1
|
GIRK Channel Activity in Dopamine Neurons of the Ventral Tegmental Area Bidirectionally Regulates Behavioral Sensitivity to Cocaine. J Neurosci 2019; 39:3600-3610. [PMID: 30837265 DOI: 10.1523/jneurosci.3101-18.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/17/2019] [Accepted: 02/22/2019] [Indexed: 12/19/2022] Open
Abstract
Dopamine (DA) neurons of the VTA have been widely implicated in the cellular and behavioral responses to drugs of abuse. Inhibitory G protein signaling mediated by GABAB receptors (GABABRs) and D2 DA receptors (D2Rs) regulates the excitability of VTA DA neurons, DA neurotransmission, and behaviors modulated by DA. Most of the somatodendritic inhibitory effect of GABABR and D2R activation on DA neurons reflects the activation of G protein-gated inwardly rectifying K+ (GIRK) channels. Furthermore, GIRK-dependent signaling in VTA DA neurons can be weakened by exposure to psychostimulants and strengthened by phasic DA neuron firing. The objective of this study was to determine how the strength of GIRK channel activity in VTA DA neurons influences sensitivity to cocaine. We used a Cre-dependent viral strategy to overexpress the individual GIRK channel subunits in VTA DA neurons of male and female adult mice, leading to enhancement (GIRK2) or suppression (GIRK3) of GIRK channel activity. Overexpression of GIRK3 decreased somatodendritic GABABR- and D2R-dependent signaling and increased cocaine-induced locomotor activity, whereas overexpression of GIRK2 increased GABABR-dependent signaling and decreased cocaine-induced locomotion. Neither manipulation impacted anxiety- or depression-related behavior, despite the link between such behaviors and DA signaling. Together, these data show that behavioral sensitivity to cocaine in mice is inversely proportional to the strength of GIRK channel activity in VTA DA neurons and suggest that direct activators of the unique VTA DA neuron GIRK channel subtype (GIRK2/GIRK3 heteromer) could represent a promising therapeutic target for treatment of addiction.SIGNIFICANCE STATEMENT Inhibitory G protein signaling in dopamine (DA) neurons, including that mediated by G protein-gated inwardly rectifying K+ (GIRK) channels, has been implicated in behavioral sensitivity to cocaine. Here, we used a viral approach to bidirectionally manipulate GIRK channel activity in DA neurons of the VTA. We found that decreasing GIRK channel activity in VTA DA neurons increased behavioral sensitivity to cocaine, whereas increasing GIRK channel activity decreased behavioral sensitivity to cocaine. These manipulations did not alter anxiety- or depression-related behaviors. These data highlight the unique GIRK channel subtype in VTA DA neurons as a possible therapeutic target for addiction.
Collapse
|
2
|
The α-1 adrenoceptor (ADRA1A) genotype moderates the magnitude of acute cocaine-induced subjective effects in cocaine-dependent individuals. Pharmacogenet Genomics 2017; 26:428-35. [PMID: 27379509 DOI: 10.1097/fpc.0000000000000234] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES We examined whether a functional variant of the ADRA1A gene moderated cocaine-induced subjective effects in a group of cocaine-dependent individuals. METHODS This study was a within-participant, double-blind, placebo-controlled inpatient human laboratory evaluation of 65 nontreatment-seeking, cocaine-dependent [Diagnostic and Statistical Manual of Mental Disorders, 4th ed. (DSM-IV)] individuals aged 18-55 years. Participants received both placebo (saline, IV) and cocaine (40 mg, IV), and subjective responses were assessed 15 min before receiving an infusion and at 5 min intervals for the subsequent 20 min. The rs1048101 variant of the α1A-adrenoceptor (ADRA1A) gene was genotyped and it was evaluated whether the Cys to Arg substitution at codon 347 in exon 2 (Cys347Arg) moderated the magnitude of the subjective effects produced by cocaine. RESULTS Thirty (46%) participants were found to have the major allele CC genotype and 35 (44%) carried at least one minor T-allele of rs1048101 (TT or TC genotype). Individuals with the CC genotype showed greater responses for 'desire' (P<0.0001), 'high' (P<0.0001), 'any drug effect' (P<0.0001), 'like cocaine' (P<0.0001), and 'likely to use cocaine if given access' (P<0.05) with experiment-wise significance. CONCLUSION This study indicates that the ADRA1A genotype could be used to identify individuals for whom acute cocaine exposure may be more rewarding and by inference may result in greater difficulty in establishing and/or maintaining abstinence from cocaine.
Collapse
|
3
|
Xu H, Das S, Sturgill M, Hodgkinson C, Yuan Q, Goldman D, Grasing K. Extracellular dopamine, acetylcholine, and activation of dopamine D1 and D2 receptors after selective breeding for cocaine self-administration in rats. Psychopharmacology (Berl) 2017; 234:2475-2487. [PMID: 28547130 PMCID: PMC5538921 DOI: 10.1007/s00213-017-4640-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 04/30/2017] [Indexed: 12/21/2022]
Abstract
RATIONALE The low self-administration (LS)/Kgras (LS) and high self-administration (HS)/Kgras (HS) rat lines were generated by selective breeding for low- and high-intravenous cocaine self-administration, respectively, from a common outbred Wistar stock (Crl:WI). This trait has remained stable after 13 generations of breeding. OBJECTIVE The objective of the present study is to compare cocaine preference, neurotransmitter release, and dopamine receptor activation in LS and HS rats. METHODS Levels of dopamine, acetylcholine, and cocaine were measured in the nucleus accumbens (NA) shell of HS and LS rats by tandem mass spectrometry of microdialysates. Cocaine-induced locomotor activity and conditioned-place preference were compared between LS and HS rats. RESULTS HS rats displayed greater conditioned-place preference scores compared to LS and reduced basal extracellular concentrations of dopamine and acetylcholine. However, patterns of neurotransmitter release did not differ between strains. Low-dose cocaine increased locomotor activity in LS rats, but not in HS animals, while high-dose cocaine augmented activity only in HS rats. Either dose of cocaine increased immunoreactivity for c-Fos in the NA shell of both strains, with greater elevations observed in HS rats. Activation identified by cells expressing both c-Fos and dopamine receptors was generally greater in the HS strain, with a similar pattern for both D1 and D2 dopamine receptors. CONCLUSIONS Diminished levels of dopamine and acetylcholine in the NA shell, with enhanced cocaine-induced expression of D1 and D2 receptors, are associated with greater rewarding effects of cocaine in HS rats and an altered dose-effect relationship for cocaine-induced locomotor activity.
Collapse
Affiliation(s)
- Haiyang Xu
- Substance Abuse Research Laboratory, Kansas City Veterans Affairs Medical Center, 4801 Linwood Boulevard, Kansas City, MO 64128
| | - Sasmita Das
- Molecular Bio-Nanotechnology, Imaging and Therapeutic Research Unit, Kansas City Veterans Affairs Medical Center, 4801 Linwood Boulevard, Kansas City, MO 64128,Division of Hematology and Oncology, Department of Medicine, University of Kansas School of Medicine, Kansas City, KS 66160
| | - Marc Sturgill
- Department of Pharmacy Practice and Administration, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | | | - Qiaoping Yuan
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20852
| | - David Goldman
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20852
| | - Kenneth Grasing
- Substance Abuse Research Laboratory, 151, Kansas City Veterans Affairs Medical Center, 4801 Linwood Boulevard, Kansas City, MO, 64128, USA. .,Division of Clinical Pharmacology, Department of Medicine, University of Kansas School of Medicine, Kansas City, KS, 66160, USA.
| |
Collapse
|
4
|
Straley ME, Van Oeffelen W, Theze S, Sullivan AM, O'Mahony SM, Cryan JF, O'Keeffe GW. Distinct alterations in motor & reward seeking behavior are dependent on the gestational age of exposure to LPS-induced maternal immune activation. Brain Behav Immun 2017; 63:21-34. [PMID: 27266391 DOI: 10.1016/j.bbi.2016.06.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 06/02/2016] [Accepted: 06/03/2016] [Indexed: 11/18/2022] Open
Abstract
The dopaminergic system is involved in motivation, reward and the associated motor activities. Mesodiencephalic dopaminergic neurons in the ventral tegmental area (VTA) regulate motivation and reward, whereas those in the substantia nigra (SN) are essential for motor control. Defective VTA dopaminergic transmission has been implicated in schizophrenia, drug addiction and depression whereas dopaminergic neurons in the SN are lost in Parkinson's disease. Maternal immune activation (MIA) leading to in utero inflammation has been proposed to be a risk factor for these disorders, yet it is unclear how this stimulus can lead to the diverse disturbances in dopaminergic-driven behaviors that emerge at different stages of life in affected offspring. Here we report that gestational age is a critical determinant of the subsequent alterations in dopaminergic-driven behavior in rat offspring exposed to lipopolysaccharide (LPS)-induced MIA. Behavioral analysis revealed that MIA on gestational day 16 but not gestational day 12 resulted in biphasic impairments in motor behavior. Specifically, motor impairments were evident in early life, which were resolved by adolescence, but subsequently re-emerged in adulthood. In contrast, reward seeking behaviors were altered in offspring exposed MIA on gestational day 12. These changes were not due to a loss of dopaminergic neurons per se in the postnatal period, suggesting that they reflect functional changes in dopaminergic systems. This highlights that gestational age may be a key determinant of how MIA leads to distinct alterations in dopaminergic-driven behavior across the lifespan of affected offspring.
