1
|
Jadhav A, Menon A, Gupta K, Singh N. Molecular and therapeutic insight into ER stress signalling in NSCLC. J Drug Target 2025; 33:877-886. [PMID: 39883064 DOI: 10.1080/1061186x.2025.2461105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 01/15/2025] [Accepted: 01/25/2025] [Indexed: 01/31/2025]
Abstract
Endoplasmic Reticulum (ER) stress is intricately involved in cancer development, progression and response to chemotherapy. ER stress related genes might play an important role in predicting the prognosis in lung adenocarcinoma patients and may be manipulated to improve the treatment outcome and overall survival rate. In this review, we analysed the contribution of the three major ER stress pathways-IRE1, ATF6, and PERK-in lung cancer pathogenesis via modulation of tumour microenvironment (TME) and processes as metastasis, angiogenesis, apoptosis and N-glycosylation. Furthermore, we discuss the regulatory role of microRNAs in fine-tuning ER stress pathways in Non-Small Cell Lung Cancer (NSCLC). Our review also highlights various promising strategies to overcome chemoresistance by targeting ER stress pathways, offering new therapeutic opportunities.
Collapse
Affiliation(s)
- Aastha Jadhav
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar, Gujarat, India
| | - Arjun Menon
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar, Gujarat, India
| | - Kush Gupta
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar, Gujarat, India
| | - Neeru Singh
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar, Gujarat, India
| |
Collapse
|
2
|
Liu X, Tao W, Gong C, Wang S, Wu Y, Zhang Y, Ling Y. Supramolecular nanoagent as a dual-blocked thermoresistance inhibitor for effective mild-temperature photothermal therapy. Biosens Bioelectron 2025; 278:117322. [PMID: 40049045 DOI: 10.1016/j.bios.2025.117322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/13/2025] [Accepted: 02/27/2025] [Indexed: 03/30/2025]
Abstract
Mild-temperature (<45 °C) photothermal therapy (PTT) is a promising approach to kill cancer cells by inhibiting the expression of heat shock proteins (HSPs) related to thermoresistance, a method commonly applied in most mild-temperature PTT studies. Regrettably, thermoresistance cannot be fully suppressed solely by inhibiting HSPs. Under normal conditions, heat shock factor 1 (HSF-1) remains inactive and forms a complex with HSPs. However, HSF-1 can dissociate from the complex and be activated, leading to the continuous production of significant amounts of HSPs, which in turn triggers thermoresistance upon heating. Therefore, simultaneously inhibiting both HSPs and HSF-1 activities presents a more effective strategy for developing mild-temperature PTT than only inhibiting HSPs. In this work, we focus on the complete blocking of thermoresistance to create a novel supramolecular nanoagent, IQ@NPs, for mild-temperature PTT. IQ@NPs demonstrated excellent drug release, tumor accumulation, and photothermal conversion, resulting in a rapid increase in the temperature of tumor sites to 42.9 °C within 5 min of irradiation. Western blotting revealed that IQ@NPs significantly inhibited the expression of HSPs (HSP90) and HSF-1. After 15 d treatment, tumor growth was significantly suppressed by IQ@NPs through effective mild-temperature PTT. Furthermore, IQ@NPs exhibited satisfactory safety and minimal side effects. This study represents a progressive advancement in mild-temperature PTT.
Collapse
Affiliation(s)
- Xin Liu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, PR China; Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, Nantong, 226001, PR China.
| | - Weizhi Tao
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, PR China; Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, Nantong, 226001, PR China
| | - Chen Gong
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, PR China; Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, Nantong, 226001, PR China
| | - Sijia Wang
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, PR China; Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, Nantong, 226001, PR China
| | - Yiliang Wu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, PR China; Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, Nantong, 226001, PR China
| | - Yanan Zhang
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, PR China; Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, Nantong, 226001, PR China
| | - Yong Ling
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, PR China; Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, Nantong, 226001, PR China.
| |
Collapse
|
3
|
He Y, Ye MJ, Xi CY, Yu JJ, Chen BB, Chen HY, Li DW. A Fluorescence-SERS Dual-Mode Nanoprobe for Imaging of HSP90 mRNA and Peroxynitrite in Living Cells. ACS Sens 2025; 10:3737-3745. [PMID: 40340371 DOI: 10.1021/acssensors.5c00656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
The dysregulation of heat shock protein 90 mRNA (HSP90 mRNA) and reactive oxygen species (ROS) is implicated in stress response and various diseases. Visualizing HSP90 mRNA and ROS dynamics is important to studying their interactions and related physiopathological mechanisms. However, effective methods for detecting both remain lacking. Herein, a covalent organic framework-based (COF-based) dual-mode nanoprobe is designed to monitor HSP90 mRNA and ONOO- (ROS model). The nanoprobe is prepared by in situ assembly of a COF shell as the aptamer carrier on the gold nanorods (AuNRs), followed by conjugation of the ONOO--responsive molecule, 4-mercaptophenylboronic acid (4-MPBA), to the AuNRs and modification of the HSP90 mRNA aptamer (HSP90MB) onto the COF shell. The prepared nanoprobe enables sensitive and selective fluorescence (FL) and surface-enhanced Raman spectroscopy (SERS) detection of HSP90 mRNA and ONOO-, respectively. The dual-channel detection highlights the advantages of facilitating spectral analysis and eliminating mutual interference. In addition, the proposed strategy visualizes a positive interaction between HSP90 mRNA and ONOO- in living cells, revealing their cellular response mechanism under stress conditions and related diseases.
Collapse
Affiliation(s)
- Yue He
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry& Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ming-Jie Ye
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry& Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Cheng-Ye Xi
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry& Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jun-Jie Yu
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry& Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bin-Bin Chen
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry& Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hua-Ying Chen
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, P. R. China
| | - Da-Wei Li
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry& Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
4
|
Gökşen Tosun N, Kaplan Ö. Dual targeting of HSP90 and BCL-2 in breast cancer cells using inhibitors BIIB021 and ABT-263. Breast Cancer Res Treat 2025; 210:493-506. [PMID: 39779635 PMCID: PMC11930872 DOI: 10.1007/s10549-024-07587-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025]
Abstract
PURPOSE The incidence of breast cancer has been increasing in recent years, and monotherapy approaches are not sufficient alone in the treatment of breast cancer. In the combined therapy approach, combining two or three different agents in lower doses can mitigate the side effects on living cells and tissues caused by high doses of chemical agents used alone. ABT-263 (navitoclax), a clinically tested Bcl-2 family protein inhibitor, has shown limited success in clinical trials due to the development of resistance to monotherapy in breast cancer cells. This resistance shows that monotherapy approaches are inadequate and more effective treatment strategies are needed. It is the ability of HSP90 inhibitors to destabilize many oncoproteins that are critical for the survival of cancer cells. This study aimed to examine the anticancer activity of the combination of ABT-263 with BIIB021, a new generation HSP90 inhibitor, on two widely used breast cancer cell lines: MCF-7 (ER-positive) and MDA-MB-231 (triple-negative breast cancer, TNBC). These cell lines were selected to represent distinct breast cancer subtypes with different molecular characteristics and clinical behaviors. METHODS Single and combined cytotoxic effects of this agents on MCF-7 and MDA-MB-231 breast cancer cell lines were determined using the MTT cell viability test. The combined use of these two agents showed a synergistic effect, and this effect was assigned using the Chou and Talalay method. mRNA and protein levels of apoptosis-related genes Bax, Bcl-2, Casp9, and Heat Shock Proteins HSP27, HSP70, and HSP90 were analyzed using Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) and Western Blotting, respectively. RESULTS The cytotoxicity analysis, combined with the application of the Chou-Talalay method, demonstrated that the BIIB021 and ABT-263 combination exhibited significantly greater anticancer activity compared to the individual effects of either BIIB021 or ABT-263 in breast cancer cell lines. The analysis of mRNA and protein levels indicated that the BIIB021+ABT-263 combination may have triggered the intrinsic apoptotic pathway in breast cancer cells. CONCLUSION This study showed that co-administration of ABT-263 and BIIB021 agents exhibited synergistic cytotoxic effects and increased the expression of apoptosis-related genes in breast cancer cell lines.
Collapse
Affiliation(s)
- Nazan Gökşen Tosun
- Tokat Vocational School of Health Services, Department of Medical Services and Techniques, Tokat Gaziosmanpaşa University, Tokat, Turkey.
| | - Özlem Kaplan
- Rafet Kayış Faculty of Engineering, Department of Genetics and Bioengineering, Alanya Alaaddin Keykubat University, Antalya, Turkey.
| |
Collapse
|
5
|
Ben Abdallah H, Iversen L, Johansen C. The Differential Roles of HSP90 Isoforms in Skin Inflammation: Anti-Inflammatory Potential of TRAP1 Inhibition. J Invest Dermatol 2025:S0022-202X(25)00110-1. [PMID: 39978584 DOI: 10.1016/j.jid.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/22/2025]
Abstract
HSP90, a molecular chaperone, has been identified as a drug target in inflammatory skin diseases. However, 4 different HSP90 isoforms (HSP90α, HSP90β, GRP94, and TRAP1) exist. Therefore, this study aimed to evaluate the functional role of the HSP90 isoforms in skin inflammation. Selective knockdown of the HSP90 isoforms revealed different inflammatory effects in stimulated keratinocytes. TRAP1 knockdown significantly downregulated the expression of the measured inflammatory genes (IL1B, IL6, IL17C, IL23A, IL19, IL36G, CXCL8, CCL5, CCL17, CCL20). Selective and combined knockdown of HSP90α and HSP90β showed a trend toward increased inflammatory activity. Selective GRP94 knockdown and combined knockdown of the organelle-specific isoforms (GRP94 + TRAP1) or all 4 isoforms resulted in inconsistent effects. In addition, a selective TRAP1 inhibitor (gamitrinib) suppressed the inflammatory gene expression in keratinocytes and fibroblasts (IL17C, IL23A, IL36G) and in hidradenitis suppurativa skin cultured ex vivo (IL1B, IL6, CXCL8, IL17A, IL36G). In conclusion, selective and simultaneous knockdown of the HSP90 isoforms mediated different inflammatory effects, revealing that the HSP90 isoforms have distinct roles in skin inflammation. In addition, we discovered that inhibition of TRAP1 exerted consistent anti-inflammatory effects, suggesting that TRAP1 inhibitors may represent a topical therapeutic strategy for inflammatory skin diseases.
Collapse
Affiliation(s)
- Hakim Ben Abdallah
- Department of Dermatology and Venereology, Aarhus University Hospital, Aarhus, Denmark.
| | - Lars Iversen
- Department of Dermatology and Venereology, Aarhus University Hospital, Aarhus, Denmark; MC2 Therapeutics A/S, Hørsholm, Denmark
| | - Claus Johansen
- Department of Dermatology and Venereology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
6
|
Yu L, Qin X, Liang B, Liu J. Traditional Chinese Medicine-Based Nanoformulations for Enhanced Photothermal Therapy of Cancer. ACS Biomater Sci Eng 2025; 11:694-709. [PMID: 39844481 DOI: 10.1021/acsbiomaterials.4c01612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Photothermal therapy (PTT) has shown promise in the ablation of small, unresectable tumors by boosting the tumor's temperature above 50 °C. However, the high local temperature-induced cancer cell necrosis could create severe local inflammation, which may deteriorate normal tissues and increase tumor spreading. Although mild photothermal therapy (MPTT) at 42-45 °C could avoid the undesired side effect to some extent with minimal nonspecific heat diffusion, the self-protective behavior of tumors during MPTT results in an unsatisfactory therapeutic effect. Inspired by the widespread applications of traditional Chinese medicine (TCM) in various ailments, we also extensively explored the use of TCM in PTT and MPTT. In this Review, we summarize the application and function of TCM in PTT and MPTT, including the following: (1) TCM improves the performance of PTT and MPTT by elevating the photothermal conversion ability of photothermal agents (PTAs) and overcoming the self-protective effect of tumors, (2) PTT enhances TCM-based chemotherapy by improving the sensitivity and cellular uptake of TCM in tumors, and (3) natural TCM and metal-chelated TCM-based nanoparticles could directly act as PTAs for carrier-free combination therapy. We expect this Review will further illuminate TCM's utility and applicability in cancer treatment and create new combination strategies for theragnostic use.
Collapse
Affiliation(s)
- Lin Yu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, P. R. China
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, P. R. China
| | - Xueying Qin
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, P. R. China
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, P. R. China
| | - Bing Liang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, P. R. China
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, P. R. China
| | - Jingjing Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, P. R. China
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, P. R. China
| |
Collapse
|
7
|
Fan X, Sun L, Qin Y, Liu Y, Wu S, Du L. The Role of HSP90 Molecular Chaperones in Depression: Potential Mechanisms. Mol Neurobiol 2025; 62:708-717. [PMID: 38896156 DOI: 10.1007/s12035-024-04284-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024]
Abstract
Major depressive disorder (MDD) is characterized by high rates of disability and death and has become a public health problem that threatens human life and health worldwide. HPA axis disorder and neuroinflammation are two common biological abnormalities in MDD patients. Hsp90 is an important molecular chaperone that is widely distributed in the organism. Hsp90 binds to the co-chaperone and goes through a molecular chaperone cycle to complete its regulation of the client protein. Numerous studies have demonstrated that Hsp90 regulates how the HPA axis reacts to stress and how GR, the HPA axis' responsive substrate, matures. In addition, Hsp90 exhibits pro-inflammatory effects that are closely related to neuroinflammation in MDD. Currently, Hsp90 inhibitors have made some progress in the treatment of a variety of human diseases, but they still need to be improved. Further insight into the role of Hsp90 in MDD provides new ideas for the development of new antidepressant drugs targeting Hsp90.
