1
|
Fu Q, Yu Q, Luo H, Liu Z, Ma X, Wang H, Cheng Z. Protective effects of wogonin in the treatment of central nervous system and degenerative diseases. Brain Res Bull 2025; 221:111202. [PMID: 39814324 DOI: 10.1016/j.brainresbull.2025.111202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/29/2024] [Accepted: 01/07/2025] [Indexed: 01/18/2025]
Abstract
Wogonin, an O-methylated flavonoid extracted from Scutellaria baicalensis, has demonstrated profound neuroprotective effects in a range of central nervous system (CNS) diseases. This review elucidates the pharmacological mechanisms underlying the protective effects of wogonin in CNS diseases, including ischemic stroke, hemorrhagic stroke, traumatic brain injury, epilepsy, anxiety, neurodegenerative diseases, and CNS infections. Wogonin modulates key signaling pathways, such as the MAPK, NF-κB, and ROS pathways, contributing to its anti-inflammatory, antioxidant, and antiapoptotic properties. In ischemic stroke models, wogonin reduces infarct size and enhances neurological outcomes by mitigating inflammation and oxidative stress. For patients with hemorrhagic stroke and traumatic brain injury, it accelerates hematoma regression, mitigates secondary brain damage, and promotes neurogenesis, making it an entirely new treatment option for patients with limited access to this type of therapy. Its anticonvulsant and anxiolytic effects are mediated through GABA-A receptor modulation. Moreover, wogonin shows promise in treating neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease by promoting autophagy and reducing neuroinflammation. Additionally, it exhibits antiviral properties, offering potential benefits against CNS infections. Despite extensive preclinical evidence, further clinical studies are warranted to confirm its efficacy and safety in humans. This review highlights the great therapeutic potential of wogonin in terms of CNS protection. However, despite the substantial preclinical evidence, further large-scale clinical studies are necessary. Future researchers need to further explore the long-term efficacy and safety of wogonin in clinical trials and translate it for early application in the clinical treatment of true CNS disorders.
Collapse
Affiliation(s)
- Qingan Fu
- Department of Neurology, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Nanchang, Jiangxi 330006, China; Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, Jiangxi 330006, China
| | - Qingyun Yu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, Jiangxi 330006, China
| | - Hongdan Luo
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhekang Liu
- Rheumatology and Immunology Department, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xiaowei Ma
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, Jiangxi 330006, China
| | - Huijian Wang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, Jiangxi 330006, China
| | - Zhijuan Cheng
- Department of Neurology, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
2
|
Hu Y, Qi H, Yang J, Wang F, Peng X, Chen X, Zhu X. Wogonin mitigates microglia-mediated synaptic over-pruning and cognitive impairment following epilepsy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156222. [PMID: 39547095 DOI: 10.1016/j.phymed.2024.156222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/21/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Epilepsy, a neurological disorder characterized by recurrent abnormal neuronal discharges, leading to brain dysfunction and imposing significant psychological and economic burdens on patients. Microglia, the resident immune cells within the central nervous system (CNS), play a crucial role in maintaining CNS homeostasis. However, activated microglia can excessively prune synapses, exacerbating neuronal damage and cognitive dysfunction following epilepsy. Wogonin, a flavonoid from Scutellaria Baicalensis, has known neuroprotective effects via anti-inflammatory and antioxidative mechanisms, but its impact on microglial activation and synaptic pruning in neurons post-epilepsy remains unclear. METHODS Synaptic density was assessed using presynaptic marker Synaptophysin and postsynaptic marker Psd-95, and microglial phagocytosis was evaluated with fluorescent microspheres. Pilocarpine-induced mouse model of status epilepticus was used to evaluate synaptic density changes of mouse hippocampus following an intraperitoneal injection of wogonin (50 and 100 mg/kg). Memory and cognitive function in mice were subsequently evaluated using the Y-maze, object recognition, and Morris water maze tests. Single-cell sequencing was employed to investigate the underlying causes of microglial state alterations, followed by experimental validation. RESULTS Microglia were transitioned to an activated state post-epilepsy, exhibiting significantly enhanced phagocytic capacity. Correspondingly, levels of synaptophysin and Psd-95 were markedly reduced in neurons. Treatment with wogonin (100 mg/kg) significantly increased neuronal synaptic density and improved learning and memory deficits in epileptic mice. Further investigation revealed that wogonin inhibits the release of pro-inflammatory cytokines and synaptic phagocytosis of microglia by activating the AKT/FoxO1 pathway. CONCLUSIONS Wogonin could alleviate excessive synaptic pruning of epileptic neurons by microglia and improve cognitive dysfunction of epileptic mice via the AKT/FoxO1 pathway.
Collapse
Affiliation(s)
- Yang Hu
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Medical School of Southeast University, Nanjing, China
| | - Honggang Qi
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Medical School of Southeast University, Nanjing, China
| | - Jiurong Yang
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Medical School of Southeast University, Nanjing, China
| | - Feiyu Wang
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Medical School of Southeast University, Nanjing, China
| | - Xintao Peng
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Xiang Chen
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Medical School of Southeast University, Nanjing, China
| | - Xinjian Zhu
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Medical School of Southeast University, Nanjing, China.
| |
Collapse
|
3
|
Waris A, Ullah A, Asim M, Ullah R, Rajdoula MR, Bello ST, Alhumaydhi FA. Phytotherapeutic options for the treatment of epilepsy: pharmacology, targets, and mechanism of action. Front Pharmacol 2024; 15:1403232. [PMID: 38855752 PMCID: PMC11160429 DOI: 10.3389/fphar.2024.1403232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/09/2024] [Indexed: 06/11/2024] Open
Abstract
Epilepsy is one of the most common, severe, chronic, potentially life-shortening neurological disorders, characterized by a persisting predisposition to generate seizures. It affects more than 60 million individuals globally, which is one of the major burdens in seizure-related mortality, comorbidities, disabilities, and cost. Different treatment options have been used for the management of epilepsy. More than 30 drugs have been approved by the US FDA against epilepsy. However, one-quarter of epileptic individuals still show resistance to the current medications. About 90% of individuals in low and middle-income countries do not have access to the current medication. In these countries, plant extracts have been used to treat various diseases, including epilepsy. These medicinal plants have high therapeutic value and contain valuable phytochemicals with diverse biomedical applications. Epilepsy is a multifactorial disease, and therefore, multitarget approaches such as plant extracts or extracted phytochemicals are needed, which can target multiple pathways. Numerous plant extracts and phytochemicals have been shown to treat epilepsy in various animal models by targeting various receptors, enzymes, and metabolic pathways. These extracts and phytochemicals could be used for the treatment of epilepsy in humans in the future; however, further research is needed to study the exact mechanism of action, toxicity, and dosage to reduce their side effects. In this narrative review, we comprehensively summarized the extracts of various plant species and purified phytochemicals isolated from plants, their targets and mechanism of action, and dosage used in various animal models against epilepsy.
Collapse
Affiliation(s)
- Abdul Waris
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Ata Ullah
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Muhammad Asim
- Department of Neurosciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Centre for Regenerative Medicine and Health (CRMH), Hong Kong, Hong Kong SAR, China
| | - Rafi Ullah
- Department of Botany, Bacha Khan University Charsadda, Charsadda, Pakistan
| | - Md. Rafe Rajdoula
- Department of Neurosciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Stephen Temitayo Bello
- Department of Neurosciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Centre for Regenerative Medicine and Health (CRMH), Hong Kong, Hong Kong SAR, China
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
4
|
Malaník M, Čulenová M, Sychrová A, Skiba A, Skalicka-Woźniak K, Šmejkal K. Treating Epilepsy with Natural Products: Nonsense or Possibility? Pharmaceuticals (Basel) 2023; 16:1061. [PMID: 37630977 PMCID: PMC10459181 DOI: 10.3390/ph16081061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
Epilepsy is a neurological disease characterized by recurrent seizures that can lead to uncontrollable muscle twitching, changes in sensitivity to sensory perceptions, and disorders of consciousness. Although modern medicine has effective antiepileptic drugs, the need for accessible and cost-effective medication is urgent, and products derived from plants could offer a solution. For this review, we have focused on natural compounds that have shown anticonvulsant activity in in vivo models of epilepsy at relevant doses. In some cases, the effects have been confirmed by clinical data. The results of our search are summarized in tables according to their molecular targets. We have critically evaluated the data we present, identified the most promising therapeutic candidates, and discussed these in the text. Their perspectives are supported by both pharmacokinetic properties and potential interactions. This review is intended to serve as a basis for future research into epilepsy and related disorders.
Collapse
Affiliation(s)
- Milan Malaník
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Palackého 1946/1, 61200 Brno, Czech Republic; (A.S.); (K.Š.)
| | - Marie Čulenová
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Palackého 1946/1, 61200 Brno, Czech Republic; (A.S.); (K.Š.)
| | - Alice Sychrová
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Palackého 1946/1, 61200 Brno, Czech Republic; (A.S.); (K.Š.)
| | - Adrianna Skiba
- Department of Natural Products Chemistry, Faculty of Pharmacy, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland; (A.S.); (K.S.-W.)
| | - Krystyna Skalicka-Woźniak
- Department of Natural Products Chemistry, Faculty of Pharmacy, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland; (A.S.); (K.S.-W.)
| | - Karel Šmejkal
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Palackého 1946/1, 61200 Brno, Czech Republic; (A.S.); (K.Š.)
| |
Collapse
|
5
|
The Potential of Flavonoids and Flavonoid Metabolites in the Treatment of Neurodegenerative Pathology in Disorders of Cognitive Decline. Antioxidants (Basel) 2023; 12:antiox12030663. [PMID: 36978911 PMCID: PMC10045397 DOI: 10.3390/antiox12030663] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/11/2023] Open
Abstract
Flavonoids are a biodiverse family of dietary compounds that have antioxidant, anti-inflammatory, antiviral, and antibacterial cell protective profiles. They have received considerable attention as potential therapeutic agents in biomedicine and have been widely used in traditional complimentary medicine for generations. Such complimentary medical herbal formulations are extremely complex mixtures of many pharmacologically active compounds that provide a therapeutic outcome through a network pharmacological effects of considerable complexity. Methods are emerging to determine the active components used in complimentary medicine and their therapeutic targets and to decipher the complexities of how network pharmacology provides such therapeutic effects. The gut microbiome has important roles to play in the generation of bioactive flavonoid metabolites retaining or exceeding the antioxidative and anti-inflammatory properties of the intact flavonoid and, in some cases, new antitumor and antineurodegenerative bioactivities. Certain food items have been identified with high prebiotic profiles suggesting that neutraceutical supplementation may be beneficially employed to preserve a healthy population of bacterial symbiont species and minimize the establishment of harmful pathogenic organisms. Gut health is an important consideration effecting the overall health and wellbeing of linked organ systems. Bioconversion of dietary flavonoid components in the gut generates therapeutic metabolites that can also be transported by the vagus nerve and systemic circulation to brain cell populations to exert a beneficial effect. This is particularly important in a number of neurological disorders (autism, bipolar disorder, AD, PD) characterized by effects on moods, resulting in depression and anxiety, impaired motor function, and long-term cognitive decline. Native flavonoids have many beneficial properties in the alleviation of inflammation in tissues, however, concerns have been raised that therapeutic levels of flavonoids may not be achieved, thus allowing them to display optimal therapeutic effects. Dietary manipulation and vagal stimulation have both yielded beneficial responses in the treatment of autism spectrum disorders, depression, and anxiety, establishing the vagal nerve as a route of communication in the gut-brain axis with established roles in disease intervention. While a number of native flavonoids are beneficial in the treatment of neurological disorders and are known to penetrate the blood–brain barrier, microbiome-generated flavonoid metabolites (e.g., protocatechuic acid, urolithins, γ-valerolactones), which retain the antioxidant and anti-inflammatory potency of the native flavonoid in addition to bioactive properties that promote mitochondrial health and cerebrovascular microcapillary function, should also be considered as potential biotherapeutic agents. Studies are warranted to experimentally examine the efficacy of flavonoid metabolites directly, as they emerge as novel therapeutic options.
