73:537-558. [PMID: 38147482 DOI: 10.2478/acph-2023-0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/09/2023] [Indexed: 12/28/2023]
Abstract
Here we present the synthesis and evaluation of the biological activity of new hybrid compounds, ureido-type (UT) harmiquins, based on chloroquine (CQ) or mefloquine (MQ) scaffolds and β-carboline alkaloid harmine against cancer cell lines and Plasmodium falciparum. The hybrids were prepared from the corresponding amines by 1,1'-carbonyldiimidazole (CDI)-mediated synthesis. In vitro evaluation of the biological activity of the title compounds revealed two hit compounds. Testing of the antiproliferative activity of the new UT harmiquins, and previously prepared triazole-(TT) and amide-type (AT) CQ-based harmiquins, against a panel of human cell lines, revealed TT harmiquine 16 as the most promising compound, as it showed pronounced and selective activity against the tumor cell line HepG2 (IC 50 = 5.48 ± 3.35 μmol L-1). Screening of the antiplasmodial activities of UT harmiquins against erythrocytic stages of the Plasmodium life cycle identified CQ-based UT harmiquine 12 as a novel antiplasmodial hit because it displayed low IC 50 values in the submicromolar range against CQ-sensitive and resistant strains (IC 50 0.06 ± 0.01, and 0.19 ± 0.02 μmol L-1, respectively), and exhibited high selectivity against Plasmodium, compared to mammalian cells (SI = 92).
Collapse
Affiliation(s)
- Kristina Pavić
- 1University of Zagreb Faculty of Pharmacy and Biochemistry Department of Medicinal Chemistry 10 000 Zagreb, Croatia
| | - Goran Poje
- 1University of Zagreb Faculty of Pharmacy and Biochemistry Department of Medicinal Chemistry 10 000 Zagreb, Croatia
| | | | - Jana Held
- 2University of Tübingen, Institute of Tropical Medicine, 72074, Tübingen Germany
- 3German Center for Infection Research (DZIF), 72074, Tübingen Germany
| | - Zrinka Rajić
- 1University of Zagreb Faculty of Pharmacy and Biochemistry Department of Medicinal Chemistry 10 000 Zagreb, Croatia
| |
Collapse
|
25
|
Abstract
Targeted protein degradation (TPD) has emerged as the most promising approach for the specific knockdown of disease-associated proteins and is achieved by exploiting the cellular quality control machinery. TPD technologies are highly advantageous in overcoming drug resistance as they degrade the whole target protein. Microtubules play important roles in many cellular processes and are among the oldest and most well-established targets for tumor chemotherapy. However, the development of drug resistance, risk of hypersensitivity reactions, and intolerable toxicities severely restrict the clinical applications of microtubule-targeting agents (MTAs). Microtubule degradation agents (MDgAs) operate via completely different mechanisms compared with traditional MTAs and are capable of overcoming drug resistance. The emergence of MDgAs has expanded the scope of TPD and provided new avenues for the discovery of tubulin-targeted drugs. Herein, we summarized the development of MDgAs, and discussed their degradation mechanisms, mechanisms of action on the binding sites, potential opportunities, and challenges.
Collapse
Affiliation(s)
- Chufeng Zhang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Min Zhao
- Laboratory of Metabolomics and Drug-Induced Liver Injury, Department of Gastroenterology & Hepatology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Guan Wang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yong Li
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
26
|
Rajagopal L, Mahjour S, Huang M, Ryan CA, Elzokaky A, Csakai AJ, Orr MJ, Scheidt K, Meltzer HY. NU-1223, a simplified analog of alstonine, with 5-HT 2cR agonist-like activity, rescues memory deficit and positive and negative symptoms in subchronic phencyclidine mouse model of schizophrenia. Behav Brain Res 2023; 454:114614. [PMID: 37572758 DOI: 10.1016/j.bbr.2023.114614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/14/2023]
Abstract
The serotonin (5-HT)2 C receptor(R) is a widely distributed G-protein-coupled receptor, expressed abundantly in the central nervous system. Alstonine is a natural product that has significant properties of atypical antipsychotic drugs (AAPDs), in part attributed to 5-HT2 CR agonism. Based on alstonine, we developed NU-1223, a simplified β carboline analog of alstonine, which shows efficacies comparable to alstonine and to other 5-HT2 CR agonists, Ro-60-0175 and lorcaserin. The 5-HT2 CR antagonism of some APDs, including olanzapine, contributes to weight gain, a major side effect which limits its tolerability, while the 5-HT2 CR agonists and/or modulators, may minimize weight gain. We used the well-established rodent subchronic phencyclidine (PCP) model to test the efficacy of NU-1223 on episodic memory, using novel object recognition (NOR) task, positive (locomotor activity), and negative symptoms (social interaction) of schizophrenia (SCH). We found that NU-1223 produced both transient and prolonged rescue of the subchronic PCP-induced deficits in NOR and SI. Further, NU-1223, but not Ro-60-0175, blocked PCP and amphetamine (AMPH)-induced increase in LMA in subchronic PCP mice. These transient efficacies in LMA were blocked by the 5-HT2 CR antagonist, SB242084. Sub-chronic NU-1223 treatment rescued NOR and SI deficits in subchronic PCP mice for at least 39 days after 3 days injection. Chronic treatment with NU-1223, ip, twice a day for 21 days, did not increase average body weight vs olanzapine. These findings clearly indicate NU-1223 as a class of small molecules with a possible 5-HT2 CR-agonist-like mechanism of action, attributing to its efficacy. Additional in-depth receptor mechanistic studies are warranted, as this small molecule, both transiently and chronically rescued PCP-induced deficits. Furthermore, NU-1223 did not induce weight gain post long-term administrations vs AAPDs such as olanzapine, making NU-1223 a putative therapeutic compound for SCH.