Collapse
Affiliation(s)
- Megan E Straley
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland; The Irish Centre for Fetal and Neonatal Translational Research (INFANT), Cork University Maternity Hospital, Cork, Ireland
| | - Wesley Van Oeffelen
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Sarah Theze
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Aideen M Sullivan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Siobhain M O'Mahony
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Gerard W O'Keeffe
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland; The Irish Centre for Fetal and Neonatal Translational Research (INFANT), Cork University Maternity Hospital, Cork, Ireland.
| |
Collapse
|
5
|
Soyka M, Mutschler J. Treatment-refractory substance use disorder: Focus on alcohol, opioids, and cocaine. Prog Neuropsychopharmacol Biol Psychiatry 2016; 70:148-61. [PMID: 26577297 DOI: 10.1016/j.pnpbp.2015.11.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/23/2015] [Accepted: 11/11/2015] [Indexed: 12/20/2022]
Abstract
Substance use disorders are common, but only a small minority of patients receive adequate treatment. Although psychosocial therapies are effective, relapse is common. This review focusses on novel pharmacological and other treatments for patients with alcohol, opioid, or cocaine use disorders who do not respond to conventional treatments. Disulfiram, acamprosate, and the opioid antagonist naltrexone have been approved for the treatment of alcoholism. A novel, "as needed" approach is the use of the mu-opioid antagonist and partial kappa agonist nalmefene to reduce alcohol consumption. Other novel pharmacological approaches include the GABA-B receptor agonist baclofen, anticonvulsants such as topiramate and gabapentin, the partial nicotine receptor agonist varenicline, and other drugs. For opioid dependence, opioid agonist therapy with methadone or buprenorphine is the first-line treatment option. Other options include oral or depot naltrexone, morphine sulfate, depot or implant formulations, and heroin (diacetylmorphine) in treatment-refractory patients. To date, no pharmacological treatment has been approved for cocaine addiction; however, 3 potential pharmacological treatments are being studied, disulfiram, methylphenidate, and modafinil. Pharmacogenetic approaches may help to optimize treatment response in otherwise treatment-refractory patients and to identify which patients are more likely to respond to treatment, and neuromodulation techniques such as repeated transcranial magnetic stimulation and deep brain stimulation also may play a role in the treatment of substance use disorders. Although no magic bullet is in sight for treatment-refractory patients, some novel medications and brain stimulation techniques have the potential to enrich treatment options at least for some patients.
Collapse
Affiliation(s)
- Michael Soyka
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University, Nussbaumstrasse 7, 80336 Munich, Germany; Privatklinik Meiringen, Postfach 612, CH-3860 Meiringen, Switzerland.
| | - Jochen Mutschler
- Center for Addictive Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Selnaustrasse 9, 8001 Zurich, Switzerland
| |
Collapse
|
6
|
España RA, Schmeichel BE, Berridge CW. Norepinephrine at the nexus of arousal, motivation and relapse. Brain Res 2016; 1641:207-16. [PMID: 26773688 DOI: 10.1016/j.brainres.2016.01.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/14/2015] [Accepted: 01/01/2016] [Indexed: 12/13/2022]
Abstract
Arousal plays a critical role in cognitive, affective and motivational processes. Consistent with this, the dysregulation of arousal-related neural systems is implicated in a variety of psychiatric disorders, including addiction. Noradrenergic systems exert potent arousal-enhancing actions that involve signaling at α1- and β-noradrenergic receptors within a distributed network of subcortical regions. The majority of research into noradrenergic modulation of arousal has focused on the nucleus locus coeruleus. Nevertheless, anatomical studies demonstrate that multiple noradrenergic nuclei innervate subcortical arousal-related regions, providing a substrate for differential regulation of arousal across these distinct noradrenergic nuclei. The arousal-promoting actions of psychostimulants and other drugs of abuse contribute to their widespread abuse. Moreover, relapse can be triggered by a variety of arousal-promoting events, including stress and re-exposure to drugs of abuse. Evidence has long-indicated that norepinephrine plays an important role in relapse. Recent observations suggest that noradrenergic signaling elicits affectively-neutral arousal that is sufficient to reinstate drug seeking. Collectively, these observations indicate that norepinephrine plays a key role in the interaction between arousal, motivation, and relapse. This article is part of a Special Issue entitled SI: Noradrenergic System.
Collapse
Affiliation(s)
- Rodrigo A España
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States.
| | - Brooke E Schmeichel
- National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, United States.
| | - Craig W Berridge
- Department of Psychology, University of Wisconsin, Madison, WI, United States.
| |
Collapse
|
7
|
Verma V. Classic Studies on the Interaction of Cocaine and the Dopamine Transporter. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2015; 13:227-38. [PMID: 26598579 PMCID: PMC4662164 DOI: 10.9758/cpn.2015.13.3.227] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 05/29/2015] [Accepted: 06/05/2015] [Indexed: 11/18/2022]
Abstract
The dopamine transporter is responsible for recycling dopamine after release. Inhibitors of the dopamine transporter, such as cocaine, will stop the reuptake of dopamine and allow it to stay extracellularly, causing prominent changes at the molecular, cellular, and behavioral levels. There is much left to be known about the mechanism and site(s) of binding, as well as the effect that cocaine administration does to dopamine transporter-cocaine binding sites and gene expression which also plays a strong role in cocaine abusers and their behavioral characteristics. Thus, if more light is shed on the dopamine transporter-cocaine interaction, treatments for addiction and even other diseases of the dopaminergic system may not be too far ahead. As today's ongoing research expands on the shoulders of classic research done in the 1990s and 2000s, the foundation of core research done in that time period will be reviewed, which forms the basis of today's work and tomorrow's therapies.
Collapse
Affiliation(s)
- Vivek Verma
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
8
|
Pascoli V, Terrier J, Hiver A, Lüscher C. Sufficiency of Mesolimbic Dopamine Neuron Stimulation for the Progression to Addiction. Neuron 2015; 88:1054-1066. [PMID: 26586182 DOI: 10.1016/j.neuron.2015.10.017] [Citation(s) in RCA: 203] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 08/31/2015] [Accepted: 10/08/2015] [Indexed: 12/21/2022]
Abstract
The factors causing the transition from recreational drug consumption to addiction remain largely unknown. It has not been tested whether dopamine (DA) is sufficient to trigger this process. Here we use optogenetic self-stimulation of DA neurons of the ventral tegmental area (VTA) to selectively mimic the defining commonality of addictive drugs. All mice readily acquired self-stimulation. After weeks of abstinence, cue-induced relapse was observed in parallel with a potentiation of excitatory afferents onto D1 receptor-expressing neurons of the nucleus accumbens (NAc). When the mice had to endure a mild electric foot shock to obtain a stimulation, some stopped while others persevered. The resistance to punishment was associated with enhanced neural activity in the orbitofrontal cortex (OFC) while chemogenetic inhibition of the OFC reduced compulsivity. Together, these results show that stimulating VTA DA neurons induces behavioral and cellular hallmarks of addiction, indicating sufficiency for the induction and progression of the disease.
Collapse
Affiliation(s)
- Vincent Pascoli
- Department of Basic Neurosciences, Medical Faculty, University of Geneva, 1211 Geneva, Switzerland
| | - Jean Terrier
- Department of Basic Neurosciences, Medical Faculty, University of Geneva, 1211 Geneva, Switzerland
| | - Agnès Hiver
- Department of Basic Neurosciences, Medical Faculty, University of Geneva, 1211 Geneva, Switzerland
| | - Christian Lüscher
- Department of Basic Neurosciences, Medical Faculty, University of Geneva, 1211 Geneva, Switzerland; Clinic of Neurology, Department of Clinical Neurosciences, Geneva University Hospital, 1211 Geneva, Switzerland.
| |
Collapse
|
9
|
Dürsteler KM, Berger EM, Strasser J, Caflisch C, Mutschler J, Herdener M, Vogel M. Clinical potential of methylphenidate in the treatment of cocaine addiction: a review of the current evidence. Subst Abuse Rehabil 2015; 6:61-74. [PMID: 26124696 PMCID: PMC4476488 DOI: 10.2147/sar.s50807] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Cocaine use continues to be a public health problem, yet there is no proven effective pharmacotherapy for cocaine dependence. A promising approach to treating cocaine dependence may be agonist-replacement therapy, which is already used effectively in the treatment of opioid and tobacco dependence. The replacement approach for cocaine dependence posits that administration of a long-acting stimulant medication should normalize the neurochemical and behavioral perturbations resulting from chronic cocaine use. One potential medication to be substituted for cocaine is methylphenidate (MPH), as this stimulant possesses pharmacobehavioral properties similar to those of cocaine. Aim To provide a qualitative review addressing the rationale for the use of MPH as a cocaine substitute and its clinical potential in the treatment of cocaine dependence. Methods We searched MEDLINE for clinical studies using MPH in patients with cocaine abuse/dependence and screened the bibliographies of the articles found for pertinent literature. Results MPH, like cocaine, increases synaptic dopamine by inhibiting dopamine reuptake. The discriminative properties, reinforcing potential, and subjective effects of MPH and cocaine are almost identical and, importantly, MPH has been found to substitute for cocaine in animals and human volunteers under laboratory conditions. When taken orally in therapeutic doses, its abuse liability, however, appears low, which is especially true for extended-release MPH preparations. Though there are promising data in the literature, mainly from case reports and open-label studies, the results of randomized controlled trials have been disappointing so far and do not corroborate the use of MPH as a substitute for cocaine dependence in patients without attention deficit hyperactivity disorder. Conclusion Clinical studies evaluating MPH substitution for cocaine dependence have provided inconsistent findings. However, the negative findings may be explained by specific study characteristics, among them dosing, duration of treatment, or sample size. This needs to be considered when discussing the potential of MPH as replacement therapy for cocaine dependence. Finally, based on the results, we suggest possible directions for future research.
