1
|
Gulcin İ. Antioxidants: a comprehensive review. Arch Toxicol 2025:10.1007/s00204-025-03997-2. [PMID: 40232392 DOI: 10.1007/s00204-025-03997-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 02/18/2025] [Indexed: 04/16/2025]
Abstract
Antioxidants had a growing interest owing to their protective roles in food and pharmaceutical products against oxidative deterioration and in the body and against oxidative stress-mediated pathological processes. Screening of antioxidant properties of plants and plant derived compounds requires appropriate methods, which address the mechanism of antioxidant activity and focus on the kinetics of the reactions including the antioxidants. Many studies have been conducted with evaluating antioxidant activity of various samples of research interest using by different methods in food and human health. These methods were classified methods described and discussed in this review. Methods based on inhibited autoxidation are the most suited for termination-enhancing antioxidants and, for chain-breaking antioxidants while different specific studies are needed for preventive antioxidants. For this purpose, the most commonly methods used in vitro determination of antioxidant capacity of food and pharmaceutical constituents are examined and also a selection of chemical testing methods is critically reviewed and highlighting. In addition, their advantages, disadvantages, limitations and usefulness were discussed and investigated for pure molecules and raw plant extracts. The effect and influence of the reaction medium on performance of antioxidants is also addressed. Hence, this overview provides a basis and rationale for developing standardized antioxidant capacity methods for the food, nutraceuticals, and dietary supplement industries. Also, the most important advantages and shortcomings of each method were detected and highlighted. The underlying chemical principles of these methods have been explained and thoroughly analyzed. The chemical principles of methods of 1,1-diphenyl-2-picrylhydrazyl (DPPH•) radical scavenging, 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulphonate) radical (ABTS·+) scavenging, ferric ions (Fe3+) reducing assay, ferric reducing antioxidant power (FRAP) assay, cupric ions (Cu2+) reducing power assay (Cuprac), Folin-Ciocalteu reducing capacity (FCR assay), superoxide radical anion (O2·-), hydroxyl radical (OH·) scavenging, peroxyl radical (ROO·) removing, hydrogen peroxide (H2O2) decomposing, singlet oxygen (1O2) quenching assay, nitric oxide radical (NO·) scavenging assay and chemiluminescence assay are overviewed and critically discussed. Also, the general antioxidant aspects of the main food and pharmaceutical components were discussed through several methods currently used for detecting antioxidant properties of these components. This review consists of two main sections. The first section is devoted to the main components in food and their pharmaceutical applications. The second general section includes definitions of the main antioxidant methods commonly used for determining the antioxidant activity of components. In addition, some chemical, mechanistic, and kinetic properties, as well as technical details of the above mentioned methods, are provided. The general antioxidant aspects of main food components have been discussed through various methods currently used to detect the antioxidant properties of these components.
Collapse
Affiliation(s)
- İlhami Gulcin
- Faculty of Sciences, Department of Chemistry, Atatürk University, 25240, Erzurum, Türkiye.
| |
Collapse
|
2
|
Zhao R, Jia N, Wu S, Wen J, Huang Y, Zhao C, Chen W. Therapeutic potential and limitation of condensed and hydrolyzed tannins in Parkinson's disease. Int J Biol Macromol 2025; 307:141814. [PMID: 40057098 DOI: 10.1016/j.ijbiomac.2025.141814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 02/24/2025] [Accepted: 03/05/2025] [Indexed: 03/18/2025]
Abstract
Parkinson's disease is a complex neurodegenerative disorder characterized by neuroinflammation, mitochondrial dysfunction, and the accumulation of misfolded proteins such as α-synuclein. This review explores the therapeutic potential of tannins, particularly proanthocyanidins and hydrolyzable tannins from grape seeds, in alleviating Parkinson's disease pathology. Condensed tannins exhibit significant antioxidant properties, can cross the blood-brain barrier, reduce oxidative stress, upregulate antioxidant proteins, and prevent neuronal apoptosis. Hydrolyzable tannins, through their unique chemical structure, further help reduce neuroinflammation and improve mitochondrial function. Both types of tannins can modulate inflammatory responses and enhance mitochondrial integrity, addressing key aspects of Parkinson's disease pathogenesis. Tannins possess excellent neuroprotective effects, representing a promising therapeutic approach. However, due to their chemical nature and structural characteristics, the bioavailability of tannins in the human body remains low. Current methods to enhance their bioavailability are limited. Further exploration is needed to improve their bioavailability and strengthen their potential clinical applications. Based on this, new Parkinson's disease treatment strategies can be developed, warranting in-depth research and clinical validation.
Collapse
Affiliation(s)
- Runfan Zhao
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Nan Jia
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuyang Wu
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiahui Wen
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yajun Huang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Weichao Chen
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
3
|
Singh A, Dey P, Mihara H, Prakash NT, Prakash R. Facile synthesis of selenium nanoparticles and stabilization using exopolysaccharide from endophytic fungus, Nigrospora gullinensis, and their bioactivity study. BIOMASS CONVERSION AND BIOREFINERY 2025; 15:9581-9598. [DOI: 10.1007/s13399-024-05870-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 03/31/2025]
|
4
|
Sionov RV, Korem M, Polacheck I, Steinberg D. Cannabidiol (CBD) Acts as an Antioxidant on Gardnerella vaginalis, Resulting in Reduced Metabolic Activity, Loss of Survivability, and Elimination of Biofilms. Antibiotics (Basel) 2025; 14:136. [PMID: 40001381 PMCID: PMC11851883 DOI: 10.3390/antibiotics14020136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 01/26/2025] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Gardnerella vaginalis is a natural inhabitant of the vagina, but when an imbalance occurs in the vaginal microbiota, this bacterium can cause vaginosis, a condition that must be treated when symptomatic and prior to a gynecological intervention. Cannabidiol (CBD) is an anti-inflammatory compound that also has antibacterial activities against several Gram-positive and certain Gram-negative bacteria. Objectives: Since G. vaginalis is an opportunistic pathogenic Gram-variable bacterium, we investigated its response to CBD. Methods: The antibacterial activity of CBD was studied by broth dilution assay, changes in intracellular ATP levels, and the ability of bacteria to recover on chocolate agar plates. The antibiofilm activity was investigated by MTT metabolic assay, crystal violet staining, and HR-SEM. Flow cytometric analyses were performed to measure changes in membrane potential, membrane perforation, and metabolic activity. Reactive oxygen species (ROS) production was analyzed using the nitro blue tetrazolium (NBT) reagent. Gene expression was determined by semi-quantitative real-time PCR, while protein composition was determined by LC-MS/MS analysis. Results: We observed that G. vaginalis clinical isolates exhibited high susceptibility to CBD with a minimum inhibitory concentration (MIC) of 2.5 µg/mL CBD. CBD induced rapid membrane hyperpolarization and caused cytoplasmic leakage of ATP without increasing propidium iodide uptake. This was accompanied by reduced metabolic activity and loss of survivability. Proteomic analysis revealed decreased expression of some ribosomal-associated proteins. CBD exhibited antioxidant activity by reducing intracellular ROS levels in a dose-dependent manner. The antibacterial effect was neutralized by the free radical scavenger α-tocopherol, suggesting the involvement of radicals in executing the antibacterial effect. Importantly, CBD not only prevented the biofilm formation of G. vaginalis but also reduced the metabolic activity and biofilm biomass of preformed, mature biofilms. Real-time PCR analysis of G. vaginalis treated with CBD for 6 h showed an increase in the expression of biofilm-associated genes, suggesting that the antibiofilm activity of CBD is mainly due to its antibacterial effect. CBD did not alter the ability of G. vaginalis to adhere to HeLa cervical carcinoma cells and CBD-treated bacteria were still phagocytosed by RAW264.7 macrophages. Conclusions: Our study shows that CBD exhibits antibacterial and antibiofilm activities against G. vaginalis clinical isolates and is thus a potential drug for the treatment of vaginosis caused by this bacterium.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- Institute of Biomedical and Oral Research (IBOR), Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel;
| | - Maya Korem
- Department of Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center, Jerusalem 9112001, Israel; (M.K.); (I.P.)
| | - Itzhack Polacheck
- Department of Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center, Jerusalem 9112001, Israel; (M.K.); (I.P.)
| | - Doron Steinberg
- Institute of Biomedical and Oral Research (IBOR), Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel;
| |
Collapse
|
5
|
Ghazi-Yaker A, Kraak B, Houbraken J, Nabti EH, Cruz C, Saadoun N, Houali K. In Vitro Antioxidant and Antibacterial Activities of Ethyl Acetate Extracts of Ziziphus lotus Leaves and Five Associated Endophytic Fungi. Microorganisms 2024; 12:2671. [PMID: 39770873 PMCID: PMC11728511 DOI: 10.3390/microorganisms12122671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/15/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025] Open
Abstract
The exploration of new pharmacological compounds from endophytic fungi offers infinite possibilities. The aim of this study was to evaluate the antibacterial and antioxidant activities of extracts from the leaves of Ziziphus lotus and five of its endophytic fungi and investigate the chemical diversity of the secondary metabolites produced. Isolated, purified, and molecularly identified endophytes and plant leaves were subjected to ethyl acetate extraction. The antibacterial potential of the extracts was assessed by the disc diffusion method against five bacterial strains: Staphylococcus aureus ATCC 25923; Staphylococcus aureus MU50; Enterococcus faecalis WDCM00009; Escherichia coli ATCC 25922; and Pseudomonas aeruginosa ATCC 27853. DPPH and reducing power tests were performed to assess antioxidant potential. GC-MS analysis was used to identify volatile compounds in extracts. Fungal endophytes were identified as Aspergillus cavernicola, Aspergillus persii, Alternaria alternata, Cladosporium asperlatum, and Fusarium incarnatum-equiseti complex, with respective accession numbers DTO 412-G6, DTO 412-I5, DTO 413-E7, DTO 412-G4, and DTO 414-I2. GC-MS analysis revealed a large number of bioactive compounds. All extracts showed antibacterial activity against at least two of the bacteria tested, and most showed antioxidant activity. The Aspergillus cavernicola extract stood out for its higher phenolic content and higher antioxidant and antibacterial activities in all tests.
Collapse
Affiliation(s)
- Amel Ghazi-Yaker
- Natural Resources Laboratory, Faculty of Biological and Agronomic Sciences, Mouloud Mammeri Univesity, Tizi-Ouzou 15000, Algeria; (A.G.-Y.); (N.S.)
- Laboratory of Analytic Biochemistry and Biotechnology (LABAB), Department of Biochemistry and Microbiology, Faculty of Biological and Agronomic Sciences, Mouloud Mammeri University, Tizi-Ouzou 15000, Algeria
| | - Bart Kraak
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan, 3584 CT Utrecht, The Netherlands; (B.K.); (J.H.)
| | - Jos Houbraken
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan, 3584 CT Utrecht, The Netherlands; (B.K.); (J.H.)
| | - El-hafid Nabti
- Laboratoire de Maitrise des Energies Renouvelables, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria;
| | - Cristina Cruz
- cE3c—Center for Ecology, Evolution and Environmental Changes & CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências da Universidade de Lisboa Campo Grande, 1749-016 Lisboa, Portugal;
| | - Noria Saadoun
- Natural Resources Laboratory, Faculty of Biological and Agronomic Sciences, Mouloud Mammeri Univesity, Tizi-Ouzou 15000, Algeria; (A.G.-Y.); (N.S.)
| | - Karim Houali
- Laboratory of Analytic Biochemistry and Biotechnology (LABAB), Department of Biochemistry and Microbiology, Faculty of Biological and Agronomic Sciences, Mouloud Mammeri University, Tizi-Ouzou 15000, Algeria
| |
Collapse
|
6
|
Wang Z, Yang H, Li Z, Liu J. Non-Thermal Treatment Mediated by Curcumin for Enhancing Food Product Quality. Foods 2024; 13:3980. [PMID: 39683052 DOI: 10.3390/foods13233980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/30/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024] Open
Abstract
Increasing antibiotic resistance is one of the world's greatest health problems, and biocide use in food disinfection, alongside other application fields, could increase antibiotic resistance. Effective and eco-friendly food decontamination treatment with minimal chemical intervention in food production is urgently needed. Synergistic antimicrobial interaction of photoactive compounds and blue-light-emitting diodes have recently been proven effective in agricultural and environmental applications. Curcumin-based non-thermal treatment has been reviewed in this work for the development of a safe and effective decontamination tool that could be adapted to the food industry. The antimicrobial mechanism of the synergistic interaction and the inhibitory efficacy against foodborne pathogens (bacteria in both vegetative form and spore, as well as in biofilms) are discussed. Further studies on curcumin and its derivative, as well as light illumination patterns, were compared for enhanced bactericidal efficacy. Moreover, studies relating to photodynamic inactivation treatment for food sanitation and food quality enhancement (cereal grains and other food products) were summarized, as well as the impact on food organoleptic and nutritional quality.
Collapse
Affiliation(s)
- Ziyuan Wang
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
- National Center of Technology Innovation for Grain Industry, Comprehensive Utilization of Edible By-Products, Beijing Technology and Business University, Beijing 100048, China
| | - Haihong Yang
- National Center of Technology Innovation for Grain Industry, Comprehensive Utilization of Edible By-Products, Beijing Technology and Business University, Beijing 100048, China
| | - Zhaofeng Li
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jie Liu
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
- National Center of Technology Innovation for Grain Industry, Comprehensive Utilization of Edible By-Products, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
7
|
Esazadeh K, Ezzati Nazhad Dolatabadi J, Andishmand H, Mohammadzadeh‐Aghdash H, Mahmoudpour M, Naemi Kermanshahi M, Roosta Y. Cytotoxic and genotoxic effects of tert-butylhydroquinone, butylated hydroxyanisole and propyl gallate as synthetic food antioxidants. Food Sci Nutr 2024; 12:7004-7016. [PMID: 39479655 PMCID: PMC11521724 DOI: 10.1002/fsn3.4373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 11/02/2024] Open
Abstract
Synthetic food antioxidants such as tert-butylhydroquinone (TBHQ), butylated hydroxyanisole (BHA), and propyl gallate (PG) have been extensively utilized in different food industries because of their high protectant activities to stop food spoilage and remove foodborne diseases in humans and animals. It would be emphasized that increasing the intake of antioxidants through intracellular may lead to cyto/genotoxicity, and their complex formation with biological molecules eventually accelerate the progress of various diseases like multiple sclerosis, diabetes, neurological disorders, cardiac vascular disease, cancer, etc. Therefore, their toxicity is one of the challenging subjects due to their extensive use in food-related industries. TBHQ, BHA, and PG antioxidants have cytotoxic, genotoxic, and carcinogenic effects if absorbed in high doses through the gastrointestinal tract. Thermodynamic parameters presented that the hydrophobic bind plays a key role in the complexation of the TBHQ, BHA, and PG with albumin. The molecular modeling results showed that subdomain IIA plays a vital role in the interaction of TBHQ and BHA with albumin. To comprehend the mechanisms of the cyto/genotoxicity effects of these food antioxidants and conformational alterations of albumin macromolecule, we aim to overview numerous types of research that evaluated the cyto/genotoxicity effects of these antioxidants using several procedures.
