1
|
Yang Y, Liu Y, Cheng Y, He H, Liang A, Pan Z, Liu Y, Chen Z. Multi-omics and experimental analysis unveil the key components in Scutellaria baicalensis Georgi to alleviate hepatic fibrosis via regulating cPLA2-mediated arachidonic acid metabolism. J Transl Med 2024; 22:1138. [PMID: 39716274 DOI: 10.1186/s12967-024-05955-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/07/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND Scutellaria baicalensis Georgi, a traditional Chinese herb, is known for its various biological effects, including antibacterial, anti-inflammatory, antioxidative, and antitumor properties. However, the function and mechanisms of methanol extract of Scutellaria baicalensis Georgi (MESB) in treating hepatic fibrosis remain unclear. METHODS This study utilized a CCl4-induced mouse model of hepatic fibrosis to assess the effects of MESB through histopathological analysis and serum tests. The anti-fibrosis mechanism of MESB was investigated using qPCR, Western blotting, RNA interference, proteomics, and metabolomics. Spatial metabolomics identified key components of MESB in liver tissue, while molecular docking determined their targets. RESULTS Treatment with MESB alleviated hepatic pathological changes and reversed hepatic fibrosis in the CCl4-induced models, as evidenced by decreased collagen fibers deposition, reduced expression of hepatic fibrosis markers COL1A1, FN, and PAI-1, and lowered serum levels of AST and ALT. In vitro, MESB inhibited the proliferation of LX-2 cells and the expression of hepatic fibrosis markers. Furthermore, MESB intervention modulated various pathways, particularly those involved in metabolic pathways. Subsequent metabolomics analysis demonstrated that MESB disrupted glycerophospholipid metabolism and suppressed arachidonic acid metabolism. MESB downregulated the expression of cPLA2 in LX-2 cells, leading to decreased production of arachidonic acid and its downstream inflammatory mediators. Meanwhile, MESB inhibited the expression of cPLA2 and its downstream NF-κB pathway in the liver tissues of models induced by CCl4. Additionally, silencing cPLA2 markedly reduced the expressions of COL1A1, FN, and PAI-1. Spatial metabolomics analysis confirmed the penetration of baicalein, wogonin and wogonoside into liver tissue. Further results indicated that baicalein and wogonin inhibited the expression of cPLA2, while baicalin and wogonoside do not exhibit this effect. Moreover, molecular docking suggested that baicalein and wogonin possess the potential to directly interact with cPLA2. CONCLUSION This study reveals that MESB is crucial in preventing hepatic fibrosis via the cPLA2-mediated arachidonic acid metabolic pathway, highlighting its key active components as potential drugs for fibrosis treatment.
Collapse
Affiliation(s)
- Yunheng Yang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yi Liu
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yujie Cheng
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Honglin He
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Ailing Liang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Zheng Pan
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yuanyuan Liu
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China.
| | - Zhiwei Chen
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China.
- College of Traditional Chinese Medicine, Chongqing University of Chinese Medicine, Chongqing, 402760, China.
| |
Collapse
|
2
|
Aslan C, Eraslan G. Effect of baicalin and baicalin-bovine serum albumin nanoparticle against bendiocarb exposure in rats. Toxicol Res (Camb) 2024; 13:tfae134. [PMID: 39233847 PMCID: PMC11369930 DOI: 10.1093/toxres/tfae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/17/2024] [Indexed: 09/06/2024] Open
Abstract
Background The aim of the study was to investigate the effect of baicalin and baicalin-bovine serum albumin nanoparticles against bendiocarb exposure in rats. Methods Eighty male Wistar Albino rats aged 4-6 weeks were used. Corn oil (vehicle) alone was administered to the control group. To other groups, BSA-nanoparticle equivalent to that binding baicalin at a dose of 20 mg/kg.bw, 20 mg/kg.bw baicalin, baicalin-BSA nanoparticle equivalent to that binding baicalin at a dose of 20 mg/kg.bw, 4 mg/kg.bw bendiocarb, combination of 4 mg/kg.bw bendiocarb and 20 mg/kg.bw baicalin, combination of 4 mg/kg.bw bendiocarb and BSA-nanoparticle equivalent to that binding baicalin at a dose of 20 mg/kg.bw and combination of 4 mg/kg.bw bendiocarb and baicalin-BSA nanoparticle equivalent to that binding baicalin at a dose of 20 mg/kg.bw was administered to animals by oral gavage with vehicle for 21 days, after which organs (liver, kidney, brain, testes, heart and lung) and blood samples were collected. Blood/tissue oxidative stress (MDA, NO, GSH, SOD, CAT, GSH-Px, GR, GST, G6PD), serum biochemical (glucose, triglyceride, cholesterol, BUN, creatinine, uric acid, total protein, albumin, LDH, AST, ALT, ALP and pseudocholinesterase) and liver and kidney apoptotic/anti-apoptotic (caspase 3, 9, p53, Bcl-2 and Bax) parameters were evaluated. Body weights/organ weights and plasma/liver bendiocarb analyses were obtained. Conclusion While bendiocarb administered alone caused oxidative stress/tissue damage, baicalin and baicalin-BSA nanoparticle showed a mitigating effect. However, this effect was more pronounced in the baicalin-BSA nanoparticle group. BSA-nanoparticle alone did not have a significant effect in reversing the adverse effect caused by bendiocarb.