Collapse
Affiliation(s)
- Lakshmi Rajagopal
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Sanaz Mahjour
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Mei Huang
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Chelsea A Ryan
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ahmad Elzokaky
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Adam J Csakai
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Meghan J Orr
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Karl Scheidt
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA; Department of Pharmacology, Northwestern Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Herbert Y Meltzer
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
27
|
Marupalli SS, Arockiaraj M, Singh G, Rajeshkumar V. Iodine-Catalyzed Synthesis of Benzo-β-carbolines through Desulfurative Cyclization of 2-(1 H-Indol-3-ylsulfanyl)-phenylamines with Aryl Methyl Ketones. J Org Chem 2023; 88:12783-12791. [PMID: 37584251 DOI: 10.1021/acs.joc.3c00657] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
A novel transition metal-free strategy for the synthesis of benzene-fused β-carboline scaffolds has been developed. This protocol offers a rapid and direct pathway to access the benzene fused β-carboline from 2-(1H-indol-3-ylsulfanyl)-phenylamines and aryl methyl ketones using an efficient catalytic system of I2/DMSO. The present mild protocol proceeds through the sequential reactions of Kornblum oxidation, Pictet-Spengler cyclization, and desulfurization to afford the desired products in excellent yields up to 99%. Moreover, this method has a wide range of substrate tolerance and is operationally simple and applicable in gram-scale synthesis.
Collapse
Affiliation(s)
- Sasi Sree Marupalli
- Organic Synthesis & Catalysis Lab, Department of Chemistry, National Institute of Technology Warangal, Hanumakonda 506004, Telangana, India
| | - Mariyaraj Arockiaraj
- Organic Synthesis & Catalysis Lab, Department of Chemistry, National Institute of Technology Warangal, Hanumakonda 506004, Telangana, India
| | - Gargi Singh
- Organic Synthesis & Catalysis Lab, Department of Chemistry, National Institute of Technology Warangal, Hanumakonda 506004, Telangana, India
| | - Venkatachalam Rajeshkumar
- Organic Synthesis & Catalysis Lab, Department of Chemistry, National Institute of Technology Warangal, Hanumakonda 506004, Telangana, India
| |
Collapse
|
28
|
Orsy G, Forró E. Lipase-Catalyzed Strategies for the Preparation of Enantiomeric THIQ and TH βC Derivatives: Green Aspects. Molecules 2023; 28:6362. [PMID: 37687191 PMCID: PMC10490024 DOI: 10.3390/molecules28176362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/19/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
This report reviews the most important lipase-catalyzed strategies for the preparation of pharmaceutically and chemically important tetrahydroisoquinoline and tetrahydro-β-carboline enantiomers through O-acylation of the primary hydroxy group, N-acylation of the secondary amino group, and COOEt hydrolysis of the corresponding racemic compounds with simple molecular structure, which have been reported during the last decade. A brief introduction describes the importance and synthesis of tetrahydroisoquinoline and tetrahydro-β-carboline derivatives, and it formulates the objectives of this compilation. The strategies are presented in chronological order, classified according to function of the reaction type, as kinetic and dynamic kinetic resolutions, in the main text. These reactions result in the desired products with excellent ee values. The pharmacological importance of the products together with their synthesis is given in the main text. The enzymatic hydrolysis of the hydrochloride salts as racemates of the starting amino carboxylic esters furnished the desired enantiomeric amino carboxylic acids quantitatively. The enzymatic reactions, performed in tBuOMe or H2O as usable solvents, and the transformations carried out in a continuous-flow system, indicate clear advantages, including atom economy, reproducibility, safer solvents, short reaction time, rapid heating and compression vs. shaker reactions. These features are highlighted in the main text.
Collapse
Affiliation(s)
- György Orsy
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - Enikő Forró
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| |
Collapse
|
29
|
Pal R, Teli G, Akhtar MJ, Matada GSP. The role of natural anti-parasitic guided development of synthetic drugs for leishmaniasis. Eur J Med Chem 2023; 258:115609. [PMID: 37421889 DOI: 10.1016/j.ejmech.2023.115609] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 07/10/2023]
Abstract
Leishmaniasis is a parasitic disease and categorised as a neglected tropical disease (NTD). Each year, between 70,0000 and 1 million new cases are believed to occur. There are approximately 90 sandfly species which can spread the Leishmania parasites (over 20 species) causing 20,000 to 30,000 death per year. Currently, leishmaniasis has no specific therapeutic treatment available. The prescribed drugs with several drawbacks including high cost, challenging administration, toxicity, and drug resistance led to search for the alternative treatment with less toxicity and selectivity. Introducing the molecular features like that of phytoconstituents for the search of compounds with less toxicity is another promising approach. The current review classifies the synthetic compounds according to the core rings present in the natural phytochemicals for the development of antileishmanial agents (2020-2022). Considering the toxicity and limitations of synthetic analogues, natural compounds are at the higher notch in terms of effectiveness and safety. Synthesized compounds of chalcones (Compound 8; IC50: 0.03 μM, 4.7 folds more potent than Amphotericin B; IC50: 0.14 μM), pyrimidine (compound 56; against L. tropica; 0.04 μM and L. infantum; 0.042 μM as compared to glucantime: L. tropica; 8.17 μM and L. infantum; 8.42 μM), quinazoline and (compound 72; 0.021 μM, 150 times more potent than miltefosine). The targeted delivery against DHFR have been demonstrated by one of the pyrimidine compounds 62 with an IC50 value of 0.10 μM against L. major as compared to the standard trimethoprim (IC50: 20 μM). The review covers the medicinal importance of antileishmanial agents from synthetic and natural sources such as chalcone, pyrazole, coumarins, steroids, and alkaloidal-containing drugs (indole, quinolines, pyridine, pyrimidine, carbolines, pyrrole, aurones, and quinazolines). The efforts of introducing the core rings present in the natural phytoconstituents as antileishmanial in the synthetic compounds are discussed with their structural activity relationship. The perspective will support the medicinal chemists in refining and directing the development of novel molecules phytochemicals-based antileishmanial agents.
Collapse
Affiliation(s)
- Rohit Pal
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India.
| | - Ghanshyam Teli
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India.
| | - Md Jawaid Akhtar
- Department of Pharmaceutical Chemistry, National University of Science and Technology, PO 620, PC 130, Azaiba Bousher, Muscat, Sultanate of Oman
| | - Gurubasavaraja Swamy Purawarga Matada
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India.
| |
Collapse
|
30
|
Liu W, Wang M, Guo Z, He Y, Jia H, He J, Miao S, Ding Y, Wang S. Inspired by bis-β-carboline alkaloids: Construction and antitumor evaluation of a novel bis-β-carboline scaffold as potent antitumor agents. Bioorg Chem 2023; 133:106401. [PMID: 36746025 DOI: 10.1016/j.bioorg.2023.106401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/22/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023]
Abstract
Bis-β-carboline alkaloids are widely distributed in natural products and represent a promising drug-like scaffold for discovering drugs and bioactive molecules. In this study, we utilized the structural simplification strategy to construct a novel bis-β-carboline scaffold via "one-pot" condensation-Mannich reaction. The simplified bis-β-carboline derivatives were obtained in good yield. Antitumor evaluation revealed most compounds, especially 3m, displayed potent antitumor activity (IC50 values for 3m: 0.96 μM ∼ 1.52 μM). More importantly, 3m displayed valuable antitumor properties including anti-migration and anti-invasion activity against cancer cells, antiangiogenic and vascular-disrupting properties. Mechanistic studies revealed 3m potently inhibited both Top1 and Top2 activity, thus interfering with DNA synthesis in cancer cells. Taken together, this study developed a new synthetic methodology to construct a novel bis-β-carboline scaffold, which represents a promising lead structure for antitumor drug discovery.