Collapse
Affiliation(s)
- Xuyuan Fan
- Department of Medicine, Yangzhou University, Yangzhou, 225012, Jiangsu, China
| | - Lei Sun
- Department of Medicine, Yangzhou University, Yangzhou, 225012, Jiangsu, China
| | - Ye Qin
- Department of Laboratory Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225012, Jiangsu, China
| | - Yuan Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225012, Jiangsu, China
| | - Shusheng Wu
- Department of the Central Laboratory, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225012, Jiangsu, China.
| | - Longfei Du
- Department of Laboratory Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225012, Jiangsu, China.
| |
Collapse
|
8
|
Saouli I, Abrane R, Bidjou-Haiour C, Boudiba S. Insight into the structural and dynamic properties of novel HSP90 inhibitors through DFT calculations and molecular dynamics simulations. J Mol Model 2024; 30:420. [PMID: 39601982 DOI: 10.1007/s00894-024-06214-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024]
Abstract
CONTEXT Heat-shock proteins (HSPs), particularly HSP90, are critical molecular chaperones that maintain protein stability, especially in cancer cells. Elevated HSP90 levels in tumors aid in oncogenic protein stabilization. This study focuses on developing potent, selective HSP90 inhibitors to disrupt its chaperone function, targeting cancer cell survival. Using a de novo hybridization approach, we designed novel inhibitors by integrating structural fragments from a known HSP90-binding drug, leading to the creation of hybrid compounds C1, C2, and C3. A 300 ns molecular dynamics simulation of each system revealed that C1, C2, and C3 formed more stable complexes with HSP90 compared to the reference compound, MEY. RMSD, RMSF, Rg, SASA, and MM-PBSA metrics supported these findings. DCCM and FEL analyses confirmed that the inhibitors did not alter HSP90's initial configuration. Further DFT calculations with the B3LYP/6-311 + + (d,p) basis set were conducted to evaluate frontier molecular orbitals, MEP surfaces, ELF, LOL maps, TDOS and PDOS. The results indicated that C1, C2, and C3 formed more stable complexes with HSP90 compared to the reference compound MEY. These findings affirm the potential of C1, C2, and C3 as new anti-cancer therapies. Our approach demonstrates a promising strategy for developing selective HSP90 inhibitors that maintain the protein's functional integrity while disrupting its oncogenic role, paving the way for further preclinical evaluation of these novel compounds. METHODS Maestro 11.8, Discovery Studio Visualizer, Gromacs-2023, Gaussian 16, and online platforms like SwissADME and ProTox-II were utilized. Fragments generated from eight known HSP90-binding drugs were subjected to SP-docking, leading to 170 fragments. The highest-scoring fragments were merged using the breed panel to create new HSP90 inhibitors. XP-docking and ADMET analyses identified C1, C2, and C3 as the most promising candidates. These compounds were selected for a 300 ns dynamic simulation and subsequent DFT calculations.
Collapse
Affiliation(s)
- Ibtissam Saouli
- Department of Chemistry, Laboratory of Organic Synthesis and Modeling Group (LOMOP), University of Badji-Mokhtar, 23000, Annaba, Algeria.
- Department of Chemistry, Laboratory of Applied Chemistry and Renewable Energies (LACRE), University of Echahid Cheikh Larbi Tebessi, 12000, Tebessa, Algeria.
| | - Rahma Abrane
- Department of Chemistry, Laboratory of Theoretical and Applied Physics, University of Echahid Cheikh Larbi Tebessi, 12000, Tebessa, Algeria
| | - Chahra Bidjou-Haiour
- Department of Chemistry, Laboratory of Organic Synthesis and Modeling Group (LOMOP), University of Badji-Mokhtar, 23000, Annaba, Algeria
| | - Sameh Boudiba
- Department of Chemistry, Laboratory of Applied Chemistry and Renewable Energies (LACRE), University of Echahid Cheikh Larbi Tebessi, 12000, Tebessa, Algeria
| |
Collapse
|
9
|
Dong H, Zeng X, Zheng X, Li C, Ming J, Zhang J. The Liver-Protective Effects of the Essential Oil from Amomum villosum in Tilapia ( Oreochromis niloticus): Antioxidant, Transcriptomic, and Metabolomic Modulations. Antioxidants (Basel) 2024; 13:1118. [PMID: 39334777 PMCID: PMC11428501 DOI: 10.3390/antiox13091118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/31/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
This study investigates the effects of the essential oil from Amomum villosum (EOA) on liver-protective effects in Nile tilapia (Oreochromis niloticus), utilizing a multidisciplinary approach that integrates physiological assessments and transcriptomic and metabolomic analyses. Fish were fed diets containing 2 g/kg of EOA over a 56-day trial, with a no-EOA diet serving as the control. The results demonstrate that EOA supplementation improves liver histology, enhances antioxidant capacities, and reduces inflammation in tilapia. The transcriptomic analysis revealed significant alterations in gene expression profiles related to RNA splicing, metabolism, and disease pathways. The identification of differential genes and disease databases identified key target genes associated with the primary component of EOA for its anti-hepatobiliary disease effects. Furthermore, a molecular docking analysis of EOA major components with core differentially expressed genes in the hepatobiliary syndrome indicated that α-pinene is a potential Hsp90 inhibitor, which may prevent inflammation. A metabolomic analysis further demonstrated that EOA supplementation leads to notable changes in liver phospholipids, fatty acids, and carbohydrate metabolism. These findings underscore the potential of EOA as a natural additive for improving liver health in tilapia, offering valuable insights to the aquaculture industry for enhancing fish health and welfare in intensive farming systems.
Collapse
Affiliation(s)
- Hongbiao Dong
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Lingshui 572426, China
| | - Xiangbing Zeng
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Xiaoting Zheng
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Lingshui 572426, China
| | - Chenghui Li
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China
- National Aquaculture Engineering Technology Research Center, Zhejiang Ocean University, Zhoushan 316000, China
| | - Junchao Ming
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Lingshui 572426, China
| | - Jiasong Zhang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Lingshui 572426, China
| |
Collapse
|
10
|
Teng C, Xu Y, Wang Y, Chen D, Yin D, Yan L. J-aggregates of multi-groups cyanine dye for NIR-IIa fluorescence-guided mild photothermal therapy under 1064 nm irradiation. J Colloid Interface Sci 2024; 670:751-761. [PMID: 38788442 DOI: 10.1016/j.jcis.2024.05.149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/29/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
NIR-IIa fluorescence imaging (FI) and NIR-II photothermal therapy (PTT) have gained popularity due to the advantages of high temporal and spatial resolution and deep penetration. However, the hyperthermia (>48 °C) of conventional PTT with nonspecific warming and thermal diffusion may inevitably cause damage to healthy tissues or organs surrounding the tumor. Therefore, it is highly desirable to provide effective cancer treatment by implementing mild photothermal therapy (mPTT) at mild temperatures with lower laser power density. Here, the nanotheranostic platform FN@P-GA NPs with NIR-II absorption and NIR-IIa emission was developed by constructing J-aggregates. FN@P-GA possesses good biocompatibility, favorable NIR-IIa FI performance, decent stability, and high photothermal conversion efficiency (57.6 %), which lays a solid foundation for FI-guided mPTT. Due to its ability to effectively down-regulate the expression of HSP90 and reduce cellular thermoresistance to kill cancer cells, FN@P-GA successfully achieved NIR-IIa FI-guided mPTT and demonstrated its potent anti-tumor effect under 1064 nm laser irradiation at mild temperature and low power density (0.3 W/cm2).
Collapse
Affiliation(s)
- Changchang Teng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China. Hefei, Jinzai Road 96. 230026, Anhui, PR China; Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China. Hefei, Jinzai Road 96. 230026, Anhui, PR China
| | - Yixuan Xu
- Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China. Hefei, Jinzai Road 96. 230026, Anhui, PR China
| | - Yating Wang
- Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China. Hefei, Jinzai Road 96. 230026, Anhui, PR China
| | - Dejia Chen
- Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China. Hefei, Jinzai Road 96. 230026, Anhui, PR China
| | - Dalong Yin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China. Hefei, Jinzai Road 96. 230026, Anhui, PR China
| | - Lifeng Yan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China. Hefei, Jinzai Road 96. 230026, Anhui, PR China; Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China. Hefei, Jinzai Road 96. 230026, Anhui, PR China.
| |
Collapse
|
11
|
Li Y, Dong J, Qin JJ. Small molecule inhibitors targeting heat shock protein 90: An updated review. Eur J Med Chem 2024; 275:116562. [PMID: 38865742 DOI: 10.1016/j.ejmech.2024.116562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/10/2024] [Accepted: 05/31/2024] [Indexed: 06/14/2024]
Abstract
As a molecular chaperone, heat shock protein 90 (HSP90) plays important roles in the folding, stabilization, activation, and degradation of over 500 client proteins, and is extensively involved in cell signaling, proliferation, and survival. Thus, it has emerged as an important target in a variety of diseases, including cancer, neurodegenerative diseases, and viral infections. Therefore, targeted inhibition of HSP90 provides a valuable and promising therapeutic strategy for the treatment of HSP90-related diseases. This review aims to systematically summarize the progress of research on HSP90 inhibitors in the last five years, focusing on their structural features, design strategies, and biological activities. It will refer to the natural products and their derivatives (including novobiocin derivatives, deguelin derivatives, quinone derivatives, and terpenoid derivatives), and to synthetic small molecules (including resorcinol derivatives, pyrazoles derivatives, triazole derivatives, pyrimidine derivatives, benzamide derivatives, benzothiazole derivatives, and benzofuran derivatives). In addition, the major HSP90 small-molecule inhibitors that have moved into clinical trials to date are also presented here.
Collapse
Affiliation(s)
- Yulong Li
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China; School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jinyun Dong
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China.
| | - Jiang-Jiang Qin
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China.
| |
Collapse
|
12
|
Liu J, Liu H, Huang S, Peng H, Li J, Tu K, Tan S, Xie R, Lei L, Yue Q, Gao H, Cai L. Multiple Treatment of Triple-Negative Breast Cancer Through Gambogic Acid-Loaded Mesoporous Polydopamine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309583. [PMID: 38446095 DOI: 10.1002/smll.202309583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/06/2024] [Indexed: 03/07/2024]
Abstract
Triple-negative breast cancer (TNBC) is a highly heterogeneous subtype of breast cancer, characterized by aggressiveness and high recurrence rate. As monotherapy provides limited benefit to TNBC patients, combination therapy emerges as a promising treatment approach. Gambogic acid (GA) is an exceedingly promising anticancer agent. Nonetheless, its application potential is hampered by low drug loading efficiency and associated toxic side effects. To overcome these limitations, using mesoporous polydopamine (MPDA) endowed with photothermal conversion capabilities is considered as a delivery vehicle for GA. Meanwhile, GA can inhibit the activity of heat shock protein 90 (HSP90) to enhance the photothermal effect. Herein, GA-loaded MPDA nanoparticles (GA@MPDA NPs) are developed with a high drug loading rate of 75.96% and remarkable photothermal conversion performance. GA@MPDA NPs combined with photothermal treatment (PTT) significantly inhibit the tumor growth, and effectively trigger the immunogenic cell death (ICD), which thereby increase the number of activated effector T cells (CD8+ T cells and CD4+ T cells) in the tumor, and hoist the level of immune-inflammatory cytokines (IFN-γ, IL-6, and TNF-α). The above results suggest that the combination of GA@MPDA NPs with PTT expected to activate the antitumor immune response, thus potentially enhancing the clinical therapeutic effect on TNBC.
Collapse
Affiliation(s)
- Jiaqi Liu
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China
| | - Hongmei Liu
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Shan Huang
- Cancer Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Hong Peng
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Jiamei Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China
| | - Kerong Tu
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Sumin Tan
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Wenjiang District People's Hospital of Chengdu, Chengdu, 611130, China
| | - Rou Xie
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China
| | - Lei Lei
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China
| | - Qin Yue
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China
| | - Lulu Cai
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| |
Collapse
|
13
|
Asdemir A, Özgür A. Molecular mechanism of anticancer effect of heat shock protein 90 inhibitor BIIB021 in human bladder cancer cell line. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5167-5177. [PMID: 38240781 PMCID: PMC11166791 DOI: 10.1007/s00210-024-02950-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/10/2024] [Indexed: 06/12/2024]
Abstract
Bladder cancer is a type of urologic malignancy that exhibits significant morbidity, mortality, and treatment costs. Inhibition of heat shock protein 90 (HSP90) activity has been a promising pharmacological strategy for blocking of bladder cancer pathogenesis. BIIB021 is a next-generation HSP90 inhibitor which interrupts ATP hydrolysis process of HSP90 and inhibits the stabilization and correct folding of client proteins. In current study, we aimed to investigate the molecular mechanism of the anticancer activity of BIIB021 in human bladder cancer T24 cells. Our results revealed that nanomolar concentration of BIIB021 decreased viability of T24 cell. BIIB021 downregulated HSP90 expression in T24 cells and inhibited the refolding activity of luciferase in the presence of T24 cell lysate. PCR array data indicated a significant alteration in transcript levels of cancer-related genes involved in metastases, apoptotic cell death, cell cycle, cellular senescence, DNA damage and repair mechanisms, epithelial-to-mesenchymal transition, hypoxia, telomeres and telomerase, and cancer metabolism pathways in T24 cells. All findings hypothesize that BIIB021 could exhibit as effective HSP90 inhibitor in the future for treatment of bladder cancer patients.
Collapse
Affiliation(s)
- Aydemir Asdemir
- Faculty of Medicine, Department of Urology, Sivas Cumhuriyet University, Sivas, Turkey.
| | - Aykut Özgür
- Artova Vocational School, Department of Veterinary Medicine, Laboratory and Veterinary Health Program, Tokat Gaziosmanpasa University, Tokat, Turkey
| |
Collapse
|
14
|
Yan L, Chen Y, Yang Y, Han Y, Tong C. Heat shock protein 90α reduces CD8 + T cell exhaustion in acute lung injury induced by lipopolysaccharide. Cell Death Discov 2024; 10:283. [PMID: 38871699 DOI: 10.1038/s41420-024-02046-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 06/15/2024] Open
Abstract
CD8+ T-cell exhaustion is a promising prognostic indicator of sepsis-induced acute respiratory distress syndrome (ARDS). Patients with sepsis-related ARDS had reduced levels of HSP90AA1. However, whether the changes in CD8+ T cells were related to HSP90α, encoded by the HSP90AA1 gene, was unclear. This study aimed to examine the regulatory mechanism of HSP90α and its impact on CD8+ T-cell exhaustion in lipopolysaccharide (LPS)-induced acute lung injury (ALI). In this study, by conducting a mouse model of ALI, we found that one week after LPS-induced ALI, CD8+ T cells showed exhaustion characteristics. At this time, proliferation and cytokine release in CD8+ T cells were reduced. The inhibitory costimulatory factors PD-1 and Tim-3, on the other hand, were enhanced. Meanwhile, the expression of HSP90α and STAT1 decreased significantly. The in vitro studies showed that HSP90α stimulation or inhibition affected the CD8+ T-cell exhaustion phenotype. Interference with STAT1 reduced the expression of HSP90α and impaired its regulation of CD8+ T cells. The Co-Immunoprecipitation results indicated that HSP90α can directly or indirectly bind to TOX to regulate TOX expression and downstream signal transduction. In summary, by inhibiting TOX-mediated exhaustion signaling pathways, HSP90α inhibited CD8+ T-cell exhaustion in ALI. The participation of STAT1 in the regulation of HSP90α was required.
