1
|
Ashraf R, Khalid Z, Qin QP, Iqbal MA, Taskin-Tok T, Bayil İ, Quah CK, Daud NAM, Alqahtany FZ, Amin MA, El-Bahy SM. Synthesis of N-heterocyclic carbene‑selenium complexes modulating apoptosis and autophagy in cancer cells: Probing the interactions with biomolecules and enzymes. Bioorg Chem 2025; 160:108435. [PMID: 40199010 DOI: 10.1016/j.bioorg.2025.108435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/21/2025] [Accepted: 04/01/2025] [Indexed: 04/10/2025]
Abstract
Growing cancer resistance is a global threat that calls for development of newer chemotherapeutic analogues especially targeted based therapy to enhance efficacy and selectivity. In this contribution, herein, we report synthesis of selenium incorporated N-heterocyclic carbene (NHC) compounds to explore their potential cytotoxicity against HeLa cells. Test compounds were assured for suitability as drug candidates through physiochemical properties that showed lipophilicity logP 0.85-1.45 for C1-C3 and found stable in biological media (DMEM), whereas, least reactive with N-acetyl cysteine (NAC) and L-glutathione. All the studied compounds showed good cytotoxicity against various cancer strains while compound C1 [3,3-(hexane-1,6-diyl)bis(1-phenethyl-1H-imidazole-2(3H)-selenone)] and C2 [3,3-(hexane-1,6-diyl)bis(1-decyl-1H-imidazole-2(3H)-selenone)] showed promising results with IC50 values of 14.65 ± 0.66 and 8.05 ± 0.35 μg/mL respectively as compared to positive control 21.5 ± 0.05 μg/mL against HeLa cell lines. These compounds showed six-fold higher apoptosis than control with higher accumulation of Ca+ ions intracellularly that alters the expression level of autophagy proteins and increased capase-9 activity. Cell cycle analysis indicated an arrest of cycle in G1 phase of HeLa cells when treated with C1 & C2. Test compounds showed prominent affinity for binding with DNA and inhibiting thioredoxin reductase enzymes in time dependent manners. These findings indicate that Selenium NHC compounds are promising drug candidates to induce cytotoxicity via apoptosis, autophagy and mitochondrial membrane disruptions to manage tumor growth.
Collapse
Affiliation(s)
- Rizwan Ashraf
- Department of Chemistry, University of Agriculture Faisalabad, Pakistan.
| | - Zohra Khalid
- Department of Chemistry, University of Agriculture Faisalabad, Pakistan
| | - Qi-Pin Qin
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, School of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.; State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China
| | - Muhammad Adnan Iqbal
- Department of Chemistry, University of Agriculture Faisalabad, Pakistan; Organometallic and Coordination Chemistry Laboratory, Department of Chemistry, University of Agriculture Faisalabad, 38000, Pakistan.
| | - Tugba Taskin-Tok
- Faculty of Arts and Sciences, Department of Chemistry, Gaziantep University, +9027310, Gaziantep, Turkiye; Institute of Health Sciences, Department of Bioinformatics and Computational Biology, Gaziantep University, +9027310, Gaziantep, Turkiye
| | - İmren Bayil
- Institute of Health Sciences, Department of Bioinformatics and Computational Biology, Gaziantep University, +9027310, Gaziantep, Turkiye
| | - Ching Kheng Quah
- X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Nur Aisyah Mohamad Daud
- X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, Penang 11800, Malaysia
| | | | - Mohammed A Amin
- Department of chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Salah M El-Bahy
- Department of chemistry, Turabah University college, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
2
|
Khan A, Dawar P, De S. Thiourea compounds as multifaceted bioactive agents in medicinal chemistry. Bioorg Chem 2025; 158:108319. [PMID: 40058221 DOI: 10.1016/j.bioorg.2025.108319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/13/2025] [Accepted: 02/24/2025] [Indexed: 03/19/2025]
Abstract
Microbial resistance (MR) and cancer are global healthcare pitfalls that have caused millions of deaths and pose a significant pharmaceutical challenge, with clinical cases increasing. Thioureas are preferred structures in medicinal chemistry, chemosensors, and organic synthesis platforms. In fact, thiourea (TU) moieties serve as a common framework for several medications and bioactive substances, demonstrating a wide range of therapeutic and pharmacological accomplishments. The integration of the thiourea moiety into a diverse range of organic molecules has resulted in very flexible compounds with widespread uses in medicinal chemistry. Moreover, for over a century, TU and its metal complexes have been characterized for their biological activity. Finally, we provide an assessment and future outlook of different organo-thiourea derivatives, from the very beginning to the most recent discoveries in medicinal activity.
Collapse
Affiliation(s)
- Adeeba Khan
- Department of Chemistry, Organic Chemistry Lab, Manipal University Jaipur, Jaipur, Rajasthan 303007, India
| | - Palak Dawar
- Department of Chemistry, Organic Chemistry Lab, Manipal University Jaipur, Jaipur, Rajasthan 303007, India
| | - Suranjan De
- Department of Chemistry, Organic Chemistry Lab, Manipal University Jaipur, Jaipur, Rajasthan 303007, India.
| |
Collapse
|
3
|
Thanh ND, Toan VN, Trang VM. D-glucose-conjugated thioureas containing 2-aminopyrimidine as potential multitarget inhibitors for type 2 diabetes mellitus: Synthesis and biological activity study. Comput Biol Med 2025; 186:109715. [PMID: 39862470 DOI: 10.1016/j.compbiomed.2025.109715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
α-d-Glucose-conjugated thioureas 8a-w of substituted 4,6-diaryl-2-aminopyrimindines were designed, synthesized, and screened for their antidiabetic inhibitory activity. The thioureas with the strongest potential inhibitory activity included 8f (IC50 = 11.32 ± 0.34 μM for α-amylase), 8g (IC50 = 10.35 ± 0.88 μM for α-glucosidase), 8e (IC50 = 2.53 ± 0.03 nM for DPP-4), and 8c (IC50 = 3.93 ± 0.03 nM for PTP1B). The inhibitors 8g, 8e, and 8c were competitive α-glucosidase, non-competitive DDP-4, and non-competitive PTP1B inhibitors, respectively. In addition, compounds 8a, 8c, 8e, 8f, 8g, 8h, and 8j were noncytotoxic for 3T3 cell line. Induced fit docking study showed the key active interactions of each ligand with residues in the active site of each of these enzymes. Molecular dynamics simulation study on the representative complexes 8f/4W93 and 8e/3W2T in enzymes 4W93 and 3W2T, respectively, displayed the bioactive interactions between the residues and the corresponding potent inhibitor in the active site. Some of the various effects of the electron-donating and electron-withdrawing substituents on benzene of pyrimidine ring to inhibitory activities against enzymes related to T2DM were discussed. The calculations based on MM-GBSA showed the effects of the solvation to the active binding of the specific ligand in the active pocket of an enzyme.
Collapse
Affiliation(s)
- Nguyen Dinh Thanh
- Faculty of Chemistry, University of Science (Vietnam National University, Hanoi), 19 Le Thanh Tong, Hoan Kiem, Ha Noi, Viet Nam.
| | - Vu Ngoc Toan
- Faculty of Chemistry, University of Science (Vietnam National University, Hanoi), 19 Le Thanh Tong, Hoan Kiem, Ha Noi, Viet Nam; Institute of New Technology, Academy of Military Science and Technology, Ministry of Defence, 17 Hoang Sam, Cau Giay, Ha Noi, Viet Nam
| | - Vu Minh Trang
- Faculty of Chemistry, University of Science (Vietnam National University, Hanoi), 19 Le Thanh Tong, Hoan Kiem, Ha Noi, Viet Nam; VNU University of Education, Vietnam National University, Hanoi, 144 Xuan Thuy, Cau Giay, Ha Noi, Viet Nam
| |
Collapse
|
4
|
Dinh Thanh N, Ngoc Toan V, Minh Trang V. Sulphonyl thiourea compounds containing pyrimidine as dual inhibitors of I, II, IX, and XII carbonic anhydrases and cancer cell lines: synthesis, characterization and in silico studies. RSC Med Chem 2024:d4md00816b. [PMID: 39823041 PMCID: PMC11734695 DOI: 10.1039/d4md00816b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 11/26/2024] [Indexed: 01/19/2025] Open
Abstract
Some novel sulphonyl thiourea derivatives (7a-m) containing 4,6-diarylpyrimidine rings were designed and synthesized using a one-pot procedure. These compounds exhibited remarkable dual inhibitory activity against human carbonic anhydrase hCA I, hCA II, hCA IX, and XII isoenzymes and some cancer cell lines. Among them, some thioureas had significantly more potent inhibitory activities in the order of 7l > 7c > 7f (against the hCA I isoform), 7f > 7b > 7c (against the hCA II isoform), 7c > 7g > 7a > 7b (against the hCA IX isoform), and 7d > 7c > 7g > 7f (against the hCA XII isoform). The obtained inhibitory activity data against the hCA IX and XII isoforms showed that compound 7c was the most potent inhibitor in this sulphonyl thiourea series against enzyme hCA IX, with K I = 125.1 ± 12.4 nM, while compound 7d was the most potent inhibitor against enzyme hCA XII, with K I = 111.0 ± 12.3 nM. Compound 7c exhibited strong inhibitory activity among all four tested hCA enzymes, while thiourea 7f was a potent inhibitor for enzymes hCA I, II and XII. All these compounds demonstrated non-competitive inhibition of both enzymes. Some selected potential inhibitory compounds, including 7c, 7d, and 7g, exhibited remarkable cytotoxic activity against human cancer cell lines, including human breast adenocarcinoma (MCF-7), human liver adenocarcinoma (HepG2), human cervical epithelial carcinoma (HeLa), and human lung adenocarcinoma cells (A549). These compounds exhibited low cytotoxicity in the WI-38 cell line. The compounds 7c and 7d were the most potent inhibitors against tumour-associated hCA IX and hCA XII isoenzymes. Furthermore, these compounds exhibited remarkable inhibition against some cancer cell lines, such as MCF-7, HepG2, HeLa, and A549. They were subjected to in silico screening for molecular docking and molecular dynamics simulations. The results of in vitro and in silico studies revealed that compounds 7c and 7d were the most promising derivatives in this series owing to their significant effects on the studied hCA IX and hCA XII isoenzymes, respectively. The results showed that the sulphonyl thiourea moiety was deeply accommodated in the active site and interacted with zinc ions in the receptors.
Collapse
Affiliation(s)
- Nguyen Dinh Thanh
- Faculty of Chemistry, University of Science (Vietnam National University, Hanoi) 19 Le Thanh Tong, Hoan Kiem Ha Noi Vietnam
| | - Vu Ngoc Toan
- Institute of New Technology, Academy of Military Science and Technology, Ministry of Defence 17 Hoang Sam, Cau Giay Ha Noi Vietnam
| | - Vu Minh Trang
- VNU University of Education, Vietnam National University, Hanoi 144 Xuan Thuy, Cau Giay Ha Noi Vietnam
| |
Collapse
|
5
|
Zhang Q, Soulère L, Queneau Y. Amide bioisosteric replacement in the design and synthesis of quorum sensing modulators. Eur J Med Chem 2024; 273:116525. [PMID: 38801798 DOI: 10.1016/j.ejmech.2024.116525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
The prevention or control of bacterial infections requires continuous search for novel approaches among which bacterial quorum sensing inhibition is considered as a complementary antibacterial strategy. Quorum sensing, used by many different bacteria, functions through a cell-to-cell communication mechanism relying on chemical signals, referred to as autoinducers, such as N-acyl homoserine lactones (AHLs) which are the most common chemical signals in this system. Designing analogs of these autoinducers is one of the possible ways to interfere with quorum sensing. Since bioisosteres are powerful tools in medicinal chemistry, targeting analogs of AHLs or other signal molecules and mimics of known QS modulators built on amide bond bioisosteres is a relevant strategy in molecular design and synthetic routes. This review highlights the application of amide bond bioisosteric replacement in the design and synthesis of novel quorum sensing inhibitors.
