1
|
Nie J, Jiang X, Wang G, Xu Y, Pan R, Yu W, Li Y, Wang J. Yu-Ping-Feng-San alleviates inflammation in atopic dermatitis mice by TLR4/MyD88/NF-κB pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118092. [PMID: 38604509 DOI: 10.1016/j.jep.2024.118092] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 04/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yu-Ping-Feng-San (YPF) is a traditional Chinese medicine formula that has therapeutic effects on allergic diseases such as allergic rhinitis and asthma. However, its potential efficacy and mechanism in the treatment of atopic dermatitis (AD) has not been extensively illustrated. AIM OF THE STUDY The purpose of this study was to investigate the efficacy and possible mechanisms of YPF in AD pathogenesis. METHODS Network pharmacology and GEO data mining were adopted to firstly identify the potential mechanisms of YPF on AD. Then DNCB induced-AD murine model was established to test the efficacy of YPF and verify its effects on inflammatory cytokines and NF-κB pathway. In addition, molecular docking was performed to detect the binding affinity of YPF's active components with NF-κB pathway related molecules. RESULTS Network pharmacology and human data mining suggested that YPF may act on the NF-κB pathway in AD pathogenesis. With DNCB mice model, we found that YPF significantly improved AD symptoms, reduced SCORAD scores, and alleviated skin tissue inflammation in mice. At the same time, the expression of inflammatory cytokines, TNF-α, sPLA2-IIA and IL-6, was down-regulated. Moreover, YPF suppressed TLR4/MyD88/NF-κB pathway in situ in a dose-dependent manner. Molecular docking further confirmed that seven compounds in YPF had exceptional binding properties with TNF-α, IL-6 and TLR4. CONCLUSION YPF may help the recovery of AD by inhibiting the TLR4/MyD88/NF-κB pathway, which provides novel insights for the treatment of AD by YPF.
Collapse
Affiliation(s)
- Jing Nie
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China; Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China.
| | - Xiaoyuan Jiang
- FangShan Hospital, Beijing University of Chinese Medicine, Beijing, China.
| | - Guomi Wang
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, China.
| | - Yanan Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.
| | - Rui Pan
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.
| | - Wantao Yu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.
| | - Yuanwen Li
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China.
| | - Jingxiao Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
2
|
Yang YJ, Kim MJ, Yang JH, Heo JW, Kim HH, Kim WH, Kim GS, Lee HJ, Kim YW, Kim KY, Park KI. Liquid Chromatography/Tandem Mass Spectrometry Analysis of Sophora flavescens Aiton and Protective Effects against Alcohol-Induced Liver Injury and Oxidative Stress in Mice. Antioxidants (Basel) 2024; 13:541. [PMID: 38790646 PMCID: PMC11117756 DOI: 10.3390/antiox13050541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
In this study, we investigated the hepatoprotective effects of an ethanol extract of Sophora flavescens Aiton (ESF) on an alcohol-induced liver disease mouse model. Alcoholic liver disease (ALD) was caused by the administration of ethanol to male C57/BL6 mice who were given a Lieber-DeCarli liquid diet, including ethanol. The alcoholic fatty liver disease mice were orally administered ESF (100 and 200 mg/kg bw/day) or silymarin (50 mg/kg bw/day), which served as a positive control every day for 16 days. The findings suggest that ESF enhances hepatoprotective benefits by significantly decreasing serum levels of aspartate transaminase (AST) and alanine transaminase (ALT), markers for liver injury. Furthermore, ESF alleviated the accumulation of triglyceride (TG) and total cholesterol (TC), increased serum levels of superoxide dismutase (SOD) and glutathione (GSH), and improved serum alcohol dehydrogenase (ADH) activity in the alcoholic fatty liver disease mice model. Cells and organisms rely on the Kelch-like ECH-associated protein 1- Nuclear factor erythroid 2-related factor 2 (Keap1-Nrf2) system as a critical defensive mechanism in response to oxidative stress. Therefore, Nrf2 plays an important role in ALD antioxidant responses, and its level is decreased by increased reactive oxidation stress (ROS) in the liver. ESF increased Nrf2, which was decreased in ethanol-damaged livers. Additionally, four polyphenol compounds were identified through a qualitative analysis of the ESF using LC-MS/MS. This study confirmed ESF's antioxidative and hangover-elimination effects and suggested the possibility of using Sophora flavescens Aiton (SF) to treat ALD.
Collapse
Affiliation(s)
- Ye Jin Yang
- Departments of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (Y.J.Y.); (M.J.K.); (J.W.H.); (H.H.K.); (W.H.K.); (G.S.K.); (H.-J.L.)
| | - Min Jung Kim
- Departments of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (Y.J.Y.); (M.J.K.); (J.W.H.); (H.H.K.); (W.H.K.); (G.S.K.); (H.-J.L.)
| | - Ju-Hye Yang
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea;
| | - Ji Woong Heo
- Departments of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (Y.J.Y.); (M.J.K.); (J.W.H.); (H.H.K.); (W.H.K.); (G.S.K.); (H.-J.L.)
| | - Hun Hwan Kim
- Departments of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (Y.J.Y.); (M.J.K.); (J.W.H.); (H.H.K.); (W.H.K.); (G.S.K.); (H.-J.L.)
| | - Woo H. Kim
- Departments of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (Y.J.Y.); (M.J.K.); (J.W.H.); (H.H.K.); (W.H.K.); (G.S.K.); (H.-J.L.)
| | - Gon Sup Kim
- Departments of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (Y.J.Y.); (M.J.K.); (J.W.H.); (H.H.K.); (W.H.K.); (G.S.K.); (H.-J.L.)
| | - Hu-Jang Lee
- Departments of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (Y.J.Y.); (M.J.K.); (J.W.H.); (H.H.K.); (W.H.K.); (G.S.K.); (H.-J.L.)
| | - Young Woo Kim
- School of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea;
| | - Kwang Youn Kim
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea;
| | - Kwang Il Park
- Departments of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (Y.J.Y.); (M.J.K.); (J.W.H.); (H.H.K.); (W.H.K.); (G.S.K.); (H.-J.L.)
| |
Collapse
|
3
|
Xu HN, Wang W, Li XZ, Sun Y, Li YZ, Deng C, Song XM, Zhang DD. A Review of Extraction and Purification, Biological Properties, Structure-Activity Relationships and Future Prospects of Schisandrin C: A Major Active Constituent of Schisandra Chinensis. Chem Biodivers 2023; 20:e202301298. [PMID: 37990607 DOI: 10.1002/cbdv.202301298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/14/2023] [Accepted: 11/19/2023] [Indexed: 11/23/2023]
Abstract
Since ancient times, China has used natural medicine as the primary way to combat diseases and has a rich arsenal of natural medicines. With the progress of the times, the extraction of bioactive molecules from natural drugs has become the new development direction for natural medicines. Among the numerous natural drugs, Schisandrin C (Sch C), derived from Schisandra Chinensis (Turcz.) Baill. It has excellent potential for development and has been shown to possess various pharmacological properties, including hepatoprotective, antitumor and anti-inflammatory activities. Based on the biological properties of hepatoprotection, scholars have explored Sch C and its synthetic products in depth; some studies have shown that pentosidine has the effect of improving the symptoms of liver fibrosis and reducing the concentration of alanine transaminase (ALT) and aspartate aminotransferase (AST) in the serum of rats, which is an essential inspiration for the development of anti-liver fibrosis drugs. But more in vivo and ex vivo studies still need to be included. This paper focuses on Sch C's extraction and synthesis, biological activities and drug development progress. The future application prospects of Sch C are discussed to perfect its development work further.
Collapse
Affiliation(s)
- Hao-Nan Xu
- School of Pharmacy, Shaanxi University of Chinese Medicine, 712046, Xianyang, Shaanxi, P. R. China
| | - Wei Wang
- School of Pharmacy, Shaanxi University of Chinese Medicine, 712046, Xianyang, Shaanxi, P. R. China
| | - Xin-Zhuo Li
- School of Pharmacy, Shaanxi University of Chinese Medicine, 712046, Xianyang, Shaanxi, P. R. China
| | - Yu Sun
- School of Pharmacy, Shaanxi University of Chinese Medicine, 712046, Xianyang, Shaanxi, P. R. China
| | - Yu-Ze Li
- School of Pharmacy, Shaanxi University of Chinese Medicine, 712046, Xianyang, Shaanxi, P. R. China
| | - Chong Deng
- School of Pharmacy, Shaanxi University of Chinese Medicine, 712046, Xianyang, Shaanxi, P. R. China
| | - Xiao-Mei Song
- School of Pharmacy, Shaanxi University of Chinese Medicine, 712046, Xianyang, Shaanxi, P. R. China
| | - Dong-Dong Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, 712046, Xianyang, Shaanxi, P. R. China
| |
Collapse
|
4
|
Wei Y, Gao C, Wang H, Zhang Y, Gu J, Zhang X, Gong X, Hao Z. Mori fructus aqueous extracts attenuates liver injury by inhibiting ferroptosis via the Nrf2 pathway. J Anim Sci Biotechnol 2023; 14:56. [PMID: 37032323 PMCID: PMC10084661 DOI: 10.1186/s40104-023-00845-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 01/31/2023] [Indexed: 04/11/2023] Open
Abstract
BACKGROUND Liver fibrosis and hepatocellular carcinogenesis secondary to liver fibrosis are serious liver diseases with no effective treatments. Mori fructus aqueous extracts (MFAEs) have served as successful treatments for many types of liver injury including fibrosis although the molecular mechanisms are unknown at present. PURPOSE To investigate the effect of MFAEs in alleviating acute and chronic liver injury and tried to decipher the underlying mechanism. METHODS AND RESULTS Mice were divided into 5 groups (n = 8) for acute (groups: control, 0.3% CCl4, bifendate (BD), 100 and 200 mg/kg MFAEs, 7 d) and chronic (groups: control, 10% CCl4, BD, 100 and 200 mg/kg MFAEs, 4 weeks) liver injury study. Each mouse was injected intraperitoneally with 10 µL/g corn oil containing CCl4 expect the control group. HepG2 cells were used in vitro study. Eighteen communal components were identified by UPLC-LTQ-Orbitrap-MS. We utilized a mouse model for acute and chronic liver injury using CCl4 and MFAEs administration effectively blocked fibrosis and significantly inhibited inflammation in the liver. MFAEs activated the nuclear factor erythroid derived 2 like 2/heme oxygenase 1 (Nrf2/HO-1) pathway and promoted the synthesis of the antioxidants glutathione (GSH), superoxidedismutase (SOD) and glutathione peroxidase (GSH-Px) that resulted in reduced levels of CCl4-induced oxidative stress molecules including reactive oxygen species. These extracts administered to mice also inhibited ferroptosis in the liver by regulating the expression of Acyl-CoA synthetase long chain family member 4 (ACSL4), solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4), thus reducing the occurrence of liver fibrosis. Both in vivo and in vitro tests indicated that the mechanism of MFAEs protection against liver fibrosis was linked to activation of Nrf2 signaling. These effects were blocked in vitro by the addition of a specific Nrf2 inhibitor. CONCLUSION MFAEs inhibited oxidative stress, ferroptosis and inflammation of the liver by activating Nrf2 signal pathway and provided a significant protective effect against CCl4-induced liver fibrosis.