Collapse
Affiliation(s)
- Wei Liu
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi Province, China; Faculty of Pharmacy, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi Province, China
| | - Miaomiao Wang
- Faculty of Pharmacy, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi Province, China
| | - Zhongjie Guo
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Youyou He
- Faculty of Pharmacy, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi Province, China
| | - Hairui Jia
- Faculty of Pharmacy, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi Province, China
| | - Jin He
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Shanshan Miao
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Yi Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China.
| | - Shengzheng Wang
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi Province, China.
| |
Collapse
|
31
|
Yang G, Xie H, Wang C, Zhang C, Yu L, Zhang L, Liu X, Xu R, Song Z, Liu R, Ueda M. Design, synthesis, and discovery of Eudistomin Y derivatives as lysosome-targeted antiproliferation agents. Eur J Med Chem 2023; 250:115193. [PMID: 36774698 DOI: 10.1016/j.ejmech.2023.115193] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Eudistomin Y is a novel class of β-carbolines of marine origin with potential antiproliferation activity against MDA-MB-231 cells (triple-negative breast carcinoma). However, the subcellular target or the detailed mechanism against cancer cell proliferation has not yet been identified. In this study, based on its special structure, a novel series of Eudistomin Y fluorescent derivatives were designed and synthesized by enhancing the electron-donor effect of N-9 to endow it with fluorescent properties through N-alkylation. The structure-activity relationships against the proliferation of cancer cells were also analyzed. A quarter of Eudistomin Y derivatives showed much higher potency against cancer cell proliferation than the original Eudistomin Y1. Fluorescent derivative H1k with robust antiproliferative activity could arrest MDA-MB-231 cells in the G2-M phase. The subcellular localization studies of the probes, including H1k, and Eudistomin Y1 were performed in MDA-MB-231 cells, and the co-localization and competitive inhibition assays revealed their lysosome-specific localization. Moreover, H1k could dose-dependently increase the autophagy signal and downregulate the expression of cyclin-dependent kinase (CDK1) and cyclin B1 which principally regulated the G2-M transition. Furthermore, the specific autophagy inhibitor 3-methyladenine significantly inhibited the H1k-triggered antiproliferation of cancer cells and the downregulation of CDK1 and cyclin B1. Overall, the lysosome is identified as the subcellular target of Eudistomin Y for the first time, and derivative H1k showed robust antiproliferative activity against MDA-MB-231 cells by decreasing Cyclin B1-CDK1 complex via a lysosome-dependent pathway.
Collapse
Affiliation(s)
- Gangqiang Yang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China.
| | - Hao Xie
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Conghui Wang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Chen Zhang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Liping Yu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Luyu Zhang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Xin Liu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Ruoxuan Xu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Zhihua Song
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Rongxia Liu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Minoru Ueda
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan; Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan
| |
Collapse
|
32
|
Wang C, Hu R, Wang T, Duan L, Hou Q, Wang J, Yang Z. A bivalent β-carboline derivative inhibits macropinocytosis-dependent entry of pseudorabies virus by targeting the kinase DYRK1A. J Biol Chem 2023; 299:104605. [PMID: 36918100 PMCID: PMC10140166 DOI: 10.1016/j.jbc.2023.104605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Pseudorabies virus (PRV) has become a "new life-threatening zoonosis" since the human-originated PRV strain was first isolated in 2020. To identify novel anti-PRV agents, we screened a total of 107 β-carboline derivatives and found 20 compounds displaying antiviral activity against PRV. Among them, 14 compounds showed better antiviral activity than acyclovir. We found that compound 45 exhibited the strongest anti-PRV activity with an IC50 value of less than 40 nM. Our in vivo studies showed that treatment with 45 significantly reduced the viral loads and protected mice challenged with PRV. To clarify the mode of action of 45, we conducted a time of addition assay, an adsorption assay, and an entry assay. Our results indicated that 45 neither had a virucidal effect nor affected viral adsorption while significantly inhibiting PRV entry. Using the FITC-dextran uptake assay, we determined that 45 inhibits macropinocytosis. The actin-dependent plasma membrane protrusion, which is important for macropinocytosis, was also suppressed by 45. Further, the kinase DYRK1A was predicted to be a potential target for 45. The binding of 45 to DYRK1A was confirmed by DARTS and CETSA. Further analysis revealed that knockdown of DYRK1A by siRNA suppressed PRV macropinocytosis and the TNFα-induced formation of protrusions. These results suggested that 45 could restrain PRV macropinocytosis by targeting DYRK1A. Together, these findings reveal a unique mechanism through which β-carboline derivatives restrain PRV infection, pointing to their potential value in the development of anti-PRV agents. Our data also reveal a potential target for designing novel macropinocytosis inhibitors.
Collapse
Affiliation(s)
- Chongyang Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| | - Ruochen Hu
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| | - Ting Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| | - Liuyuan Duan
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| | - Qili Hou
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| | - Junru Wang
- College of Chemistry and Pharmacy, Northwest A&F University, Xianyang 712100, China.