Collapse
Affiliation(s)
- Qiang Zhang
- Hubei Key Laboratory of Purification and Application of Plant Anti-cancer Active Ingredients, Hubei University of Education, 129 Second Gaoxin Road, Wuhan 430205, China
| | - Laurent Soulère
- INSA Lyon, CNRS, Universite Claude Bernard Lyon 1, UMR 5246, ICBMS, Bât. E. Lederer, 1 rue Victor Grignard, F-69622, Villeurbanne, France
| | - Yves Queneau
- INSA Lyon, CNRS, Universite Claude Bernard Lyon 1, UMR 5246, ICBMS, Bât. E. Lederer, 1 rue Victor Grignard, F-69622, Villeurbanne, France.
| |
Collapse
|
6
|
Ngoc Toan V, Son Hai D, Thi Kim Van H, Minh Tri N, Ngoc Toan D, Thi Thanh Mai N, Dinh Thanh N. Design, synthesis, inhibitory activity, and molecular simulations study for d-glucose-conjugated thioureas containing pyrimidine ring as multitarget inhibitors against α-amylase, α-glucosidase, DDP-4, and PTP1B in Type 2 diabetes mellitus. RSC Med Chem 2024:d4md00334a. [PMID: 39185455 PMCID: PMC11342126 DOI: 10.1039/d4md00334a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/24/2024] [Indexed: 08/27/2024] Open
Abstract
A series of tetra-O-acetyl-α-d-glucopyranosyl thioureas 8a-l of substituted 2-aminopyrimidines 4a-l have been designed and synthesized. The latter were prepared from corresponding chalcones 3a-l of p-bromoacetophenone and appropriate substituted benzaldehydes by their reaction with guanidine. The target thiourea compounds 8a-l exhibited significant inhibitory activity in vitro against enzymes that were related to type 2 diabetes mellitus, including α-amylase, α-glucosidase, DPP-4, and PTP1B. Amongst these thioureas, compound 8k with an ortho-methoxy group was the most potential enzyme inhibitor against α-amylase with an IC50 value of 9.72 ± 0.34 μM. Its meta-isomer 8j was the strongest inhibitor against α-glucosidase with IC50 = 9.73 ± 0.72 μM. In the inhibition against DPP-4, compound 8f with a para-bromo substituent exhibited the strongest activity with an IC50 value of 2.53 ± 0.03 nM. In the inhibition against PTP1B, compound 8h with a para-isopropyl substituent had the strongest inhibitory activity with an IC50 value of 2.74 ± 0.03 μM. The enzyme kinetics of the most active compounds, including 8j, 8f and 8h against α-glucosidase, DPP-4, and PTP1B, respectively, were studied. The obtained results showed that 8j was a competitive α-glucosidase inhibitor with an inhibitory constant K I value of 9.31 μM. Compound 8f was a non-competitive inhibitor for DDP-4 with an inhibitory constant K I value of 12.57 μM. Compound 8h was also a non-competitive inhibitor for DDP-4 with an inhibitory constant K I value of 12.41 μM. The cytotoxicity of the most active compounds, including 8f and 8k (against α-amylase), 8i and 8j (against α-glucosidase), 8a, 8f, and 8g (against DPP-4), and 8d, 8f, and 8h (against PTP1B) was screened. The obtained cytotoxicity showed that all tested inhibitors were noncytotoxic to human normal cell line 3T3. Induced fit docking simulations of all synthesized compounds 8a-l were performed on four enzymes 4W93 (for α-amylase), 3TOP (for α-glucosidase), 3W2T (for DPP-4), and 1NNY (for PTP1B). Key interactions of each of these ligands with residues in the active pocket of each studied enzyme have been shown.
Collapse
Affiliation(s)
- Vu Ngoc Toan
- Faculty of Chemistry, University of Science (Vietnam National University, Hanoi) 19 Le Thanh Tong, Hoan Kiem Hanoi Vietnam
- Academy of Military Science and Technology, Ministry of Defence, Institute of New Technology 17 Hoang Sam, Cau Giay Hanoi Vietnam
| | - Do Son Hai
- Faculty of Chemistry, University of Science (Vietnam National University, Hanoi) 19 Le Thanh Tong, Hoan Kiem Hanoi Vietnam
- Ministry of Public Security of Vietnam, Institute of Science and Technology 47 Pham Van Dong, Cau Giay Hanoi Vietnam
| | - Hoang Thi Kim Van
- Faculty of Chemistry, University of Science (Vietnam National University, Hanoi) 19 Le Thanh Tong, Hoan Kiem Hanoi Vietnam
- Faculty of Chemical Technology, Viet Tri University of Industry Tien Kien, Lam Thao Phu Tho Vietnam
| | - Nguyen Minh Tri
- Faculty of Chemistry, University of Science (Vietnam National University, Hanoi) 19 Le Thanh Tong, Hoan Kiem Hanoi Vietnam
- Academy of Military Science and Technology, Ministry of Defence, Institute of New Technology 17 Hoang Sam, Cau Giay Hanoi Vietnam
| | - Duong Ngoc Toan
- Faculty of Chemistry, University of Science (Vietnam National University, Hanoi) 19 Le Thanh Tong, Hoan Kiem Hanoi Vietnam
- Faculty of Chemistry, Thai Nguyen University of Education 20 Luong Ngoc Quyen Thai Nguyen Vietnam
| | - Nguyen Thi Thanh Mai
- Faculty of Chemistry, University of Science (Vietnam National University, Hanoi) 19 Le Thanh Tong, Hoan Kiem Hanoi Vietnam
- Faculty of Chemical Technology, Ha Noi University of Industry 298 Cau Dien Road, North Tu Liem Hanoi Vietnam
| | - Nguyen Dinh Thanh
- Faculty of Chemistry, University of Science (Vietnam National University, Hanoi) 19 Le Thanh Tong, Hoan Kiem Hanoi Vietnam
| |
Collapse
|
7
|
Dinh Thanh N, Son Hai D, Ngoc Toan V, Thi Kim Van H, Thi Kim Giang N, Minh Tri N. Sulfonyl thioureas with a benzo[d]thiazole ring as dual acetylcholinesterase/butyrylcholinesterase and human monoamine oxidase A and B inhibitors: An in vitro and in silico study. Arch Pharm (Weinheim) 2024; 357:e2300557. [PMID: 38321839 DOI: 10.1002/ardp.202300557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/30/2023] [Accepted: 01/12/2024] [Indexed: 02/08/2024]
Abstract
A series of sulfonyl thioureas 6a-q containing a benzo[d]thiazole ring with an ester functional group was synthesized from corresponding substituted 2-aminobenzo[d]thiazoles 3a-q and p-toluenesulfonyl isothiocyanate. They had remarkable inhibitory activity against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), monoamine oxidase (MAO)-A, and MAO-B. Among thioureas, several compounds had notable activity in the order of 6k > 6 h > 6c (AChE), 6j > 6g > 6k (BChE), 6k > 6g > 6f (MAO-A), and 6i > 6k > 6h (MAO-B). Compound 6k was an inhibitor of interest due to its potent or good activity against all studied enzymes, with IC50 values of 0.027 ± 0.008 μM (AChE), 0.043 ± 0.004 μM (BChE), 0.353 ± 0.01 μM (MAO-A), and 0.716 ± 0.02 μM (MAO-B). This inhibitory capacity was comparable to that of the reference drugs for each enzyme. Kinetic studies of two compounds with potential activity, 6k (against AChE) and 6j (against BChE), had shown that both 6k and 6j followed competitive-type enzyme inhibition, with Ki constants of 24.49 and 12.16 nM, respectively. Induced fit docking studies for enzymes 4EY7, 7BO4, 2BXR, and 2BYB showed active interactions between sulfonyl thioureas of benzo[d]thiazoles and the residues in the active pocket with ligands 6k, 6i, and 6j, respectively. The stability of the ligand-protein complexes while each ligand entered the active site of each enzyme (4EY7, 7BO4, 2BXR, or 2BYB) was confirmed by molecular dynamics simulations.
Collapse
Affiliation(s)
- Nguyen Dinh Thanh
- Department of Organic Chemistry, Faculty of Chemistry, University of Science (Vietnam National University, Ha Noi), Ha Noi, Hoan Kiem, Viet Nam
| | - Do Son Hai
- Department of Organic Chemistry, Faculty of Chemistry, University of Science (Vietnam National University, Ha Noi), Ha Noi, Hoan Kiem, Viet Nam
- Institute of Science and Technology, Ministry of Public Security of Vietnam, Ha Noi, Cau Giay, Viet Nam
| | - Vu Ngoc Toan
- Department of Organic Chemistry, Faculty of Chemistry, University of Science (Vietnam National University, Ha Noi), Ha Noi, Hoan Kiem, Viet Nam
- Institute of New Technology, Military Institute of Science and Technology, Ha Noi, Cau Giay, Viet Nam
| | - Hoang Thi Kim Van
- Department of Organic Chemistry, Faculty of Chemistry, University of Science (Vietnam National University, Ha Noi), Ha Noi, Hoan Kiem, Viet Nam
- Faculty of Chemical Technology, Viet Tri University of Industry, Tien Kien, Lam Thao, Phu Tho, Viet Nam
| | - Nguyen Thi Kim Giang
- Department of Organic Chemistry, Faculty of Chemistry, University of Science (Vietnam National University, Ha Noi), Ha Noi, Hoan Kiem, Viet Nam
- Institute of Science and Technology, Ministry of Public Security of Vietnam, Ha Noi, Cau Giay, Viet Nam
| | - Nguyen Minh Tri
- Department of Organic Chemistry, Faculty of Chemistry, University of Science (Vietnam National University, Ha Noi), Ha Noi, Hoan Kiem, Viet Nam
- Institute of New Technology, Military Institute of Science and Technology, Ha Noi, Cau Giay, Viet Nam
| |
Collapse
|
8
|
Mansour MA, AboulMagd AM, Abbas SH, Abdel-Aziz M, Abdel-Rahman HM. Quinazoline-chalcone hybrids as HDAC/EGFR dual inhibitors: Design, synthesis, mechanistic, and in-silico studies of potential anticancer activity against multiple myeloma. Arch Pharm (Weinheim) 2024; 357:e2300626. [PMID: 38297894 DOI: 10.1002/ardp.202300626] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 02/02/2024]
Abstract
Two new series of quinazoline-chalcone hybrids were designed, synthesized as histone deacetylase (HDAC)/epidermal growth factor receptor (EGFR) dual inhibitors, and screened in vitro against the NCI 60 human cancer cell line panel. The most potent derivative, compound 5e bearing a 3,4,5-trimethoxyphenyl chalcone moiety, showed the most effective growth inhibition value against the panel of NCI 60 human cancer cell lines. Thus, it was selected for further investigation for NCI 5 log doses. Interestingly, this trimethoxy-substituted analog inhibited the proliferation of Roswell Park Memorial Institute (RPMI)-8226 cells by 96%, at 10 µM with IC50 = 9.09 ± 0.34 µM and selectivity index = 7.19 against normal blood cells. To confirm the selectivity of this compound, it was evaluated against a panel of tyrosine kinase enzymes. Mechanistically, it successfully and selectively inhibited HDAC6, HDAC8, and EGFR with IC50 = 0.41 ± 0.015, 0.61 ± 0.027, and 0.09 ± 0.004 µM, respectively. Furthermore, the selected derivative induced apoptosis via the mitochondrial apoptotic pathway by raising the Bax/Bcl-2 ratio and activating caspases 3, 7, and 9. Also, the flow cytometry analysis of RPMI-8226 cells showed that the trimethoxy-substituted analog produced cell cycle arrest in the G1 and S phases at 55.82%. Finally, an in silico study was performed to explore the binding interaction of the most active compound within the zinc-containing binding site of HDAC6 and HDAC8.