Collapse
Affiliation(s)
- Karim Esazadeh
- Pharmaceutical Analysis Research CenterTabriz University of Medical SciencesTabrizIran
| | | | - Hashem Andishmand
- Research Center for Food Hygiene and Safety, School of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
- Department of Food Hygiene and Safety, School of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
| | | | - Mansour Mahmoudpour
- Food and Beverages Safety Research CenterUrmia University of Medical SciencesUrmiaIran
| | - Mohammad Naemi Kermanshahi
- Student Research Committee, Nutrition Research Center, School of Nutrition and Food SciencesTabriz University of Medical SciencesTabrizIran
| | - Yousef Roosta
- Department of Internal Medicne, School of Medicine, Solid Tumor Research CenterImam Khomeini Hospital, Urmia University of Medical SciencesUrmiaIran
| |
Collapse
|
8
|
Dilshad R, Jamil N, Naseem A, Batool R. Unveiling the Bioactive Potential of Bacterial Isolates from Extreme Environments of Pakistan by In Vitro and In Silico Approaches. Curr Microbiol 2024; 81:350. [PMID: 39259384 DOI: 10.1007/s00284-024-03861-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024]
Abstract
The soil hosts a wide array of bacterial species capable of producing diverse bioactive compounds. This research aimed to screen bacterial isolates for their bioactive potential from extreme environments in Pakistan. Out of the 69 isolates examined, only 7 exhibited antagonistic activity against Bacillus sp. and Escherichia coli test strains. Notably, the B. cereus DS-2 strain demonstrated the highest antibacterial potential (31 mm and 15 mm) against the Bacillus and E. coli test strains, respectively. Mode-of-action studies suggested that the crude extract might have induced morphological abnormalities in the Bacillus sp. (test strain), causing cell contraction, chain breakage, and deformation. Furthermore, the B. cereus DS-2 strain displayed significant antioxidant potential (64.8%) as revealed by the 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. Thin-layer chromatography (TLC) of the DS-2 crude extract led to the separation of six components, with only spots 3 and 4 exhibiting the antibacterial potential (3 mm and 5 mm, respectively). Subsequently, gas chromatography-mass spectrometry (GC-MS) analysis of the bioactive fraction extracted from TLC revealed the presence of diisooctyl phthalate, dibutyl phthalate, hexadecanoic acid methyl ester, and octadecanoic acid methyl ester. Molecular docking analysis of diisooctyl phthalate and dibutyl phthalate revealed their binding affinity against E. coli and Bacillus sp. targets. ADMET analysis confirmed the solubility, toxicity, and drug-like properties of the ligands based on Lipinski's rule of five. Current findings suggest that these compounds hold promise as antibacterial agents in drug development. This study underscores the diverse microbial community present in extreme environments and highlights the versatile applications of natural products derived from these strains.
Collapse
Affiliation(s)
- Rimsha Dilshad
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, 54590, Pakistan
| | - Nazia Jamil
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, 54590, Pakistan
| | - Ayesha Naseem
- Faculty of Pharmacy, Punjab University College of Pharmacy, University of the Punjab, Lahore, 54590, Pakistan
| | - Rida Batool
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, 54590, Pakistan.
| |
Collapse
|
9
|
Zhang M, Yan S, Wang J, Zhong Y, Wang C, Zhang T, Xing D, Shao Y. Rational design of multifunctional hydrogels targeting the microenvironment of diabetic periodontitis. Int Immunopharmacol 2024; 138:112595. [PMID: 38950455 DOI: 10.1016/j.intimp.2024.112595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/03/2024]
Abstract
Periodontitis is a chronic inflammatory disease and is the primary contributor to adult tooth loss. Diabetes exacerbates periodontitis, accelerates periodontal bone resorption. Thus, effectively managing periodontitis in individuals with diabetes is a long-standing challenge. This review introduces the etiology and pathogenesis of periodontitis, and analyzes the bidirectional relationship between diabetes and periodontitis. In this review, we comprehensively summarize the four pathological microenvironments influenced by diabetic periodontitis: high glucose microenvironment, bacterial infection microenvironment, inflammatory microenvironment, and bone loss microenvironment. The hydrogel design strategies and latest research development tailored to the four microenvironments of diabetic periodontitis are mainly focused on. Finally, the challenges and potential solutions in the treatment of diabetic periodontitis are discussed. We believe this review will be helpful for researchers seeking novel avenues in the treatment of diabetic periodontitis.
Collapse
Affiliation(s)
- Miao Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Saisai Yan
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Jie Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Yingjie Zhong
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Chao Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Tingting Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; Cancer Institute, Qingdao University, Qingdao 266071, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yingchun Shao
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; Cancer Institute, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
10
|
Muhammad M, Wahab A, Waheed A, Mohamed HI, Hakeem KR, Li L, Li WJ. Harnessing bacterial endophytes for environmental resilience and agricultural sustainability. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122201. [PMID: 39142107 DOI: 10.1016/j.jenvman.2024.122201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 08/01/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
In the current era of environmental disasters and the necessity of sustainable development, bacterial endophytes have gotten attention for their role in improving agricultural productivity and ecological sustainability. This review explores the multifaceted contributions of bacterial endophytes to plant health and ecosystem sustainability. Bacterial endophytes are invaluable sources of bioactive compounds, promising breakthroughs in medicine and biotechnology. They also serve as natural biocontrol agents, reducing the need for synthetic fertilizers and fostering environmentally friendly agricultural practices. It provides eco-friendly solutions that align with the necessity of sustainability since they can improve pest management, increase crop resilience, and facilitate agricultural production. This review also underscores bacterial endophytes' contribution to promoting sustainable and green industrial productions. It also presented how incorporating these microorganisms into diverse industrial sectors can harmonize humankind with ecological stability. The potential of bacterial endophytes has been largely untapped, presenting an opportunity for pioneering advancements in sustainable industrial applications. Their importance caught attention as they provided innovative solutions to the challenging problems of the new era. This review sheds light on the remarkable potential of bacterial endophytes in various industrial sectors. Further research is imperative to discover their multifaceted potential. It will be essential to delve deeper into their mechanisms, broaden their uses, and examine their long-term impacts.
Collapse
Affiliation(s)
- Murad Muhammad
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, China.
| | - Abdul Wahab
- University of Chinese Academy of Sciences, Beijing, 100049, China; Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Abdul Waheed
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; National Key Laboratory of Ecological Security and Resource Utilization in Arid Areas, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, China
| | - Heba Ibrahim Mohamed
- Biological and Geological Sciences Department, Faculty of Education, Ain Shams University, Cairo, 11341, Egypt
| | - Khalid Rehman Hakeem
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Princess Dr. Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah, 21589, Saudi Arabia; Department of Public Health, Daffodil International University, Dhaka, 1341, Bangladesh; University Centre for Research & Development, Chandigarh University, Mohali, Punjab, 140413, India
| | - Li Li
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, China
| | - Wen-Jun Li
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
11
|
Tahir H, Rashid F, Ali S, Summer M, Abaidullah R. Spectrophotometrically, Spectroscopically, Microscopically and Thermogravimetrically Optimized TiO 2 and ZnO Nanoparticles and their Bactericidal, Antioxidant and Cytotoxic Potential: A Novel Comparative Approach. J Fluoresc 2024; 34:2019-2033. [PMID: 37672182 DOI: 10.1007/s10895-023-03367-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/24/2023] [Indexed: 09/07/2023]
Abstract
Current study was aimed to determine the antibacterial, antioxidant and cytotoxic potential of Titanium dioxide nanoparticles (TiO2NPs) and Zinc oxide nanoparticles (ZnONPs). Nanoparticles were characterized by UV-Vis spectrophotometry, particle size analyzer (PSA), fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The Minimum inhibitory concentration (MIC) was determined by standard agar dilution method. Antibacterial potential of nanoparticles was analyzed by standard disc diffusion method against bacterial strains including Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumonia. Different concentrations of NPs (0.2, 0.4, 0.6, 0.8, 1.0, 1.2 and 1.4 mg/mL) were incorporated to evaluate the antimicrobial activity. Antioxidant activity and cytotoxicity of these NPs was analyzed by DPPH method and brine shrimp cytotoxicity assay, respectively. The MIC of TiO2NPs against E. coli, P. aeruginosa and K. pneumoniae was 0.04, 0.08 and 0.07 mg/mL respectively while the MIC of ZnONPs against the above strains was 0.01, 0.015 and 0.01 mg/mL. The maximum zone of inhibition was observed for K. pneumoniae i.e., 20mm and 25mm against TiO2 and ZnO NPs respectively, at 1.4 mg/mL concentration of NPs. The susceptibility of NPs against bacterial strains was evaluated in the following order: K. pneumoniae > P. aeruginosa > E. coli. The antioxidant activity of nanoparticles increased by increasing the concentration of NPs while cytotoxic analysis exhibited non-toxic effect of ZnO NPs while TiO2 had toxic effects on 1.2 and 1.4 mg/mL concentrations. Results revealed that ZnO NPs have more antibacterial and negligible cytotoxic potential in contrast to TiO2 NPs.
Collapse
Affiliation(s)
- Hunaiza Tahir
- Department of Zoology, Lahore College for Women University, Lahore, Pakistan
| | - Farzana Rashid
- Department of Zoology, Lahore College for Women University, Lahore, Pakistan
| | - Shaukat Ali
- Department of Zoology, Government College University Lahore, Lahore, Pakistan.
| | - Muhammad Summer
- Department of Zoology, Government College University Lahore, Lahore, Pakistan
| | - Rimsha Abaidullah
- Department of Zoology, Government College University Lahore, Lahore, Pakistan
| |
Collapse
|
12
|
Li TT, Shou BB, Yang L, Ren HT, Hu XJ, Lin JH, Cai T, Lou CW. Modification of traditional composite nonwovens with stable storage of light absorption transients and photodynamic antibacterial effect. Photochem Photobiol 2024; 100:1328-1338. [PMID: 38528682 DOI: 10.1111/php.13924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 03/27/2024]
Abstract
Combining photodynamic antimicrobials with nonwovens is prospective. However, common photosensitizers still have drawbacks such as poor photoactivity and the inability to charge. In this study, a photodynamic and high-efficiency antimicrobial protective material was prepared by grafting bis benzophenone-structured 4,4-terephthaloyl diphthalic anhydride (TDPA) photosensitizer, and antimicrobial agent chlorogenic acid (CA) onto spunbond-meltblown-spunbond (SMS) membranes. The charging rates for ·OH and H2O2 were 6377.89 and 913.52 μg/g/h. The light absorption transients structural storage remained above 69% for 1 month. High electrical capacity remained after seven cycles indicating its rechargeability and recyclability. The SMS/TDPA/CA membrane has excellent bactericidal performance when under illumination or lightless conditions, and the bactericidal efficiency of Escherichia coli and Staphylococcus aureus reached over 99%. The construction of self-disinfection textiles based on the photodynamic strategies proposed in this paper is constructive for expanding and promoting the application of textile materials in the medical field.
Collapse
Affiliation(s)
- Ting-Ting Li
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, China
- Tianjin and Ministry of Education Key Laboratory for Advanced Textile Composite Materials, Tiangong University, Tianjin, China
| | - Bing-Bing Shou
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, China
| | - Lu Yang
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, China
| | - Hai-Tao Ren
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, China
- Tianjin and Ministry of Education Key Laboratory for Advanced Textile Composite Materials, Tiangong University, Tianjin, China
| | - Xian-Jin Hu
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, China
| | - Jia-Horng Lin
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, China
- Ocean College, Minjiang University, Fuzhou, China
- Laboratory of Fiber Application and Manufacturing, Department of Fiber and Composite Materials, Feng Chia University, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Tao Cai
- CTES (Shishi) Research Institute for Apparel and Accessories Industry, Shishi, China
| | - Ching-Wen Lou
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, China
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
13
|
Liu Y, Lu C, Zhou J, Zhou F, Gui A, Chu H, Shao Q. Chrysanthemum morifolium as a traditional herb: A review of historical development, classification, phytochemistry, pharmacology and application. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118198. [PMID: 38621465 DOI: 10.1016/j.jep.2024.118198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/28/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In recent years, Chinese herbal medicine has gained more and more recognition in disease prevention and control due to its low toxicity and comprehensive treatment. C. morifolium (Chrysanthemum morifolium Ramat.), as the medicine food homology plant with the bioactivity of anti-oxidation, anti-inflammatory, neuroprotection and cardiovascular protection, has important therapeutic effects and health benefits for colds, inflammation, cardiovascular diseases and various chronic diseases. AIM OF THE STUDY By reviewing the historical development, classification and distribution of germplasm resources, phytochemistry, pharmacology, and modern application of C. morifolium, the paper provides a reliable basis for the further research and application of chrysanthemum as therapeutic agents and functional additives. MATERIALS AND METHODS The literature and information about C. morifolium published in the last ten years were collected from various platforms, including Google Scholar, PubMed, ScienceDirect, Web of Science and China Knowledge Network. RESULTS A comprehensive analysis confirmed that C. morifolium originated in China, and it went through the development process from food and tea to medicine for more than 3000 years. During this period, different cultivars emerged through several breeding techniques and were distributed throughout the world. Moreover, A variety of chemical components such as flavonoids, phenolic acids, volatile oils, and terpenes in chrysanthemum have been proven they possess various pharmacology of anti-inflammatory, anti-oxidant, and prevention of chronic diseases by regulating inflammatory cytokines, oxidative stress responses and signaling pathways, which are the essential conditions to play a role in TCM, nutraceuticals and diet. CONCLUSION This paper provides a comprehensive review of historical development, classification, phytochemistry, pharmacology, and modern application of C. morifolium. However, future studies should continue to focus on the bioactive compounds and the synergistic mechanism of the "multi-component, multi-target, and multi-pathway" of chrysanthemum, and it is necessary to develop more innovative products with therapeutic effects.