Collapse
Affiliation(s)
- Coşkun Aslan
- Derinkuyu Emineana and Yaşar Ertaş Agriculture and Livestock Vocational School, Nevşehir Hacı Bektaş Veli University, Nevşehir, 50700, Turkey
| | - Gökhan Eraslan
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, 38039, Turkey
| |
Collapse
|
3
|
Niu C, Zhang J, Okolo PI. The possible pathogenesis of liver fibrosis: therapeutic potential of natural polyphenols. Pharmacol Rep 2024; 76:944-961. [PMID: 39162986 DOI: 10.1007/s43440-024-00638-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/21/2024]
Abstract
Liver fibrosis is the formation of a fibrous scar resulting from chronic liver injury, independently from etiology. Although many of the mechanical details remain unknown, activation of hepatic stellate cells (HSCs) is a central driver of liver fibrosis. Extracellular mechanisms such as apoptotic bodies, paracrine stimuli, inflammation, and oxidative stress are critical in activating HSCs. The potential for liver fibrosis to reverse after removing the causative agent has heightened interest in developing antifibrotic therapies. Polyphenols, the secondary plant metabolites, have gained attention because of their health-beneficial properties, including well-recognized antioxidant and anti-inflammatory activities, in the setting of liver fibrosis. In this review, we present an overview of the mechanisms underlying liver fibrosis with a specific focus on the activation of resident HSCs. We highlight the therapeutic potential and promising role of natural polyphenols to mitigate liver fibrosis pathogenesis, focusing on HSCs activation. We also discuss the translational gap from preclinical findings to clinical treatments involved in natural polyphenols in liver fibrosis.
Collapse
Affiliation(s)
- Chengu Niu
- Internal medicine residency program, Rochester General Hospital, 1425 Portland Avenue, Rochester, NY, 14621, USA.
| | - Jing Zhang
- Rainier Springs Behavioral Health Hospital, 2805 NE 129th St, Vancouver, WA, 98686, USA
| | - Patrick I Okolo
- Division of Gastroenterology, Rochester General Hospital, Rochester, NY, 14621, USA
| |
Collapse
|
4
|
Sun Z, Wei Y, Xu Y, Jiao J, Duan X. The use of traditional Chinese medicine in the treatment of non-alcoholic fatty liver disease: A review. PHARMACOLOGICAL RESEARCH - MODERN CHINESE MEDICINE 2024; 12:100475. [DOI: 10.1016/j.prmcm.2024.100475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Ciceu A, Fenyvesi F, Hermenean A, Ardelean S, Dumitra S, Puticiu M. Advancements in Plant-Based Therapeutics for Hepatic Fibrosis: Molecular Mechanisms and Nanoparticulate Drug Delivery Systems. Int J Mol Sci 2024; 25:9346. [PMID: 39273295 PMCID: PMC11394827 DOI: 10.3390/ijms25179346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Chronic liver injuries often lead to hepatic fibrosis, a condition characterized by excessive extracellular matrix accumulation and abnormal connective tissue hyperplasia. Without effective treatment, hepatic fibrosis can progress to cirrhosis or hepatocellular carcinoma. Current treatments, including liver transplantation, are limited by donor shortages and high costs. As such, there is an urgent need for effective therapeutic strategies. This review focuses on the potential of plant-based therapeutics, particularly polyphenols, phenolic acids, and flavonoids, in treating hepatic fibrosis. These compounds have demonstrated anti-fibrotic activities through various signaling pathways, including TGF-β/Smad, AMPK/mTOR, Wnt/β-catenin, NF-κB, PI3K/AKT/mTOR, and hedgehog pathways. Additionally, this review highlights the advancements in nanoparticulate drug delivery systems that enhance the pharmacokinetics, bioavailability, and therapeutic efficacy of these bioactive compounds. Methodologically, this review synthesizes findings from recent studies, providing a comprehensive analysis of the mechanisms and benefits of these plant-based treatments. The integration of novel drug delivery systems with plant-based therapeutics holds significant promise for developing effective treatments for hepatic fibrosis.