Collapse
Affiliation(s)
- Lei Yan
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Yumei Chen
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Yilin Yang
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Yi Han
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, 200032, Shanghai, China.
| | - Chaoyang Tong
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, 200032, Shanghai, China.
| |
Collapse
|
15
|
Zarguan I, Ghoul S, Belayachi L, Benjouad A. Plant-Based HSP90 Inhibitors in Breast Cancer Models: A Systematic Review. Int J Mol Sci 2024; 25:5468. [PMID: 38791506 PMCID: PMC11122155 DOI: 10.3390/ijms25105468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/20/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Breast cancer, the most invasive cancer in women globally, necessitates novel treatments due to prevailing limitations of therapeutics. Search of news anticancer targets is more necessary than ever to tackle this pathology. Heat-Shock Protein 90 (HSP90), a chaperone protein, is implicated in breast cancer pathogenesis, rendering it an appealing target. Looking for alternative approach such as Plant-based compounds and natural HSP90 inhibitors offer promising prospects for innovative therapeutic strategies. This study aims to identify plant-based compounds with anticancer effects on breast cancer models and elucidate their mechanism of action in inhibiting the HSP90 protein. A systematic review was conducted and completed in January 2024 and included in vitro, in vivo, and in silico studies that investigated the effectiveness of plant-based HSP90 inhibitors tested on breast cancer models. Eleven studies were included in the review. Six plants and 24 compounds from six different classes were identified and proved to be effective against HSP90 in breast cancer models. The studied plant extracts showed a dose- and time-dependent decrease in cell viability. Variable IC50 values showed antiproliferative effects, with the plant Tubocapsicum anomalum demonstrating the lowest value. Withanolides was the most studied class. Fennel, Trianthema portulacastrum, and Spatholobus suberectus extracts were shown to inhibit tumor growth and angiogenesis and modulate HSP90 expression as well as its cochaperone interactions in breast cancer mouse models. The identified plant extracts and compounds were proven effective against HSP90 in breast cancer models, and this inhibition showed promising effects on breast cancer biology. Collectively, these results urge the need of further studies to better understand the mechanism of action of HSP90 inhibitors using comparable methods for preclinical observations.
Collapse
Affiliation(s)
- Ilham Zarguan
- Center for Research on Health Sciences (CReSS), International Faculty of Medicine, College of Health Sciences, International University of Rabat, Technopolis Parc, Rocade of Rabat-Salé, Sala-Al Jadida 11100, Morocco; (L.B.); (A.B.)
| | - Sonia Ghoul
- Center for Research on Health Sciences (CReSS), International Faculty of Dental Medicine, College of Health Sciences, International University of Rabat, Technopolis Parc, Rocade of Rabat-Salé, Sala-Al Jadida 11100, Morocco;
| | - Lamiae Belayachi
- Center for Research on Health Sciences (CReSS), International Faculty of Medicine, College of Health Sciences, International University of Rabat, Technopolis Parc, Rocade of Rabat-Salé, Sala-Al Jadida 11100, Morocco; (L.B.); (A.B.)
| | - Abdelaziz Benjouad
- Center for Research on Health Sciences (CReSS), International Faculty of Medicine, College of Health Sciences, International University of Rabat, Technopolis Parc, Rocade of Rabat-Salé, Sala-Al Jadida 11100, Morocco; (L.B.); (A.B.)
| |
Collapse
|
16
|
Smith AG, Kliebe VM, Mishra S, McCall RP, Irvine MM, Blagg BSJ, Lei W. Anti-inflammatory activities of novel heat shock protein 90 isoform selective inhibitors in BV-2 microglial cells. Front Mol Biosci 2024; 11:1405339. [PMID: 38756532 PMCID: PMC11096514 DOI: 10.3389/fmolb.2024.1405339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/15/2024] [Indexed: 05/18/2024] Open
Abstract
Heat shock protein 90 (Hsp90) is a family of chaperone proteins that consists of four isoforms: Hsp90α, Hsp90β, glucose-regulated protein 94 (Grp94), and tumor necrosis factor type 1 receptor-associated protein (TRAP1). They are involved in modulating the folding, maturation, and activation of their client proteins to regulate numerous intracellular signaling pathways. Previous studies demonstrated that pan-Hsp90 inhibitors reduce inflammatory signaling pathways resulting in a reduction of inflammation and pain but show toxicities in cancer-related clinical trials. Further, the role of Hsp90 isoforms in inflammation remains poorly understood. This study aimed to determine anti-inflammatory activities of Hsp90 isoforms selective inhibitors on the lipopolysaccharide (LPS)-induced inflammation in BV-2 cells, a murine microglial cell line. The production of inflammatory mediators such as nitric oxide (NO), interleukin 1 beta (IL-1β), and tumor necrosis factor-alpha (TNF-α) was measured. We also investigated the impact of Hsp90 isoform inhibitors on the activation of nuclear factor kappa B (NF-κB), nuclear factor erythroid 2-related factor 2 (Nrf2), and mitogen-activated protein kinases (MAPKs). We found that selective inhibitors of Hsp90β reduced the LPS-induced production of NO, IL-1β, and TNF-α via diminishing the activation of NF-κB and Extracellular signal-regulated kinases (ERK) MAPK. The Hsp90α, Grp94, TRAP1 inhibitors had limited effect on the production of inflammatory mediators. These findings suggest that Hsp90β is the key player in LPS-induced neuroinflammation. Thereby providing a more selective drug target for development of medications involved in pain management that can potentially contribute to the reduction of adverse side effects associated with Hsp90 pan inhibitors.
Collapse
Affiliation(s)
- Amanda G. Smith
- Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, Clinton, SC, United States
| | | | - Sanket Mishra
- Department of Chemistry and Biochemistry, University of Notre Dame College of Science, Notre Dame, IN, United States
| | - Ryan P. McCall
- Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, Clinton, SC, United States
| | - Megan M. Irvine
- Department of Pharmaceutical and Graduate Life Sciences, Manchester University Fort Wayne, Fort Wayne, IN, United States
| | - Brian S. J. Blagg
- Department of Chemistry and Biochemistry, University of Notre Dame College of Science, Notre Dame, IN, United States
| | - Wei Lei
- Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, Clinton, SC, United States
- Department of Pharmaceutical and Graduate Life Sciences, Manchester University Fort Wayne, Fort Wayne, IN, United States
| |
Collapse
|
17
|
She Y, Guo Z, Zhai Q, Liu J, Du Q, Zhang Z. CDK4/6 inhibitors in drug-induced liver injury: a pharmacovigilance study of the FAERS database and analysis of the drug-gene interaction network. Front Pharmacol 2024; 15:1378090. [PMID: 38633610 PMCID: PMC11021785 DOI: 10.3389/fphar.2024.1378090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/20/2024] [Indexed: 04/19/2024] Open
Abstract
Objective The aim of this study was to investigate the potential risk of drug-induced liver injury (DILI) caused by the CDK4/6 inhibitors (CDK4/6is abemaciclib, ribociclib, and palbociclib by comprehensively analyzing the FDA Adverse Event Reporting System (FAERS) database. Moreover, potential toxicological mechanisms of CDK4/6is-related liver injury were explored via drug-gene network analysis. Methods In this retrospective observational study, we collected reports of DILI associated with CDK4/6i use from the FAERS dated January 2014 to March 2023. We conducted disproportionality analyses using the reporting odds ratio (ROR) with a 95% confidence interval (CI). Pathway enrichment analysis and drug-gene network analyses were subsequently performed to determine the potential mechanisms underlying CDK4/6i-induced liver injury. Results We found positive signals for DILI with ribociclib (ROR = 2.60) and abemaciclib (ROR = 2.37). DILIs associated with liver-related investigations, signs, and symptoms were confirmed in all three reports of CDK4/6is. Moreover, ascites was identified as an unlisted hepatic adverse effect of palbociclib. We isolated 189 interactive target genes linking CDK4/6 inhibitors to hepatic injury. Several key genes, such as STAT3, HSP90AA1, and EP300, were revealed via protein-protein analysis, emphasizing their central roles within the network. KEGG pathway enrichment of these genes highlighted multiple pathways. Conclusion Our study revealed variations in hepatobiliary toxicity among the different CDK4/6 inhibitors, with ribociclib showing the highest risk of liver injury, followed by abemaciclib, while palbociclib appeared relatively safe. Our findings emphasize the need for cautious use of CDK4/6 inhibitors, and regular liver function monitoring is recommended for long-term CDK4/6 inhibitor use.
Collapse
Affiliation(s)
- Youjun She
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zihan Guo
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qing Zhai
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiyong Liu
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qiong Du
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhongwei Zhang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Critical Care, Fudan University Shanghai Cancer Center, Shanghai, China
| |
Collapse
|
18
|
Asdemir A, Özgür A. Combination of navitoclax (Bcl-2 and Bcl-xL inhibitor) and Debio-0932 (Hsp90 inhibitor) suppresses the viability of prostate cancer cells via induction of apoptotic signaling pathway. Med Oncol 2024; 41:83. [PMID: 38436810 DOI: 10.1007/s12032-024-02335-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024]
Abstract
Prostate cancer is one of the most common cancers in men. Given the diverse nature of prostate cancer and its tendency to respond differently to various treatments, combination therapies are often employed to enhance outcomes. In this study, the synergetic efficiency of chemotherapeutic drug Navitoclax and heat shock protein 90 (Hsp90) inhibitor Debio-0932 was evaluated in human prostate cancer cell line (PC3). Our results indicated that Navitoclax-Debio-0932 combination exhibited synergistic activity in PC3 cells at concentrations lower than IC50 values. The combination of Navitoclax and Debio-0932 decreased PC3 cell viability in a dose dependent manner at 48 h. To investigate the apoptotic potential of the Navitoclax-Debio-0932 combination against prostate cancer cells, the mRNA and protein expression levels of apoptotic and antiapoptotic markers (Bax, Bcl-2, Bcl-xL, Cyt-c, Apaf-1, Casp-3, Casp-7, and Casp-9) were measured using RT-PCR and ELISA assay. Furthermore, the cleavage activity of Casp-3 was determined by colorimetric assay. The results revealed that Navitoclax-Debio-0932 combination potently induced intrinsic apoptotic pathway in PC3 cells rather than using drugs alone. The combined treatment of Navitoclax and Debio-0932 displayed synergistic cytotoxic and apoptotic effects on prostate cancer cells, presenting a promising approach for combination therapy in prostate cancer.
Collapse
Affiliation(s)
- Aydemir Asdemir
- Faculty of Medicine, Department of Urology, Sivas Cumhuriyet University, Sivas, Turkey.
| | - Aykut Özgür
- Artova Vocational School, Department of Veterinary Medicine, Laboratory and Veterinary Health Program, Tokat Gaziosmanpasa University, Tokat, Turkey
| |
Collapse
|
19
|
Zhang X, Xu Y, Fan M, Lv X, Long J, Yang R, Zhang R, Liu Z, Gu J, Wu P, Wang C. Ponicidin-induced conformational changes of HSP90 regulates the MAPK pathway to relieve ulcerative colitis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117483. [PMID: 38008273 DOI: 10.1016/j.jep.2023.117483] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/05/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ulcerative colitis (UC) is a recurring chronic intestinal disease that can be debilitating and in severe cases, may further lead to cancer. However, all these treatment techniques still suffer from drug dependence, adverse effects and poor patient compliance. Therefore, there is an urgent need to seek new therapeutic strategies. In traditional Chinese medicine, Rabdosia rubescens (Hemsl.) H.Hara has the effects of clearing heat-toxin and promoting blood circulation to relieve pain, it is wildly used for treating inflammatory diseases such as sore throats and tonsillitis. Ponicidin is an important molecule for the anti-inflammatory effects of Rabdosia rubescens, but it has not been studied in the treatment of colitis. HSP90 is the most critical regulator in the development and progression of inflammatory diseases such as UC. AIM OF THE STUDY The aim of this study was to explore the anti-inflammatory activity of ponicidin and its mechanism of effect in vitro and in vivo, as well as to identify the target proteins on which ponicidin may interact. MATERIAL AND METHODS 2.5% (w/v) dextran sulfate sodium (DSS) was used to induce C57BL/6 mice to form an ulcerative colitis model, and then 5 mg/kg and 10 mg/kg ponicidin was given for treatment, while the Rabdosia rubescens extract group and Rabdosia rubescens diterpene extract group were set up for comparison of the efficacy of ponicidin. At the end of modeling and drug administration, mouse colon tissues were taken, and the length of colon was counted, inflammatory factors and inflammatory signaling pathways were detected. RAW264.7 cells were induced to form cell inflammation model with 1 μg/mL Lipopolysaccharide (LPS) for 24 h. 1 μM, 2 μM and 4 μM ponicidin were given at the same time, and after the end of the modeling and administration of the drug, the inflammatory factors and inflammatory signaling pathways were detected by qRT-PCR, western blotting, immunofluorescence and other methods. In vitro, target angling and combined with mass spectrometry were used to search for relevant targets of ponicidin, while isothermal titration calorimetry (ITC), protease degradation experiments and molecular dynamics simulations were used for further confirmation of the mode of action and site of action between ponicidin and target proteins. RESULTS Ponicidin can alleviate DSS and LPS-induced inflammation by inhibiting the MAPK signaling pathway at the cellular and animal levels. In vitro, we confirmed that ponicidin can interact with the middle domain of HSP90 and induce the conformational changes in the N-terminal domain. CONCLUSION These innovative efforts identified the molecular target of ponicidin in the treatment of UC and revealed the molecular mechanism of its interaction with HSP90.