Collapse
Affiliation(s)
- Mostafa A Mansour
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Nahda University in Beni-Suef (NUB), Beni-Suef, Egypt
| | - Asmaa M AboulMagd
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Nahda University in Beni-Suef (NUB), Beni-Suef, Egypt
| | - Samar H Abbas
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Mohamed Abdel-Aziz
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Hamdy M Abdel-Rahman
- Medicinal Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Badr University in Assiut (BUA), Assiut, Egypt
| |
Collapse
|
9
|
Thanh ND, Giang NTK, Hai DS, Toan VN, Van HTK, Tri NM. Sulfonyl thiourea derivatives from 2-aminodiarylpyrimidines: In vitro and in silico evaluation as potential carbonic anhydrase I, II, IX, and XII inhibitors. Chem Biol Drug Des 2024; 103:e14494. [PMID: 38490810 DOI: 10.1111/cbdd.14494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/31/2023] [Accepted: 02/23/2024] [Indexed: 03/17/2024]
Abstract
A series of synthesized sulfonyl thiourea derivatives (7a-o) of substituted 2-amino-4,6-diarylpyrimidines (4a-o) exhibited the remarkable inhibitory activity against some the human carbonic anhydrases (hCAs), including hCA I, II, IX, and XII isoforms. The inhibitory efficacy of synthesized sulfonyl thiourea derivatives were experimentally validated by in vitro enzymatic assays. 7a (KI = 46.14 nM), 7j (KI = 48.92 nM), and 7m (KI = 62.59 nM) (for isoform hCA I); 7f (KI = 42.72 nM), 7i (KI = 40.98 nM), and 7j (KI = 33.40 nM) (for isoform hCA II); 7j (KI = 228.5 nM), 7m (KI = 195.4 nM), and 7n (KI = 210.1 nM) (for isoform hCA IX); 7l (KI = 116.9 nM), 7m (KI = 118.8 nM), and 7n (KI = 147.2 nM) (for isoform hCA XII) in comparison with KI values of 452.1, 327.3, 437.2, and 338.9 nM, respectively, of the standard drug AAZ. These compounds also had significantly more potent inhibitory action against cytosolic isoform hCA I and tumor-associated isoforms hCA IX and hCA XII. Furthermore, the potential inhibitory compounds were subjected to in silico screening for molecular docking and molecular dynamics simulations. The results of in vitro and in silico studies revealed that compounds 7a, 7j, and 7m were the most promising derivatives in this series due to their significant effects on studied hCA I, II, IX, and XII isoforms, respectively. The results showed that the sulfonyl thiourea moiety was accommodated deeply in the active site and interacted with the zinc ion in the receptors.
Collapse
Affiliation(s)
- Nguyen Dinh Thanh
- Faculty of Chemistry, VNU University of Science (Vietnam Nation University), Hanoi, Vietnam
| | - Nguyen Thi Kim Giang
- Faculty of Chemistry, VNU University of Science (Vietnam Nation University), Hanoi, Vietnam
- Institute of Science and Technology, Ministry of Public Security of Vietnam, Hanoi, Vietnam
| | - Do Son Hai
- Faculty of Chemistry, VNU University of Science (Vietnam Nation University), Hanoi, Vietnam
- Institute of Science and Technology, Ministry of Public Security of Vietnam, Hanoi, Vietnam
| | - Vu Ngoc Toan
- Faculty of Chemistry, VNU University of Science (Vietnam Nation University), Hanoi, Vietnam
- Institute of New Technology, Academy of Military Science and Technology, Ministry of National Defence, Hanoi, Vietnam
| | - Hoang Thi Kim Van
- Faculty of Chemistry, VNU University of Science (Vietnam Nation University), Hanoi, Vietnam
- Faculty of Chemical Technology, Viet Tri University of Industry, Phu Tho, Vietnam
| | - Nguyen Minh Tri
- Faculty of Chemistry, VNU University of Science (Vietnam Nation University), Hanoi, Vietnam
- Institute of New Technology, Academy of Military Science and Technology, Ministry of National Defence, Hanoi, Vietnam
| |
Collapse
|
10
|
El Sadda RR, Eissa MS, Elafndi RK, Moawed EA, El-Zahed MM, Saad HR. Synthesis and biological evaluation of titanium dioxide/thiopolyurethane composite: anticancer and antibacterial effects. BMC Chem 2024; 18:35. [PMID: 38368376 PMCID: PMC10874576 DOI: 10.1186/s13065-024-01138-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/06/2024] [Indexed: 02/19/2024] Open
Abstract
Nanocomposites incorporating titanium dioxide (TiO2) have a significant potential for various industrial and medical applications. These nanocomposites exhibit selectivity as antimicrobial and anticancer agents. Antimicrobial activity is crucial for medical uses, including applications in food processing, packaging, and surgical instruments. Additionally, these nanocomposites exhibit selectivity as anticancer agents. A stable nanocomposite as a new anticancer and antibacterial chemical was prepared by coupling titanium dioxide nanoparticles with a polyurethane foam matrix through the thiourea group. The titanium dioxide/thiopolyurethane nanocomposite (TPU/TiO2) was synthesized from low-cost Ilmenite ore and commercial polyurethane foam. EDX analysis was used to determine the elemental composition of the titanium dioxide (TiO2) matrix. TiO2NPs were synthesized and were characterized using TEM, XRD, IR, and UV-Vis spectra. TiO2NPs and TPU foam formed a novel composite. The MTT assay assessed Cisplatin and HepG-2 and MCF-7 cytotoxicity in vitro. Its IC50 values for HepG-2 and MCF-7 were 122.99 ± 4.07 and 201.86 ± 6.82 µg/mL, respectively. The TPU/TiO2 exhibits concentration-dependent cytotoxicity against MCF-7 and HepG-2 cells in vitro. The selective index was measured against both cell lines; it showed its safety against healthy cells. Agar well-diffusion exhibited good inhibition zones against Escherichia coli (12 mm), Bacillus cereus (10 mm), and Aspergillus niger (19 mm). TEM of TPU/TiO2-treated bacteria showed ultrastructure changes, including plasma membrane detachment from the cell wall, which caused lysis and bacterial death. TPU/TiO2 can treat cancer and inhibit microbes in dentures and other items. Also, TPU/TiO2 inhibits E. coli, B. cereus, and A. niger microbial strains.
Collapse
Affiliation(s)
- Rana R El Sadda
- Chemistry Department, Faculty of Science, Damietta University, P.O. Box 34517, New Damietta, Egypt.
| | - Mai S Eissa
- Chemistry Department, Faculty of Science, Damietta University, P.O. Box 34517, New Damietta, Egypt
| | - Rokaya K Elafndi
- Chemistry Department, Faculty of Science, Damietta University, P.O. Box 34517, New Damietta, Egypt
| | - Elhossein A Moawed
- Chemistry Department, Faculty of Science, Damietta University, P.O. Box 34517, New Damietta, Egypt
| | - Mohamed M El-Zahed
- Botany and Microbiology Department, Faculty of Science, Damietta University, New Damietta, Egypt
| | - Hoda R Saad
- Geology Department, Faulty of Science, Damietta University, New Damietta, Egypt
| |
Collapse
|
11
|
El-Gaby MSA, Abdel Reheim MAM, Akrim ZSM, Naguib BH, Saleh NM, El-Adasy ABAAM, El-Adl K, Mohamady S. 2-Thioxo-3,4-dihydropyrimidine and thiourea endowed with sulfonamide moieties as dual EGFR T790M and VEGFR-2 inhibitors: Design, synthesis, docking, and anticancer evaluations. Drug Dev Res 2024; 85:e22143. [PMID: 38349267 DOI: 10.1002/ddr.22143] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/18/2023] [Accepted: 12/16/2023] [Indexed: 02/15/2024]
Abstract
The effectiveness of a new series of thiopyrimidine and thiourea containing sulfonamides moieties was tested on HCT-116, MCF-7, HepG2, and A549. HepG2 cell line was the one that all the new derivatives affected the most. The greatest potent compounds against the four HepG2, HCT116, MCF-7, and A549 cell lines were 8f and 8g with IC50 = 4.13, 6.64, 5.74, 6.85 µM and 4.09, 4.36, 4.22, 7.25 µM correspondingly. Compound 8g exhibited higher activity than sorafenib against HCT116 and MCF-7 but exhibited lower activity against HepG2 and A549. Moreover, compounds 8f and 8g exhibited higher activities than erlotinib on HepG2, HCT116, and MCF-7 but demonstrated lower activity on A549. The most potent cytotoxic derivatives 6f, 6g, 8c, 8d, 8e, 8f, and 8g were examined on normal VERO cell lines. Our derivatives have low toxicity on VERO cells with IC50 values ranging from 32.05 to 53.15 μM. Additionally, all compounds were assessed for dual VEGFR-2 and EGFRT790M inhibition effects. Compounds 8f and 8g were the most potent derivatives inhibited VEGFR-2 at IC50 value of 0.88 and 0.90 µM, correspondingly. As well, derivatives 8f and 8g could inhibit EGFRT790M demonstrating strongest effects with IC50 = 0.32 and 0.33 µM sequentially. Additionally, the greatest active derivatives ADMET profile was evaluated in relationship with sorafenib and erlotinib as reference agents. The data attained from docking were greatly related to that achieved from the biological testing.
Collapse
Affiliation(s)
- Mohamed S A El-Gaby
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| | | | - Zuhir S M Akrim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Omar Almukhtar University Al-Bayda, Libya
| | - Bassem H Naguib
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Nashwa M Saleh
- Department of Chemistry, Faculty of Science, Al-Azhar University (Girls Branch), Cairo, Egypt
| | | | - Khaled El-Adl
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| | - Samy Mohamady
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| |
Collapse
|
12
|
Zahoor AF, Saeed S, Rasul A, Noreen R, Irfan A, Ahmad S, Faisal S, Al-Hussain SA, Saeed MA, Muhammed MT, Muhammad ZA, Zaki MEA. Synthesis, Cytotoxic, and Computational Screening of Some Novel Indole-1,2,4-Triazole-Based S-Alkylated N-Aryl Acetamides. Biomedicines 2023; 11:3078. [PMID: 38002078 PMCID: PMC10669176 DOI: 10.3390/biomedicines11113078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Molecular hybridization has emerged as the prime and most significant approach for the development of novel anticancer chemotherapeutic agents for combating cancer. In this pursuit, a novel series of indole-1,2,4-triazol-based N-phenyl acetamide structural motifs 8a-f were synthesized and screened against the in vitro hepatocellular cancer Hep-G2 cell line. The MTT assay was applied to determine the anti-proliferative potential of novel indole-triazole compounds 8a-f, which displayed cytotoxicity potential as cell viabilities at 100 µg/mL concentration, by using ellipticine and doxorubicin as standard reference drugs. The remarkable prominent bioactive structural hybrids 8a, 8c, and 8f demonstrated good-to-excellent anti-Hep-G2 cancer chemotherapeutic potential, with a cell viability of (11.72 ± 0.53), (18.92 ± 1.48), and (12.93 ± 0.55), respectively. The excellent cytotoxicity efficacy against the liver cancer cell line Hep-G2 was displayed by the 3,4-dichloro moiety containing indole-triazole scaffold 8b, which had the lowest cell viability (10.99 ± 0.59) compared with the standard drug ellipticine (cell viability = 11.5 ± 0.55) but displayed comparable potency in comparison with the standard drug doxorubicin (cell viability = 10.8 ± 0.41). The structure-activity relationship (SAR) of indole-triazoles 8a-f revealed that the 3,4-dichlorophenyl-based indole-triazole structural hybrid 8b displayed excellent anti-Hep-G2 cancer chemotherapeutic efficacy. The in silico approaches such as molecular docking scores, molecular dynamic simulation stability data, DFT, ADMET studies, and in vitro pharmacological profile clearly indicated that indole-triazole scaffold 8b could be the lead anti-Hep-G2 liver cancer therapeutic agent and a promising anti-Hep-G2 drug candidate for further clinical evaluations.
Collapse
Affiliation(s)
- Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.F.Z.); (A.I.)
| | - Sadaf Saeed
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.F.Z.); (A.I.)
| | - Azhar Rasul
- Department of Zoology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Razia Noreen
- Department of Biochemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.F.Z.); (A.I.)