Collapse
Affiliation(s)
- Kenneth M Dürsteler
- Center for Addictive Disorders, Psychiatric University Clinics Basel, Basel, Switzerland ; Center for Addictive Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Eva-Maria Berger
- Center for Addictive Disorders, Psychiatric University Clinics Basel, Basel, Switzerland
| | - Johannes Strasser
- Center for Addictive Disorders, Psychiatric University Clinics Basel, Basel, Switzerland
| | - Carlo Caflisch
- Center for Addictive Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Jochen Mutschler
- Center for Addictive Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Marcus Herdener
- Center for Addictive Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Marc Vogel
- Center for Addictive Disorders, Psychiatric University Clinics Basel, Basel, Switzerland
| |
Collapse
|
10
|
Cocaine self-administration and extinction alter medullary noradrenergic and limbic forebrain cFos responses to acute, noncontingent cocaine injections in adult rats. Neuroscience 2014; 281:241-50. [PMID: 25050821 DOI: 10.1016/j.neuroscience.2014.07.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 07/09/2014] [Accepted: 07/12/2014] [Indexed: 01/22/2023]
Abstract
Central noradrenergic (NA) signaling contributes critically to multiple behavioral effects of cocaine administration, particularly stress- and anxiety-related effects. The present study examined the ability of acute cocaine to induce the immediate early gene product, cFos, in NA neurons and stress-related neural circuits in rats that were cocaine-naïve, or had a history of cocaine self-administration with or without extinction. Rats implanted with jugular catheters were trained to self-administer cocaine (0.5-mg/kg/infusion), with a subset subsequently trained on extinction. Cocaine-naïve controls were handled daily. After a final day of self-administration, extinction, or handling, rats received an i.p. injection of either cocaine (20-mg/kg) or saline, and 90min later were anesthetized and perfused. Tissue sections were processed for immunoperoxidase labeling of nuclear cFos with either immunoperoxidase or immunofluorescent cytoplasmic labeling of dopamine beta hydroxylase or tyrosine hydroxylase. Acute cocaine increased the number of activated NA neurons within the caudal nucleus of the solitary tract (NTS; A2 cell group) in cocaine-naïve and extinguished rats, but not in rats that only self-administered. Extinction attenuated cocaine-induced cFos activation in NA neurons of the caudal ventrolateral medulla (A1/C1 cell groups), and attenuated cFos within the paraventricular nucleus of the hypothalamus, the apex of the central neuroendocrine stress axis. Cocaine consistently increased cFos in the bed nucleus of the stria terminalis, regardless of history. NA neurons of the locus coeruleus (A6 cell group) were not activated after cocaine administration in any experimental group. Thus, the ability of cocaine to activate central stress circuitry is altered after cocaine self-administration. Our results suggest a unique role for the NTS in cocaine-induced reinstatement, as extinction training enhanced the ability of cocaine to activate NA neurons within this region. These findings suggest central NA systems originating in the caudal brainstem as potential targets for the treatment of cocaine addiction.
Collapse
|
11
|
Taylor SB, Lewis CR, Olive MF. The neurocircuitry of illicit psychostimulant addiction: acute and chronic effects in humans. Subst Abuse Rehabil 2013; 4:29-43. [PMID: 24648786 PMCID: PMC3931688 DOI: 10.2147/sar.s39684] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Illicit psychostimulant addiction remains a significant problem worldwide, despite decades of research into the neural underpinnings and various treatment approaches. The purpose of this review is to provide a succinct overview of the neurocircuitry involved in drug addiction, as well as the acute and chronic effects of cocaine and amphetamines within this circuitry in humans. Investigational pharmacological treatments for illicit psychostimulant addiction are also reviewed. Our current knowledge base clearly demonstrates that illicit psychostimulants produce lasting adaptive neural and behavioral changes that contribute to the progression and maintenance of addiction. However, attempts at generating pharmacological treatments for psychostimulant addiction have historically focused on intervening at the level of the acute effects of these drugs. The lack of approved pharmacological treatments for psychostimulant addiction highlights the need for new treatment strategies, especially those that prevent or ameliorate the adaptive neural, cognitive, and behavioral changes caused by chronic use of this class of illicit drugs.
Collapse
Affiliation(s)
- Sara B Taylor
- Program in Behavioral Neuroscience, Arizona State University, Tempe, AZ, USA
| | - Candace R Lewis
- Program in Behavioral Neuroscience, Arizona State University, Tempe, AZ, USA
| | - M Foster Olive
- Program in Behavioral Neuroscience, Arizona State University, Tempe, AZ, USA ; Interdisciplinary Graduate Program in Neuroscience, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
12
|
Taylor SB, Lewis CR, Olive MF. The neurocircuitry of illicit psychostimulant addiction: acute and chronic effects in humans. Subst Abuse Rehabil 2013. [PMID: 24648786 DOI: 10.2147/sar.s39684.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Illicit psychostimulant addiction remains a significant problem worldwide, despite decades of research into the neural underpinnings and various treatment approaches. The purpose of this review is to provide a succinct overview of the neurocircuitry involved in drug addiction, as well as the acute and chronic effects of cocaine and amphetamines within this circuitry in humans. Investigational pharmacological treatments for illicit psychostimulant addiction are also reviewed. Our current knowledge base clearly demonstrates that illicit psychostimulants produce lasting adaptive neural and behavioral changes that contribute to the progression and maintenance of addiction. However, attempts at generating pharmacological treatments for psychostimulant addiction have historically focused on intervening at the level of the acute effects of these drugs. The lack of approved pharmacological treatments for psychostimulant addiction highlights the need for new treatment strategies, especially those that prevent or ameliorate the adaptive neural, cognitive, and behavioral changes caused by chronic use of this class of illicit drugs.
Collapse
Affiliation(s)
- Sara B Taylor
- Program in Behavioral Neuroscience, Arizona State University, Tempe, AZ, USA
| | - Candace R Lewis
- Program in Behavioral Neuroscience, Arizona State University, Tempe, AZ, USA
| | - M Foster Olive
- Program in Behavioral Neuroscience, Arizona State University, Tempe, AZ, USA ; Interdisciplinary Graduate Program in Neuroscience, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
13
|
Abstract
Systemic administration of amphetamine (AMPH) induces phosphorylation of MeCP2 at Ser421 (pMeCP2) in select populations of neurons in the mesolimbocortical brain regions. Because AMPH simultaneously activates multiple monoamine neurotransmitter systems, here we examined the ability of dopamine (DA), serotonin (5-HT), and norepinephrine (NE) to induce pMeCP2. Selective blockade of the DA transporter (DAT) or the 5-HT transporter (SERT), but not the NE transporter (NET), was sufficient to induce pMeCP2 in the CNS. DAT blockade induced pMeCP2 in the prelimbic cortex (PLC) and nucleus accumbens (NAc), whereas SERT blockade induced pMeCP2 only in the NAc. Administration of selective DA and 5-HT receptor agonists was also sufficient to induce pMeCP2; however, the specific combination of DA and 5-HT receptors activated determined the regional- and cell-type specificity of pMeCP2 induction. The D(1)-class DA receptor agonist SKF81297 induced pMeCP2 widely; however, coadministration of the D(2)-class agonist quinpirole restricted the induction of pMeCP2 to GABAergic interneurons of the NAc. Intra-striatal injection of the adenylate cyclase activator forskolin was sufficient to induce pMeCP2 in medium-spiny neurons, suggesting that the combinatorial regulation of cAMP by different classes of DA and 5-HT receptors may contribute to the cell-type specificity of pMeCP2 induction. Consistent with the regulation of pMeCP2 by multiple monoamine neurotransmitters, genetic disruption of any single monoamine transporter in DAT-, SERT-, and NET-knockout mice failed to eliminate AMPH-induced pMeCP2 in the NAc. Together, these studies indicate that combinatorial signaling through DA and 5-HT receptors can regulate the brain region- and cell-type specific pMeCP2 in the CNS.
Collapse
|
14
|
Neural Changes Developed during the Extinction of Cocaine Self-Administration Behavior. Pharmaceuticals (Basel) 2011; 4:1315-27. [PMID: 26791639 PMCID: PMC4060127 DOI: 10.3390/ph4101315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 09/20/2011] [Indexed: 02/06/2023] Open
Abstract
The high rate of recidivism in cocaine addiction after prolonged periods of abstinence poses a significant problem for the effective treatment of this condition. Moreover, the neurobiological basis of this relapse phenomenon remains poorly understood. In this review, we will discuss the evidence currently available regarding the neurobiological changes during the extinction of cocaine self-administration. Specifically, we will focus on alterations in the dopaminergic, opioidergic, glutamatergic, cholinergic, serotoninergic and CRF systems described in self-administration experiments and extinction studies after chronic cocaine administration. We will also discuss the differences related to contingent versus non-contingent cocaine administration, which highlights the importance of environmental cues on drug effects and extinction. The findings discussed in this review may aid the development of more effective therapeutic approaches to treat cocaine relapse.
