1
|
Tiligada E, Stefanaki C, Ennis M, Neumann D. Opportunities and challenges in the therapeutic exploitation of histamine and histamine receptor pharmacology in inflammation-driven disorders. Pharmacol Ther 2024; 263:108722. [PMID: 39306197 DOI: 10.1016/j.pharmthera.2024.108722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/31/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024]
Abstract
Inflammation-driven diseases encompass a wide array of pathological conditions characterised by immune system dysregulation leading to tissue damage and dysfunction. Among the myriad of mediators involved in the regulation of inflammation, histamine has emerged as a key modulatory player. Histamine elicits its actions through four rhodopsin-like G-protein-coupled receptors (GPCRs), named chronologically in order of discovery as histamine H1, H2, H3 and H4 receptors (H1-4R). The relatively low affinity H1R and H2R play pivotal roles in mediating allergic inflammation and gastric acid secretion, respectively, whereas the high affinity H3R and H4R are primarily linked to neurotransmission and immunomodulation, respectively. Importantly, however, besides the H4R, both H1R and H2R are also crucial in driving immune responses, the H2R tending to promote yet ill-defined and unexploited suppressive, protective and/or resolving processes. The modulatory action of histamine via its receptors on inflammatory cells is described in detail. The potential therapeutic value of the most recently discovered H4R in inflammatory disorders is illustrated via a selection of preclinical models. The clinical trials with antagonists of this receptor are discussed and possible reasons for their lack of success described.
Collapse
Affiliation(s)
- Ekaterini Tiligada
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| | - Charikleia Stefanaki
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece; University Research Institute of Maternal and Child Health and Precision Medicine, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Madeleine Ennis
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, Belfast, UK
| | - Detlef Neumann
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
2
|
Lippi BK, Fernandes GAB, Azevedo GA, Negreiros NGS, Soares AW, Landgraf MA, Fernandes JPS, Landgraf RG. The histamine H 4 receptor antagonist 1-[(5-chloro-2,3-dihydro-1-benzofuran-2-yl)methyl]-4-methyl-piperazine(LINS01007) prevents the development of DSS-induced colitis in mice. Int Immunopharmacol 2024; 133:112128. [PMID: 38652966 DOI: 10.1016/j.intimp.2024.112128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease with growing incidence worldwide. Our group reported the compound 5-choro-1-[(2,3-dihydro-1-benzofuran-2-yl)methyl]piperazine (LINS01007) as H4R antagonist (pKi 6.2) and therefore the effects and pharmacological efficacy on a DSS-induced mice model of UC were assessed in this work. Experimental acute colitis was induced in male BALB/c mice (n = 5-10) by administering 3 % DSS in the drinking water for six days. The test compound LINS01007 was administered daily i.p. (5 mg/kg) and compared to control group without treatment. Body weight, water and food consumption, and the presence of fecal blood were monitored during 7-day treatment period. The levels of inflammatory markers (PGE2, COX-2, IL-6, NF-κB and STAT3) were also analyzed. Animals subjected to the acute colitis protocol showed a reduction in water and food intake from the fourth day (p < 0.05) and these events were prevented by LINS01007. Histological signs of edema, hyperplasia and disorganized intestinal crypts, as well as neutrophilic infiltrations, were found in control mice while these findings were significantly reduced in animals treated with LINS01007. Significant reductions in the levels of PGE2, COX-2, IL-6, NF-κB and STAT3 were observed in the serum and tissue of treated animals. The results demonstrated the significant effects of LINS01007 against DSS-induced colitis, highlighting the potential of H4R antagonism as promising treatment for this condition.
Collapse
Affiliation(s)
- Beatriz K Lippi
- Department of Pharmaceutical Sciences, Universidade Federal de São Paulo-campus Diadema, Diadema, SP, Brazil
| | - Gustavo A B Fernandes
- Department of Pharmaceutical Sciences, Universidade Federal de São Paulo-campus Diadema, Diadema, SP, Brazil
| | - Gabriela A Azevedo
- Department of Pharmaceutical Sciences, Universidade Federal de São Paulo-campus Diadema, Diadema, SP, Brazil; Programa de Pós-Graduação em Medicina Translacional, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Nathani G S Negreiros
- Department of Pharmaceutical Sciences, Universidade Federal de São Paulo-campus Diadema, Diadema, SP, Brazil
| | - Antonio W Soares
- Department of Pharmaceutical Sciences, Universidade Federal de São Paulo-campus Diadema, Diadema, SP, Brazil; Programa de Pós-Graduação em Medicina Translacional, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | - João Paulo S Fernandes
- Department of Pharmaceutical Sciences, Universidade Federal de São Paulo-campus Diadema, Diadema, SP, Brazil.
| | - Richardt G Landgraf
- Department of Pharmaceutical Sciences, Universidade Federal de São Paulo-campus Diadema, Diadema, SP, Brazil.
| |
Collapse
|
3
|
Aldossari AA, Assiri MA, Ansari MA, Nadeem A, Attia SM, Bakheet SA, Albekairi TH, Alomar HA, Al-Mazroua HA, Almanaa TN, Al-Hamamah MA, Alwetaid MY, Ahmad SF. Histamine H4 Receptor Antagonist Ameliorates the Progression of Experimental Autoimmune Encephalomyelitis via Regulation of T-Cell Imbalance. Int J Mol Sci 2023; 24:15273. [PMID: 37894952 PMCID: PMC10607370 DOI: 10.3390/ijms242015273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Multiple sclerosis (MS) is a degenerative condition characterized by immune-mediated attacks on the central nervous system (CNS), resulting in demyelination and recurring T-cell responses. The histamine H4 receptor (H4R) is mainly expressed in cellular populations and plays a vital role in inflammation and immunological responses. The role of H4R in neurons of the CNS has recently been revealed. However, the precise role of H4R in neuronal function remains inadequately understood. The objective of this work was to investigate the impact of JNJ 10191584 (JNJ), a highly effective and specific H4R antagonist, on the development of experimental autoimmune encephalomyelitis (EAE) and to gain insight into the underlying mechanism involved. In this study, we examined the potential impact of JNJ therapy on the course of EAE in SJL/J mice. EAE mice were administered an oral dose of JNJ at a concentration of 6 mg/kg once a day, starting from day 10 and continuing until day 42. Afterward, the mice's clinical scores were assessed. In this study, we conducted additional research to examine the impact of JNJ on several types of immune cells, specifically Th1 (IFN-γ and T-bet), Th9 (IL-9 and IRF4), Th17 (IL-17A and RORγt), and regulatory T (Tregs; Foxp3 and TGF-β1) cells in the spleen. In this study, we further investigated the impact of JNJ on the mRNA expression levels of IFN-γ, T-bet, IL-9, IRF4, IL-17A, RORγt, Foxp3, and TGF-β1 in the brain. Daily treatment of JNJ effectively reduced the development of EAE in mice. The percentages of CD4+IFN-γ+, CD4+T-bet+, CD4+IL-9+, CD4+IRF4+, CD4+IL-17A+, and CD4+RORγt+ cells were shown to decrease, whereas the percentages of CD4+TGF-β1+ and CD4+Foxp3+ cells were observed to increase in EAE mice treated with JNJ. Therefore, the HR4 antagonist positively affected the course of EAE by modulating the signaling of transcription factors. The identified results include possible ramifications in the context of MS treatment.
Collapse
Affiliation(s)
- Abdullah A. Aldossari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed A. Assiri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mushtaq A. Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M. Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A. Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Thamer H. Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hatun A. Alomar
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Haneen A. Al-Mazroua
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Taghreed N. Almanaa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed A. Al-Hamamah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Y. Alwetaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
4
|
Fiorani M, Del Vecchio LE, Dargenio P, Kaitsas F, Rozera T, Porcari S, Gasbarrini A, Cammarota G, Ianiro G. Histamine-producing bacteria and their role in gastrointestinal disorders. Expert Rev Gastroenterol Hepatol 2023; 17:709-718. [PMID: 37394958 DOI: 10.1080/17474124.2023.2230865] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 06/22/2023] [Indexed: 07/04/2023]
Abstract
INTRODUCTION Gut microbiota produces thousands of metabolites, which have a huge impact on the host health. Specific microbial strains are able to synthesize histamine, a molecule with a crucial role in many physiologic and pathologic mechanisms of the host. This function is mediated by the histidine decarboxylase enzyme (HDC) that converts the amino acid histidine to histamine. AREAS COVERED This review summarizes the emerging data on histamine production by gut microbiota, and the effect of bacterial-derived histamine in different clinical contexts, including cancer, irritable bowel syndrome, and other gastrointestinal and extraintestinal pathologies. This review will also outline the impact of histamine on the immune system and the effect of probiotics that can secrete histamine. Search methodology: we searched the literature on PubMed up to February 2023. EXPERT OPINION The potential of modulating gut microbiota to influence histamine production is a promising area of research, and although our knowledge of histamine-secreting bacteria is still limited, recent advances are exploring their diagnostic and therapeutical potential. Diet, probiotics, and pharmacological treatments directed to the modulation of histamine-secreting bacteria may in the future potentially be employed in the prevention and management of several gastrointestinal and extraintestinal disorders.
Collapse
Affiliation(s)
- Marcello Fiorani
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Livio Enrico Del Vecchio
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Pasquale Dargenio
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesco Kaitsas
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Tommaso Rozera
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Serena Porcari
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Giovanni Cammarota
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Gianluca Ianiro
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| |
Collapse
|
5
|
Dvornikova KA, Platonova ON, Bystrova EY. Inflammatory Bowel Disease: Crosstalk between Histamine, Immunity, and Disease. Int J Mol Sci 2023; 24:9937. [PMID: 37373085 DOI: 10.3390/ijms24129937] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Inflammatory bowel disease (IBD) is increasingly recognized as a serious, worldwide public health concern. It is generally acknowledged that a variety of factors play a role in the pathogenesis of this group of chronic inflammatory diseases. The diversity of molecular actors involved in IBD does not allow us to fully assess the causal relationships existing in such interactions. Given the high immunomodulatory activity of histamine and the complex immune-mediated nature of inflammatory bowel disease, the role of histamine and its receptors in the gut may be significant. This paper has been prepared to provide a schematic of the most important and possible molecular signaling pathways related to histamine and its receptors and to assess their relevance for the development of therapeutic approaches.