Collapse
Affiliation(s)
- Yuchen Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Hangzhou, 311300, China; College of Food and Health, Zhejiang A&F University, Hangzhou, 311300, China
| | - Chenfei Lu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Hangzhou, 311300, China; College of Food and Health, Zhejiang A&F University, Hangzhou, 311300, China.
| | - Jing Zhou
- College of Food and Health, Zhejiang A&F University, Hangzhou, 311300, China
| | - Fenfen Zhou
- College of Food and Health, Zhejiang A&F University, Hangzhou, 311300, China; Wenzhou Forestry Extension and Wildlife Conservation Station, Wenzhou, 325027, China
| | - Aijun Gui
- College of Food and Health, Zhejiang A&F University, Hangzhou, 311300, China
| | - Hongli Chu
- College of Food and Health, Zhejiang A&F University, Hangzhou, 311300, China
| | - Qingsong Shao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Hangzhou, 311300, China; College of Food and Health, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
14
|
Ookubo M, Tashiro Y, Asano K, Kamei Y, Tanaka Y, Honda T, Yokoyama T, Honda M. "Rich arginine and strong positive charge" antimicrobial protein protamine: From its action on cell membranes to inhibition of bacterial vital functions. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184323. [PMID: 38614236 DOI: 10.1016/j.bbamem.2024.184323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/15/2024] [Accepted: 04/05/2024] [Indexed: 04/15/2024]
Abstract
Protamine, an antimicrobial protein derived from salmon sperm with a molecular weight of approximately 5 kDa, is composed of 60-70 % arginine and is a highly charged protein. Here, we investigated the mechanism of antimicrobial action of protamine against Cutibacterium acnes (C. acnes) focusing on its rich arginine content and strong positive charge. Especially, we focused on the attribution of dual mechanisms of antimicrobial protein, including membrane disruption or interaction with intracellular components. We first determined the dose-dependent antibacterial activity of protamine against C. acnes. In order to explore the interaction between bacterial membrane and protamine, we analyzed cell morphology, zeta potential, membrane permeability, and the composition of membrane fatty acid. In addition, the localization of protamine in bacteria was observed using fluorescent-labeled protamine. For investigation of the intracellular targets of protamine, bacterial translation was examined using a cell-free translation system. Based on our results, the mechanism of the antimicrobial action of protamine against C. acnes is as follows: 1) electrostatic interactions with the bacterial cell membrane; 2) self-internalization into the bacterial cell by changing the composition of the bacterial membrane; and 3) inhibition of bacterial growth by blocking translation inside the bacteria. However, owing to its strong electric charge, protamine can also interact with DNA, RNA, and other proteins inside the bacteria, and may inhibit various bacterial life processes beyond the translation process.
Collapse
Affiliation(s)
- Momoka Ookubo
- Graduate School of Science and Technology, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki 214-8571, Kanagawa, Japan
| | - Yuka Tashiro
- Graduate School of Science and Technology, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki 214-8571, Kanagawa, Japan
| | - Kosuke Asano
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai 980-8577, Japan
| | - Yoshiharu Kamei
- Graduate School of Science and Technology, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki 214-8571, Kanagawa, Japan
| | - Yoshikazu Tanaka
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai 980-8577, Japan; The advanced center for innovations in next-generation medicine (INGEM), Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8573, Japan
| | - Takayuki Honda
- Graduate School of Science and Technology, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki 214-8571, Kanagawa, Japan
| | - Takeshi Yokoyama
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai 980-8577, Japan; The advanced center for innovations in next-generation medicine (INGEM), Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8573, Japan
| | - Michiyo Honda
- Graduate School of Science and Technology, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki 214-8571, Kanagawa, Japan.
| |
Collapse
|
15
|
Ikhane AO, Sithole SZ, Cele ND, Osunsanmi FO, Mosa RA, Opoku AR. In Vitro Antioxidant and In Silico Evaluation of the Anti-β-Lactamase Potential of the Extracts of Cylindrospermum alatosporum NR125682 and Loriellopsis cavenicola NR117881. Antioxidants (Basel) 2024; 13:608. [PMID: 38790713 PMCID: PMC11117491 DOI: 10.3390/antiox13050608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/03/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Cyanobacteria in recent times have been touted to be a suitable source for the discovery of novel compounds, including antioxidants and antibiotics, due to their large arsenal of metabolites. This study presents the in vitro antioxidant and in silico evaluation of Cylindrospermum alatosporum NR125682 and Loriellopsis cavenicola NR117881, isolated from freshwater ponds around the campus of the University of Zululand, South Africa. The isolates were confirmed using 16S rRNA. Various crude extracts of the isolated microbes were prepared through sequential extraction using hexane, dichloromethane, and 70% ethanol. The chemical constituents of the crude extracts were elucidated by FTIR and GC-MS spectroscopy. The antioxidant potential of the extracts was determined by the free radical (DPPH, ABTS, •OH, and Fe2+) systems. Molecular docking of the major constituents of the extracts against β-lactamase was also evaluated. GC-MS analysis indicated the dominating presence of n-alkanes. The extracts exhibited varying degrees of antioxidant activity (scavenging of free radicals; an IC50 range of 8-10 µg/mL was obtained for ABTS). A good binding affinity (-6.6, -6.3 Kcal/mol) of some the organic chemicals (diglycerol tetranitrate, and 2,2-dimethyl-5-(3-methyl-2-oxiranyl)cyclohexanone) was obtained following molecular docking. The evaluated antioxidant activities, coupled with the obtained docking score, potentiates the antimicrobial activity of the extracts.
Collapse
Affiliation(s)
- Albert O. Ikhane
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa; (S.Z.S.); (N.D.C.); (A.R.O.)
| | - Siphesihle Z. Sithole
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa; (S.Z.S.); (N.D.C.); (A.R.O.)
| | - Nkosinathi D. Cele
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa; (S.Z.S.); (N.D.C.); (A.R.O.)
| | - Foluso O. Osunsanmi
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa; (S.Z.S.); (N.D.C.); (A.R.O.)
| | - Rebamang A. Mosa
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield 0028, South Africa;
| | - Andrew R. Opoku
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa; (S.Z.S.); (N.D.C.); (A.R.O.)
| |
Collapse
|
16
|
Anacleto-Santos J, Vega-Ávila E, Pacheco L, Lacueva-Arnedo M, Gómez-Barrio A, Ibáñez-Escribano A, López-Pérez TDJ, Casarrubias-Tabarez B, Calzada F, López-Camacho PY, Rivera-Fernández N. Antibacterial, Trichomonacidal, and Cytotoxic Activities of Pleopeltis crassinervata Extracts. Pharmaceutics 2024; 16:624. [PMID: 38794287 PMCID: PMC11124882 DOI: 10.3390/pharmaceutics16050624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/27/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Pleopeltis crassinervata is a fern documented in ethnobotanical records for its use in Mexican traditional medicine to treat gastric disorders and mouth ulcers. Consequently, conducting biological and pharmacological assays is crucial to validate the therapeutic efficacy of this plant within the context of traditional medicine. In the present study, we investigated the biological activity of extracts and fractions obtained from P. crassinervata organs against bacteria (Salmonella typhimurium, Salmonella typhi, Staphylococcus aureus, Proteus mirabilis, Shigella flexneri, Bacillus subtilis, Escherichia coli) and Trichomonas vaginalis using in vitro models. The precipitate fraction obtained from the frond methanolic extract showed significant antibacterial activity (minimal inhibitory concentration [MIC] 120 µg/mL) against the Staphylococcus aureus strain and was effective against both Gram-positive and Gram-negative bacteria. The hexane fraction also obtained from frond methanolic extract, showed a trichomonacidal effect with an IC50 of 82.8 μg/mL and a low cytotoxic effect. Hsf6 exhibited the highest activity against T. vaginalis, and the GC-MS analysis revealed that the predominant compound was 16-pregnenolone. The remaining identified compounds were primarily terpene-type compounds.
Collapse
Affiliation(s)
- Jhony Anacleto-Santos
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City 04510, Mexico;
| | - Elisa Vega-Ávila
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana Iztapalapa, Mexico City 09340, Mexico;
| | - Leticia Pacheco
- Departamento de Biología, Universidad Autónoma Metropolitana Iztapalapa, Mexico City 09340, Mexico;
| | - Manuel Lacueva-Arnedo
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.L.-A.); (A.G.-B.); (A.I.-E.)
| | - Alicia Gómez-Barrio
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.L.-A.); (A.G.-B.); (A.I.-E.)
| | - Alexandra Ibáñez-Escribano
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.L.-A.); (A.G.-B.); (A.I.-E.)
| | - Teresa de Jesús López-Pérez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City 04510, Mexico;
| | - Brenda Casarrubias-Tabarez
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City 04510, Mexico;
| | - Fernando Calzada
- Unidad de Investigación Médica en Farmacología, Unidad Médica de Alta Especialidad, Hospital de Especialidades Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Col. Doctores, Cuauhtémoc, Mexico City 06725, Mexico;
| | - Perla Yolanda López-Camacho
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana Cuajimalpa, Mexico City 05370, Mexico;
| | - Norma Rivera-Fernández
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City 04510, Mexico;
| |
Collapse
|
17
|
Shu C, Ge L, Li Z, Chen B, Liao S, Lu L, Wu Q, Jiang X, An Y, Wang Z, Qu M. Antibacterial activity of cinnamon essential oil and its main component of cinnamaldehyde and the underlying mechanism. Front Pharmacol 2024; 15:1378434. [PMID: 38529191 PMCID: PMC10961361 DOI: 10.3389/fphar.2024.1378434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/27/2024] [Indexed: 03/27/2024] Open
Abstract
Background: Plant essential oils have long been regarded as repositories of antimicrobial agents. In recent years, they have emerged as potential alternatives or supplements to antimicrobial drugs. Although literature reviews and previous studies have indicated that cinnamon essential oil (CIEO) and its major component, cinnamaldehyde (CID), possess potent antibacterial activities, their antibacterial mechanisms, especially the in vivo antibacterial mechanisms, remain elusive. Methods: In this study, we utilized the in vivo assessment system of Caenorhabditis elegans (C. elegans) to investigate the effects and mechanisms of high dose (100 mg/L) and low dose (10 mg/L) CIEO and CID in inhibiting Pseudomonas aeruginosa (P. aeruginosa). In addition, we also examined the in vitro antibacterial abilities of CIEO and CID against other common pathogens including P. aeruginosa and 4 other strains. Results: Our research revealed that both high (100 mg/L) and low doses (10 mg/L) of CIEO and CID treatment significantly alleviated the reduction in locomotion behavior, lifespan, and accumulation of P. aeruginosa in C. elegans infected with the bacteria. During P. aeruginosa infection, the transcriptional expression of antimicrobial peptide-related genes (lys-1 and lys-8) in C. elegans was upregulated with low-dose CIEO and CID treatment, while this trend was suppressed at high doses. Further investigation suggested that the PMK-1 mediated p38 signaling pathway may be involved in the regulation of CIEO and CID during nematode defense against P. aeruginosa infection. Furthermore, in vitro experimental results also revealed that CIEO and CID exhibit good antibacterial effects, which may be associated with their antioxidant properties. Conclusion: Our results indicated that low-dose CIEO and CID treatment could activate the p38 signaling pathway in C. elegans, thereby regulating antimicrobial peptides, and achieving antimicrobial effects. Meanwhile, high doses of CIEO and CID might directly participate in the internal antimicrobial processes of C. elegans. Our study provides research basis for the antibacterial properties of CIEO and CID both in vivo and in vitro.
Collapse
Affiliation(s)
- Chengjie Shu
- School of Forestry, Jiangxi Agricultural University, Nanchang, China
- Natural Daily Chemical Research Laboratory, Nanjing Institute for Comprehensive Utilization of Wild Plants, Nanjing, China
| | - Ling Ge
- Natural Daily Chemical Research Laboratory, Nanjing Institute for Comprehensive Utilization of Wild Plants, Nanjing, China
| | - Zhuohang Li
- Natural Daily Chemical Research Laboratory, Nanjing Institute for Comprehensive Utilization of Wild Plants, Nanjing, China
| | - Bin Chen
- Natural Daily Chemical Research Laboratory, Nanjing Institute for Comprehensive Utilization of Wild Plants, Nanjing, China
| | - Shengliang Liao
- School of Forestry, Jiangxi Agricultural University, Nanchang, China
| | - Lu Lu
- Natural Daily Chemical Research Laboratory, Nanjing Institute for Comprehensive Utilization of Wild Plants, Nanjing, China
| | - Qinlin Wu
- School of Public Health, Yangzhou University, Yangzhou, China
| | - Xinyi Jiang
- School of Public Health, Yangzhou University, Yangzhou, China
| | - Yuhan An
- School of Public Health, Yangzhou University, Yangzhou, China
| | - Zongde Wang
- School of Forestry, Jiangxi Agricultural University, Nanchang, China
| | - Man Qu
- School of Public Health, Yangzhou University, Yangzhou, China
| |
Collapse
|
18
|
Monika, Chander, Sharma D, Sharma PK, Ram S. Synthesis and biological evaluation of novel benzenesulfonamide incorporated thiazole-triazole hybrids as antimicrobial and antioxidant agents. Arch Pharm (Weinheim) 2024; 357:e2300650. [PMID: 38154111 DOI: 10.1002/ardp.202300650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/30/2023]
Abstract
A library of 20 novel benzenesulfonamide incorporating thiazole tethered 1,2,3-triazoles 1-4a-e was synthesized and screened for their antimicrobial, antioxidant, and cytotoxicity studies. Amoxicillin and fluconazole were used as reference antibacterial and antifungal drugs, respectively. Further, energies of frontier molecular orbitals were calculated for all the synthesized target compounds 1-4a-e to correlate electronic parameters with the observed biological results. Global reactivity descriptors, including highest occupied molecular orbitals-lowest unoccupied molecular orbitals energy gap, electronegativity, chemical hardness, chemical softness, and electrophilicity index, were also calculated for the synthesized molecules. All the tested compounds possessed moderate to excellent antibacterial potency; however, 3d and 4d exhibited the overall highest antibacterial effect (minimum inhibitory concentration [MIC] values 5-11 µM) while 2c showed the highest antifungal effect (MIC value 6 µM). Compound 3c exhibited the highest antioxidant activity with a % radical scavenging activity value of 95.12. The cytotoxicity of the compounds 1-4a-e was also checked against an animal cell line and a plant seed germination cell line, and the compounds were found to be safe against both the tested cell lines.