Collapse
|
15
|
Manukhin BN, Berdysheva LV, Boiko OV, Nesterova LA. Similarities and differences in the effect of cocaine on α-adrenergic and muscarinic response. BIOL BULL+ 2011. [DOI: 10.1134/s1062359011030083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Thompson BJ, Jessen T, Henry LK, Field JR, Gamble KL, Gresch PJ, Carneiro AM, Horton RE, Chisnell PJ, Belova Y, McMahon DG, Daws LC, Blakely RD. Transgenic elimination of high-affinity antidepressant and cocaine sensitivity in the presynaptic serotonin transporter. Proc Natl Acad Sci U S A 2011; 108:3785-90. [PMID: 21282638 PMCID: PMC3048100 DOI: 10.1073/pnas.1011920108] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Serotonin [i.e., 5-hydroxytryptamine (5-HT)]-targeted antidepressants are in wide use for the treatment of mood disorders, although many patients do not show a response or experience unpleasant side effects. Psychostimulants, such as cocaine and 3,4-methylenedioxymethamphetamine (i.e., "ecstasy"), also impact 5-HT signaling. To help dissect the contribution of 5-HT signaling to the actions of these and other agents, we developed transgenic mice in which high-affinity recognition of multiple antidepressants and cocaine is eliminated. Our animals possess a modified copy of the 5-HT transporter (i.e., SERT, slc6a4) that bears a single amino acid substitution, I172M, proximal to the 5-HT binding site. Although the M172 substitution does not impact the recognition of 5-HT, this mutation disrupts high-affinity binding of many competitive antagonists in transfected cells. Here, we demonstrate that, in M172 knock-in mice, basal SERT protein levels, 5-HT transport rates, and 5-HT levels are normal. However, SERT M172 mice display a substantial loss of sensitivity to the selective 5-HT reuptake inhibitors fluoxetine and citalopram, as well as to cocaine. Through a series of biochemical, electrophysiological, and behavioral assays, we demonstrate the unique properties of this model and establish directly that SERT is the sole protein responsible for selective 5-HT reuptake inhibitor-mediated alterations in 5-HT clearance, in 5-HT1A autoreceptor modulation of raphe neuron firing, and in behaviors used to predict the utility of antidepressants.
Collapse
Affiliation(s)
| | | | | | | | - Karen L. Gamble
- Biological Sciences, Vanderbilt University School of Medicine, Nashville, TN 37232
| | | | | | - Rebecca E. Horton
- Department of Physiology, University of Texas Health Sciences Center, San Antonio, TX 78229
| | | | | | - Douglas G. McMahon
- Biological Sciences, Vanderbilt University School of Medicine, Nashville, TN 37232
- Center for Molecular Neuroscience, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Lynette C. Daws
- Department of Physiology, University of Texas Health Sciences Center, San Antonio, TX 78229
- Department of Pharmacology, University of Texas Health Sciences Center, San Antonio, TX 78229; and
| | - Randy D. Blakely
- Departments of Pharmacology and
- Center for Molecular Neuroscience, Vanderbilt University School of Medicine, Nashville, TN 37232
- Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
17
|
Abstract
The fundamental principle that unites addictive drugs appears to be that each enhances synaptic dopamine by means that dissociate it from normal behavioral control, so that they act to reinforce their own acquisition. This occurs via the modulation of synaptic mechanisms that can be involved in learning, including enhanced excitation or disinhibition of dopamine neuron activity, blockade of dopamine reuptake, and altering the state of the presynaptic terminal to enhance evoked over basal transmission. Amphetamines offer an exception to such modulation in that they combine multiple effects to produce nonexocytic stimulation-independent release of neurotransmitter via reverse transport independent from normal presynaptic function. Questions about the molecular actions of addictive drugs, prominently including the actions of alcohol and solvents, remain unresolved, but their ability to co-opt normal presynaptic functions helps to explain why treatment for addiction has been challenging.
Collapse
Affiliation(s)
- David Sulzer
- Departments of Psychiatry, Neurology, and Pharmacology, Columbia University Medical Center, Black 308, 650 W. 168 St., New York, NY 10032, USA.
| |
Collapse
|
18
|
Abstract
Substance use disorders are highly prevalent in the United States and cause considerable damage to our society. They are underrecognized and undertreated despite a vast body of literature demonstrating the efficacy of treatment using both psychosocial and psychopharmacological modalities. For the last decade, research and progress into the biological basis of the addictive process has led to a rapidly growing number of pharmacological agents used to interrupt the addictive process at its various stages such as the initiation of substance abuse, the transition from abuse to dependence, and the prevention of drug reinstatement or relapse. Food and Drug Administration-approved medications exist for nicotine, alcohol, and opioid use disorders, and progress is being made to develop agents for stimulant use disorders. Regarding nicotine use disorders, nicotine replacement therapies,bupropion and varenicline, have Food and Drug Administration approval, and future options exist with endocannabinoid antagonists and immune therapy. Aversive agents, opiate antagonists, and glutamate based interventions are currently approved to treat alcohol use disorders with future promise with GABAergic, serotonergic, and endocannabinoid system agents. Opiate addiction is treated by approved agonist and antagonist mu-opioid medications with the future potential for agents that can modulate the stress systems and the iboga alkaloids. Although no pharmacotherapies are currently approved for cocaine addiction, promising lines of research include agents that affect dopaminergic, GABAergic, serotonergic,and glutamatergic systems as well as the promise for immune therapies.
Collapse
|
19
|
Jones JD, Hall FS, Uhl GR, Riley AL. Dopamine, norepinephrine and serotonin transporter gene deletions differentially alter cocaine-induced taste aversion. Pharmacol Biochem Behav 2010; 94:580-7. [PMID: 19969013 PMCID: PMC3104319 DOI: 10.1016/j.pbb.2009.11.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 11/23/2009] [Accepted: 11/30/2009] [Indexed: 11/16/2022]
Abstract
Although cocaine is primarily known for its powerful hedonic effects, there is evidence that its affective experience has a notable aversive component that is less well understood. A variety of pharmacological and molecular approaches have implicated enhanced monoamine (MA) neurotransmission in the aversive effects of cocaine. Although numerous studies have yielded data supportive of the role of the monoamines (indirectly and directly), the specific system suggested to be involved differs across studies and paradigms (Freeman et al., 2005b; Grupp, 1997; Roberts and Fibiger, 1997). Monoamine transporter knockout mice have been useful in the study of many different aspects of cocaine effects relevant to human drug use and addiction, yet an assessment of the effects of deletion of the genes for the dopamine, norepinephrine and serotonin transporters (DAT, NET, and SERT, respectively) on cocaine's aversive properties has yet to be performed (Uhl et al., 2002). In the current investigation, the strength of cocaine-induced aversions was compared among three groups of transgenic mice with deletions of the genes responsible for the production of one of the monoamine transporters. When compared to their respective WT controls, dopamine transporter deletion slightly attenuated cocaine-induced aversion while deletion of SERT or NET resulted in a more significant delay in the onset and strength of cocaine-induced taste aversions. The data lead us to conclude that the action of cocaine to inhibit NET contributes most substantially to its aversive effects, with some involvement of SERT and minimal contribution of DAT.
Collapse
Affiliation(s)
- Jermaine D Jones
- Psychopharmacology Laboratory, Department of Psychology, American University, Washington, D.C., USA.
| | | | | | | |
Collapse
|
20
|
Roth-Deri I, Friedman A, Abraham L, Lax E, Flaumenhaft Y, Dikshtein Y, Yadid G. Antidepressant treatment facilitates dopamine release and drug seeking behavior in a genetic animal model of depression. Eur J Neurosci 2009; 30:485-92. [PMID: 19614746 DOI: 10.1111/j.1460-9568.2009.06840.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Anhedonia and lack of motivation are core symptoms of depression. In contrast, hyper-motivation and euphoria characterize intoxicated states. In order to explore the relationship between these two behavioral states we examined cocaine self-administration tasks in an animal model of depression [Flinders Sensitive Line (FSL) rats]. We found that FSL rats exhibit sub-sensitivity in their cocaine-seeking behavior, which was normalized following a chronic treatment with the antidepressant desipramine. However, when the cocaine dosage was increased, FSL rats demonstrated a similar cocaine-seeking behavior to that of controls. In light of dopamine's central role in modulating cocaine reinforcement, we examined dopaminergic neurotransmission in the nucleus accumbens, a brain region implicated in the rewarding and hedonic effects of substances of misuse. FSL rats exhibited low but dose-dependent increases in extracellular levels of dopamine in the nucleus accumbens after acute intravenous cocaine injection. Furthermore, by using the dopamine transporter blocker GBR-12909 we were able to demonstrate that the low extracellular dopamine levels, observed in FSL rats, were a consequence of low dopamine release in the nucleus accumbens, as opposed to the possibility of increased uptake. Treatment of FSL rats with the antidepressant desipramine raised cocaine- and GBR-12909-induced dopamine release to the level of controls. This treatment also resulted in increased cocaine-seeking behavior.
Collapse
Affiliation(s)
- Ilana Roth-Deri
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | | | | | | | | | | | |
Collapse
|
21
|
Bearer EL, Zhang X, Janvelyan D, Boulat B, Jacobs RE. Reward circuitry is perturbed in the absence of the serotonin transporter. Neuroimage 2009; 46:1091-104. [PMID: 19306930 PMCID: PMC2693299 DOI: 10.1016/j.neuroimage.2009.03.026] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Revised: 03/10/2009] [Accepted: 03/11/2009] [Indexed: 10/21/2022] Open
Abstract
The serotonin transporter (SERT) modulates the entire serotonergic system in the brain and influences both the dopaminergic and norepinephrinergic systems. These three systems are intimately involved in normal physiological functioning of the brain and implicated in numerous pathological conditions. Here we use high-resolution magnetic resonance imaging (MRI) and spectroscopy to elucidate the effects of disruption of the serotonin transporter in an animal model system: the SERT knock-out mouse. Employing manganese-enhanced MRI, we injected Mn(2+) into the prefrontal cortex and obtained 3D MR images at specific time points in cohorts of SERT and normal mice. Statistical analysis of co-registered datasets demonstrated that active circuitry originating in the prefrontal cortex in the SERT knock-out is dramatically altered, with a bias towards more posterior areas (substantia nigra, ventral tegmental area, and Raphé nuclei) directly involved in the reward circuit. Injection site and tracing were confirmed with traditional track tracers by optical microscopy. In contrast, metabolite levels were essentially normal in the SERT knock-out by in vivo magnetic resonance spectroscopy and little or no anatomical differences between SERT knock-out and normal mice were detected by MRI. These findings point to modulation of the limbic cortical-ventral striatopallidal by disruption of SERT function. Thus, molecular disruptions of SERT that produce behavioral changes also alter the functional anatomy of the reward circuitry in which all the monoamine systems are involved.