Collapse
Affiliation(s)
- Yuanyuan Wei
- Innovation Centre of Chinese veterinary medicine, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100193, P. R. China
- National Center of Technology Innovation for Medicinal function of Food, National Food and Strategic Reserves Administration, Beijing, China
| | - Chen Gao
- Innovation Centre of Chinese veterinary medicine, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100193, P. R. China
- National Center of Technology Innovation for Medicinal function of Food, National Food and Strategic Reserves Administration, Beijing, China
| | - Huiru Wang
- Innovation Centre of Chinese veterinary medicine, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100193, P. R. China
- National Center of Technology Innovation for Medicinal function of Food, National Food and Strategic Reserves Administration, Beijing, China
| | - Yannan Zhang
- Innovation Centre of Chinese veterinary medicine, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100193, P. R. China
- National Center of Technology Innovation for Medicinal function of Food, National Food and Strategic Reserves Administration, Beijing, China
| | - Jinhua Gu
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100193, P. R. China
- China Institute of Veterinary Drug Control, Beijing, 100081, China
| | - Xiuying Zhang
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100193, P. R. China
- China Institute of Veterinary Drug Control, Beijing, 100081, China
| | - Xuhao Gong
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100193, P. R. China
- China Institute of Veterinary Drug Control, Beijing, 100081, China
| | - Zhihui Hao
- Innovation Centre of Chinese veterinary medicine, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China.
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100193, P. R. China.
- National Center of Technology Innovation for Medicinal function of Food, National Food and Strategic Reserves Administration, Beijing, China.
| |
Collapse
|
5
|
Wei YY, Wang HR, Fan YM, Gu JH, Zhang XY, Gong XH, Hao ZH. Acute liver injury induced by carbon tetrachloride reversal by Gandankang aqueous extracts through nuclear factor erythroid 2-related factor 2 signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114527. [PMID: 36628874 DOI: 10.1016/j.ecoenv.2023.114527] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/25/2022] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
The aims of this study were to evaluated the effect and underlying mechanism of Gandankang (GDK) aqueous extract in alleviating the acute liver injury induced by carbon tetrachloride (CCl4) in vivo and in vitro. Mice were divided into 5 groups (n = 8) for acute (Groups: control, 0.3 % CCl4, BD (Bifendate), 1.17, 2.34 and 4.68 mg/kg GDK) liver injury study. 10 µL/g CCl4 with corn oil were injected interperitoneally (i.p) expect the control group. HepG2 cells were used in vitro study. The results showed GDK can effectively inhibit liver damage and restore the structure and function of the liver. In mechanism, GDK inhibited CCl4-induced liver fibrosis and blocked the NF-κB pathway to effectively inhibit the hepatic inflammatory response; and inhibited CCl4-induced oxidative stress by upregulating the Keap1/Nrf2 pathway-related proteins and promoting the synthesis of several antioxidants. Additionally, it inhibited ferroptosis in the liver by regulating the expression of ACSl4 and GPX4. GDK reduced lipid peroxide generation in vitro by downregulating the production of reactive oxygen species and Fe2+ aggregation, thereby inhibiting ferroptosis and alleviating CCl4-induced hepatocyte injury. In conclusion, we describe the potential complex mechanism underlying the effect of GDK against acute liver injury.
Collapse
Affiliation(s)
- Yuan-Yuan Wei
- Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, China
| | - Hui-Ru Wang
- Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, China
| | - Yi-Meng Fan
- Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, China
| | - Jin-Hua Gu
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, China; China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Xiu-Ying Zhang
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, China; China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Xu-Hao Gong
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, China; China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Zhi-Hui Hao
- Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, China.
| |
Collapse
|
6
|
Bifendate inhibits autophagy at multiple steps and attenuates oleic acid-induced lipid accumulation. Biochem Biophys Res Commun 2022; 631:115-123. [PMID: 36183552 DOI: 10.1016/j.bbrc.2022.09.067] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 09/16/2022] [Indexed: 01/18/2023]
|
7
|
Evaluation of Beneficial and Adverse Effects of a Diet Supplemented with Schisandrae Fructus Seed Ethanol Extract on Lipid and Glucose Metabolism in Normal and Hypercholesterolemic/Hyperglycemic Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8858962. [PMID: 33688367 PMCID: PMC7920717 DOI: 10.1155/2021/8858962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/01/2020] [Accepted: 01/21/2021] [Indexed: 11/17/2022]
Abstract
Schisandrae Fructus (SF), the fruit of Schisandra chinensis (Turcz.) Baillon, has been used for the treatment of liver injury and metabolism-related disorders in China. The objective of this study was to investigate the effects of supplementation with ethanol extract of SF seed (EtSF-S) on serum/hepatic lipid and glucose levels as well as fecal total cholesterol (TC) contents in mice fed a normal diet (ND) or high-fat/fructose diet (HFFD) containing 15% lard oil and 15% fructose. Female ICR mice (18–20 g in body weight) were fed with ND or HFFD for 3 months, and then EtSF-S was added to both chow diets at increasing concentrations of 1, 5, and 10% (w/w). Thirty days later, serum and hepatic lipids, including TC, triglyceride (TG), high-density lipoprotein (HDL), low-density lipoprotein (LDL), and glucose, were measured. Dietary supplementation with EtSF-S reduced hepatic TC (36 and 18%) and TG levels (38 and 28%) and increased serum HDL/LDL ratio (16 and 26%) in both ND- and HFFD-fed mice, respectively. Moreover, supplementation with EtSF-S elevated serum HDL (31%) in HFFD-fed mice and reduced serum LDL (27%) in ND-fed mice. EtSF-S treatment reduced fat mass (40%) in ND-fed mice and increased fecal TC contents (33%) in HFFD-fed mice. EtSF-S supplementation decreased hepatic glucose contents (29%) in both ND- and HFFD-fed mice. However, diet supplemented with EtSF-S elevated serum TG levels (up to 123%) and hepatic size (28%), but more importantly, suppressed the body weight gain (approximately 130%) in mice fed with HFFD. These findings suggested that dietary supplementation with EtSF-S as natural herbal function food may be a useful strategy for the treatment of patients with fatty liver disease or overweight without a high intake of sugar and fat.
Collapse
|
8
|
Total phenolic extract of Euscaphis konishii hayata Pericarp attenuates carbon tetrachloride (CCl4)-induced liver fibrosis in mice. Biomed Pharmacother 2020; 125:109932. [DOI: 10.1016/j.biopha.2020.109932] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/31/2019] [Accepted: 01/01/2020] [Indexed: 12/13/2022] Open
|
9
|
Nanostructured Lipid Carriers for Delivery of Chemotherapeutics: A Review. Pharmaceutics 2020; 12:pharmaceutics12030288. [PMID: 32210127 PMCID: PMC7151211 DOI: 10.3390/pharmaceutics12030288] [Citation(s) in RCA: 224] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/07/2020] [Accepted: 03/14/2020] [Indexed: 12/15/2022] Open
Abstract
The efficacy of current standard chemotherapy is suboptimal due to the poor solubility and short half-lives of chemotherapeutic agents, as well as their high toxicity and lack of specificity which may result in severe side effects, noncompliance and patient inconvenience. The application of nanotechnology has revolutionized the pharmaceutical industry and attracted increasing attention as a significant means for optimizing the delivery of chemotherapeutic agents and enhancing their efficiency and safety profiles. Nanostructured lipid carriers (NLCs) are lipid-based formulations that have been broadly studied as drug delivery systems. They have a solid matrix at room temperature and are considered superior to many other traditional lipid-based nanocarriers such as nanoemulsions, liposomes and solid lipid nanoparticles (SLNs) due to their enhanced physical stability, improved drug loading capacity, and biocompatibility. This review focuses on the latest advances in the use of NLCs as drug delivery systems and their preparation and characterization techniques with special emphasis on their applications as delivery systems for chemotherapeutic agents and different strategies for their use in tumor targeting.
Collapse
|
10
|
Ma Z, Zhang B, Fan Y, Wang M, Kebebe D, Li J, Liu Z. Traditional Chinese medicine combined with hepatic targeted drug delivery systems: A new strategy for the treatment of liver diseases. Biomed Pharmacother 2019; 117:109128. [PMID: 31234023 DOI: 10.1016/j.biopha.2019.109128] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/12/2019] [Accepted: 06/12/2019] [Indexed: 12/18/2022] Open
Abstract
Liver diseases are clinically common and present a substantial public health issue. Many of the currently available drugs for the treatment of liver diseases suffer from limitations that include low hepatic distribution, lack of target effects, poor in vivo stability and adverse effects on other organs. Consequently, conventional treatment of hepatic diseases is ineffective. TCM is commonly used in the treatment of liver diseases worldwide, particularly in China, and has advantages over conventional therapy. HTDDS can be designed to enhance clinical efficacy in the treatment of liver diseases. We have conducted an extensive review of 335 studies reported since 1964. These included about 166 references involving the treatment of liver diseases with TCM (covering active components of TCM, single TCM and Chinese medicine formulas), 169 reports on HTDDS and background studies on liver-related diseases. Here we review the long history of TCM in the treatment of liver diseases.We have also reviewed the status of studies on active components of TCM using nanotechnology-based targeted delivery systems to provide support for further research and development of TCM-based targeted preparations for the treatment of liver disease.