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China.
| |
Collapse
|
33
|
9-Butyl-Harmol Exerts Antiviral Activity against Newcastle Disease Virus through Targeting GSK-3β and HSP90β. J Virol 2023; 97:e0198422. [PMID: 36877059 PMCID: PMC10062145 DOI: 10.1128/jvi.01984-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
The paramyxoviruses represent a large family of human and animal pathogens that cause significant health and economic burdens worldwide. However, there are no available drugs against the virus. β-carboline alkaloids are a family of naturally occurring and synthetic products with outstanding antiviral activities. Here, we examined the antiviral effect of a series of β-carboline derivatives against several paramyxoviruses, including Newcastle disease virus (NDV), peste des petits ruminants virus (PPRV), and canine distemper virus (CDV). Among these derivatives, 9-butyl-harmol was identified as an effective antiviral agent against these paramyxoviruses. Further, a genome-wide transcriptome analysis in combination with target validation strategies reveals a unique antiviral mechanism of 9-butyl-harmol through the targeting of GSK-3β and HSP90β. On one hand, NDV infection blocks the Wnt/β-catenin pathway to suppress the host immune response. 9-butyl-harmol targeting GSK-3β dramatically activates the Wnt/β-catenin pathway, which results in the boosting of a robust immune response. On the other hand, NDV proliferation depends on the activity of HSP90. The L protein, but not the NP protein or the P protein, is proven to be a client protein of HSP90β, rather than HSP90α. 9-butyl-harmol targeting HSP90β decreases the stability of the NDV L protein. Our findings identify 9-butyl-harmol as a potential antiviral agent, provide mechanistic insights into the antiviral mechanism of 9-butyl-harmol, and illustrate the role of β-catenin and HSP90 during NDV infection. IMPORTANCE Paramyxoviruses cause devastating impacts on health and the economy worldwide. However, there are no suitable drugs with which to counteract the viruses. We determined that 9-butyl-harmol could serve as a potential antiviral agent against paramyxoviruses. Until now, the antiviral mechanism of β-carboline derivatives against RNA viruses has rarely been studied. Here, we found that 9-butyl-harmol exerts dual mechanisms of antiviral action, with its antiviral activities being mediated by two targets: GSK-3β and HSP90β. Correspondingly, the interaction between NDV infection and the Wnt/β-catenin pathway or HSP90 is demonstrated in this study. Taken together, our findings shed light on the development of antiviral agents against paramyxoviruses, based on the β-carboline scaffold. These results present mechanistic insights into the polypharmacology of 9-butyl-harmol. Understanding this mechanism also deepens the host-virus interaction and reveals new drug targets for anti-paramyxoviruses.
Collapse
|
34
|
Patel V, Bambharoliya T, Shah D, Patel Y, Savaliya N, Patel Y, Patel R, Bhavsar V, Patel H, Patel M, Patel A. Recent Progress for the Synthesis of β-Carboline Derivatives – an Update. Polycycl Aromat Compd 2023. [DOI: 10.1080/10406638.2023.2180525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- Vidhi Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, India
| | | | - Drashti Shah
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, India
| | - Yug Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, India
| | - Neel Savaliya
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, India
| | - Yash Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, India
| | - Riddhisiddhi Patel
- Department of Pharmaceutical Sciences, Saurashtra University, Rajkot, India
| | | | - Harnisha Patel
- Department of Pharmaceutical Chemistry, Parul Institute of Pharmacy, Parul University, Vadodara, India
| | - Mehul Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, India
| | - Ashish Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, India
| |
Collapse
|
35
|
Negm WA, Ezzat SM, Zayed A. Marine organisms as potential sources of natural products for the prevention and treatment of malaria. RSC Adv 2023; 13:4436-4475. [PMID: 36760290 PMCID: PMC9892989 DOI: 10.1039/d2ra07977a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
Vector-borne diseases (VBDs) are a worldwide critical concern accounting for 17% of the estimated global burden of all infectious diseases in 2020. Despite the various medicines available for the management, the deadliest VBD malaria, caused by Plasmodium sp., has resulted in hundreds of thousands of deaths in sub-Saharan Africa only. This finding may be explained by the progressive loss of antimalarial medication efficacy, inherent toxicity, the rise of drug resistance, or a lack of treatment adherence. As a result, new drug discoveries from uncommon sources are desperately needed, especially against multi-drug resistant strains. Marine organisms have been investigated, including sponges, soft corals, algae, and cyanobacteria. They have been shown to produce many bioactive compounds that potentially affect the causative organism at different stages of its life cycle, including the chloroquine (CQ)-resistant strains of P. falciparum. These compounds also showed diverse chemical structures belonging to various phytochemical classes, including alkaloids, terpenoids, polyketides, macrolides, and others. The current article presents a comprehensive review of marine-derived natural products with antimalarial activity as potential candidates for targeting different stages and species of Plasmodium in both in vitro and in vivo and in comparison with the commercially available and terrestrial plant-derived products, i.e., quinine and artemisinin.
Collapse
Affiliation(s)
- Walaa A Negm
- Department of Pharmacognosy, Tanta University, College of Pharmacy El-Guish Street Tanta 31527 Egypt
| | - Shahira M Ezzat
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University Kasr El-Aini Street Cairo 11562 Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA) Giza 12451 Egypt
| | - Ahmed Zayed
- Department of Pharmacognosy, Tanta University, College of Pharmacy El-Guish Street Tanta 31527 Egypt
| |
Collapse
|
36
|
Glynos NG, Carter L, Lee SJ, Kim Y, Kennedy RT, Mashour GA, Wang MM, Borjigin J. Indolethylamine N-methyltransferase (INMT) is not essential for endogenous tryptamine-dependent methylation activity in rats. Sci Rep 2023; 13:280. [PMID: 36609666 PMCID: PMC9822953 DOI: 10.1038/s41598-023-27538-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Indolethylamine N-methyltransferase (INMT) is a transmethylation enzyme that utilizes the methyl donor S-adenosyl-L-methionine to transfer methyl groups to amino groups of small molecule acceptor compounds. INMT is best known for its role in the biosynthesis of N,N-Dimethyltryptamine (DMT), a psychedelic compound found in mammalian brain and other tissues. In mammals, biosynthesis of DMT is thought to occur via the double methylation of tryptamine, where INMT first catalyzes the biosynthesis of N-methyltryptamine (NMT) and then DMT. However, it is unknown whether INMT is necessary for the biosynthesis of endogenous DMT. To test this, we generated a novel INMT-knockout rat model and studied tryptamine methylation using radiometric enzyme assays, thin-layer chromatography, and ultra-high-performance liquid chromatography tandem mass spectrometry. We also studied tryptamine methylation in recombinant rat, rabbit, and human INMT. We report that brain and lung tissues from both wild type and INMT-knockout rats show equal levels of tryptamine-dependent activity, but that the enzymatic products are neither NMT nor DMT. In addition, rat INMT was not sufficient for NMT or DMT biosynthesis. These results suggest an alternative enzymatic pathway for DMT biosynthesis in rats. This work motivates the investigation of novel pathways for endogenous DMT biosynthesis in mammals.