Collapse
Affiliation(s)
- Elaine L. Bearer
- Biological Imaging Center, Beckman Institute, California Institute of Technology, Pasadena, CA 91125
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02906
| | - Xiaowei Zhang
- Biological Imaging Center, Beckman Institute, California Institute of Technology, Pasadena, CA 91125
| | - Davit Janvelyan
- Biological Imaging Center, Beckman Institute, California Institute of Technology, Pasadena, CA 91125
| | - Benoit Boulat
- Biological Imaging Center, Beckman Institute, California Institute of Technology, Pasadena, CA 91125
| | - Russell E. Jacobs
- Biological Imaging Center, Beckman Institute, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
22
|
MDMA reinstates cocaine-seeking behaviour in mice. Eur Neuropsychopharmacol 2009; 19:391-7. [PMID: 19188047 DOI: 10.1016/j.euroneuro.2008.12.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 12/10/2008] [Accepted: 12/23/2008] [Indexed: 11/22/2022]
Abstract
BACKGROUND MDMA effects are mediated by monoaminergic systems, which seem to play a central role in cocaine craving and relapse. METHODS CD1 mice trained to self-administer cocaine (1 mg/kg/infusion) underwent an extinction procedure in which the cues contingent with drug self-administration remained present. Mice achieving extinction were injected with MDMA (10 mg/kg), d-amphetamine (1 and 2 mg/kg) or saline and tested for reinstatement. RESULTS Acute MDMA, but not d-amphetamine or saline reinstated cocaine-seeking behaviour in mice in which cocaine self-administration and contingent cues were previously extinguished. CONCLUSIONS Acute MDMA can reinstate cocaine-seeking behaviour in mice.
Collapse
|
23
|
Pum ME, Carey RJ, Huston JP, Müller CP. Role of medial prefrontal, entorhinal, and occipital 5-HT in cocaine-induced place preference and hyperlocomotion: evidence for multiple dissociations. Psychopharmacology (Berl) 2008; 201:391-403. [PMID: 18762916 DOI: 10.1007/s00213-008-1296-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Accepted: 08/05/2008] [Indexed: 12/01/2022]
Abstract
RATIONALE Application of cocaine or exposure to cocaine-related stimuli induces widespread activation of the cortex in neuroimaging studies with human subjects. In accordance to these findings, it was reported in previous microdialysis experiments that cocaine increased serotonin (5-HT) and dopamine in various cortical brain areas. The present series of studies set out to investigate the functional role of the observed increases in 5-HT in the medial prefrontal cortex (mPFC), the entorhinal cortex (EC), and the occipital cortex (OccC) in the mediation of cocaine-induced conditioned place preference (CPP) and hyperactivity. MATERIALS AND METHODS To reduce 5-HTergic neurotransmission in circumscribed brain areas, bilateral local infusions of the serotonergic neurotoxin, 5,7-dihydroxytryptamine (5,7-DHT), were made into the mPFC, EC, or OccC. Two weeks following surgery, cocaine-induced (10 mg/kg; i.p.) CPP was measured in an unbiased design. RESULTS The 90% depletion of 5-HT in the mPFC significantly attenuated the preference for the cocaine-associated environment and the hyperlocomotor response to cocaine. A 61% depletion of 5-HT in the EC reduced conditioned place preference without modulation of hyperactivity, while a 78% 5-HT depletion of the OccC cortex had no effect on cocaine-induced CPP and hyperactivity. No lesion affected general activity, habituation learning, or visual stimulation-induced behavioral activation. CONCLUSION These results indicate an important role of cortical 5-HT in the mediation of cocaine-induced CPP and specify the region-dependent contribution of a neurochemical response to cocaine-mediated behavior.
Collapse
Affiliation(s)
- M E Pum
- Institute of Physiological Psychology, University of Düsseldorf, Düsseldorf, Germany
| | | | | | | |
Collapse
|
24
|
E pluribus unum? A new take on addiction by Redish et al. Behav Brain Sci 2008. [DOI: 10.1017/s0140525x08004950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
AbstractNeuroscientists and psychologists have proposed a variety of well-supported theories to explain addiction. Many of these theories suggest that addiction results from a single process or dysfunction across all of its forms. The authors of the current review, in contrast, have used a well-defined theoretical account of decision-making to outline the variety of dysfunctions that could account for addictive behavior.
Collapse
|
25
|
Trigo JM, Renoir T, Lanfumey L, Hamon M, Lesch KP, Robledo P, Maldonado R. 3,4-methylenedioxymethamphetamine self-administration is abolished in serotonin transporter knockout mice. Biol Psychiatry 2007; 62:669-79. [PMID: 17306775 DOI: 10.1016/j.biopsych.2006.11.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Revised: 11/06/2006] [Accepted: 11/08/2006] [Indexed: 11/15/2022]
Abstract
BACKGROUND The neurobiological mechanism underlying the reinforcing effects of 3,4-methylenedioxymethamphetamine (MDMA) remains unclear. The aim of the present study was to determine the contribution of the serotonin transporter (SERT) in MDMA self-administration behavior by using knockout (KO) mice deficient in SERT. METHODS Knockout mice and wild-type (WT) littermates were trained to acquire intravenous self-administration of MDMA (0, .03, .06, .125, and .25 mg/kg/infusion) on a fixed ratio 1 (FR1) schedule of reinforcement. Additional groups of mice were trained to obtain food and water to rule out operant responding impairments. Microdialysis studies were performed to evaluate dopamine (DA) and serotonin (5-HT) extracellular levels in the nucleus accumbens (NAC) and prefrontal cortex (PFC), respectively, after acute MDMA (10 mg/kg). RESULTS None of the MDMA doses tested maintained intravenous self-administration in KO animals, whereas WT mice acquired responding for MDMA. Acquisition of operant responding for food and water was delayed in KO mice, but no differences between genotypes were observed on the last day of training. MDMA increased DA extracellular levels to a similar extent in the NAC of WT and KO mice. Conversely, extracellular concentrations of 5-HT in the PFC were increased following MDMA only in WT mice. CONCLUSIONS These findings provide evidence for the specific involvement of SERT in MDMA reinforcing properties.
Collapse
Affiliation(s)
- José Manuel Trigo
- Laboratori de Neurofarmacologia, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
26
|
Goodman A. Neurobiology of addiction. An integrative review. Biochem Pharmacol 2007; 75:266-322. [PMID: 17764663 DOI: 10.1016/j.bcp.2007.07.030] [Citation(s) in RCA: 233] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 07/22/2007] [Accepted: 07/23/2007] [Indexed: 02/08/2023]
Abstract
Evidence that psychoactive substance use disorders, bulimia nervosa, pathological gambling, and sexual addiction share an underlying biopsychological process is summarized. Definitions are offered for addiction and addictive process, the latter being the proposed designation for the underlying biopsychological process that addictive disorders are hypothesized to share. The addictive process is introduced as an interaction of impairments in three functional systems: motivation-reward, affect regulation, and behavioral inhibition. An integrative review of the literature that addresses the neurobiology of addiction is then presented, organized according to the three functional systems that constitute the addictive process. The review is directed toward identifying candidate neurochemical substrates for the impairments in motivation-reward, affect regulation, and behavioral inhibition that could contribute to an addictive process.
Collapse
Affiliation(s)
- Aviel Goodman
- Minnesota Institute of Psychiatry, 1347 Summit Avenue, St. Paul, MN 55105, USA.
| |
Collapse
|
27
|
Abstract
Fueled by anatomical, electrophysiological, and pharmacological analyses of endogenous brain reward systems, norepinephrine (NE) was identified as a key mediator of both natural and drug-induced reward in the late 1960s and early 1970s. However, reward experiments from the mid-1970s that could distinguish between the noradrenergic and dopaminergic systems resulted in the prevailing view that dopamine (DA) was the primary 'reward transmitter' (a belief holding some sway still today), thereby pushing NE into the background. Most damaging to the NE hypothesis of reward were studies demonstrating that NE receptor antagonists and NE reuptake inhibitors failed to impact drug self-administration. In recent years new tools, such as genetically engineered mice, and new experimental paradigms, such as reinstatement of drug seeking following withdrawal, have propelled NE back into the awareness of addiction researchers. Of particular interest is disulfiram, an inhibitor of the NE biosynthetic enzyme dopamine beta-hydroxylase, which has demonstrated promising efficacy in the treatment of cocaine dependence in preliminary clinical trials. The purpose of this review is to synthesize the new data linking NE to critical aspects of DA signaling and drug addiction, with a focus on psychostimulants (eg, cocaine), opiates (eg, morphine), and alcohol.