Collapse
Affiliation(s)
- Zhe Ma
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Bing Zhang
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Yuqi Fan
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Meng Wang
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Dereje Kebebe
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; School of Pharmacy, Institute of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Jiawei Li
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Zhidong Liu
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| |
Collapse
|
11
|
Liu X, Pang H, Gao Z, Zhao H, Zhang J, Jia L. Antioxidant and hepatoprotective activities of residue polysaccharides by Pleurotus citrinipileatus. Int J Biol Macromol 2019; 131:315-322. [DOI: 10.1016/j.ijbiomac.2019.03.074] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 12/18/2022]
|
12
|
Wu C, Liu J, Tang Y, Li Y, Yan Q, Jiang Z. Hepatoprotective Potential of Partially Hydrolyzed Guar Gum against Acute Alcohol-Induced Liver Injury in Vitro and Vivo. Nutrients 2019; 11:E963. [PMID: 31035540 PMCID: PMC6567107 DOI: 10.3390/nu11050963] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/19/2019] [Accepted: 04/24/2019] [Indexed: 12/11/2022] Open
Abstract
Natural polysaccharides, particularly galactomannans, are potential candidates for treatment of alcoholic liver diseases (ALD). However, applications are restricted due to the physicochemical properties associated with the high molecular weight. In this work, guar gum galactomannans were partially hydrolyzed by β-mannanase, and the molecular mechanisms of hepatoprotective effects were elucidated both in vitro and in vivo. Release of lactate dehydrogenase and cytochrome C were attenuated by partially hydrolyzed guar gum (PHGG) in HepG2 cells, due to protected cell and mitochondrial membrane integrity. PHGG co-administration decreased serum amino transaminases and cholinesterase levels of acute alcohol intoxicated mice, while hepatic pathologic morphology was depleted. Activity of superoxide dismutase, catalase, and glutathione peroxidase was recovered to 198.2, 34.5, 236.0 U/mg protein, respectively, while malondialdehyde level was decreased by 76.3% (PHGG, 1000 mg/kg∙day). Co-administration of PHGG induced a 4.4-fold increment of p-AMPK expression, and lipid metabolism was mediated. PHGG alleviated toll-like-receptor-4-mediated inflammation via the signaling cascade of MyD88 and IκBα, decreasing cytokine production. Moreover, mediated expression of Bcl-2 and Bax was responsible for inhibited acute alcohol-induced apoptosis with suppressed cleavage of caspase 3 and PARP. Findings gained suggest that PHGG can be used as functional food supplement for the treatment of acute alcohol-induced liver injury.
Collapse
Affiliation(s)
- Chenxuan Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100083, China.
| | - Jun Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100083, China.
| | - Yanbin Tang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China.
| | - Yanxiao Li
- Bioresource Utilization Laboratory, College of Engineering, China Agricultural University, Beijing 100083, China.
| | - Qiaojuan Yan
- Bioresource Utilization Laboratory, College of Engineering, China Agricultural University, Beijing 100083, China.
| | - Zhengqiang Jiang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
13
|
Kochansky CJ, Lyman MJ, Fauty SE, Vlasakova K, D'mello AP. Administration of Fenofibrate Markedly Elevates Fabp3 in Rat Liver and Plasma and Confounds Its Use as a Preclinical Biomarker of Cardiac and Muscle Toxicity. Lipids 2018; 53:947-960. [PMID: 30592062 DOI: 10.1002/lipd.12110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 10/25/2018] [Accepted: 11/07/2018] [Indexed: 02/05/2023]
Abstract
Proteins involved in lipid homeostasis are often regulated through the nuclear peroxisome proliferator-activated receptors (PPAR). PPARα is the target for the fibrate-class of drugs. Fenofibrate has been approved for its lipid-lowering effects in patients with hypercholesterolemia and hypertriglyceridemia. We were interested in understanding the expression of the energy transporters in energy-utilizing tissues like liver, heart, muscle, and adipose tissues in rat with the hypothesis that the change in transporter expression would align with the known lipid-lowering effects of PPARα agonists like fenofibrate. We found that several fatty-acid transporter proteins had significantly altered levels following 8 days of fenofibrate dosing. The mRNA levels of the highly abundant Fatp2 and Fatp5 in rat liver increased approximately twofold and decreased fourfold, respectively. Several fatty-acid-binding proteins and acyl-CoA-binding proteins had a significant increase in mRNA abundance but not the major liver fatty-acid-binding protein, Fabp1. Of particular interest was the increased liver expression of Fabp3 also known as heart-fatty acid binding protein (H-FABP or FABP3). FABP3 has been proposed as a circulating clinical biomarker for cardiomyopathy and muscle toxicity, as well as a preclinical marker for PPARα-induced muscle toxicity. Here, we show that fenofibrate induces liver mRNA levels of Fabp3 ~5000-fold resulting in an approximately 50-fold increase in FABP3 protein levels in the whole liver. This increased liver expression complicates the interpretation and potential use of FABP3 as a specific biomarker for PPARα-induced muscle toxicities.
Collapse
Affiliation(s)
- Christopher J Kochansky
- Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., 770 Sumneytown Pike, WP75A-203A, West Point, PA, 19486, USA.,Department of Pharmaceutical Sciences, University of the Sciences in Philadelphia, 600 South 43rd Street, Philadelphia, PA, 19104-4495, USA
| | - Michael J Lyman
- Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., 770 Sumneytown Pike, WP75A-203A, West Point, PA, 19486, USA
| | - Scott E Fauty
- Safety Assessment, Merck & Co., Inc., 770 Sumneytown Pike, WP81-217, West Point, PA, 19486, USA
| | - Katerina Vlasakova
- Safety Assessment, Merck & Co., Inc., 770 Sumneytown Pike, WP81-217, West Point, PA, 19486, USA
| | - Anil P D'mello
- Department of Pharmaceutical Sciences, University of the Sciences in Philadelphia, 600 South 43rd Street, Philadelphia, PA, 19104-4495, USA
| |
Collapse
|
14
|
Li D, Sun L, Yang Y, Wang Z, Yang X, Guo Y. Preventive and therapeutic effects of pigment and polysaccharides in Lycium barbarum on alcohol-induced fatty liver disease in mice. CYTA - JOURNAL OF FOOD 2018. [DOI: 10.1080/19476337.2018.1512530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Dan Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, P. R. China
| | - Lijun Sun
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, P. R. China
| | - Yongli Yang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, P. R. China
| | - Zichao Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, P. R. China
| | - Xi Yang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, P. R. China
| | - Yurong Guo
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, P. R. China
| |
Collapse
|
15
|
Evaluation of the Pharmacokinetics and Hepatoprotective Effects of Phillygenin in Mouse. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7964318. [PMID: 30211228 PMCID: PMC6126057 DOI: 10.1155/2018/7964318] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 07/17/2018] [Accepted: 08/01/2018] [Indexed: 01/23/2023]
Abstract
Phillygenin is a bioactive intergradient in Osmanthus fragrans, a well-known food additive and Chinese traditional medicine. This study was to investigate the hepatoprotective effects and pharmacokinetics of phillygenin. The hepatoprotective effect of phillygenin was assessed in carbon tetrachloride- (CCl4-) intoxicated mice by monitoring levels of serum and tissue biomarkers. The pharmacokinetics of phillygenin was evaluated in the mouse after oral (po, 24 mg / kg) or intravenous (iv, 12 mg/kg) administration. Results showed that phillygenin has a great hepatoprotective effect on CCl4-induced liver injury in mice owing to its antioxidant activity and inhibition on cytochrome P450 2E1(CYP2E1). After oral administration, phillygenin was efficiently absorbed with the oral bioavailability of 56.4%. Two metabolites, hydroxylated and dimethylated phillygenin, were identified in mouse urine. These results suggested that phillygenin could be explored as new and potential natural antioxidants and hepatoprotective agents.
Collapse
|
16
|
Tang X, Wei R, Deng A, Lei T. Protective Effects of Ethanolic Extracts from Artichoke, an Edible Herbal Medicine, against Acute Alcohol-Induced Liver Injury in Mice. Nutrients 2017; 9:nu9091000. [PMID: 28891983 PMCID: PMC5622760 DOI: 10.3390/nu9091000] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/03/2017] [Accepted: 09/06/2017] [Indexed: 12/17/2022] Open
Abstract
Oxidative stress and inflammation are well-documented pathological factors in alcoholic liver disease (ALD). Artichoke (Cynara scolymus L.) is a healthy food and folk medicine with anti-oxidative and anti-inflammatory properties. This study aimed to evaluate the preventive effects of ethanolic extract from artichoke against acute alcohol-induced liver injury in mice. Male Institute of Cancer Research mice were treated with an ethanolic extract of artichoke (0.4, 0.8, and 1.6 g/kg body weight) by gavage once daily. Up to 40% alcohol (12 mL/kg body weight) was administered orally 1 h after artichoke treatment. All mice were fed for 10 consecutive days. Results showed that artichoke extract significantly prevented elevated levels of aspartate aminotransferase, alanine aminotransferase, triglyceride, total cholesterol, and malondialdehyde. Meanwhile, the decreased levels of superoxide dismutase and glutathione were elevated by artichoke administration. Histopathological examination showed that artichoke attenuated degeneration, inflammatory infiltration and necrosis of hepatocytes. Immunohistochemical analysis revealed that expression levels of toll-like receptor (TLR) 4 and nuclear factor-kappa B (NF-κB) in liver tissues were significantly suppressed by artichoke treatment. Results obtained demonstrated that artichoke extract exhibited significant preventive protective effect against acute alcohol-induced liver injury. This finding is mainly attributed to its ability to attenuate oxidative stress and suppress the TLR4/NF-κB inflammatory pathway. To the best of our knowledge, the underlying mechanisms of artichoke on acute ALD have been rarely reported.