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut P.O. Box 36, Lebanon
- Department of Natural Sciences, Lebanese American University, Beirut P.O. Box 36, Lebanon
| | - Shah Faisal
- Department of Chemistry, Islamia College University Peshawar, Peshawar 25120, Pakistan
| | - Sami A. Al-Hussain
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Muhammad Athar Saeed
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.F.Z.); (A.I.)
| | - Muhammed Tilahun Muhammed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Suleyman Demirel University, Isparta 32000, Türkiye
| | - Zeinab A. Muhammad
- Department of Pharmaceutical Chemistry, National Organization for Drug Control and Research (NODCAR), Giza 12311, Egypt
| | - Magdi E. A. Zaki
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| |
Collapse
|
13
|
Roman R, Pintilie L, Nuță DC, Căproiu MT, Dumitrașcu F, Zarafu I, Ioniță P, Marinaș IC, Măruțescu L, Kapronczai E, Ardelean S, Limban C. Contribution to the Synthesis, Characterization, Separation and Quantification of New N-Acyl Thiourea Derivatives with Antimicrobial and Antioxidant Potential. Pharmaceutics 2023; 15:2501. [PMID: 37896261 PMCID: PMC10609700 DOI: 10.3390/pharmaceutics15102501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/08/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
The present study aimed to synthesize, characterize, and validate a separation and quantification method of new N-acyl thiourea derivatives (1a-1o), incorporating thiazole or pyridine nucleus in the same molecule and showing antimicrobial potential previously predicted in silico. The compounds have been physiochemically characterized by their melting points, IR, NMR and MS spectra. Among the tested compounds, 1a, 1g, 1h, and 1o were the most active against planktonic Staphylococcus aureus and Pseudomonas aeruginosa, as revealed by the minimal inhibitory concentration values, while 1e exhibited the best anti-biofilm activity against Escherichia coli (showing the lowest value of minimal inhibitory concentration of biofilm development). The total antioxidant activity (TAC) assessed by the DPPH method, evidenced the highest values for the compound 1i, followed by 1a. A routine quality control method for the separation of highly related compounds bearing a chlorine atom on the molecular backbone (1g, 1h, 1i, 1j, 1m, 1n) has been developed and validated by reversed-phase high-performance liquid chromatography (RP-HPLC), the results being satisfactory for all validation parameters recommended by the ICH guidelines (i.e., system suitability, specificity, the limits of detection and quantification, linearity, precision, accuracy and robustness) and recommending it for routine separation of these highly similar compounds.
Collapse
Affiliation(s)
- Roxana Roman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia, 020956 Bucharest, Romania; (R.R.); (D.C.N.); (C.L.)
| | - Lucia Pintilie
- National Institute of Chemical-Pharmaceutical Research & Development, 112 Vitan Av., 031299 Bucharest, Romania
| | - Diana Camelia Nuță
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia, 020956 Bucharest, Romania; (R.R.); (D.C.N.); (C.L.)
| | - Miron Teodor Căproiu
- “C. D. Nenitzescu” Institute of Organic and Supramolecular Chemistry, 202B Splaiul Independenței, 060023 Bucharest, Romania; (M.T.C.); (F.D.)
| | - Florea Dumitrașcu
- “C. D. Nenitzescu” Institute of Organic and Supramolecular Chemistry, 202B Splaiul Independenței, 060023 Bucharest, Romania; (M.T.C.); (F.D.)
| | - Irina Zarafu
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta, 030018 Bucharest, Romania; (I.Z.); (P.I.)
| | - Petre Ioniță
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta, 030018 Bucharest, Romania; (I.Z.); (P.I.)
| | - Ioana Cristina Marinaș
- Research Institute of the University of Bucharest, University of Bucharest, 90 Panduri Road, 030018 Bucharest, Romania;
- Sanimed International Impex S.R.L., 087040 Calugareni, Romania;
| | - Luminița Măruțescu
- Sanimed International Impex S.R.L., 087040 Calugareni, Romania;
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 91-96 Splaiul Independenței, 060101 Bucharest, Romania
| | - Eleonora Kapronczai
- Supramolecular Organic and Organometallic Chemistry Centre, Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany János, 400028 Cluj-Napoca, Romania
| | - Simona Ardelean
- Department of Pharmaceutical Technology, Faculty of Pharmacy, “Vasile Goldiș” Western University, 86 Liviu Rebreanu, 310045 Arad, Romania;
| | - Carmen Limban
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia, 020956 Bucharest, Romania; (R.R.); (D.C.N.); (C.L.)
| |
Collapse
|
14
|
El-Atawy MA, Alsubaie MS, Alazmi ML, Hamed EA, Hanna DH, Ahmed HA, Omar AZ. Synthesis, Characterization, and Anticancer Activity of New N,N'-Diarylthiourea Derivative against Breast Cancer Cells. Molecules 2023; 28:6420. [PMID: 37687250 PMCID: PMC10490226 DOI: 10.3390/molecules28176420] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/21/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
The goal of the current study was to prepare two new homologous series of N,N'-diarylurea and N,N'-diarylthiourea derivatives to investigate the therapeutic effects of these derivatives on the methodologies of inhibition directed on human MCF-7 cancer cells. The molecular structures of the prepared derivatives were successfully revealed through elemental analyses, 1H-NMR, 13C-NMR and FT-IR spectroscopy. The cytotoxic results showed that Diarylthiourea (compound 4) was the most effective in suppressing MCF-7 cell growth when compared to all other prepared derivatives, with the most effective IC50 value (338.33 ± 1.52 µM) after an incubation period of 24 h and no cytotoxic effects on normal human lung cells (wi38 cells). Using the annexin V/PI and comet tests, respectively, treated MCF-7 cells with this IC50 value of the Diarylthiourea 4 compound displayed a considerable increase in early and late apoptotic cells, as well as an intense comet nucleus in comparison to control cells. An arrest of the cell cycle in the S phase was observed via flow cytometry in MCF-7 cells treated with the Diarylthiourea 4 compound, suggesting the onset of apoptosis. Additionally, ELISA research showed that caspase-3 was upregulated in MCF-7 cells treated with compound 4 compared to control cells, suggesting that DNA damage induced by compound 4 may initiate an intrinsic apoptotic pathway and activate caspase-3. These results contributed to recognizing that the successfully prepared Diarylthiourea 4 compound inhibited the proliferation of MCF-7 cancer cells by arresting the S cell cycle and caspase-3 activation via an intrinsic apoptotic route. These results, however, need to be verified through in vivo studies utilizing an animal model.
Collapse
Affiliation(s)
- Mohamed A. El-Atawy
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426 Ibrahemia, Alexandria 21321, Egypt; (M.A.E.-A.); (A.Z.O.)
- Chemistry Department, Faculty of Science, Taibah University, Yanbu 46423, Saudi Arabia
| | - Mai S. Alsubaie
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426 Ibrahemia, Alexandria 21321, Egypt; (M.A.E.-A.); (A.Z.O.)
| | - Mohammed L. Alazmi
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426 Ibrahemia, Alexandria 21321, Egypt; (M.A.E.-A.); (A.Z.O.)
| | - Ezzat A. Hamed
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426 Ibrahemia, Alexandria 21321, Egypt; (M.A.E.-A.); (A.Z.O.)
| | - Demiana H. Hanna
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt;
| | - Hoda A. Ahmed
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt;
| | - Alaa Z. Omar
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426 Ibrahemia, Alexandria 21321, Egypt; (M.A.E.-A.); (A.Z.O.)
| |
Collapse
|
15
|
Sepehri S, Khedmati M. An overview of the privileged synthetic heterocycles as urease enzyme inhibitors: Structure-activity relationship. Arch Pharm (Weinheim) 2023; 356:e2300252. [PMID: 37401193 DOI: 10.1002/ardp.202300252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 07/05/2023]
Abstract
Urease is a metalloenzyme including two Ni2+ ions, found in some plants, bacteria, fungi, microorganisms, invertebrate animals, and animal tissues. Urease acts as a significant virulence factor, mainly in catheter blockage and infective urolithiasis as well as in the pathogenesis of gastric infection. Therefore, studies on urease lead to novel synthetic inhibitors. In this review, the synthesis and antiurease activities of a collection of privileged synthetic heterocycles such as (thio)barbiturate, (thio)urea, dihydropyrimidine, and triazol derivatives were described and discussed according to structure-activity relationship findings in search of the best moieties and substituents that are answerable for encouraging the desired activity even more potent than the standard. It was found that linking substituted phenyl and benzyl rings to the heterocycles led to potent urease inhibitors.
Collapse
Affiliation(s)
- Saghi Sepehri
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mina Khedmati
- Students Research Committee, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
16
|
Strzyga-Łach P, Chrzanowska A, Kiernozek-Kalińska E, Żyżyńska-Granica B, Podsadni K, Podsadni P, Bielenica A. Proapoptotic effects of halogenated bis-phenylthiourea derivatives in cancer cells. Arch Pharm (Weinheim) 2023; 356:e2300105. [PMID: 37401845 DOI: 10.1002/ardp.202300105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/07/2023] [Accepted: 06/14/2023] [Indexed: 07/05/2023]
Abstract
New halogenated thiourea derivatives were synthesized via the reaction of substituted phenylisothiocyanates with aromatic amines. Their cytotoxic activity was examined in in vitro studies against solid tumors (SW480, SW620, PC3), a hematological malignance (K-562), and normal keratinocytes (HaCaT). Most of the compounds were more effective against SW480 (1a, 3a, 3b, 5j), K-562 (2b, 3a, 4a), or PC3 (5d) cells than cisplatin, with favorable selectivity. Their anticancer mechanisms were studied by Annexin V-fluorescein-5-isothiocyanate apoptosis, caspase-3/caspase-7 assessment, cell cycle analysis, interleukin-6 (IL-6) release inhibition, and reactive oxygen species (ROS) generation assay. Thioureas 1a, 2b, 3a, and 4a were the most potent activators of early apoptosis in K-562 cells, and substances 1a, 3b, 5j triggered late-apoptosis or necrosis in SW480 cells. This proapoptotic effect was proved by the significant increase of caspase-3/caspase-7 activation. Cell cycle analysis revealed that derivatives 1a, 3a, 5j increased the number of SW480 and K-562 cells in the sub-G1 and/or G0/G1 phases, and one evoked cycle arrest at the G2 phase. The most potent thioureas inhibited IL-6 cytokine secretion from PC3 cells and both colon cancer cell lines. Apoptosis-inducing compounds also increased ROS production in all tumor cell cultures, which may enhance their anticancer properties.
Collapse
Affiliation(s)
- Paulina Strzyga-Łach
- Chair and Department of Biochemistry, Medical University of Warsaw, Warsaw, Poland
| | - Alicja Chrzanowska
- Chair and Department of Biochemistry, Medical University of Warsaw, Warsaw, Poland
| | | | | | - Katarzyna Podsadni
- Chair and Department of Biochemistry, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Podsadni
- Department of Drug Technology and Pharmaceutical Biotechnology, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | - Anna Bielenica
- Chair and Department of Biochemistry, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
17
|
Al-Wahaibi LH, El-Sheref EM, Hassan AA, Bräse S, Nieger M, Youssif BGM, Ibrahim MAA, Tawfeek HN. Synthesis and Structure Determination of Substituted Thiazole Derivatives as EGFR/BRAF V600E Dual Inhibitors Endowed with Antiproliferative Activity. Pharmaceuticals (Basel) 2023; 16:1014. [PMID: 37513926 PMCID: PMC10384562 DOI: 10.3390/ph16071014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
2,3,4-trisubstituted thiazoles 3a-i, having a methyl group in position four, were synthesized by the reaction of 1,4-disubstituted thiosemicarbazides with chloroacetone in ethyl acetate/Et3N at room temperature or in ethanol under reflux. The structures of new compounds were determined using NMR spectroscopy, mass spectrometry, and elemental analyses. Moreover, the structure of compound 3a was unambiguously confirmed with X-ray analysis. The cell viability assay of 3a-i at 50 µM was greater than 87%, and none of the tested substances were cytotoxic. Compounds 3a-i demonstrated good antiproliferative activity, with GI50 values ranging from 37 to 86 nM against the four tested human cancer cell lines, compared to the reference erlotinib, which had a GI50 value of 33 nM. The most potent derivatives were found to be compounds 3a, 3c, 3d, and 3f, with GI50 values ranging from 37 nM to 54 nM. The EGFR-TK and BRAFV600E inhibitory assays' results matched the antiproliferative assay's results, with the most potent derivatives, as antiproliferative agents, also being the most potent EGFR and BRAFV600E inhibitors. The docking computations were employed to investigate the docking modes and scores of compounds 3a, 3c, 3d, and 3f toward BRAFV600E and EGFR. Docking computations demonstrated the good affinity of compound 3f against BRAFV600E and EGFR, with values of -8.7 and -8.5 kcal/mol, respectively.