Collapse
Affiliation(s)
| | - Olga N Platonova
- I.P. Pavlov Institute of Physiology RAS, St. Petersburg 199034, Russia
| | - Elena Y Bystrova
- I.P. Pavlov Institute of Physiology RAS, St. Petersburg 199034, Russia
| |
Collapse
|
6
|
Rische CH, Thames AN, Krier-Burris RA, O’Sullivan JA, Bochner BS, Scott EA. Drug delivery targets and strategies to address mast cell diseases. Expert Opin Drug Deliv 2023; 20:205-222. [PMID: 36629456 PMCID: PMC9928520 DOI: 10.1080/17425247.2023.2166926] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/10/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Current and developing mast cell therapeutics are reliant on small molecule drugs and biologics, but few are truly selective for mast cells. Most have cellular and disease-specific limitations that require innovation to overcome longstanding challenges to selectively targeting and modulating mast cell behavior. This review is designed to serve as a frame of reference for new approaches that utilize nanotechnology or combine different drugs to increase mast cell selectivity and therapeutic efficacy. AREAS COVERED Mast cell diseases include allergy and related conditions as well as malignancies. Here, we discuss the targets of existing and developing therapies used to treat these disease pathologies, classifying them into cell surface, intracellular, and extracellular categories. For each target discussed, we discuss drugs that are either the current standard of care, under development, or have indications for potential use. Finally, we discuss how novel technologies and tools can be used to take existing therapeutics to a new level of selectivity and potency against mast cells. EXPERT OPINION There are many broadly and very few selectively targeted therapeutics for mast cells in allergy and malignant disease. Combining existing targeting strategies with technology like nanoparticles will provide novel platforms to treat mast cell disease more selectively.
Collapse
Affiliation(s)
- Clayton H. Rische
- Northwestern University McCormick School of Engineering, Department of Biomedical Engineering, Evanston, IL, USA
- Northwestern University Feinberg School of Medicine, Division of Allergy and Immunology, Chicago, IL, USA
| | - Ariel N. Thames
- Northwestern University Feinberg School of Medicine, Division of Allergy and Immunology, Chicago, IL, USA
- Northwestern University McCormick School of Engineering, Department of Chemical and Biological Engineering, Evanston, IL, USA
| | - Rebecca A. Krier-Burris
- Northwestern University Feinberg School of Medicine, Division of Allergy and Immunology, Chicago, IL, USA
| | - Jeremy A. O’Sullivan
- Northwestern University Feinberg School of Medicine, Division of Allergy and Immunology, Chicago, IL, USA
| | - Bruce S. Bochner
- Northwestern University Feinberg School of Medicine, Division of Allergy and Immunology, Chicago, IL, USA
| | - Evan A. Scott
- Northwestern University McCormick School of Engineering, Department of Biomedical Engineering, Evanston, IL, USA
- Northwestern University Feinberg School of Medicine, Department of Microbiolgy-Immunology, Chicago, IL, USA
| |
Collapse
|
7
|
Falkenstein M, Elek M, Stark H. Chemical Probes for Histamine Receptor Subtypes. Curr Top Behav Neurosci 2021; 59:29-76. [PMID: 34595743 DOI: 10.1007/7854_2021_254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Ligands with different properties and different selectivity are highly needed for in vitro and in vivo studies on the (patho)physiological influence of the chemical mediator histamine and its receptor subtypes. A selection of well-described ligands for the different receptor subtypes and different studies is shown with a particular focus on affinity and selectivity. In addition, compounds with radioactive or fluorescence elements will be presented with their beneficial use for other species or different investigations.
Collapse
Affiliation(s)
- Markus Falkenstein
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Duesseldorf, Germany
| | - Milica Elek
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Duesseldorf, Germany
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Duesseldorf, Germany.
| |
Collapse
|
8
|
The Function of the Histamine H4 Receptor in Inflammatory and Inflammation-Associated Diseases of the Gut. Int J Mol Sci 2021; 22:ijms22116116. [PMID: 34204101 PMCID: PMC8200986 DOI: 10.3390/ijms22116116] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023] Open
Abstract
Histamine is a pleiotropic mediator involved in a broad spectrum of (patho)-physiological processes, one of which is the regulation of inflammation. Compounds acting on three out of the four known histamine receptors are approved for clinical use. These approved compounds comprise histamine H1-receptor (H1R) antagonists, which are used to control allergic inflammation, antagonists at H2R, which therapeutically decrease gastric acid release, and an antagonist at H3R, which is indicated to treat narcolepsy. Ligands at H4R are still being tested pre-clinically and in clinical trials of inflammatory diseases, including rheumatoid arthritis, asthma, dermatitis, and psoriasis. These trials, however, documented only moderate beneficial effects of H4R ligands so far. Nevertheless, pre-clinically, H4R still is subject of ongoing research, analyzing various inflammatory, allergic, and autoimmune diseases. During inflammatory reactions in gut tissues, histamine concentrations rise in affected areas, indicating its possible biological effect. Indeed, in histamine-deficient mice experimentally induced inflammation of the gut is reduced in comparison to that in histamine-competent mice. However, antagonists at H1R, H2R, and H3R do not provide an effect on inflammation, supporting the idea that H4R is responsible for the histamine effects. In the present review, we discuss the involvement of histamine and H4R in inflammatory and inflammation-associated diseases of the gut.
Collapse
|
9
|
Schirmer B, Lindemann L, Bittkau KS, Isaev R, Bösche D, Juchem M, Seifert R, Neumann D. Mouse Colonic Epithelial Cells Functionally Express the Histamine H 4 Receptor. J Pharmacol Exp Ther 2020; 373:167-174. [PMID: 32029576 DOI: 10.1124/jpet.119.264408] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/03/2020] [Indexed: 12/19/2022] Open
Abstract
We hypothesized that, in mice, histamine via the histamine receptor subtype 4 (H4R) on colon epithelial cells affects epithelial barrier integrity, perturbing physiologic function of the colonic mucosa and thus aggravating the severity of colitis. To test this hypothesis, bone marrow-chimeric mice were generated from H4R knockout (H4R-/-) and wild-type (WT) BALB/cJ mice and subjected to the dextrane sodium sulfate (DSS)-induced acute colitis model. Clinical symptoms and pathohistological derangements were scored. Additionally, total RNA was extracted from either mouse whole-colon homogenates or primary cell preparations enriched for epithelial cells, and gene expression was analyzed by real-time quantitative polymerase chain reaction. The impact of the H4R on epithelial barrier function was assessed by measurement of transepithelial electrical resistence of organoid-derived two-dimensional monolayers from H4R-/- and WT mice using chopstick electrodes. Bone marrow-chimeric mice with genetic depletion of the H4R in nonhematopoietic cells exhibited less severe DSS-induced acute colitis symptoms compared with WT mice, indicating a functional proinflammatory expression of H4R in nonimmune cells of the colon. Analysis of H4R expression revealed the presence of H4R mRNA in colon epithelial cells. This expression could be confirmed and complemented by functional analyses in organoid-derived epithelial cell monolayers. Thus, we conclude that the H4R is functionally expressed in mouse colon epithelial cells, potentially modulating mucosal barrier integrity and intestinal inflammatory reactions, as was demonstrated in the DSS-induced colitis model, in which presence of the H4R on nonhematopoietic cells aggravated the inflammatory phenotype. SIGNIFICANCE STATEMENT: The histamine H4 receptor (H4R) is functionally expressed on mouse colon epithelial cells, thereby aggravating dextrane sodium sulfate-induced colitis in BALB/cJ mice. Histamine via the H4R reduces transepithelial electrical resistance of colon epithelial monolayers, indicating a function of H4R in regulation of epithelial barrier integrity.
Collapse
Affiliation(s)
- Bastian Schirmer
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| | - Luisa Lindemann
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| | | | - Rukijat Isaev
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| | - Daniela Bösche
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| | - Malte Juchem
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| | - Roland Seifert
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| | - Detlef Neumann
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
10
|
Bastaki SMA, Amir N, Więcek M, Kieć-Kononowicz K, Sadek B. Influence of the Novel Histamine H3 Receptor Antagonist/Inverse Agonist M39 on Gastroprotection and PGE2 Production Induced by (R)-Alpha-Methylhistamine in C57BL/6 Mice. Front Pharmacol 2019; 10:966. [PMID: 31572174 PMCID: PMC6751319 DOI: 10.3389/fphar.2019.00966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/29/2019] [Indexed: 11/13/2022] Open
Abstract
The role of histamine H3 receptors (H3Rs) in the regulation of gastroprotection and production of prostaglandin E2 (PGE2) as well as somatostatin remains contradictory. Therefore, the effects of the H3R antagonist/inverse agonist M39 on in vivo acidified ethanol-induced gastric ulcers and gastric acid secretion in the C57BL/6 mice were assessed. Results showed that acute systemic administration of H3R agonist (R)-α-methylhistamine (RAMH, 100 mg/kg, i.g.) significantly reduced the severity of ulcer index, increased gastric acid output, and increased mucosal PGE2 production without any alteration of somatostatin concentration in gastric juice. However, only acute systemic administration of the H2R agonist dimaprit (DIM, 10 mg/kg, p.o.) significantly decreased the level of somatostatin measured in gastric juice. Moreover, acute systemic administration of M39 (0.3 mg/kg, i.g.) abrogated the RAMH-induced increase of acid output as well as PGE2 production, but not the DIM (10 mg/kg, i.g.)-stimulated acid secretion, indicating that RAMH as well as M39 modulate the gastroprotective effects through interactions with histamine H3Rs. The present findings indicate that agonistic interaction with H3Rs is profoundly involved in the maintenance of gastric mucosal integrity by modulating PGE2 as well as gastric acid secretion, with no apparent role in the regulation of the inhibitory influence of somatostatin.