Collapse
Affiliation(s)
- Xuchong Tang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Ruofan Wei
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Aihua Deng
- College of Life and Environmental Science, Hunan University of Arts and Science, Changde 415000, China.
| | - Tingping Lei
- College of Mechanical Engineering and Automation, Huaqiao University, Xiamen 361021, China.
| |
Collapse
|
17
|
Characterization of Polysaccharides with Antioxidant and Hepatoprotective Activities from the Edible Mushroom Oudemansiella radicata. Molecules 2017; 22:molecules22020234. [PMID: 28165422 PMCID: PMC6155583 DOI: 10.3390/molecules22020234] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/22/2017] [Accepted: 01/31/2017] [Indexed: 02/06/2023] Open
Abstract
The preliminary structure, in vitro antioxidant and in vivo hepatoprotective activities of water-soluble polysaccharides (ORWP) and alkali-soluble polysaccharides (ORAP), prepared from the mushroom Oudemansiella radicata, were investigated. Both ORWP and ORAP were heteropolysaccharides with mannose, glucose and galactose being the main monosaccharide components. Regarding the antioxidant activities, ORWP and ORAP showed effective 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, hydrogen peroxide scavenging activity and lipid peroxidation inhibitory effects, as well as moderate reducing power and Fe2+ chelating activity. For the hepatoprotective activity, administration of ORWP and ORAP prevented the increase in serum alanine aminotransferase and aspartate aminotransferase activities in a carbon tetrachloride-induced acute liver damage model, suppressed hepatic malondialdehyde formation and stimulated the activities of hepatic superoxide dismutase and glutathione peroxidase. Thus, we speculate that ORWP and ORAP may protect the liver from CCl₄-induced hepatic damage via antioxidant mechanisms.
Collapse
|
18
|
Zhang C, Li S, Zhang J, Hu C, Che G, Zhou M, Jia L. Antioxidant and hepatoprotective activities of intracellular polysaccharide from Pleurotus eryngii SI-04. Int J Biol Macromol 2016; 91:568-77. [DOI: 10.1016/j.ijbiomac.2016.05.104] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 05/24/2016] [Accepted: 05/28/2016] [Indexed: 11/28/2022]
|
19
|
Nie J, Yang D, Hu K, Lu Y. Study on four polymorphs of bifendate based on X-ray crystallography. Acta Pharm Sin B 2016; 6:234-42. [PMID: 27175335 PMCID: PMC4856952 DOI: 10.1016/j.apsb.2016.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/09/2016] [Accepted: 03/15/2016] [Indexed: 01/25/2023] Open
Abstract
Bifendate, a synthetic anti-hepatitis drug, exhibits polycrystalline mode phenomena with 2 polymorphs reported (forms A and B). Single crystals of the known crystalline form B and 3 new crystallosolvates involving bifendate solvated with tetrahydrofuran (C), dioxane (D), and pyridine (E) in a stoichiometric ratio of 1:1 were obtained and characterized by X-ray crystallography, thermal analysis, and Fourier transform infrared (FT-IR) spectroscopy. The differences in molecular conformation, intermolecular interaction and crystal packing arrangement for the four polymorphs were determined and the basis for the polymorphisms was investigated. The rotation of single bonds resulted in different orientations for the biphenyl, methyl ester and methoxyl groups. All guest solvent molecules interacted with the host molecule via an interesting intercalative mode along the [1 0 0] direction in the channel formed by the host molecules through weak aromatic stacking interactions or non-classical hydrogen bonds, of which the volume and planarity played an important role in the intercalation of the host with the guest. The incorporation of solvent-augmented rotation of the C–C bond of the biphenyl group had a striking effect on the host molecular conformation and contributed to the formation of bifendate polymorphs. Moreover, the simulated powder X-ray diffraction (PXRD) patterns for each form were calculated on the basis of the single-crystal data and proved to be unique. The single-crystal structures of the four crystalline forms are reported in this paper.
Collapse
Key Words
- ADPs, anisotropic displacement parameters
- ALT, alanine transaminase
- Bifendate
- CCDC, Cambridge crystallographic data center
- DDB, dimethyl dimethoxy biphenyl dicarboxylate
- DSC, differential scanning calorimetry
- FT-IR
- FT-IR, Fourier transform infrared spectroscopy
- MW, molecular weight
- PXRD, powder X-ray diffraction
- Polymorphism
- SCXRD, single-crystal X-ray diffraction
- Single-crystal structure
- Solvatomorphism
- TGA, thermal gravimetric analyzer.
- Thermal analysis
Collapse
Affiliation(s)
| | | | | | - Yang Lu
- Corresponding author. Tel.: +86 10 63165212.
| |
Collapse
|
20
|
Zhu PL, Pan SY, Zhou SF, Zhang Y, Wang XY, Sun N, Chu ZS, Yu ZL, Ko KM. Effects of combined dietary supplementation with fenofibrate and Schisandrae Fructus pulp on lipid and glucose levels and liver function in normal and hypercholesterolemic mice. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:923-35. [PMID: 25733812 PMCID: PMC4338776 DOI: 10.2147/dddt.s73544] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background Currently, combined therapy using herbs and synthetic drugs has become a feasible therapeutic intervention against some diseases. The purpose of this study was to assess the effects of supplementation with fenofibrate (FF), a chemical drug used for the treatment of hyperlipidemia, and the aqueous extract of Schisandrae Fructus (SF, a Chinese herb) pulp (AqSF-P) or an SF-related synthetic analog, bicyclol (BY), on serum/hepatic lipid levels and liver status in normal and hypercholesterolemic (HCL) mice. Methods Male mice obtained from the Institute of Cancer Research (ICR) were fed on a normal diet (ND) or high cholesterol/bile salt (0.5%/0.15%, w/w) diet (HCBD) containing FF (0.03% or 0.1%, w/w) with or without AqSF-P (0.3%−9.0%, based on crude herbal material, w/w) or BY (0.025%, w/w) for 10 days. Then serum lipid levels and alanine aminotransferase (ALT) activity, as well as hepatic triglyceride (TG), total cholesterol (TC), and glucose levels, were measured. Results Oral supplementation with FF significantly reduced serum and hepatic TG, TC, and hepatic glucose levels (approximately 79%) in mice fed with ND or HCBD. FF supplementation combined with AqSF-P or BY increased FF-induced reduction in hepatic TC and TG contents in ND-fed mice (up to 67%) and in HCBD-fed mice (up to 54%), when compared with FF supplementation alone. Hepatic glucose-lowering effect of FF was enhanced (up to 19%) by AqSF-P cosupplementation in both normal and HCL mice. FF supplementation enhanced the excretion of fecal TC (by 75%) in mice fed with HCBD. Fecal TC contents were increased by 14%/9% in the combination therapy with FF and AqSF-P in ND-/HCBD-fed mice. Serum ALT activity was elevated by 45% in HCBD-fed mice. FF caused a significant increase in ALT activity by 198% and 120% in normal and HCL mice, respectively. BY markedly attenuated the ALT activity by 54% in mice fed with ND supplemented with 0.1% FF and by 42% in mice fed with HCBD supplemented with 0.03% FF. Conclusion AqSF-P cosupplementation augmented the hepatic lipid-/glucose-lowering effects of FF. BY ameliorated FF-induced liver injury in normal and HCL mice.
Collapse
Affiliation(s)
- Pei-Li Zhu
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Si-Yuan Pan
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Shu-Feng Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Yi Zhang
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Xiao-Yan Wang
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Nan Sun
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Zhu-Sheng Chu
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Zhi-Ling Yu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, People's Republic of China
| | - Kam-Ming Ko
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
| |
Collapse
|
21
|
Cheng Q, Zhang X, Wang O, Liu J, Cai S, Wang R, Zhou F, Ji B. Anti-diabetic effects of the ethanol extract of a functional formula diet in mice fed with a fructose/fat-rich combination diet. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2015; 95:401-408. [PMID: 24817112 DOI: 10.1002/jsfa.6737] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 04/23/2014] [Accepted: 05/06/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND Rhizoma dioscorea, Lycium barbarum, Prunella vulgaris and hawthorn are well known in both traditional food and folk medicine. Each of these plants reportedly possesses beneficial effects in the treatment of diabetes. In this study an anti-diabetic health-promoting diet was formulated by mixing the herbs in a ratio of 6:4:2:3, and the anti-diabetic effect and underlying mechanism were elucidated in vivo. RESULTS Compared with the model control group, the formula, especially its ethanol extract (EF), could improve glucose intolerance and normalize the lipid profile. The mechanisms responsible for the amelioration of glucose and lipid metabolism in mice were an increase in peripheral and hepatic insulin sensitivity, a decrease in serum free fatty acid level, enhanced hepatic glucokinase activity and glycogen content and improved serum antioxidant activity. Hepatic histopathological examination also showed that EF administration markedly decreased fatty deposits in the liver of mice. CONCLUSION The results of the present study demonstrated that the prepared functional formula diet is a potent alternative as an anti-diabetic health-promoting diet.