Collapse
Affiliation(s)
- Monika
- Department of Chemistry, J.C. Bose University of Science and Technology, YMCA, Faridabad, India
| | - Chander
- Department of Chemistry, J.C. Bose University of Science and Technology, YMCA, Faridabad, India
| | - Deepansh Sharma
- Department of Life Sciences, J.C. Bose University of Science and Technology, YMCA, Faridabad, India
| | - Pawan K Sharma
- Department of Chemistry, Central University of Haryana, Mahendergarh, India
- Department of Chemistry, Wesleyan University, Middletown, USA
| | - Sita Ram
- Department of Chemistry, J.C. Bose University of Science and Technology, YMCA, Faridabad, India
| |
Collapse
|
19
|
Waziri I, Kelani MT, Oyedeji-Amusa MO, Oyebamiji AK, Coetzee LCC, Muller AJ. Comparative investigation of derivatives of ( E)-N-(( E)-3-phenylallylidene)aniline: Synthesis, structural characterization, biological evaluation, density functional theory analysis, and in silico molecular docking. Heliyon 2024; 10:e26632. [PMID: 38420435 PMCID: PMC10901095 DOI: 10.1016/j.heliyon.2024.e26632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024] Open
Abstract
Bacterial resistance to antibiotics poses a significant global challenge for the public sector. Globally, researchers are actively investigating solutions to tackle the issue of bacterial resistance to antibiotics, with Schiff bases standing out as promising contenders in the fight against antimicrobial resistance. This study focused on synthesizing a series of Schiff bases (CA1-CA10) by reacting cinnamaldehyde with various aniline derivatives. Various analytical techniques, such as NMR, FTIR, UV-Vis, elemental analysis, and mass spectrometry, were employed to elucidate the structures of the synthesized compounds. Furthermore, crystal structure of CA8 was obtained using single crystal X-ray spectroscopy. The compounds were subjected to in vitro testing to assess their antibacterial and antifungal properties against eleven bacterial strains and four fungal strains. The results revealed diverse activity levels against the pathogens at varying concentrations, with notable potency observed in compounds CA3, CA4, CA9, and CA10, as indicated by their minimum inhibitory concentrations (MIC) values. The observed activity of the compounds seemed to be influenced by the specific substituents attached to their molecular structure. By conducting computational and molecular docking studies, the electronic properties of the compounds were investigated, further substantiating their potential as effective antimicrobial agents.
Collapse
Affiliation(s)
- Ibrahim Waziri
- Research Centre for Synthesis and Catalysis, Department of Chemical Science, University of Johannesburg-Kingsway Campus, Auckland Park, 2006, South Africa
| | - Monsuru T. Kelani
- Research Centre for Synthesis and Catalysis, Department of Chemical Science, University of Johannesburg-Kingsway Campus, Auckland Park, 2006, South Africa
| | - Mariam O. Oyedeji-Amusa
- Department of Botany and Plant Biotechnology, University of Johannesburg, P.O. Box 524, Auckland Park, 2006, South Africa
| | - Abel K. Oyebamiji
- Industrial Chemistry Programme, Bowen University, PMB 284, Iwo, Osun State, Nigeria
| | - Louis-Charl C. Coetzee
- Research Centre for Synthesis and Catalysis, Department of Chemical Science, University of Johannesburg-Kingsway Campus, Auckland Park, 2006, South Africa
| | - Alfred J. Muller
- Research Centre for Synthesis and Catalysis, Department of Chemical Science, University of Johannesburg-Kingsway Campus, Auckland Park, 2006, South Africa
| |
Collapse
|
20
|
Chamlagain M, Hu J, Sionov RV, Steinberg D. Anti-bacterial and anti-biofilm activities of arachidonic acid against the cariogenic bacterium Streptococcus mutans. Front Microbiol 2024; 15:1333274. [PMID: 38596377 PMCID: PMC11002910 DOI: 10.3389/fmicb.2024.1333274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/16/2024] [Indexed: 04/11/2024] Open
Abstract
Streptococcus mutans is a Gram-positive, facultative anaerobic bacterium, which causes dental caries after forming biofilms on the tooth surface while producing organic acids that demineralize enamel and dentin. We observed that the polyunsaturated arachidonic acid (AA) (ω-6; 20:4) had an anti-bacterial activity against S. mutans, which prompted us to investigate its mechanism of action. The minimum inhibitory concentration (MIC) of AA on S. mutans was 25 μg/ml in the presence of 5% CO2, while it was reduced to 6.25-12.5 μg/ml in the absence of CO2 supplementation. The anti-bacterial action was due to a combination of bactericidal and bacteriostatic effects. The minimum biofilm inhibitory concentration (MBIC) was the same as the MIC, suggesting that part of the anti-biofilm effect was due to the anti-bacterial activity. Gene expression studies showed decreased expression of biofilm-related genes, suggesting that AA also has a specific anti-biofilm effect. Flow cytometric analyses using potentiometric DiOC2(3) dye, fluorescent efflux pump substrates, and live/dead SYTO 9/propidium iodide staining showed that AA leads to immediate membrane hyperpolarization, altered membrane transport and efflux pump activities, and increased membrane permeability with subsequent membrane perforation. High-resolution scanning electron microscopy (HR-SEM) showed remnants of burst bacteria. Furthermore, flow cytometric analysis using the redox probe 2',7'-dichlorofluorescein diacetate (DCFHDA) showed that AA acts as an antioxidant in a dose-dependent manner. α-Tocopherol, an antioxidant that terminates the radical chain, counteracted the anti-bacterial activity of AA, suggesting that oxidation of AA in bacteria leads to the production of cytotoxic radicals that contribute to bacterial growth arrest and death. Importantly, AA was not toxic to normal Vero epithelial cells even at 100 μg/ml, and it did not cause hemolysis of erythrocytes. In conclusion, our study shows that AA is a potentially safe drug that can be used to reduce the bacterial burden of cariogenic S. mutans.
Collapse
Affiliation(s)
- Manoj Chamlagain
- Institute of Biomedical and Oral Research (IBOR), The Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Jieni Hu
- Institute of Biomedical and Oral Research (IBOR), The Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ronit Vogt Sionov
- Institute of Biomedical and Oral Research (IBOR), The Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Doron Steinberg
- Institute of Biomedical and Oral Research (IBOR), The Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
21
|
Tian B, Qiao X, Guo S, Li A, Xu Y, Cao J, Zhang X, Ma D. Synthesis of β-acids loaded chitosan-sodium tripolyphosphate nanoparticle towards controlled release, antibacterial and anticancer activity. Int J Biol Macromol 2024; 257:128719. [PMID: 38101686 DOI: 10.1016/j.ijbiomac.2023.128719] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/21/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023]
Abstract
The development of nanoparticles loaded with natural active ingredients is one of the hot trends in the pharmaceutical industry. Herein, chitosan was selected as the base material, and sodium tripolyphosphate was chosen as the cross-linking agent. Chitosan nanoparticles loaded with β-acids from hops were prepared by the ionic cross-linking method. The results of Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) indicated that chitosan nanoparticles successfully encapsulated β-acids. The loading capacity of chitosan nanoparticles with β-acids was 2.00 %-18.26 %, and the encapsulation efficiency was 0.58 %-55.94 %. Scanning electron microscopy (SEM), transmission electron microscope (TEM), particle size, and zeta potential results displayed that the nanoparticles revealed a sphere-like distribution with a particle size range of 241-261 nm, and the potential exhibited positive potential (+14.47-+16.27 mV). The chitosan nanoparticles could slowly release β-acids from different simulated release media. Notably, the β-acids-loaded nanoparticles significantly inhibited Staphylococcus aureus ATCC25923 (S. aureus) and Escherichia coli ATCC25922 (E. coli). Besides, β-acids-loaded chitosan nanoparticles were cytotoxic to colorectal cancer cells (HT-29 and HCT-116). Therefore, applying chitosan nanoparticles can further expand the application of β-acids in biomedical fields.
Collapse
Affiliation(s)
- Bingren Tian
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.
| | - Xia Qiao
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Songlin Guo
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Aiqin Li
- Department of Day-care Unit, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yanan Xu
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jia Cao
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xu Zhang
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Duan Ma
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China; Department of Biochemistry and Molecular Biology, Research Center for Birth Defects, Institutes of Biomedical Sciences, Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
22
|
Chmelař D, Rozložník M, Hájek M, Pospíšilová N, Kuzma J. Effect of hyperbaric oxygen on the growth and susceptibility of facultatively anaerobic bacteria and bacteria with oxidative metabolism to selected antibiotics. Folia Microbiol (Praha) 2024; 69:101-108. [PMID: 38100018 PMCID: PMC10876729 DOI: 10.1007/s12223-023-01120-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 12/05/2023] [Indexed: 02/21/2024]
Abstract
Wild strains of Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis were tested in an experimental hyperbaric chamber to determine the possible effect of hyperbaric oxygen on the susceptibility of these strains to the antibiotics ampicillin, ampicillin + sulbactam, cefazolin, cefuroxime, cefoxitin, gentamicin, sulfamethoxazole + trimethoprim, colistin, oxolinic acid, ofloxacin, tetracycline, and aztreonam during their cultivation at 23 °C and 36.5 °C. Ninety-six-well inoculated microplates with tested antibiotics in Mueller-Hinton broth were cultured under standard incubator conditions (normobaric normoxia) for 24 h or in an experimental hyperbaric chamber (HAUX, Germany) for 24 h at 2.8 ATA of 100% oxygen (hyperbaric hyperoxia). The hyperbaric chamber was pressurised with pure oxygen (100%). Both cultures (normoxic and hyperoxic) were carried out at 23 °C and 36.5 °C to study the possible effect of the cultivation temperature. No significant differences were observed between 23 and 36.5 °C cultivation with or without the 2-h lag phase in Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis. Cultivation in a hyperbaric chamber at 23 °C and 36.5 °C with or without a 2-h lag phase did not produce significant changes in the minimum inhibitory concentration (MIC) of Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis. For the tested strains of Pseudomonas aeruginosa, the possible effect of hyperbaric oxygen on their antibiotic sensitivity could not be detected because the growth of these bacteria was completely inhibited by 100% hyperbaric oxygen at 2.8 ATA under all hyperbaric conditions tested at 23 °C and 36.5 °C. Subsequent tests with wild strains of pseudomonads, burkholderias, and stenotrophomonads not only confirmed the fact that these bacteria stop growing under hyperbaric conditions at a pressure of 2.8 ATA of 100% oxygen but also indicated that inhibition of growth of these bacteria under hyperbaric conditions is reversible.
Collapse
Affiliation(s)
- Dittmar Chmelař
- Institute of Laboratory Medicine, Institute of Microbiology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Centre for Hyperbaric Medicine of Faculty of Medicine and Ostrava City Hospital, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Miroslav Rozložník
- Institute of Laboratory Medicine, Institute of Microbiology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Centre for Hyperbaric Medicine of Faculty of Medicine and Ostrava City Hospital, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Michal Hájek
- Institute of Laboratory Medicine, Institute of Microbiology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic.
- Centre for Hyperbaric Medicine of Faculty of Medicine and Ostrava City Hospital, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic.
- Centre of Hyperbaric Medicine, Ostrava City Hospital, Nemocnicni 20, Ostrava, 728 80, Czech Republic.
| | - Nikol Pospíšilová
- Institute of Laboratory Medicine, Institute of Microbiology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Jozef Kuzma
- Institute of Laboratory Medicine, Institute of Microbiology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
23
|
Tian X, Qin J, Luo Q, Xu Y, Xie S, Chen R, Wang X, Lu Q. Differences in Chemical Composition, Polyphenol Compounds, Antioxidant Activity, and In Vitro Rumen Fermentation among Sorghum Stalks. Animals (Basel) 2024; 14:415. [PMID: 38338059 PMCID: PMC10854691 DOI: 10.3390/ani14030415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/21/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
The aim of the study was to examine the differences in the chemical composition, polyphenol compounds, antioxidant activity, and in vitro rumen fermentation among six varieties of sorghum stalks. The results show that maoliangnuo 1 (M1) contained a higher (p < 0.05) level of dry matter, and jinzhong 405 (J4) contained a higher (p < 0.05) level of crude protein content. The concentrations of neutral detergent fiber, acid detergent fiber, and cellulose were significantly higher (p < 0.05) in stalk jinliangnuo (JN). The levels of chlorogenic acid, homoorientin, isovitexin, vitexin, rhoifolin, genistin, quercetin, apigenin, aloe emodin, emodin, and total polyphenols were all significantly (p < 0.05) higher in maohongnuo 6 (M6) than in the other stalks. Moreover, stalk M6 contained higher (p < 0.05) levels of total antioxidant capacity (TAC), glutathione peroxidase (GPX), catalase (CAT), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) free-radical scavenging capacity. There were significant (p < 0.05) positive correlations between total polyphenols and TAC, superoxide dismutase, GPX, CAT, and DPPH free-radical scavenging capacity. The total gas production was significantly (p < 0.05) influenced by the sorghum stalk variety and incubation time. Stalk J4 displayed higher values for the (p < 0.05) immediately soluble fraction and the potential extent of gas production, while stalk M6 exhibited a significantly lower (p < 0.05) insoluble fraction level. Furthermore, stalk M6 exhibited a significantly higher level of (p < 0.05) ruminal fluid propionic acid, but its level of butyric acid and its ratio of acetic acid to propionic acid were both significantly lower (p < 0.05). Taken together, the results reported in this paper indicate that the chemical composition, polyphenol compounds, antioxidant activity, and in vitro rumen fermentation all vary greatly among different varieties of sorghum stalks.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Qi Lu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China; (X.T.); (J.Q.); (Q.L.); (Y.X.); (S.X.); (R.C.); (X.W.)
| |
Collapse
|
24
|
Mazhar S, Simon A, Khokhlova E, Colom J, Leeuwendaal N, Deaton J, Rea K. In vitro safety and functional characterization of the novel Bacillus coagulans strain CGI314. Front Microbiol 2024; 14:1302480. [PMID: 38274758 PMCID: PMC10809412 DOI: 10.3389/fmicb.2023.1302480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction Bacillus coagulans species have garnered much interest in health-related functional food research owing to their desirable probiotic properties, including pathogen exclusion, antioxidant, antimicrobial, immunomodulatory and food fermentation capabilities coupled with their tolerance of extreme environments (pH, temperature, gastric and bile acid resistance) and stability due to their endosporulation ability. Methods In this study, the novel strain Bacillus coagulans CGI314 was assessed for safety, and functional probiotic attributes including resistance to heat, gastric acid and bile salts, the ability to adhere to intestinal cells, aggregation properties, the ability to suppress the growth of human pathogens, enzymatic profile, antioxidant capacity using biochemical and cell-based methods, cholesterol assimilation, anti-inflammatory activity, and attenuation of hydrogen peroxide (H2O2)-induced disruption of the intestinal-epithelial barrier. Results B. coagulans CGI314 spores display resistance to high temperatures (40°C, 70°C, and 90°C), and gastric and bile acids [pH 3.0 and bile salt (0.3%)], demonstrating its ability to survive and remain viable under gastrointestinal conditions. Spores and the vegetative form of this strain were able to adhere to a mucous-producing intestinal cell line, demonstrated moderate auto-aggregation properties, and could co-aggregate with potentially pathogenic bacteria. Vegetative cells attenuated LPS-induced pro-inflammatory cytokine gene expression in HT-29 intestinal cell lines and demonstrated broad antagonistic activity toward numerous urinary tract, intestinal, oral, and skin pathogens. Metabolomic profiling demonstrated its ability to synthesize several amino acids, vitamins and short-chain fatty acids from the breakdown of complex molecules or by de novo synthesis. Additionally, B. coagulans CGI314's strong antioxidant capacity was demonstrated using enzyme-based methods and was further supported by its cytoprotective and antioxidant effects in HepG2 and HT-29 cell lines. Furthermore, B. coagulans CGI314 significantly increased the expression of tight junction proteins and partially ameliorated the detrimental effects of H2O2 induced intestinal-epithelial barrier integrity. Discussion Taken together these beneficial functional properties provide strong evidence for B. coagulans CGI314 as a promising potential probiotic candidate in food products.