Collapse
Affiliation(s)
- Salim M. A. Bastaki
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
- *Correspondence: Bassem Sadek, ; Salim M.A. Bastaki,
| | - Naheed Amir
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Małgorzata Więcek
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University-Medical College, Kraków, Poland
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University-Medical College, Kraków, Poland
| | - Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
- *Correspondence: Bassem Sadek, ; Salim M.A. Bastaki,
| |
Collapse
|
11
|
Tatarkiewicz J, Rzodkiewicz P, Żochowska M, Staniszewska A, Bujalska-Zadrożny M. New antihistamines - perspectives in the treatment of some allergic and inflammatory disorders. Arch Med Sci 2019; 15:537-553. [PMID: 30899308 PMCID: PMC6425212 DOI: 10.5114/aoms.2017.68534] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 03/13/2017] [Indexed: 12/29/2022] Open
Affiliation(s)
- Jan Tatarkiewicz
- Department of Pharmacodynamics, Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| | - Przemysław Rzodkiewicz
- Department of Biochemistry and Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
- Department of General and Experimental Pathology, Medical University of Warsaw, Warsaw, Poland
| | - Małgorzata Żochowska
- Department of Pharmacodynamics, Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| | - Anna Staniszewska
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland
| | - Magdalena Bujalska-Zadrożny
- Department of Pharmacodynamics, Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
12
|
Hirasawa N. Expression of Histidine Decarboxylase and Its Roles in Inflammation. Int J Mol Sci 2019; 20:ijms20020376. [PMID: 30654600 PMCID: PMC6359378 DOI: 10.3390/ijms20020376] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/04/2019] [Accepted: 01/10/2019] [Indexed: 12/26/2022] Open
Abstract
Histamine is a well-known mediator of inflammation that is released from mast cells and basophils. To date, many studies using histamine receptor antagonists have shown that histamine acts through four types of receptors: H1, H2, H3, and H4. Thus, histamine plays more roles in various diseases than had been predicted. However, our knowledge about histamine-producing cells and the molecular mechanisms underlying histamine production at inflammatory sites is still incomplete. The histamine producing enzyme, histidine decarboxylase (HDC), is commonly induced at inflammatory sites during the late and chronic phases of both allergic and non-allergic inflammation. Thus, histamine levels in tissues are maintained at effective concentrations for hours, enabling the regulation of various functions through the production of cytokines/chemokines/growth factors. Understanding the regulation of histamine production will allow the development of a new strategy of using histamine antagonists to treat inflammatory diseases.
Collapse
Affiliation(s)
- Noriyasu Hirasawa
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| |
Collapse
|
13
|
Sterle HA, Nicoud MB, Massari NA, Táquez Delgado MA, Herrero Ducloux MV, Cremaschi GA, Medina VA. Immunomodulatory role of histamine H4 receptor in breast cancer. Br J Cancer 2019; 120:128-138. [PMID: 29988113 PMCID: PMC6325108 DOI: 10.1038/s41416-018-0173-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/08/2018] [Accepted: 06/12/2018] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Although the role of histamine H4 receptor (H4R) in immune cells is being extensively investigated, its immunomodulatory function in cancer is completely unknown. This study aimed to investigate the role of H4R in antitumour immunity in a model of triple-negative breast cancer. METHODS We evaluated growth parameters, histological characteristics and the composition of tumour, splenic and tumour draining lymph node (TDLN) immune subsets, in a syngeneic model, developed orthotopically with 4T1 cells in H4R knockout (H4R-KO) and wild-type mice. RESULTS Mice lacking H4R show reduced tumour size and weight, decreased number of lung metastases and percentage of CD4+ tumour-infiltrating T cells, while exhibiting increased infiltration of NK cells and CD19+ lymphocytes. Likewise, TDLN of H4R-KO mice show decreased CD4+ T cells and T regulatory cells (CD4+CD25+FoxP3+), and increased percentages of NK cells. Finally, H4R-deficient mice show decreased Tregs in spleens and non-draining lymph nodes, and a negative correlation between tumour weight and the percentages of CD4+, CD19+ and NK splenic cells, suggesting that H4R also regulates antitumour immunity at a systemic level. CONCLUSIONS This is the first report that demonstrates the participation of H4R in antitumour immunity, suggesting that H4R could be a target for cancer treatment.
Collapse
Affiliation(s)
- Helena A Sterle
- Neuroimmunomodulation and Molecular Oncology Division, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and the National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Melisa B Nicoud
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and the National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Laboratory of Radioisotopes, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Noelia A Massari
- Immunology Department, School of Natural Sciences, National University of Patagonia San Juan Bosco, Chubut, Argentina
| | - Mónica A Táquez Delgado
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and the National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - María V Herrero Ducloux
- Pathology Department, School of Natural Sciences, National University of Patagonia San Juan Bosco, Chubut, Argentina
| | - Graciela A Cremaschi
- Neuroimmunomodulation and Molecular Oncology Division, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and the National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Laboratory of Radioisotopes, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Vanina A Medina
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and the National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.
- Laboratory of Radioisotopes, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
14
|
Chang G, Wang L, Ma N, Zhang W, Zhang H, Dai H, Shen X. Histamine activates inflammatory response and depresses casein synthesis in mammary gland of dairy cows during SARA. BMC Vet Res 2018; 14:168. [PMID: 29792195 PMCID: PMC5966854 DOI: 10.1186/s12917-018-1491-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/10/2018] [Indexed: 11/25/2022] Open
Abstract
Background Mounting evidences observed that subacute ruminal acidosis (SARA) induced by high concentration (HC) diet increases the translocation of histamine from digestive tract into circulation causing a diverse of diseases in dairy cows. However, it is largely unknown how it does affect the function of mammary gland and milk quality. Hence, this study aims to observe the effects of histamine derived from the digestive tract on the inflammatory response and casein synthesis in the mammary glands during SARA. Twelve cows fitted rumen fistula were randomly divided into either control group administrated low concentration (LC) diet (60% forage, n = 6) or treatment group administrated HC diet (40% forage, n = 6) for 18 weeks. Results Our data showed that HC diet resulted in significant declines in rumen pH value, milk yield and milk quality, as well as longer duration of averaged pH value below 5.6 per day (more than 180 min) compared to LC diet, these findings confirmed SARA occurence. Our study also observed that SARA increased the content of histamine in rumen fluid, plasma, liver and mammary gland, and enhanced the mRNA expression of histamine specific receptor in the mammary gland. Additionally, we found that the mRNA expression of inflammatory response genes in mammary glands was increased, which was consistent with the protein expression results, showing that the protein kinase C(PKC) / nuclear factor kappa B (NF-κB) or protein kinase A (PKA) / NF-κB signalling pathways of the inflammatory response were activated. The mRNA expression of mTOR, P70S6K and αS1 in mammary glands were significantly decreased with the protein expression of mTOR, P70S6K and αS1-casein, and the phosphorylation levels of the mTOR and P70S6K proteins were also decreased. Conclusions Our study showed that the milk protein of lactating cows is depressed after long-term feeding of HC at the individual level, which was paralleled at the gene and protein levels. The inflammatory response in mammary gland caused by histamine derived from the digestive tract is related to the decline of casein synthesis. Our findings point to a new link between the inflammatory response and casein synthesis, but the understanding of the molecular mechanisms involved in this process will require further research. Electronic supplementary material The online version of this article (10.1186/s12917-018-1491-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guangjun Chang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Lailai Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Nana Ma
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Wenwen Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Huanmin Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Hongyu Dai
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xiangzhen Shen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| |
Collapse
|
15
|
Wechsler JB, Szabo A, Hsu CL, Krier-Burris R, Schroeder H, Wang MY, Carter R, Velez T, Aguiniga LM, Brown JB, Miller ML, Wershil BK, Barrett TA, Bryce PJ. Histamine drives severity of innate inflammation via histamine 4 receptor in murine experimental colitis. Mucosal Immunol 2018; 11:861-870. [PMID: 29363669 PMCID: PMC5976516 DOI: 10.1038/mi.2017.121] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 12/16/2017] [Indexed: 02/04/2023]
Abstract
Ulcerative colitis (UC) patients exhibit elevated histamine, but how histamine exacerbates disease is unclear as targeting histamine 1 receptor (H1R) or H2R is clinically ineffective. We hypothesized that histamine functioned instead through the other colon-expressed histamine receptor, H4R. In humans, UC patient biopsies exhibited increased H4R RNA and protein expression over control tissue, and immunohistochemistry showed that H4R was in proximity to immunopathogenic myeloperoxidase-positive neutrophils. To characterize this association further, we employed both the oxazolone (Ox)- and dextran sulfate sodium (DSS)-induced experimental colitis mouse models and also found upregulated H4R expression. Mast cell (MC)-derived histamine and H4R drove experimental colitis, as H4R-/- mice had lower symptom scores, neutrophil-recruitment mediators (colonic interleukin-6 (IL-6), CXCL1, CXCL2), and mucosal neutrophil infiltration than wild-type (WT) mice, as did MC-deficient KitW-sh/W-sh mice reconstituted with histidine decarboxylase-deficient (HDC-/-) bone marrow-derived MCs compared with WT-reconstituted mice; adaptive responses remained intact. Furthermore, Rag2-/- × H4R-/- mice had reduced survival, exacerbated colitis, and increased bacterial translocation than Rag2-/- mice, revealing an innate protective antibacterial role for H4R. Taken together, colonic MC-derived histamine initiates granulocyte infiltration into the colonic mucosa through H4R, suggesting alternative therapeutic targets beyond adaptive immunity for UC.