Collapse
|
6
|
Chemical Composition of Alpinia oxyphylla Miq. and Chrysin Protective Activity on Neuron Cells. Pharm Chem J 2023. [DOI: 10.1007/s11094-023-02817-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
7
|
Baron G, Borella S, della Vedova L, Vittorio S, Vistoli G, Carini M, Aldini G, Altomare A. An integrated metabolomic and proteomic approach for the identification of covalent inhibitors of the main protease (Mpro) of SARS-COV-2 from crude natural extracts. Talanta 2023; 252:123824. [PMID: 36027618 PMCID: PMC9371774 DOI: 10.1016/j.talanta.2022.123824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 11/21/2022]
Abstract
Mpro represents one of the most promising drug targets for SARS-Cov-2, as it plays a crucial role in the maturation of viral polyproteins into functional proteins. HTS methods are currently used to screen Mpro inhibitors, and rely on searching chemical databases and compound libraries, meaning that they only consider previously structurally clarified and isolated molecules. A great advancement in the hit identification strategy would be to set-up an approach aimed at exploring un-deconvoluted mixtures of compounds such as plant extracts. Hence, the aim of the present study is to set-up an analytical platform able to fish-out bioactive molecules from complex natural matrices even where there is no knowledge on the constituents. The proposed approach begins with a metabolomic step aimed at annotating the MW of the matrix constituents. A further metabolomic step is based on identifying those natural electrophilic compounds able to form a Michael adduct with thiols, a peculiar chemical feature of many Mpro inhibitors that covalently bind the catalytic Cys145 in the active site, thus stabilizing the complex. A final step consists of incubating recombinant Mpro with natural extracts and identifying compounds adducted to the residues within the Mpro active site by bottom-up proteomic analysis (nano-LC-HRMS). Data analysis is based on two complementary strategies: (i) a targeted search applied by setting the adducted moieties identified as Michael acceptors of Cys as variable modifications; (ii) an untargeted approach aimed at identifying the whole range of adducted peptides containing Cys145 on the basis of the characteristic b and y fragment ions independent of the adduct. The method was set-up and then successfully tested to fish-out bioactive compounds from the crude extract of Scutellaria baicalensis, a Chinese plant containing the catechol-like flavonoid baicalin and its corresponding aglycone baicalein which are well-established inhibitors of Mpro. Molecular dynamics (MD) simulations were carried out in order to explore the binding mode of baicalin and baicalein, within the SARS-CoV-2 Mpro active site, allowing a better understanding of the role of the nucleophilic residues (i.e. His41, Cys145, His163 and His164) in the protein-ligand recognition process.
Collapse
|
8
|
Hassanein EHM, Mohamed WR, Ahmed OS, Abdel-Daim MM, Sayed AM. The role of inflammation in cadmium nephrotoxicity: NF-κB comes into view. Life Sci 2022; 308:120971. [PMID: 36130617 DOI: 10.1016/j.lfs.2022.120971] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022]
Abstract
Kidney diseases are major health problem and understanding the underlined mechanisms that lead to kidney diseases are critical research points with a marked potential impact on health. Cadmium (Cd) is a heavy metal that occurs naturally and can be found in contaminated food. Kidneys are the most susceptible organ to heavy metal intoxication as it is the main route of waste excretion. The harmful effects of Cd were previously well proved. Cd induces inflammatory responses, oxidative injury, mitochondrial dysfunction and disturbs Ca2+ homeostasis. The nuclear factor-kappa B (NF-κB) is a cellular transcription factor that regulates inflammation and controls the expression of many inflammatory cytokines. Therefore, great therapeutic benefits can be attained from NF-κB inhibition. In this review we focused on certain compounds including cytochalasin D, mangiferin, N-acetylcysteine, pyrrolidine dithiocarbamate, roflumilast, rosmarinic acid, sildenafil, sinapic acid, telmisartan and wogonin and certain plants as Astragalus Polysaccharide, Ginkgo Biloba and Thymus serrulatus that potently inhibit NF-κB and effectively counteracted Cd-associated renal intoxication. In conclusion, the proposed NF-κB involvement in Cd-renal intoxication clarified the underlined inflammation associated with Cd-nephropathy and the beneficial effects of NF-κB inhibitors that make them the potential to substantially optimize treatment protocols for Cd-renal intoxication.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Wafaa R Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Osama S Ahmed
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, 41522 Ismailia, Egypt
| | - Ahmed M Sayed
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, Egypt.
| |
Collapse
|
9
|
Asgharian P, Quispe C, Herrera-Bravo J, Sabernavaei M, Hosseini K, Forouhandeh H, Ebrahimi T, Sharafi-Badr P, Tarhriz V, Soofiyani SR, Helon P, Rajkovic J, Durna Daştan S, Docea AO, Sharifi-Rad J, Calina D, Koch W, Cho WC. Pharmacological effects and therapeutic potential of natural compounds in neuropsychiatric disorders: An update. Front Pharmacol 2022; 13:926607. [PMID: 36188551 PMCID: PMC9521271 DOI: 10.3389/fphar.2022.926607] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Neuropsychiatric diseases are a group of disorders that cause significant morbidity and disability. The symptoms of psychiatric disorders include anxiety, depression, eating disorders, autism spectrum disorders (ASD), attention-deficit/hyperactivity disorder, and conduct disorder. Various medicinal plants are frequently used as therapeutics in traditional medicine in different parts of the world. Nowadays, using medicinal plants as an alternative medication has been considered due to their biological safety. Despite the wide range of medications, many patients are unable to tolerate the side effects and eventually lose their response. By considering the therapeutic advantages of medicinal plants in the case of side effects, patients may prefer to use them instead of chemical drugs. Today, the use of medicinal plants in traditional medicine is diverse and increasing, and these plants are a precious heritage for humanity. Investigation about traditional medicine continues, and several studies have indicated the basic pharmacology and clinical efficacy of herbal medicine. In this article, we discuss five of the most important and common psychiatric illnesses investigated in various studies along with conventional therapies and their pharmacological therapies. For this comprehensive review, data were obtained from electronic databases such as MedLine/PubMed, Science Direct, Web of Science, EMBASE, DynaMed Plus, ScienceDirect, and TRIP database. Preclinical pharmacology studies have confirmed that some bioactive compounds may have beneficial therapeutic effects in some common psychiatric disorders. The mechanisms of action of the analyzed biocompounds are presented in detail. The bioactive compounds analyzed in this review are promising phytochemicals for adjuvant and complementary drug candidates in the pharmacotherapy of neuropsychiatric diseases. Although comparative studies have been carefully reviewed in the preclinical pharmacology field, no clinical studies have been found to confirm the efficacy of herbal medicines compared to FDA-approved medicines for the treatment of mental disorders. Therefore, future clinical studies are needed to accelerate the potential use of natural compounds in the management of these diseases.
Collapse
Affiliation(s)
- Parina Asgharian
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique, Chile
| | - Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Santo Tomas, Chile
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Mahsa Sabernavaei
- Department of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Kamran Hosseini
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Haleh Forouhandeh
- Infectious and Tropical Diseases Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tahereh Ebrahimi
- Infectious and Tropical Diseases Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Paria Sharafi-Badr
- Department of Pharmacognosy, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahideh Tarhriz
- Infectious and Tropical Diseases Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saiedeh Razi Soofiyani
- Infectious and Tropical Diseases Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Clinical Research Development Unit of Sina Educational, Research and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Paweł Helon
- Branch in Sandomierz, Jan Kochanowski University of Kielce, Sandomierz, Poland
| | - Jovana Rajkovic
- Medical Faculty, Institute of Pharmacology, Clinical Pharmacology and Toxicology, University of Belgrade, Belgrade, Serbia
| | - Sevgi Durna Daştan
- Department of Biology, Faculty of Science, Sivas Cumhuriyet University, Sivas, Turkey
- Beekeeping Development Application and Research Center, Sivas Cumhuriyet University, Sivas, Turkey
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | | | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Wojciech Koch
- Department of Food and Nutrition, Medical University of Lublin, Lublin, Poland
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong SAR, China
| |
Collapse
|
10
|
Pekkle Lam HY, Hung MY, Cheng PC, Peng SY. Use of wogonin as a cooperative drug with praziquantel to better combat schistosomiasis. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2022; 55:757-765. [PMID: 35654701 DOI: 10.1016/j.jmii.2022.04.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/08/2022] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Schistosomiasis is one of the most devastating tropical diseases in the world. Currently, praziquantel (PZQ) represents the best pharmacological option for the treatment of schistosomiasis as it effectively kills the worm. However, the inability to reverse established liver damages often makes treatment futile. In the current study, we investigate whether combining the use of wogonin, a compound that was found to be liver-protective, with PZQ can attribute to the greatest beneficial effect in Schistosoma mansoni-infected mice. METHODS To determine the protective effect of PZQ-wogonin treatment on S. manosni-infected mice, histopathological analysis was done to evaluate the granuloma size and fibrotic areas in the liver. Western blotting was performed to analyze several injuries-related markers including fibrotic markers, inflammasomes, and apoptotic markers. Scanning electron microscopy was done to evaluate the effect of wogonin on the worms, and the worm and egg burden was calculated. RESULTS Our results showed that PZQ-wogonin treatment significantly improved liver histopathology of S. mansoni-infected mice. Further analysis showed that PZQ-wogonin combinations are more effective in reducing fibrosis, inflammation, and apoptosis in the liver than that of individual drug use. Furthermore, our results revealed that wogonin is anthelmintic; and it works better with PZQ in reducing hepatic egg burden, further lessen the disease progression. CONCLUSION In general, this combinatorial strategy may represent a new and effective approach to schistosomiasis treatment.
Collapse
Affiliation(s)
- Ho Yin Pekkle Lam
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 970, Taiwan; Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan
| | - Meng-Yun Hung
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 970, Taiwan; Center for Precision Medicine, Chi Mei Medical Center, Tainan 710, Taiwan
| | - Po-Ching Cheng
- Department of Molecular Parasitology and Tropical Diseases, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Center for International Tropical Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Shih-Yi Peng
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 970, Taiwan; Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan.
| |
Collapse
|
11
|
Faheem M, Ameer S, Khan AW, Haseeb M, Raza Q, Ali Shah F, Khusro A, Aarti C, Umar Khayam Sahibzada M, El-Saber Batiha G, Koirala N, Adnan M, Alghamdi S, Assaggaf H, Alsiwiehri NO. A comprehensive review on antiepileptic properties of medicinal plants. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
12
|
Cha J, Hong S, Lee J, Gwak J, Kim M, Kim T, Hur J, Giesy JP, Khim JS. Novel polar AhR-active chemicals detected in sediments of an industrial area using effect-directed analysis based on in vitro bioassays with full-scan high resolution mass spectrometric screening. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146566. [PMID: 34030261 DOI: 10.1016/j.scitotenv.2021.146566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/22/2021] [Accepted: 03/14/2021] [Indexed: 06/12/2023]
Abstract
Studies investigating aryl hydrocarbon receptor (AhR)-active compounds in the environment typically focus on non- and mid-polar substances, such as PAHs; while, information on polar AhR agonists remains limited. Here, we identified polar AhR agonists in sediments collected from the inland creeks of an industrialized area (Lake Sihwa, Korea) using effect-directed analysis combined with full-scan screening analysis (FSA; using LC-QTOFMS). Strong AhR-mediated potencies were observed for the polar and latter fractions of RP-HPLC (F3.5-F3.8) from sediment organic extracts in the H4IIE-luc in vitro bioassays. FSA was performed on the corresponding fractions. Twenty-eight tentative AhR agonists were chosen using a five-step process. Toxicological confirmation using bioassay revealed that canrenone, rutaecarpine, ciprofloxacin, mepanipyrim, genistein, protopine, hydrocortisone, and medroxyprogesterone were significantly active. The relative potencies of these AhR-active compounds compared to that of benzo[a]pyrene ranged from 0.00002 to 2.0. Potency balance analysis showed that polar AhR agonists explained, on average, ~6% of total AhR-mediated potencies in samples. Some novel polar AhR agonists also exhibited endocrine-disrupting potentials capable of binding to estrogen and glucocorticoid receptors, as identified by QSAR modeling. In conclusion, the focused studies on distributions, sources, fate, and ecotoxicological effects of novel polar AhR agonists in the environment are necessary.