Collapse
Affiliation(s)
- David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | |
Collapse
|
28
|
Abstract
Despite huge advances in the neuroscience of substance abuse and dependence in the past 20 years, no approved pharmacological treatment exists for cocaine abuse. The available drugs for the treatment of cocaine abuse are poorly effective, hence the need for new compounds to be screened and tested for efficacy: targeting symptoms might improve the effectiveness of the treatment of cocaine abuse and dependence. On the basis of the known neurochemistry of cocaine, some target compounds have been studied: among others, BP-897, a D3 partial agonist; vanoxerine, a highly selective inhibitor of dopamine uptake; aripiprazole, a partial mixed-action agonist approved for the treatment of schizophrenia. Recently modafinil, approved for the treatment of narcolepsy, proved effective in favouring cocaine abstinence in cocaine-abusing people. Some placebo-controlled studies also reported the effectiveness of topiramate, a licensed antiepileptic drug, and of tiagabine, a gamma-aminobutyric acid (GABA) re-uptake inhibitor also approved as an anticonvulsant; both compounds increased cocaine abstinence with no serious adverse events. Promising results came from two more compounds acting on the GABA circuits, baclofen and valproic acid. Finally disulfiram, prescribed with active psychosocial therapy, was found to favour higher retention rates and longer abstinence periods from both alcohol and cocaine in polydrug-abusing patients. An alternative approach rests on the use of vaccines, to date in the experimental stage still. Psychosocial treatments are a useful companion in the pharmacotherapy of cocaine abuse, with group therapy and contingency management therapies improving motivation and social functioning, particularly in patients abusing alcohol as well.
Collapse
Affiliation(s)
- Antonio Preti
- Department of Psychology, University of Cagliari, Italy and Genneruxi Medical Center, Italy.
| |
Collapse
|
29
|
Forrat VJ, Ramón DJ, Yus M. First catalytic enantioselective synthesis of the cocaine abuse therapeutic agent (S)-(+)-1-(4-{2-[bis(4-fluorophenyl)methoxy]ethyl}piperazin-1-yl)-2-phenyl-2-propanol. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/j.tetasy.2006.12.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Young R. TDIQ (5,6,7,8-tetrahydro-1,3-dioxolo [4,5-g]isoquinoline): discovery, pharmacological effects, and therapeutic potential. CNS DRUG REVIEWS 2007; 13:405-22. [PMID: 18078426 PMCID: PMC6494129 DOI: 10.1111/j.1527-3458.2007.00022.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chemically, TDIQ (5,6,7,8-tetrahydro-1,3-dioxolo[4,5-g]isoquinoline) can be viewed as a conformationally restricted phenylalkylamine that is related in structure to amphetamine but does not stimulate (or depress) locomotor activity in rodents. In radioligand binding studies TDIQ displays selective affinity for alpha(2)-adrenergic receptor subsites (i.e., alpha(2A)-, alpha(2B)-, and alpha(2C)-adrenergic receptors), and behavioral data suggest that it might exert an agonist (or partial agonist) effect at alpha(2)-adrenergic receptors or interact at alpha(2)-adrenergic heteroreceptors. Drug discrimination studies in rats indicate that TDIQ: (1) serves as a discriminative stimulus, (2) may be useful in the treatment of symptoms associated with the abuse of cocaine, and (3) exhibits a low potential for abuse. In addition, TDIQ exhibits a dose-dependent and wide dissociation between doses that produce an anxiolytic-like effect or an inhibition of "snack" consumption in mice and doses that produce minimal, if any, effects in tests that measure a potential for disruption of coordinated movement or motor activity. Also, TDIQ displays negligible effects on the heart rate (HR) and blood pressure (BP) of mice. Taken together, the preclinical data suggest that TDIQ exhibits a favorable ratio of therapeutic-like effects (anxiolytic, therapeutic adjunct in the treatment of cocaine abuse, and appetite suppression) to side effect-like activities (behavioral impairment, drug abuse, or adverse cardiovascular effect). As such, TDIQ could: (1) be a forerunner for a new type of chemical entity in the treatment of certain forms of anxiety and/or obesity and (2) serve as a structural template in the discovery and development of additional agents that might be selective for alpha(2)-adrenergic receptors.
Collapse
Affiliation(s)
- Richard Young
- Department of Medicinal Chemistry, Box 540, School of Pharmacy, 410 North 12th Street, Virginia Commonwealth University, Richmond, Virginia 23298-6540, USA.
| |
Collapse
|
31
|
Abstract
The authors review recent research on the molecular mechanisms of addiction and propose a new classification for addictive drugs.
Collapse
Affiliation(s)
- Christian Lüscher
- Department of Basic Neurosciences and Clinic of Neurology, University of Geneva, Geneva, Switzerland.
| | | |
Collapse
|
32
|
Olsen CM, Winder DG. A method for single-session cocaine self-administration in the mouse. Psychopharmacology (Berl) 2006; 187:13-21. [PMID: 16767412 DOI: 10.1007/s00213-006-0388-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2005] [Accepted: 03/17/2006] [Indexed: 10/24/2022]
Abstract
RATIONALE Drug self-administration is a powerful method to measure the reinforcing effects of a drug, as well as to investigate behavioral, biochemical, and physiological effects of a drug specific to contingent delivery. With the spectrum of genetically modified mice available, there is a need for well-designed drug self-administration studies tailored for rapid completion of studies in mice. OBJECTIVES We set out to develop a methodology in mice for obtaining high levels of cocaine self-administration during the first exposure to the drug. MATERIALS AND METHODS C57Bl/6J mice were trained to lever press for liquid reinforcer on a fixed ratio 1, then a progressive ratio (PR) schedule of reinforcement before intravenous self-administration of cocaine on a PR schedule. RESULTS Within a single 16-h session, each mouse self-administered either saline or 0.1, 0.3, 0.6, or 1.2 mg kg(-1) infusion(-1) of cocaine during four distinct 4-h subsessions. Mice showed a strong preference for cocaine vs saline, as demonstrated by higher breakpoints and greater preference for the active lever. Likewise, there was a dose-dependent increase in breakpoints obtained and in drug intake. Finally, animals receiving noncontingent cocaine pressed significantly less than mice self-administering the same dose of cocaine, indicating that a significant amount of active lever pressing is driven by drug-seeking and not the psychomotor-activating effects of cocaine alone. CONCLUSIONS Mice will reach high breakpoints and cocaine intake during an initial exposure to cocaine. This method is well-suited to rapidly obtain progressive ratio cocaine self-administration in mice.
Collapse
Affiliation(s)
- Christopher M Olsen
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232-0615, USA.
| | | |
Collapse
|
33
|
Chen R, Tilley MR, Wei H, Zhou F, Zhou FM, Ching S, Quan N, Stephens RL, Hill ER, Nottoli T, Han DD, Gu HH. Abolished cocaine reward in mice with a cocaine-insensitive dopamine transporter. Proc Natl Acad Sci U S A 2006; 103:9333-8. [PMID: 16754872 PMCID: PMC1482610 DOI: 10.1073/pnas.0600905103] [Citation(s) in RCA: 212] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
There are three known high-affinity targets for cocaine: the dopamine transporter (DAT), the serotonin transporter (SERT), and the norepinephrine transporter (NET). Decades of studies support the dopamine (DA) hypothesis that the blockade of DAT and the subsequent increase in extracellular DA primarily mediate cocaine reward and reinforcement. Contrary to expectations, DAT knockout (DAT-KO) mice and SERT or NET knockout mice still self-administer cocaine and/or display conditioned place preference (CPP) to cocaine, which led to the reevaluation of the DA hypothesis and the proposal of redundant reward pathways. To study the role of DAT in cocaine reward, we have generated a knockin mouse line carrying a functional DAT that is insensitive to cocaine. In these mice, cocaine suppressed locomotor activity, did not elevate extracellular DA in the nucleus accumbens, and did not produce reward as measured by CPP. This result suggests that blockade of DAT is necessary for cocaine reward in mice with a functional DAT. This mouse model is unique in that it is specifically designed to differentiate the role of DAT from the roles of NET and SERT in cocaine-induced biochemical and behavioral effects.
Collapse
Affiliation(s)
| | | | - Hua Wei
- Departments of *Pharmacology
| | - Fuwen Zhou
- Department of Pharmacology, University of Tennessee College of Medicine, Memphis, TN 38163; and
| | - Fu-Ming Zhou
- Department of Pharmacology, University of Tennessee College of Medicine, Memphis, TN 38163; and
| | | | | | - Robert L. Stephens
- Physiology, Ohio State University, 5184b Graves Hall, 333 West 10th Avenue, Columbus, OH 43210
| | | | - Timothy Nottoli
- Section of Comparative Medicine, Yale University, 375 Congress Avenue, New Haven, CT 06520
| | | | - Howard H. Gu
- Departments of *Pharmacology
- Psychiatry
- **To whom correspondence should be addressed. E-mail:
| |
Collapse
|
34
|
Willard SS, Koss CM, Cronmiller C. Chronic cocaine exposure in Drosophila: life, cell death and oogenesis. Dev Biol 2006; 296:150-63. [PMID: 16730347 DOI: 10.1016/j.ydbio.2006.04.448] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Revised: 03/30/2006] [Accepted: 04/12/2006] [Indexed: 11/18/2022]
Abstract
Developmental signaling cascades that can be perturbed by cocaine and other drugs of abuse have been difficult to study in humans and vertebrate models. Although numerous direct neural targets of cocaine have been elucidated at the molecular level, little is known about the specific cellular events that are impacted indirectly as a result of the drug's perturbation of neural circuits. We have developed oogenesis in Drosophila melanogaster as a model in which to identify downstream biochemical and/or cellular processes that are disrupted by chronic cocaine exposure. In this model, cocaine feeding resulted not only in expected reductions in viability, but also in unanticipated developmental defects during oogenesis, including aberrant follicle morphogenesis and vitellogenic follicle degeneration. To identify mechanisms through which cocaine exerted its deleterious effects on oogenesis, we examined candidate components of neural and hormonal signaling pathways. Cocaine-induced disruptions in follicle formation were enhanced by juvenile hormone exposure and phenocopied by serotonin feeding, while cocaine-activated follicle apoptosis was enhanced by concomitant dopamine feeding. HPLC analysis of dopamine and serotonin in the ovary suggests that these neurotransmitters could variably mediate cocaine's effects on oogenesis indirectly in the brain and/or directly in the ovary itself. We confirmed the involvement of hormone signaling by measuring ecdysteroids, which increase following cocaine exposure, and by demonstrating suppression of cocaine-induced follicle loss by hormone receptor mutants. Cocaine-induced ovarian follicle apoptosis and adult lethality appear to be caused by modulation of dopamine levels, while morphological defects during follicle formation likely result from perturbing serotonin signaling during cocaine exposure. Our work suggests not only a new role for juvenile hormone and/or serotonin in Drosophila ovarian follicle formation, but also a cocaine-sensitive role for dopamine in modulating hormone levels in the female fly.