Collapse
Affiliation(s)
- Qian Cheng
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, No. 17 Tsinghua East Road, Haidian District, Beijing, 100083, China
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Zhang X, Wu Z, Weng P. Antioxidant and hepatoprotective effect of (-)-epigallocatechin 3-O-(3-O-methyl) gallate (EGCG3″Me) from Chinese oolong tea. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:10046-10054. [PMID: 25259858 DOI: 10.1021/jf5016335] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
(-)-Epigallocatechin 3-O-(3-O-methyl) gallate (EGCG3″Me) has exhibited various biological activities in oolong tea. However, little information about its hepatoprotective activity is available. The objectives of the present study, therefore, were to determine the hepatoprotective activity of EGCG3″Me. First, high-purity EGCG3″Me was prepared from Chinese oolong tea by column chromatography. In antioxidant assay in vitro, EGCG3″Me exhibited potential antioxidant activity. For hepatoprotective activity in vitro, it was observed that EGCG3″Me effectively alleviated the changes induced by alcohol in a concentration-dependent manner. For hepatoprotective activity in vivo, the administration of EGCG3″Me at a dose of 100 mg/kg BW per day significantly decreased the serum levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) from 64.6 ± 3.17 and 97.6 ± 3.78 to 39.6 ± 2.72 and 59.6 ± 3.02 U/L, decreased the liver level of malondialdehyde (MDA) from 1.14 ± 0.08 to 0.77 ± 0.03 nmol/mg protein, and remarkably restored the liver activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) from 247 ± 20.1 U/mg and 6.12 ± 0.17 nmol/mg protein to 261 ± 9.98 U/mg and 8.10 ± 0.03 nmol/mg protein, respectively, in alcohol-induced liver injury mice. This suggested that the protective effect of EGCG3″Me against alcohol-induced liver injury is possibly via its antioxidant activity to protect biological systems against oxidative stress.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Food Science and Engineering, School of Marine Science, Ningbo University , Ningbo 315211, People's Republic of China
| | | | | |
Collapse
|
23
|
Xin X, Yang W, Yasen M, Zhao H, Aisa HA. The mechanism of hepatoprotective effect of sesquiterpene rich fraction from Cichorum glandulosum Boiss. et Huet on immune reaction-induced liver injury in mice. JOURNAL OF ETHNOPHARMACOLOGY 2014; 155:1068-1075. [PMID: 24933227 DOI: 10.1016/j.jep.2014.06.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/15/2014] [Accepted: 06/04/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cichorum glandulosum Boiss. et Huet is a traditional Uygur herbal medicine that has been used as a cholagogic and diuretic agent to improve liver function. However, the mechanism is not known for the liver-protective function. We investigated the antioxidant effects of plant extraction (CGE60) in vitro and in vivo, and find the mechanism of liver protection in Bacille Calmette-Guerin vaccine (BCG)+Lipopolysaccharides (LPS) induced liver injury in mice. MATERIALS AND METHODS CGE60 was made, and the antioxidant activity was investigated by comparing the ability of scavenging 1,1-diphenyl-2-picrylhydrazyl (DPPH), and 2,2-azinobis(3-ehtylbenzothiazolin-6-sulfnicAcid) diammonium salt (ABTS) free radicals in vitro. Then, CGE60 was administrated in mice of liver damage model which was induced in mice using the BCG+LPS protocol. The CGE 60 extract was tested at three dosages: 50 mg/kg, 100 mg/kg, and 200 mg/kg. Product of lipid peroxidation (MDA), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-PX,), nitric oxide (NO), nitric oxide synthetase (NOS), hydroxyproline and alkaline phosphatase (ALP) contents were evaluated in liver to determine the CGE60 activity in the hepatic injury model. Tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and transforming growth factor-β (TGF-β) proteins were determined in the liver tissues using ELSIA. The signaling activities were evaluated in Western blot. RESULTS CGE60 exhibited strong antioxidant ability in vitro. With oral administration, CGE60 significantly increased the activity of CAT, SOD, GSH-PX, and decreased the level of NO, NO synthase, hydroxyproline, ALP and lipid peroxidation liver of in the BDG+ LPS model. CGE60 attenuated hepatic inflammation via down- regulation of TNF-α, IL-6 and TGF-β. CGE60 blocked protein expression of cytochrome P450 2E1 (CYP2E1), nuclear factor kappa-B (NF-κB), phosphorylation of extracellular signal-regulated kinase (p-ERK1/2), and cyclooxygenase-2 (COX-2),but activated the expression of p-P38 MAPK. CONCLUSION This study suggests that CGE60 possesses antioxidant activity and this activity associates with hepatoprotective effect in the mice of BCG +LPS model, and the mechanisms underlying these effects may involve antioxidant actions and anti-inflammation activities.
Collapse
Affiliation(s)
- Xuelei Xin
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; Key Laboratory of Chemistry of Plant Resources in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Weijun Yang
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; Key Laboratory of Chemistry of Plant Resources in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; Xinjiang Institute of material medic, Urumqi 830002, China
| | - Mireguli Yasen
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; Key Laboratory of Chemistry of Plant Resources in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Haiqing Zhao
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; Key Laboratory of Chemistry of Plant Resources in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Haji akber Aisa
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; Key Laboratory of Chemistry of Plant Resources in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| |
Collapse
|
24
|
Liu Q, Tian G, Yan H, Geng X, Cao Q, Wang H, Ng TB. Characterization of polysaccharides with antioxidant and hepatoprotective activities from the wild edible mushroom Russula vinosa Lindblad. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:8858-8866. [PMID: 25096265 DOI: 10.1021/jf502632c] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The aim of the present study was to investigate the antioxidant and hepatoprotective effects of water-soluble polysaccharides (RVLWP) and alkali-soluble polysaccharides (RVLAP) from Russula vinosa on carbon tetrachloride (CCl4)-induced acute liver damage in mice. For the in vitro antioxidant activities, RVLWP and RVLAP exhibited potent 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity (IC50 = 1.55 ± 0.04 and 3.37 ± 0.21 mg/mL, respectively), hydrogen peroxide scavenging activity (IC50 = 6.07 ± 0.24 and 9.23 ± 0.54 mg/mL, respectively), lipid peroxidation inhibitory effect (IC50 = 0.52 ± 0.095 and 0.86 ± 0.043 mg/mL, respectively), and moderate reducing power and Fe(2+) chelating activity (IC50 = 1.86 ± 0.0036 and 0.22 ± 0.0057 mg/mL, respectively). Ascorbic acid was employed as the standard antioxidant in the present study. For the in vivo hepatoprotective activity, administration of RVLWP and RVLAP (200 mg/kg) significantly prevented the elevation in serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities in acute liver damage induced by CCl4 and suppressed hepatic malondialdehyde (MDA) formation. Mice treated with RVLWP and RVLAP demonstrated a better profile of antioxidants with augmented activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in the liver. The results suggest that RVLWP and RVLAP protect the liver from CCl4-induced hepatic damage via antioxidant mechanisms.
Collapse
Affiliation(s)
- Qin Liu
- State Key Laboratory for Agrobiotechnology and Department of Microbiology and ‡State Key Laboratory for Agrobiotechnology and College of Biological Science, China Agricultural University , Beijing 100193, China
| | | | | | | | | | | | | |
Collapse
|
25
|
Wang XY, Yu ZL, Pan SY, Zhang Y, Sun N, Zhu PL, Jia ZH, Zhou SF, Ko KM. Supplementation with the extract of schisandrae fructus pulp, seed, or their combination influences the metabolism of lipids and glucose in mice fed with normal and hypercholesterolemic diet. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2014; 2014:472638. [PMID: 24876871 PMCID: PMC4021675 DOI: 10.1155/2014/472638] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 03/17/2014] [Accepted: 03/17/2014] [Indexed: 02/07/2023]
Abstract
SCHISANDRAE FRUCTUS (SF), WHICH POSSESSES FIVE TASTES sweet (fruit skin), sour (pulp), bitter/pungent (seed core), and saltiness (all parts), can produce a wide spectrum of biological activities in the body. Here, we investigated the effects of the ethanolic extract of SF pulp, seed, or their combination (namely, EtSF-P, EtSF-S, or EtSF-P/S, resp.; collectively called EtSF) on the metabolism of lipids and glucose in normal diet- (ND-) and hypercholesterolemic diet- (HCLD-) fed mice. Supplementation with EtSF significantly reduced hepatic triglyceride and cholesterol levels by 18-47% in both ND- and HCLD-fed mice. EtSF supplementation reduced serum triglyceride levels (approximately 29%), whereas EtSF-P and EtSF-S/P elevated serum cholesterol (up to 26 and 44%, resp.) in HCLD-fed mice. Treatment with EtSF decreased hepatic glucose levels (by 9-44%) in both ND- and HCLD-fed mice. Supplementation with EtSF-S or EtSF-S/P (at 1 and 3%) increased biliary or fecal TC contents in HCLD-fed mice. However, supplementation with EtSF-S/P at 9% reduced biliary TC levels in HCLD-fed mice. EtSF-P or EtSF-S/P supplementation reduced serum alanine aminotransferase activity in HCLD-fed mice. The findings suggested that supplementation with EtSF lowered lipid and glucose accumulation in the liver and increased fecal cholesterol contents in mice. Dietary supplementation with EtSF-P or EtSF-S/P attenuated liver damage in HCLD-fed mice.
Collapse
Affiliation(s)
- Xiao-Yan Wang
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Zhi-Ling Yu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Si-Yuan Pan
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Yi Zhang
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Nan Sun
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Pei-Li Zhu
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Zhan-Hong Jia
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Shu-Feng Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, FL 33612, USA
| | - Kam-Ming Ko
- Division of Life Science, Hong Kong University of Science & Technology, Hong Kong
| |
Collapse
|
26
|
Sun N, Pan SY, Zhang Y, Wang XY, Zhu PL, Chu ZS, Yu ZL, Zhou SF, Ko KM. Dietary pulp from Fructus Schisandra Chinensis supplementation reduces serum/hepatic lipid and hepatic glucose levels in mice fed a normal or high cholesterol/bile salt diet. Lipids Health Dis 2014; 13:46. [PMID: 24621253 PMCID: PMC3984702 DOI: 10.1186/1476-511x-13-46] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 03/05/2014] [Indexed: 12/13/2022] Open
Abstract
Background Recently, it has been found that Fructus Schisandra Chinensis (FSC), a Chinese herbal medicine, and its related compounds have a profound impact on lipid metabolism process. FSC can be divided into two parts, i.e., seed and pulp. The current study aimed to examine the effect of aqueous extracts of FSC pulp (AqFSC-P) on serum/hepatic lipid and glucose levels in mice fed with a normal diet (ND) or a high cholesterol/bile salt diet (HCBD). Methods The AqFSC-P used in the present study was fractionated into supernatant (SAqFSC-P) and precipitate (PAqFSC-P) separated by centrifugation. Male ICR mice were fed with ND or HCBD, without or with supplementation of 1%, 3%, or 9% (w/w) SAqFSC-P or PAqFSC-P for 10 days. Biomarkers were determined according to the manufacturer’s instruction. Results Supplementation with SAqFSC-P or PAqFSC-P significantly reduced serum and hepatic triglyceride levels (approximately 40%) in ND- and/or HCBD-fed mice. The supplementation with SAqFSC-P or PAqFSC-P reduced hepatic total cholesterol levels (by 27 - 46%) in HCBD-fed mice. Supplementation with SAqFSC-P or PAqFSC-P markedly lowered hepatic glucose levels (by 13 - 30%) in ND- and HCBD-fed mice. SAqFSC-P decreased serum alanine aminotransferase (ALT) activity, but PAqFSC-P increased hepatic protein contents in ND-fed mice. Bicylol, as a positive control, reduced ALT activity. In addition, mice supplemented with FSC-P or bicylol showed a smaller body weight gain and adipose tissue mass as compared to the respective un-supplemented ND- or HCBD-fed mice. Conclusion The results indicate that SAqFSC-P and PAqFSC-P produce hepatic lipid- and glucose-lowering as well as serum TG-lowering effects in hypercholesterolemic mice. FSC pulp may provide a safe alternative for the management of fatty liver and/or lipid disorders in humans.