Collapse
Affiliation(s)
- Jihyun Cha
- Department of Ocean Environmental Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Seongjin Hong
- Department of Ocean Environmental Sciences, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Junghyun Lee
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Jiyun Gwak
- Department of Ocean Environmental Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Mungi Kim
- Department of Ocean Environmental Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Taewoo Kim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin Hur
- Department of Environment & Energy, Sejong University, Seoul 05006, Republic of Korea
| | - John P Giesy
- Department of Veterinary Biomedical Sciences & Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N5B3, Canada; Department of Environmental Science, Baylor University, Waco, TX 76798-7266, United States
| | - Jong Seong Khim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
13
|
Sharifi-Rad J, Herrera-Bravo J, Salazar LA, Shaheen S, Abdulmajid Ayatollahi S, Kobarfard F, Imran M, Imran A, Custódio L, Dolores López M, Schoebitz M, Martorell M, Kumar M, Ansar Rasul Suleria H, Cho WC. The Therapeutic Potential of Wogonin Observed in Preclinical Studies. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:9935451. [PMID: 34221094 PMCID: PMC8221866 DOI: 10.1155/2021/9935451] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 02/01/2023]
Abstract
Wogonin is a flavonoid found in different plants such as roots of Scutellaria baicalensis Georgi distributed mainly in Asia and Europe. Dried root extracts of S. baicalensis with high content of wogonin, popularly known as "Huang-Qin" or Chinese or baical skullcap, have been used for long time in traditional Chinese medicine. Several health benefits are attributed to wogonin and derivatives showing anti-inflammatory, antiviral, anticancer, and antioxidant effects and more recently antineurodegenerative properties. Preclinical pharmacological activities of wogonin against diverse types of cancer such as breast, colorectal, and human gastric cancer will be presented in this review. In addition, studies on oxidative stress and bioavailability of wogonin will be discussed together with antineurodegenerative potential with special focus on Alzheimer's disease. Outcomes extracted from the last preclinical studies related to therapeutic applications of wogonin will be commented and updated in this review. The scientific evidence collected in this review aims to encourage transfer of the preclinical evidence of wogonin to new clinical studies.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| | - Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Santiago, Chile
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | - Luis A. Salazar
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | | | - Seyed Abdulmajid Ayatollahi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Pharmacognosy and Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Farzad Kobarfard
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Ali Imran
- Department of Food Science, Nutrition & Home Economics, Institute of Home and Food Sciences Government College University, Faisalabad, Pakistan
| | - Luísa Custódio
- Centre of Marine Sciences, University of Algarve, Faculty of Sciences and Technology, Building 7, Campus of Gambelas, Faro 8005-139, Portugal
| | - María Dolores López
- Department of Plant Production, Faculty of Agronomy, Universidad de Concepción, Avenida Vicente Mendez, 595, Chillán 3812120, Chile
| | - Mauricio Schoebitz
- Departamento de Suelos y Recursos Naturales, Facultad de Agronomía, Universidad de Concepción, Concepción, Chile
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, Concepción 4070386, Chile
- Unidad de Desarrollo Tecnológico, Universidad de Concepción UDT, Concepción 4070386, Chile
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR–Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | | | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
14
|
Kaur J, Famta P, Famta M, Mehta M, Satija S, Sharma N, Vyas M, Khatik GL, Chellappan DK, Dua K, Khurana N. Potential anti-epileptic phytoconstituents: An updated review. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113565. [PMID: 33166627 DOI: 10.1016/j.jep.2020.113565] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 10/12/2020] [Accepted: 11/05/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Epilepsy is one of the most commonly occurring non-communicable neurological disorder that affects people of all age groups. Around 50 million people globally are epileptic, with 80% cases in developing countries due to lack of access to treatments determined by high cost and poor availability or it can be defined by the fraction of active epileptic patients who are not appropriately being treated. The availability of antiepileptic drugs and their adjuvant therapy in such countries is less than 50% and these are highly susceptible to drug interactions and severe adverse effects. As a result, the use of herbal medicine is increasingly becoming popular. AIM OF THE STUDY To provide pharmacological information on the active constituents evaluated in the preclinical study to treat epilepsy with potential to be used as an alternative therapeutic option in future. It also provides affirmation for the development of novel antiepileptic drugs derived from medicinal plants. MATERIALS AND METHODS Relevant information on the antiepileptic potential of phytoconstituents in the preclinical study (in-vitro, in-vivo) is provided based on their effect on screening parameters. Besides, relevant information on pharmacology of phytoconstituents, the traditional use of their medicinal plants related to epilepsy and status of phytoconstituents in the clinical study were derived from online databases, including PubMed, Clinicaltrial. gov, The Plant List (TPL, www.theplantlist.org), Science Direct. Articles identified using preset searching syntax and inclusion criteria are presented. RESULTS More than 70% of the phytoconstituents reviewed in this paper justified the traditional use of their medicinal plant related to epilepsy by primarily acting on the GABAergic system. Amongst the phytoconstituents, only cannabidiol and tetrahydrocannabinol have been explored for clinical application in epilepsy. CONCLUSION The preclinical and clinical data of the phytoconstituents to treat epilepsy and its associated comorbidities provides evidence for the discovery and development of novel antiepileptic drugs from medicinal plants. In terms of efficacy and safety, further randomized and controlled clinical studies are required to understand the complete pharmacodynamic and pharmacokinetic picture of phytoconstituents. Also, specific botanical source evaluation is needed.
Collapse
Affiliation(s)
- Jaskiran Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Paras Famta
- Institute of Nano Science and Technology, Phase-10, Sector-64, Mohali, Punjab, 160062, India
| | - Mani Famta
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS), Vidya Vihar Campus, Street Number 41, Pilani, Rajasthan, 333031, India
| | - Meenu Mehta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Saurabh Satija
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Neha Sharma
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Manish Vyas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Gopal Lal Khatik
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) & School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Navneet Khurana
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| |
Collapse
|
15
|
Loshali A, Joshi BC, Sundriyal A, Uniyal S. Antiepileptic effects of antioxidant potent extract from Urtica dioica Linn. root on pentylenetetrazole and maximal electroshock induced seizure models. Heliyon 2021; 7:e06195. [PMID: 33644470 PMCID: PMC7887401 DOI: 10.1016/j.heliyon.2021.e06195] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 12/17/2020] [Accepted: 02/01/2021] [Indexed: 11/19/2022] Open
Abstract
Urtica dioica Linn. (Urticaceae) is a medicinal plant that has shown various therapeutic utilities in folklore medicine along with its use in the treatment of epilepsy. The entire plant has a sensible reservoir of nutritional elements and micronutrients. The purpose of the present study was to investigate the antiepileptic effect of antioxidant potent extract of Urtica dioica root on animal models. Antioxidant activity of various solvent extracts i.e. Petroleum ether extract (PEE), Ethyl acetate extract (EAE), Chloroform extract (CE) and Ethanolic extract (EE) were screened by DPPH radical scavenging assay using Ascorbic acid as the standard. Further the most potent antioxidant extract was subjected to antiepileptic activity against MES and PTZ model. The IC50 values of different Urtica dioica extracts (PEE, CE, EAE, and EE) in antioxidant assay were found to be 167.54 ± 1.97, 134.41 ± 0.82, 88.15 ± 1.39 and 186.38 ± 1.91 μg/ml in DPPH radical scavenging assay, respectively. The EAE has showed the potent antioxidant activity. In experimental study the EAE (100 and 200 mg/kg, p.o) has found to be effective and significant against MES and PTZ induced seizures. The present study also suggested that antioxidant potent extract (EAE) of Urtica dioica root has antiepileptic effect against MES and PTZ induced seizures. However, further research studies will investigate the active component(s) of Urtica dioica responsible for the observed anticonvulsant effects.
Collapse
Affiliation(s)
- Aanchal Loshali
- School of Pharmaceutical Sciences, Sardar Bhagwan Singh Post Graduate Institute of Biomedical Sciences &Research, Balawala, Dehradun, Uttarakhand, 248001, India
| | - Bhuwan Chandra Joshi
- School of Pharmaceutical Sciences, Sardar Bhagwan Singh Post Graduate Institute of Biomedical Sciences &Research, Balawala, Dehradun, Uttarakhand, 248001, India
| | - Ankush Sundriyal
- School of Pharmaceutical Sciences, Sardar Bhagwan Singh Post Graduate Institute of Biomedical Sciences &Research, Balawala, Dehradun, Uttarakhand, 248001, India
| | - Sushmita Uniyal
- School of Pharmaceutical Sciences, Shri Guru Ram Rai Institute of Technology & Science, Patel Nagar, Dehradun, Uttarakhand, 248001, India
| |
Collapse
|
16
|
Pahuja M, Mehla J, Gupta YK. Status analysis of herbal drug therapies in epilepsy: advancements in the use of medicinal plants with anti-inflammatory properties. Comb Chem High Throughput Screen 2021; 25:1601-1618. [PMID: 33605852 DOI: 10.2174/1386207324666210219103430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/03/2020] [Accepted: 12/26/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Use of plants and plant products in health care has shown exponential increase in past two decades. INTRODUCTION In-spite of the availability of well-established pharmacotherapy for epilepsy, a large no of population still explores alternative treatments due to refractory seizures, adverse effects of drugs, chronic treatment, inaccessibility of standard therapies in rural areas and the social stigma attached to the disease. Various studies on medicinal plants showed the protective effect of herbals in animal models of epilepsy. METHOD In the present review, a status analysis of the traditional use of various medicinal plants in epilepsy with a special focus on plats having anti-inflammatory potential is recorded. RESULT AND CONCLUSION The shortcomings of research on medicinal plants which needs to be explored further in order to tackle the growing need of safer and effective drugs for epilepsy are discussed. Overall, there is a huge scope of herbal drugs in CNS disorders especially epilepsy, either as an adjunct by reducing the dose and thus side effects of standard anti-epileptic drugs or as standalone agent . Although, there is still an urgent need of well planned randomized controlled clinical trials to validate their efficacy and safety.
Collapse
Affiliation(s)
- Monika Pahuja
- Division of Basic Medical Sciences, Indian Council of Medical Research, New Delhi - 110 029. India
| | - Jogender Mehla
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis-63110, Missouri. United States
| | - Yogendra Kumar Gupta
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi - 110 029. India
| |
Collapse
|
17
|
Singh S, Singh TG, Rehni AK. An Insight into Molecular Mechanisms and Novel Therapeutic Approaches in Epileptogenesis. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 19:750-779. [PMID: 32914725 DOI: 10.2174/1871527319666200910153827] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 11/22/2022]
Abstract
Epilepsy is the second most common neurological disease with abnormal neural activity involving the activation of various intracellular signalling transduction mechanisms. The molecular and system biology mechanisms responsible for epileptogenesis are not well defined or understood. Neuroinflammation, neurodegeneration and Epigenetic modification elicit epileptogenesis. The excessive neuronal activities in the brain are associated with neurochemical changes underlying the deleterious consequences of excitotoxicity. The prolonged repetitive excessive neuronal activities extended to brain tissue injury by the activation of microglia regulating abnormal neuroglia remodelling and monocyte infiltration in response to brain lesions inducing axonal sprouting contributing to neurodegeneration. The alteration of various downstream transduction pathways resulted in intracellular stress responses associating endoplasmic reticulum, mitochondrial and lysosomal dysfunction, activation of nucleases, proteases mediated neuronal death. The recently novel pharmacological agents modulate various receptors like mTOR, COX-2, TRK, JAK-STAT, epigenetic modulators and neurosteroids are used for attenuation of epileptogenesis. Whereas the various molecular changes like the mutation of the cell surface, nuclear receptor and ion channels focusing on repetitive episodic seizures have been explored by preclinical and clinical studies. Despite effective pharmacotherapy for epilepsy, the inadequate understanding of precise mechanisms, drug resistance and therapeutic failure are the current fundamental problems in epilepsy. Therefore, the novel pharmacological approaches evaluated for efficacy on experimental models of epilepsy need to be identified and validated. In addition, we need to understand the downstream signalling pathways of new targets for the treatment of epilepsy. This review emphasizes on the current state of novel molecular targets as therapeutic approaches and future directions for the management of epileptogenesis. Novel pharmacological approaches and clinical exploration are essential to make new frontiers in curing epilepsy.