Collapse
Affiliation(s)
- Stacey Sedore Willard
- Department of Biology, University of Virginia, P.O. Box 400328, Charlottesville, VA 22904-4328, USA
| | | | | |
Collapse
|
35
|
Trigo JM, Panayi F, Soria G, Maldonado R, Robledo P. A reliable model of intravenous MDMA self-administration in naïve mice. Psychopharmacology (Berl) 2006; 184:212-20. [PMID: 16362403 DOI: 10.1007/s00213-005-0229-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Accepted: 09/22/2005] [Indexed: 11/28/2022]
Abstract
RATIONALE MDMA is one of the most widely consumed recreational drugs in Europe. However, the mechanisms involved in the reinforcing properties of MDMA are still unclear. In this sense, the establishment of a reliable model of MDMA self-administration in mice could represent an important approach to study the neuronal substrates associated with MDMA reward by using genetically modified mice. OBJECTIVES To develop a reliable model of operant intravenous MDMA self-administration in drug-naïve mice. MATERIALS AND METHODS Mice were trained to acquire intravenous self-administration of MDMA at different doses (0, 0.06, 0.125, 0.25, 0.5 and 1.0 mg/kg/infusion) on a FR1 schedule of reinforcement for 15 consecutive days. The motivational value of different doses of MDMA (0.125, 0.25 and 0.5 mg/kg/infusion) was then tested using a progressive ratio paradigm. Finally, [3H]-mazindol autoradiographic studies were carried out in order to quantitatively assess presynaptic dopamine transporter (DAT) binding sites in the striatum of mice trained to self-administer MDMA (0 and 1.0 mg/kg/infusion) during 15 days. RESULTS The latency for discrimination between the active and inactive holes, as well as the number of animals acquiring stability criteria, varied as a function of the dose of MDMA. The mice responding for intermediate doses (0.125, 0.25 and 0.5 mg/kg/infusion) discriminated earlier than those responding for low (0.06 mg/kg/infusion) or high (1.0 mg/kg/infusion) doses. The percentage of animals achieving stability criteria increased with days of testing and was inversely proportional to the dose of MDMA. The breaking points achieved for doses of 0.125 and 0.25 mg/kg/infusion were significantly higher than for a dose of 0.5 mg/kg/infusion. No significant DAT neurotoxicity was observed in the striatum of animals self-administering MDMA at a dose of 1 mg/kg/infusion. CONCLUSIONS The present results show that MDMA can be reliably self-administered by drug-naïve mice.
Collapse
Affiliation(s)
- José Manuel Trigo
- Universitat Pompeu Fabra, Calle Dr. Aiguader, 80, 08003, Barcelona, Spain
| | | | | | | | | |
Collapse
|
36
|
Freeman KB, Rice KC, Riley AL. Assessment of monoamine transporter inhibition in the mediation of cocaine-induced conditioned taste aversion. Pharmacol Biochem Behav 2005; 82:583-9. [PMID: 16337262 DOI: 10.1016/j.pbb.2005.10.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2005] [Revised: 09/14/2005] [Accepted: 10/26/2005] [Indexed: 11/21/2022]
Abstract
Although the mechanisms of cocaine reward have been well characterized, the pharmacological basis of cocaine's aversive effects is less understood. Using the conditioned taste aversion (CTA) preparation, the present study examined the role of monoamine uptake inhibition in cocaine's aversive effects by comparing cocaine to three reuptake inhibitors with relative specificity for the transporters of dopamine (DAT; GBR 12909), norepinephrine (NET; desipramine) and serotonin (SERT; clomipramine). Specifically, 104 male Sprague-Dawley rats were given 20-min access to a novel saccharin solution followed immediately by a subcutaneous injection of cocaine, GBR 12909, desipramine, clomipramine (each at 18, 32 or 50 mg/kg; 12 groups) or drug vehicle (equivolume to the highest cocaine dose). Over trials, cocaine and desipramine each dose-dependently suppressed saccharin consumption and did so in an equivalent manner when matched by dose. However, both GBR 12909 and clomipramine conditioned weaker aversions than cocaine at the two lowest doses (18 and 32 mg/kg). At the highest dose (50 mg/kg), GBR 12909 produced equivalent suppression of saccharin consumption to cocaine while clomipramine's conditioned suppression remained relatively weak at this dose. These results suggest that cocaine's adrenergic actions resulting from NET inhibition may play a more significant role in the mediation of its aversive effects than its actions at DAT and SERT.
Collapse
Affiliation(s)
- Kevin B Freeman
- Psychopharmacology Laboratory, Department of Psychology, American University, Washington, DC 20016, United States.
| | | | | |
Collapse
|
37
|
Mannelli P, Patkar AA, Murray HW, Certa K, Peindl K, Mattila-Evenden M, Berrettini WH. Polymorphism in the serotonin transporter gene and response to treatment in African American cocaine and alcohol-abusing individuals. Addict Biol 2005; 10:261-8. [PMID: 16109588 DOI: 10.1080/13556210500235540] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The serotonin transporter (5-HTT) regulates serotonin transmission and modulates behavioral effects of drug of abuse. A polymorphism in the promoter region of the serotonin transporter gene (5-HTTLPR) yielding a short (S) and long (L) allele has been associated with severity of substance abuse. The aims of the study were to investigate whether 5-HTTLPR genotypes differed in their response to treatment in cocaine- and alcohol-abusing patients. Polymerase chain reaction-based genotyping of a 44 base pair insertion/deletion polymorphism was performed in 141 African American cocaine-dependent patients with concurrent alcohol use who were entering a 12-week behaviorally oriented outpatient treatment program. In treatment, end of treatment and 6-month follow-up outcome measures included changes in Addiction Severity Index (ASI) scores, urine drug screens, days in treatment, individual/group sessions, dropout and completion rates. As expected, there was a reduction in substance abuse by the end of treatment and follow-up (F = 5.15, p = 0.000). However, there were no differences in the reduction in cocaine use across the LL, LS and SS genotypes. Interestingly, individuals with the S allele showed greater severity of alcohol use at admission (F = 4.84, p = 0.03), and the SS genotype showed less improvement in alcohol measures than the LL at follow-up (F = 3.68, p = 0.03), after controlling for baseline variables. While we found no association of the 5-HTTLPR variants with severity of cocaine abuse or any cocaine-related outcome measures, the data suggested that the 5-HTTLPR polymorphism may distinguish responders from non-responders to behavioral treatment in terms of alcohol use. Further investigations are required to determine the role of the 5-HTTLPR polymorphism in influencing treatment - outcome among substance abusers.
Collapse
Affiliation(s)
- Paolo Mannelli
- Department of Psychiatry, Duke University Medical Center, Durham, NC 27704, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Harding WW, Hodge M, Wang Z, Woolverton WL, Parrish D, Deschamps JR, Prisinzano TE. Enantioselective synthesis of (2R,3R)- and (2S,3S)-2- [(3-chlorophenyl)-(2-methoxyphenoxy)methyl]morpholine. TETRAHEDRON, ASYMMETRY 2005; 16:2249-2256. [PMID: 16841092 PMCID: PMC1502147 DOI: 10.1016/j.tetasy.2005.06.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The enantioselective synthesis of the (R,R)- and (S,S)-enantiomers of 1 from commercially available 3-chlorocinnamic acid is reported. The Sharpless asymmetric epoxidation was used to establish the stereocenters in the synthesis of both enantiomers of 1.
Collapse
|
39
|
Morgan D, Smith MA, Roberts DCS. Binge self-administration and deprivation produces sensitization to the reinforcing effects of cocaine in rats. Psychopharmacology (Berl) 2005; 178:309-16. [PMID: 15322729 DOI: 10.1007/s00213-004-1992-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2004] [Accepted: 07/11/2004] [Indexed: 11/29/2022]
Abstract
RATIONALE Behavioral procedures that incorporate dynamic changes in drug-maintained behavior are needed to model the development of cocaine addiction in humans. OBJECTIVES Because sensitization may occur to some aspects of drug administration during the addiction process, the objective of the present study was to define the critical features of self-administration histories that result in subsequent increases in the reinforcing efficacy of cocaine (measured using the progressive ratio (PR) schedule). METHODS Animals were trained to self-administer cocaine on a fixed ratio (FR) schedule, baseline performance on a PR schedule was determined, and animals were given various histories of cocaine self-administration and drug deprivation. PR performance was reassessed following this experience. RESULTS Cocaine self-administration under a discrete-trials procedure (24 h/day) for 10 days, followed by a 7-day deprivation period resulted in sensitization to the reinforcing effects of cocaine as assessed by the PR schedule (increases in maximal breakpoints maintained by cocaine with no change in sensitivity at lower doses). Similar levels of daily cocaine intake on a FR schedule (typically completed within 6 h) coupled with a deprivation period failed to produce changes in breakpoint. Providing access to cocaine during the "deprivation period" by repeated testing on a PR schedule prevented the sensitization. CONCLUSIONS These data suggest that these self-administration-induced changes in breakpoint reflect sensitization, and show that a drug-free deprivation period is necessary, but not sufficient, to produce this increase.