Collapse
Affiliation(s)
| | - Si-Yuan Pan
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Wang Y, Zhang Y, Qian H, Lu J, Zhang Z, Min X, Lang M, Yang H, Wang N, Zhang P. The g0/g1 switch gene 2 is an important regulator of hepatic triglyceride metabolism. PLoS One 2013; 8:e72315. [PMID: 23951308 PMCID: PMC3741160 DOI: 10.1371/journal.pone.0072315] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 07/10/2013] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease is associated with obesity and insulin resistance. Factors that regulate the disposal of hepatic triglycerides contribute to the development of hepatic steatosis. G0/G1 switch gene 2 (G0S2) is a target of peroxisome proliferator-activated receptors and plays an important role in regulating lipolysis in adipocytes. Therefore, we investigated whether G0S2 plays a role in hepatic lipid metabolism. Adenovirus-mediated expression of G0S2 (Ad-G0S2) potently induced fatty liver in mice. The liver mass of Ad-G0S2-infected mice was markedly increased with excess triglyceride content compared to the control mice. G0S2 did not change cellular cholesterol levels in hepatocytes. G0S2 was found to be co-localized with adipose triglyceride lipase at the surface of lipid droplets. Hepatic G0S2 overexpression resulted in an increase in plasma Low-density lipoprotein (LDL)/Very-Low-density (VLDL) lipoprotein cholesterol level. Plasma High-density lipoprotein (HDL) cholesterol and ketone body levels were slightly decreased in Ad-G0S2 injected mice. G0S2 also increased the accumulation of neutral lipids in cultured HepG2 and L02 cells. However, G0S2 overexpression in the liver significantly improved glucose tolerance in mice. Livers expressing G0S2 exhibited increased 6-(N-(7-nitrobenz-2-oxa-1-3-diazol-4-yl) amino)-6-deoxyglucose uptake compared with livers transfected with control adenovirus. Taken together, our results provide evidence supporting an important role for G0S2 as a regulator of triglyceride content in the liver and suggest that G0S2 may be a molecular target for the treatment of insulin resistance and other obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Yinfang Wang
- Cardiovascular Research Center, Hubei University of Medicine, Hubei, China
- Department of Physiology, Hubei University of Medicine, Hubei, China
| | - Yahui Zhang
- Department of Pathophysiology, Hubei University of Medicine, Hubei, China
| | - Hang Qian
- Cardiovascular Research Center, Hubei University of Medicine, Hubei, China
| | - Juan Lu
- Cardiovascular Research Center, Hubei University of Medicine, Hubei, China
- Department of Physiology, Hubei University of Medicine, Hubei, China
| | - Zhifeng Zhang
- Cardiovascular Research Center, Hubei University of Medicine, Hubei, China
- Department of Physiology, Hubei University of Medicine, Hubei, China
| | - Xinwen Min
- Cardiovascular Research Center, Hubei University of Medicine, Hubei, China
| | - Mingjian Lang
- Cardiovascular Research Center, Hubei University of Medicine, Hubei, China
| | - Handong Yang
- Cardiovascular Research Center, Hubei University of Medicine, Hubei, China
| | - Nanping Wang
- Cardiovascular Research Center, Xi’an Jiaotong University School of Medicine, Xi’an, China
| | - Peng Zhang
- Cardiovascular Research Center, Hubei University of Medicine, Hubei, China
- Department of Physiology, Hubei University of Medicine, Hubei, China
- * E-mail:
| |
Collapse
|
28
|
Pan SY, Zhou SF, Gao SH, Yu ZL, Zhang SF, Tang MK, Sun JN, Ma DL, Han YF, Fong WF, Ko KM. New Perspectives on How to Discover Drugs from Herbal Medicines: CAM's Outstanding Contribution to Modern Therapeutics. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2013; 2013:627375. [PMID: 23634172 PMCID: PMC3619623 DOI: 10.1155/2013/627375] [Citation(s) in RCA: 263] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 01/29/2013] [Indexed: 01/19/2023]
Abstract
With tens of thousands of plant species on earth, we are endowed with an enormous wealth of medicinal remedies from Mother Nature. Natural products and their derivatives represent more than 50% of all the drugs in modern therapeutics. Because of the low success rate and huge capital investment need, the research and development of conventional drugs are very costly and difficult. Over the past few decades, researchers have focused on drug discovery from herbal medicines or botanical sources, an important group of complementary and alternative medicine (CAM) therapy. With a long history of herbal usage for the clinical management of a variety of diseases in indigenous cultures, the success rate of developing a new drug from herbal medicinal preparations should, in theory, be higher than that from chemical synthesis. While the endeavor for drug discovery from herbal medicines is "experience driven," the search for a therapeutically useful synthetic drug, like "looking for a needle in a haystack," is a daunting task. In this paper, we first illustrated various approaches of drug discovery from herbal medicines. Typical examples of successful drug discovery from botanical sources were given. In addition, problems in drug discovery from herbal medicines were described and possible solutions were proposed. The prospect of drug discovery from herbal medicines in the postgenomic era was made with the provision of future directions in this area of drug development.
Collapse
Affiliation(s)
- Si-Yuan Pan
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Shu-Feng Zhou
- College of Pharmacy,University of South Florida, Tampa, FL 33612, USA
| | - Si-Hua Gao
- School of basic medicine, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Zhi-Ling Yu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Shuo-Feng Zhang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Min-Ke Tang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Jian-Ning Sun
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Hong Kong
| | - Yi-Fan Han
- Department of Applied Biology & Chemical Technology, Hong Kong Polytechnic University, Hong Kong
| | - Wang-Fun Fong
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Kam-Ming Ko
- Division of Life Science, Hong Kong University of Science & Technology, Hong Kong
| |
Collapse
|
29
|
Al-Hallaq EK, Kasabri V, Abdalla SS, Bustanji YK, Afifi FU. Anti-Obesity and Antihyperglycemic Effects of <i>Crataegus aronia</i> Extracts: <i>In Vitro</i> and <i>in Vivo</i> Evaluations. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/fns.2013.49126] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Pan SY, Yu Q, Zhang Y, Wang XY, Sun N, Yu ZL, Ko KM. Dietary Fructus Schisandrae extracts and fenofibrate regulate the serum/hepatic lipid-profile in normal and hypercholesterolemic mice, with attention to hepatotoxicity. Lipids Health Dis 2012; 11:120. [PMID: 22989092 PMCID: PMC3532177 DOI: 10.1186/1476-511x-11-120] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 09/14/2012] [Indexed: 12/14/2022] Open
Abstract
Background Schisandra, a globally distributed plant, has been widely applied to health care products. Here, we investigated the effects of dietary intake of Fructus Schisandrae chinensis (FSC), both aqueous and ethanolic extracts (AqFSC, EtFSC), on serum/hepatic lipid contents in normal diet (ND)- and high-fat/cholesterol/bile salt diet (HFCBD)-fed mice. Methods Male ICR mice were fed with ND or HFCBD, supplemented with 1 and 4% of AqFSC and EtFSC, respectively, or 0.1% fenofibrate, for 13 days. Lipids were determined according to the manufacture’s instructions. Results EtFSC, but not AqFSC, significantly elevated hepatic triglyceride (TG) in mice fed with ND. Feeding mice with HFCBD increased serum total cholesterol (TC), high density lipoprotein (HDL) and low density lipoprotein (LDL) levels as well as alanine aminotransferase (ALT) activity. Supplementation with AqFSC, EtFSC or fenofibrate significantly reduced hepatic TC and TG levels. However, AqFSC and EtFSC supplementation increased serum HDL and LDL levels in mice fed with HFCBD. Fenofibrate increased serum HDL and reduced serum LDL contents in hypercholesterolemic mice. EtFSC reduced, but fenofibrate elevated, serum ALT activity in both normal and hypercholesterolemic mice. While fenofibrate reduced serum TC, TG, and HDL levels in mice fed with ND, it increased serum HDL and reduced serum LDL and TC levels in mice fed with HFCBD. Hepatomegaly was found in normal and hypercholesterolemic mice fed with diet supplemented with fenofibrate. Conclusions Feeding mice with AqFSC and EtFSC ameliorated the HFCBD-induced hepatic steatosis. In addition, EtFSC may offer protection against hepatic injury in hypercholesterolemic mice.
Collapse
Affiliation(s)
- Si-Yuan Pan
- Department of Pharmacology, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | | | | | | | | | | | | |
Collapse
|
31
|
Wang M, Zhu P, Jiang C, Ma L, Zhang Z, Zeng X. Preliminary characterization, antioxidant activity in vitro and hepatoprotective effect on acute alcohol-induced liver injury in mice of polysaccharides from the peduncles of Hovenia dulcis. Food Chem Toxicol 2012; 50:2964-70. [PMID: 22750723 DOI: 10.1016/j.fct.2012.06.034] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 05/04/2012] [Accepted: 06/21/2012] [Indexed: 01/10/2023]
Abstract
The fresh fleshy peduncles of Hovenia dulcis have been used as a food supplement and traditional herbal medicine for the treatment of liver diseases and alcoholic poisoning for more than a millennium. The objectives of the present study, therefore, were to determine the antioxidant activity of polysaccharides from the peduncles of H. dulcis (HDPS) and to evaluate its hepatoprotective effect on acute alcohol-induced liver injury in mice. HDPS, prepared by hot water extraction, ethanol precipitation and treatment of macroporous resin, was found to be non-starch polysaccharide and mainly composed of galactose, arabinose, rhamnose and galacturonic acid. In in vitro antioxidant assay, HDPS exhibited high superoxide radical scavenging activity, strong inhibition effect on lipid peroxidation and a medium ferrous ion-chelating activity. For hepatoprotective activity in vivo, the administration of HDPS significantly decreased the serum levels of alanine aminotransferase and aspartate aminotransferase, significantly decreased the liver level of malondialdehyde and remarkably restored the liver activities of superoxide dismutase and glutathione peroxidase in alcohol-induced liver injury mice. The results suggested that HDPS had a significant protective effect against acute alcohol-induced liver injury possibly via its antioxidant activity to protect biological systems against the oxidative stress.