Collapse
Affiliation(s)
- Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Ashish Kumar Rehni
- Cerebral Vascular Disease Research Laboratories, Department of Neurology and Neuroscience Program, University of Miami School of Medicine, Miami, Florida 33101, United States
| |
Collapse
|
18
|
Liu J, Feng W, Peng C. A Song of Ice and Fire: Cold and Hot Properties of Traditional Chinese Medicines. Front Pharmacol 2021; 11:598744. [PMID: 33542688 PMCID: PMC7851091 DOI: 10.3389/fphar.2020.598744] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022] Open
Abstract
The theory of cold and hot properties is the basic theory of traditional Chinese medicines (TCMs) and has been successfully applied to combat human diseases for thousands of years. Although the theory of cold and hot is very important to guide the clinical application of TCMs, this ancient theory remains an enigma for a long time. In recent years, more and more researchers have tried to uncover this ancient theory with the help of modern techniques, and the cold and hot properties of a myriad of TCMs have been studied. However, there is no review of cold and hot properties. In this review, we first briefly introduced the basic theories about cold and hot properties, including how to distinguish between the cold and hot properties of TCMs and the classification and treatment of cold and hot syndromes. Then, focusing on the application of cold and hot properties, we take several important TCMs with cold or hot property as examples to summarize their traditional usage, phytochemistry, and pharmacology. In addition, the mechanisms of thermogenesis and antipyretic effect of these important TCMs, which are related to the cold and hot properties, were summarized. At the end of this review, the perspectives on research strategies and research directions of hot and cold properties were also offered.
Collapse
Affiliation(s)
- Juan Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwestern China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wuwen Feng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwestern China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwestern China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
19
|
Huynh DL, Ngau TH, Nguyen NH, Tran GB, Nguyen CT. Potential therapeutic and pharmacological effects of Wogonin: an updated review. Mol Biol Rep 2020; 47:9779-9789. [PMID: 33165817 DOI: 10.1007/s11033-020-05972-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/03/2020] [Indexed: 12/17/2022]
Abstract
Flavonoids are members of polyphenolic compounds, which are naturally presented in fruits, vegetables, and some medicinal plants. Traditionally, the root of Scutellaria baicalensis is widely used as Chinese herbal medicine and contains several major bioactive compounds such as Wogonin, Scutellarein, Baicalein, and Baicalin. Experimental and clinical evidence has been proving that Wogonin exhibits diverse biological activities such as anti-cancer, anti-inflammation, and treatment of bacterial and viral infections. In this review, we summarize and emphasize the benefits of Wogonin as a therapeutic adjuvant for anti-viral infection, anti-inflammation, neuroprotection as well as anxiolytic and anticonvulsant. Moreover, the molecular mechanism(s) how Wogonin mediates the cellular signal pathways and immune responses are also discussed and highlighted valuable properties of Wogonin in multiple therapies.
Collapse
Affiliation(s)
- Do Luong Huynh
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam
| | - Tran Hoang Ngau
- Faculty of Biotechnology, Ho Chi Minh University of Food and Industry, Ho Chi Minh City, Vietnam
| | - Nguyen Hoai Nguyen
- Faculty of Biotechnology, Ho Chi Minh City Open University, 97 Vo Van Tan Street, District 3, Ho Chi Minh City, Vietnam
| | - Gia-Buu Tran
- Department of Biotechnology, Institute of Biotechnology and Food-Technology, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Vietnam.
| | - Cuong Thach Nguyen
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
20
|
Aisa HA, Izotova L, Karimov A, Botirov E, Mamadrahimov A, Ibragimov B. Crystal, mol-ecular structure and Hirshheld surface analysis of 5-hy-droxy-3,6,7,8-tetra-meth-oxy-flavone. Acta Crystallogr E Crystallogr Commun 2020; 76:1748-1751. [PMID: 33209346 PMCID: PMC7643244 DOI: 10.1107/s2056989020013596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 10/12/2020] [Indexed: 12/02/2022]
Abstract
The title compound (systematic name: 5-hydroxy-3,6,7,8-tetramethoxy-2-phenyl-4H-chromen-4-one), C19H18O7, is a flavone that was isolated from a butanol extract of the herb Scutellaria nepetoides M. Pop. The flavone mol-ecule is almost planar, with a dihedral angle between the planes of the benzo-pyran-4-one group and the attached phenyl ring of 6.4 (4)°. The 5-hy-droxy group forms a strong intra-molecular hydrogen bond with the carbonyl group, resulting in a six-membered hydrogen-bonded ring. The crystal structure has triclinic (P ) symmetry. In the crystal, the mol-ecules are linked by C-H⋯O hydrogen bonds into a two dimensional network parallel to the ab plane. The Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯H (53.9%) and H⋯O/O⋯H (20.9%) inter-actions.
Collapse
Affiliation(s)
- Haji Akber Aisa
- Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang, Technical Institute of Physics and Chemistry, Chinese Academy of Science, Urumqi 830011, People’s Republic of China
| | - Lidiya Izotova
- Institute of Bioorganic Chemistry, UzAS, M. Ulugbek Str., 83, 100125,Tashkent, Uzbekistan
| | - Abdurashid Karimov
- Institute of the Chemistry of Plant Substances, UzAS, M. Ulugbek Str., 77, 100170, Tashkent, Uzbekistan
| | - Erkin Botirov
- Institute of the Chemistry of Plant Substances, UzAS, M. Ulugbek Str., 77, 100170, Tashkent, Uzbekistan
| | - Azimjon Mamadrahimov
- Institute of Bioorganic Chemistry, UzAS, M. Ulugbek Str., 83, 100125,Tashkent, Uzbekistan
| | - Bahtiyar Ibragimov
- Institute of Bioorganic Chemistry, UzAS, M. Ulugbek Str., 83, 100125,Tashkent, Uzbekistan
| |
Collapse
|
21
|
Huang Y, Ma S, Wang Y, Yan R, Wang S, Liu N, Chen B, Chen J, Liu L. The Role of Traditional Chinese Herbal Medicines and Bioactive Ingredients on Ion Channels: A Brief Review and Prospect. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 18:257-265. [PMID: 30370864 DOI: 10.2174/1871527317666181026165400] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 06/20/2018] [Accepted: 06/20/2018] [Indexed: 12/18/2022]
Abstract
Traditional Chinese Medicines (TCMs), particularly the Chinese herbal medicines, are valuable sources of medicines and have been used for centuries. The term "TCMs" both represents to the single drug agent like Salvia miltiorrhiza, Ligusticum chuanxiong and Angelica sinensis, and those herbal formulas like Jingshu Keli, Wenxin Keli and Danzhen powder. In recent years, the researches of TCMs developed rapidly to understand the scientific basis of these herbs. In this review, we collect the studies of TCM and their containing bioactive compounds, and attempt to provide an overview for their regulatory effects on different ion channels including Ca2+, K+, Na+, Cl- channels and TRP, P2X receptors. The following conditions are used to limit the range of our review. (i) Only the herbal materials are included in this review and the animal- and mineral-original TCMs are excluded. (ii) The major discussions in this review focus on single TCM agent and the herbal formulas are only discussed for a little. (iii) Those most famous herbal medicines like Capsicum annuum (pepper), Curcuma longa (ginger) and Cannabis sativa (marijuana) are excluded. (iv) Only those TCM herbs with more than 5 research papers confirming their effects on ion channels are discussed in this review. Our review discusses recently available scientific evidences for TCMs and related bioactive compounds that have been reported with the modulatory effects on different ion channels, and thus provides a new ethnopharmacological approach to understand the usage of TCMs.
Collapse
Affiliation(s)
- Yian Huang
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 200437, China
| | - Shumei Ma
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 200437, China
| | - Yan Wang
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 200437, China
| | - Renjie Yan
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 200437, China
| | - Sheng Wang
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 200437, China
| | - Nan Liu
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 200437, China
| | - Ben Chen
- Laboratory of Cell Asymmetry, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan.,Department of CNS Research, New Drug Research Division, Otsuka Pharmaceutical Co., Ltd., Tokushima 771-0192, Japan
| | - Jia Chen
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 200437, China
| | - Li Liu
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 200437, China.,Shanghai Professional and Technical Service Center for Biological Material Drug-ability Evaluation, Shanghai 200437, China
| |
Collapse
|
22
|
Hanioka N, Isobe T, Tanaka-Kagawa T, Ohkawara S. Wogonin glucuronidation in liver and intestinal microsomes of humans, monkeys, dogs, rats, and mice. Xenobiotica 2020; 50:906-912. [PMID: 32005083 DOI: 10.1080/00498254.2020.1725180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Wogonin, one of the flavonoids isolated from Scutellaria baicalensis, exhibits some beneficial bioactivities, including anti-inflammatory and anticancer effects, and is metabolized into glucuronide by UDP-glucuronosyltransferase (UGT) enzymes in humans. In the present study, wogonin glucuronidation was examined in the liver and intestinal microsomes of humans, monkeys, dogs, rats, and mice using a kinetic analysis.The kinetics of wogonin glucuronidation by liver microsomes followed the biphasic model in all species examined. CLint values (x-intercept) based on v versus V/[S] plots were rats > humans ≈ monkeys > mice > dogs. The kinetics of intestinal microsomes fit the Michaelis-Menten model for humans, monkeys, rats, and mice and the substrate inhibition model for dogs. CLint values were rats > monkeys > mice > dogs > humans. The tissue dependence of CLint values was liver microsomes > intestinal microsomes for humans, dogs, and rats, and liver microsomes ≈ intestinal microsomes for monkeys and mice.These results demonstrated that the metabolic abilities of UGT enzymes toward wogonin in the liver and intestines markedly differ among humans, monkeys, dogs, rats, and mice, and suggest that species differences are closely associated with the biological effects of wogonin.
Collapse
Affiliation(s)
- Nobumitsu Hanioka
- Department of Health Pharmacy, Yokohama University of Pharmacy, Yokohama, Japan
| | - Takashi Isobe
- Department of Health Pharmacy, Yokohama University of Pharmacy, Yokohama, Japan
| | | | - Susumu Ohkawara
- Department of Health Pharmacy, Yokohama University of Pharmacy, Yokohama, Japan
| |
Collapse
|
23
|
Dose-Dependent Behavioral and Antioxidant Effects of Quercetin and Methanolic and Acetonic Extracts from Heterotheca inuloides on Several Rat Tissues following Kainic Acid-Induced Status Epilepticus. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5287507. [PMID: 31949879 PMCID: PMC6939434 DOI: 10.1155/2019/5287507] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/12/2019] [Accepted: 11/25/2019] [Indexed: 12/17/2022]
Abstract
Kainic acid (KA) has been used to study the neurotoxicity induced after status epilepticus (SE) due to activation of excitatory amino acids with neuronal damage. Medicinal plants can protect against damage caused by KA-induced SE; in particular, organic extracts of Heterotheca inuloides and its metabolite quercetin display antioxidant activity and act as hepatoprotective agents. However, it is unknown whether these properties can protect against the hyperexcitability underlying the damage caused by KA-induced SE. Our aim was to study the protective effects (with regard to behavior and antioxidant activity) of administration of natural products methanolic (ME) and acetonic (AE) extracts and quercetin (Q) from H. inuloides at doses of 30 mg/kg (ME30, AE30, and Q30 groups), 100 mg/kg (ME100, AE100, and Q100 groups), and 300 mg/kg (ME300, AE300, and Q300 groups) against damage in brain regions of male Wistar rats treated with KA. We found dose-dependent effects on behavioral and biochemical studies in the all-natural product groups vs. the control group, with decreases in seizure severity (Racine's scale) and increases in seizure latency (p < 0.05 in the ME100, AE100, Q100, and Q300 groups and p < 0.01 in the AE300 and ME300 groups); on lipid peroxidation and carbonylated proteins in all brain tissues (p < 0.0001); and on GPx, GR, CAT, and SOD activities with all the treatments vs. KA (p ≤ 0.001). In addition, there were strong negative correlations between carbonyl levels and latency in the group treated with KA and in the group treated with methanolic extract in the presence of KA (r = ‐0.9919, p = 0.0084). This evidence suggests that organic extracts and quercetin from H. inuloides exert anticonvulsant effects via direct scavenging of reactive oxygen species (ROS) and modulation of antioxidant enzyme activity.