Collapse
Affiliation(s)
- Lamya H Al-Wahaibi
- Department of Chemistry, College of Sciences, Princess Nourah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia
| | - Essmat M El-Sheref
- Chemistry Department, Faculty of Science, Minia University, El Minia 61519, Egypt
| | - Alaa A Hassan
- Chemistry Department, Faculty of Science, Minia University, El Minia 61519, Egypt
| | - S Bräse
- Institute of Biological and Chemical Systems, IBCS-FMS, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - M Nieger
- Department of Chemistry, University of Helsinki, P.O. Box 55 (A. I. Virtasen aukio 1), 00014 Helsinki, Finland
| | - Bahaa G M Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Mahmoud A A Ibrahim
- Chemistry Department, Faculty of Science, Minia University, El Minia 61519, Egypt
- School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Hendawy N Tawfeek
- Chemistry Department, Faculty of Science, Minia University, El Minia 61519, Egypt
- Unit of Occupational of Safety and Health, Administration Office of Minia University, El-Minia 61519, Egypt
| |
Collapse
|
18
|
Minneci M, Misevicius M, Rozas I. Green Synthesis of Nitroaryl Thioureas: Towards an Improved Preparation of Guanidinium DNA Binders. Bioorg Med Chem Lett 2023; 90:129346. [PMID: 37217024 DOI: 10.1016/j.bmcl.2023.129346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/12/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
We present a general efficient green method for the preparation of nitro N,N'-diaryl thioureas via a one-pot method using cyrene as a solvent with almost quantitative yields. This confirmed the viability of cyrene as a green alternative to THF in the synthesis of thiourea derivatives. After screening different reducing conditions, the nitro N,N'-diaryl thioureas were selectively reduced using Zn dust in the presence of water and acid to the corresponding amino N,N'-diaryl thioureas. These were then used to test the installation of the Boc-protected guanidine group with N,N'-bis-Boc protected pyrazole-1-carboxamidine as a guanidylating reagent not requiring mercury(II) activation. Finally, the TFA salts obtained after Boc-deprotection of two sample compounds were tested for their affinity towards DNA showing no binding.
Collapse
Affiliation(s)
- Marco Minneci
- School of Chemistry, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Matas Misevicius
- School of Chemistry, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Isabel Rozas
- School of Chemistry, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| |
Collapse
|
19
|
Roman R, Pintilie L, Căproiu MT, Dumitrașcu F, Nuță DC, Zarafu I, Ioniță P, Chifiriuc MC, Chiriță C, Moroșan A, Popa M, Bleotu C, Limban C. New N-acyl Thiourea Derivatives: Synthesis, Standardized Quantification Method and In Vitro Evaluation of Potential Biological Activities. Antibiotics (Basel) 2023; 12:antibiotics12050807. [PMID: 37237710 DOI: 10.3390/antibiotics12050807] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 05/28/2023] Open
Abstract
New N-acyl thiourea derivatives with heterocyclic rings have been synthesized by first obtaining isothiocyanate, which further reacted with a heterocyclic amine, characterized by (FT-IR, NMR spectroscopy and FT-ICR) and tested for their in vitro antimicrobial, anti-biofilm and antioxidant activities to obtain a drug candidate in a lead-optimization process. From the tested compounds, those bearing benzothiazole (1b) and 6-methylpyridine (1d) moieties revealed anti-biofilm activity against E. coli ATCC 25922 at MBIC values of 625 µg/mL. Compound 1d exhibited the highest antioxidant capacity (~43%) in the in vitro assay using 1,1-diphenyl-2-picrylhydrazyl (DPPH). Considering the in vitro results, the highest anti-biofilm and antioxidant activities were obtained for compound 1d. Therefore, a reversed-phase high-performance liquid chromatography (RP-HPLC) method has been optimized and validated for the quantitative determination of compound 1d. The detection and quantitation limits were 0.0174 μg/mL and 0.0521 μg/mL, respectively. The R2 correlation coefficient of the LOQ and linearity curves were greater than 0.99, over the concentration range of 0.05 μg/mL-40 μg/mL. The precision and accuracy of the analytical method were within 98-102%, confirming that the method is suitable for the quantitative determination of compound 1d in routine quality control analyses. Evaluating the results, the promising potential of the new N-acyl thiourea derivatives bearing 6-methylpyridine moiety will be further investigated for developing agents with anti-biofilm and antioxidant activities.
Collapse
Affiliation(s)
- Roxana Roman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 6 Traian Vuia, 020956 Bucharest, Romania
| | - Lucia Pintilie
- National Institute for Chemical-Pharmaceutical Research & Development, 112 Vitan Av., 031299 Bucharest, Romania
| | - Miron Teodor Căproiu
- "C. D. Nenitzescu" Institute of Organic and Supramolecular Chemistry, 202B Splaiul Independenței, 060023 Bucharest, Romania
| | - Florea Dumitrașcu
- "C. D. Nenitzescu" Institute of Organic and Supramolecular Chemistry, 202B Splaiul Independenței, 060023 Bucharest, Romania
| | - Diana Camelia Nuță
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 6 Traian Vuia, 020956 Bucharest, Romania
| | - Irina Zarafu
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta, 030018 Bucharest, Romania
| | - Petre Ioniță
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta, 030018 Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Department of Microbiology, Faculty of Biology & Research Institute of the University of Bucharest (ICUB), University of Bucharest, 060101 Bucharest, Romania
- Romanian Academy, 010071 Bucharest, Romania
| | - Cornel Chiriță
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 6 Traian Vuia, 020956 Bucharest, Romania
| | - Alina Moroșan
- Department of Organic Chemistry "Costin Nenitescu", Faculty of Applied Chemistry and Materials Science, University POLITEHNICA of Bucharest, 011061 Bucharest, Romania
| | - Marcela Popa
- Department of Microbiology, Faculty of Biology & Research Institute of the University of Bucharest (ICUB), University of Bucharest, 060101 Bucharest, Romania
| | - Coralia Bleotu
- Department of Microbiology, Faculty of Biology & Research Institute of the University of Bucharest (ICUB), University of Bucharest, 060101 Bucharest, Romania
- Department of Celular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, 285 Mihai Bravu Ave., 030304 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| | - Carmen Limban
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 6 Traian Vuia, 020956 Bucharest, Romania
| |
Collapse
|
20
|
Silva WL, de Andrade FHD, Lins TB, da Silva AL, da Cruz Amorim CA, dos Santos Lima MJ, da Silva PCD, Vilela WT, Nascimento PHDB, de Oliveira JF, de Souza FS, Alves de Lima MDC, da Silva RMF. Synthesis, thermal behavior and biological evaluation of benzodioxole derivatives as potential cytotoxic and antiparasitic agents. Med Chem Res 2023. [DOI: 10.1007/s00044-023-03047-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
21
|
Saeed A, Ejaz SA, Saeed M, Channar PA, Aziz M, Fayyaz A, Zargar S, Wani TA, Alnazi H, Alharbi M, Iqbal J. Synthesis, Biochemical Characterization, and in-Silico Investigations of Acyl-3-(Ciprofloxacinyl) Thioureas as Inhibitors of Carbonic Anhydrase-II. Polycycl Aromat Compd 2023. [DOI: 10.1080/10406638.2022.2157027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Aamer Saeed
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Syeda Abida Ejaz
- Department of Pharmaceutical Chemistry, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Maria Saeed
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Pervaiz Ali Channar
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Basic Sciences and Humanities, Faculty of Information Sciences and Humanities, Dawood University of Engineering and Technology Karachi, Karachi, Pakistan
| | - Mubashir Aziz
- Department of Pharmaceutical Chemistry, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Ammara Fayyaz
- Department of Pharmaceutical Chemistry, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Seema Zargar
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Tanveer A. Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Humidah Alnazi
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mona Alharbi
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad, Pakistan
| |
Collapse
|
22
|
A novel synthesis of functionalized sulfonamide derivatives using the reaction of substituted thiourea or oxime derivatives with N-(2,3-dibromopropyl)-aryl(alkyl)sulfonamides. MONATSHEFTE FUR CHEMIE 2022. [DOI: 10.1007/s00706-022-02991-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
23
|
Ali Mohammed Al-Ahmed Z. Novel Cr(III), Ni(II), and Zn(II) complexes of thiocarbamide derivative: Synthesis, investigation, theoretical, catalytic, potentiometric, molecular docking and biological studies. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
24
|
Novel urea-thiourea hybrids bearing 1,4-naphthoquinone moiety: Anti-inflammatory activity on mammalian macrophages by regulating intracellular PI3K pathway, and molecular docking study. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Xi Q, Jiang W, Wang H, Liu J, Sun F, Wen B, Zhao X, Gao S, Li Y. A Facile Synthesis and Antitumor Activity of Novel 2-Aryl-2,3- dihydro-1 H-pyrrolo[3,4- b]quinoxalin-1-ones. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2021.1881130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Qian Xi
- College of Chemistry and Chemical Engineering, Bohai University, Jinzhou, China
| | - Wenting Jiang
- College of Life Science, Yan’an University, Yan’an, China
| | - Hongxue Wang
- College of Chemistry and Chemical Engineering, Bohai University, Jinzhou, China
| | - Jia Liu
- Chaoyang Inspection and Testing Certification Center, Chaoyang, China
| | - Fuze Sun
- College of Chemistry and Chemical Engineering, Bohai University, Jinzhou, China
| | - Baohan Wen
- College of Chemistry and Chemical Engineering, Bohai University, Jinzhou, China
| | - Xinyue Zhao
- College of Chemistry and Chemical Engineering, Bohai University, Jinzhou, China
| | - Siyang Gao
- College of Chemistry and Chemical Engineering, Bohai University, Jinzhou, China
| | - Yang Li
- College of Chemistry and Chemical Engineering, Bohai University, Jinzhou, China
| |
Collapse
|
26
|
Litvinov IA, Burmistrov VV, Fayzullin RR. STRUCTURE OF SOME ADAMANTYL-CONTAINING UREAS AND HYDROGEN BONDS IN THEIR CRYSTALS. J STRUCT CHEM+ 2022. [DOI: 10.1134/s002247662208008x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Anticancer activity and QSAR study of sulfur-containing thiourea and sulfonamide derivatives. Heliyon 2022; 8:e10067. [PMID: 35991984 PMCID: PMC9389185 DOI: 10.1016/j.heliyon.2022.e10067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 04/01/2022] [Accepted: 07/19/2022] [Indexed: 11/24/2022] Open
Abstract
Sulfur-containing compounds are considered as attractive pharmacophores for discovery of new drugs regarding their versatile properties to interact with various biological targets. Quantitative structure-activity relationship (QSAR) modeling is one of well-recognized in silico tools for successful drug discovery. In this work, a set of 38 sulfur-containing derivatives (Types I–VI) were evaluated for their in vitro anticancer activities against 6 cancer cell lines. In vitro findings indicated that compound 13 was the most potent cytotoxic agent toward HuCCA-1 cell line (IC50 = 14.47 μM). Compound 14 exhibited the most potent activities against 3 investigated cell lines (i.e., HepG2, A549, and MDA-MB-231: IC50 range = 1.50–16.67 μM). Compound 10 showed the best activity for MOLT-3 (IC50 = 1.20 μM) whereas compound 22 was noted for T47D (IC50 = 7.10 μM). Subsequently, six QSAR models were built using multiple linear regression (MLR) algorithm. All constructed QSAR models provided reliable predictive performance (training sets: Rtr range = 0.8301–0.9636 and RMSEtr = 0.0666–0.2680; leave-one-out cross validation sets: RCV range = 0.7628–0.9290 and RMSECV = 0.0926–0.3188). From QSAR modeling, chemical properties such as mass, polarizability, electronegativity, van der Waals volume, octanol-water partition coefficient, as well as frequency/presence of C–N, F–F, and N–N bonds in the molecule are essential key predictors for anticancer activities of the compounds. In summary, a series of promising fluoro-thiourea derivatives (10, 13, 14, 22) were suggested as potential molecules for future development as anticancer agents. Key structure-activity knowledge obtained from the QSAR modeling was suggested to be advantageous for suggesting the effective rational design of the related sulfur-containing anticancer compounds with improved bioactivities and properties.