Collapse
Affiliation(s)
- Joshua B. Wechsler
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Ann & Robert H. Lurie Children’s Hospital of Chicago and Northwestern University Feinberg School of Medicine, Chicago, IL, USA,Department of Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Alison Szabo
- Department of Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Chia-Lin Hsu
- Department of Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Rebecca Krier-Burris
- Department of Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Holly Schroeder
- Department of Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Ming Y. Wang
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Ann & Robert H. Lurie Children’s Hospital of Chicago and Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Roderick Carter
- Department of Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Tania Velez
- Department of Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Lizath M. Aguiniga
- Department of Urology, Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL USA
| | - Jeff B. Brown
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Ann & Robert H. Lurie Children’s Hospital of Chicago and Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Mendy L. Miller
- Department of Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Barry K. Wershil
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Ann & Robert H. Lurie Children’s Hospital of Chicago and Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Terrence A. Barrett
- Division of Digestive Disease and Nutrition, Department of Medicine, University of Kentucky Health Care, Lexington, KY USA
| | - Paul J. Bryce
- Department of Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| |
Collapse
|
16
|
Thurmond RL, Venable J, Savall B, La D, Snook S, Dunford PJ, Edwards JP. Clinical Development of Histamine H 4 Receptor Antagonists. Handb Exp Pharmacol 2017; 241:301-320. [PMID: 28233185 DOI: 10.1007/164_2016_130] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The discovery of the histamine H4 receptor (H4R) provided a new avenue for the exploration of the physiological role of histamine, as well as providing a new drug target for the development of novel antihistamines. The first step in this process was the identification of selective antagonists to help unravel the pharmacology of the H4R relative to other histamine receptors. The discovery of the selective H4R antagonist JNJ 7777120 was vital for showing a role for the H4R in inflammation and pruritus. While this compound has been very successful as a tool for understanding the function of the receptor, it has drawbacks, including a short in vivo half-life and hypoadrenocorticism toxicity in rats and dogs, that prevented advancing it into clinical studies. Further research let to the discovery of JNJ 39758979, which, similar to JNJ 7777120, was a potent and selective H4R antagonist and showed anti-inflammatory and anti-pruritic activity preclinically. JNJ 39758979 advanced into human clinical studies and showed efficacy in reducing experimental pruritus and in patients with atopic dermatitis. However, development of this compound was terminated due to the occurrence of drug-induced agranulocytosis. This was overcome by developing another H4R antagonist with a different chemical structure, toreforant, that does not appear to have this side effect. Toreforant has been tested in clinical studies in patients with rheumatoid arthritis, asthma, or psoriasis. In conclusions there have been many H4R antagonists reported in the literature, but only a few have been studied in humans underscoring the difficulty in finding ligands with all of the properties necessary for testing in the clinic. Nevertheless, the clinical data to date suggests that H4R antagonists can be beneficial in treating atopic dermatitis and pruritus.
Collapse
Affiliation(s)
| | | | - Brad Savall
- Janssen Research & Development, LLC, San Diego, CA, 92121, USA
| | - David La
- Janssen Research & Development, LLC, San Diego, CA, 92121, USA
| | - Sandra Snook
- Janssen Research & Development, LLC, San Diego, CA, 92121, USA
| | - Paul J Dunford
- Janssen Research & Development, LLC, San Diego, CA, 92121, USA
| | - James P Edwards
- Janssen Research & Development, LLC, San Diego, CA, 92121, USA
| |
Collapse
|
17
|
Immune regulation by histamine and histamine-secreting bacteria. Curr Opin Immunol 2017; 48:108-113. [DOI: 10.1016/j.coi.2017.08.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 07/30/2017] [Accepted: 08/16/2017] [Indexed: 12/20/2022]
|
18
|
Wunschel EJ, Schirmer B, Seifert R, Neumann D. Lack of Histamine H 4-Receptor Expression Aggravates TNBS-Induced Acute Colitis Symptoms in Mice. Front Pharmacol 2017; 8:642. [PMID: 28955241 PMCID: PMC5601386 DOI: 10.3389/fphar.2017.00642] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/30/2017] [Indexed: 12/22/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are a growing health problem worldwide, severely affecting patients’ life qualities and life expectancies. Therapeutic options, which are rare and focus on symptoms associated with the disease, suffer from increasing numbers of patients refractory to the established strategies. Thus, in order to generate new therapeutic regimens, the detailed understanding of the pathogenic mechanisms causing IBD is necessary. Histamine is an inflammatory mediator associated with IBD. Four histamine receptors are currently known of which the histamine H4-receptor (H4R) has been shown to possess a pro-inflammatory function in several experimental models of inflammatory diseases, including dextran sodium sulfate (DSS)-induced colitis in mice. No single model reflects the complexity of human IBD, but each model provides valuable information on specific aspects of IBD pathogenesis. While DSS-induced colitis mostly relies on innate immune mechanisms, trinitrobenzene sulfonic acid (TNBS)-induced colitis rather reflects T-cell mechanisms. Consequently, an observation made in a single model has to be verified in at least one other model. Therefore, in the present study we investigated the effect of genetic blockade of H4R-signaling in mice subjected to the model of TNBS-induced acute colitis. We analyzed severity and progression of clinical signs of colitis, as well as histopathologic alterations in the colon and local cytokine production. Genetic ablation of H4R expression worsened clinical signs of acute colitis and histological appearance of colon inflammation after TNBS application. Moreover, TNBS instillation enhanced local synthesis of inflammatory mediators associated with a neutrophilic response, i.e., CXCL1, CXCL2, and interleukin-6. Lastly, also myeloperoxidase concentration, indicative for the presence of neutrophils, was elevated in cola of TNBS-treated mice due to the absence of H4R expression. Our results indicate an anti-inflammatory role of histamine via H4R in TNBS-induced acute neutrophilic colitis in mice, thus questioning the strategy of pharmacological H4R blocked as new therapeutic option for patients suffering from IBD.
Collapse
Affiliation(s)
- Eva J Wunschel
- Institute of Pharmacology, Hannover Medical SchoolHanover, Germany
| | - Bastian Schirmer
- Institute of Pharmacology, Hannover Medical SchoolHanover, Germany
| | - Roland Seifert
- Institute of Pharmacology, Hannover Medical SchoolHanover, Germany
| | - Detlef Neumann
- Institute of Pharmacology, Hannover Medical SchoolHanover, Germany
| |
Collapse
|
19
|
Fabisiak A, Włodarczyk J, Fabisiak N, Storr M, Fichna J. Targeting Histamine Receptors in Irritable Bowel Syndrome: A Critical Appraisal. J Neurogastroenterol Motil 2017; 23:341-348. [PMID: 28551943 PMCID: PMC5503283 DOI: 10.5056/jnm16203] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/10/2017] [Accepted: 04/07/2017] [Indexed: 12/19/2022] Open
Abstract
Irritable bowel syndrome is a group of functional gastrointestinal disorders with not yet fully clarified etiology. Recent evidence suggesting that mast cells may play a central role in the pathogenesis of irritable bowel syndrome paves the way for agents targeting histamine receptors as a potential therapeutic option in clinical treatment. In this review, the role of histamine and histamine receptors is debated. Moreover, the clinical evidence of anti-histamine therapeutics in irritable bowel syndrome is discussed.
Collapse
Affiliation(s)
- Adam Fabisiak
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz,
Poland
| | - Jakub Włodarczyk
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz,
Poland
| | - Natalia Fabisiak
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz,
Poland
| | - Martin Storr
- Center of Endoscopy, Starnberg,
Germany
- Walter Brendel Center of Experimental Medicine, Ludwig Maximilians University of Munich, Munich,
Germany
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz,
Poland
- Correspondence: Jakub Fichna, PhD, DSc, Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland, Tel: +48-42-272-5707, Fax: +48-42-272-5694, E-mail:
| |
Collapse
|
20
|
Antinociceptive effect of co-administered NMDA and histamine H4 receptor antagonists in a rat model of acute pain. Pharmacol Rep 2017; 69:222-228. [DOI: 10.1016/j.pharep.2016.10.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/21/2016] [Accepted: 10/25/2016] [Indexed: 01/09/2023]
|
21
|
Vasaitis L. IgG4-related disease: A relatively new concept for clinicians. Eur J Intern Med 2016; 27:1-9. [PMID: 26481243 DOI: 10.1016/j.ejim.2015.09.022] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 07/09/2015] [Accepted: 09/30/2015] [Indexed: 02/08/2023]
Abstract
IgG4-related disease (IgG4-RD) is a recently recognized chronic fibrotic inflammation, which can affect almost every organ, and may come to clinical attention first due to visible organ swelling or organ dysfunction, or is identified incidentally by imaging and specific biopsy. The disorder has an allergic background and is immune-mediated. Up-regulated responses of T helper 2 and T regulatory cells and their cytokines play a major role in disease progression. About 30-50% of patients are atopic or have mild eosinophilia. IgG4-RD predominantly affects middle-aged male patients. The cornerstones of diagnosis of the disease are compatible clinical features and typical histopathology. Swelling of salivary and lacrimal glands, lymphadenopathy, and type 1 autoimmune pancreatitis (AIP) are the most common manifestations of the disease. However, other tissues and organs, such as retroperitoneum, lung, kidney, aorta, upper airways, thyroid gland, meninges, heart, mesenterium and skin may be involved. Typical histopathology is lymphoplasmacytic infiltration abundant in IgG4-positive plasma cells, storiform-type fibrosis, and obliterative phlebitis. Elevated serum IgG4 concentration supports the diagnosis. Characteristic imaging features such as a "capsule-like rim" surrounding the pancreatic lesions is highly specific to type 1 AIP. 18F-fluorodeoxyglucose positron emission tomography/computed tomography enables mapping the sites of inflammation, permits evaluation of the extent of the disease, helps in guiding biopsy decision, and may be used in monitoring response to treatment. Glucocorticoids alone or in combination with B-cell depletion with rituximab induces prompt clinical response to IgG4-RD. This article reviews the current understanding, different clinical manifestations, and approaches to diagnosis and treatment of IgG4-RD.