Collapse
|
24
|
Chen J, Huang C, Liu F, Xu Z, Li L, Huang Z, Zhang H. Methylwogonin exerts anticancer effects in A375 human malignant melanoma cells through apoptosis induction, DNA damage, cell invasion inhibition and downregulation of the mTOR/PI3K/Akt signalling pathway. Arch Med Sci 2019; 15:1056-1064. [PMID: 31360200 PMCID: PMC6657243 DOI: 10.5114/aoms.2018.73711] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 02/24/2017] [Indexed: 12/02/2022] Open
Abstract
INTRODUCTION The main purpose of the present research was to study the anticancer effects of methylwogonin in A375 human malignant melanoma cells by evaluating its effects on apoptosis, DNA fragmentation, cancer cell invasion and the mTOR/PI3K/AKT signalling pathway. MATERIAL AND METHODS Effects on cell cytotoxicity were evaluated by MTT assay while a clonogenic assay determined the effects of methylwogonin on colony formation. Fluorescence microscopy evaluated apoptotic effects of methylwogonin in these cells using acridine orange/propidium iodide and Hoechst 33342 staining dyes. Gel electrophoresis evaluated the effects of methylwogonin on DNA fragmentation while the Matrigel invasion assay evaluated the effects of the drug on cancer cell invasion. Effects of methylwogonin on the mTOR/PI3K/AKT signalling pathway were evaluated by western blot assay. RESULTS Methylwogonin induces concentration-dependent as well as time-dependent growth inhibitory effects inducing significant cytotoxicity in these cancer cells. Methylwogonin led to dose-dependent inhibition of colony formation in A375 human malignant melanoma cells. The number of cell colonies decreased significantly as the methylwogonin dose increased from 0, 50, 150, to 300 μM. Methylwogonin treatment of cells at lower doses led to yellow fluorescence (early apoptosis), which changed to red/orange fluorescence, indicating late apoptosis at higher doses. Similar results were obtained using Hoechst 33342 staining, revealing that 50, 150 and 300 μM doses of methylwogonin led to significant morphological changes including chromatin condensation, fragmented nuclei and cellular shrinkage. DNA ladder formation was also observed, and this effect increased with increasing doses of methylwogonin. Methylwogonin also inhibited cancer cell invasion in a dose-dependent manner. CONCLUSIONS Different doses of methylwogonin led to concentration-dependent downregulation of phosphorylated PI3K, AKT and mTOR.
Collapse
Affiliation(s)
- Jiaorong Chen
- Department of Anatomy and Histology and Embryology, Basic Medical College, Hubei University of Traditional Chinese Medicine, Wuhan, China
| | - Chunmei Huang
- Pathology Department, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fangfang Liu
- Pathology Department, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zihui Xu
- Endocrinology Department, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Li
- Pathology Department, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Huang
- Pathology Department, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongfeng Zhang
- Pathology Department, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
25
|
Zhao T, Tang H, Xie L, Zheng Y, Ma Z, Sun Q, Li X. Scutellaria baicalensis Georgi. (Lamiaceae): a review of its traditional uses, botany, phytochemistry, pharmacology and toxicology. ACTA ACUST UNITED AC 2019; 71:1353-1369. [PMID: 31236960 DOI: 10.1111/jphp.13129] [Citation(s) in RCA: 267] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 05/21/2019] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Scutellaria baicalensis Georgi. (Lamiaceae) is a plant of the genus Lamiaceae, and its root is the main part used as a medicine. In China, Scutellaria baicalensis is still an important traditional Chinese medicine with the functions of clearing away heat and dampness, purging fire and detoxification. This medicinal plant is widely distributed in China, Russia, Mongolia, North Korea and Japan. The purpose of this paper was to provide a systematic and comprehensive overview on the traditional usages, botany, phytochemistry, pharmacology, pharmacokinetics and toxicology of this plant. Furthermore, the possible development trends and perspectives for future research on this medicinal plant are also discussed. KEY FINDINGS So far, over 40 compounds have been isolated and identified from Scutellaria baicalensis, including flavonoids, terpenoids, volatile oils and polysaccharides. The compounds and extracts isolated from Scutellaria baicalensis exhibit a wide range of pharmacological activities, including the effects on the nervous system, effects on the immune system, liver protection, antitumour effects, antibacterial and antiviral effects, antioxidant effects and other pharmacological effects. SUMMARY As a traditional Chinese herbal medicine, Scutellaria baicalensis has shown significant effects on the treatment of various diseases, especially hepatitis, diarrhoea, vomiting and high blood pressure. Numerous traditional uses of Scutellaria baicalensis have been confirmed by current investigations. However, it is also necessary to further study the drug-forming properties and pharmacokinetics of the active constituents of Scutellaria baicalensis, as well as to establish quality control standards for different areas of Scutellaria baicalensis, and to carry out the research at the cellular and molecular levels.
Collapse
Affiliation(s)
- Tiantian Zhao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hailong Tang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Long Xie
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Zheng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zubing Ma
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiang Sun
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
26
|
Liu Z, Lindemeyer AK, Liang J, Wallner M, Shao XM, Shao Y, Tao Y, Olsen RW. Flavonoids isolated from Tibetan medicines, binding to GABA A receptor and the anticonvulsant activity. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 50:1-7. [PMID: 30466968 DOI: 10.1016/j.phymed.2018.09.198] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/17/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Our previous studies on Asterothamnus centrali-asiaticus Novopokr. (ACN) and Arenaria kansuensis Maxim. (AKM) had led to the isolation of some phytochemical constituents and evaluation of anticonvulsant effect based on their extracts. ACN and AKM have been widely used in traditional Tibetan herbs for neuropsychiatric diseases and cardiopulmonary disorders. PURPOSE The purpose is to investigate structure-activity relationships of flavonoids isolated from ACN and AKM, for binding to the benzodiazepine site (BZ-S) of γ-aminobutyric acid type A (GABAA) receptor complex, and to search for anticonvulsant compounds without undesirable effects such as myorelaxation and sedation. STUDY DESIGN AND METHODS The affinities of these flavonoids for the BZ-S of GABAA receptors were determined by [3H]flunitrazepam binding to mouse cerebellum membranes in vitro. And the anticonvulsant, myorelaxant and sedative effects were determined by pentylenetetrazol (PTZ)-induced seizure and electrogenic seizure protection, rotarod test and locomotor activity test, respectively. RESULTS Fifteen and thirteen flavonoids were isolated from ACN and AKM, respectively. Structure-activity relationships analysis indicated that 6-and/or 8-OMe flavones exhibited the most potent binding affinity to GABAA receptors. Furthermore, 2',4',5,7-tetrahydroxy-5',6-dimethoxyflavone (DMF, IC50 value of 0.10 μM), a flavone isolated from ACN, presented high anticonvulsant activity against chemical-induced seizures and electrogenic seizures, without myorelaxation and sedation. CONCLUSION This study suggested that these flavones, especially DMF, are new BZ receptor ligands and prospective therapeutic candidates for seizures.
Collapse
Affiliation(s)
- Zenggen Liu
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China; Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Xining 810001, China
| | - A Kerstin Lindemeyer
- Department of Molecular & Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Jing Liang
- Titus Family Department of Clinical Pharmacy, University of Southern California School of Pharmacy, Los Angeles, CA 90089, USA
| | - Martin Wallner
- Department of Molecular & Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Xuesi M Shao
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Yun Shao
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China; Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Xining 810001, China
| | - Yanduo Tao
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China; Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Xining 810001, China.
| | - Richard W Olsen
- Department of Molecular & Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
27
|
Setzer WN. The Phytochemistry of Cherokee Aromatic Medicinal Plants. MEDICINES (BASEL, SWITZERLAND) 2018; 5:E121. [PMID: 30424560 PMCID: PMC6313439 DOI: 10.3390/medicines5040121] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 12/13/2022]
Abstract
Background: Native Americans have had a rich ethnobotanical heritage for treating diseases, ailments, and injuries. Cherokee traditional medicine has provided numerous aromatic and medicinal plants that not only were used by the Cherokee people, but were also adopted for use by European settlers in North America. Methods: The aim of this review was to examine the Cherokee ethnobotanical literature and the published phytochemical investigations on Cherokee medicinal plants and to correlate phytochemical constituents with traditional uses and biological activities. Results: Several Cherokee medicinal plants are still in use today as herbal medicines, including, for example, yarrow (Achillea millefolium), black cohosh (Cimicifuga racemosa), American ginseng (Panax quinquefolius), and blue skullcap (Scutellaria lateriflora). This review presents a summary of the traditional uses, phytochemical constituents, and biological activities of Cherokee aromatic and medicinal plants. Conclusions: The list is not complete, however, as there is still much work needed in phytochemical investigation and pharmacological evaluation of many traditional herbal medicines.
Collapse
Affiliation(s)
- William N Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
- Aromatic Plant Research Center, 230 N 1200 E, Suite 102, Lehi, UT 84043, USA.
| |
Collapse
|
28
|
Çiçek SS. Structure-Dependent Activity of Natural GABA(A) Receptor Modulators. Molecules 2018; 23:molecules23071512. [PMID: 29932138 PMCID: PMC6100244 DOI: 10.3390/molecules23071512] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 12/22/2022] Open
Abstract
GABA(A) receptors are ligand-gated ion channels consisting of five subunits from eight subfamilies, each assembled in four hydrophobic transmembrane domains. This pentameric structure not only allows different receptor binding sites, but also various types of ligands, such as orthosteric agonists and antagonists, positive and negative allosteric modulators, as well as second-order modulators and non-competitive channel blockers. A fact, that is also displayed by the variety of chemical structures found for both, synthetic as well as nature-derived GABA(A)-receptor modulators. This review covers the literature for natural GABA(A)-receptor modulators until the end of 2017 and discusses their structure-activity relationship.
Collapse
Affiliation(s)
- Serhat Sezai Çiçek
- Department of Pharmaceutical Biology, Kiel University, Gutenbergstraße 76, 24118 Kiel, Germany.
| |
Collapse
|
29
|
Zhao Z, He X, Ma C, Wu S, Cuan Y, Sun Y, Bai Y, Huang L, Chen X, Gao T, Zheng X. Excavating Anticonvulsant Compounds from Prescriptions of Traditional Chinese Medicine in the Treatment of Epilepsy. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:707-737. [PMID: 29737210 DOI: 10.1142/s0192415x18500374] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Traditional Chinese medicine (TCM) has a long history and been widely used in prevention and treatment of epilepsy in China. This paper is intended to review the advances in the active anticonvulsant compounds isolated from herbs in the prescription of TCM in the treatment of epilepsy. These compounds were introduced with the details including classification, CAS number specific structure and druggability data. Meanwhile, much of the research in these compounds in the last two decades has shown that they exhibited favorable pharmacological properties in treatment of epilepsy both in in vivo and in vitro models. In addition, in this present review, the evaluation of the effects of the anticonvulsant classical TCM prescriptions is discussed. According to these rewarding pharmacological effects and chemical substances, the prescription of TCM herbs could be an effective therapeutic strategy for epilepsy patients, and also could be a promising source for the development of new drugs.