Collapse
Affiliation(s)
- Drake Morgan
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | | | | |
Collapse
|
40
|
Freeman KB, Konaklieva MI, Riley AL. Assessment of the contributions of Na+ channel inhibition and general peripheral action in cocaine-induced conditioned taste aversion. Pharmacol Biochem Behav 2005; 80:281-8. [PMID: 15680181 DOI: 10.1016/j.pbb.2004.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2004] [Revised: 11/16/2004] [Accepted: 11/23/2004] [Indexed: 11/18/2022]
Abstract
While the rewarding properties of cocaine appear to be mediated by its blockade of central monoamine uptake, the mechanisms and sites of action for cocaine's aversive effects have yet to be determined. Using the conditioned taste aversion (CTA) preparation, the present study examined the role of Na(+) channel blockade in cocaine's aversive effects by comparing cocaine to the local anesthetic procaine at three doses (18, 32 and 50 mg/kg). Furthermore, the role of cocaine's peripheral actions in its aversive effects was examined by comparing cocaine to the quaternary analog cocaine methiodide (equimolar to the three doses of cocaine) in establishing CTAs. Procaine and cocaine methiodide each dose-dependently suppressed saccharin consumption, indicating that the aversive effects of cocaine are, in part, mediated by its inhibition of Na(+) channels and via its activity in the PNS. However, the fact that the aversions induced by procaine and cocaine methiodide were weaker than those induced by cocaine at each dose tested suggests other factors are involved in its aversive effects. Possible reasons for the weaker aversions induced by procaine and cocaine methiodide relative to cocaine were discussed.
Collapse
Affiliation(s)
- Kevin B Freeman
- Psychopharmacology Laboratory, Department of Psychology, American University, Washington, DC 20016, USA.
| | | | | |
Collapse
|
41
|
Zahniser NR, Sorkin A. Rapid regulation of the dopamine transporter: role in stimulant addiction? Neuropharmacology 2004; 47 Suppl 1:80-91. [PMID: 15464127 DOI: 10.1016/j.neuropharm.2004.07.010] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2004] [Revised: 06/14/2004] [Accepted: 06/30/2004] [Indexed: 11/29/2022]
Abstract
Dopamine (DA) and the DA transporter (DAT) play important roles in psychomotor stimulant behavioral activation and reward. By understanding how DAT activity is regulated, we will better appreciate its contribution to normal neurotransmission and to brain diseases like drug addiction. DAT is regulated long-term by chronic drug administration. It is also regulated in a rapid, dynamic fashion by many factors--including brief exposure to DAT substrates, e.g. DA and amphetamine, and inhibitors, e.g. cocaine. We found that individual differences in the initial and sensitized locomotor responsiveness of rats to cocaine reflect differences in in vivo DAT function. Our ex vivo studies have further suggested that differences in basal and/or rapid cocaine-induced expression of functional DATs in striatum contribute to the differences in initial responsiveness. Studies in model systems have demonstrated that short-term DAT regulation occurs by altered transporter trafficking, and thereby cell surface expression. For example, a rapid, complex regulation of DAT by DA is suggested. Amphetamine causes DAT internalization into early endosomal compartments whereas cocaine appears to up-regulate surface expression of DAT. Future studies are needed to confirm these observations in neurons, as well as to elucidate the mechanisms of rapid DAT endocytic trafficking at neuronal synapses.
Collapse
Affiliation(s)
- Nancy R Zahniser
- Department of Pharmacology, Neuroscience Program, University of Colorado Health Sciences Center at Fitzsimons, Aurora, CO 80045-0508, USA.
| | | |
Collapse
|
42
|
Abstract
The pharmacotherapy of cocaine dependence is a rapidly developing field of research that may soon produce efficacious medications. Expanding research on reward-related brain circuitry, which is acutely activated and chronically dysregulated by cocaine, has helped reveal the neurobiological features of cocaine dependence and is guiding pharmacologic strategies that have significant potential to improve clinical outcome. Cocaine dependence is a multifaceted disorder with distinct clinical components that may respond to different pharmacologic approaches. Pharmacologic strategies for this disorder include blocking euphoria, reducing withdrawal and negative mood symptoms, ameliorating craving, and enhancing the prefrontal cortical function that seems to be impaired in cocaine-dependent patients. One medication may not be sufficient to treat these diverse elements of cocaine dependence because preliminary studies report efficacy with medications that have opposite actions on reward-related circuits. This review highlights pertinent advances in cocaine neurobiology, recent clinical trials, and controversies in the pharmacologic treatment of cocaine dependence.
Collapse
Affiliation(s)
- Charles A Dackis
- University of Pennsylvania Treatment Research Center, 3900 Chestnut Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
43
|
Di Benedetto M, Feliciani D, D'Addario C, Izenwasser S, Candeletti S, Romualdi P. Effects of the selective norepinephrine uptake inhibitor nisoxetine on prodynorphin gene expression in rat CNS. ACTA ACUST UNITED AC 2004; 127:115-20. [PMID: 15306127 DOI: 10.1016/j.molbrainres.2004.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2004] [Indexed: 11/28/2022]
Abstract
Cocaine binds to dopamine (DA), serotonin (5-HT) and norepinephrine (NE) transporters blocking the reuptake of these monoamines into presynaptic terminals. As previously reported, continuous infusion of cocaine for seven days or GBR 12909, a selective dopamine uptake inhibitor, produced significant decreases in prodynorphin (PDYN) gene expression in the hypothalamus. Cocaine also produced a significant increase in PDYN mRNA in the caudate putamen, whereas GBR12909 has no effect and the selective serotonin uptake inhibitor fluoxetine decreases PDYN mRNA in the same brain region. The effect of the selective norepinephrine uptake inhibitor nisoxetine was examined on PDYN gene expression. Nisoxetine or vehicle was infused continuously for 7 days via osmotic minipump into male rats. This treatment produced significant increases in PDYN gene expression in the hypothalamus (183% of control), nucleus accumbens (142% of control) and hippocampus (124% of control) and a significant decrease in the caudate putamen (69% of control). These data suggest that nisoxetine affects PDYN gene expression and support a role for NE in the mechanisms underlying the effects of chronic exposure to psychoactive drugs. Moreover, nisoxetine, as well as fluoxetine, decreases PDYN mRNA in the caudate putamen, in contrast to the up-regulation produced by cocaine. Thus, the inhibition of NE uptake alone cannot account for the cocaine-induced increase of PDYN gene expression. These findings suggest that PDYN gene expression regulation by cocaine in the caudate putamen might be due to a combination of effects on two or three monoamine transporters, or to a mechanism unrelated to transporters inhibition.
Collapse
Affiliation(s)
- Manuela Di Benedetto
- Department of Pharmacology, University of Bologna, Irnerio 48, Bologna, 40126 Italy
| | | | | | | | | | | |
Collapse
|
44
|
Rowlett JK, Platt DM, Spealman RD. Cocaine-like discriminative stimulus effects of heroin: modulation by selective monoamine transport inhibitors. J Pharmacol Exp Ther 2004; 310:342-8. [PMID: 14985417 DOI: 10.1124/jpet.104.065631] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In previous studies, heroin was shown to engender cocaine-like discriminative stimulus (DS) effects; however, the mechanisms underlying the cocaine-like effects of heroin are unknown. The present study evaluated the extent to which the shared DS effects of heroin and cocaine involve common monoaminergic mechanisms of action. In squirrel monkeys discriminating cocaine (0.3 mg/kg) from saline, heroin engendered full or partial substitution for cocaine in three of four monkeys. Pretreatment with the selective dopamine transport inhibitor 1-(2-[bis(4-fluorophenyl)methoxy]ethyl)-4-(3-phenylpropyl)piperazine (GBR 12909) dose dependently enhanced the cocaine-like DS effects of heroin in these three monkeys as well as the DS effects of cocaine in all subjects. Neither talsupram, a noradrenergic transport inhibitor, nor prazosin, a noradrenergic antagonist selective for alpha-1 receptors, systematically altered the cocaine-like DS effects of heroin at doses that enhanced (talsupram) or attenuated (prazosin) the DS effects of cocaine. Pretreatment with the serotonin uptake inhibitor citalopram similarly failed to alter the cocaine-like DS effects of heroin at doses that attenuated the DS effects of cocaine. Altogether, these findings suggest that heroin shares DS effects with cocaine in a subset of monkeys, and these cocaine-like effects are mediated at least in part by enhanced dopaminergic activity. Unlike the DS effects of cocaine itself, however, the cocaine-like DS effects of heroin do not appear to involve either noradrenergic or serotonergic mechanisms.
Collapse
Affiliation(s)
- James K Rowlett
- Harvard Medical School, New England Primate Research Center, Southborough, Massachusetts 01772-9102, USA.
| | | | | |
Collapse
|