Collapse
Affiliation(s)
- Xuerong Zhang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Yuanhang Xu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Minqi Fan
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Xueqing Lv
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Jiachan Long
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Rong Yang
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Rong Zhang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Zhongqiu Liu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Jiangyong Gu
- Research Center of Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Peng Wu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| | - Caiyan Wang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| |
Collapse
|
20
|
Wei H, Zhang Y, Jia Y, Chen X, Niu T, Chatterjee A, He P, Hou G. Heat shock protein 90: biological functions, diseases, and therapeutic targets. MedComm (Beijing) 2024; 5:e470. [PMID: 38283176 PMCID: PMC10811298 DOI: 10.1002/mco2.470] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/30/2023] [Accepted: 01/04/2024] [Indexed: 01/30/2024] Open
Abstract
Heat shock protein 90 (Hsp90) is a predominant member among Heat shock proteins (HSPs), playing a central role in cellular protection and maintenance by aiding in the folding, stabilization, and modification of diverse protein substrates. It collaborates with various co-chaperones to manage ATPase-driven conformational changes in its dimer during client protein processing. Hsp90 is critical in cellular function, supporting the proper operation of numerous proteins, many of which are linked to diseases such as cancer, Alzheimer's, neurodegenerative conditions, and infectious diseases. Recognizing the significance of these client proteins across diverse diseases, there is a growing interest in targeting Hsp90 and its co-chaperones for potential therapeutic strategies. This review described biological background of HSPs and the structural characteristics of HSP90. Additionally, it discusses the regulatory role of heat shock factor-1 (HSF-1) in modulating HSP90 and sheds light on the dynamic chaperone cycle of HSP90. Furthermore, the review discusses the specific contributions of HSP90 in various disease contexts, especially in cancer. It also summarizes HSP90 inhibitors for cancer treatment, offering a thoughtful analysis of their strengths and limitations. These advancements in research expand our understanding of HSP90 and open up new avenues for considering HSP90 as a promising target for therapeutic intervention in a range of diseases.
Collapse
Affiliation(s)
- Huiyun Wei
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of EducationSchool of Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Yingying Zhang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of EducationSchool of Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Yilin Jia
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of EducationSchool of Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Xunan Chen
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of EducationSchool of Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Tengda Niu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of EducationSchool of Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Aniruddha Chatterjee
- Department of PathologyDunedin School of MedicineUniversity of OtagoDunedinNew Zealand
| | - Pengxing He
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of EducationSchool of Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Guiqin Hou
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of EducationSchool of Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
- Department of PathologyDunedin School of MedicineUniversity of OtagoDunedinNew Zealand
| |
Collapse
|
21
|
Srivastava RK, Muzaffar S, Khan J, Crossman DK, Agarwal A, Athar M. HSP90, a Common Therapeutic Target for Suppressing Skin Injury Caused by Exposure to Chemically Diverse Classes of Blistering Agents. J Pharmacol Exp Ther 2024; 388:546-559. [PMID: 37914412 PMCID: PMC10801768 DOI: 10.1124/jpet.123.001795] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 11/03/2023] Open
Abstract
Vesicants such as arsenicals and mustards produce highly painful cutaneous inflammatory and blistering responses, hence developed as chemical weapons during World War I/II. Here, using lewisite and sulfur mustard surrogates, namely phenylarsine oxide (PAO) and 2-chloroethyl ethyl sulfide (CEES), respectively, we defined a common underlying mechanism of toxic action by these two distinct classes of vesicants. Murine skin exposure to these chemicals causes tissue destruction characterized by increase in skin bifold thickness, Draize score, infiltration of inflammatory cells, and apoptosis of epidermal and dermal cells. RNA sequencing analysis identified ∼346 inflammatory genes that were commonly altered by both PAO and CEES, along with the identification of cytokine signaling activation as the top canonical pathway. Activation of several proinflammatory genes and pathways is associated with phosphorylation-dependent activation of heat shock protein 90α (p-HSP90α). Topical treatment with known HSP90 inhibitors SNX-5422 and IPI-504 post PAO or CEES skin challenge significantly attenuated skin damage including reduction in overall skin injury and clinical scores. In addition, highly upregulated inflammatory genes Saa3, Cxcl1, Ccl7, IL-6, Nlrp3, Csf3, Chil3, etc. by both PAO and CEES were significantly diminished by treatment with HSP90 inhibitors. These drugs not only reduced PAO- or CEES-induced p-HSP90α expression but also its client proteins NLRP3 and pP38 and the expression of their target inflammatory genes. Our data confirm a critical role of HSP90 as a shared underlying molecular target of toxicity by these two distinct vesicants and provide an effective and novel medical countermeasure to suppress vesicant-induced skin injury. SIGNIFICANCE STATEMENT: Development of effective and novel mechanism-based antidotes that can simultaneously block cutaneous toxic manifestations of distinct vesicants is important and urgently needed. Due to difficulties in determining the exact nature of onsite chemical exposure, a potent drug that can suppress widespread cutaneous damage may find great utility. Thus, this study identified HSP90 as a common molecular regulator of cutaneous inflammation and injury by two distinct warfare vesicants, arsenicals and mustards, and HSP90 inhibitors afford significant protection against skin damage.
Collapse
Affiliation(s)
- Ritesh Kumar Srivastava
- UAB Research Center of Excellence in Arsenicals, Departments of Dermatology (R.K.S., S.M., J.K., M.A.) and Genetics (D.K.C.) and Division of Nephrology, Department of Medicine (A.A.), University of Alabama at Birmingham, Birmingham, Alabama
| | - Suhail Muzaffar
- UAB Research Center of Excellence in Arsenicals, Departments of Dermatology (R.K.S., S.M., J.K., M.A.) and Genetics (D.K.C.) and Division of Nephrology, Department of Medicine (A.A.), University of Alabama at Birmingham, Birmingham, Alabama
| | - Jasim Khan
- UAB Research Center of Excellence in Arsenicals, Departments of Dermatology (R.K.S., S.M., J.K., M.A.) and Genetics (D.K.C.) and Division of Nephrology, Department of Medicine (A.A.), University of Alabama at Birmingham, Birmingham, Alabama
| | - David K Crossman
- UAB Research Center of Excellence in Arsenicals, Departments of Dermatology (R.K.S., S.M., J.K., M.A.) and Genetics (D.K.C.) and Division of Nephrology, Department of Medicine (A.A.), University of Alabama at Birmingham, Birmingham, Alabama
| | - Anupam Agarwal
- UAB Research Center of Excellence in Arsenicals, Departments of Dermatology (R.K.S., S.M., J.K., M.A.) and Genetics (D.K.C.) and Division of Nephrology, Department of Medicine (A.A.), University of Alabama at Birmingham, Birmingham, Alabama
| | - Mohammad Athar
- UAB Research Center of Excellence in Arsenicals, Departments of Dermatology (R.K.S., S.M., J.K., M.A.) and Genetics (D.K.C.) and Division of Nephrology, Department of Medicine (A.A.), University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
22
|
Ouassaf M, Bourougaa L, Al-Mijalli SH, Abdallah EM, Bhat AR, A. Kawsar SM. Marine-Derived Compounds as Potential Inhibitors of Hsp90 for Anticancer and Antimicrobial Drug Development: A Comprehensive In Silico Study. Molecules 2023; 28:8074. [PMID: 38138564 PMCID: PMC10871121 DOI: 10.3390/molecules28248074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/20/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Marine compounds constitute a diverse and invaluable resource for the discovery of bioactive substances with promising applications in the pharmaceutical development of anti-inflammatory and antibacterial agents. In this study, a comprehensive methodology was employed, encompassing pharmacophore modeling, virtual screening, in silico ADMET assessment (encompassing aspects of absorption, distribution, metabolism, excretion, and toxicity), and molecular dynamics simulations. These methods were applied to identify new inhibitors targeting the Hsp90 protein (heat shock protein 90), commencing with a diverse assembly of compounds sourced from marine origins. During the virtual screening phase, an extensive exploration was conducted on a dataset comprising 31,488 compounds sourced from the CMNPD database, characterized by a wide array of molecular structures. The principal objective was the development of structure-based pharmacophore models, a valuable approach when the pool of known ligands is limited. The pharmacophore model DDRRR was successfully constructed within the active sites of the Hsp90 crystal structure. Subsequent docking studies led to the identification of six compounds (CMNPD 22591, 9335, 10015, 360799, 15115, and 20988) demonstrating substantial binding affinities, each with values below -8.3 kcal/mol. In the realm of in silico ADMET predictions, five of these compounds exhibited favorable pharmacokinetic properties. Furthermore, molecular dynamics simulations and total binding energy calculations using MM-PBSA indicated that these marine-derived compounds formed exceptionally stable complexes with the Hsp90 receptor over a 100-nanosecond simulation period. These findings underscore the considerable potential of these novel marine compounds as promising candidates for anticancer and antimicrobial drug development.
Collapse
Affiliation(s)
- Mebarka Ouassaf
- Group of Computational and Medicinal Chemistry, LMCE Laboratory, University of Biskra, Biskra 707000, Algeria;
| | - Lotfi Bourougaa
- Group of Computational and Medicinal Chemistry, LMCE Laboratory, University of Biskra, Biskra 707000, Algeria;
| | - Samiah Hamad Al-Mijalli
- Department of Biology, College of Sciences, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Emad M. Abdallah
- Department of Science Laboratories, College of Science and Arts, Qassim University, Ar Rass 51921, Saudi Arabia;
| | - Ajmal R. Bhat
- Department of Chemistry, RTM Nagpur University, Nagpur 440033, India;
| | - Sarkar M. A. Kawsar
- Laboratory of Carbohydrate and Nucleoside Chemistry, Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong 4331, Bangladesh;
| |
Collapse
|
23
|
Yang G, Song T, Zhang H, Li M, Wei X, Zhou W, Wu C, Liu Y, Yang H. Stimulus-Detonated Biomimetic "Nanobomb" with Controlled Release of HSP90 Inhibitor to Disrupt Mitochondrial Function for Synergistic Gas and Photothermal Therapy. Adv Healthc Mater 2023; 12:e2300945. [PMID: 37200205 DOI: 10.1002/adhm.202300945] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/12/2023] [Indexed: 05/20/2023]
Abstract
Photothermal therapy (PTT) is considered a promising treatment for tumors; however, its efficacy is restricted by heat shock proteins (HSPs). Herein, a stimuli-responsive theranostic nanoplatform (M/D@P/E-P) is designed for synergistic gas therapy and PTT. This nanoplatform is fabricated by a load of manganese carbonyl (MnCO, CO donor) in dendritic mesoporous silicon (DMS), followed by the coating with polydopamine (PDA) and loading of epigallocatechin gallate (EGCG, HSP90 inhibitor). Upon near-infrared (NIR) irradiation, the photothermal effect of PDA can kill tumor cells and allow for the controlled drug release of MnCO and EGCG. Moreover, the acidity and H2 O2 -rich tumor microenvironment enable the decomposition of the released MnCO, accompanied by the production of CO. CO-initiated gas therapy can realize to disrupt the mitochondrial function, which will accelerate cell apoptosis and down-regulate HSP90 expression by decreasing intracellular ATP. The combination of EGCG and MnCO can significantly minimize the thermo-resistance of tumors and improve PTT sensitivity. In addition, the released Mn2+ enables T1 -weighted magnetic imaging of tumors. The therapeutic efficacy of the nanoplatform is methodically appraised and validated both in vitro and in vivo. Taken together, this study affords a prime paradigm for applying this strategy for enhanced PTT via mitochondrial dysfunction.
Collapse
Affiliation(s)
- Geng Yang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Ting Song
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Hanxi Zhang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Mengyue Li
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Xiaodan Wei
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Wanyi Zhou
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Chunhui Wu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Yiyao Liu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, P. R. China
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing, 401331, P. R. China
| | - Hong Yang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| |
Collapse
|
24
|
Magyar CTJ, Vashist YK, Stroka D, Kim-Fuchs C, Berger MD, Banz VM. Heat shock protein 90 (HSP90) inhibitors in gastrointestinal cancer: where do we currently stand?-A systematic review. J Cancer Res Clin Oncol 2023; 149:8039-8050. [PMID: 36966394 PMCID: PMC10374781 DOI: 10.1007/s00432-023-04689-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/09/2023] [Indexed: 03/27/2023]
Abstract
PURPOSE Dysregulated expression of heat shock proteins (HSP) plays a fundamental role in tumor development and progression. Consequently, HSP90 may be an effective tumor target in oncology, including the treatment of gastrointestinal cancers. METHODS We carried out a systematic review of data extracted from clinicaltrials.gov and pubmed.gov, which included all studies available until January 1st, 2022. The published data was evaluated using primary and secondary endpoints, particularly with focus on overall survival, progression-free survival, and rate of stable disease. RESULTS Twenty trials used HSP90 inhibitors in GI cancers, ranging from phase I to III clinical trials. Most studies assessed HSP90 inhibitors as a second line treatment. Seventeen of the 20 studies were performed prior to 2015 and only few studies have results pending. Several studies were terminated prematurely, due to insufficient efficacy or toxicity. Thus far, the data suggests that HSP90 inhibitor NVP-AUY922 might improve outcome for colorectal cancer and gastrointestinal stromal tumors. CONCLUSION It currently remains unclear which subgroup of patients might benefit from HSP90 inhibitors and at what time point these inhibitors may be beneficial. There are only few new or ongoing studies initiated during the last decade.