Collapse
Affiliation(s)
- Shahneela Mazhar
- ADM Cork H&W Limited, Bio-Innovation Unit, University College Cork, Cork, Ireland
| | - Annie Simon
- ADM Cork H&W Limited, Bio-Innovation Unit, University College Cork, Cork, Ireland
| | - Ekaterina Khokhlova
- ADM Cork H&W Limited, Bio-Innovation Unit, University College Cork, Cork, Ireland
| | - Joan Colom
- ADM Cork H&W Limited, Bio-Innovation Unit, University College Cork, Cork, Ireland
| | - Natasha Leeuwendaal
- ADM Cork H&W Limited, Bio-Innovation Unit, University College Cork, Cork, Ireland
| | - John Deaton
- ADM Deerland Probiotics and Enzymes, Kennesaw, GA, United States
| | - Kieran Rea
- ADM Cork H&W Limited, Bio-Innovation Unit, University College Cork, Cork, Ireland
| |
Collapse
|
25
|
Li L, Zhu Y, Huang YG, Hou DZ, Ahmed Zaki MS, Sideeg AM, Mohammed H, El-Kott AF, Al-Saeed FA, Ling P. Therapeutic properties, biological effects, antiliver cancer, and anticolon cancer effects of some natural compounds: A biochemical approach. J Biochem Mol Toxicol 2024; 38:e23573. [PMID: 37934567 DOI: 10.1002/jbt.23573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/19/2023] [Accepted: 10/18/2023] [Indexed: 11/08/2023]
Abstract
Natural compounds, such as carotenoids, flavonoids, anthocyanins, or terpenoids, are physiologically active components found in plants (pigments), often known as phytochemicals or phytonutrients. The in vitro cytotoxic and anticolon cancer effects of biologically bavachin, bavachinin, artepillin C, and aromadendrin compounds against SW48, SNU-C1, COLO 205, RKO, LS411N, and SW1417 cancer cell lines were assessed. Results of enzymes and antibacterial, antifungal were in level of micromolar that is good impacts. These natural compounds may be antidiabetic, anticancer, and antibacterial candidates for drug design. IC50 results were obtained between 14-19 and 5-119 µM for α-amylase and α-glucosidase, respectively. Good inhibitor Bavachinin was detected for both enzymes (IC50 for α-amylase: 14.37 µM and IC50 for α-glucosidase: 5.27 µM). The chemical activities of aromadendrin, artepillin C, bavachin, and bavachinin against pancreatic α-amylase and α-glucosidase were assessed by conducting the molecular docking study. The chemical activities of aromadendrin, artepillin C, bavachin, and bavachinin against some of the expressed surface receptor proteins (CD44, CD47, CXCR4, EGFR, folate receptor, HER2, and endothelin receptor) in the mentioned cell lines were investigated using the molecular docking calculations. The results illustrated the atomic-level properties and potential interactions. These chemicals have high binding affinities to the enzymes and proteins, according to the docking scores. In addition, the compounds formed strong contacts with the enzymes and receptors. Thus, these compounds could be potential inhibitors for enzymes and cancer cells.
Collapse
Affiliation(s)
- Long Li
- Department of General Surgery I, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yu Zhu
- Department of General Surgery I, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Ying-Guang Huang
- Department of General Surgery I, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - De-Zhi Hou
- Department of General Surgery I, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | | | - Abulqasim M Sideeg
- Department of Anatomy, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Heitham Mohammed
- Department of Anatomy, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
- Department of Zoology, College of Science, Damanhour University, Damanhour, Egypt
| | - Fatimah A Al-Saeed
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Ping Ling
- Department of General Surgery I, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
26
|
Sweet R, Booth C, Gotts K, Grove SF, Kroon PA, Webber M. Comparison of Antibacterial Activity of Phytochemicals against Common Foodborne Pathogens and Potential for Selection of Resistance. Microorganisms 2023; 11:2495. [PMID: 37894153 PMCID: PMC10609411 DOI: 10.3390/microorganisms11102495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Antimicrobial resistance is now commonly observed in bacterial isolates from multiple settings, compromising the efficacy of current antimicrobial agents. Therefore, there is an urgent requirement for efficacious novel antimicrobials to be used as therapeutics, prophylactically or as preservatives. One promising source of novel antimicrobial chemicals is phytochemicals, which are secondary metabolites produced by plants for numerous purposes, including antimicrobial defence. In this report, we compare the bioactivity of a range of phytochemical compounds, testing their ability to directly inhibit growth or to potentiate other antimicrobials against Salmonella enterica Typhimurium, Pseudomonas aeruginosa, Listeria monocytogenes, and Staphylococcus aureus. We found that nine compounds displayed consistent bioactivity either as direct antimicrobials or as potentiators. Thymol at 0.5 mg/mL showed the greatest antimicrobial effect and significantly reduced the growth of all species, reducing viable cell populations by 66.8%, 43.2%, 29.5%, and 70.2% against S. enterica Typhimurium, S. aureus, P. aeruginosa, and L. monocytogenes, respectively. Selection of mutants with decreased susceptibility to thymol was possible for three of the pathogens, at a calculated rate of 3.77 × 10-8, and characterisation of S. enterica Typhimurium mutants showed a low-level MDR phenotype due to over-expression of the major efflux system AcrAB-TolC. These data show that phytochemicals can have strong antimicrobial activity, but emergence of resistance should be evaluated in any further development.
Collapse
Affiliation(s)
- Ryan Sweet
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; (R.S.); (C.B.); (P.A.K.)
| | - Catherine Booth
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; (R.S.); (C.B.); (P.A.K.)
| | - Kathryn Gotts
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; (R.S.); (C.B.); (P.A.K.)
| | | | - Paul A. Kroon
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; (R.S.); (C.B.); (P.A.K.)
| | - Mark Webber
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; (R.S.); (C.B.); (P.A.K.)
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| |
Collapse
|
27
|
Ravindran DR, Kannan S, Jeyakumar D, Marudhamuthu M. Characterization of phenyl propiolic acid from Proteus mirabilis DMTMMR-11 and Evaluation of its mode of action against Yersinia enterocolitica (MTCC-840) an in-Vitro and in-Vivo based approach. Microb Pathog 2023; 182:106258. [PMID: 37482115 DOI: 10.1016/j.micpath.2023.106258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/08/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023]
Abstract
Foodborne illnesses are pervasive in raising public health concerns in both developed and developing nations. Yersinia enterocolitica a zoonotic bacterial species that causes food-transmitted infections, and gastroenteritis, is its most prevalent clinical manifestation. This study aims to investigate the differences, dependencies, and inhibitory mechanisms between the host and the microbiome. Proteus mirabilis DMTMMR-11, the bacterium found in the human gastrointestinal tract was used for the extraction of intracellular metabolite, because of its beneficial effects on the normal flora of the human gut. Phenyl propiolic acid was identified as the dominant compound in the metabolite after characterization using FT-IR, NMR, and LC-MS-MS. To assess its inhibitory mechanism against Yersinia enterocolitica, the pathogen was subjected to biological characterization by MBC and MIC, resulting in the rate of inhibition at 50 μg/ml. Anti-bacterial curve supports the inhibited growth of Y. enterocolitica. Mechanism of inhibition at its cellular level was indicated by the increase in alkaline phosphate content, which drastically reduced the cell membrane and cell wall potential expanding its permeability by intruding the membrane proteins, which was observed in SEM Imaging. Phenyl propiolic acid efficiently disrupts the biofilm formation by reducing the adherence and increasing the eradication property of the pathogen by exhibiting 65% of inhibition at the minimal duration of 12h. In-vivo study was carried out through host-pathogen interaction in C. elegans, an efficient model organism assessed for its life-span, physiological, and behavioral assays.
Collapse
Affiliation(s)
- Deepthi Ramya Ravindran
- Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Madurai, TamilNadu, 625021, India
| | - Suganya Kannan
- Central Research Laboratory for Biomedical Research, Vinayaka Mission's Medical College and Hospital, Vinayaka Mission's Research Foundation (Deemed to be university), Karaikal, Puducherry, 609609, India
| | - Deepika Jeyakumar
- Laboratory of Microbiology, Serology, and Molecular Biology, Vadamalayan Hospitals Private Limited, Madurai, TamilNadu, 625002, India
| | - Murugan Marudhamuthu
- Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Madurai, TamilNadu, 625021, India.
| |
Collapse
|
28
|
Navarrete E, Morales P, Muñoz-Osses M, Vásquez-Martínez Y, Godoy F, Maldonado T, Martí AA, Flores E, Mascayano C. Evaluating the inhibitory activity of ferrocenyl Schiff bases derivatives on 5-lipoxygenase: Computational and biological studies. J Inorg Biochem 2023; 245:112233. [PMID: 37141763 DOI: 10.1016/j.jinorgbio.2023.112233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/05/2023] [Accepted: 04/15/2023] [Indexed: 05/06/2023]
Abstract
In the search for new 5-LOX inhibitors, two ferrocenyl Schiff base complexes functionalized with catechol ((ƞ5-(E)-C5H4-NCH-3,4-benzodiol)Fe(ƞ5-C5H5) (3a)) and vanillin ((ƞ5-(E)-C5H4-NCH-3-methoxy-4-phenol)Fe(ƞ5-C5H5) (3b)) were obtained. Complexes 3a and 3b were biologically evaluated as 5-LOX inhibitors showed potent inhibition compared to their organic analogs (2a and 2b) and known commercial inhibitors, with IC50 = 0.17 ± 0.05 μM for (3a) and 0.73 ± 0.06 μM for (3b) demonstrated a highly inhibitory and potent effect against 5-LOX due to the incorporation of the ferrocenyl fragment. Molecular dynamic studies showed a preferential orientation of the ferrocenyl fragment toward the non-heme iron of 5-LOX, which, together with electrochemical and in-vitro studies, allowed us to propose a competitive redox deactivation mechanism mediated by water, where Fe(III)-enzyme can be reduced by the ferrocenyl fragment. An Epa/IC50 relationship was observed, and the stability of the Schiff bases was evaluated by SWV in the biological medium, observing that the hydrolysis does not affect the high potency of the complexes, making them interesting alternatives for pharmacological applications.
Collapse
Affiliation(s)
| | - Pilar Morales
- Departamento Ciencias del Ambiente, Universidad de Santiago de Chile, Chile
| | | | - Yesseny Vásquez-Martínez
- Programa Centro de Investigaciones Biomédicas y Aplicadas (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Chile
| | - Fernando Godoy
- Departamento Química de los Materiales, Universidad de Santiago de Chile, Chile
| | - Tamara Maldonado
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso, Chile
| | - Angel A Martí
- Department of Chemistry, Bioengineering and Materials Science & Nanoengineering, Rice University, Houston, TX 77005, United States
| | - Erick Flores
- Departamento Química de los Materiales, Universidad de Santiago de Chile, Chile.
| | - Carolina Mascayano
- Departamento Ciencias del Ambiente, Universidad de Santiago de Chile, Chile.
| |
Collapse
|
29
|
Cui H, Cheng Q, Li C, Khin MN, Lin L. Schiff base cross-linked dialdehyde β-cyclodextrin/gelatin-carrageenan active packaging film for the application of carvacrol on ready-to-eat foods. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
30
|
Xia Y, Lu Y, Qian S, Zhang J, Gao Y, Wei Y, Heng W. An efficient cocrystallization strategy for separation of dihydromyricetin from vine tea and enhanced its antibacterial activity for food preserving application. Food Chem 2023; 426:136525. [PMID: 37321122 DOI: 10.1016/j.foodchem.2023.136525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/17/2023] [Accepted: 05/31/2023] [Indexed: 06/17/2023]
Abstract
The objective of this study was to optimize the separation and purification of dihydromyricetin (DMY) from vine tea to obtain high purity, antibacterial and antioxidant crystal forms. We developed a cocrystallization approach for separation of DMY from vine tea with easy operation and high efficiency. The type and concentration of co-formers as well as solvent for separation have been investigated in detail. Under the optimal conditions, DMY with a purity of 92.41% and its two co-crystal forms (purity >97%) can be obtained. Three DMY crystal forms had consistent and good antioxidant activities according to DPPH radical scavenging results. DMY had effective antibacterial activity against the two kinds of drug-resistant bacteria including CRAB and MRSA, and DMY co-crystals had a greater advantage than DMY itself on CRAB. This work implies that cocrystallization can be used for the DMY separation and enhanced its anti-drug-resistant bacteria activity in food preservation.
Collapse
Affiliation(s)
- Yanming Xia
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Yan Lu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Shuai Qian
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Jianjun Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Yuan Gao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| | - Yuanfeng Wei
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| | - Weili Heng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| |
Collapse
|
31
|
Ahmed Khan D, Shahid A, Sherif AE, Aati HY, Abdullah M, Mehmood K, Hussain M, Basit A, Ahmad Ghalloo B, ur Rehman Khan K. A detailed biochemical characterization, toxicological assessment and molecular docking studies of Launaea fragilis: An important medicinal xero-halophyte. Saudi Pharm J 2023; 31:1047-1060. [PMID: 37250362 PMCID: PMC10212792 DOI: 10.1016/j.jsps.2023.04.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/28/2023] [Indexed: 05/31/2023] Open
Abstract
Launaea fragilis (Asso) Pau (Family: Asteraceae) is a wild medicinal plant that has been used in the folklore as a potential treatment for numerous ailments such as skin diseases, diarrhea, infected wounds, inflammation, child fever and hepatic pain. This study explored the chemical constitution, in-vivo toxicity, antimicrobial, antioxidant, and enzyme inhibition potential of ethanolic extract of L. fragilis (EELF). Additionally, in-silico docking studies of predominant compounds were performed against in-vitro tested enzymes. Similarly, in-silico ADMET properties of the compounds were performed to determine their pharmacokinetics, physicochemical properties, and toxicity profiles. The EELF was found rich in TFC (73.45 ± 0.25 mg QE/g) and TPC (109.02 ± 0.23 mg GAE/g). GC-MS profiling of EELF indicated the presence of a total of 47 compounds mainly fatty acids and essential oil. EELF showed no toxicity or growth retardation in chicks up to 300 mg/kg with no effect on the biochemistry and hematology of the chicks. EELF gave promising antioxidant activity through the CUPRAC method with an IC50 value of 13.14 ± 0.18 µg/ml. The highest inhibition activity against tyrosinase followed by acetylcholinesterase and α-Glucosidase was detected. Similarly, the antimicrobial study revealed the extract with good antibacterial and antiviral activity. A good docking score was observed in the in silico computational study of the predominant compounds. The findings revealed L. fragilis as a biocompatible, potent therapeutic alternative and suggest isolation and further in vivo pharmacological studies.