Collapse
Affiliation(s)
- Mingchun Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | | | | | | | | | | |
Collapse
|
32
|
A method of hepatocyte extraction conjugated with HPLC is established for screening potential active components in Chinese medicines--probing Herba Artemisiae Scopariae as an exemplifying approach. Molecules 2012; 17:1468-82. [PMID: 22310168 PMCID: PMC6268900 DOI: 10.3390/molecules17021468] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 01/12/2012] [Accepted: 01/13/2012] [Indexed: 11/17/2022] Open
Abstract
In order to establish an effective and quick method for screening potential bioactive compounds in Traditional Chinese Medicines (TCMs), hepatocytes were employed for extracting either bifendate, a clinical medicine for liver diseases, or chemicals in Herba Artemisiae Scopariae (A. Scopariae), a commonly used traditional Chinese medicine for remedying liver diseases such as hepatitis induced by viruses, chemicals or alcohol. After hepatocyte extraction the compounds were analyzed by HPLC, therefore this method was referrred to as hepatocyte extraction conjugated with HPLC (HE-HPLC). In the first part of this study, HE-HPLC showed that bifendate was extracted by hepatocytes and detected by HPLC-DAD which indicated the feasibility of this method. Then in the second part of the study, the potential active components in the A. scopariae extract were studied using HE-HPLC. Six chemicals in the A. scopariae extract, which could bind to hepatocytes in vitro, were detected by HPLC-DAD and three were identified as 7-hydroxy-coumarin (7-OH-C), capillartemisin A and 7-methoxy-coumarin, respectively. In vitro assays showed that 7-OH-C protected HL-7702 hepatocytes from H2O2 injury. The results indicated that these compounds could be extracted by hepatocytes, could be detected by HPLC and more importantly were bioactive. It is suggested that HE-HPLC is a useful method for screening potent active components in Chinese medicines used to treat liver diseases.
Collapse
|
33
|
Chinese herbal medicine in the treatment of nonalcoholic fatty liver disease. Chin J Integr Med 2012; 18:152-60. [PMID: 22311412 DOI: 10.1007/s11655-012-0993-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Indexed: 12/12/2022]
Abstract
Chinese herbal medicine has developed new therapies for nonalcoholic fatty liver disease (NAFLD) based on its unique theory system and substantial herb remedies. In this review, 21 traditional Chinese herbs were introduced for their potential benefit in the treatment of NAFLD. Majority of them are evaluated by experimental studies and few by multicenter clinical trials. Herbal monomers as berberine and resveratrol, extracts from Polygonum hypoleucum Ohwi, and Artemisia sacrorum Ledeb., and formulae including Yinchenhao Decoction (, YCHD), Qushi Huayu Decoction (, QSHYD), and Danning Tablet () were discussed in detail on their therapeutic potentials. Most of these herbal medicines were proved to improve biochemical and histological changes of NAFLD both in vitro and in vivo. Also, their therapeutic activities were associated with inhibiting lipid accumulation through adenosine monophosphate-activated protein kinase activation or upregulating low-density lipoprotein receptor (LDLR) expression, alleviating lipid peroxidation, and reducing the production of inflammatory cytokines. Although the efficacy and safety of these herbal medicines needed to be evaluated in multicenter large-scale clinical trials, Chinese medicine is promising and effective for preventing and treating NAFLD disease.
Collapse
|
34
|
Al-Hallaq EK, Afifi FU, Abdalla SS. Evaluation of the Hypocholesterolemic Effect and Phytochemical Screening of the Hydroethanolic Extract of Crataegus Aronia from Jordan. Nat Prod Commun 2012. [DOI: 10.1177/1934578x1200700113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Chemical screening of the leaves and flowers of Crataegus aronia resulted in the isolation of hyperoside, quercetin, rutin and β-sitosterol for the first time from this plant. The effects of the hydroethanolic extract of C. aronia (CAHE) on hypercholesterolemic rats were investigated. The rats, treated orally for four weeks with 400 mg/kg/day CAHE, exhibited significant decreases in serum total cholesterol (TC) and low-density lipoprotein (LDL). The results were compared with those obtained after oral administration of atorvastatin (10 mg/kg/day). Furthermore, 10-week daily co-administration of a high cholesterol diet and CAHE (200 mg/kg/day) prevented the increase in TC and LDL. These observations indicate that CAHE has a hypocholesterolemic effect.
Collapse
Affiliation(s)
- Entisar K. Al-Hallaq
- Department of Biological Sciences, Faculty of Science, University of Jordan, Amman, 11942, Jordan
| | - Fatma U. Afifi
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Jordan, Amman, 11942, Jordan
| | - Shtaywy S. Abdalla
- Department of Biological Sciences, Faculty of Science, University of Jordan, Amman, 11942, Jordan
| |
Collapse
|
35
|
Wang X, Cao Y, Fu Y, Guo G, Zhang X. Liver fatty acid composition in mice with or without nonalcoholic fatty liver disease. Lipids Health Dis 2011; 10:234. [PMID: 22165986 PMCID: PMC3254603 DOI: 10.1186/1476-511x-10-234] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 12/14/2011] [Indexed: 12/14/2022] Open
Abstract
Background Nonalcoholic fatty liver disease (NAFLD) is one of the most frequent causes of abnormal liver function. Because fatty acids can damage biological membranes, fatty acid accumulation in the liver may be partially responsible for the functional and morphological changes that are observed in nonalcoholic liver disease. The aim of this study was to use gas chromatography-mass spectrometry to evaluate the fatty acid composition of an experimental mouse model of NAFLD induced by high-fat feed and CCl4 and to assess the association between liver fatty acid accumulation and NAFLD. C57BL/6J mice were given high-fat feed for six consecutive weeks to develop experimental NAFLD. Meanwhile, these mice were given subcutaneous injections of a 40% CCl4-vegetable oil mixture twice per week. Results A pathological examination found that NAFLD had developed in the C57BL/6J mice. High-fat feed and CCl4 led to significant increases in C14:0, C16:0, C18:0 and C20:3 (P < 0.01), and decreases in C15:0, C18:1, C18:2 and C18:3 (P < 0.01) in the mouse liver. The treatment also led to an increase in SFA and decreases in other fatty acids (UFA, PUFA and MUFA). An increase in the ratio of product/precursor n-6 (C20:4/C18:2) and n-3 ([C20:5+C22:6]/C18:3) and a decrease in the ratio of n-6/n-3 (C20:4/[C20:5+C22:6]) were also observed. Conclusion These data are consistent with the hypothesis that fatty acids are deranged in mice with non-alcoholic fatty liver injury induced by high-fat feed and CCl4, which may be involved in its pathogenesis and/or progression via an unclear mechanism.
Collapse
Affiliation(s)
- Xin Wang
- College of Animal Sciences and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | | | | | | | | |
Collapse
|
36
|
Pan SY, Dong H, Guo BF, Zhang Y, Yu ZL, Fong WF, Han YF, Ko KM. Effective kinetics of schisandrin B on serum/hepatic triglyceride and total cholesterol levels in mice with and without the influence of fenofibrate. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2011; 383:585-91. [PMID: 21523558 DOI: 10.1007/s00210-011-0634-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 03/29/2011] [Indexed: 11/28/2022]
Abstract
Schisandrin B, an active ingredient isolated from the fruit of Schisandra chinensis, increased serum and hepatic triglyceride levels in mice. In the present study, the effective kinetics of schisandrin B on serum/hepatic triglyceride and total cholesterol levels in mice without and with the influence of fenofibrate were investigated. Parameters on hepatic index (the ratio of liver weight to body weight × 100) were also analyzed. Mice were intragastrically treated with schisandrin B at a single dose of 0.2, 0.4, 0.8, or 1.6 g/kg, without or with fenofibrate pretreatment (0.1 g/kg/day for 4 days, p.o.). Twenty-four hours after schisandrin B treatment, serum/hepatic triglyceride and total cholesterol levels were measured. Schisandrin B treatment dose-dependently increased serum and hepatic triglyceride levels as well as hepatic index in mice. In contrast, hepatic total cholesterol levels were decreased in a dose-dependent manner in schisandrin B-treated mice. Data obtained from effective kinetics analysis indicated that the action of schisandrin B on serum triglyceride had a higher specificity than those on hepatic total cholesterol and hepatic index. While fenofibrate pretreatment inhibited the schisandrin B-induced elevation in serum triglyceride levels, it completely abrogated the elevation of hepatic triglyceride levels in schisandrin B-treated mice. The combined treatment with schisandrin B and fenofibrate decreased hepatic total cholesterol level and increased the hepatic index in an additive or semi-additive manner, respectively. In conclusion, the results of effective kinetics analysis indicated that the schisandrin B-induced hypertriglyceridemia was competitively inhibited by fenofibrate. Schisandrin B may offer the prospect of setting up a mouse model of hypertriglyceridemia and fatty liver for screening triglyceride-lowering drug candidates.
Collapse
Affiliation(s)
- Si-Yuan Pan
- Department of Pharmacology, Beijing University of Chinese Medicine, Beijing 100102, China.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Pan SY, Chen SB, Dong HG, Yu ZL, Dong JC, Long ZX, Fong WF, Han YF, Ko KM. New perspectives on chinese herbal medicine (zhong-yao) research and development. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2011; 2011:403709. [PMID: 21785622 PMCID: PMC3135515 DOI: 10.1093/ecam/neq056] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Accepted: 04/20/2010] [Indexed: 12/27/2022]
Abstract
Synthetic chemical drugs, while being efficacious in the clinical management of many diseases, are often associated with undesirable side effects in patients. It is now clear that the need of therapeutic intervention in many clinical conditions cannot be satisfactorily met by synthetic chemical drugs. Since the research and development of new chemical drugs remain time-consuming, capital-intensive and risky, much effort has been put in the search for alternative routes for drug discovery in China. This narrative review illustrates various approaches to the research and drug discovery in Chinese herbal medicine. Although this article focuses on Chinese traditional drugs, it is also conducive to the development of other traditional remedies and innovative drug discovery.