Collapse
Affiliation(s)
- Zefeng Zhao
- * Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, P. R. China
| | - Xirui He
- * Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, P. R. China.,‡ Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, P. R. China
| | - Cuixia Ma
- * Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, P. R. China
| | - Shaoping Wu
- * Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, P. R. China
| | - Ye Cuan
- * Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, P. R. China
| | - Ying Sun
- * Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, P. R. China
| | - Yajun Bai
- * Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, P. R. China.,† College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Linhong Huang
- ‡ Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, P. R. China
| | - Xufei Chen
- * Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, P. R. China
| | - Tian Gao
- * Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, P. R. China
| | - Xiaohui Zheng
- * Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, P. R. China
| |
Collapse
|
30
|
Karimov AM, Botirov EK. Structural Diversity and State of Knowledge of Flavonoids of the Scutellaria L. Genus. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2018. [DOI: 10.1134/s1068162017070068] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
31
|
Macrophage depletion by liposome-encapsulated clodronate suppresses seizures but not hippocampal damage after acute viral encephalitis. Neurobiol Dis 2017; 110:192-205. [PMID: 29208406 DOI: 10.1016/j.nbd.2017.12.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/09/2017] [Accepted: 12/01/2017] [Indexed: 12/12/2022] Open
Abstract
Viral encephalitis is a major risk factor for the development of seizures and epilepsy, but the underlying mechanisms are only poorly understood. Mouse models such as viral encephalitis induced by intracerebral infection with Theiler's virus in C57BL/6 (B6) mice allow advancing our understanding of the immunological and virological aspects of infection-induced seizures and their treatment. Previous studies using the Theiler's virus model in B6 mice have indicated that brain-infiltrating inflammatory macrophages and the cytokines released by these cells are key to the development of acute seizures and hippocampal damage in this model. However, approaches used to prevent or reduce macrophage infiltration were not specific, so contribution of other mechanisms could not be excluded. In the present study, we used a more selective and widely used approach for macrophage depletion, i.e., systemic administration of clodronate liposomes, to study the contribution of macrophage infiltration to development of seizures and hippocampal damage. By this approach, almost complete depletion of monocytic cells was achieved in spleen and blood of Theiler's virus infected B6 mice, which was associated with a 70% decrease in the number of brain infiltrating macrophages as assessed by flow cytometry. Significantly less clodronate liposome-treated mice exhibited seizures than liposome controls (P<0.01), but the development of hippocampal damage was not prevented or reduced. Clodronate liposome treatment did not reduce the increased Iba1 and Mac3 labeling in the hippocampus of infected mice, indicating that activated microglia may contribute to hippocampal damage. The unexpected mismatch between occurrence of seizures and hippocampal damage is thought-provoking and suggests that the mechanisms involved in degeneration of specific populations of hippocampal neurons in encephalitis-induced epilepsy are more complex than previously thought.
Collapse
|
32
|
|
33
|
Kim KC, Cho KS, Yang SM, Gonzales EL, Valencia S, Eun PH, Choi CS, Mabunga DF, Kim JW, Noh JK, Kim HJ, Jeon SJ, Han SH, Bahn GH, Shin CY. Sex Differences in Autism-Like Behavioral Phenotypes and Postsynaptic Receptors Expression in the Prefrontal Cortex of TERT Transgenic Mice. Biomol Ther (Seoul) 2017; 25:374-382. [PMID: 28208013 PMCID: PMC5499615 DOI: 10.4062/biomolther.2016.242] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 11/24/2016] [Accepted: 12/06/2016] [Indexed: 11/05/2022] Open
Abstract
Autism spectrum disorder (ASD) remains unexplained and untreated despite the high attention of research in recent years. Aside from its various characteristics is the baffling male preponderance over the female population. Using a validated animal model of ASD which is the telomerase reverse transcriptase overexpressing mice (TERT-tg), we conducted ASD-related behavioral assessments and protein expression experiments to mark the difference between male and females of this animal model. After statistically analyzing the results, we found significant effects of TERT overexpression in sociability, social novelty preference, anxiety, nest building, and electroseizure threshold in the males but not their female littermates. Along these differences are the male-specific increased expressions of postsynaptic proteins which are the NMDA and AMPA receptors in the prefrontal cortex. The vGluT1 presynaptic proteins, but not GAD, were upregulated in both sexes of TERT-tg mice, although it is more significantly pronounced in the male group. Here, we confirmed that the behavioral effect of TERT overexpression in mice was male-specific, suggesting that the aberration of this gene and its downstream pathways preferentially affect the functional development of the male brain, consistent with the male preponderance in ASD.
Collapse
Affiliation(s)
- Ki Chan Kim
- Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Kyu Suk Cho
- Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Sung Min Yang
- Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Edson Luck Gonzales
- Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Schley Valencia
- Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Pyeong Hwa Eun
- Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Chang Soon Choi
- Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Darine Froy Mabunga
- Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Ji-Woon Kim
- Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Judy Kyoungju Noh
- College of Human Ecology, Cornell University, Ithaca, New York 14853, United States of America
| | - Hee Jin Kim
- Uimyung Research Institute for Neuroscience, School of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| | - Se Jin Jeon
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seol-Heui Han
- Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Geon Ho Bahn
- Department of Neuropsychiatry, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Chan Young Shin
- Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
34
|
Anti-tumor activity of wogonin, an extract from Scutellaria baicalensis, through regulating different signaling pathways. Chin J Nat Med 2017; 15:15-40. [PMID: 28259249 DOI: 10.1016/s1875-5364(17)30005-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/06/2016] [Indexed: 12/14/2022]
Abstract
Wogonin is a plant flavonoid compound extracted from Scutellaria baicalensis (Huang-Qin or Chinese skullcap) and has been studied thoroughly by many researchers till date for its anti-viral, anti-oxidant, anti-cancerous and neuro-protective properties. Numerous experiments conducted in vitro and in vivo have demonstrated wogonin's excellent tumor inhibitory properties. The anti-cancer mechanism of wogonin has been ascribed to modulation of various cell signaling pathways, including serine-threonine kinase Akt (also known as protein kinase B) and AMP-activated protein kinase (AMPK) pathways, p53-dependent/independent apoptosis, and inhibition of telomerase activity. Furthermore, wogonin also decreases DNA adduct formation with a carcinogenic compound 2-Aminofluorene and inhibits growth of drug resistant malignant cells and their migration and metastasis, without any side effects. Recently, newly synthesized wogonin derivatives have been developed with impressive anti-tumor activity. This review is the succinct appraisal of the pertinent articles on the mechanisms of anti-tumor properties of wogonin. We also summarize the potential of wogonin and its derivatives used alone or as an adjunct therapy for cancer treatment. Furthermore, pharmacokinetics and side effects of wogonin and its analogues have also been discussed.
Collapse
|
35
|
Paudel MK, Sakamoto S, Huy LV, Tanaka H, Miyamoto T, Takano A, Morimoto S. Development of an immunoassay using an anti-wogonin glucuronide monoclonal antibody. J Immunoassay Immunochem 2016; 38:457-470. [PMID: 28027008 DOI: 10.1080/15321819.2016.1273236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Wogonin 7-O-β-D-glucuronide (Wgn) is a bioactive flavone present in the dried root of Scutellaria baicalensis Georgi. To generate a monoclonal antibody (MAb) against Wgn, BALB/c mice injected with Wgn-bovine serum albumin yielded splenocytes that we fused with SP2/0 myeloma cells using the polyethylene glycol method. We obtained a hybridoma designated 315A that produced a MAb reactive to Wgn. The anti-Wgn MAb 315A was applied to an indirect competitive enzyme-linked immunosorbent assay (icELISA) to quantify Wgn. Subsequent validation revealed that icELISA using the 315A anti-Wgn MAb is an accurate and reliable method for the quantification of Wgn in S. baicalensis.
Collapse
Affiliation(s)
- Madan Kumar Paudel
- a Department of Pharmacognosy , Graduate School of Pharmaceutical Sciences, Kyushu University , Fukuoka , Japan
| | - Seiichi Sakamoto
- a Department of Pharmacognosy , Graduate School of Pharmaceutical Sciences, Kyushu University , Fukuoka , Japan
| | - Le Van Huy
- b Department of Natural Product Chemistry , Graduate School of Pharmaceutical Sciences, Kyushu University , Fukuoka , Japan
| | - Hiroyuki Tanaka
- a Department of Pharmacognosy , Graduate School of Pharmaceutical Sciences, Kyushu University , Fukuoka , Japan
| | - Tomofumi Miyamoto
- b Department of Natural Product Chemistry , Graduate School of Pharmaceutical Sciences, Kyushu University , Fukuoka , Japan
| | - Akihito Takano
- c Department of Plant Resources for Medicine , Graduate School of Pharmaceutical Sciences, Showa Pharmaceutical University , Tokyo , Japan
| | - Satoshi Morimoto
- a Department of Pharmacognosy , Graduate School of Pharmaceutical Sciences, Kyushu University , Fukuoka , Japan
| |
Collapse
|
36
|
Hoffmann KM, Herbrechter R, Ziemba PM, Lepke P, Beltrán L, Hatt H, Werner M, Gisselmann G. Kampo Medicine: Evaluation of the Pharmacological Activity of 121 Herbal Drugs on GABAA and 5-HT3A Receptors. Front Pharmacol 2016; 7:219. [PMID: 27524967 PMCID: PMC4965468 DOI: 10.3389/fphar.2016.00219] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 07/06/2016] [Indexed: 12/24/2022] Open
Abstract
Kampo medicine is a form of Japanese phytotherapy originating from traditional Chinese medicine (TCM). During the last several decades, much attention has been paid to the pharmacological effects of these medical plants and their constituents. However, in many cases, a systematic screening of Kampo remedies to determine pharmacologically relevant targets is still lacking. In this study, a broad screening of Kampo remedies was performed to look for pharmacologically relevant 5-HT3A and GABAA receptor ligands. Several of the Kampo remedies are currently used for symptoms such as nausea, emesis, gastrointestinal motility disorders, anxiety, restlessness, or insomnia. Therefore, the pharmacological effects of 121 herbal drugs from Kampo medicine were analyzed as ethanol tinctures on heterologously expressed 5-HT3A and GABAA receptors, due to the involvement of these receptors in such pathophysiological processes. The tinctures of Lindera aggregata (radix) and Leonurus japonicus (herba) were the most effective inhibitory compounds on the 5-HT3A receptor. Further investigation of known ingredients in these compounds led to the identification of leonurine from Leonurus as a new natural 5-HT3A receptor antagonist. Several potentiating herbs (e.g., Magnolia officinalis (cortex), Syzygium aromaticum (flos), and Panax ginseng (radix)) were also identified for the GABAA receptor, which are all traditionally used for their sedative or anxiolytic effects. A variety of tinctures with antagonistic effects Salvia miltiorrhiza (radix) were also detected. Therefore, this study reveals new insights into the pharmacological action of a broad spectrum of herbal drugs from Kampo, allowing for a better understanding of their physiological effects and clinical applications.