Collapse
Affiliation(s)
- Duraiz Ahmed Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur 63100, Punjab, Pakistan
| | - Afia Shahid
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur 63100, Punjab, Pakistan
| | - Asmaa E. Sherif
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdul Aziz University, Alkharj 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Hanan Y. Aati
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia
| | - Muhammad Abdullah
- Cholistan Institute of Desert Studies, The Islamia University of Bahawalpur 63100, Punjab, Pakistan
| | - Khalid Mehmood
- Department of Clinical Medicine and Surgery, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur 63100, Punjab, Pakistan
| | - Musaddique Hussain
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur 63100, Punjab, Pakistan
| | - Abdul Basit
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand
- Drug Delivery System Excellence Center, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand
| | - Bilal Ahmad Ghalloo
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur 63100, Punjab, Pakistan
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota 55454, MN, USA
| | - Kashif ur Rehman Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur 63100, Punjab, Pakistan
| |
Collapse
|
32
|
Tunca-Pinarli Y, Benek A, Turu D, Bozyel ME, Canli K, Altuner EM. Biological Activities and Biochemical Composition of Endemic Achillea fraasii. Microorganisms 2023; 11:microorganisms11040978. [PMID: 37110401 PMCID: PMC10144759 DOI: 10.3390/microorganisms11040978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
In this study, we investigated the antimicrobial, antioxidant, and antibiofilm activities and the biochemical composition of Achillea fraasii. The antimicrobial activity of A. fraasii ethanol extract (AFEt) was tested against 48 strains, and this is the first study testing the antimicrobial activity of this plant to this extent. The antioxidant activity was determined using the DPPH assay, and the antibiofilm activity of A. fraasii aqueous extract (AFAq) against five strains was assessed. The chemical composition of the plant extract was determined using GC-MS with artemisia ketone (19.41%) as the main component. The findings indicated that AFEt displayed antimicrobial activity against 38 strains, with a particular efficacy observed against various Staphylococcus aureus strains, such as S. aureus ATCC 25923, clinically isolated, multidrug resistant (MDR), and methicillin-resistant (MRSA) strains. In addition, the highest activity was observed against Enterococcus faecium. Moreover, the extract demonstrated activity against Candida strains. The plant extract also showed relatively good antioxidant activity compared to ascorbic acid, with an EC50 value of 55.52 µg/mL. However, AFAq acted as a biofilm activator against Escherichia coli ATCC 25922, increasing the biofilm formation by 2.63-fold. In conclusion, our study demonstrates the potential of A. fraasii as a source of antimicrobial and antioxidant agents.
Collapse
Affiliation(s)
- Yagmur Tunca-Pinarli
- Department of Biology, Graduate School of Natural and Applied Sciences, Dokuz Eylül University, Izmir 35390, Türkiye
| | - Atakan Benek
- Department of Biology, Graduate School of Natural and Applied Sciences, Kastamonu University, Kastamonu 37150, Türkiye
| | - Dilay Turu
- Department of Biology, Graduate School of Natural and Applied Sciences, Dokuz Eylül University, Izmir 35390, Türkiye
| | - Mustafa Eray Bozyel
- Department of Biology, Faculty of Arts and Sciences, Çanakkale Onsekiz Mart University, Çanakkale 17020, Türkiye
| | - Kerem Canli
- Department of Biology, Faculty of Science, Dokuz Eylül University, Izmir 35390, Türkiye
- Fauna and Flora Research and Application Center, Dokuz Eylül University, Izmir 35390, Türkiye
| | - Ergin Murat Altuner
- Department of Biology, Faculty of Science, Kastamonu University, Kastamonu 37150, Türkiye
| |
Collapse
|
33
|
Menon PM, Chandrasekaran N, C GPD, Shanmugam S. Multi-drug loaded eugenol-based nanoemulsions for enhanced anti-mycobacterial activity. RSC Med Chem 2023; 14:433-443. [PMID: 36970149 PMCID: PMC10034140 DOI: 10.1039/d2md00320a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/22/2022] [Indexed: 01/20/2023] Open
Abstract
Tuberculosis is one of the oldest bacterial infections known to mankind caused by Mycobacterium tuberculosis. The aim of this research is to optimize and formulate a multi-drug loaded eugenol based nanoemulsion system and to evaluate its ability as an antimycobacterial agent and its potential to be a low cost and effective drug delivery system. All the three eugenol based drug loaded nano-emulsion systems were optimized using response surface methodology (RSM)-central composite design (CCD) and were found stable at a ratio of 1 : 5 (oil : surfactant) when ultrasonicated for 8 minutes. The minimum inhibitory concentration (MIC) values against strains of Mycobacterium tuberculosis highly proved that these essential oil-based nano-emulsions showed more promising results and an even improved anti-mycobacterium activity on the addition of a combination of drugs. The absorbance of 1st line anti-tubercular drugs from release kinetics studies showed a controlled and sustained release in body fluids. Thus, we can conclude that this is a much more efficient and desirable method in treating infections caused by Mycobacterium tuberculosis and even its MDR/XDR strains. All these nano-emulsion systems were stable for more than 3 months.
Collapse
Affiliation(s)
- Parvathy Mohan Menon
- Department of Integrative Biology, School of Bioscience and Technology, Vellore Institute of Technology Vellore India
| | - Natarajan Chandrasekaran
- Centre for Nanobiotechnology, Vellore Institute of Technology Vellore India +91 416 2243092 +91 416 2202879
| | - George Priya Doss C
- Department of Integrative Biology, School of Bioscience and Technology, Vellore Institute of Technology Vellore India
| | - Sivakumar Shanmugam
- Department of Bacteriology, ICMR-National Institute for Research in Tuberculosis Chennai India
| |
Collapse
|
34
|
Villegas C, Martínez S, Torres A, Rojas A, Araya R, Guarda A, Galotto MJ. Processing, Characterization and Disintegration Properties of Biopolymers Based on Mater-Bi ® and Ellagic Acid/Chitosan Coating. Polymers (Basel) 2023; 15:polym15061548. [PMID: 36987328 PMCID: PMC10053201 DOI: 10.3390/polym15061548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Among the most promising synthetic biopolymers to replace conventional plastics in numerous applications is MaterBi® (MB), a commercial biodegradable polymer based on modified starch and synthetic polymers. Actually, MB has important commercial applications as it shows interesting mechanical properties, thermal stability, processability and biodegradability. On the other hand, research has also focused on the incorporation of natural, efficient and low-cost active compounds into various materials with the aim of incorporating antimicrobial and/or antioxidant capacities into matrix polymers to extend the shelf life of foods. Among these is ellagic acid (EA), a polyphenolic compound abundant in some fruits, nuts and seeds, but also in agroforestry and industrial residues, which seems to be a promising biomolecule with interesting biological activities, including antioxidant activity, antibacterial activity and UV-barrier properties. The objective of this research is to develop a film based on commercial biopolymer Mater-Bi® (MB) EF51L, incorporating active coating from chitosan with a natural active compound (EA) at two concentrations (2.5 and 5 wt.%). The formulations obtained complete characterization and were carried out in order to evaluate whether the incorporation of the coating significantly affects thermal, mechanical, structural, water-vapor barrier and disintegration properties. From the results, FTIR analysis yielded identification, through characteristic peaks, that the type of MB used is constituted by three polymers, namely PLA, TPS and PBAT. With respect to the mechanical properties, the values of tensile modulus and tensile strength of the MB-CHI film were between 15 and 23% lower than the values obtained for the MB film. The addition of 2.5 wt.% EA to the CHI layer did not generate changes in the mechanical properties of the system, whereas a 5 wt.% increase in ellagic acid improved the mechanical properties of the CHI film through the addition of natural phenolic compounds at high concentrations. Finally, the disintegration process was mainly affected by the PBAT biopolymer, causing the material to not disintegrate within the times indicated by ISO 20200.
Collapse
Affiliation(s)
- Carolina Villegas
- Center for Packaging Innovation (LABEN), Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Technology Faculty, University of Santiago de Chile (USACH), Santiago 9170201, Chile
| | - Sara Martínez
- Center for Packaging Innovation (LABEN), Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Technology Faculty, University of Santiago de Chile (USACH), Santiago 9170201, Chile
| | - Alejandra Torres
- Center for Packaging Innovation (LABEN), Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Technology Faculty, University of Santiago de Chile (USACH), Santiago 9170201, Chile
| | - Adrián Rojas
- Center for Packaging Innovation (LABEN), Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Technology Faculty, University of Santiago de Chile (USACH), Santiago 9170201, Chile
| | - Rocío Araya
- Center for Packaging Innovation (LABEN), Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Technology Faculty, University of Santiago de Chile (USACH), Santiago 9170201, Chile
| | - Abel Guarda
- Center for Packaging Innovation (LABEN), Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Technology Faculty, University of Santiago de Chile (USACH), Santiago 9170201, Chile
| | - María José Galotto
- Center for Packaging Innovation (LABEN), Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Technology Faculty, University of Santiago de Chile (USACH), Santiago 9170201, Chile
| |
Collapse
|
35
|
Navaneetha T, Ali A, Ramana CV, Baskar V. Discrete Molecular Aggregates Based on Zn II and Sb III/V Ions Displaying Efficient Antibacterial and Antioxidant Properties. Inorg Chem 2023; 62:5237-5247. [PMID: 36943193 DOI: 10.1021/acs.inorgchem.3c00247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The reactions of [Zn3Cl2(3,5-Me2PzH)4(t-BuPO3)2] with organostibonic acid in varying reaction conditions have been investigated. Single-crystal X-ray diffraction studies reveal the formation of [Zn2(p-ClC6H4Sb)2(O)2(OCH3)2(t-BuPO3)3(py)2] (1), [Zn2(p-ClC6H4SbV)4(SbIII)2(O)8(t-BuPO3H)4(t-BuPO3)2(py)2Cl2] (2), and [Zn2(RSb)4(O)4(OCH3)4(t-BuPO3)4(py)2], where R = p-ClC6H4 (3) and R = p-iPrC6H4 (4), respectively. Interestingly, in the synthesis of 2, complete dearylation of organoantimony moieties followed by C-F bond formation, a reduction from Sb (V) to Sb (III), and Sb···Cl weak intermolecular interactions have been observed. ESI-MS studies suggested that clusters 1-4 maintained their structural integrity in the solution state also. Solution NMR studies (1H, 31P, and 13C) support well the observed solid-state structures. 1-4 were tested for antibacterial activity using a microdilution assay. 1 and 4 showed the best activity with lower MIC values (0.78-6.25 μg/mL) against all the tested pathogens. The total antioxidant activity of 1-4 was evaluated through the phosphomolybdenum assay, which showed a total antioxidant activity ranging from 28.96 to 86.46 mg AAE/g compound with the ascorbic acid standard.
Collapse
Affiliation(s)
- Tokala Navaneetha
- School of Chemistry, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Ashif Ali
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Ch Venkata Ramana
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Viswanathan Baskar
- School of Chemistry, University of Hyderabad, Hyderabad 500046, Telangana, India
| |
Collapse
|
36
|
Emerging Effects of Resveratrol Derivatives in Cells Involved in Oral Wound Healing: A Preliminary Study. Int J Mol Sci 2023; 24:ijms24043276. [PMID: 36834684 PMCID: PMC9963438 DOI: 10.3390/ijms24043276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/11/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
Recently, there has been an increasing interest in finding new approaches to manage oral wound healing. Although resveratrol (RSV) exhibited many biological properties, such as antioxidant and anti-inflammatory activities, its use as a drug is limited by unfavorable bioavailability. This study aimed to investigate a series of RSV derivatives (1a-j) with better pharmacokinetic profiles. At first, their cytocompatibility at different concentrations was tested on gingival fibroblasts (HGFs). Among them, derivatives 1d and 1h significantly increased cell viability compared to the reference compound RSV. Thus, 1d and 1h were investigated for cytotoxicity, proliferation, and gene expression in HGFs, endothelial cells (HUVECs), and oral osteoblasts (HOBs), which are the main cells involved in oral wound healing. For HUVECs and HGFs, the morphology was also evaluated, while for HOBs ALP and mineralization were observed. The results showed that both 1d and 1h did not exert negative effects on cell viability, and at a lower concentration (5 µM) both even significantly enhanced the proliferative rate, compared to RSV. The morphology observations pointed out that the density of HUVECs and HGFs was promoted by 1d and 1h (5 µM) and mineralization was promoted in HOBs. Moreover, 1d and 1h (5 µM) induced a higher eNOS mRNA level in HUVECs, higher COL1 mRNA in HGFs, and higher OCN in HOBs, compared to RSV. The appreciable physicochemical properties and good enzymatic and chemical stability of 1d and 1h, along with their promising biological properties, provide the scientific basis for further studies leading to the development of RSV-based agents useful in oral tissue repair.
Collapse
|
37
|
Pantiora PD, Balaouras AI, Mina IK, Freris CI, Pappas AC, Danezis GP, Zoidis E, Georgiou CA. The Therapeutic Alliance between Pomegranate and Health Emphasizing on Anticancer Properties. Antioxidants (Basel) 2023; 12:187. [PMID: 36671048 PMCID: PMC9855163 DOI: 10.3390/antiox12010187] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Pomegranate is a fruit bearing-plant that is well known for its medicinal properties. Pomegranate is a good source of phenolic acids, tannins, and flavonoids. Pomegranate juice and by-products have attracted the scientific interest due to their potential health benefits. Currently, the medical community has showed great interest in exploiting pomegranate potential as a protective agent against several human diseases including cancer. This is demonstrated by the fact that there are more than 800 reports in the literature reporting pomegranate's anticancer properties. This review is an update on the research outcomes of pomegranate's potential against different types of human diseases, emphasizing on cancer. In addition, perspectives of potential applications of pomegranate, as a natural additive aiming to improve the quality of animal products, are discussed.