Collapse
Affiliation(s)
- Nicolas G. Glynos
- grid.214458.e0000000086837370Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI USA ,grid.214458.e0000000086837370Michigan Psychedelic Center, University of Michigan, Ann Arbor, MI USA
| | - Lily Carter
- grid.214458.e0000000086837370Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI USA
| | - Soo Jung Lee
- grid.214458.e0000000086837370Department of Neurology, University of Michigan, Ann Arbor, MI USA ,grid.413800.e0000 0004 0419 7525Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI USA
| | - Youngsoo Kim
- grid.214458.e0000000086837370Department of Chemistry, University of Michigan, Ann Arbor, MI USA
| | - Robert T. Kennedy
- grid.214458.e0000000086837370Department of Chemistry, University of Michigan, Ann Arbor, MI USA
| | - George A. Mashour
- grid.214458.e0000000086837370Michigan Psychedelic Center, University of Michigan, Ann Arbor, MI USA ,grid.214458.e0000000086837370Department of Anesthesiology, University of Michigan, Ann Arbor, MI USA ,grid.214458.e0000000086837370Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI USA
| | - Michael M. Wang
- grid.214458.e0000000086837370Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI USA ,grid.214458.e0000000086837370Department of Neurology, University of Michigan, Ann Arbor, MI USA ,grid.413800.e0000 0004 0419 7525Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI USA ,grid.214458.e0000000086837370Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI USA
| | - Jimo Borjigin
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA. .,Michigan Psychedelic Center, University of Michigan, Ann Arbor, MI, USA. .,Department of Neurology, University of Michigan, Ann Arbor, MI, USA. .,Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
37
|
Luo MP, Gu YJ, Wang SG. Photocatalytic enantioselective Minisci reaction of β-carbolines and application to natural product synthesis. Chem Sci 2023; 14:251-256. [PMID: 36687353 PMCID: PMC9811569 DOI: 10.1039/d2sc05313f] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/23/2022] [Indexed: 11/25/2022] Open
Abstract
A highly efficient enantioselective direct C-H functionalization of β-carbolines via a Minisci-type radical process under a photo-redox and chiral phosphoric acid cooperative catalytic system has been disclosed. Through this protocol, a wide range of C1 aminoalkylated β-carbolines were constructed directly with high levels of enantioselectivities from readily available β-carbolines and alanine-derived redox-active esters. This transformation allows straightforward access to highly valuable enantioenriched β-carbolines, which are an intriguing structural motif in valuable natural products and synthetic bio-active compounds. This protocol has been utilized as a highly efficient synthetic strategy for the concise asymmetric total synthesis of marine alkaloids eudistomin X, (+)-eudistomidin B and (+)-eudistomidin I.
Collapse
Affiliation(s)
- Mu-Peng Luo
- Shenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhen 518055GuangdongP. R. China
| | - Yi-Jie Gu
- Shenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhen 518055GuangdongP. R. China
| | - Shou-Guo Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhen 518055GuangdongP. R. China,Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and TechnologyShenzhen 518055GuangdongP. R. China
| |
Collapse
|
38
|
Karan Kumar B, Faheem, Balana Fouce R, Melcon-Fernandez E, Perez-Pertejo Yolanda Y, Reguera RM, Adinarayana N, Chandra Sekhar KVG, Vanaparthi S, Murugesan S. Design, synthesis and evaluation of novel β-carboline ester analogues as potential anti-leishmanial agents. J Biomol Struct Dyn 2022; 40:12592-12607. [PMID: 34488559 DOI: 10.1080/07391102.2021.1973564] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Leishmaniasis is one of today's most neglected diseases. The emergence of new anti-leishmanial therapies emphasizes several study groups funded by the World Health Organization. The present investigation will focus on the research to determine a few new potential derivatives of β-carboline ester derivatives against leishmaniasis. The in-silico predicted ADMET properties of most of the titled compounds are in an acceptable range and having drug like properties. Among all the tested analogs, compound ES-3 (EC50 3.36 μM; SI > 29.80) showed comparable and equipotent anti-leishmanial activity as that of standard drug miltefosine (EC50 4.80 μM; SI > 20.80) against amastigote forms of the tested L. infantum strain. Two compounds ES-6 and ES-10 exhibited significant activity with EC50 10.16, 13.56 μM; SI > 4.90, 7.37, respectively. In-silico based molecular docking and dynamics study of the significantly active analog also performed to study the putative binding mode, interaction pattern at the active site of the target leishmanial trypanothione reductase enzyme as well as stability of the target-ligand complex. The changes in the conformation of molecules during MD (frame wise trajectory analysis) provided new insights for the development of novel potent molecules. These findings will further give insight that will help modify the compound ES-3 for better potency and the design of novel inhibitors for leishmaniasis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Banoth Karan Kumar
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani, Rajasthan, India
| | - Faheem
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani, Rajasthan, India
| | | | | | | | - Rosa M Reguera
- Department of Ciencias Biomedicas, University de Leon, Leon, Spain
| | - Nandikolla Adinarayana
- Department of Chemistry, Birla Institute of Technology and Science Pilani Hyderabad Campus, Hyderabad, Telangana, India
| | | | | | - Sankaranarayan Murugesan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani, Rajasthan, India
| |
Collapse
|
39
|
Alves FDM, Bellei JCB, Barbosa CDS, Duarte CL, da Fonseca AL, Pinto ACDS, Raimundo FO, Carpinter BA, Lemos ASDO, Coimbra ES, Taranto AG, Rocha VN, de Pilla Varotti F, Ribeiro Viana GH, Scopel KKG. Rational-Based Discovery of Novel β-Carboline Derivatives as Potential Antimalarials: From In Silico Identification of Novel Targets to Inhibition of Experimental Cerebral Malaria. Pathogens 2022; 11:pathogens11121529. [PMID: 36558863 PMCID: PMC9781199 DOI: 10.3390/pathogens11121529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022] Open
Abstract
Malaria is an infectious disease widespread in underdeveloped tropical regions. The most severe form of infection is caused by Plasmodium falciparum, which can lead to development of cerebral malaria (CM) and is responsible for deaths and significant neurocognitive sequelae throughout life. In this context and considering the emergence and spread of drug-resistant P. falciparum isolates, the search for new antimalarial candidates becomes urgent. β-carbolines alkaloids are good candidates since a wide range of biological activity for these compounds has been reported. Herein, we designed 20 chemical entities and performed an in silico virtual screening against a pool of P. falciparum molecular targets, the Brazilian Malaria Molecular Targets (BRAMMT). Seven structures showed potential to interact with PfFNR, PfPK7, PfGrx1, and PfATP6, being synthesized and evaluated for in vitro antiplasmodial activity. Among them, compounds 3−6 and 10 inhibited the growth of the W2 strain at µM concentrations, with low cytotoxicity against the human cell line. In silico physicochemical and pharmacokinetic properties were found to be favorable for oral administration. The compound 10 provided the best results against CM, with important values of parasite growth inhibition on the 5th day post-infection for both curative (67.9%) and suppressive (82%) assays. Furthermore, this compound was able to elongate mice survival and protect them against the development of the experimental model of CM (>65%). Compound 10 also induced reduction of the NO level, possibly by interaction with iNOS. Therefore, this alkaloid showed promising activity for the treatment of malaria and was able to prevent the development of experimental cerebral malaria (ECM), probably by reducing NO synthesis.