Collapse
Affiliation(s)
- Si-Yuan Pan
- Department of Pharmacology, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Si-Bao Chen
- Department of Applied Biology & Chemical Technology, Hong Kong Polytechnic University, China
| | | | - Zhi-Ling Yu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, China
| | - Ji-Cui Dong
- Department of Essential Medicines and Pharmaceutical Policies, World Health Organization, China
| | - Zhi-Xian Long
- Department of Pharmacology, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Wang-Fun Fong
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, China
| | - Yi-Fan Han
- Department of Applied Biology & Chemical Technology, Hong Kong Polytechnic University, China
| | - Kam-Ming Ko
- Department of Biochemistry, Hong Kong University of Science & Technology, China
| |
Collapse
|
38
|
Pan SY, Yu ZL, Dong H, Xiang CJ, Fong WF, Ko KM. Ethanol extract of fructus schisandrae decreases hepatic triglyceride level in mice fed with a high fat/cholesterol diet, with attention to acute toxicity. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2011:729412. [PMID: 19592476 PMCID: PMC3137372 DOI: 10.1093/ecam/nep070] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Accepted: 05/28/2009] [Indexed: 02/07/2023]
Abstract
Effects of the ethanol extract of Fructus Schisandrae (EtFSC) on serum and liver lipid contents were investigated in mice fed with high fat/cholesterol (HFC) diet for 8 or 15 days. The induction of hypercholesterolemia by HFC diet caused significant increases in serum and hepatic total cholesterol (TC) levels (up to 62% and 165%, resp.) and hepatic triglyceride (TG) levels (up to 528%) in mice. EtFSC treatment (1 or 5 g/kg/day for 7 days; from Day 1 to 7 or from Day 8 to 14, i.g.) significantly decreased the hepatic TG level (down to 35%) and slightly increased the hepatic index (by 8%) in hypercholesterolemic mice. Whereas fenofibrate treatment (0.1 g/kg/day for 7 days, i.g.) significantly lowered the hepatic TG level (by 61%), it elevated the hepatic index (by 77%) in hypercholesterolemic mice. Acute toxicity test showed that EtFSC was relatively non-toxic, with an LD50 value of 35.63 ± 6.46 g/kg in mice. The results indicate that EtFSC treatment can invariably decrease hepatic TG in hypercholesterolemic mice, as assessed by both preventive and therapeutic protocols, suggesting its potential use for fatty liver treatment.
Collapse
Affiliation(s)
- Si-Yuan Pan
- Department of Pharmacology, Beijing University of Chinese Medicine, Beijing 100102, China
| | | | | | | | | | | |
Collapse
|
39
|
Zhai Q, Bian XL, Yu B. Protective activity of Jiang-Zhi-Li-Gan against carbon tetrachloride-induced hepatic injury in mice. PHARMACEUTICAL BIOLOGY 2010; 48:231-233. [PMID: 20645847 DOI: 10.3109/13880200903264442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The administration of carbon tetrachloride (CCl(4)) to mice produced hepatotoxicity, showing a significant increase in the serum levels of alanine transaminase (ALT) and aspartate aminotransferase (AST). Mice pretreated with Jiang-Zhi-Li-Gan (JZLG, 100-900 mg/kg, p.o.), a domestic remedy for liver disease in Rui-Jin Hospital, showed a significant decrease in serum ALT and AST levels when compared to the group treated with CCl(4) alone. The standard drug, bifendate (200 mg/kg, p.o.), also exhibited similar results. In the acute toxicity study, JZLG did not show any mortality up to a dose of 32 g/kg body weight. Based on the results obtained, it can be concluded that JZLG seems to possess hepatoprotective activity in mice. These results support the use of this prescription against chemical hepatic injury.
Collapse
Affiliation(s)
- Qing Zhai
- Department of Pharmacy, Fudan University Cancer Hospital, Shanghai, China
| | | | | |
Collapse
|
40
|
Zeng Y, He FY, He YJ, Dai LL, Fan L, Zhou HH. Effect of bifendate on the pharmacokinetics of talinolol in healthy subjects. Xenobiotica 2009; 39:844-9. [DOI: 10.3109/00498250903111870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
41
|
Luo Y, Chen G, Li B, Ji B, Xiao Z, Yi G, Tian F. Dietary Intervention with AHP, a Functional Formula Diet, Improves Both Serum and Hepatic Lipids Profile in Dyslipidemia Mice. J Food Sci 2009; 74:H189-95. [DOI: 10.1111/j.1750-3841.2009.01241.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Qu XJ, Xia X, Wang YS, Song MJ, Liu LL, Xie YY, Cheng YN, Liu XJ, Qiu LL, Xiang L, Gao JJ, Zhang XF, Cui SX. Protective effects of Salvia plebeia compound homoplantaginin on hepatocyte injury. Food Chem Toxicol 2009; 47:1710-5. [PMID: 19406199 DOI: 10.1016/j.fct.2009.04.032] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 04/06/2009] [Accepted: 04/17/2009] [Indexed: 11/15/2022]
Abstract
Salvia plebeia R. Br is a traditional Chinese herb which has been considered as an inflammatory mediator used for treatment of many infectious diseases including hepatitis. Previously, the compound homoplantaginin was isolated in our group. Hence, we evaluated the protective effects of homoplantaginin on hepatocyte injury. Homoplantaginin displayed an antioxidant property in a cell-free system and showed IC(50) of reduction level of DPPH radical at 0.35 microg/ml. In human hepatocyte HL-7702 cells exposed to H(2)O(2), the addition of 0.1-100 microg/ml of homoplantaginin, which did not have a toxic effect on cell viability, significantly reduced lactate dehydrogenase (LDH) leakage, and increased glutathione (GSH), glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) in supernatant. In vivo assay, we employed the model of Bacillus Calmette-Guérin (BCG)/lipopolysaccharide (LPS)-induced hepatic injury mice to evaluate efficacy of homoplantaginin. Homoplantaginin (25-100mg/kg) significantly reduced the increase in serum alanine aminotranseferase (ALT) and aspartate aminotransferase (AST), decreased the levels of tumor necrosis factor-alpha (TNF-alpha) and interleukin-1 (IL-1). The same treatment also reduced the content of thiobarbituric acid-reactive substances (TBARS), elevated the levels of GSH, GSH-Px and SOD in hepatic homogenate. The histopathological analysis showed that the grade of liver injury was ameliorated with reduction of inflammatory cells and necrosis of liver cells in homoplantaginin treatment mice. These results suggest that homoplantaginin has a protective and therapeutic effect on hepatocyte injury, which might be associated with its antioxidant properties.
Collapse
Affiliation(s)
- Xian-Jun Qu
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Influence of Korean Red Ginseng Water Extract on Recovery of Hepatic Function in Hypercholesterolemic Mice Fed High Cholesterol Diet. J Ginseng Res 2008. [DOI: 10.5142/jgr.2008.32.4.283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
44
|
Pan SY, Dong H, Yu ZL, Zhao XY, Xiang CJ, Wang H, Fong WF, Ko KM. Bicyclol, a synthetic dibenzocyclooctadiene derivative, decreases hepatic lipids but increases serum triglyceride level in normal and hypercholesterolaemic mice. J Pharm Pharmacol 2008; 59:1657-62. [PMID: 18053327 DOI: 10.1211/jpp.59.12.0007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Bicyclol is used for the treatment of chronic hepatitis B in China. In this study, the effects of bicyclol (100 or 300 mg kg(-1), p.o.) on serum and liver lipid contents were investigated in both normal and experimentally induced hypercholesterolaemic mice. Hypercholesterolaemia was induced by either oral administration of cholesterol/bile salt or feeding a diet containing lard/cholesterol. Daily administration of bicyclol for 7 days dose-dependently increased the serum triglyceride level (29-80%) but slightly decreased the hepatic total cholesterol level (12-17%) in normal mice. Co-administration of bicyclol with cholesterol/bile salt decreased the hepatic triglyceride and total cholesterol levels (7-15% and 25-31%, respectively), when compared with the drug-untreated and cholesterol/bile salt-treated group. Bicyclol treatment for 7 days decreased hepatic triglyceride (5-76%) and total cholesterol (5-48%) levels in mice fed with high-fat/cholesterol diet. In contrast, bicyclol treatment increased the serum triglyceride level (18-77%) in mice treated with cholesterol/bile salt or fed with high-fat/cholesterol diet. Bicyclol treatment also caused an increase in hepatic index of normal and hypercholesterolaemic mice (3-32%). The results indicate that bicyclol treatment can invariably decrease hepatic lipid levels and increase serum triglyceride levels in normal and hypercholesterolaemic mice.
Collapse
Affiliation(s)
- Si-Yuan Pan
- Department of Pharmacology, Beijing University of Chinese Medicine, Beijing 100102, China.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Pan SY, Dong H, Zhao XY, Xiang CJ, Fang HY, Fong WF, Yu ZL, Ko KM. Schisandrin B from Schisandra chinensis reduces hepatic lipid contents in hypercholesterolaemic mice. J Pharm Pharmacol 2008; 60:399-403. [PMID: 18284822 DOI: 10.1211/jpp.60.3.0017] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The effects of schisandrin B (Sch B) on liver and serum lipid contents were investigated in mice with experimentally-induced hypercholesterolaemia. Hypercholesterolaemia was induced either by oral administration of a cholesterol/bile salts mixture (2/0.5 g kg(-1)) for four days or by feeding a high fat/cholesterol/bile salts (10/1/0.3%, w/w) diet for seven days. Daily co-administration of Sch B (50-200 mg kg(-1), i.g.) for four or six days, respectively, decreased hepatic total cholesterol (TC) and triglyceride (TG) levels (by up to 50% and 52%, respectively) in hypercholesterolaemic mice. Sch B treatment also increased hepatic indices (14-84%) in hypercholesterolaemic mice. The results indicated that Sch B treatment could decrease hepatic TC and TG levels, and increase liver weight, in mouse models of hypercholesterolaemia. Fenofibrate treatment (100 mg kg(-1)) produced effects similar to those of Sch B on the hepatic index and lipid levels of hypercholesterolaemic mice.
Collapse
Affiliation(s)
- Si-Yuan Pan
- Department of Pharmacology, Beijing University of Chinese Medicine, Beijing 100102, China.
| | | | | | | | | | | | | | | |
Collapse
|