Collapse
Affiliation(s)
- Lilian Vasaitis
- Section of Rheumatology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
22
|
Schirmer B, Rezniczek T, Seifert R, Neumann D. Proinflammatory role of the histamine H4 receptor in dextrane sodium sulfate-induced acute colitis. Biochem Pharmacol 2015; 98:102-9. [PMID: 26365468 DOI: 10.1016/j.bcp.2015.09.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 09/08/2015] [Indexed: 12/16/2022]
Abstract
Millions of people worldwide are suffering from inflammatory bowel disease (IBD), which severely affects patients' life qualities and even life expectancies. The cause of the ailment is unknown and a profound understanding of the underlying pathogenetic mechanisms is still lacking. The biogenic amine histamine is one of several inflammatory mediators, to which a pathogenetic role in IBD has been attributed. Out of the four known histamine receptors, the histamine H4 receptor (H4R) has been demonstrated to act proinflammatory in experimental models of several inflammatory diseases. In order to evaluate a potential involvement of H4R in IBD we investigated the effect of genetic or pharmacological blockade of H4R-signaling in the model of dextran sodium sulfate (DSS)-induced colitis in mice. We analysed severity and progression of clinical signs of colitis, as well as histopathologic alterations in the colons and systemic or local cytokine concentrations. Both genetic deficiency and pharmacological blockade of H4R with the selective antagonist JNJ7777120 improved clinical and histological signs of colitis and dampened the inflammatory cytokine response. Our results indicate a proinflammatory role of histamine via H4R in IBD, thus extending the current pathophysiological understanding of IBD and demonstrating the therapeutic potential of selective H4R-antagonists for patients suffering from IBD.
Collapse
Affiliation(s)
- Bastian Schirmer
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany.
| | - Thomas Rezniczek
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| | - Roland Seifert
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| | - Detlef Neumann
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
23
|
Sarfati M, Wakahara K, Chapuy L, Delespesse G. Mutual Interaction of Basophils and T Cells in Chronic Inflammatory Diseases. Front Immunol 2015; 6:399. [PMID: 26284078 PMCID: PMC4522868 DOI: 10.3389/fimmu.2015.00399] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 07/20/2015] [Indexed: 12/25/2022] Open
Abstract
Basophils are, together with mast cells, typical innate effector cells of allergen-induced IgE-dependent allergic diseases. Both cell types express the high-affinity receptor for IgE (FcεR1), release histamine, inflammatory mediators, and cytokines following FcεR1 cross-linking. Basophils are rare granulocytes in blood, lymphoid, and non-lymphoid tissues, and the difficulties to detect and isolate these cells has hampered the study of their biology and the understanding of their possible role in pathology. Furthermore, the existence of other FcεR1-expressing cells, including professional Ag-presenting dendritic cells, generated some controversy regarding the ability of basophils to express MHC Class II molecules, present Ag and drive naïve T cell differentiation into Th2 cells. The focus of this review is to present the recent advances on the interactions between basophils and peripheral blood and tissue memory Th1, Th2, and Th17 cells, as well as their potential role in IgE-independent non-allergic chronic inflammatory disorders, including human inflammatory bowel diseases. Basophils interactions with the innate players of IgE-dependent allergic inflammation, particularly innate lymphoid cells, will also be considered. The previously unrecognized function for basophils in skewing adaptive immune responses opens novel perspectives for the understanding of their contribution to the pathogenesis of inflammatory diseases.
Collapse
Affiliation(s)
- Marika Sarfati
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal , Montréal, QC , Canada
| | - Keiko Wakahara
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Laurence Chapuy
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal , Montréal, QC , Canada
| | - Guy Delespesse
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal , Montréal, QC , Canada
| |
Collapse
|
24
|
Ahmad SF, Ansari MA, Zoheir KM, Bakheet SA, Korashy HM, Nadeem A, Ashour AE, Attia SM. Regulation of TNF-α and NF-κB activation through the JAK/STAT signaling pathway downstream of histamine 4 receptor in a rat model of LPS-induced joint inflammation. Immunobiology 2015; 220:889-98. [DOI: 10.1016/j.imbio.2015.01.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 01/18/2015] [Accepted: 01/22/2015] [Indexed: 11/28/2022]
|
25
|
Panula P, Chazot PL, Cowart M, Gutzmer R, Leurs R, Liu WLS, Stark H, Thurmond RL, Haas HL. International Union of Basic and Clinical Pharmacology. XCVIII. Histamine Receptors. Pharmacol Rev 2015; 67:601-55. [PMID: 26084539 PMCID: PMC4485016 DOI: 10.1124/pr.114.010249] [Citation(s) in RCA: 393] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Histamine is a developmentally highly conserved autacoid found in most vertebrate tissues. Its physiological functions are mediated by four 7-transmembrane G protein-coupled receptors (H1R, H2R, H3R, H4R) that are all targets of pharmacological intervention. The receptors display molecular heterogeneity and constitutive activity. H1R antagonists are long known antiallergic and sedating drugs, whereas the H2R was identified in the 1970s and led to the development of H2R-antagonists that revolutionized stomach ulcer treatment. The crystal structure of ligand-bound H1R has rendered it possible to design new ligands with novel properties. The H3R is an autoreceptor and heteroreceptor providing negative feedback on histaminergic and inhibition on other neurons. A block of these actions promotes waking. The H4R occurs on immuncompetent cells and the development of anti-inflammatory drugs is anticipated.
Collapse
Affiliation(s)
- Pertti Panula
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Paul L Chazot
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Marlon Cowart
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Ralf Gutzmer
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Rob Leurs
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Wai L S Liu
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Holger Stark
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Robin L Thurmond
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Helmut L Haas
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| |
Collapse
|
26
|
Ueno K. [Expression and function of the histamine receptors in dermal and articular tissues]. YAKUGAKU ZASSHI 2015; 134:1093-108. [PMID: 25366908 DOI: 10.1248/yakushi.14-00183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Histamine was first identified in 1910 as a physiologically active amine. It is now recognized for its multiple regulatory activities in the digestive, neuronal, and immune systems, and new roles are still being elucidated. Histamine exerts its effects through four distinct receptor subtypes. The histamine H4 receptor was identified in 2000 and is the most recently identified of the four histamine receptors. It is expressed primarily in immune cells and is involved in physiologic functions related to inflammation and allergy. Recently, the H4 receptor was highlighted as a promising therapeutic target in atopic dermatitis, asthma, and chronic arthritis. In fact, some H4 receptor antagonists have reached clinical trials for the treatment of asthma, atopic dermatitis, and allergic rhinitis. Based on an initial assessment of its distribution, the H4 receptor has been referred to as the histamine receptor of the hematopoietic system. However, the H4 receptor has also been implicated in the regulation of other non-hematopoietic systems. Here, I review the expression and function of the identified histamine receptors, including the H4 receptor with a focus on articular and dermal tissues. In articular tissue, H4 receptor expression has been detected in synovial cells. Chondrocytes, a major cell source for cartilage tissue engineering, also express the H4 receptor. In skin, the H4 receptor is expressed in both the epidermis and dermis, with stronger receptor expression in the epidermis. Further understanding of the functions of H4 receptors in non-hematopoietic cells might lead to novel treatments for diseases with unmet medical needs.
Collapse
Affiliation(s)
- Koichi Ueno
- Department of Geriatric Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Chiba University
| |
Collapse
|
27
|
Thurmond RL. The histamine H4 receptor: from orphan to the clinic. Front Pharmacol 2015; 6:65. [PMID: 25873897 PMCID: PMC4379874 DOI: 10.3389/fphar.2015.00065] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 03/12/2015] [Indexed: 01/10/2023] Open
Abstract
The histamine H4 receptor (H4R) was first noted as a sequence in genomic databases that had features of a class A G-protein coupled receptor. This putative receptor was found to bind histamine consistent with its homology to other histamine receptors and thus became the fourth member of the histamine receptor family. Due to the previous success of drugs that target the H1 and H2 receptors, an effort was made to understand the function of this new receptor and determine if it represented a viable drug target. Taking advantage of the vast literature on the function of histamine, a search for histamine activity that did not appear to be mediated by the other three histamine receptors was undertaken. From this asthma and pruritus emerged as areas of particular interest. Histamine has long been suspected to play a role in the pathogenesis of asthma, but antihistamines that target the H1 and H2 receptors have not been shown to be effective for this condition. The use of selective ligands in animal models of asthma has now potentially filled this gap by showing a role for the H4R in mediating lung function and inflammation. A similar story exists for chronic pruritus associated with conditions such as atopic dermatitis. Antihistamines that target the H1 receptor are effective in reducing acute pruritus, but are ineffective in pruritus experienced by patients with atopic dermatitis. As for asthma, animal models have now suggested a role for the H4R in mediating pruritic responses, with antagonists of the H4R reducing pruritus in a number of different conditions. The anti-pruritic effect of H4R antagonists has recently been shown in human clinical studies, validating the preclinical findings in the animal models. A selective H4R antagonist inhibited histamine-induced pruritus in health volunteers and reduced pruritus in patients with atopic dermatitis. The history to date of the H4R provides an excellent example of the deorphanization of a novel receptor and the translation of this into clinical efficacy in humans.
Collapse
|
28
|
Deiteren A, De Man JG, Pelckmans PA, De Winter BY. Histamine H₄ receptors in the gastrointestinal tract. Br J Pharmacol 2015; 172:1165-1178. [PMID: 25363289 PMCID: PMC4337694 DOI: 10.1111/bph.12989] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/28/2014] [Accepted: 10/20/2014] [Indexed: 12/13/2022] Open
Abstract
Histamine is a well-established mediator involved in a variety of physiological and pathophysiological mechanisms and exerts its effect through activation of four histamine receptors (H1-H₄). The histamine H₄ receptor is the newest member of this histamine receptor family, and is expressed throughout the gastrointestinal tract as well as in the liver, pancreas and bile ducts. Functional studies using a combination of selective and non-selective H₄ receptor ligands have rapidly increased our knowledge of H₄ receptor involvement in gastrointestinal processes both under physiological conditions and in models of disease. Strong evidence points towards a role for H₄ receptors in the modulation of immune-mediated responses in gut inflammation such as in colitis, ischaemia/reperfusion injury, radiation-induced enteropathy and allergic gut reactions. In addition, data have emerged implicating H₄ receptors in gastrointestinal cancerogenesis, sensory signalling, and visceral pain as well as in gastric ulceration. These studies highlight the potential of H₄ receptor targeted therapy in the treatment of various gastrointestinal disorders such as inflammatory bowel disease, irritable bowel syndrome and cancer.