Collapse
Affiliation(s)
- Alina Ciceu
- "Aurel Ardelean" Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania
| | - Ferenc Fenyvesi
- Department of Molecular and Nanopharmaceutics, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary
| | - Anca Hermenean
- "Aurel Ardelean" Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania
| | - Simona Ardelean
- Faculty of Pharmacy, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania
| | - Simona Dumitra
- Faculty of Medicine, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania
| | - Monica Puticiu
- Faculty of Medicine, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania
| |
Collapse
|
6
|
Zhao B, Liu K, Liu X, Li Q, Li Z, Xi J, Xie F, Li X. Plant-derived flavonoids are a potential source of drugs for the treatment of liver fibrosis. Phytother Res 2024; 38:3122-3145. [PMID: 38613172 DOI: 10.1002/ptr.8193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/28/2024] [Accepted: 03/10/2024] [Indexed: 04/14/2024]
Abstract
Liver fibrosis is a dynamic pathological process that can be triggered by any chronic liver injury. If left unaddressed, it will inevitably progress to the severe outcomes of liver cirrhosis or even hepatocellular carcinoma. In the past few years, the prevalence and fatality of hepatic fibrosis have been steadily rising on a global scale. As a result of its intricate pathogenesis, the quest for pharmacological interventions targeting liver fibrosis has remained a formidable challenge. Currently, no pharmaceuticals are exhibiting substantial clinical efficacy in the management of hepatic fibrosis. Hence, it is of utmost importance to expedite the development of novel therapeutics for the treatment of this condition. Various research studies have revealed the ability of different natural flavonoid compounds to alleviate or reverse hepatic fibrosis through a range of mechanisms, which are related to the regulation of liver inflammation, oxidative stress, synthesis and secretion of fibrosis-related factors, hepatic stellate cells activation, and proliferation, and extracellular matrix synthesis and degradation by these compounds. This review summarizes the progress of research on different sources of natural flavonoids with inhibitory effects on liver fibrosis over the last decades. The anti-fibrotic effects of natural flavonoids have been increasingly studied, making them a potential source of drugs for the treatment of liver fibrosis due to their good efficacy and biosafety.
Collapse
Affiliation(s)
- Bolin Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kai Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xing Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiuxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhibei Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingjing Xi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fan Xie
- Hospital of Chengdu University of Traditional Chinese Medicine 610032, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
7
|
Huang W, Qian Y, Lin J, Wang F, Kong X, Tan W. Baicalein alleviates intrahepatic cholestasis by regulating bile acid metabolism via an FXR-dependent manner. Biochem Biophys Res Commun 2024; 705:149670. [PMID: 38442444 DOI: 10.1016/j.bbrc.2024.149670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 03/07/2024]
Abstract
Cholestasis is characterized by impaired bile secretion and flow, leading to the accumulation of toxic bile acids in the liver, further causing inflammatory reaction, fibrosis, and ultimately liver transplantation. Although first-line clinical agents such as Ursodeoxycholic acid (UDCA) and Obeticholic acid (OCA) are available, serious side effects still exist. Therefore, pharmacologic treatment of cholestatic liver disease remains challenging. Here, we used a murine model of cholestasis treated with or without intraperitoneal injection of baicalein and found that baicalein could attenuate 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet-induced inflammatory response, ductular reaction, liver fibrosis, and bile acid metabolism disorders. Furthermore, the therapeutic effect of baicalein was hampered in the presence of Guggulsterone (GS), an Farnesoid X receptor (FXR) antagonist. These results indicated that baicalein alleviated DDC diet-induced cholestatic liver injury in an FXR-dependent manner.