Collapse
Affiliation(s)
- Christian Tibor Josef Magyar
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | | | - Deborah Stroka
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Corina Kim-Fuchs
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Martin D. Berger
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Vanessa M. Banz
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
25
|
Karademir D, Özgür A. The effects of STA-9090 (Ganetespib) and venetoclax (ABT-199) combination on apoptotic pathways in human cervical cancer cells. Med Oncol 2023; 40:234. [PMID: 37432531 DOI: 10.1007/s12032-023-02107-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/26/2023] [Indexed: 07/12/2023]
Abstract
Combined chemotherapy is recommended strategy as a first-line treatment method in patients with cervical cancer. Ganetespib (STA-9090) is a second-generation heat shock protein 90 (Hsp90) inhibitor that blocks the ATPase function of Hsp90 and inhibits the proper folding of oncogenic client proteins. Venetoclax (ABT-199) is an orally bioavailable Bcl-2 (B-cell lymphoma 2) inhibitor that stimulates apoptotic signaling pathways in cancer cells. This study evaluated the anticancer effects of STA-9090 combined with Venetoclax in the human cervical cancer cell line (HeLa). The human cervical cancer cells were treated with STA-9090, Venetoclax, and Sta-9090 plus Venetoclax for 48 h, and cell viability was measured using the XTT assay. The alteration of the Hsp90 protein expression level and the chaperone activity of HSP90 were detected by ELISA and luciferase aggregation assay, respectively. For the apoptotic process, qRT-PCR was applied to study Bcl-2-associated X protein (Bax), B-cell lymphoma 2 (Bcl-2), Bcl-2-like protein 1 (Bcl-xL ), Cytochrome c (Cyt-c), Caspase3 (Cas-3), and Caspase7 (Cas-7) expression levels after drug treatments. Also, a colorimetric Cas-3 activity assay was performed to detect the induction of the apoptosis process. Our results demonstrated that 8 nM of STA-9090 combined with 4 µM of Venetoclax synergistically inhibited cervical cancer cell proliferation more than STA-9090 or Venetoclax alone after 48 h of treatment. STA-9090 and Venetoclax combination decreased the protein expression level of Hsp90 and significantly inhibited chaperone activity of Hsp90. This combination stimulated apoptosis in cervical cancer cells by down-regulating of anti-apoptotic markers while inducing pro-apoptotic markers. Also, the STA-9090-Venetoclax combination increased Cas-3 activity in Hela cells. Collectively, these findings pointed out that the STA-9090-Venetoclax combination exhibited more activity than the individual drugs to stimulate toxicity and apoptosis in cervical cancer cells based on HSP90 inhibition.
Collapse
Affiliation(s)
- Dilay Karademir
- Faculty of Medicine, Department of Gynecology and Obstetrics, Sivas Cumhuriyet University, Sivas, Turkey.
| | - Aykut Özgür
- Artova Vocational School, Department of Veterinary Medicine, Laboratory and Veterinary Health Program, Tokat Gaziosmanpasa University, Tokat, Turkey
| |
Collapse
|
26
|
Shinu P, Gupta GL, Sharma M, Khan S, Goyal M, Nair AB, Kumar M, Soliman WE, Rahman A, Attimarad M, Venugopala KN, Altaweel AAA. Pharmacological Features of 18β-Glycyrrhetinic Acid: A Pentacyclic Triterpenoid of Therapeutic Potential. PLANTS (BASEL, SWITZERLAND) 2023; 12:1086. [PMID: 36903944 PMCID: PMC10005454 DOI: 10.3390/plants12051086] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Glycyrrhiza glabra L. (belonging to the family Leguminosae), commonly known as Licorice, is a popular medicinal plant that has been used in traditional medicine worldwide for its ethnopharmacological efficacy in treating several ailments. Natural herbal substances with strong biological activity have recently received much attention. The main metabolite of glycyrrhizic acid is 18β-glycyrrhetinic acid (18βGA), a pentacyclic triterpene. A major active plant component derived from licorice root, 18βGA has sparked a lot of attention due to its pharmacological properties. The current review thoroughly examines the literature on 18βGA, a major active plant component obtained from Glycyrrhiza glabra L. The current work provides insight into the pharmacological activities of 18βGA and the potential mechanisms of action involved. The plant contains a variety of phytoconstituents such as 18βGA, which has a variety of biological effects including antiasthmatic, hepatoprotective, anticancer, nephroprotective, antidiabetic, antileishmanial, antiviral, antibacterial, antipsoriasis, antiosteoporosis, antiepileptic, antiarrhythmic, and anti-inflammatory, and is also useful in the management of pulmonary arterial hypertension, antipsychotic-induced hyperprolactinemia, and cerebral ischemia. This review examines research on the pharmacological characteristics of 18βGA throughout recent decades to demonstrate its therapeutic potential and any gaps that may exist, presenting possibilities for future drug research and development.
Collapse
Affiliation(s)
- Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Girdhari Lal Gupta
- Department of Pharmacology, School of Pharmacy and Technology Management, SVKM’s NMIMS University, Shirpur 425405, India
| | - Manu Sharma
- Department of Chemistry, National Forensic Sciences University Delhi Campus, New Delhi 110085, India
| | - Shahzad Khan
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Manoj Goyal
- Department of Anesthesia Technology, College of Applied Medical Sciences in Jubail, Imam Abdul Rahman Bin Faisal University, Jubail 35816, Saudi Arabia
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Manish Kumar
- Department of Pharmaceutics, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to Be University), Ambala 133201, India
| | - Wafaa E. Soliman
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Delta University for Science and Technology, Mansoura 11152, Egypt
| | - Aminur Rahman
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mahesh Attimarad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4000, South Africa
| | | |
Collapse
|
27
|
Fodor D, Pozsgai É, Schally AV, László Z, Gömöri É, Szabó É, Rumi L, Lőcsei D, Boronkai Á, Bellyei S. Expression Levels of GHRH-Receptor, pAkt and Hsp90 Predict 10-Year Overall Survival in Patients with Locally Advanced Rectal Cancer. Biomedicines 2023; 11:biomedicines11030719. [PMID: 36979698 PMCID: PMC10045547 DOI: 10.3390/biomedicines11030719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
Background: Rectal cancer constitutes nearly one-third of all colorectal cancer diagnoses, and certain clinical and molecular markers have been studied as potential prognosticators of patient survival. The main objective of our study was to investigate the relationship between the expression intensities of certain proteins, including growth-hormone-releasing hormone receptor (GHRH-R), Hsp90, Hsp16.2, p-Akt and SOUL, in specimens of locally advanced rectal cancer patients, as well as the time to metastasis and 10-year overall survival (OS) rates. We also investigated whether these outcome measures were associated with the presence of other clinical parameters. Methods: In total, 109 patients were investigated retrospectively. Samples of pretreatment tumors were stained for the proteins GHRH-R, Hsp90, Hsp16.2, p-Akt and SOUL using immunhistochemistry methods. Kaplan–Meier curves were used to show the relationships between the intensity of expression of biomarkers, clinical parameters, the time to metastasis and the 10-year OS rate. Results: High levels of p-Akt, GHRH-R and Hsp90 were associated with a significantly decreased 10-year OS rate (p = 0.001, p = 0.000, p = 0.004, respectively) and high expression levels of p-Akt and GHRH-R were correlated with a significantly shorter time to metastasis. Tumors localized in the lower third of the rectum were linked to both a significantly longer time to metastasis and an improved 10-year OS rate. Conclusions: Hsp 90, pAkt and GHRH-R as well as the lower-third localization of the tumor were predictive of the 10-year OS rate in locally advanced rectal cancer patients. The GHRH-R and Hsp90 expression levels were independent prognosticators of OS. Our results imply that GHRH-R could play a particularly important role both as a molecular biomarker and as a target for the anticancer treatment of advanced rectal cancer.
Collapse
Affiliation(s)
- Dávid Fodor
- Department of Oncotherapy, Clinical Center, University of Pécs, Édesanyák Street 10, 7624 Pécs, Hungary
| | - Éva Pozsgai
- Department of Public Health Medicine, Medical School, University of Pécs, Szigeti Street 12, 7624 Pécs, Hungary
- Department of Primary Health Care, Medical School, University of Pécs, Rákóczi Street 2, 7623 Pécs, Hungary
| | - Andrew V. Schally
- Veterans Affairs Medical Center and South Florida Veterans Affairs Foundation for Research and Education, 201 NW 16th Street, Miami, FL 33125, USA
| | - Zoltán László
- Diagnostic, Radiation Oncology, Research and Teaching Center, Kaposi Somogy County Teaching Hospital Dr. József Baka, Guba Sándor Street 40, 7400 Kaposvár, Hungary
| | - Éva Gömöri
- Department of Pathology, Medical School, University of Pécs, Szigeti Street 12, 7624 Pécs, Hungary
| | - Éva Szabó
- Department of Otorhinolaryngology, Clinical Center, University of Pécs, Munkácsy Mihaly Street 2, 7621 Pécs, Hungary
| | - László Rumi
- Urology Clinic, Clinical Center, University of Pécs, Munkácsy Mihaly Street 2, 7621 Pécs, Hungary
| | - Dorottya Lőcsei
- Department of Oncotherapy, Clinical Center, University of Pécs, Édesanyák Street 10, 7624 Pécs, Hungary
| | - Árpád Boronkai
- Department of Oncotherapy, Clinical Center, University of Pécs, Édesanyák Street 10, 7624 Pécs, Hungary
| | - Szabolcs Bellyei
- Department of Oncotherapy, Clinical Center, University of Pécs, Édesanyák Street 10, 7624 Pécs, Hungary
- Correspondence: ; Tel.: +36-30-396-0464
| |
Collapse
|
28
|
He T, Zhu S, Lu W. Design, synthesis, and biological evaluation of 4-(1H-1,2,3-triazol-1-yl)benzamides as HSP90 inhibitors. Mol Divers 2023; 27:239-248. [PMID: 35429283 DOI: 10.1007/s11030-022-10423-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/23/2022] [Indexed: 02/08/2023]
Abstract
Heat shock protein 90 (HSP90) is a promising anticancer drug target, which could be employed to construct HSP90 inhibitors-based drug conjugates for selective tumor therapy. Herein, a series of 4-(1H-1,2,3-triazol-1-yl)benzamides were rationally designed, synthesized as HSP90 inhibitors, and their structures were characterized by 1H NMR, 13C NMR, and HR-MS. Preliminary HSP90 binding assay showed that compounds 6b, 6l, 6m, 6n, 6t, and 6u exhibited significant HSP90α binding affinity. Among these selected compounds, 6u displayed the most potent anti-proliferative activities and particularly in Capan-1 cell line. Molecular modeling studies also confirmed possible mode of interaction between 6u and the binding sites of HSP90 by hydrogen bond and hydrophobic interactions. Above all, these encouraging data indicated that 6u could be used as a HSP90 inhibitor for further study and helped the recognition of the 4-(1H-1,2,3-triazol-1-yl)benzamide motif as a new scaffold for HSP90 inhibitors.
Collapse
Affiliation(s)
- Tingting He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, People's Republic of China
| | - Shulei Zhu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, People's Republic of China.
| | - Wei Lu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, People's Republic of China.
| |
Collapse
|
29
|
Mamilos A, Winter L, Schmitt VH, Barsch F, Grevenstein D, Wagner W, Babel M, Keller K, Schmitt C, Gürtler F, Schreml S, Niedermair T, Rupp M, Alt V, Brochhausen C. Macrophages: From Simple Phagocyte to an Integrative Regulatory Cell for Inflammation and Tissue Regeneration-A Review of the Literature. Cells 2023; 12:276. [PMID: 36672212 PMCID: PMC9856654 DOI: 10.3390/cells12020276] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/29/2022] [Accepted: 01/07/2023] [Indexed: 01/12/2023] Open
Abstract
The understanding of macrophages and their pathophysiological role has dramatically changed within the last decades. Macrophages represent a very interesting cell type with regard to biomaterial-based tissue engineering and regeneration. In this context, macrophages play a crucial role in the biocompatibility and degradation of implanted biomaterials. Furthermore, a better understanding of the functionality of macrophages opens perspectives for potential guidance and modulation to turn inflammation into regeneration. Such knowledge may help to improve not only the biocompatibility of scaffold materials but also the integration, maturation, and preservation of scaffold-cell constructs or induce regeneration. Nowadays, macrophages are classified into two subpopulations, the classically activated macrophages (M1 macrophages) with pro-inflammatory properties and the alternatively activated macrophages (M2 macrophages) with anti-inflammatory properties. The present narrative review gives an overview of the different functions of macrophages and summarizes the recent state of knowledge regarding different types of macrophages and their functions, with special emphasis on tissue engineering and tissue regeneration.
Collapse
Affiliation(s)
- Andreas Mamilos
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany
- Central Biobank Regensburg, University and University Hospital Regensburg, 93053 Regensburg, Germany
| | - Lina Winter
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany
- Central Biobank Regensburg, University and University Hospital Regensburg, 93053 Regensburg, Germany
| | - Volker H. Schmitt
- Department of Cardiology, University Medical Centre, Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, 55131 Mainz, Germany
| | - Friedrich Barsch
- Medical Center, Faculty of Medicine, Institute for Exercise and Occupational Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - David Grevenstein
- Clinic and Polyclinic for Orthopedics and Trauma Surgery, University Hospital of Cologne, 50937 Cologne, Germany
| | - Willi Wagner
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Translational Lung Research Centre Heidelberg (TLRC), German Lung Research Centre (DZL), 69120 Heidelberg, Germany
| | - Maximilian Babel
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany
- Central Biobank Regensburg, University and University Hospital Regensburg, 93053 Regensburg, Germany
| | - Karsten Keller
- Department of Cardiology, University Medical Centre, Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- Department of Sports Medicine, Medical Clinic VII, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Christine Schmitt
- Department of Internal Medicine, St. Vincenz and Elisabeth Hospital of Mainz (KKM), 55131 Mainz, Germany
| | - Florian Gürtler
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany
- Central Biobank Regensburg, University and University Hospital Regensburg, 93053 Regensburg, Germany
| | - Stephan Schreml
- Department of Dermatology, University Medical Centre Regensburg, 93053 Regensburg, Germany
| | - Tanja Niedermair
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany
- Central Biobank Regensburg, University and University Hospital Regensburg, 93053 Regensburg, Germany
| | - Markus Rupp
- Department for Trauma Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Volker Alt
- Department for Trauma Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Christoph Brochhausen
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany
- Central Biobank Regensburg, University and University Hospital Regensburg, 93053 Regensburg, Germany
- Institute of Pathology, University Medical Centre Mannheim, Ruprecht-Karls-University Heidelberg, 68167 Mannheim, Germany
| |
Collapse
|
30
|
Li M, She X, Ou Y, Liu J, Yuan Z, Zhao QS. Design, synthesis and biological evaluation of a new class of Hsp90 inhibitors vibsanin C derivatives. Eur J Med Chem 2022; 244:114844. [DOI: 10.1016/j.ejmech.2022.114844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/02/2022] [Accepted: 10/08/2022] [Indexed: 11/04/2022]
|
31
|
Liu XY, Wang YM, Zhang XY, Jia MQ, Duan HQ, Qin N, Chen Y, Yu Y, Duan XC. Alkaloid Derivative ( Z)-3β-Ethylamino-Pregn-17(20)-en Inhibits Triple-Negative Breast Cancer Metastasis and Angiogenesis by Targeting HSP90α. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27207132. [PMID: 36296726 PMCID: PMC9611734 DOI: 10.3390/molecules27207132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/25/2022]
Abstract
Metastasis is an important cause of cancer-related death. Previous studies in our laboratory found that pregnane alkaloids from Pachysandra terminalis had antimetastatic activity against breast cancer cells. In the current study, we demonstrated that treatment with one of the alkaloid derivatives, (Z)-3β-ethylamino-pregn-17(20)-en (1), led to the downregulation of the HIF-1α/VEGF/VEGFR2 pathway, suppressed the phosphorylation of downstream molecules Akt, mTOR, FAK, and inhibited breast cancer metastasis and angiogenesis both in vitro and in vivo. Furthermore, the antimetastasis and antiangiogenesis effects of 1 treatment (40 mg/kg) were more effective than that of Sorafenib (50 mg/kg). Surface plasmon resonance (SPR) analysis was performed and the result suggested that HSP90α was a direct target of 1. Taken together, our results suggested that compound 1 might represent a candidate antitumor agent for metastatic breast cancer.