Collapse
Affiliation(s)
- A Deiteren
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of AntwerpAntwerp, Belgium
| | - J G De Man
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of AntwerpAntwerp, Belgium
| | - P A Pelckmans
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of AntwerpAntwerp, Belgium
- Department of Gastroenterology and Hepatology, Antwerp University HospitalAntwerp, Belgium
| | - B Y De Winter
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of AntwerpAntwerp, Belgium
| |
Collapse
|
29
|
Merves J, Chandramouleeswaran PM, Benitez AJ, Muir AB, Lee AJ, Lim DM, Dods K, Mehta I, Ruchelli ED, Nakagawa H, Spergel JM, Wang ML. Altered esophageal histamine receptor expression in Eosinophilic Esophagitis (EoE): implications on disease pathogenesis. PLoS One 2015; 10:e0114831. [PMID: 25723478 PMCID: PMC4344302 DOI: 10.1371/journal.pone.0114831] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 11/14/2014] [Indexed: 12/19/2022] Open
Abstract
Eosinophilic Esophagitis (EoE) is a chronic allergic disorder, whose pathobiology is incompletely understood. Histamine-producing cells including mast cells and basophils have been implicated in EoE. However, very little is currently known about the role of histamine and histamine receptor (HR) expression and signaling in the esophageal epithelium. Herein, we characterized HR (H1R, H2R, H3R, and H4R) expression in human esophageal biopsies and investigate the role of histamine signaling in inducible cytokine expression in human esophageal epithelial cells in vitro. HR expression was quantified in esophageal biopsies from non-EoE control (N = 23), inactive EoE (<15 eos/hpf, N = 26) and active EoE (>15 eos/hpf, N = 22) subjects using qRT-PCR and immunofluorescent localization. HR expression and histamine-mediated cytokine secretion were evaluated in human primary and telomerase-immortalized esophageal epithelial cells. H1R, H2R, and H4R expression were increased in active EoE biopsies compared to inactive EoE and controls. H2R was the most abundantly expressed receptor, and H3R expression was negligible in all 3 cohorts. Infiltrating eosinophils expressed H1R, H2R, and H4R, which contributed to the observed increase in HR in active subjects. H1R and H2R, but not H3R or H4R, were constitutively expressed by primary and immortalized cells, and epithelial histamine stimulation induced GM-CSF, TNFα, and IL-8, but not TSLP or eotaxin-3 secretion. Epithelial priming with the TLR3 ligand poly (I:C) induced H1R and H2R expression, and enhanced histamine-induced GM-CSF, TNFα, and IL-8 secretion. These effects were primarily suppressed by H1R antagonists, but unaffected by H2R antagonism. Histamine directly activates esophageal epithelial cytokine secretion in vitro in an H1R dependent fashion. However, H1R, H2R and H4R are induced in active inflammation in EoE in vivo. While systemic antihistamine (anti-H1R) therapy may not induce clinical remission in EoE, our study suggests that further study of histamine receptor signaling in EoE is warranted and that targeting of additional histamine receptors may lead to novel treatment strategies for this important disease.
Collapse
Affiliation(s)
- Jamie Merves
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Prasanna Modayur Chandramouleeswaran
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Alain J. Benitez
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Amanda B. Muir
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Anna J. Lee
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Diana M. Lim
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Kara Dods
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Isha Mehta
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Eduardo D. Ruchelli
- Division of Pathology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Hiroshi Nakagawa
- Department of Gastroenterology, Hepatology and Nutrition, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jonathan M. Spergel
- Division of Allergy and Immunology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Mei-Lun Wang
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
30
|
Abstract
Histamine is one of the best-characterized pruritogens in humans. It is known to play a role in pruritus associated with urticaria as well as ocular and nasal allergic reactions. Histamine mediates its effect via four receptors. Antihistamines that block the activation of the histamine H₁receptor, H₁R, have been shown to be effective therapeutics for the treatment of pruritus associated with urticaria, allergic rhinitis, and allergic conjunctivitis. However, their efficacy in other pruritic diseases such as atopic dermatitis and psoriasis is limited. The other histamine receptors may also play a role in pruritus, with the exception of the histamine H₂receptor, H₂R. Preclinical evidence indicates that local antagonism of the histamine H₃receptor, H₃R, can induce scratching perhaps via blocking inhibitory neuronal signals. The histamine H₄receptor, H₄R, has received a significant amount of attention as to its role in mediating pruritic signals. Indeed, it has now been shown that a selective H₄R antagonist can inhibit histamine-induced itch in humans. This clinical result, in conjunction with efficacy in various preclinical pruritus models, points to the therapeutic potential of H₄R antagonists for the treatment of pruritus not controlled by antihistamines that target the H₁R.
Collapse
Affiliation(s)
- Robin L Thurmond
- Janssen Research and Development, L.L.C., San Diego, CA, 92121, USA,
| | | | | | | |
Collapse
|
31
|
Corrêa MF, dos Santos Fernandes JP. Histamine H4 receptor ligands: future applications and state of art. Chem Biol Drug Des 2014; 85:461-80. [PMID: 25228262 DOI: 10.1111/cbdd.12431] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Histamine is a chemical transmitter found practically in whole organism and exerts its effects through the interaction with H1 to H4 histaminergic receptors. Specifically, H4 receptors are found mainly in immune cells and blood-forming tissues, thus are involved in inflammatory and immune processes, as well as some actions in central nervous system. Therefore, H4 receptor ligands can have applications in the treatment of chronic inflammatory and immune diseases and may be novel therapeutic option in these conditions. Several H4 receptor ligands have been described from early 2000's until nowadays, being imidazole, indolecarboxamide, 2-aminopyrimidine, quinazoline, and quinoxaline scaffolds the most explored and discussed in this review. Moreover, several studies of molecular modeling using homology models of H4 receptor and QSAR data of the ligands are summarized. The increasing and promising therapeutic applications are leading these compounds to clinical trials, which probably will be part of the next generation of blockbuster drugs.
Collapse
Affiliation(s)
- Michelle Fidelis Corrêa
- Departamento de Ciências Exatas e da Terra, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, UNIFESP, Diadema, Brazil
| | | |
Collapse
|
32
|
Ahmad SF, Zoheir KMA, Abdel-Hamied HE, Alrashidi I, Attia SM, Bakheet SA, Ashour AE, Abd-Allah ARA. Role of a histamine 4 receptor as an anti-inflammatory target in carrageenan-induced pleurisy in mice. Immunology 2014; 142:374-83. [PMID: 24460575 DOI: 10.1111/imm.12257] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 01/15/2014] [Accepted: 01/20/2014] [Indexed: 12/21/2022] Open
Abstract
The histamine 4 receptor (H4R) is expressed primarily on cells involved in inflammation and immune responses. Despite much research into inflammatory diseases, no drugs with favourable safety profiles are yet available for their treatment. The aim of the present study was to determine the potential anti-inflammatory effect of 4-methylhistamine (4-MeH) or JNJ77777120 (JNJ) and to explore the role of H4R in a mouse model of carrageenan (Cg) -induced pleurisy. A single dose of 4-MeH or JNJ (30 mg/kg) was administered intraperitoneally 1 hr before Cg administration. The results illustrate that both the numbers of CD4(+) , CD25(+) , CD4(+) CD25(+) , GITR(+) , GITR(+) IL-17A(+) -expressing T cells and the levels of T helper type 1 (Th1)/Th17 cytokines were markedly increased in both the Cg-treated and 4-MeH-treated groups, whereas the cytokines produced by Th2 cells were significantly decreased in the same groups. However, JNJ treatment significantly decreased both the number of T-cell subsets and GITR(+) , GITR(+) IL-17A(+) -expressing T cells, and the production of Th1/Th17 cytokines. Further, JNJ up-regulated the expression of the Th2 cytokines. RT-PCR analysis revealed an increased expression of interleukin-1β, tumour necrosis factor-α, monocyte chemoattractant protein-1 and intercellular adhesion molecule-1 in the Cg-treated and 4-MeH-treated groups, which was reduced by treatment with JNJ in lung tissues. Moreover, histological examinations revealed anti-inflammatory effects of JNJ, whereas 4-MeH worsened Cg-induced inflammation. In conclusion, the results of the present work clearly indicate that JNJ possesses important anti-inflammatory properties that are increased in 4-MeH-treated mice, suggesting that H4R are involved in pleurisy and that JNJ has an anti-inflammatory effect in associated disease conditions.
Collapse
Affiliation(s)
- Sheikh Fayaz Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Cíž M, Lojek A. Modulation of neutrophil oxidative burst via histamine receptors. Br J Pharmacol 2014; 170:17-22. [PMID: 23336732 DOI: 10.1111/bph.12107] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/17/2012] [Accepted: 12/20/2012] [Indexed: 11/28/2022] Open
Abstract
Histamine has the ability to influence the activity of immune cells including neutrophils and plays a pivotal role in inflammatory processes, which are a complex network of cellular and humoral events. One of the main functions manifested by activated neutrophils is oxidative burst, which is linked to the production of reactive oxygen species; therefore, the effects of histamine receptor agonists and antagonists on the oxidative burst of neutrophils is reviewed. A role for the well-characterized histamine H1 and H2 receptors in this process is discussed and compared to that of the recently discovered H4 receptor.