Collapse
Affiliation(s)
- Weifan Huang
- Central Laboratory, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Yihan Qian
- Central Laboratory, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Jiacheng Lin
- Central Laboratory, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Fang Wang
- Central Laboratory, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Xiaoni Kong
- Central Laboratory, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China.
| | - Weifeng Tan
- Hepatobiliary Surgery Center, Tongji Hospital of Tongji University, Shanghai, China.
| |
Collapse
|
8
|
Liang GQ, Mu W, Jiang CB. Baicalein improves renal interstitial fibrosis by inhibiting the ferroptosis in vivo and in vitro. Heliyon 2024; 10:e28954. [PMID: 38601597 PMCID: PMC11004807 DOI: 10.1016/j.heliyon.2024.e28954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024] Open
Abstract
Evidence indicates that Baicalein can ameliorate renal interstitial fibrosis by inducing myofibroblast apoptosis and inhibit the RLS3-induced ferroptosis in melanocytes. However, the relationship between renal interstitial fibrosis and anti-ferroptosis affected by Baicalein remains unclear. In our study, the anti-fibrosis and anti-ferroptosis effects of Baicalein were assessed in a rat model induced by the UUO method in vivo, and the effects of Baicalein on Erastin-induced ferroptosis of renal MPC-5 cells were examined by Western blot of fibrosis-related and ferroptosis-related proteins in vitro. In the UUO-induced rat model, Baicalein decreased kidney weight loss, improved renal function assessed the biomarks of urinary albumin excretion, serum creatine, and BUN levels, and reduced renal tubular injury. Furthermore, Baicalein inhibited renal ferroptosis by reducing ROS and MDA levels and increasing SOD and GSH levels in the UUO rat model. In addition, Baicalein potently reduced the expression of fibrosis-related proteins such as TGF-β1, a-SMA, and Smad-2 to prevent renal interstitial fibrosis, and increased the expression of ferroptosis-related proteins such as SLC7A11, GPX4, and FTH to inhibit ferroptosis both in vitro and in vivo. Taken together, Baicalein exerts anti-fibrosis activity by reducing the ferroptosis response on the UUO-induced rat model and renal MPC5 cells. Therefore, Baicalein, as a novel therapeutic method on kidney diseases with strong activity in suppressing ferroptosis, could be a potential alternative treatment for renal interstitial fibrosis.
Collapse
Affiliation(s)
- Guo-qiang Liang
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
- Suzhou Academy of Wumen Chinese Medicine, Suzhou, China
| | - Wei Mu
- Department of Pharmacy and Clinical Pharmacy, Precision Medicine Center, 904th Hospital of PLA, Wuxi, China
| | - Chun-bo Jiang
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
- Department of Nephrology, Suzhou Hospital of Traditional Chinese Medicine, Suzhou, China
| |
Collapse
|
9
|
Ji-hong Y, Yu M, Ling-hong Y, Jing-jing G, Ling-li X, Lv W, Yong-mei J. Baicalein attenuates bleomycin-induced lung fibroblast senescence and lung fibrosis through restoration of Sirt3 expression. PHARMACEUTICAL BIOLOGY 2023; 61:288-297. [PMID: 36815239 PMCID: PMC9970214 DOI: 10.1080/13880209.2022.2160767] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 11/09/2022] [Accepted: 12/15/2022] [Indexed: 06/18/2023]
Abstract
CONTEXT Fibroblast senescence was reported to contribute to the pathological development of idiopathic pulmonary fibrosis (IPF), and baicalein is reported to attenuate IPF. OBJECTIVE This study explores whether baicalein attenuates lung fibrosis by regulating lung fibroblast senescence. MATERIALS AND METHODS Institute of Cancer Research (ICR) mice were randomly assigned to control, bleomycin (BLM), baicalein and BLM + baicalein groups. Lung fibrosis was established by a single intratracheal dose of BLM (3 mg/kg). The baicalein group received baicalein orally (100 mg/kg/day). Sirtuin 3 (Sirt3) siRNA (50 μg) was injected through the tail vein once a week for 2 weeks to explore its effect on the anti-pulmonary fibrosis of baicalein. RESULTS BLM-treated mice exhibited obvious lung fibrosis and fibroblast senescence by showing increased levels of collagen deposition (27.29% vs. 4.14%), hydroxyproline (208.05 vs. 40.16 ng/mg), collagen I (25.18 vs. 9.15 μg/mg), p53, p21, p16, MCP-1, PAI-1, TNF-α, MMP-10 and MMP-12 in lung tissues, which were attenuated by baicalein. Baicalein also mitigated BLM-mediated activation of TGF-β1/Smad signalling pathway. Baicalein restored the BLM-induced downregulation of Sirt3 expression in lung tissues and silencing of Sirt3 abolished the inhibitory role of baicalein against BLM-induced lung fibrosis, fibroblast senescence and activation of TGF-β1/Smad signalling pathway. CONCLUSIONS Baicalein preserved the BLM-induced downregulation of lung Sirt3 expression, and thus the suppression of TGF-β1/Smad signalling pathway and lung fibrosis, which might provide an experimental basis for treatment of IPF.