Collapse
Affiliation(s)
- Xin-Yao Liu
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Yu-Miao Wang
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Xiang-Yu Zhang
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Mei-Qi Jia
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Hong-Quan Duan
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
- Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin 300070, China
| | - Nan Qin
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Ying Chen
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Yang Yu
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
- Correspondence: (Y.Y.); (X.-C.D.); Tel.: +86-22-83336680 (X.-C.D.); Fax: +86-22-83336560 (X.-C.D.)
| | - Xiao-Chuan Duan
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China
- Correspondence: (Y.Y.); (X.-C.D.); Tel.: +86-22-83336680 (X.-C.D.); Fax: +86-22-83336560 (X.-C.D.)
| |
Collapse
|
32
|
Sundar SV, Zhou JX, Magenheimer BS, Reif GA, Wallace DP, Georg GI, Jakkaraj SR, Tash JS, Yu ASL, Li X, Calvet JP. The lonidamine derivative H2-gamendazole reduces cyst formation in polycystic kidney disease. Am J Physiol Renal Physiol 2022; 323:F492-F506. [PMID: 35979967 PMCID: PMC9529276 DOI: 10.1152/ajprenal.00095.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/28/2022] [Accepted: 08/08/2022] [Indexed: 12/14/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a debilitating renal neoplastic disorder with limited treatment options. It is characterized by the formation of large fluid-filled cysts that develop from kidney tubules through abnormal cell proliferation and cyst-filling fluid secretion driven by cAMP-dependent Cl- secretion. We tested the effectiveness of the indazole carboxylic acid H2-gamendazole (H2-GMZ), a derivative of lonidamine, to inhibit these processes using in vitro and in vivo models of ADPKD. H2-GMZ was effective in rapidly blocking forskolin-induced, Cl--mediated short-circuit currents in human ADPKD cells, and it significantly inhibited both cAMP- and epidermal growth factor-induced proliferation of ADPKD cells. Western blot analysis of H2-GMZ-treated ADPKD cells showed decreased phosphorylated ERK and decreased hyperphosphorylated retinoblastoma levels. H2-GMZ treatment also decreased ErbB2, Akt, and cyclin-dependent kinase 4, consistent with inhibition of heat shock protein 90, and it decreased levels of the cystic fibrosis transmembrane conductance regulator Cl- channel protein. H2-GMZ-treated ADPKD cultures contained a higher proportion of smaller cells with fewer and smaller lamellipodia and decreased cytoplasmic actin staining, and they were unable to accomplish wound closure even at low H2-GMZ concentrations, consistent with an alteration in the actin cytoskeleton and decreased cell motility. Experiments using mouse metanephric organ cultures showed that H2-GMZ inhibited cAMP-stimulated cyst growth and enlargement. In vivo, H2-GMZ was effective in slowing postnatal cyst formation and kidney enlargement in the Pkd1flox/flox: Pkhd1-Cre mouse model. Thus, H2-GMZ treatment decreases Cl- secretion, cell proliferation, cell motility, and cyst growth. These properties, along with its reported low toxicity, suggest that H2-GMZ might be an attractive candidate for treatment of ADPKD.NEW & NOTEWORTHY Autosomal dominant polycystic kidney disease (ADPKD) is a renal neoplastic disorder characterized by the formation of large fluid-filled cysts that develop from kidney tubules through abnormal cell proliferation and cyst-filling fluid secretion driven by cAMP-dependent Cl- secretion. This study shows that the lonidamine derivative H2-GMZ inhibits Cl- secretion, cell proliferation, and cyst growth, suggesting that it might have therapeutic value for the treatment of ADPKD.
Collapse
Affiliation(s)
- Shirin V Sundar
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Julie Xia Zhou
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Brenda S Magenheimer
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Gail A Reif
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Darren P Wallace
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Gunda I Georg
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota
| | - Sudhakar R Jakkaraj
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota
| | - Joseph S Tash
- Department of Molecular and Integrated Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Alan S L Yu
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Xiaogang Li
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - James P Calvet
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
33
|
Pan Z, Chen Y, Pang H, Wang X, Zhang Y, Xie X, He G. Design, synthesis, and biological evaluation of novel dual inhibitors of heat shock protein 90/mammalian target of rapamycin (Hsp90/mTOR) against bladder cancer cells. Eur J Med Chem 2022; 242:114674. [PMID: 35987020 DOI: 10.1016/j.ejmech.2022.114674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 11/29/2022]
Abstract
In this study, a novel class of thieno [2,3-d] pyrimidine derivatives containing resorcinol and morpholine fragments as Hsp90/mTOR dual inhibitors was designed, synthesized, and evaluated. In vitro anti-tumor assay results: the obtained compounds demonstrated effectiveness in suppressing the enzymatic activities of the Hsp90 and mTOR and inhibiting the proliferation of J82, T24, and SW780 cancer cell lines. Among these dual inhibitors, the most potent compound 17o, confirmed remarkable inhibitory activities on Hsp90, mTOR, and SW780 cell. Furthermore, the molecular dynamics simulation and a panel of mechanism studies revealed that inhibitor 17o suppressed the proliferation of SW780 cells through the over-activation of the PI3K/AKT/mTOR pathway regulated by mTOR inhibition and apoptosis regulated by the mitochondrial pathway. In subcutaneous J82 xenograft models, the compound 17o also presented considerable in vivo anti-tumor activity. Therefore, our investigations highlight that a new-found dual Hsp90/mTOR inhibitor by rational drug design strategies could be a promising lead compound for targeted bladder cancer therapy and deserves further studies.
Collapse
Affiliation(s)
- Zhaoping Pan
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yi Chen
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Haiying Pang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiaoyun Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yuehua Zhang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xin Xie
- College of Medical Technology and School of Pharmacy, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Gu He
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
34
|
Li L, Wu D, Deng S, Li J, Zhang F, Zou Y, Zhang T, Xu Y. NVP-AUY922 alleviates radiation-induced lung injury via inhibition of autophagy-dependent ferroptosis. Cell Death Dis 2022; 8:86. [PMID: 35220409 PMCID: PMC8882174 DOI: 10.1038/s41420-022-00887-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/28/2022] [Accepted: 02/10/2022] [Indexed: 12/25/2022]
Abstract
Radiation-induced lung injury (RILI) is a common complication of radiotherapy for which no effective interventions are available. NVP-AUY922, a resorcinylic isoxazole amide drug, exhibits anti-inflammatory, immunomodulatory, and therapeutic effects against various types of cancers. In this study, we explore the role and underlying mechanisms of NVP-AUY922 in the treatment of RILI. We established a model of BEAS-2B cell injury and a mouse model of RILI. Cell proliferation, death, gross weight, and survival rates of mice, and histological parameters were assessed. Additionally, inflammation-related indices and indicators related to ferroptosis were evaluated. Furthermore, immunofluorescence and co-immunoprecipitation were used to determine the interaction between GPX4, LAMP-2A, and HSC70. NVP-AUY922 significantly ameliorated radiation-induced lung tissue damage, inflammatory cell infiltration, proinflammatory cytokine release, and lung epithelial BEAS-2B cell damage. NVP-AUY922 markedly limited the activation of ferroptosis, which is involved in RILI. Mechanistically, NVP-AUY922 prevented chaperone-mediated autophagy of the GPX4 pathway in vitro and in vivo, and the autophagy inhibitor Baf-A1 significantly increased the level of GPX4 and alleviated lung inflammation. NVP-AUY922 can alleviate RILI by inhibiting chaperone-mediated lysosomal degradation of GPX4, demonstrating its potential as a novel protective agent against RILI.
Collapse
|
35
|
Dasari S, Njiki S, Mbemi A, Yedjou CG, Tchounwou PB. Pharmacological Effects of Cisplatin Combination with Natural Products in Cancer Chemotherapy. Int J Mol Sci 2022; 23:ijms23031532. [PMID: 35163459 PMCID: PMC8835907 DOI: 10.3390/ijms23031532] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 12/20/2022] Open
Abstract
Cisplatin and other platinum-based drugs, such as carboplatin, ormaplatin, and oxaliplatin, have been widely used to treat a multitude of human cancers. However, a considerable proportion of patients often relapse due to drug resistance and/or toxicity to multiple organs including the liver, kidneys, gastrointestinal tract, and the cardiovascular, hematologic, and nervous systems. In this study, we sought to provide a comprehensive review of the current state of the science highlighting the use of cisplatin in cancer therapy, with a special emphasis on its molecular mechanisms of action, and treatment modalities including the combination therapy with natural products. Hence, we searched the literature using various scientific databases., such as MEDLINE, PubMed, Google Scholar, and relevant sources, to collect and review relevant publications on cisplatin, natural products, combination therapy, uses in cancer treatment, modes of action, and therapeutic strategies. Our search results revealed that new strategic approaches for cancer treatment, including the combination therapy of cisplatin and natural products, have been evaluated with some degree of success. Scientific evidence from both in vitro and in vivo studies demonstrates that many medicinal plants contain bioactive compounds that are promising candidates for the treatment of human diseases, and therefore represent an excellent source for drug discovery. In preclinical studies, it has been demonstrated that natural products not only enhance the therapeutic activity of cisplatin but also attenuate its chemotherapy-induced toxicity. Many experimental studies have also reported that natural products exert their therapeutic action by triggering apoptosis through modulation of mitogen-activated protein kinase (MAPK) and p53 signal transduction pathways and enhancement of cisplatin chemosensitivity. Furthermore, natural products protect against cisplatin-induced organ toxicity by modulating several gene transcription factors and inducing cell death through apoptosis and/or necrosis. In addition, formulations of cisplatin with polymeric, lipid, inorganic, and carbon-based nano-drug delivery systems have been found to delay drug release, prolong half-life, and reduce systemic toxicity while other formulations, such as nanocapsules, nanogels, and hydrogels, have been reported to enhance cell penetration, target cancer cells, and inhibit tumor progression.
Collapse
Affiliation(s)
- Shaloam Dasari
- Environmental Toxicology Research Laboratory, NIH-RCMI Center for Health Disparities Research, Jackson State University, Jackson, MS 39217, USA; (S.D.); (S.N.); (A.M.)
| | - Sylvianne Njiki
- Environmental Toxicology Research Laboratory, NIH-RCMI Center for Health Disparities Research, Jackson State University, Jackson, MS 39217, USA; (S.D.); (S.N.); (A.M.)
| | - Ariane Mbemi
- Environmental Toxicology Research Laboratory, NIH-RCMI Center for Health Disparities Research, Jackson State University, Jackson, MS 39217, USA; (S.D.); (S.N.); (A.M.)
| | - Clement G. Yedjou
- Department of Biological Sciences, College of Science and Technology, Florida Agricultural and Mechanical University, 1610 S. Martin Luther King Blvd, Tallahassee, FL 32307, USA;
| | - Paul B. Tchounwou
- Environmental Toxicology Research Laboratory, NIH-RCMI Center for Health Disparities Research, Jackson State University, Jackson, MS 39217, USA; (S.D.); (S.N.); (A.M.)
- Correspondence: ; Tel.: +1-601-979-0777
| |
Collapse
|
36
|
Piven YA, Yastrebova MA, Khamidullina AI, Scherbakov AM, Tatarskiy VV, Rusanova JA, Baranovsky AV, Zinovich VG, Khlebnicova TS, Lakhvich FA. Novel O-acylated (E)-3-aryl-6,7-dihydrobenzisoxazol-4(5H)-one oximes targeting HSP90-HER2 axis in breast cancer cells. Bioorg Med Chem 2022; 53:116521. [PMID: 34844036 DOI: 10.1016/j.bmc.2021.116521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 01/04/2023]
Abstract
Novel O-acylated (E)-3-aryl-6,7-dihydrobenzisoxazol-4(5H)-one oximes were designed as potential HSP90 inhibitors. A series of the compounds was synthesized by oximation of (E)-3-aryl-6,7-dihydrobenzisoxazol-4(5H)-ones followed by O-acylation with acylamidobenzoic acids. The obtained compounds showed an antiproliferative effect on three breast cancer cell lines (MCF7, MDA-MB-231 and HCC1954). Compound 16s exhibited high antiproliferative potency against HCC1954 breast cancer cells with the IC50 value of 6 µM was selected for in-depth evaluation. Compound 16s did not inhibit the growth of normal epithelial cells. We have demonstrated that the compound 16s can induce apoptosis in cancer cells via inhibition of HSP90 "client" proteins including a key oncogenic receptor, HER2/neu. Described here compounds can be considered for further basic and preclinical investigation as a part of HSP90/HER2-targeted therapies.