Collapse
Affiliation(s)
- Fernanda de Moura Alves
- Research Center on Biological Chemistry (NQBio), Federal University of São João Del Rei, Divinópolis 35501-296, Brazil
| | - Jessica Correa Bezerra Bellei
- Research Center Parasitology, Departament of Parasitology, Microbiology and Immunology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil
| | - Camila de Souza Barbosa
- Research Center on Biological Chemistry (NQBio), Federal University of São João Del Rei, Divinópolis 35501-296, Brazil
| | - Caíque Lopes Duarte
- Research Center on Biological Chemistry (NQBio), Federal University of São João Del Rei, Divinópolis 35501-296, Brazil
| | - Amanda Luisa da Fonseca
- Research Center on Biological Chemistry (NQBio), Federal University of São João Del Rei, Divinópolis 35501-296, Brazil
| | - Ana Claudia de Souza Pinto
- Research Center on Biological Chemistry (NQBio), Federal University of São João Del Rei, Divinópolis 35501-296, Brazil
| | - Felipe Oliveira Raimundo
- Research Center Parasitology, Departament of Parasitology, Microbiology and Immunology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil
| | - Bárbara Albuquerque Carpinter
- Research Center Parasitology, Departament of Parasitology, Microbiology and Immunology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil
| | - Ari Sérgio de Oliveira Lemos
- Research Center Parasitology, Departament of Parasitology, Microbiology and Immunology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil
| | - Elaine Soares Coimbra
- Research Center Parasitology, Departament of Parasitology, Microbiology and Immunology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil
| | - Alex Gutterres Taranto
- Research Center on Biological Chemistry (NQBio), Federal University of São João Del Rei, Divinópolis 35501-296, Brazil
| | - Vinícius Novaes Rocha
- Research Center of Pathology and Veterinary Histology, Departament of Veterinary Medicine, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil
| | - Fernando de Pilla Varotti
- Research Center on Biological Chemistry (NQBio), Federal University of São João Del Rei, Divinópolis 35501-296, Brazil
- Correspondence: (F.d.P.V.); (K.K.G.S.)
| | | | - Kézia K. G. Scopel
- Research Center Parasitology, Departament of Parasitology, Microbiology and Immunology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil
- Correspondence: (F.d.P.V.); (K.K.G.S.)
| |
Collapse
|
40
|
Liu W, Tian L, Wu L, Chen H, Wang N, Liu X, Zhao C, Wu Z, Jiang X, Wu Q, Xu Z, Liu W, Zhao Q. Discovery of novel β-carboline-1,2,3-triazole hybrids as AChE/GSK-3β dual inhibitors for Alzheimer's disease treatment. Bioorg Chem 2022; 129:106168. [DOI: 10.1016/j.bioorg.2022.106168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 11/02/2022]
|
41
|
Deng P, Chen Y, Xie S, Xue C, He Z, Chen Q, Wang Z, Qin F, Chen J, Zeng M. Accumulation of Heterocyclic Amines and Advanced Glycation End Products in Various Processing Stages of Plant-Based Burgers by UHPLC-MS/MS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14771-14783. [PMID: 36374967 DOI: 10.1021/acs.jafc.2c06393] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The accumulation of heterocyclic amines (HAs) and advanced glycation end products (AGEs) during different processing stages was investigated in commercial raw materials to plant-based hamburger meats (PBHMs). Principal component analysis (PCA) was performed to explore the difference between the samples of each processing stage. The total free HA level accumulated from 4.74-6.63 ng/g in raw plant proteins to 5.81-20.23 ng/g in textured vegetable proteins after extrusion. The concentration of MeAαC increased from 29.23 ± 3.50 to 59.44 ± 0.26 ng/g, resulting in an accumulation of the total protein-bound HAs after cooking at 160 °C for 6 min, but the MeAαC content decreased to 42.26 ± 0.11 ng/g when the heating duration was prolonged to 12 min. An evident accumulation of AGEs was observed during the thermal home-processing of PBHM. The total levels for all HAs were 381.30 and 160.30 ng/g in roast beef patty (RBP) and PBHM, respectively, with RBP having a better amino acid composition pattern. These results may reveal the target processing stage, which should be paid attention to for the inhibition of Maillard reaction derivative harmful products (MRDHPs) in plant-based meat products.