Collapse
|
28
|
Design, synthesis and mechanistic studies of novel imidazo[1,2-a]pyridines as anticancer agents. Bioorg Chem 2022; 128:106042. [PMID: 35878430 DOI: 10.1016/j.bioorg.2022.106042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/16/2022] [Accepted: 07/17/2022] [Indexed: 11/20/2022]
Abstract
Herein, the design, synthesis and mechanistic study of five series of imidazo[1,2-a]pyridines 8a-d, 9a-f, 11a-c, 12a-d and 14a-d as anticancer agents were discussed. The cytotoxicity of imidazo[1,2-a]pyridine derivatives was screened against NCI 60 cancer cell lines. The cytotoxicity of compounds 8b, 8c, 9e and 9f was then evaluated against leukemia K-562 cancer cell line and normal lung fibroblasts (WI38). The hydrazone derivatives 8b and 8c exhibited significant cytotoxic activities against the leukemia K-562 cancer cell line with good safety margins (IC50 = 2.91 µM, SI = 8.32 and IC50 = 1.09 µM, SI = 10.54, respectively). In addition, compounds 8b, 8c, 9e and 9f were tested for their EGFR and COX-2 inhibitory activities. The hydrazone derivatives 8b and 8c were the most active EGFR inhibitors with IC50 values of 0.123 and 0.072 µM, respectively. Compound 8c selectively inhibited COX-2 (IC50 = 1.09 µM, SI = 13.78). Moreover, the potential of compound 8c to induce apoptosis in leukemia K-562 cell line was determined. Compound 8c showed a pre-G1 apoptosis and a growth arrest of leukemia K-562 cell line at G1 phase of cell cycle. Also, compound 8c was able to induce caspase-3 overexpression (6.98 folds), if compared to control. Finally, molecular docking studies and physicochemical properties calculation of compounds 8b, 8c, 9e and 9f were carried out to explain the biological data and to predict bioavailability of the most active compounds.
Collapse
|
29
|
Kozyra P, Krasowska D, Pitucha M. New Potential Agents for Malignant Melanoma Treatment-Most Recent Studies 2020-2022. Int J Mol Sci 2022; 23:6084. [PMID: 35682764 PMCID: PMC9180979 DOI: 10.3390/ijms23116084] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 02/05/2023] Open
Abstract
Malignant melanoma (MM) is the most lethal skin cancer. Despite a 4% reduction in mortality over the past few years, an increasing number of new diagnosed cases appear each year. Long-term therapy and the development of resistance to the drugs used drive the search for more and more new agents with anti-melanoma activity. This review focuses on the most recent synthesized anti-melanoma agents from 2020-2022. For selected agents, apart from the analysis of biological activity, the structure-activity relationship (SAR) is also discussed. To the best of our knowledge, the following literature review delivers the latest achievements in the field of new anti-melanoma agents.
Collapse
Affiliation(s)
- Paweł Kozyra
- Independent Radiopharmacy Unit, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Danuta Krasowska
- Department of Dermatology, Venerology and Pediatric Dermatology, Medical University of Lublin, 20-081 Lublin, Poland;
| | - Monika Pitucha
- Independent Radiopharmacy Unit, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland;
| |
Collapse
|
30
|
González-Cuesta M, Herrera-González I, García-Moreno MI, Ashmus RA, Vocadlo DJ, García Fernández JM, Nanba E, Higaki K, Ortiz Mellet C. sp 2-Iminosugars targeting human lysosomal β-hexosaminidase as pharmacological chaperone candidates for late-onset Tay-Sachs disease. J Enzyme Inhib Med Chem 2022; 37:1364-1374. [PMID: 35575117 PMCID: PMC9126592 DOI: 10.1080/14756366.2022.2073444] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The late-onset form of Tay-Sachs disease displays when the activity levels of human β-hexosaminidase A (HexA) fall below 10% of normal, due to mutations that destabilise the native folded form of the enzyme and impair its trafficking to the lysosome. Competitive inhibitors of HexA can rescue disease-causative mutant HexA, bearing potential as pharmacological chaperones, but often also inhibit the enzyme O-glucosaminidase (GlcNAcase; OGA), a serious drawback for translation into the clinic. We have designed sp2-iminosugar glycomimetics related to GalNAc that feature a neutral piperidine-derived thiourea or a basic piperidine-thiazolidine bicyclic core and behave as selective nanomolar competitive inhibitors of human Hex A at pH 7 with a ten-fold lower inhibitory potency at pH 5, a good indication for pharmacological chaperoning. They increased the levels of lysosomal HexA activity in Tay-Sachs patient fibroblasts having the G269S mutation, the highest prevalent in late-onset Tay-Sachs disease.
Collapse
Affiliation(s)
- Manuel González-Cuesta
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, Sevilla, Spain
| | - Irene Herrera-González
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, Sevilla, Spain
| | - M Isabel García-Moreno
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, Sevilla, Spain
| | - Roger A Ashmus
- Department of Chemistry and Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - David J Vocadlo
- Department of Chemistry and Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - José M García Fernández
- Instituto de Investigaciones Químicas (IIQ), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Sevilla, Sevilla, Spain
| | - Eiji Nanba
- Organization for Research Initiative and Promotion, Tottori University, Yonago, Japan
| | - Katsumi Higaki
- Organization for Research Initiative and Promotion, Tottori University, Yonago, Japan
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, Sevilla, Spain
| |
Collapse
|
31
|
Arafa WAA, Ghoneim AA, Mourad AK. N-Naphthoyl Thiourea Derivatives: An Efficient Ultrasonic-Assisted Synthesis, Reaction, and In Vitro Anticancer Evaluations. ACS OMEGA 2022; 7:6210-6222. [PMID: 35224384 PMCID: PMC8867804 DOI: 10.1021/acsomega.1c06718] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/28/2022] [Indexed: 05/13/2023]
Abstract
This work demonstrates the optimization of an efficient, mild, and environmentally friendly synthetic approach to access a diverse library of N-naphthoyl thioureas. These derivatives could be exploited as precursor scaffolds for designing valuable heterocycles with anticipated biological activities. Additionally, the utilization of a copper complex derived from the newly synthesized N-naphthoyl thiourea ligand in the photodegradation of methyl orange (MO) dye was explored. The antiproliferative effect of the synthesized derivatives was examined against MCF-7, HCT116, and A549 cancer cell lines. Most of the assembled derivatives revealed a significant cytotoxic effect, in some cases, greater than doxorubicin. Of these, the copper complex demonstrated significant antitumor activities (IC50 < 1.3 μM) and lesser cytotoxic impact (IC50 > 76 μM), indicating its possibility as a pioneering candidate for future carcinogenic pharmaceutics. Relations between the structure and activity also have been addressed.
Collapse
Affiliation(s)
- Wael Abdelgayed Ahmed Arafa
- Chemistry
Department, College of Science, Jouf University, P. O. Box 2014, Sakaka 2014 Jouf, Kingdom
of Saudi Arabia
| | - Amira Atef Ghoneim
- Chemistry
Department, College of Science, Jouf University, P. O. Box 2014, Sakaka 2014 Jouf, Kingdom
of Saudi Arabia
| | - Asmaa K. Mourad
- Chemistry
Department, Faculty of Science, Fayoum University, P.O. Box 63514, Fayoum 63514, Egypt
| |
Collapse
|
32
|
Alharbi W. Advancement and recent trends in seeking less toxic and more active anti-cancer drugs: Insights into thiourea based molecules. MAIN GROUP CHEMISTRY 2022. [DOI: 10.3233/mgc-210183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The finding of potent anticancer agents with low toxicity and high selectivity has remained valuable for human health. Thiourea derivatives are the most significant organic compounds with integral and typical characteristics of numerous varieties of natural products and pharmaceutical agents. It exhibits various pharmacological properties, and its analogues confer a great deal of structural diversity that was proven to be the most advantageous in the search for novel therapeutic agents. Thiourea derivatives, which show beneficial antitumor activities, are typically considered the central core in various anticancer derivatives. They also have broad-ranging biological activities such as anti-inflammatory, antibacterial, antifungal, antitubercular, antihypertensive, antihistaminic, and antiviral activities. Several FDA-approved drugs of thiourea derivatives and their analogues in the market, currently in progress through various registration statuses or clinical stages, indicating that thiourea derivatives are the most promising drugs. The current review is intended to systematically provide comprehensive evidence in the recent developments of thiourea to treat numerous types of cancer. Furthermore, we hope that this review will be helpful for novel consideration in seeking rational designs of less toxic and more active drugs and more effective diagnostics agents.
Collapse
Affiliation(s)
- Walaa Alharbi
- Department of Chemistry, Science and Arts College, Rabigh Campus, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| |
Collapse
|
33
|
Antimycobacterial and anti-inflammatory activities of thiourea derivatives focusing on treatment approaches for severe pulmonary tuberculosis. Bioorg Med Chem 2022; 53:116506. [PMID: 34890996 DOI: 10.1016/j.bmc.2021.116506] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 12/13/2022]
Abstract
Tuberculosis (TB) remains a serious public health problem and one of the main concern is the emergence of multidrug-resistant and extensively resistant TB. Hyper-reactive patients develop inflammatory necrotic lung lesions that aggravate the pathology and facilitate transmission of mycobacteria. Treatment of severe TB is a major clinical challenge that has few effective solutions and patients face a poor prognosis, years of treatment and different adverse drug reactions. In this work, fifteen novel and thirty-one unusual thiourea derivatives were synthesized and evaluated in vitro for their antimycobacterial and anti-inflammatory potential and, in silico for ADMET parameters and for structure-activity relationship (SAR). Thioureas derivatives 10, 15, 16, 28 and 29 that had shown low cytotoxicity and high activities were selected for further investigation, after SAR study. These five thioureas derivatives inhibited Mtb H37Rv growth in bacterial culture and in infected macrophages, highlighting thiourea derivative 28 (MIC50 2.0 ± 1.1 and 2.3 ± 1.1 µM, respectively). Moreover, these compounds were active against the hypervirulent clinical Mtb strain M299, in bacterial culture, especially 16, 28 and 29, and in extracellular clumps, highlighting 29, with MIC50 5.6 ± 1.2 µM. Regarding inflammation, they inhibited NO through the suppression of iNOS expression, and also inhibited the production of TNF-α and IL-1β. In silico studies were carried out suggesting that these five compounds could be administered by oral route and have low toxicological effects when compared to rifampicin. In conclusion, our data show that, at least, thiourea derivatives 16, 28 and 29 are promising antimycobacterial and anti-inflammatory agents, and candidates for further prospective studies aiming new anti-TB drugs, that can be used on a dual approach for the treatment of severe TB cases associated with exacerbated inflammation.
Collapse
|
34
|
Ren S, Wang X, Song J, Jin G. Discovery of novel ibrutinib analogues to treat malignant melanoma. Bioorg Chem 2021; 117:105419. [PMID: 34689082 DOI: 10.1016/j.bioorg.2021.105419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/28/2021] [Accepted: 10/07/2021] [Indexed: 12/14/2022]
Abstract
A series of novel ibrutinib analogues was synthesized, and their proliferation inhibitory activities against various B lymphoma cell lines (DaudiB and Raji) and solid tumor cells (B16, CT26, HepG2 and 4T1) were evaluated. The most potent compound, YL7, exhibited strong antiproliferative activity in all cell lines, and its IC50 value in B16 cells was almost 9-fold better than that of ibrutinib. Mechanism of action studies showed that YL7 inhibited proliferation and migration and induced G1 cell cycle arrest, apoptosis and autophagy in B16 cells. Further assessment of in vivo antitumor efficacies demonstrated that YL7 significantly inhibited the growth of B16 melanoma. These preliminary studies suggest that it is reasonable to modify the structure of ibrutinib for antimelanoma treatment.