Collapse
Affiliation(s)
- M Cíž
- Department of Free Radical Pathophysiology, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic.
| | | |
Collapse
|
34
|
Neumann D, Seifert R. The therapeutic potential of histamine receptor ligands in inflammatory bowel disease. Biochem Pharmacol 2014; 91:12-7. [PMID: 24929116 DOI: 10.1016/j.bcp.2014.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/04/2014] [Accepted: 06/04/2014] [Indexed: 12/12/2022]
Abstract
In the intestine of patients suffering from inflammatory bowel disease concentrations of histamine are increased compared to healthy controls. Genetic ablation of histamine production in mice ameliorates the course of experimentally induced colitis. These observations and first pharmacological studies indicate a function of histamine in the pathogenesis of inflammatory bowel disease. However, a closer examination reveals that available data are highly heterogeneous, limiting the rational design of strategies addressing specific histamine receptor subtypes as possible target for pharmacological interaction. However, very recently first clinical data indicate that antagonism at the histamine receptor subtype H4 provides a beneficial effect in at least the skin. Here, we discuss the available data on histamine effects and histamine receptor subtype functions in inflammatory bowel disease with a special emphasis on the histamine H4-receptor.
Collapse
Affiliation(s)
- Detlef Neumann
- Institute of Pharmacology, Hannover Medical School, Germany.
| | - Roland Seifert
- Institute of Pharmacology, Hannover Medical School, Germany
| |
Collapse
|
35
|
Thurmond RL, Chen B, Dunford PJ, Greenspan AJ, Karlsson L, La D, Ward P, Xu XL. Clinical and preclinical characterization of the histamine H(4) receptor antagonist JNJ-39758979. J Pharmacol Exp Ther 2014; 349:176-84. [PMID: 24549371 DOI: 10.1124/jpet.113.211714] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The histamine H4 receptor (H(4)R) has been shown to have preclinical involvement in both inflammatory and pruritic responses. JNJ-39758979 [(R)-4-(3-amino-pyrrolidin-1-yl)-6-isopropyl-pyrimidin-2-ylamine] is a potent and selective H(4)R antagonist with a Ki at the human receptor of 12.5 ± 2.6 nM and greater than 80-fold selectivity over other histamine receptors. The compound also exhibited excellent selectivity versus other targets. JNJ-39758979 showed dose-dependent activity in models of asthma and dermatitis consistent with other H(4)R antagonists. Preclinical toxicity studies of up to 6 months in rats and 9 months in monkeys indicated an excellent safety profile, supporting the clinical testing of the compound. An oral formulation of JNJ-39758979 was studied in a phase 1 human volunteer study to assess safety, pharmacokinetics, and pharmacodynamics. The compound was well tolerated, with the exception of dose-dependent nausea, and no safety issues were noted in the phase 1 study. JNJ-39758979 exhibited good pharmacokinetics upon oral dosing with a plasma half-life of 124-157 hours after a single oral dose. In addition, dose-dependent inhibition of histamine-induced eosinophil shape change was detected, suggesting that the H4R was inhibited in vivo. In conclusion, JNJ-39758979 is a potent and selective H(4)R antagonist that exhibited good preclinical and phase 1 safety in healthy volunteers with evidence of a pharmacodynamics effect in humans.
Collapse
|
36
|
Vasicek O, Lojek A, Jancinova V, Nosal R, Ciz M. Role of histamine receptors in the effects of histamine on the production of reactive oxygen species by whole blood phagocytes. Life Sci 2014; 100:67-72. [DOI: 10.1016/j.lfs.2014.01.082] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 01/10/2014] [Accepted: 01/30/2014] [Indexed: 10/25/2022]
|
37
|
Cowden JM, Yu F, Banie H, Farahani M, Ling P, Nguyen S, Riley JP, Zhang M, Zhu J, Dunford PJ, Thurmond RL. The histamine H4 receptor mediates inflammation and Th17 responses in preclinical models of arthritis. Ann Rheum Dis 2014; 73:600-8. [PMID: 24126456 PMCID: PMC4151522 DOI: 10.1136/annrheumdis-2013-203832] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 08/12/2013] [Accepted: 09/20/2013] [Indexed: 11/09/2022]
Abstract
OBJECTIVE The histamine H4 receptor (H4R) has been shown to drive inflammatory responses in models of asthma, colitis and dermatitis, and in these models it appears to affect both innate and adaptive immune responses. In this study, we used both H4R-deficient mice and a specific H4R antagonist, JNJ 28307474, to investigate the involvement of the H4R in mouse arthritis models. METHODS H4R-deficient mice and wild-type mice administered the H4R antagonist were studied in models of collagen antibody-induced arthritis (CAIA) and collagen-induced arthritis (CIA). The impact on Th17 cells was assessed by restimulation of inguinal lymphocytes in the disease or immunisation models and with in vitro stimulation of whole blood. RESULTS Both H4R-deficient mice and mice treated with the H4R antagonist exhibited reduced arthritis disease severity in both CAIA and CIA models. This was evident from the reduction in disease score and in joint histology. In the CIA model, treatment with the H4R antagonist reduced the number of interleukin (IL)-17 positive cells in the lymph node and the total production of IL-17. Th17 cell development in vivo was reduced in H4R-deficient mice or in mice treated with an H4R antagonist. Finally, treatment of both mouse and human blood with an H4R antagonist reduced the production of IL-17 when cells were stimulated in vitro. CONCLUSIONS These results implicate the H4R in disease progression in arthritis and in the production of IL-17 from Th17 cells. This work supports future clinical exploration of H4R antagonists for the treatment of rheumatoid arthritis.
Collapse
MESH Headings
- Animals
- Arthritis, Experimental/immunology
- Arthritis, Experimental/pathology
- Arthritis, Experimental/prevention & control
- Cells, Cultured
- Dose-Response Relationship, Drug
- Interleukin-17/biosynthesis
- Lipopolysaccharides/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred DBA
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/deficiency
- Receptors, G-Protein-Coupled/immunology
- Receptors, Histamine/deficiency
- Receptors, Histamine/immunology
- Receptors, Histamine H4
- Severity of Illness Index
- Th17 Cells/immunology
Collapse
Affiliation(s)
- Jeffery M Cowden
- Department of Immunology, Janssen Research & Development, San Diego, California, USA
- Takeda California, Inc, San Diego, California, USA
| | - Fuqu Yu
- Department of Immunology, Janssen Research & Development, San Diego, California, USA
| | - Homayon Banie
- Department of Immunology, Janssen Research & Development, San Diego, California, USA
| | - Mandana Farahani
- Department of Immunology, Janssen Research & Development, San Diego, California, USA
| | - Ping Ling
- Department of Immunology, Janssen Research & Development, San Diego, California, USA
| | - Steven Nguyen
- Department of Immunology, Janssen Research & Development, San Diego, California, USA
| | - Jason P Riley
- Department of Immunology, Janssen Research & Development, San Diego, California, USA
| | - Mai Zhang
- Department of Immunology, Janssen Research & Development, San Diego, California, USA
- Sialix, Inc, San Diego, California, USA
| | - Jian Zhu
- Department of Immunology, Janssen Research & Development, San Diego, California, USA
| | - Paul J Dunford
- Department of Immunology, Janssen Research & Development, San Diego, California, USA
| | - Robin L Thurmond
- Department of Immunology, Janssen Research & Development, San Diego, California, USA
| |
Collapse
|
38
|
Galeotti N, Sanna MD, Ghelardini C. Pleiotropic effect of histamine H4 receptor modulation in the central nervous system. Neuropharmacology 2013; 71:141-7. [PMID: 23583928 DOI: 10.1016/j.neuropharm.2013.03.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 02/15/2013] [Accepted: 03/21/2013] [Indexed: 01/07/2023]
Abstract
The histamine H4 receptor (H4R) is expressed primarily on cells involved in inflammation and immune responses. Recently, it has been reported the functional expression of H4R within neurons of the central nervous system, but their role has been poorly understood. The present study aimed to elucidate the physiopathological role of cerebral H4R in animal models by the intracerebroventricular administration of the H4R agonist VUF 8430 (20-40 μg per mouse). Selectivity of results was confirmed by the prevention of the effects produced by the H4R antagonist JNJ 10191584 (3-9 mg/kg p.o.). Neuronal H4R activation induced acute thermal antinociception, indicating that neuronal histamine H4R might be involved in the production of antinociception in the absence of an inflammatory process. An anxiolytic-like effect of intensity comparable to that exerted by diazepam, used as reference drug, was produced in the light-dark box test. VUF 8430 reversed the scopolamine-induced amnesia in the passive avoidance test and showed anorexant activity in food deprived mice. Conversely, the H4R activation did not modify the immobility time in the tail suspension test. Rotarod performance test was employed to demonstrate that the effects observed following the administration of VUF 8430 and JNJ 10191584 were not due to impaired motor function of animals. Furthermore, both compounds did not alter spontaneous mobility and exploratory activity in the hole board test. These results show the antinociceptive, antiamnesic, anxiolytic and anorexant effects induced by neuronal H4R agonism, suggesting that H4 modulators may have broader utility further the control of inflammatory and immune processes.
Collapse
Affiliation(s)
- Nicoletta Galeotti
- Department of Preclinical and Clinical Pharmacology, University of Florence, Viale G. Pieraccini 6, I-50139 Florence, Italy.
| | | | | |
Collapse
|
39
|
Antagonism of the histamine H4 receptor reduces LPS-induced TNF production in vivo. Inflamm Res 2013; 62:599-607. [PMID: 23532396 PMCID: PMC3654183 DOI: 10.1007/s00011-013-0612-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 11/16/2012] [Accepted: 03/06/2013] [Indexed: 12/13/2022] Open
Abstract
Objective Antagonism of the histamine H4 receptor (H4R) has been shown to be anti-inflammatory in a number of preclinical disease models, however the exact mechanisms behind this are still being uncovered. In vitro, the receptor interacts with TLR and impacts inflammatory mediator production from a number of different cell types. Here it is shown that this interaction also occurs in vivo. Materials and methods Wild-type and H4R deficient BALB/c mice received an i.p. injection of LPS in PBS in conjunction with p.o. JNJ 7777120 or JNJ 28307474 (H4R antagonists). Two hours later blood was collected and TNF was measured. Results Two different H4R antagonists inhibited LPS-induced TNF production in mice and this production was also reduced in H4R-deficient mice. The TNF mRNA analysis showed that the major source of the cytokine was the liver and not blood, and that the H4R antagonist only reduced the expression levels in the liver. Depletion or inactivation of macrophages reduced the TNF levels and eliminated the H4R sensitivity. Treatment with an H4R antagonist also reduced LPS-induced liver injury and blocked LPS-enhanced lung inflammation in mice. Conclusion The data support an interaction between H4R and TLR activation in vivo that can drive inflammatory responses. Electronic supplementary material The online version of this article (doi:10.1007/s00011-013-0612-5) contains supplementary material, which is available to authorized users.