Collapse
Affiliation(s)
- Katrin M Hoffmann
- Department of Cell Physiology, Ruhr University Bochum Bochum, Germany
| | - Robin Herbrechter
- Department of Cell Physiology, Ruhr University Bochum Bochum, Germany
| | - Paul M Ziemba
- Department of Cell Physiology, Ruhr University Bochum Bochum, Germany
| | - Peter Lepke
- Kronen Apotheke Wuppertal Wuppertal, Germany
| | - Leopoldo Beltrán
- Department of Cell Physiology, Ruhr University Bochum Bochum, Germany
| | - Hanns Hatt
- Department of Cell Physiology, Ruhr University Bochum Bochum, Germany
| | - Markus Werner
- Department of Cell Physiology, Ruhr University Bochum Bochum, Germany
| | - Günter Gisselmann
- Department of Cell Physiology, Ruhr University Bochum Bochum, Germany
| |
Collapse
|
37
|
Koirala N, Thuan NH, Ghimire GP, Thang DV, Sohng JK. Methylation of flavonoids: Chemical structures, bioactivities, progress and perspectives for biotechnological production. Enzyme Microb Technol 2016; 86:103-16. [PMID: 26992799 DOI: 10.1016/j.enzmictec.2016.02.003] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/02/2016] [Accepted: 02/09/2016] [Indexed: 12/16/2022]
Abstract
Among the natural products, flavonoids have been particularly attractive, highly studied and become one of the most important promising agent to treat cancer, oxidant stress, pathogenic bacteria, inflammations, cardio-vascular dysfunctions, etc. Despite many promising roles of flavonoids, expectations have not been fulfilled when studies were extended to the in vivo condition, particularly in humans. Instability and very low oral bioavailability of dietary flavonoids are the reasons behind this. Researches have demonstrated that the methylation of these flavonoids could increase their promise as pharmaceutical agents leading to novel applications. Methylation of the flavonoids via theirs free hydroxyl groups or C atom dramatically increases their metabolic stability and enhances the membrane transport, leading to facilitated absorption and highly increased oral bioavailability. In this paper, we concentrated on analysis of flavonoid methoxides including O- and C-methoxide derivatives in aspect of structure, bioactivities and description of almost all up-to-date O- and C-methyltransferases' enzymatic characteristics. Furthermore, modern biological approaches for synthesis and production of flavonoid methoxides using metabolic engineering and synthetic biology have been focused and updated up to 2015. This review will give a handful information regarding the methylation of flavonoids, methyltransferases and biotechnological synthesis of the same.
Collapse
Affiliation(s)
- Niranjan Koirala
- Department of BT-Convergent Pharmaceutical Engineering, Institute of Biomolecule Reconstruction, Sun Moon University, 100, Kalsan-ri, Tangjeonmyun, Asansi, Chungnam 336-708, Republic of Korea.
| | - Nguyen Huy Thuan
- Center for Molecular Biology, Institute of Research and Development, Duy Tan University, K7/25 Quang Trung Street, Haichau District, Danang City, Viet Nam.
| | - Gopal Prasad Ghimire
- Department of BT-Convergent Pharmaceutical Engineering, Institute of Biomolecule Reconstruction, Sun Moon University, 100, Kalsan-ri, Tangjeonmyun, Asansi, Chungnam 336-708, Republic of Korea.
| | - Duong Van Thang
- Department of BT-Convergent Pharmaceutical Engineering, Institute of Biomolecule Reconstruction, Sun Moon University, 100, Kalsan-ri, Tangjeonmyun, Asansi, Chungnam 336-708, Republic of Korea.
| | - Jae Kyung Sohng
- Department of BT-Convergent Pharmaceutical Engineering, Institute of Biomolecule Reconstruction, Sun Moon University, 100, Kalsan-ri, Tangjeonmyun, Asansi, Chungnam 336-708, Republic of Korea.
| |
Collapse
|
38
|
Gonzales ELT, Jang JH, Mabunga DFN, Kim JW, Ko MJ, Cho KS, Bahn GH, Hong M, Ryu JH, Kim HJ, Cheong JH, Shin CY. Supplementation of Korean Red Ginseng improves behavior deviations in animal models of autism. Food Nutr Res 2016; 60:29245. [PMID: 26837496 PMCID: PMC4737717 DOI: 10.3402/fnr.v60.29245] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 11/23/2015] [Accepted: 11/25/2015] [Indexed: 11/17/2022] Open
Abstract
Background Autism spectrum disorder (ASD) is heterogeneous neurodevelopmental disorders that primarily display social and communication impairments and restricted/repetitive behaviors. ASD prevalence has increased in recent years, yet very limited therapeutic targets and treatments are available to counteract the incapacitating disorder. Korean Red Ginseng (KRG) is a popular herbal plant in South Korea known for its wide range of therapeutic effects and nutritional benefits and has recently been gaining great scientific attention, particularly for its positive effects in the central nervous system. Objectives Thus, in this study, we investigated the therapeutic potential of KRG in alleviating the neurobehavioral deficits found in the valproic acid (VPA)-exposed mice models of ASD. Design Starting at 21 days old (P21), VPA-exposed mice were given daily oral administrations of KRG solution (100 or 200 mg/kg) until the termination of all experiments. From P28, mice behaviors were assessed in terms of social interaction capacity (P28–29), locomotor activity (P30), repetitive behaviors (P32), short-term spatial working memory (P34), motor coordination (P36), and seizure susceptibility (P38). Results VPA-exposed mice showed sociability and social novelty preference deficits, hyperactivity, increased repetitive behavior, impaired spatial working memory, slightly affected motor coordination, and high seizure susceptibility. Remarkably, long-term KRG treatment in both dosages normalized all the ASD-related behaviors in VPA-exposed mice, except motor coordination ability. Conclusion As a food and herbal supplement with various known benefits, KRG demonstrated its therapeutic potential in rescuing abnormal behaviors related to autism caused by prenatal environmental exposure to VPA.
Collapse
Affiliation(s)
- Edson Luck T Gonzales
- Department of Neuroscience, School of Medicine, Konkuk University, Seoul, Korea.,Neuroscience Research Center, IABS, Konkuk University, Seoul, Korea.,KU Open Innovation Center, Konkuk University, Seoul, Korea
| | - Jong-Hwa Jang
- Department of Dental Hygiene, Hanseo University, Seosan, Korea
| | - Darine Froy N Mabunga
- Department of Neuroscience, School of Medicine, Konkuk University, Seoul, Korea.,Neuroscience Research Center, IABS, Konkuk University, Seoul, Korea.,KU Open Innovation Center, Konkuk University, Seoul, Korea
| | - Ji-Woon Kim
- Department of Neuroscience, School of Medicine, Konkuk University, Seoul, Korea.,Neuroscience Research Center, IABS, Konkuk University, Seoul, Korea.,KU Open Innovation Center, Konkuk University, Seoul, Korea
| | - Mee Jung Ko
- Department of Neuroscience, School of Medicine, Konkuk University, Seoul, Korea.,Neuroscience Research Center, IABS, Konkuk University, Seoul, Korea.,KU Open Innovation Center, Konkuk University, Seoul, Korea
| | - Kyu Suk Cho
- Department of Neuroscience, School of Medicine, Konkuk University, Seoul, Korea.,Neuroscience Research Center, IABS, Konkuk University, Seoul, Korea.,KU Open Innovation Center, Konkuk University, Seoul, Korea
| | - Geon Ho Bahn
- Department of Neuropsychiatry, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Minha Hong
- Department of Psychiatry, School of Medicine, Dankook University Hospital, Cheonan, Korea
| | - Jong Hoon Ryu
- Department of Oriental Medicine, Kyung Hee University, Seoul, Korea
| | - Hee Jin Kim
- Department of Pharmacy, Sahmyook University, Seoul, Korea
| | | | - Chan Young Shin
- Department of Neuroscience, School of Medicine, Konkuk University, Seoul, Korea.,Neuroscience Research Center, IABS, Konkuk University, Seoul, Korea.,KU Open Innovation Center, Konkuk University, Seoul, Korea;
| |
Collapse
|
39
|
Kim KC, Rhee J, Park JE, Lee DK, Choi CS, Kim JW, Lee HW, Song MR, Yoo HJ, Chung C, Shin CY. Overexpression of Telomerase Reverse Transcriptase Induces Autism-like Excitatory Phenotypes in Mice. Mol Neurobiol 2015; 53:7312-7328. [DOI: 10.1007/s12035-015-9630-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 12/15/2015] [Indexed: 12/27/2022]
|
40
|
Kakooza-Mwesige A. The importance of botanical treatments in traditional societies and challenges in developing countries. Epilepsy Behav 2015; 52:297-307. [PMID: 26293314 DOI: 10.1016/j.yebeh.2015.06.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 06/07/2015] [Accepted: 06/08/2015] [Indexed: 01/06/2023]
Abstract
Epilepsy is one of the most common neurological conditions worldwide, with many affected persons found in Asia, Latin America, and sub-Saharan Africa. Relatedly, the large majority found in these regions does not receive the appropriate therapy with antiepileptic drugs (AEDs), stemming from various reasons among which are lack of access to AEDs, social stigma, and negative cultural attitudes. The presence of epilepsy resistant to the available AEDs coupled with the frequent AED side effects has further fueled the widespread and growing use of botanicals as alternative therapy in several traditional societies in these developing countries since people with epilepsy (PWE) consider them as safe and effective. There have, however, been few botanicals that have been examined for their pharmacological activities related to traditional uses, and there is hardly any conclusive evidence regarding their efficacy in humans or knowledge about the exact mechanism(s) of action. This review discusses some botanical treatments that have been used for epilepsy in developing countries and the challenges faced. This article is part of a Special Issue entitled "Botanicals for Epilepsy".
Collapse
Affiliation(s)
- Angelina Kakooza-Mwesige
- Department of Paediatrics & Child Health, Makerere University College of Health Sciences and Mulago Hospital, Kampala, Uganda; Astrid Lindgren Children's Hospital, Department of Women's & Children's Health, Neuropediatric Research Unit, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
41
|
Antioxidant and Anti-Inflammatory Activity Determination of One Hundred Kinds of Pure Chemical Compounds Using Offline and Online Screening HPLC Assay. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:165457. [PMID: 26504472 PMCID: PMC4609401 DOI: 10.1155/2015/165457] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/03/2015] [Accepted: 07/30/2015] [Indexed: 11/18/2022]
Abstract
This study investigated the antioxidant activity of one hundred kinds of pure chemical compounds found within a number of natural substances and oriental medicinal herbs (OMH). Three different methods were used to evaluate the antioxidant activity of DPPH radical-scavenging activity, ABTS radical-scavenging activity, and online screening HPLC-ABTS assays. The results indicated that 17 compounds exhibited better inhibitory activity against ABTS radical than DPPH radical. The IC50 rate of a more practical substance is determined, and the ABTS assay IC50 values of gallic acid hydrate, (+)-catechin hydrate, caffeic acid, rutin hydrate, hyperoside, quercetin, and kaempferol compounds were 1.03 ± 0.25, 3.12 ± 0.51, 1.59 ± 0.06, 4.68 ± 1.24, 3.54 ± 0.39, 1.89 ± 0.33, and 3.70 ± 0.15 μg/mL, respectively. The ABTS assay is more sensitive to identifying the antioxidant activity since it has faster reaction kinetics and a heightened response to antioxidants. In addition, there was a very small margin of error between the results of the offline-ABTS assay and those of the online screening HPLC-ABTS assay. We also evaluated the effects of 17 compounds on the NO secretion in LPS-stimulated RAW 264.7 cells and also investigated the cytotoxicity of 17 compounds using a cell counting kit (CCK) in order to determine the optimal concentration that would provide an effective anti-inflammatory action with minimum toxicity. These results will be compiled into a database, and this method can be a powerful preselection tool for compounds intended to be studied for their potential bioactivity and antioxidant activity related to their radical-scavenging capacity.