Collapse
Affiliation(s)
- Peng Deng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Yang Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Siying Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Chaoyi Xue
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Qiuming Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Fang Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
42
|
Ma H, Yu H, Li Z, Cao Z, Du Y, Dai J, Zhi D, Xu Y, Li N, Wang J. β-Carboline dimers inhibit the tumor proliferation by the cell cycle arrest of sarcoma through intercalating to Cyclin-A2. Front Immunol 2022; 13:922183. [PMID: 36325324 PMCID: PMC9618858 DOI: 10.3389/fimmu.2022.922183] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 09/30/2022] [Indexed: 12/04/2022] Open
Abstract
β-Carbolines are potentially strong alkaloids with a wide range of bioactivities, and their dimers exhibit stronger antitumor activity other than the monomers. However, the detailed mechanisms of the β-carboline dimers in inhibiting sarcoma (SARC) remain unclear. The results showed that β-carboline-3-carboxylic acid dimers Comp1 and Comp2, which were synthesized in our lab and modified at the N9 position and linked at the C3 position, exhibited effective inhibition activity on MG-63 proliferation (IC50 = 4.6μM). Meanwhile, the large scale transcriptome profiles of SARC from The Cancer Genome Atlas (TCGA) were analyzed, and found that abnormal expression of genes relevant to apoptosis, cell cycle, and signaling pathways of Hedgehog, HIF, Ras involved in the SARC pathogenesis. Interestingly, both dimers could promote the apoptosis and arrest the cell cycle in S phase to inhibit proliferation of MG-63. Moreover, Comp1 and Comp2 inhibited the expression CDK2, CCNA2, DBF4, and PLK1 associated with various immune cells and cell cycle in MG-63. Remarkably, drug-target interaction network analysis showed that numerous proteins involved in cell cycle were the potential targets of Comp1 and Comp2, especially CCNA2. Further molecular docking, isothermal titration calorimetry (ITC) and Cellular Thermal Shift Assay (CETSA) confirmed that both dimers could directly interact with CCNA2, which is significantly correlated with CD4+ T cells, by strong hydrophobic interactions (Kd=5.821 ×106 N). Meanwhile, the levels of CCNA2 and CDK2 were inhibited to decrease in MG-63 by both dimer treatments at transcription and protein levels, implying that Comp1 and Comp2 blocked the interaction between CCNA2 and CDK2 through competitive binding with CCNA2 to arrest the cell cycle of MG-63 cells in the S phase. Additionally, the transcriptome profiles of β-carboline-treated mice from Gene Expression Omnibus (GEO) were obtained, and found that similar antitumor mechanism was shared among β-carboline derivatives. Overall, our results elucidated the antitumor mechanisms of Comp1 and Comp2 through dual-suppressing the function of CCNA2 to profoundly arrest cell cycle of MG-63, then effectively inhibited cell proliferation of MG-63. These results provide new insights into the antitumor mechanism of β-carboline dimers and new routes of various novel cancer-related drug targets for future possible cancer therapy.
Collapse
Affiliation(s)
- Huiya Ma
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, China
| | - Hongzhi Yu
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, China
| | - Zhengyang Li
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, China
| | - Zhi Cao
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, China
| | - Youwei Du
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Jiangkun Dai
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, China
| | - Dongming Zhi
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, China
| | - Yujie Xu
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, China
| | - Na Li
- Instrumental Analysis Center, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Junru Wang, ; Na Li,
| | - Junru Wang
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, China
- *Correspondence: Junru Wang, ; Na Li,
| |
Collapse
|
43
|
Singh M, Vaishali, Jamra R, Deepika, Kumar S, Singh V. Iodine‐Catalysed Synthesis of β‐Carboline Tethered α‐Amino Amidines Through Ugi‐Type Multicomponent Reaction. ChemistrySelect 2022. [DOI: 10.1002/slct.202202392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Manpreet Singh
- Department of Chemistry Baba Farid Group of Institutions Bathinda Punjab 151001 India
| | - Vaishali
- Department of Chemistry Dr B. R. Ambedkar National Institute of Technology (NIT) Jalandhar Punjab India 144011
| | - Rahul Jamra
- Department of Chemistry Dr B. R. Ambedkar National Institute of Technology (NIT) Jalandhar Punjab India 144011
- Department of Chemistry Central University of Punjab Bathinda Punjab India 151401
| | - Deepika
- Department of Chemistry Dr B. R. Ambedkar National Institute of Technology (NIT) Jalandhar Punjab India 144011
| | - Sunit Kumar
- Department of Chemistry Dr B. R. Ambedkar National Institute of Technology (NIT) Jalandhar Punjab India 144011
| | - Virender Singh
- Department of Chemistry Dr B. R. Ambedkar National Institute of Technology (NIT) Jalandhar Punjab India 144011
- Department of Chemistry Central University of Punjab Bathinda Punjab India 151401
| |
Collapse
|
44
|
Abinaya R, Srinath S, Soundarya S, Sridhar R, Balasubramanian KK, Baskar B. Recent Developments on Synthesis Strategies, SAR Studies and Biological Activities of β-Carboline Derivatives – An Update. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
45
|
Ayipo YO, Alananzeh WA, Ahmad I, Patel H, Mordi MN. Structural modelling and in silico pharmacology of β-carboline alkaloids as potent 5-HT1A receptor antagonists and reuptake inhibitors. J Biomol Struct Dyn 2022:1-17. [PMID: 35881145 DOI: 10.1080/07391102.2022.2104376] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Serotonin (5-HT) antagonists and reuptake inhibitors (SARIs) are atypical antidepressants for managing major depressive disorder. They are oftentimes applied as adjuvants for ameliorating aftereffects of SSRI antidepressants including insomnia and sexual dysfunction. The few available candidates of this class including lorpiprazole and trazodone also display some daunting side effects, making a continuous search for improved alternatives essential. Natural β-carboline alkaloids (NβCs) are interestingly renowned with broad pharmacological spectrum against several neuropsychiatric disorders including depression. However, their potentials as SARIs remain underexplored. In this study, 982 NβCs retrieved from the Ambinter-Greenpharma (Amb) database were virtually screened for potent SARI alternatives using computational and biocheminformatics approaches: homology modelling of 5-HT1A receptor, Glide HTVS, SP and XP molecular docking, molecular dynamics (MD) simulation, ADMET and mutagenicity predictions. The homology receptor was validated as a good representative of human 5HT1A receptor using the RCSB structure validation and quality protocols. From the virtual screening against the 5-HT1A receptor, Amb ligands, Amb18709727 and Amb37857532 showed higher binding affinities by XP scores of -8.725 and -7.976 kcal/mol, and MMGBSA of -87.972 and -107.585 kcal/mol respectively compared to lorpiprazole, a reference SARI with XP score and MMGBSA of -6.512 and -62.788 kcal/mol respectively. They maintained ideal contacts with pharmacologically essential amino acid residues implicated in SARI mechanisms and expressed higher stability and compactness than lorpiprazole throughout the trajectories of 100 ns MD simulation. They also displayed interesting ADME, druggability, low toxicity and mutagenicity profiles, ideal for CNS drug prospects, thus, recommended as putative SARI candidates for further study.