Collapse
|
40
|
Abstract
Basophils are a rare population of granulocytes that have long been associated with IgE-mediated and Th2-associated allergic diseases. However, the role of basophils in Th17 and/or Th1 diseases has not been reported. In the present study, we report that basophils can be detected in the mucosa of Th17-associated lung and inflammatory bowel disease and accumulate in inflamed colons containing large quantities of IL-33. We also demonstrate that circulating basophils increased memory Th17 responses. Accordingly, IL-3- or IL-33-activated basophils amplified IL-17 release in effector memory T cells (T(EM)), central memory T cells (T(CM)), and CCR6(+) CD4 T cells. More specifically, basophils promoted the emergence of IL-17(+)IFN-γ(-) and IL-17(+)IFN-γ(+), but not IL-17(-)IFN-γ(+) CD4 T cells in T(EM) and T(CM). Mechanistic analysis revealed that the enhancing effect of IL-17 production by basophils in T(EM) involved the ERK1/2 signaling pathway, occurred in a contact-independent manner, and was partially mediated by histamine via H(2) and H(4) histamine receptors. The results of the present study reveal a previously unknown function for basophils in augmenting Th17 and Th17/Th1 cytokine expression in memory CD4 T cells. Because basophils accumulated in inflamed inflammatory bowel disease tissues, we propose that these cells are key players in chronic inflammatory disorders beyond Th2.
Collapse
|
41
|
Adami M, Pozzoli C, Menozzi A, Bertini S, Passeri B, Cantoni AM, Smits R, de Esch I, Leurs R, Coruzzi G. Effects of Histamine H4 Receptor Ligands in a Mouse Model of Gastric Ulceration. Pharmacology 2012; 89:287-94. [DOI: 10.1159/000337736] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 02/22/2012] [Indexed: 01/08/2023]
|
42
|
Coruzzi G, Pozzoli C, Adami M, Grandi D, Guido N, Smits R, de Esch I, Leurs R. Strain-dependent effects of the histamine H4 receptor antagonist JNJ7777120 in a murine model of acute skin inflammation. Exp Dermatol 2011; 21:32-7. [DOI: 10.1111/j.1600-0625.2011.01396.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
43
|
Histamine H4 receptor antagonist reduces dermal inflammation and pruritus in a hapten-induced experimental model. Eur J Pharmacol 2011; 667:383-8. [DOI: 10.1016/j.ejphar.2011.05.037] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 04/29/2011] [Accepted: 05/17/2011] [Indexed: 01/08/2023]
|
44
|
Affiliation(s)
- Charles M. Marson
- Department of Chemistry, University College London, Christopher Ingold Laboratories, 20 Gordon Street, London WC1H OAJ, United Kingdom
| |
Collapse
|
45
|
Regulation of the immune response and inflammation by histamine and histamine receptors. J Allergy Clin Immunol 2011; 128:1153-62. [PMID: 21824648 DOI: 10.1016/j.jaci.2011.06.051] [Citation(s) in RCA: 217] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 06/01/2011] [Accepted: 06/23/2011] [Indexed: 02/04/2023]
Abstract
Histamine is a biogenic amine with extensive effects on many cell types, including important immunologic cells, such as antigen-presenting cells, natural killer cells, epithelial cells, and T and B lymphocytes. Histamine and its 4 receptors represent a complex system of immunoregulation with distinct effects dependent on receptor subtypes and their differential expression. These are influenced by the stage of cell differentiation, as well as microenvironmental influences, leading to the selective recruitment of effector cells into tissue sites accompanied by effects on cellular maturation, activation, polarization, and effector functions, which lead to tolerogenic or proinflammatory responses. In this review we discuss the regulation of histamine secretion, receptor expression, and differential activation of cells within both the innate and adaptive immune responses. It is clear that the effects of histamine on immune homeostasis are dependent on the expression and activity of the 4 currently known histamine receptors, and we also recognize that 100 years after the original identification of this biogenic amine, we still do not fully understand the complex regulatory interactions between histamine and the host immune response to everyday microbial and environmental challenges.
Collapse
|
46
|
Coruzzi G, Adami M, Pozzoli C, de Esch IJP, Smits R, Leurs R. Selective histamine H₃ and H₄ receptor agonists exert opposite effects against the gastric lesions induced by HCl in the rat stomach. Eur J Pharmacol 2011; 669:121-7. [PMID: 21839070 DOI: 10.1016/j.ejphar.2011.07.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 06/11/2011] [Accepted: 07/24/2011] [Indexed: 10/17/2022]
Abstract
The present study investigated the role of histamine H(3) and H(4) receptors in gastric mucosal defense, by the use of selective ligands. Firstly, the affinities of several histaminergic agonists for the rat histamine H(3) and H(4) receptors were checked in HEK 293T cells transfected with either receptor subtype. Next, functional activities were determined in conscious rat against the ulcerogenic effect of 0.6N HCl. Radioligand binding studies showed that immethridine and methimepip were the most selective agonists at rat H(3) receptors, whereas VUF10460 displayed approximately a 50-fold selectivity for the rat H(4) receptor over the H(3) receptor. In conscious rats, immethridine and methimepip significantly reduced (66% and 48% inhibition, respectively) the gastric lesions induced by HCl; the effect of immethridine was antagonized by the H(3) receptor antagonist A-331440, but not by the H(4) receptor antagonist JNJ7777120. The mixed H(3)/H(4) receptor agonist immepip induced a significant aggravation of HCl damage, which was prevented by JNJ7777120; HCl-induced lesions were also significantly enhanced by the H(4) receptor agonists VUF10460 and VUF8430; however, this effect was not modified by JNJ7777120. Overall, this study indicates that, whereas the histamine H(3) receptor is involved in the protection of rat stomach against concentrated HCl, the functional role of the H(4) receptor is still to be defined, although selective agonists induce proulcerogenic effects under HCl challenge. Finally, the species-dependent variations in affinity and receptor selectivity observed for most ligands need to be carefully addressed in the pharmacological characterization of histamine H(3) and H(4) receptor functions in vivo.
Collapse
Affiliation(s)
- Gabriella Coruzzi
- Department of Human Anatomy, Pharmacology and Forensic Medicine, Section of Pharmacology, University of Parma, 43100 Parma, Italy.
| | | | | | | | | | | |
Collapse
|
47
|
New developments in the use of histamine and histamine receptors. Curr Allergy Asthma Rep 2011; 11:94-100. [PMID: 21104347 DOI: 10.1007/s11882-010-0163-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Histamine and the histamine receptors are important regulators of a plethora of biological processes, including immediate hypersensitivity reactions and acid secretion in the stomach. In these roles, antihistamines have found widespread therapeutic applications, while the last receptor to be discovered, the H4 histamine receptor, has become a major target of novel therapeutics. Recent studies involving human genetic variance and the development of mice lacking specific receptors or the ability to generate histamine have shown roles for the histamine pathway that extend well beyond the established roles. These include identification of previously unappreciated mechanisms through which histamine regulates inflammation in allergy, as well as roles in autoimmunity, infection, and pain. As a result, antihistamines may have wider applications in the future than previously predicted.
Collapse
|
48
|
Desai P, Thurmond RL. Histamine H4 receptor activation enhances LPS-induced IL-6 production in mast cells via ERK and PI3K activation. Eur J Immunol 2011; 41:1764-73. [DOI: 10.1002/eji.201040932] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 02/18/2011] [Accepted: 03/17/2011] [Indexed: 12/26/2022]
|
49
|
Wijtmans M, de Graaf C, de Kloe G, Istyastono EP, Smit J, Lim H, Boonnak R, Nijmeijer S, Smits RA, Jongejan A, Zuiderveld O, de Esch IJP, Leurs R. Triazole ligands reveal distinct molecular features that induce histamine H4 receptor affinity and subtly govern H4/H3 subtype selectivity. J Med Chem 2011; 54:1693-703. [PMID: 21348462 DOI: 10.1021/jm1013488] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The histamine H(3) (H(3)R) and H(4) (H(4)R) receptors attract considerable interest from the medicinal chemistry community. Given their relatively high homology yet widely differing therapeutic promises, ligand selectivity for the two receptors is crucial. We interrogated H(4)R/H(3)R selectivities using ligands with a [1,2,3]triazole core. Cu(I)-assisted "click chemistry" was used to assemble diverse [1,2,3]triazole compounds (6a-w and 7a-f), many containing a peripheral imidazole group. The imidazole ring posed some problems in the click chemistry putatively due to Cu(II) coordination, but Boc protection of the imidazole and removal of oxygen from the reaction mixture provided effective strategies. Pharmacological studies revealed two monosubstituted imidazoles (6h,p) with <10 nM H(4)R affinities and >10-fold H(4)R/H(3)R selectivity. Both compounds possess a cycloalkylmethyl group and appear to target a lipophilic pocket in H(4)R with high steric precision. The use of the [1,2,3]triazole scaffold is further demonstrated by the notion that simple changes in spacer length or peripheral groups can reverse the selectivity toward H(3)R. Computational evidence is provided to account for two key selectivity switches and to pinpoint a lipophilic pocket as an important handle for H(4)R over H(3)R selectivity.
Collapse
Affiliation(s)
- Maikel Wijtmans
- Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, Faculty of Exact Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Lundberg K, Broos S, Greiff L, Borrebaeck CA, Lindstedt M. Histamine H4 receptor antagonism inhibits allergen-specific T-cell responses mediated by human dendritic cells. Eur J Pharmacol 2011; 651:197-204. [DOI: 10.1016/j.ejphar.2010.10.065] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 10/25/2010] [Accepted: 10/31/2010] [Indexed: 02/08/2023]
|