Collapse
Affiliation(s)
- Panagiota D. Pantiora
- Department of Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | | | - Ioanna K. Mina
- Department of Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Christoforos I. Freris
- Department of Chemistry, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Athanasios C. Pappas
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece
| | - Georgios P. Danezis
- Chemistry Laboratory, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece
| | - Evangelos Zoidis
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece
| | - Constantinos A. Georgiou
- Chemistry Laboratory, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece
| |
Collapse
|
38
|
Anupong W, On-Uma R, Jutamas K, Salmen SH, Alharbi SA, Joshi D, Jhanani GK. Antibacterial, antifungal, antidiabetic, and antioxidant activities potential of Coleus aromaticus synthesized titanium dioxide nanoparticles. ENVIRONMENTAL RESEARCH 2023; 216:114714. [PMID: 36334834 DOI: 10.1016/j.envres.2022.114714] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/22/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
The nanoparticles based drug delivery and treatment related research has been increased significantly in the recent years. Hence, the antibacterial, antifungal, and antioxidant activity potential of pre synthesized and characterized Titanium dioxide nanoparticles (TiO2 NPs) were investigated in this study through respective standard protocols. Interestingly, the obtained results revealed that TiO2 NPs have concentration dependent antibacterial activity against bacterial pathogens such as E. coli, P.mirabilis, V. cholerae, P. aeruginosa, S. typhimurium, and S. aureus at 100 μg mL-1 concentration. Furthermore, these TiO2 NPs showed remarkable antifungal activity against aspergillosis causing fungal pathogens such as A. niger, A. fumigatus, A. nidulans, and A. flavus at 100 μg mL-1 concentration. α-glucosidase. This TiO2 NPs also effectively inhibit the α-amylase (17%) and α-Glucosidase (37%) enzyme activity at 100 μg mL-1 dosage. The DPPH assay revealed that TiO2 NPs effectively scavenge DPPH free radicals by up to 89% at 100 μg mL-1 concentration, which was comparable to butylated hydroxytoluene (96%). These results suggest that the plant-based TiO2 NPs have remarkable in-vitro antibacterial, antifungal, and antioxidant activity. These may be considered for additional in-vitro and in-vivo experiments to assess their potential biomedical applications.
Collapse
Affiliation(s)
- Wongchai Anupong
- Department of Agricultural Economy and Development, Faculty of Agriculture, Chiang Mai University, 50200, Thailand; Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Ruangwong On-Uma
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, 50200, Thailand; Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Kumchai Jutamas
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand; Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Saleh H Salmen
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Deepika Joshi
- Department of Oral Biology, University of Louisville, Kentucky, USA
| | - G K Jhanani
- Center for Transdisciplinary Research (CFTR), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| |
Collapse
|
39
|
Uzma B, Alia F, Qureshi NA, Shakeela Q, Asima B, Ahmed S, Hayat A, Rehman MU. Isolation and characterization of synthetic pyrethroids-degrading bacterial strains from agricultural soil. BRAZ J BIOL 2023; 83:e271790. [PMID: 37132742 DOI: 10.1590/1519-6984.271790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/29/2023] [Indexed: 05/04/2023] Open
Abstract
Pyrethroid pesticides are commonly used for pest control in agriculture setup, veterinary and home garden. They are now posing increased risks to non-targeted organisms associated to human beings due to their considerable use. The present work deals with the isolation of bacteria with tolerance to high concentrations of bifenthrin and cypermethrin from contaminated soil. Enrichment culture technique (bifenthrin concentration = 50-800 mg/L) was used for bacterial isolation. Bacteria that showed growth on minimal media with bifenthrin were also sub-cultured on minimal media with cypermethrin. Bacteria showing luxurious growth on both the pyrethroid, were screened out based on their morphological, biochemical parameters and by API 20NE Kit. Phylogenetic studies revealed that, one bacterial isolate (MG04) belonging to Acinetobacter lwoffii and other five bacterial isolates (MG06, MG05, MG01, MG03 and MG02) cluster with Pseudomonas aeruginosa, Pseudomonas putida respectively. Isolated members of genera Pseudomonas and Acinetobacter could be used for further detailed degradation studies by using FTIR, HPLC-MS or GC-MS analysis.
Collapse
Affiliation(s)
- B Uzma
- Hazara University, Department of Microbiology, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - F Alia
- University of Swabi, Department of Microbiology, Swabi, Khyber Pakhtunkhwa, Pakistan
| | - N A Qureshi
- Quaid-i-Azam University, Faculty of Biological Science, Department of Animal Sciences, Islamabad, Pakistan
| | - Q Shakeela
- Abbottabad University of Science & Technology, Department of Microbiology, Abbottabad, Khyber Pakhtunkhwa, Pakistan
| | - B Asima
- Hazara University, Department of Microbiology, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - S Ahmed
- Hazara University, Department of Microbiology, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - A Hayat
- Abbottabad University of Science & Technology, Department of Microbiology, Abbottabad, Khyber Pakhtunkhwa, Pakistan
| | - M U Rehman
- Abbottabad University of Science & Technology, Department of Microbiology, Abbottabad, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
40
|
Impact of Coreopsis tinctoria Nutt. Essential oil microcapsules on the formation of biogenic amines and quality of smoked horsemeat sausage during ripening. Meat Sci 2023; 195:109020. [DOI: 10.1016/j.meatsci.2022.109020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
|
41
|
Zafar S, Khan K, Hafeez A, Irfan M, Armaghan M, Rahman AU, Gürer ES, Sharifi-Rad J, Butnariu M, Bagiu IC, Bagiu RV. Ursolic acid: a natural modulator of signaling networks in different cancers. Cancer Cell Int 2022; 22:399. [PMID: 36496432 PMCID: PMC9741527 DOI: 10.1186/s12935-022-02804-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
Incidence rate of cancer is estimated to increase by 40% in 2030. Furthermore, the development of resistance against currently available treatment strategies has contributed to the cancer-associated mortality. Scientists are now looking for the solutions that could help prevent the disease occurrence and could provide a pain-free treatment alternative for cancers. Therefore, efforts are now put to find a potent natural compound that could sever this purpose. Ursolic acid (UA), a triterpene acid, has potential to inhibit the tumor progression and induce sensitization to conventional treatment drugs has been documented. Though, UA is a hydrophobic compound therefore it is usually chemically modified to increase its bioavailability prior to administration. However, a thorough literature indicating its mechanism of action and limitations for its use at clinical level was not reviewed. Therefore, the current study was designed to highlight the potential mechanism of UA, its anti-cancer properties, and potential applications as therapeutic compound. This endeavour is a valuable contribution in understanding the hurdles preventing the translation of its potential at clinical level and provides foundations to design new studies that could help enhance its bioavailability and anti-cancer potential for various cancers.
Collapse
Affiliation(s)
- Sameen Zafar
- grid.412117.00000 0001 2234 2376Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Punjab Pakistan
| | - Khushbukhat Khan
- grid.412117.00000 0001 2234 2376Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Punjab Pakistan
| | - Amna Hafeez
- grid.412117.00000 0001 2234 2376Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Punjab Pakistan
| | - Muhammad Irfan
- grid.412117.00000 0001 2234 2376Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Punjab Pakistan
| | - Muhammad Armaghan
- grid.412117.00000 0001 2234 2376Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Punjab Pakistan
| | - Anees ur Rahman
- grid.412117.00000 0001 2234 2376Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Punjab Pakistan
| | - Eda Sönmez Gürer
- grid.411689.30000 0001 2259 4311Faculty of Pharmacy, Department of Pharmacognosy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Javad Sharifi-Rad
- grid.442126.70000 0001 1945 2902Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| | - Monica Butnariu
- University of Life Sciences “King Mihai I” from Timisoara, 300645 Calea Aradului 119, Timis, Romania
| | - Iulia-Cristina Bagiu
- grid.22248.3e0000 0001 0504 4027Department of Microbiology, Victor Babes University of Medicine and Pharmacy of Timisoara, Timisoara, Romania ,Multidisciplinary Research Center on Antimicrobial Resistance, Timisoara, Romania
| | - Radu Vasile Bagiu
- grid.22248.3e0000 0001 0504 4027Department of Microbiology, Victor Babes University of Medicine and Pharmacy of Timisoara, Timisoara, Romania ,Preventive Medicine Study Center, Timisoara, Romania
| |
Collapse
|
42
|
Fossa P, Uggeri M, Orro A, Urbinati C, Rondina A, Milanesi M, Pedemonte N, Pesce E, Padoan R, Ford RC, Meng X, Rusnati M, D’Ursi P. Virtual Drug Repositioning as a Tool to Identify Natural Small Molecules That Synergize with Lumacaftor in F508del-CFTR Binding and Rescuing. Int J Mol Sci 2022; 23:ijms232012274. [PMID: 36293130 PMCID: PMC9602983 DOI: 10.3390/ijms232012274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
Cystic fibrosis is a hereditary disease mainly caused by the deletion of the Phe 508 (F508del) of the cystic fibrosis transmembrane conductance regulator (CFTR) protein that is thus withheld in the endoplasmic reticulum and rapidly degraded by the ubiquitin/proteasome system. Cystic fibrosis remains a potentially fatal disease, but it has become treatable as a chronic condition due to some CFTR-rescuing drugs that, when used in combination, increase in their therapeutic effect due to a synergic action. Also, dietary supplementation of natural compounds in combination with approved drugs could represent a promising strategy to further alleviate cystic fibrosis symptoms. On these bases, we screened by in silico drug repositioning 846 small synthetic or natural compounds from the AIFA database to evaluate their capacity to interact with the highly druggable lumacaftor binding site of F508del-CFTR. Among the identified hits, nicotinamide (NAM) was predicted to accommodate into the lumacaftor binding region of F508del-CFTR without competing against the drug but rather stabilizing its binding. The effective capacity of NAM to bind F508del-CFTR in a lumacaftor-uncompetitive manner was then validated experimentally by surface plasmon resonance analysis. Finally, the capacity of NAM to synergize with lumacaftor increasing its CFTR-rescuing activity was demonstrated in cell-based assays. This study suggests the possible identification of natural small molecules devoid of side effects and endowed with the capacity to synergize with drugs currently employed for the treatment of cystic fibrosis, which hopefully will increase the therapeutic efficacy with lower doses.
Collapse
Affiliation(s)
- Paola Fossa
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, 16132 Genoa, Italy
| | - Matteo Uggeri
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, 16132 Genoa, Italy
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), 20054 Segrate, Italy
| | - Alessandro Orro
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), 20054 Segrate, Italy
| | - Chiara Urbinati
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Alessandro Rondina
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), 20054 Segrate, Italy
| | - Maria Milanesi
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | | | - Emanuela Pesce
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Rita Padoan
- Department of Pediatrics, Regional Support Centre for Cystic Fibrosis, Children’s Hospital—ASST Spedali Civili, University of Brescia, 25123 Brescia, Italy
| | - Robert C. Ford
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Xin Meng
- Cellular Degradation Systems Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Marco Rusnati
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
- Correspondence: (M.R.); (P.D.)
| | - Pasqualina D’Ursi
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), 20054 Segrate, Italy
- Correspondence: (M.R.); (P.D.)
| |
Collapse
|
43
|
Rodríguez-Vera D, Abad-García A, Vargas-Mendoza N, Pinto-Almazán R, Farfán-García ED, Morales-González JA, Soriano-Ursúa MA. Polyphenols as potential enhancers of stem cell therapy against neurodegeneration. Neural Regen Res 2022; 17:2093-2101. [PMID: 35259814 PMCID: PMC9083162 DOI: 10.4103/1673-5374.335826] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/30/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023] Open
Abstract
The potential of polyphenols for treating chronic-degenerative diseases (particularly neurodegenerative diseases) is attractive. However, the selection of the best polyphenol for each treatment, the mechanisms by which they act, and their efficacy are frequently discussed. In this review, the basics and the advances in the field, as well as suggestions for using natural and synthetic polyphenols alone or in a combinatorial strategy with stem cell assays, are compiled and discussed. Thus, stem cells exhibit several responses when polyphenols are added to their environment, which could provide us with knowledge for advancing the elucidation of the origin of neurodegeneration. But also, polyphenols are being included in the innovative strategies of novel therapies for treating neurodegenerative diseases as well as metabolic diseases related to neurodegeneration. In this regard, flavonoid compounds are suggested as the best natural polyphenols due to their several mechanisms for acting in ameliorative effects; but increasing reports are involving other polyphenols. Even if some facts limiting bioactivity prevent them from conventional use, some natural polyphenols and derivatives hold the promise for being improved compounds, judged by their induced effects. The current results suggest polyphenols as enhancers of stem cell therapy against the targeted diseases.
Collapse
Affiliation(s)
- Diana Rodríguez-Vera
- Sección de Estudios de Posgrado e Investigación. Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, México
| | - Antonio Abad-García
- Sección de Estudios de Posgrado e Investigación. Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, México
| | - Nancy Vargas-Mendoza
- Sección de Estudios de Posgrado e Investigación. Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, México
| | - Rodolfo Pinto-Almazán
- Unidad de Investigación, Hospital Regional de Alta Especialidad Ixtapaluca, Carretera Federal México-Puebla km 34.5, State of México, México
| | - Eunice D. Farfán-García
- Sección de Estudios de Posgrado e Investigación. Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, México
| | - José A. Morales-González
- Sección de Estudios de Posgrado e Investigación. Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, México
| | - Marvin A. Soriano-Ursúa
- Sección de Estudios de Posgrado e Investigación. Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, México
| |
Collapse
|
44
|
Li HY, Yang WQ, Zhou XZ, Shao F, Shen T, Guan HY, Zheng J, Zhang LM. Antibacterial and Antifungal Sesquiterpenoids: Chemistry, Resource, and Activity. Biomolecules 2022; 12:1271. [PMID: 36139108 PMCID: PMC9496053 DOI: 10.3390/biom12091271] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 11/29/2022] Open
Abstract
Infectious diseases caused by bacteria and fungi are threatening human health all over the world. It is an increasingly serious problem that the efficacies of some antibacterial and antifungal agents have been weakened by the drug resistance of some bacteria and fungi, which makes a great need for new antibiotics. Sesquiterpenoids, with abundant structural skeleton types and a wide range of bioactivities, are considered as good candidates to be antibacterial and antifungal agents. In the past decades, many sesquiterpenoids were isolated from plants and fungi that exhibited good antibacterial and antifungal activities. In this review, the names, source, structures, antibacterial and antifungal degrees, and mechanisms of sesquiterpenoids with antibacterial and antifungal activity from 2012 to 2022 are summarized, and the structure-activity relationship of these sesquiterpenoids against bacteria and fungi is also discussed.