Collapse
Affiliation(s)
- Yuri A Piven
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Akad. Kuprevicha st. 5/2, Minsk 220141, Belarus
| | - Margarita A Yastrebova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Vavilova st. 34/5, Moscow 119334, Russian Federation
| | - Alvina I Khamidullina
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Vavilova st. 34/5, Moscow 119334, Russian Federation
| | - Alexander M Scherbakov
- Department of Experimental Tumor Biology, Blokhin N.N. National Medical Research Center of Oncology, Kashirskoye sh. 24, Moscow 115522, Russian Federation
| | - Victor V Tatarskiy
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Vavilova st. 34/5, Moscow 119334, Russian Federation
| | - Julia A Rusanova
- Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska str., Kyiv 01601, Ukraine
| | - Alexander V Baranovsky
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Akad. Kuprevicha st. 5/2, Minsk 220141, Belarus
| | - Veronica G Zinovich
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Akad. Kuprevicha st. 5/2, Minsk 220141, Belarus
| | - Tatyana S Khlebnicova
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Akad. Kuprevicha st. 5/2, Minsk 220141, Belarus
| | - Fedor A Lakhvich
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Akad. Kuprevicha st. 5/2, Minsk 220141, Belarus
| |
Collapse
|
37
|
Sun Q, Tang K, Song L, Li Y, Pan W, Li N, Tang B. Covalent organic framework based nanoagent for enhanced mild-temperature photothermal therapy. Biomater Sci 2021; 9:7977-7983. [PMID: 34709242 DOI: 10.1039/d1bm01245b] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Photothermal therapy effectively ablates tumors by hyperthermia (>50 °C) under laser irradiation. However, the hyperthermia may inevitably diffuse to the surrounding healthy tissues to induce additional damage. Thus, effective cancer therapy by mild photothermal therapy at low temperatures is greatly desirable. In this study, a nanoagent (COF-GA) was designed to inhibit HSP90 for enhanced photothermal therapy against cancer at low temperatures. The nanoscale covalent organic frameworks (COFs) were able to increase the temperature of the tumor tissue under laser irradiation, which can transfer the energy of laser into heat for cancer cell killing. Gambogic acid (GA), as an inhibitor of HSP90, was used to overcome the heat resistance of tumor, achieving efficient mild-temperature photothermal therapy. As an excellent candidate for the photothermal therapy agent, COF-GA can induce the temperature to elevate as the exposure time increased when irradiated with laser. In vivo tests further demonstrated that the tumor growth was able to be significantly suppressed after being treated with COF-GA. The mild-temperature photothermal therapy exhibits an excellent antitumor efficacy at a relatively low temperature and minimizes the nonspecific thermal damage to normal tissues. This COF-GA nanoagent also enriches our understanding towards the various applications of COFs, particularly in the biomedicine field.
Collapse
Affiliation(s)
- Qiaoqiao Sun
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China.
| | - Kun Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China.
| | - Liqun Song
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China.
| | - Yanhua Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China.
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China.
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China.
| |
Collapse
|
38
|
With or without You: Co-Chaperones Mediate Health and Disease by Modifying Chaperone Function and Protein Triage. Cells 2021; 10:cells10113121. [PMID: 34831344 PMCID: PMC8619055 DOI: 10.3390/cells10113121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 01/18/2023] Open
Abstract
Heat shock proteins (HSPs) are a family of molecular chaperones that regulate essential protein refolding and triage decisions to maintain protein homeostasis. Numerous co-chaperone proteins directly interact and modify the function of HSPs, and these interactions impact the outcome of protein triage, impacting everything from structural proteins to cell signaling mediators. The chaperone/co-chaperone machinery protects against various stressors to ensure cellular function in the face of stress. However, coding mutations, expression changes, and post-translational modifications of the chaperone/co-chaperone machinery can alter the cellular stress response. Importantly, these dysfunctions appear to contribute to numerous human diseases. Therapeutic targeting of chaperones is an attractive but challenging approach due to the vast functions of HSPs, likely contributing to the off-target effects of these therapies. Current efforts focus on targeting co-chaperones to develop precise treatments for numerous diseases caused by defects in protein quality control. This review focuses on the recent developments regarding selected HSP70/HSP90 co-chaperones, with a concentration on cardioprotection, neuroprotection, cancer, and autoimmune diseases. We also discuss therapeutic approaches that highlight both the utility and challenges of targeting co-chaperones.
Collapse
|
39
|
Oh YJ, Park SY, Seo YH. Selective targeting of cancer cells using a hydrogen peroxide-activated Hsp90 inhibitor. Bioorg Chem 2021; 115:105195. [PMID: 34314918 DOI: 10.1016/j.bioorg.2021.105195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/14/2021] [Accepted: 07/18/2021] [Indexed: 12/11/2022]
Abstract
Heat shock protein 90 (Hsp90) plays an important role in cancer cell proliferation, survival, and migration by regulating the maturation and stabilization of numerous oncoproteins. Despite significant efforts in developing Hsp90 inhibitors, none of these have been approved for clinical use, mostly due to toxicity, such as liver, cardiac, and retinal toxicity. To avoid undesirable toxicity, we herein report a hydrogen peroxide-activated Hsp90 inhibitor, Boro-BZide (3), which is capable of selectively targeting cancer cells over normal cells. Boro-BZide (3) can be activated by high levels of hydrogen peroxide, releasing its parent active Hsp90 inhibitor. The mechanism of action was determined by a series of experiments including fluorescence polarization assay, cell viability assay, western blotting, high-pressure liquid chromatography (HPLC), and fluorescence-activated cell sorting (FACS) analysis. These efforts ultimately led to the identification of a novel hydrogen peroxide-activated Hsp90 prodrug with improved therapeutic index, which was less prone to furnish unwanted adverse effects. This hydrogen peroxide-responsive prodrug strategy will be beneficial for overcoming the toxicity hurdles of Hsp90 inhibitors for clinical application.
Collapse
Affiliation(s)
- Yong Jin Oh
- College of Pharmacy, Keimyung University, Daegu 704-701, South Korea
| | - Sun You Park
- College of Pharmacy, Keimyung University, Daegu 704-701, South Korea
| | - Young Ho Seo
- College of Pharmacy, Keimyung University, Daegu 704-701, South Korea.
| |
Collapse
|
40
|
Ben Abdallah H, Johansen C, Iversen L. Key Signaling Pathways in Psoriasis: Recent Insights from Antipsoriatic Therapeutics. PSORIASIS-TARGETS AND THERAPY 2021; 11:83-97. [PMID: 34235053 PMCID: PMC8254604 DOI: 10.2147/ptt.s294173] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/05/2021] [Indexed: 12/27/2022]
Abstract
Psoriasis is a common chronic inflammatory skin disease associated with several comorbidities and reduced quality of life. In the past decades, highly effective targeted therapies have led to breakthroughs in the management of psoriasis, providing important insights into the pathogenesis. This article reviews the current concepts of the pathophysiological pathways and the recent progress in antipsoriatic therapeutics, highlighting key targets, signaling pathways and clinical effects in psoriasis.
Collapse
Affiliation(s)
| | - Claus Johansen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Lars Iversen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
41
|
Molecular Human Targets of Bioactive Alkaloid-Type Compounds from Tabernaemontana cymose Jacq. Molecules 2021; 26:molecules26123765. [PMID: 34205626 PMCID: PMC8234993 DOI: 10.3390/molecules26123765] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/10/2021] [Accepted: 06/18/2021] [Indexed: 12/29/2022] Open
Abstract
Alkaloids are a group of secondary metabolites that have been widely studied for the discovery of new drugs due to their properties on the central nervous system and their anti-inflammatory, antioxidant and anti-cancer activities. Molecular docking was performed for 10 indole alkaloids identified in the ethanol extract of Tabernaemontana cymosa Jacq. with 951 human targets involved in different diseases. The results were analyzed through the KEGG and STRING databases, finding the most relevant physiological associations for alkaloids. The molecule 5-oxocoronaridine proved to be the most active molecule against human proteins (binding energy affinity average = −9.2 kcal/mol) and the analysis of the interactions between the affected proteins pointed to the PI3K/ Akt/mTOR signaling pathway as the main target. The above indicates that indole alkaloids from T. cymosa constitute a promising source for the search and development of new treatments against different types of cancer.
Collapse
|
42
|
Colunga Biancatelli RML, Solopov P, Gregory B, Catravas JD. The HSP90 Inhibitor, AUY-922, Protects and Repairs Human Lung Microvascular Endothelial Cells from Hydrochloric Acid-Induced Endothelial Barrier Dysfunction. Cells 2021; 10:cells10061489. [PMID: 34199261 PMCID: PMC8232030 DOI: 10.3390/cells10061489] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/02/2021] [Accepted: 06/10/2021] [Indexed: 12/20/2022] Open
Abstract
Exposure to hydrochloric acid (HCl) leads acutely to asthma-like symptoms, acute respiratory distress syndrome (ARDS), including compromised alveolo-capillary barrier, and respiratory failure. To better understand the direct effects of HCl on pulmonary endothelial function, we studied the characteristics of HCl-induced endothelial barrier dysfunction in primary cultures of human lung microvascular endothelial cells (HLMVEC), defined the involved molecular pathways, and tested the potentially beneficial effects of Heat Shock Protein 90 (HSP90) inhibitors. HCl impaired barrier function in a time- and concentration-dependent manner and was associated with activation of Protein Kinase B (AKT), Ras homolog family member A (RhoA) and myosin light chain 2 (MLC2), as well as loss of plasmalemmal VE-cadherin, rearrangement of cortical actin, and appearance of inter-endothelial gaps. Pre-treatment or post-treatment of HLMVEC with AUY-922, a third-generation HSP90 inhibitor, prevented and restored HCl-induced endothelial barrier dysfunction. AUY-922 increased the expression of HSP70 and inhibited the activation (phosphorylation) of extracellular-signal regulated kinase (ERK) and AKT. AUY-922 also prevented the HCl-induced activation of RhoA and MLC2 and the internalization of plasmalemmal VE-cadherin. We conclude that, by increasing the expression of cytoprotective proteins, interfering with actomyosin contractility, and enhancing the expression of junction proteins, inhibition of HSP90 may represent a useful approach for the management of HCl-induced endothelial dysfunction and acute lung injury.
Collapse
Affiliation(s)
- Ruben M. L. Colunga Biancatelli
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA; (P.S.); (B.G.); (J.D.C.)
- Correspondence:
| | - Pavel Solopov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA; (P.S.); (B.G.); (J.D.C.)
| | - Betsy Gregory
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA; (P.S.); (B.G.); (J.D.C.)
| | - John D. Catravas
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA; (P.S.); (B.G.); (J.D.C.)
- School of Medical Diagnostic & Translational Sciences, College of Health Sciences, Old Dominion University, Norfolk, VA 23508, USA
| |
Collapse
|
43
|
Abstract
INTRODUCTION Heat shock proteins (HSPs) constitute a large family of proteins involved in protein folding and maturation. HSP expression is induced by heat shock or other stressors including cellular damage and hypoxia. The major groups, which are classified based on their molecular weight, include HSP27, HSP40, HSP60, HSP70, HSP90, and large HSP (HSP110 and glucose-regulated protein 170). HSPs play a significant role in cellular proliferation, differentiation, survival, apoptosis, and carcinogenesis. The human HSP90 family consists of five members and has a strong association with cancer. OBJECTIVES The primary objective is to review the important functions of heat shock protein 90 in cancer, especially as an anti-cancer drug target. RESULTS The HSP90 proteins not only play important roles in cancer development, progression, and metastasis, but also have potential clinical use as biomarkers for cancer diagnosis or assessing disease progression, and as therapeutic targets for cancer therapy. In this chapter, we discuss the roles of HSP90 in cancer biology and pharmacology, focusing on HSP90 as an anti-cancer drug target. An understanding of the functions and molecular mechanisms of HSP90 is critical for enhancing the accuracy of cancer diagnosis as well as for developing more effective and less toxic chemotherapeutic agents. CONCLUSION We have provided an overview of the complex relationship between cancer and HSP90. HSP90 proteins play an important role in tumorigenesis and may be used as potential clinical biomarkers for the diagnosis and predicting prognostic outcome of patients with cancer. HSP90 proteins may be used as therapeutic targets for cancer therapy, prompting discovery and development of novel chemotherapeutic agents.
Collapse
Affiliation(s)
- Anthony Aswad
- Department of Biomedical Sciences, West Virginia School of Osteopathic Medicine, Lewisburg, WV, United States
| | - Tuoen Liu
- Department of Biomedical Sciences, West Virginia School of Osteopathic Medicine, Lewisburg, WV, United States.
| |
Collapse
|
44
|
Tuli HS, Mittal S, Loka M, Aggarwal V, Aggarwal D, Masurkar A, Kaur G, Varol M, Sak K, Kumar M, Sethi G, Bishayee A. Deguelin targets multiple oncogenic signaling pathways to combat human malignancies. Pharmacol Res 2021; 166:105487. [PMID: 33581287 DOI: 10.1016/j.phrs.2021.105487] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/23/2021] [Accepted: 02/07/2021] [Indexed: 02/07/2023]
Abstract
Cancer is an anomalous growth and differentiation of cells known to be governed by oncogenic factors. Plant-based natural metabolites have been well recognized to possess chemopreventive properties. Deguelin, a natural rotenoid, is among the class of bioactive phytoconstituents from a diverse range of plants with potential antineoplastic effects in different cancer subtypes. However, the precise mechanisms of how deguelin inhibits tumor progression remains elusive. Deguelin has shown promising results in targeting the hallmarks of tumor progression via inducing tumor apoptosis, cell cycle arrest, and inhibition of angiogenesis and metastasis. Based on initial scientific excerpts, deguelin has been reported to inhibit tumor growth via different signaling pathways, including mitogen-activated protein kinase, phosphoinositide 3-kinase, serine/threonine protein kinase B (also known as Akt), mammalian target of rapamycin, nuclear factor-κB, matrix metalloproteinase (MMP)-2, MMP-9 and caspase-3, caspase-8, and caspase-9. This review summarizes the mechanistic insights of antineoplastic action of deguelin to gain a clear understanding of its therapeutic effects in cancer. The anticancer potential of deguelin with respect to its efficacy in targeting tumorigenesis via nanotechnological approaches is also investigated. The initial scientific findings have presented deguelin as a promising antitumorigenic agent which can be used for monotherapy as well as synergistically to augment efficacy of chemotherapeutic treatment regimes.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133 207, Haryana, India.
| | - Sonam Mittal
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Mariam Loka
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Vaishali Aggarwal
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA15260, USA
| | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133 207, Haryana, India
| | - Akshara Masurkar
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Narsee Monjee Institute of Management Studies University, Mumbai 400 056, Maharashtra, India
| | - Ginpreet Kaur
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Narsee Monjee Institute of Management Studies University, Mumbai 400 056, Maharashtra, India
| | - Mehmet Varol
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, Mugla TR48000, Turkey
| | | | - Manoj Kumar
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Sadopur 134007, Haryana, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| |
Collapse
|
45
|
Minczeles NS, Hofland J, de Herder WW, Brabander T. Strategies Towards Improving Clinical Outcomes of Peptide Receptor Radionuclide Therapy. Curr Oncol Rep 2021; 23:46. [PMID: 33721105 PMCID: PMC7960621 DOI: 10.1007/s11912-021-01037-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Peptide receptor radionuclide therapy (PRRT) with [177Lu-DOTA0,Tyr3] octreotate is an effective and safe second- or third-line treatment option for patients with low-grade advanced gastroenteropancreatic (GEP) neuroendocrine neoplasms (NEN). In this review, we will focus on possible extensions of the current use of PRRT and on new approaches which could further improve its treatment efficacy and safety. RECENT FINDINGS Promising results were published regarding PRRT in other NENs, including lung NENs or high-grade NENs, and applying PRRT as neoadjuvant or salvage therapy. Furthermore, a diversity of strategic approaches, including dosimetry, somatostatin receptor antagonists, somatostatin receptor upregulation, radiosensitization, different radionuclides, albumin binding, alternative renal protection, and liver-directed therapy in combination with PRRT, have the potential to improve the outcome of PRRT. Also, novel biomarkers are presented that could predict response to PRRT. Multiple preclinical and early clinical studies have shown encouraging potential to advance the clinical outcome of PRRT in NEN patients. However, at this moment, most of these strategies have not yet reached the clinical setting of randomized phase III trials.