Collapse
Affiliation(s)
- Yusuf Oloruntoyin Ayipo
- Centre for Drug Research, Universiti Sains Malaysia, USM, Pulau Pinang, Malaysia.,Department of Chemistry and Industrial Chemistry, Kwara State University, Malete, Ilorin, Nigeria
| | - Waleed A Alananzeh
- Centre for Drug Research, Universiti Sains Malaysia, USM, Pulau Pinang, Malaysia
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Harun Patel
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Mohd Nizam Mordi
- Centre for Drug Research, Universiti Sains Malaysia, USM, Pulau Pinang, Malaysia
| |
Collapse
|
46
|
Chen H, Yu C, Liu W, Zhu C, Jiang X, Xu C, Liu W, Huang Y, Xu Z, Zhao Q. Discovery of novel α-carboline derivatives as glycogen synthase kinase-3β inhibitors for the treatment of Alzheimer's disease. Arch Pharm (Weinheim) 2022; 355:e2200156. [PMID: 35836098 DOI: 10.1002/ardp.202200156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 11/07/2022]
Abstract
Alzheimer's disease (AD) is a chronic and progressive neurodegenerative disease, characterized by irreversible cognitive impairment, memory loss, and behavioral disturbances, ultimately resulting in death. The critical roles of glycogen synthase kinase-3β (GSK-3β) in tau pathology have also received considerable attention. Based on molecular docking studies, a series of novel α-carboline derivatives were designed, synthesized, and evaluated as GSK-3β inhibitors for their various biological activities. Among them, compound ZCH-9 showed the most potent inhibitory activity against GSK-3β, with an IC50 value of 1.71 ± 0.09 µM. The cytotoxicity assay showed that ZCH-9 had low cytotoxicity toward the cell lines SH-SY5Y, HepG2, and HL-7702. Moreover, Western blot analysis indicated that ZCH-9 effectively inhibited hyperphosphorylation of the tau protein in okadaic acid-treated SH-SY5Y cells. The binding mode between ZCH-9 and GSK-3β was analyzed and further clarified throughout the molecular dynamics simulations. In general, these results suggested that the α-carboline-based small-molecule compounds could serve as potential candidates targeting GSK-3β for the treatment of AD.
Collapse
Affiliation(s)
- Huanhua Chen
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Chong Yu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Wenjie Liu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Chengze Zhu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaowen Jiang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China.,Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, China
| | - Chang Xu
- School of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
| | - Wenwu Liu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Yaoguang Huang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Zihua Xu
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, China
| | - Qingchun Zhao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China.,Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
47
|
Mishra DR, Panda BS, Nayak S, Panda J, Mohapatra S. Recent Advances in the Synthesis of 5‐Membered
N
‐Heterocycles via Rhodium Catalysed Cascade Reactions. ChemistrySelect 2022. [DOI: 10.1002/slct.202200531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Deepak R. Mishra
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Bhabani S. Panda
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Sabita Nayak
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Jasmine Panda
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Seetaram Mohapatra
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| |
Collapse
|
48
|
Tian C, Huang S, Xu Z, Liu W, Li D, Liu M, Zhu C, Wu L, Jiang X, Ding H, Zhao Q. Design, synthesis, and biological evaluation of β-carboline 1,3,4-oxadiazole based hybrids as HDAC inhibitors with potential antitumor effects. Bioorg Med Chem Lett 2022; 64:128663. [PMID: 35272009 DOI: 10.1016/j.bmcl.2022.128663] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 12/11/2022]
Abstract
A series of novel β-carboline 1,3,4-oxadiazole based hybrids were designed, synthesized, and tested for cytotoxicity and HDAC inhibition. Among the target compounds, compound ZDLT-1 displayed high inhibitory activity for class I HDACs 1, 2, and 3, and potent anti-proliferative activity against HCT116 cells with an IC50 value of 0.173 ± 0.018 μM, it also exhibited better inhibitory activity with an IC50 value of 6 nM for HDAC6 than SAHA (IC50 = 15 nM). Furthermore, the pharmacological experiment of Hoechst staining, colony formation, cell apoptosis assay, and wound healing scratch assay indicated that compound ZDLT-1 was a potent cytotoxic agent against HCT116 cells with cell apoptosis induction. Further, in silico prediction of physicochemical properties, drug-likeness, and ADME parameters suggested that compound ZDLT-1 is a promising anticancer agent. Taken together, the high potency cytotoxicity and class I HDACs inhibitory activity of compound ZDLT-1, which with the β-carboline 1,3,4-oxadiazole based hybrids as potent anticancer agents could be nominated for further modification and optimization.
Collapse
Affiliation(s)
- Caizhi Tian
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang 110840, PR China; School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Shuoqi Huang
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang 110840, PR China; School of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Zihua Xu
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang 110840, PR China
| | - Wenwu Liu
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang 110840, PR China; School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Deping Li
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang 110840, PR China; School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Mingyue Liu
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang 110840, PR China; School of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Chengze Zhu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Limeng Wu
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang 110840, PR China; School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Xiaowen Jiang
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang 110840, PR China; School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Huaiwei Ding
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Qingchun Zhao
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang 110840, PR China; School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| |
Collapse
|
49
|
Andres R, Wang Q, Zhu J. Catalytic Enantioselective Pictet-Spengler Reaction of α-Ketoamides Catalyzed by a Single H-Bond Donor Organocatalyst. Angew Chem Int Ed Engl 2022; 61:e202201788. [PMID: 35225416 PMCID: PMC9313548 DOI: 10.1002/anie.202201788] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Indexed: 01/17/2023]
Abstract
The asymmetric Pictet-Spengler reaction (PSR) with aldehydes is well known. However, PSR involving ketones as electrophilic partners is far-less developed. We report herein the first examples of catalytic enantioselective PSR of tryptamines with α-ketoamides. A new class of easily accessible prolyl-urea organocatalysts bearing a single H-bond donor function catalyzes the title reaction to afford 1,1-disubstituted tetrahydro-β-carbolines in excellent yields and enantioselectivities. The kinetic isotope effect using C2-deuterium-labelled tryptamine indicates that the rearomatization of the pentahydro-β-carbolinium ion intermediate might be the rate- and the enantioselectivity-determining step.
Collapse
Affiliation(s)
- Rémi Andres
- Laboratory of Synthesis and Natural ProductsInstitute of Chemical Sciences and EngineeringEcole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, 1015LausanneSwitzerland
| | - Qian Wang
- Laboratory of Synthesis and Natural ProductsInstitute of Chemical Sciences and EngineeringEcole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, 1015LausanneSwitzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural ProductsInstitute of Chemical Sciences and EngineeringEcole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, 1015LausanneSwitzerland
| |
Collapse
|
50
|
Kaur M, Kumar R. A Minireview on Cadogan cyclization reactions leading to diverse azaheterocycles. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Manpreet Kaur
- Central University of Punjab Pharmaceutical Sciences and Natural Products Village Ghudda 151401 Bathinda INDIA
| | - Raj Kumar
- Central University of Punjab Pharmaceutical Sciences and Natural Products Village Ghudda, Bathinda 151401 Bathinda INDIA
| |
Collapse
|