Collapse
Affiliation(s)
- Sumei Ren
- School of Pharmaceutical Sciences, Nation-Regional Engineering Lab for Synthetic Biology of Medicine, International Cancer Center, Shenzhen University Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiaodong Wang
- School of Pharmaceutical Sciences, Nation-Regional Engineering Lab for Synthetic Biology of Medicine, International Cancer Center, Shenzhen University Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Jun Song
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Guangyi Jin
- School of Pharmaceutical Sciences, Nation-Regional Engineering Lab for Synthetic Biology of Medicine, International Cancer Center, Shenzhen University Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong, China.
| |
Collapse
|
35
|
Bahadur A, Iqbal S, Shoaib M, Zulqarnain M, Shah M, Abd‐Rabboh HSM, Perwez U, Qayyum MA, Zaman A. Pharmacokinetics, Mechanism, and Docking Study of Antioxidant Aryl‐Bisthiourea Derivatives for Alzheimer's Disease. ChemistrySelect 2021. [DOI: 10.1002/slct.202101634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ali Bahadur
- Department of Transdisciplinary Studies Graduate School of Convergence Science and Technology Seoul National University Seoul 08826 South Korea
| | - Shahid Iqbal
- Department of Chemistry School of Natural Sciences (SNS) National University of Science and Technology (NUST), H-12 Islamabad 46000 Pakistan
| | - Muhammad Shoaib
- Department of Chemistry Government Postgraduate College Samanabad Faisalabad 38000 Pakistan
| | | | - Mazloom Shah
- Department of Chemistry Abbottabad University of Science and Technology (AUST) Abbottabad Pakistan
| | - Hisham S. M. Abd‐Rabboh
- Chemistry Department Faculty of Science King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
- Department of Chemistry Faculty of Science Ain Shams University, Abbassia Cairo 11566 Egypt
| | - Usama Perwez
- Division of Sustainable Energy and Environmental Engineering Graduate School of Engineering Osaka University 2-1 Yamada-oka, Suita Osaka 565-0871 Japan
| | - Muhammad Abdul Qayyum
- Department of Chemistry Division of Science and Technology University of Education Lahore Pakistan
| | - Ajmal Zaman
- Department of Chemistry Mohi-Ud-Din Islamic University Nerian Sharif, Azad Jammu & Kashmir Pakistan
| |
Collapse
|
36
|
El-Meguid EAA, Moustafa GO, Awad HM, Zaki ER, Nossier ES. Novel benzothiazole hybrids targeting EGFR: Design, synthesis, biological evaluation and molecular docking studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130595] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
37
|
Parmar DR, Soni JY, Guduru R, Rayani RH, Kusurkar RV, Vala AG, Talukdar SN, Eissa IH, Metwaly AM, Khalil A, Zunjar V, Battula S. Discovery of new anticancer thiourea-azetidine hybrids: design, synthesis, in vitro antiproliferative, SAR, in silico molecular docking against VEGFR-2, ADMET, toxicity, and DFT studies. Bioorg Chem 2021; 115:105206. [PMID: 34339975 DOI: 10.1016/j.bioorg.2021.105206] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/29/2021] [Accepted: 07/21/2021] [Indexed: 12/22/2022]
Abstract
With the aim to discover potent and novel antitumor agents, a series of thiourea compounds bearing 3-(4-methoxyphenyl)azetidine moiety were designed according to the essential pharmacophoric features of the reported VEGFR-2 inhibitors and synthesized. All the synthesized compounds were evaluated for their in vitro anticancer activity against various human cancer cell lines (lung (A549), prostate (PC3), breast (MCF-7), liver (HepG2), colon (HCT-116), ovarian (SKOV-3), skin (A431), brain (U251) and kidney (786-O)). 3-(4-Methoxy-3-(2-methoxypyridin-4-yl)phenyl)-N-(4-methoxyphenyl)azetidine-1-carbothioamide (3B) was found to be most potent member against PC3, U251, A431, and 786-O cancer cell lines with EC50 values 0.25, 0.6, 0.03, and 0.03 µM, respectively and showed more potency than Doxorubicin in PC3, A431, and 786-O cell lines. Compounds 1B to 7B showed EC50 values ranging from 0.03 to 12.55 µM in A431 cell line. Compound 3-(4-methoxy-3-(pyridin-4-yl)phenyl)-N-(4-methoxyphenyl)azetidine-1-carbothioamide (1B) was found to be highly efficient in A431 and 786-O cell line with EC50 values of 0.77 and 0.73 µM respectively. All the compounds exhibited good to moderate cytotoxic activity. The pharmacophoric features and molecular docking studies confirmed the potentialities of compounds 1B, 2B, 3B and 5B to be VEGFR-2 inhibitors. Moreover, in silico ADMET prediction indicated that most of the synthesized compounds have drug-like properties, possess low adverse effects and toxicity. In addition, the DFT studies for the most active compounds (1B and 3B) were carried out. In the end, our studies revealed that the compounds 1B and 3B represent promising anticancer potentialities through their VEGFR-2 inhibition.
Collapse
Affiliation(s)
- Deepa R Parmar
- Department of Chemistry, Faculty of Basic and Applied Sciences, Madhav University, Abu Road, Sirohi, Rajasthan, India; Piramal Pharma Limited - Discovery Solutions, Plot no. 18, Pharmaceutical Special Economic Zone, Village Matoda, Ahmedabad, Gujarat, India
| | - Jigar Y Soni
- Department of Chemistry, Faculty of Basic and Applied Sciences, Madhav University, Abu Road, Sirohi, Rajasthan, India.
| | - Ramakrishna Guduru
- Piramal Pharma Limited - Discovery Solutions, Plot no. 18, Pharmaceutical Special Economic Zone, Village Matoda, Ahmedabad, Gujarat, India
| | - Rahul H Rayani
- Department of Chemistry, Faculty of Basic and Applied Sciences, Madhav University, Abu Road, Sirohi, Rajasthan, India; Piramal Pharma Limited - Discovery Solutions, Plot no. 18, Pharmaceutical Special Economic Zone, Village Matoda, Ahmedabad, Gujarat, India
| | - Rakesh V Kusurkar
- Department of Chemistry, Faculty of Basic and Applied Sciences, Madhav University, Abu Road, Sirohi, Rajasthan, India; Piramal Pharma Limited - Discovery Solutions, Plot no. 18, Pharmaceutical Special Economic Zone, Village Matoda, Ahmedabad, Gujarat, India
| | - Anand G Vala
- Department of Chemistry, Faculty of Basic and Applied Sciences, Madhav University, Abu Road, Sirohi, Rajasthan, India; Piramal Pharma Limited - Discovery Solutions, Plot no. 18, Pharmaceutical Special Economic Zone, Village Matoda, Ahmedabad, Gujarat, India
| | - Sahista N Talukdar
- In vitro Department, Piramal Pharma Limited - Discovery Solutions, Plot no. 18, Pharmaceutical Special Economic Zone, Village Matoda, Ahmedabad, Gujarat, India; Pharmacokinetics Drug Metabolism Department, Syngene Amgen Research Centre, Plot no. 1,2,3,4, and 5, Bommasandra Jigani Link Road, Bommasandra Industrial Area, Bengaluru, Karnataka, India
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo11884, Egypt
| | - Ahmed M Metwaly
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ahmed Khalil
- Department of Chemistry, College of Science, King Faisal University, Al-Hofuf, Al-Ahsa 31982, Saudi Arabia; Chemistry Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Vishwanath Zunjar
- School of Engineering and Technology, Navrachana University, Vadodara, Gujarat, India
| | - Satyanarayana Battula
- Department of Chemistry, Uka Tarsadia University, Maliba campus, Bardoli, Gujarat, India
| |
Collapse
|
38
|
Ronchetti R, Moroni G, Carotti A, Gioiello A, Camaioni E. Recent advances in urea- and thiourea-containing compounds: focus on innovative approaches in medicinal chemistry and organic synthesis. RSC Med Chem 2021; 12:1046-1064. [PMID: 34355177 PMCID: PMC8293013 DOI: 10.1039/d1md00058f] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/23/2021] [Indexed: 12/18/2022] Open
Abstract
Urea and thiourea represent privileged structures in medicinal chemistry. Indeed, these moieties constitute a common framework of a variety of drugs and bioactive compounds endowed with a broad range of therapeutic and pharmacological properties. Herein, we provide an overview of the state-of-the-art of urea and thiourea-containing pharmaceuticals. We also review the diverse approaches pursued for (thio)urea bioisosteric replacements in medicinal chemistry applications. Finally, representative examples of recent advances in the synthesis of urea- and thiourea-based compounds by enabling chemical tools are discussed.
Collapse
Affiliation(s)
- Riccardo Ronchetti
- Department of Pharmaceutical Sciences, University of Perugia Via del Liceo 1 06123 Perugia Italy +39 075 5855161 +39 075 5855129
| | - Giada Moroni
- Department of Pharmaceutical Sciences, University of Perugia Via del Liceo 1 06123 Perugia Italy +39 075 5855161 +39 075 5855129
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum, University of Bologna Via Selmi 2 40126 Bologna Italy
| | - Andrea Carotti
- Department of Pharmaceutical Sciences, University of Perugia Via del Liceo 1 06123 Perugia Italy +39 075 5855161 +39 075 5855129
| | - Antimo Gioiello
- Department of Pharmaceutical Sciences, University of Perugia Via del Liceo 1 06123 Perugia Italy +39 075 5855161 +39 075 5855129
| | - Emidio Camaioni
- Department of Pharmaceutical Sciences, University of Perugia Via del Liceo 1 06123 Perugia Italy +39 075 5855161 +39 075 5855129
| |
Collapse
|
39
|
Calvo-Martín G, Plano D, Encío I, Sanmartín C. Novel N, N'-Disubstituted Selenoureas as Potential Antioxidant and Cytotoxic Agents. Antioxidants (Basel) 2021; 10:antiox10050777. [PMID: 34068900 PMCID: PMC8156206 DOI: 10.3390/antiox10050777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/11/2021] [Indexed: 12/28/2022] Open
Abstract
A series of 30 novel N,N disubstituted selenoureas were synthesized, characterized, and their antioxidant ability was tested using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid (ABTS) assays. Additionally, their cytotoxic activity was tested in vitro in a panel of three different cancer (breast, lung and colon) and two normal cell lines. Each selenourea entity contains a para-substituted phenyl ring with different electron-withdrawing and electron-donating groups, and different aliphatic and aromatic nuclei. All of the synthesized selenoureas present antioxidant capacity at high concentrations in the DPPH assay, and three of them (2b, 2c and 2d) showed greater radical scavenging capacity than ascorbic acid at lower concentrations. These results were confirmed by the ABTS assay, where these novel selenoureas present even higher antioxidant capacity than the reference compound Trolox. On the other hand, 10 selenoureas present IC50 values below 10 µM in at least one cancer cell line, resulting in the adamantyl nucleus (6a–6e), the most interesting in terms of activity and selectivity. Outstanding results were found for selenourea 6c, tested in the NCI60 cell line panel and showing an average GI50 of 1.49 µM for the 60 cell lines, and LC50 values ranging from 9.33 µM to 4.27 µM against 10 of these cancer cell lines. To gain insight into its anticancer activity mechanism, we investigated the cell cycle progression of the promising compound 6c, as well as the type of programmed-cell death in a colon cancer cell line it provokes (HT-29). Compound 6c provoked S phase cell cycle arrest and the induction of cell death was independent of caspase activation, suggesting autophagy, though this assertion requires additional studies. Overall, we envision that this compound can be further developed for the potential treatment of colon cancer.
Collapse
Affiliation(s)
- Gorka Calvo-Martín
- Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (G.C.-M.); (D.P.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, E-31008 Pamplona, Spain;
| | - Daniel Plano
- Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (G.C.-M.); (D.P.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, E-31008 Pamplona, Spain;
| | - Ignacio Encío
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, E-31008 Pamplona, Spain;
- Departamento de Ciencias de la Salud, Universidad Pública de Navarra, Avda. Barañain s/n, E-31008 Pamplona, Spain
| | - Carmen Sanmartín
- Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (G.C.-M.); (D.P.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, E-31008 Pamplona, Spain;
- Correspondence: ; Tel.: +34-948425600 (ext. 806388)
| |
Collapse
|
40
|
Synthesis and characterization of ethylenediamine platinum(II) complexes containing thiourea derivatives. X-ray crystal structures of [Pt(en)(2-imidazolidinethione)2](NO3)2 and [Pt(en)(1-phenyl-2-thiourea)2](NO3)2. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Burmaoglu S, Gobek A, Aydin BO, Yurtoglu E, Aydin BN, Ozkat GY, Hepokur C, Ozek NS, Aysin F, Altundas R, Algul O. Design, synthesis and biological evaluation of novel bischalcone derivatives as potential anticancer agents. Bioorg Chem 2021; 111:104882. [PMID: 33839582 DOI: 10.1016/j.bioorg.2021.104882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/26/2021] [Accepted: 03/28/2021] [Indexed: 01/17/2023]
Abstract
Building on our previous work that discovered chalcone as a promising pharmacophore for anticancer activity, we have various other chalcone derivatives and have synthesized a series of novel bischalcone to explore their anticancer activity. Among all tested compounds, compounds 6a, 6b, and 6c showed the highest antiproliferative activity against A-549 cancer cell lines with the average IC50 values of 4.18, 4.52, and 5.05 µM, respectively. Moreover, compound 6c showed high antiproliferative activity against the Caco-2 cell line; thus, it was 2- and 4-fold more active than the reference compounds, i.e., methotrexate and capecitabine. Compound 6a also induced cell-cycle arrest in the S phase, whereas compounds 6b and 6c were observed to stop at the G0/G1 phase. Thereafter, we evaluated that compound 6c also had the highest apoptosis/necrosis ratio than other compounds and the standard compound. The anticancer property of the 6c was also supported by molecular docking studies carried out on the EGFR and HER2 receptors. Overall, we expect that these compounds can be further developed for the potential treatment of lung cancer.