Collapse
Affiliation(s)
- N S Minczeles
- Department of Internal Medicine, Section of Endocrinology, Erasmus MC and Erasmus MC Cancer Center, Rotterdam, The Netherlands
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- ENETS Center of Excellence Rotterdam, Rotterdam, The Netherlands
| | - J Hofland
- Department of Internal Medicine, Section of Endocrinology, Erasmus MC and Erasmus MC Cancer Center, Rotterdam, The Netherlands
- ENETS Center of Excellence Rotterdam, Rotterdam, The Netherlands
| | - W W de Herder
- Department of Internal Medicine, Section of Endocrinology, Erasmus MC and Erasmus MC Cancer Center, Rotterdam, The Netherlands
- ENETS Center of Excellence Rotterdam, Rotterdam, The Netherlands
| | - T Brabander
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands.
- ENETS Center of Excellence Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
46
|
Shah VR, Bhaliya JD, Patel GM. In silico approach: docking study of oxindole derivatives against the main protease of COVID-19 and its comparison with existing therapeutic agents. J Basic Clin Physiol Pharmacol 2021; 32:197-214. [PMID: 33594850 DOI: 10.1515/jbcpp-2020-0262] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 01/02/2021] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Presently, the pandemic of COVID-19 has worsened the situation worldwide and received global attention. The United States of America have the highest numbers of a patient infected by this disease followed by Brazil, Russia, India and many other countries. Moreover, lots of research is going on to find out effective vaccines or medicine, but still, no potent vaccine or drug is discovered to cure COVID-19. As a consequence, many types of research have designated that computer-based studies, such as protein-ligand interactions, structural dynamics, and chembio modeling are the finest choice due to its low cost and time-saving features. Here, oxindole derivatives have been chosen for docking because of their immense pharmacological applications like antiviral, antidiabetic, anti-inflammatory, and so on. Molecular docking of 30 oxindole derivatives done on the crystallized structure of the protein (COVID-19 Mpro). METHODS The process of docking, interaction, and binding the structure of ligand with protein has executed using Molegro Virtual Docker v.7.0.0 (MVD) and visualized the usage by Molegro Molecular Viewer v.7.0.0 (MMV). RESULTS Among the 30 derivatives, the outcomes depicted better steric interaction and hydrogen bonding amongst OD-22 ligand, OD-16 ligand, OD-4 ligand, and OD-9 ligand (oxindole derivatives) with COVID-19. In addition to this, the comparative study of these four compounds with existing drugs that are under clinical trials shows comparatively good results in terms of its MolDock scores, H-bonding and steric interactions. CONCLUSIONS Hence, It is proposed that these four oxindole derivatives have good potential as a new drug against coronavirus as possible therapeutic agents.
Collapse
Affiliation(s)
- Vraj R Shah
- Department of Chemistry, School of Science, ITM SLS Baroda University, Vadodara, India
| | - Jaydip D Bhaliya
- Department of Chemistry, School of Science, ITM SLS Baroda University, Vadodara, India
| | - Gautam M Patel
- Department of Chemistry, School of Science, ITM SLS Baroda University, Vadodara, India
| |
Collapse
|
47
|
Coşkun KA, Koca İ, Gümüş M, Tutar Y. Designing Specific HSP70 Substrate Binding Domain Inhibitor for Perturbing Protein Folding Pathways to Inhibit Cancer Mechanism. Anticancer Agents Med Chem 2021; 21:1472-1480. [PMID: 32951578 DOI: 10.2174/1871520620666200918103509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/31/2020] [Accepted: 08/08/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND HSP70 is a survival factor for tumor cells in transformation and in tumor progression as well as in anti-apoptotic response. OBJECTIVE Several inhibitors targeting HSP70 ATPase function displayed off-target effects, but PES, which targets the HSP70 substrate binding domain, prevents tumor cell survival prominently. However, PES may not bind HSP70 in the absence of nucleotide. This research aimed to design a unique inhibitor molecule that works both in the presence and absence of nucleotides to amplify inhibition. METHODS A set of chimeric coumarine-pyrazole derivatives were determined by in silico techniques and synthesized to elucidate their inhibitory effects. Cell viability experiments displayed KBR1307 as the most efficient inhibitor. A set of characterization experiments were performed, and the results were compared to that of PES agent. Binding constant, ATP hydrolysis rate, and percent aggregation were determined in the presence and absence of inhibitors. RESULTS In silico docking experiments showed that only KBR1307 binds the HSP70 substrate binding domain and interacts with cochaperone interface. Binding experiments indicated that KBR1307 binds HSP70 both in the presence and absence of nucleotides, but PES does not. Both inhibitors significantly lower HSP70 ATPase activity and substrate protein disaggregation activity. However, KBR1307 displays a lower IC50 value at the MCF-7 cell line compared to PES. Both inhibitors do not alter HSP70 secondary structure composition and overall stability. CONCLUSION KBR1307 effectively inhibits HSP70 compared to PES and provides a promising template for novel anticancer drug development.
Collapse
Affiliation(s)
- Kübra A Coşkun
- Department of Basic Pharmaceutical Sciences, Division of Biochemistry, Faculty of Pharmacy, Cumhuriyet University, Sivas, Turkey
| | - İrfan Koca
- Bozok University, Faculty of Science, Department of Chemistry, Yozgat, Turkey
| | - Mehmet Gümüş
- Bozok University, Akdagmadeni Vocational School, Yozgat, Turkey
| | - Yusuf Tutar
- Department of Basic Pharmaceutical Sciences, Division of Biochemistry, Faculty of Pharmacy, Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
48
|
Li YL, Gao YL, Niu XL, Wu YT, Du YM, Tang MS, Li JY, Guan XH, Song B. Identification of Subtype-Specific Metastasis-Related Genetic Signatures in Sarcoma. Front Oncol 2020; 10:544956. [PMID: 33123466 PMCID: PMC7573283 DOI: 10.3389/fonc.2020.544956] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/28/2020] [Indexed: 12/18/2022] Open
Abstract
Background: Sarcomas are heterogeneous rare malignancies constituting approximately 1% of all solid cancers in adults and including more than 70 histological and molecular subtypes with different pathological and clinical development characteristics. Method: We identified prognostic biomarkers of sarcomas by integrating clinical information and RNA-seq data from TCGA and GEO databases. In addition, results obtained from cell cycle, cell migration, and invasion assays were used to assess the capacity for Tanespimycin to inhibit the proliferation and metastasis of sarcoma. Results: Sarcoma samples (N = 536) were divided into four pathological subtypes including DL (dedifferentiated liposarcoma), LMS (leiomyosarcoma), UPS (undifferentiated pleomorphic sarcomas), and MFS (myxofibrosarcoma). RNA-seq expression profile data from the TCGA dataset were used to analyze differentially expressed genes (DEGs) within metastatic and non-metastatic samples of these four sarcoma pathological subtypes with DEGs defined as metastatic-related signatures (MRS). Prognostic analysis of MRS identified a group of genes significantly associated with prognosis in three pathological subtypes: DL, LMS, and UPS. ISG15, NUP50, PTTG1, SERPINE1, and TSR1 were found to be more likely associated with adverse prognosis. We also identified Tanespimycin as a drug exerting inhibitory effects on metastatic LMS subtype and therefore can serve a potential treatment for this type of sarcoma. Conclusions: These results provide new insights into the pathogenesis, diagnosis, treatment, and prognosis of sarcomas and provide new directions for further study of sarcoma.
Collapse
Affiliation(s)
- Ya-Ling Li
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China.,National Health Commission Key Laboratory of Immunodermatology (China Medical University), Shenyang, China.,Key Laboratory of Immunodermatology, Ministry of Education, Shenyang, China
| | - Ya-Li Gao
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China.,National Health Commission Key Laboratory of Immunodermatology (China Medical University), Shenyang, China.,Key Laboratory of Immunodermatology, Ministry of Education, Shenyang, China
| | - Xue-Li Niu
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China.,National Health Commission Key Laboratory of Immunodermatology (China Medical University), Shenyang, China.,Key Laboratory of Immunodermatology, Ministry of Education, Shenyang, China
| | - Yu-Tong Wu
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China.,National Health Commission Key Laboratory of Immunodermatology (China Medical University), Shenyang, China.,Key Laboratory of Immunodermatology, Ministry of Education, Shenyang, China
| | - Yi-Mei Du
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China.,National Health Commission Key Laboratory of Immunodermatology (China Medical University), Shenyang, China.,Key Laboratory of Immunodermatology, Ministry of Education, Shenyang, China
| | - Ming-Sui Tang
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China.,National Health Commission Key Laboratory of Immunodermatology (China Medical University), Shenyang, China.,Key Laboratory of Immunodermatology, Ministry of Education, Shenyang, China
| | - Jing-Yi Li
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China.,National Health Commission Key Laboratory of Immunodermatology (China Medical University), Shenyang, China.,Key Laboratory of Immunodermatology, Ministry of Education, Shenyang, China
| | - Xiu-Hao Guan
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China.,National Health Commission Key Laboratory of Immunodermatology (China Medical University), Shenyang, China.,Key Laboratory of Immunodermatology, Ministry of Education, Shenyang, China
| | - Bing Song
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China.,School of Dentistry, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
49
|
Bang S, Shim SH. Beta resorcylic acid lactones (RALs) from fungi: chemistry, biology, and biosynthesis. Arch Pharm Res 2020; 43:1093-1113. [PMID: 33113097 DOI: 10.1007/s12272-020-01275-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/21/2020] [Indexed: 11/29/2022]
Abstract
β-Resorcylic acid lactones (RALs) are one of the major polyketides produced by fungi, and some of them have a diverse array of biological activities. Most RALs feature a 14-membered macrocyclic ring fused to β-resorcylic acid (2,4-dihydroxybenzoic acid). In this review, more than 100 RAL-type of compounds are structurally classified into three groups; 14-membered RALs with 17R configuration, 14-membered RALs with 17S configuration, and benzopyranones/benzofuranones, and they are reviewed comprehensively in terms of chemistry, biological activities, and biosynthetic pathways.
Collapse
Affiliation(s)
- Sunghee Bang
- College of Pharmacy, Duksung Women's University, Seoul, 01369, Republic of Korea
| | - Sang Hee Shim
- College of Pharmacy, Duksung Women's University, Seoul, 01369, Republic of Korea.
| |
Collapse
|
50
|
Li J, Zhu D, Ma W, Yang Y, Wang G, Wu X, Wang K, Chen Y, Wang F, Liu W, Yuan Y. Rapid synthesis of a Bi@ZIF-8 composite nanomaterial as a near-infrared-II (NIR-II) photothermal agent for the low-temperature photothermal therapy of hepatocellular carcinoma. NANOSCALE 2020; 12:17064-17073. [PMID: 32785323 DOI: 10.1039/d0nr03907a] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hepatocellular carcinoma is the fourth leading cause of cancer-related deaths globally. Advanced nanomaterials have emerged as effective approaches to liver cancer therapy such as photothermal therapy. However, limited penetration depth of photothermal agents (PTAs) activated in the NIR-I bio-window and thermoresistance due to heat shock proteins restrict the therapeutic efficacy of PTT in HCC. Herein, we prepared a Bi@ZIF-8 (BZ) nanomaterial by a simple one-step reduction method. Then, gambogic acid, a natural inhibitor of Hsp90, was efficiently loaded onto the BZ nanomaterial via physical mixing. The characterization of the nanomaterial and release of GA due to pH change or NIR-light irradiation were separately studied. Photothermal conversion efficiency was calculated, and therapeutic studies were carried out in vitro and in vivo. This nanomaterial exhibited a significantly enhanced drug release rate when the temperature was increased under acidic conditions and had good light stability under laser irradiation and a photothermal conversion efficiency of about 24.4%. In addition, this novel nanomaterial achieved good therapeutic effects with less toxicity in vitro. The BZ nanomaterial loaded with GA caused tumor shrinkage as well as disappearance and effectively downregulated Hsp90 expression in tumors in vivo. Moreover, this novel nanomaterial exhibited good biocompatibility and potential for application in low-temperature PTT with excellent tumor destruction efficacy.
Collapse
Affiliation(s)
- Jinghua Li
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Daoming Zhu
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education School of Physics and Technology, Wuhan University, Wuhan 430071, China
| | - Weijie Ma
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Yang Yang
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education School of Physics and Technology, Wuhan University, Wuhan 430071, China
| | - Ganggang Wang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Xiaoling Wu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Kunlei Wang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Yiran Chen
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Fubing Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Wei Liu
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education School of Physics and Technology, Wuhan University, Wuhan 430071, China and Wuhan University Shenzhen Institution, Shenzhen 518057, China
| | - Yufeng Yuan
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| |
Collapse
|