Collapse
|
42
|
Aragão GF, Carneiro LMV, Rota-Junior AP, Bandeira PN, de Lemos TLG, Viana GSDB. Alterations in brain amino acid metabolism and inhibitory effects on PKC are possibly correlated with anticonvulsant effects of the isomeric mixture of α- and β-amyrin from Protium heptaphyllum. PHARMACEUTICAL BIOLOGY 2015; 53:407-413. [PMID: 25471298 DOI: 10.3109/13880209.2014.923001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT α- and β-Amyrin (AMY) from Protium heptaphyllum (Aubl) March (Burseraceae) is found in Brazil and used in diverse inflammation-related diseases. This species presents a central action, as previously described. OBJECTIVE The objectives were to evaluate the anticonvulsant effect of AMY in mice and to verify the mechanism of action. MATERIAL AND METHODS Seizures were induced by pentylenetetrazole followed by acute or subchronic treatments (5-25 mg/kg, p.o. and i.p.) and determination of brain amino acids (10 and 25 mg/kg, i.p., 7 d). RESULTS In the acute treatment, AMY (10, 25, and 50 mg/kg, p.o.) increased the latency to the first convulsion (FC) by 30, 44, and 40% and time to death (TD) by 36, 52, and 42%, respectively. When administered intraperitoneally, the same doses increased FC by 62, 75, and 73% and TD by 76, 82, and 119%, respectively. Combined with polymixin or staurosporine, AMY (25 mg/kg, i.p.) increased TD by 61 and 63%, respectively, as related to each drug alone. When subchronically administered (25 and 50 mg/kg, i.p.) increased FC by 75 and 101% and TD by 86 and 124%, respectively. AMY increased taurine (116 and 76%) and tyrosine concentrations (135 and 110%) in basal ganglia and hippocampus, respectively, and decreased by 68, 65, and 62% glutamate, aspartate, and GABA in basal ganglia. CONCLUSION Thus, the AMY anticonvulsant activity is related to the GABAergic system and may be linked to the inhibition of the signaling cascade of PKC as well as to alterations in amino acids metabolism.
Collapse
|
43
|
The role of flavonoids on oxidative stress in epilepsy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:171756. [PMID: 25653736 PMCID: PMC4306219 DOI: 10.1155/2015/171756] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 12/11/2014] [Indexed: 11/18/2022]
Abstract
Backgrounds. Oxidative stress can result from excessive free-radical production and it is likely implicated as a possible mechanism involved in the initiation and progression of epileptogenesis. Flavonoids can protect the brain from oxidative stress. In the central nervous system (CNS) several flavonoids bind to the benzodiazepine site on the GABAA-receptor resulting in anticonvulsive effects. Objective. This review provides an overview about the role of flavonoids in oxidative stress in epilepsy. The mechanism of action of flavonoids and its relation to the chemical structure is also discussed. Results/Conclusions. There is evidence that suggests that flavonoids have potential for neuroprotection in epilepsy.
Collapse
|
44
|
Lee KJ, Jung PM, Oh YC, Song NY, Kim T, Ma JY. Extraction and Bioactivity Analysis of Major Flavones Compounds from Scutellaria baicalensis Using In Vitro Assay and Online Screening HPLC-ABTS System. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2014; 2014:563702. [PMID: 25258697 PMCID: PMC4166446 DOI: 10.1155/2014/563702] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 08/18/2014] [Accepted: 08/18/2014] [Indexed: 06/03/2023]
Abstract
The extraction efficiency of a number of solvent compositions for the improvement of bioactive compounds yield from S. baicalensis has been investigated. Also, free radical scavengers in the glycoside baicalin (BG), wogonoside (WG), aglycon baicalein (B), and wogonin (W) compounds of S. baicalensis were screened, identified, and quantified using coupled offline ABTS and online screening HPLC-ABTS assay. Increasing ethanol content fractions resulted in decreased extract yield of bioactive compounds. In this case, the best yield of 37.01 mg/g in BG, WG, B, and W compounds was obtained by a dipping method with an extraction time of 4 h. In addition, the yield (43.05%) and IC50 (34.04 μg/mL) determined through ABTS assay of the 60% aqueous ethanol extract were the most satisfactory of all solvent solutions tested. This result shows that an online screening HPLC-ABTS assay can be a powerful technique for the rapid characterization of bioactivity compounds in plant extracts. Moreover, their anti-inflammatory activities were evaluated via analyzed inhibitory effect on NO and inflammatory cytokine production. Furthermore, WG and W exhibited the strong inhibitory effects on inflammatory mediator production including NO, IL-6, and IL-1β in LPS-stimulated RAW 264.7 macrophages.
Collapse
Affiliation(s)
- Kwang Jin Lee
- KM-Based Herbal Drug Development Group, Korean Institute of Oriental Medicine (KIOM), 1672 Yuseongdae-ro, Yuseong-gu, Daejeon 305-811, Republic of Korea
| | - Pil Mun Jung
- KM-Based Herbal Drug Development Group, Korean Institute of Oriental Medicine (KIOM), 1672 Yuseongdae-ro, Yuseong-gu, Daejeon 305-811, Republic of Korea
| | - You-Chang Oh
- KM-Based Herbal Drug Development Group, Korean Institute of Oriental Medicine (KIOM), 1672 Yuseongdae-ro, Yuseong-gu, Daejeon 305-811, Republic of Korea
| | - Na-Young Song
- KM-Based Herbal Drug Development Group, Korean Institute of Oriental Medicine (KIOM), 1672 Yuseongdae-ro, Yuseong-gu, Daejeon 305-811, Republic of Korea
| | - Taesoo Kim
- KM-Based Herbal Drug Development Group, Korean Institute of Oriental Medicine (KIOM), 1672 Yuseongdae-ro, Yuseong-gu, Daejeon 305-811, Republic of Korea
| | - Jin Yeul Ma
- KM-Based Herbal Drug Development Group, Korean Institute of Oriental Medicine (KIOM), 1672 Yuseongdae-ro, Yuseong-gu, Daejeon 305-811, Republic of Korea
| |
Collapse
|
45
|
Development of a SPE-LC/MS/MS method for simultaneous quantification of baicalein, wogonin, oroxylin A and their glucuronides baicalin, wogonoside and oroxyloside in rats and its application to brain uptake and plasma pharmacokinetic studies. J Pharm Biomed Anal 2014; 97:9-23. [DOI: 10.1016/j.jpba.2014.03.033] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/18/2014] [Accepted: 03/22/2014] [Indexed: 12/24/2022]
|
46
|
Bhat G, Ganai BA, Shawl AS. New phenolics from the root of Scutellariaprostrata JACQ. ex BENTH. Nat Prod Res 2014; 28:1685-90. [DOI: 10.1080/14786419.2014.939082] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Gulzar Bhat
- Natural Products Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Srinagar, Kashmir, 190005, India
- Department of Biochemistry, University of Kashmir, Srinagar, Kashmir, 190006, India
| | - Bashir A. Ganai
- Department of Biochemistry, University of Kashmir, Srinagar, Kashmir, 190006, India
| | - Abdul S. Shawl
- Natural Products Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Srinagar, Kashmir, 190005, India
| |
Collapse
|
47
|
NMDA receptor-mediated neuroprotective effect of the Scutellaria baicalensis Georgi extract on the excitotoxic neuronal cell death in primary rat cortical cell cultures. ScientificWorldJournal 2014; 2014:459549. [PMID: 24967436 PMCID: PMC4055394 DOI: 10.1155/2014/459549] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 04/04/2014] [Indexed: 01/09/2023] Open
Abstract
The objective of the current research work was to evaluate the neuroprotective effect of the ethanol extract of Scutellaria baicalensis (S.B.) on the excitotoxic neuronal cell death in primary rat cortical cell cultures. The inhibitory effects of the extract were qualitatively and quantitatively estimated by phase-contrast microscopy and lactate dehydrogenase (LDH) assays. The extract exhibited a potent and dose-dependent inhibition of the glutamate-induced excitotoxicity in the culture media. Further, using radioligand binding assays, it was observed that the inhibitory effect of the extract was more potent and selective for the N-methyl-D-aspartate (NMDA) receptor-mediated toxicity. The S.B. ethanol extract competed with [3H] MDL 105,519 for the specific binding to the NMDA receptor glycine site with 50% inhibition occurring at 35.1 μg/mL. Further, NMDA receptor inactivation by the S.B. ethanol extract was concluded from the decreasing binding capability of [3H]MK-801 in the presence of the extract. Thus, S.B. extract exhibited neuroprotection against excitotoxic cell death, and this neuroprotection was mediated through the inhibition of NMDA receptor function by interacting with the glycine binding site of the NMDA receptor. Phytochemical analysis of the bioactive extract revealed the presence of six phytochemical constituents including baicalein, baicalin, wogonin, wogonoside, scutellarin, and Oroxylin A.
Collapse
|
48
|
Bussmann RW. The globalization of traditional medicine in northern peru: from shamanism to molecules. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2013; 2013:291903. [PMID: 24454490 PMCID: PMC3888705 DOI: 10.1155/2013/291903] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/22/2013] [Indexed: 11/18/2022]
Abstract
Northern Peru represents the center of the Andean "health axis," with roots going back to traditional practices of Cupisnique culture (1000 BC). For more than a decade of research, semistructured interviews were conducted with healers, collectors, and sellers of medicinal plants. In addition, bioassays were carried out to evaluate the efficacy and toxicity of plants found. Most of the 510 species encountered were native to Peru (83%). Fifty percent of the plants used in colonial times have disappeared from the pharmacopoeia. Market vendors specialized either on common and exotic plants, plants for common ailments, and plants only used by healers or on plants with magical purposes. Over 974 preparations with up to 29 different ingredients were used to treat 164 health conditions. Almost 65% of the medicinal plants were applied in these mixtures. Antibacterial activity was confirmed in most plants used for infections. Twenty-four percent of the aqueous extracts and 76% of the ethanolic extracts showed toxicity. Traditional preparation methods take this into account when choosing the appropriate solvent for the preparation of a remedy. The increasing demand for medicinal species did not increase the cultivation of medicinal plants. Most species are wild collected, causing doubts about the sustainability of trade.
Collapse
Affiliation(s)
- Rainer W. Bussmann
- William L. Brown Center, Missouri Botanical Garden, P.O. Box 299, St. Louis, MO 63166-0299, USA
| |
Collapse
|
49
|
Zhu HL, Wan JB, Wang YT, Li BC, Xiang C, He J, Li P. Medicinal compounds with antiepileptic/anticonvulsant activities. Epilepsia 2013; 55:3-16. [DOI: 10.1111/epi.12463] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2013] [Indexed: 01/21/2023]
Affiliation(s)
- Hui-Ling Zhu
- State Key Laboratory of Quality Research in Chinese Medicine; Institute of Chinese Medical Sciences; University of Macau; Macao China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine; Institute of Chinese Medical Sciences; University of Macau; Macao China
| | - Yi-Tao Wang
- State Key Laboratory of Quality Research in Chinese Medicine; Institute of Chinese Medical Sciences; University of Macau; Macao China
| | - Bao-Cai Li
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming China
| | - Cheng Xiang
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming China
| | - Jing He
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming China
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine; Institute of Chinese Medical Sciences; University of Macau; Macao China
| |
Collapse
|
50
|
Kim MS, Ham SH, Kim JH, Shin JE, Oh J, Kim TW, Yun HI, Lim JH, Jang BS, Cho JH. Single-dose oral toxicity of fermented scutellariae radix extract in rats and dogs. Toxicol Res 2013; 28:263-8. [PMID: 24278619 PMCID: PMC3834431 DOI: 10.5487/tr.2012.28.4.263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 11/16/2012] [Accepted: 11/26/2012] [Indexed: 11/23/2022] Open
Abstract
The aim of this study was to investigate the acute oral toxicity of fermented Scutellariae Radix (JKTMHGu- 100) in rats and dogs. JKTM-HGu-100 was orally administered at a dose of 2,000 mg/kg in Sprague-Dawley rats. An escalating single-dose oral toxicity test in beagle dogs was performed at doses of 500, 1000, and 2000 mg/kg with 4-day intervals. Clinical signs, changes in body weight, mortality, and necropsy findings were examined for 2 weeks following oral administration. No toxicological changes related to the test substance nor mortality was observed after administration of a single oral dose of JKTM-HGu-100 in rats or dogs. Therefore, the approximate lethal dose (LD) for oral administration of JKTMHGu-100 in rats was considered to be over 2,000 mg/kg, and the maximum tolerance doses (MTDs) in rats and dogs were also estimated to be over 2,000 mg/kg. These results indicate that JKTM-HGu-100 shows no toxicity in rodents or non-rodents at doses of 2,000 mg/kg or less.
Collapse
Affiliation(s)
- Myoung-Seok Kim
- Jeollanamdo Development Institute of Traditional Korean Medicine, Jangheung, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|