Collapse
Affiliation(s)
- Hang-Ying Li
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
- Ningxia Research Center of Modern Hui Medicine Engineering and Technology, Ningxia Medical University, Yinchuan 750004, China
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Wen-Qian Yang
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Xin-Zhu Zhou
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Fei Shao
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Tong Shen
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Hui-Ying Guan
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Jie Zheng
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
- Ningxia Research Center of Modern Hui Medicine Engineering and Technology, Ningxia Medical University, Yinchuan 750004, China
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Li-Ming Zhang
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
- Ningxia Research Center of Modern Hui Medicine Engineering and Technology, Ningxia Medical University, Yinchuan 750004, China
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
45
|
Synthesis and Evaluation of Some New 4H-Pyran Derivatives as Antioxidant, Antibacterial and Anti-HCT-116 Cells of CRC, with Molecular Docking, Antiproliferative, Apoptotic and ADME Investigations. Pharmaceuticals (Basel) 2022; 15:ph15070891. [PMID: 35890189 PMCID: PMC9317316 DOI: 10.3390/ph15070891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/24/2022] [Accepted: 07/02/2022] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer oncogenesis is linked to dysbiosis, oxidative stress and overexpression of CDK2. The 4H-pyran scaffold is considered an antitumoral, antibacterial and antioxidant lead as well as a CDK2 inhibitor. Herein, certain 4H-pyran derivatives were evaluated as antibacterial, antioxidant and cytotoxic agents against HCT-116 cells. Derivatives 4g and 4j inhibited all the tested Gram-positive isolates, except for B. cereus (ATCC 14579), with lower IC50 values (µM) than ampicillin. In addition, 4g and 4j demonstrated the strongest DPPH scavenging and reducing potencies, with 4j being more efficient than BHT. In cell viability assays, 4d and 4k suppressed the proliferation of HCT-116 cells, with the lowest IC50 values being 75.1 and 85.88 µM, respectively. The results of molecular docking simulations of 4d and 4k, inhibitory kinase assays against CDK2, along with determination of CDK2 protein concentration and the expression level of CDK2 gene in the lysates of HCT-116 treated cells, suggested that these analogues blocked the proliferation of HCT-116 cells by inhibiting kinase activity and downregulating expression levels of CDK2 protein and gene. Moreover, 4d and 4k were found to induce apoptosis in HCT-116 cells via activation of the caspase-3 gene. Lastly, compounds 4g, 4j, 4d and 4k were predicted to comply with Lipinski’s rule of five, and they are expected to possess excellent physiochemical and pharmacokinetic properties suitable for in vivo bioavailability, as predicted by the SwissADME web tool.
Collapse
|
46
|
Synthesis of Novel Aminothiazole Derivatives as Promising Antiviral, Antioxidant and Antibacterial Candidates. Int J Mol Sci 2022; 23:ijms23147688. [PMID: 35887038 PMCID: PMC9319503 DOI: 10.3390/ijms23147688] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 11/17/2022] Open
Abstract
It is well-known that thiazole derivatives are usually found in lead structures, which demonstrate a wide range of pharmacological effects. The aim of this research was to explore the antiviral, antioxidant, and antibacterial activities of novel, substituted thiazole compounds and to find potential agents that could have biological activities in one single biomolecule. A series of novel aminothiazoles were synthesized, and their biological activity was characterized. The obtained results were compared with those of the standard antiviral, antioxidant, antibacterial and anticancer agents. The compound bearing 4-cianophenyl substituent in the thiazole ring demonstrated the highest cytotoxic properties by decreasing the A549 viability to 87.2%. The compound bearing 4-trifluoromethylphenyl substituent in the thiazole ring showed significant antiviral activity against the PR8 influenza A strain, which was comparable to the oseltamivir and amantadine. Novel compounds with 4-chlorophenyl, 4-trifluoromethylphenyl, phenyl, 4-fluorophenyl, and 4-cianophenyl substituents in the thiazole ring demonstrated antioxidant activity by DPPH, reducing power, FRAP methods, and antibacterial activity against Escherichia coli and Bacillus subtilis bacteria. These data demonstrate that substituted aminothiazole derivatives are promising scaffolds for further optimization and development of new compounds with potential influenza A-targeted antiviral activity. Study results could demonstrate that structure optimization of novel aminothiazole compounds may be useful in the prevention of reactive oxygen species and developing new specifically targeted antioxidant and antibacterial agents.
Collapse
|
47
|
Seo C, Jeong SJ, Yun HJ, Lee HJ, Lee JW, An HW, Han N, Jung WK, Lee SG. Nutraceutical potential of polyphenol-rich Sargassum species grown off the Korean coast: a review. Food Sci Biotechnol 2022; 31:971-984. [PMID: 35873381 PMCID: PMC9300800 DOI: 10.1007/s10068-022-01050-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/03/2022] [Accepted: 02/09/2022] [Indexed: 11/04/2022] Open
Abstract
Sargassum, a brown seaweed, has been used traditionally as food and medicine in Korea, China, and Japan. Sargassum spp. contain bioactive substances associated with health benefits, including anti-inflammatory and antioxidant effects. Thirty Sargassum spp. inhabit the Korean coast. However, their health benefits have yet to be systematically summarized. Therefore, the purpose of this article was to review the health benefits of these 30 Sargassum spp. grown off the Korean coast based on their health benefits, underlying mechanisms, and identified bioactive compounds. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-022-01050-x.
Collapse
Affiliation(s)
- Chan Seo
- Department of Food Science and Nutrition, Pukyong National University, 45 Yongso-Ro, Nam-Gu, Busan, 48513 Republic of Korea
| | - Seung Jin Jeong
- Department of Smart Green Technology Engineering, Pukyong National University, Busan, 48513 Korea
| | - Hyun Jung Yun
- Department of Food Science and Nutrition, Pukyong National University, 45 Yongso-Ro, Nam-Gu, Busan, 48513 Republic of Korea
| | - Hye Ju Lee
- Department of Smart Green Technology Engineering, Pukyong National University, Busan, 48513 Korea
| | - Joo Won Lee
- Department of Smart Green Technology Engineering, Pukyong National University, Busan, 48513 Korea
| | - Hyun Woo An
- Department of Smart Green Technology Engineering, Pukyong National University, Busan, 48513 Korea
| | - Nara Han
- Department of Food Science and Nutrition, Pukyong National University, 45 Yongso-Ro, Nam-Gu, Busan, 48513 Republic of Korea
| | - Won-Kyo Jung
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513 Korea.,Department of Biomedical Engineering, Pukyong National University, Busan, 48513 Korea
| | - Sang Gil Lee
- Department of Food Science and Nutrition, Pukyong National University, 45 Yongso-Ro, Nam-Gu, Busan, 48513 Republic of Korea.,Department of Smart Green Technology Engineering, Pukyong National University, Busan, 48513 Korea
| |
Collapse
|
48
|
Cebrián R, Li Q, Peñalver P, Belmonte-Reche E, Andrés-Bilbao M, Lucas R, de Paz MV, Kuipers OP, Morales JC. Chemically Tuning Resveratrol for the Effective Killing of Gram-Positive Pathogens. JOURNAL OF NATURAL PRODUCTS 2022; 85:1459-1473. [PMID: 35621995 PMCID: PMC9237828 DOI: 10.1021/acs.jnatprod.1c01107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Indexed: 06/12/2023]
Abstract
In the era of antimicrobial resistance, the identification of new compounds with strong antimicrobial activity and the development of alternative therapies to fight drug-resistant bacteria are urgently needed. Here, we have used resveratrol, a safe and well-known plant-derived stilbene with poor antimicrobial properties, as a scaffold to design several new families of antimicrobials by adding different chemical entities at specific positions. We have characterized the mode of action of the most active compounds prepared and have examined their synergistic antibacterial activity in combination with traditional antibiotics. Some alkyl- and silyl-resveratrol derivatives show bactericidal activity against Gram-positive bacteria in the same low micromolar range of traditional antibiotics, with an original mechanism of action that combines membrane permeability activity with ionophore-related activities. No cross-resistance or antagonistic effect was observed with traditional antibiotics. Synergism was observed for some specific general-use antibiotics, such as aminoglycosides and cationic antimicrobial peptide antibiotics. No hemolytic activity was observed at the active concentrations or above, although some low toxicity against an MRC-5 cell line was noted.
Collapse
Affiliation(s)
- Rubén Cebrián
- Department
of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| | - Qian Li
- Department
of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| | - Pablo Peñalver
- Department
of Biochemistry and Molecular Pharmacology and Instituto de Parasitología
y Biomedicina López Neyra, CSIC,
PTS Granada, Avenida del Conocimiento, 17, 18016 Armilla, Granada, Spain
| | - Efres Belmonte-Reche
- Department
of Biochemistry and Molecular Pharmacology and Instituto de Parasitología
y Biomedicina López Neyra, CSIC,
PTS Granada, Avenida del Conocimiento, 17, 18016 Armilla, Granada, Spain
| | - María Andrés-Bilbao
- Department
of Biochemistry and Molecular Pharmacology and Instituto de Parasitología
y Biomedicina López Neyra, CSIC,
PTS Granada, Avenida del Conocimiento, 17, 18016 Armilla, Granada, Spain
| | - Ricardo Lucas
- Department
of Organic and Pharmaceutical Chemistry, School of Pharmacy, University of Seville, 41012 Seville, Spain
| | - María Violante de Paz
- Department
of Organic and Pharmaceutical Chemistry, School of Pharmacy, University of Seville, 41012 Seville, Spain
| | - Oscar P. Kuipers
- Department
of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| | - Juan Carlos Morales
- Department
of Biochemistry and Molecular Pharmacology and Instituto de Parasitología
y Biomedicina López Neyra, CSIC,
PTS Granada, Avenida del Conocimiento, 17, 18016 Armilla, Granada, Spain
| |
Collapse
|
49
|
Forero-Doria O, Guzmán L, Jiménez-Aspee F, Echeverría J, Wehinger S, Valenzuela C, Araya-Maturana R, Martínez-Cifuentes M. An In Vitro and In Silico Study of Antioxidant Properties of Curcuminoid N-alkylpyridinium Salts: Initial Assessment of Their Antitumoral Properties. Antioxidants (Basel) 2022; 11:antiox11061104. [PMID: 35740001 PMCID: PMC9219799 DOI: 10.3390/antiox11061104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/27/2022] [Accepted: 05/29/2022] [Indexed: 02/01/2023] Open
Abstract
In this work, we report the synthesis of curcuminoids with ionic liquid characteristics, obtained by incorporating alkyl-substituted pyridinium moiety rather than one phenyl group through a two-step process. The antioxidant capacity of the obtained compounds was evaluated in vitro by 1,1-diphenyl-picrylhydrazyl (DPPH) free radical scavenging and ferric reducing antioxidant power (FRAP) assays, showing that some derivatives are more potent than curcumin. Pyridine curcuminoids (group 4) and curcuminoid N-alkylpyridinium salts with two methoxyl groups in the phenyl ring (group 7), presented the best antioxidant capacity. The experimental results were rationalized by density functional theory (DFT) calculations of the bond dissociation enthalpy (BDE) for O–H in each compound. The computational calculations allowed for insight into the structural–antioxidant properties relationship in these series of compounds. BDEs, obtained in the gas phase and water, showed a notable impact of water solvation on the stabilization of some radicals. The lower values of BDEs in the water solution correspond to the structurally related compounds curcuminoid-pyridine 4c and curcuminoid pyridinium salt 7a, which is consistent with the experimental results. Additionally, an assessment of cell viability and cell migration assays was performed for human colon cancer (HT29), human breast cancer (MCF7) cells, in addition to NIH3T3 murine fibroblast, as a model of non-cancer cell type. These compounds mainly cause inhibition of the cell migration observed in MCF7 cancer cells without affecting the non-tumoral NIH3T3 cell line: Neither in viability nor in migration.
Collapse
Affiliation(s)
- Oscar Forero-Doria
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomás, Avenida Carlos Schorr 255, Talca 3460000, Chile;
| | - Luis Guzmán
- Departamento de Bioquímica Clínica e Inmunohematología, Facultad de Ciencias de la Salud, Universidad de Talca, P.O. Box 747, Talca 3460000, Chile;
| | - Felipe Jiménez-Aspee
- Institute of Nutritional Sciences, Department of Food Biofunctionality, University of Hohenheim, Garbenstrasse 28, 70599 Stuttgart, Germany;
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile;
| | - Sergio Wehinger
- Thrombosis Research Center, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Medical Technology School, Universidad de Talca, Talca 3460000, Chile;
| | - Claudio Valenzuela
- Center for Medical Research, School of Medicine, University of Talca, Talca 3460000, Chile;
| | - Ramiro Araya-Maturana
- Instituto de Química de Recursos Naturales, Universidad de Talca, P.O. Box 747, Talca 3460000, Chile
- MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, P.O. Box 747, Talca 3460000, Chile
- Correspondence: (R.A.-M.); (M.M.-C.)
| | - Maximiliano Martínez-Cifuentes
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Concepción 4070371, Chile
- Correspondence: (R.A.-M.); (M.M.-C.)
| |
Collapse
|
50
|
Song D, Zhang N, Ma Y, Zhang S, Chen W, Guo T, Ma S. Acridinium-conjugated aromatic heterocycles as highly potent FtsZ inhibitors: Design, synthesis, and biological evaluation. Arch Pharm (Weinheim) 2022; 355:e2100400. [PMID: 35267210 DOI: 10.1002/ardp.202100400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 11/05/2022]
Abstract
The epidemic of multidrug resistance (MDR) is a serious threat to public health, and new classes of antibiotics with novel mechanisms of action are in critical need. We rationally designed and efficiently synthesized three series of new chemical entities with potential antibacterial activity targeting filamenting temperature-sensitive mutant Z (FtsZ). Evaluation of these compounds against a panel of Gram-positive bacteria including MDR and vancomycin-resistant Enterococcus strains indicated that most compounds showed enhanced antibacterial efficacy, comparable or even superior to the reference drugs. The newly synthesized compounds proved to be substrates of the Escherichia coli efflux pump AcrB, thus affecting the activity. Their structure-activity relationships were summarized in detail. The most potent compound 10f quickly eliminated bacteria in a bactericidal mode, with low susceptibility to induce bacterial resistance. Further mechanistic studies with the BsFtsZ protein revealed that 10f functioned as an effective FtsZ inhibitor through altering the dynamics of FtsZ self-polymerization via a stimulatory mechanism, which leads to inhibition of cell division and cell death. Besides, 10f not only displayed no obvious cytotoxicity to mammalian cells but also had a high efficacy in a murine model of bacteremia in vivo. Regarded as a whole, our findings highlight 10f as a promising new FtsZ-targeting bactericidal agent.
Collapse
Affiliation(s)
- Di Song
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Nan Zhang
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yangchun Ma
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Shenyan Zhang
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Weijin Chen
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ting Guo
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Shutao Ma
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|