Collapse
Affiliation(s)
- Serdar Burmaoglu
- Department of Chemistry, Faculty of Science, Atatürk University, 25240 Erzurum, Turkey.
| | - Arzu Gobek
- Department of Chemistry, Faculty of Science, Atatürk University, 25240 Erzurum, Turkey
| | - Busra Ozturk Aydin
- Department of Chemistry, Faculty of Science, Atatürk University, 25240 Erzurum, Turkey
| | - Emine Yurtoglu
- Department of Chemistry, Faculty of Science, Atatürk University, 25240 Erzurum, Turkey
| | - Busra Nur Aydin
- Department of Chemistry, Faculty of Science, Atatürk University, 25240 Erzurum, Turkey
| | - Gozde Yalcin Ozkat
- Recep Tayyip Erdogan University, Faculty of Engineering, Bioengineering Department, Rize 53100, Turkey
| | - Ceylan Hepokur
- Department of Basic Pharmaceutical Sciences, Division of Biochemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, 58100 Sivas, Turkey
| | - Nihal Simsek Ozek
- Department of Biology, Faculty of Science, Atatürk University, 25240 Erzurum, Turkey; East Anatolia High Technology Application and Research Center, Atatürk University, 25240 Erzurum, Turkey
| | - Ferhunde Aysin
- Department of Basic Pharmaceutical Sciences, Division of Biochemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, 58100 Sivas, Turkey; Department of Biology, Faculty of Science, Atatürk University, 25240 Erzurum, Turkey
| | - Ramazan Altundas
- Department of Chemistry, Faculty of Science, Gebze Technical University, 41400 Gebze-Kocaeli, Turkey
| | - Oztekin Algul
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mersin University, 33169 Mersin, Turkey.
| |
Collapse
|
42
|
Wassel MMS, Ammar YA, Elhag Ali GAM, Belal A, Mehany ABM, Ragab A. Development of adamantane scaffold containing 1,3,4-thiadiazole derivatives: Design, synthesis, anti-proliferative activity and molecular docking study targeting EGFR. Bioorg Chem 2021; 110:104794. [PMID: 33735711 DOI: 10.1016/j.bioorg.2021.104794] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 12/24/2022]
Abstract
A new series of 1,3,4-thiadiazolo-adamantane derivatives were synthesized through molecular hybridization approach, then used as starting material to synthesize chloro and cyano acetamide-thiadiazole derivatives 2, 3. The newly designed compounds 1-3 were treated with different reagents to design 5-adamantyl thiadiazole derivatives 4-17 and evaluate their in vitro anti-proliferative activity against three cancer cell lines (MCF-7, HepG-2 and A549). Doxorubicin was used as a positive control. The most promising compounds 5, 6, 10a, 10b, 14b, 14c, and 17 showed up-regulation for BAX and down-regulation of Bcl-2, these findings proved their role as hopeful apoptotic inducers. In addition, the inhibitory activity against both wild EGFRWT and mutant EGFRL858R-TK for these derivatives revealed that compounds 5, 14c, and 17 have IC50 value ranging from 85 nM to 71.5 nM against wild EGFRWT and 37.85-41.19 nM against the mutant type, Lapatinib was used as a reference standard with IC50 values of 31.8 nM and 39.53 nM, respectively. The most potent derivatives were subjected to further evaluation against double mutant EGFR L858R/T790M and showed good IC50 values between (0.27-0.78 nM) compared to Lapatinib (0.18 nM) and Erlotinib (0.21 nM). Among them, thiazolo-thiadiazole adamantane derivative 17 exhibited the strongest inhibitory activity to the EGFR. Molecular docking studies were performed inside the active site of EGFR (1M17), and binding energy scores ranged between (-19.19 to -22.07 Kcal/mol) compared to Erlotinib (-19.10 Kcal/mol). Furthermore, oral bioavailability beside some pharmacokinetics properties of these derivatives were also investigated in this research work.
Collapse
Affiliation(s)
- Mohammed M S Wassel
- Department of Foot and Mouth Disease, Veterinary Serum and Vaccine Research Institute (VSVRI), Abbasia, Cairo, Egypt
| | - Yousry A Ammar
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, 11884 Cairo, Egypt.
| | - Gameel A M Elhag Ali
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, 11884 Cairo, Egypt
| | - Amany Belal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Ahmed B M Mehany
- Zoology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Ahmed Ragab
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, 11884 Cairo, Egypt.
| |
Collapse
|
43
|
He ZX, Huo JL, Gong YP, An Q, Zhang X, Qiao H, Yang FF, Zhang XH, Jiao LM, Liu HM, Ma LY, Zhao W. Design, synthesis and biological evaluation of novel thiosemicarbazone-indole derivatives targeting prostate cancer cells. Eur J Med Chem 2021; 210:112970. [PMID: 33153765 DOI: 10.1016/j.ejmech.2020.112970] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/21/2020] [Accepted: 10/25/2020] [Indexed: 12/01/2022]
Abstract
To discover novel anticancer agents with potent and low toxicity, we designed and synthesized a range of new thiosemicarbazone-indole analogues based on lead compound 4 we reported previously. Most compounds displayed moderate to high anticancer activities against five tested tumor cells (PC3, EC109, DU-145, MGC803, MCF-7). Specifically, the represented compound 16f possessed strong antiproliferative potency and high selectivity toward PC3 cells with the IC50 value of 0.054 μM, compared with normal WPMY-1 cells with the IC50 value of 19.470 μM. Preliminary mechanism research indicated that compound 16f could significantly suppress prostate cancer cells (PC3, DU-145) growth and colony formation in a dose-dependent manner. Besides, derivative 16f induced G1/S cycle arrest and apoptosis, which may be related to ROS accumulation due to the activation of MAPK signaling pathway. Furthermore, molecule 16f could effectively inhibit tumor growth through a xenograft model bearing PC3 cells and had no evident toxicity in vivo. Overall, based on the biological activity evaluation, analogue 16f can be viewed as a potential lead compound for further development of novel anti-prostate cancer drug.
Collapse
Affiliation(s)
- Zhang-Xu He
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Jin-Ling Huo
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Yun-Peng Gong
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Qi An
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Xin Zhang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Hui Qiao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Fei-Fei Yang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Xin-Hui Zhang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Le-Min Jiao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Hong-Min Liu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| | - Li-Ying Ma
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| | - Wen Zhao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| |
Collapse
|
44
|
Majeed AA, Khalil MM, Fetoh A, Abdel Aziz AA, Abu El‐Reash G. Divalent manganese, cobalt, copper and cadmium complexes of (
Z
)‐
N
‐benzoyl‐
N
′‐(1
H
‐1,2,4‐triazol‐3‐yl)carbamimidothioic acid: Preparation, characterization, computational and biological studies. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
| | - Mostafa M.H. Khalil
- Department of Chemistry, Faculty of Science Ain Shams University Cairo Egypt
| | - Ahmed Fetoh
- Department of Chemistry, Faculty of Science Mansoura University Mansoura Egypt
| | - Ayman A. Abdel Aziz
- Department of Chemistry, Faculty of Science Ain Shams University Cairo Egypt
| | - G.M. Abu El‐Reash
- Department of Chemistry, Faculty of Science Mansoura University Mansoura Egypt
| |
Collapse
|
45
|
Quinoline-pyrimidine hybrid compounds from 3-acetyl-4-hydroxy-1-methylquinolin-2(1H)-one: Study on synthesis, cytotoxicity, ADMET and molecular docking. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.09.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
46
|
Assessing the biological potential of new symmetrical ferrocene based bisthiourea analogues. Bioorg Chem 2020; 106:104180. [PMID: 33276979 DOI: 10.1016/j.bioorg.2020.104180] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/26/2020] [Accepted: 08/02/2020] [Indexed: 01/10/2023]
Abstract
In the present work synthesis and characterization of five new bisferrocenyl bisthiourea analogues (G2M, S2M, G3F, G4F and T2M) is reported. UV-Visible and electrochemical studies were performed in order to have optical (absorption maximum, Molar absorption coefficient and optical band gap) and electrochemical parameters (Oxidation/reduction potentials and nature of the electrochemical process) of the compounds. In vitro various biological studies such as antibacterial, antifungal, anti-oxidant and antidiabetic activities were carried out to have comparative overview of the phermacochemical strength of the newly synthesized compounds. Similarly, theoretical analysis was accomplished utilizing density functional theory calculations. DFT/B3LYP (6-31G d, p) technique was used. With a view to explore the structure activity relationship (SAR) of the compounds theoretical docking analysis (against α-amylase, α-glucosidase) was also performed to have pictorial view and understanding of the actual interactions responsible for the activity. S2M displayed best antibacterial activity. Similarly, Antifungal and antidiabetic activities showed G3F as a best candidate, whereas T2M proved to be the best antioxidant agent.
Collapse
|
47
|
Srour AM, Ahmed NS, Abd El-Karim SS, Anwar MM, El-Hallouty SM. Design, synthesis, biological evaluation, QSAR analysis and molecular modelling of new thiazol-benzimidazoles as EGFR inhibitors. Bioorg Med Chem 2020; 28:115657. [PMID: 32828424 DOI: 10.1016/j.bmc.2020.115657] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/26/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023]
Abstract
Heterocyclic rings such as thiazole and benzimidazole are considered as privileged structures, since they constitute several FDA-approved drugs for cancer treatment. In this work, a new set of 2-(2-(substituted) hydrazinyl)-4-(1-methyl-1H-benzo[d]imidazol-2-yl) thiazoles 4a-q were designed as epidermal growth factor receptor (EGFR) inhibitors and synthesized using concise synthetic methods. The new target compounds have been evaluated in vitro for their suppression activity against EGFR TK. Compounds 4n, 4h, 4i, 4a and 4d exhibited significant potency in comparison with erlotinib which served as a reference drug (IC50, 71.67-152.59 nM; IC50 erlotinib, 152.59 nM). Furthermore, MTT assay revealed that compounds 4j, 4a, 4f, 4h, 4n produced the most promising cytotoxic potency against the human breast cancer cell line (MCF-7) (IC50; 5.96-11.91 µM; IC50 erlotinib; 4.15 µM). Compound 4a showed promising activity as EGFR TK inhibitor as well as anti-breast cancer agent. In addition, 4a induced apoptotic effect and cell cycle arrest at G2/M phase preventing the mitotic cycle in MCF-7 cells. Moreover, 4a upregulated the oncogenic parameters; caspase-3, p53, Bax/Bcl-2 as well as it inhibited the level of PARP-1 enzyme. QSAR study was carried out for the new derivatives and it revealed the goodness of the models. Furthermore, molecular docking studies represented the binding modes of the promising compounds in the active pocket of EGFR.
Collapse
Affiliation(s)
- Aladdin M Srour
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Nesreen S Ahmed
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Somaia S Abd El-Karim
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Cairo 12622, Egypt.
| | - Manal M Anwar
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Cairo 12622, Egypt.
| | - Salwa M El-Hallouty
- Drug Bioassay-Cell Culture Laboratory, Department of Pharmacognosy, National Research Centre, Dokki, Giza 12622, Egypt
| |
Collapse
|
48
|
Synthesis and biological evaluation of 3-(2,4-dichlorophenoxymethyl)-1-phenyl-1H-pyrazole derivatives as potential antitumor agents. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-01951-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|