Collapse
Affiliation(s)
- Yuan Ji-hong
- Department of Acute and Critical Care, Shanghai Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ma Yu
- Department of Anesthesiology, Shanghai Baoshan Traditional Chinese Medicine-integrated Hospital, Shanghai, China
| | - Yuan Ling-hong
- Department of Acute and Critical Care, Changxing Branch of Xinhua Hospital Affiliated to School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Gong Jing-jing
- Department of Nephrology, Shanghai Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu Ling-li
- Department of Acute and Critical Care, Shanghai Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wang Lv
- Department of Emergency and Critical Care Medicine, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jin Yong-mei
- Department of Nursing, Shanghai Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
10
|
Sabir U, Gu HM, Zhang DW. Extracellular matrix turnover: phytochemicals target and modulate the dual role of matrix metalloproteinases (MMPs) in liver fibrosis. Phytother Res 2023; 37:4932-4962. [PMID: 37461256 DOI: 10.1002/ptr.7959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/05/2023] [Accepted: 07/02/2023] [Indexed: 11/10/2023]
Abstract
Extracellular matrix (ECM) resolution by matrix metalloproteinases (MMPs) is a well-documented mechanism. MMPs play a dual and complex role in modulating ECM degradation at different stages of liver fibrosis, depending on the timing and levels of their expression. Increased MMP-1 combats disease progression by cleaving the fibrillar ECM. Activated hepatic stellate cells (HSCs) increase expression of MMP-2, -9, and -13 in different chemicals-induced animal models, which may alleviate or worsen disease progression based on animal models and the stage of liver fibrosis. In the early stage, elevated expression of certain MMPs may damage surrounding tissue and activate HSCs, promoting fibrosis progression. At the later stage, downregulation of MMPs can facilitate ECM accumulation and disease progression. A number of phytochemicals modulate MMP activity and ECM turnover, alleviating disease progression. However, the effects of phytochemicals on the expression of different MMPs are variable and may depend on the disease models and stage, and the dosage, timing and duration of phytochemicals used in each study. Here, we review the most recent advances in the role of MMPs in the effects of phytochemicals on liver fibrogenesis, which indicates that further studies are warranted to confirm and define the potential clinical efficacy of these phytochemicals.
Collapse
Affiliation(s)
- Usman Sabir
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Hong-Mei Gu
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Da-Wei Zhang
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
11
|
Lu X, Wu K, Jiang S, Li Y, Wang Y, Li H, Li G, Liu Q, Zhou Y, Chen W, Mao H. Therapeutic mechanism of baicalein in peritoneal dialysis-associated peritoneal fibrosis based on network pharmacology and experimental validation. Front Pharmacol 2023; 14:1153503. [PMID: 37266145 PMCID: PMC10229821 DOI: 10.3389/fphar.2023.1153503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/03/2023] [Indexed: 06/03/2023] Open
Abstract
Baicalein (5,6,7-trihydroxyflavone) is a traditional Chinese medicine with multiple pharmacological and biological activities including anti-inflammatory and anti-fibrotic effects. However, whether baicalein has a therapeutic impact on peritoneal fibrosis has not been reported yet. In the present study, network pharmacology and molecular docking approaches were performed to evaluate the role and the potential mechanisms of baicalein in attenuating peritoneal dialysis-associated peritoneal fibrosis. The results were validated in both animal models and the cultured human mesothelial cell line. Nine intersection genes among baicalein targets and the human peritoneum RNA-seq dataset including four encapsulating peritoneal sclerosis samples and four controls were predicted by network analysis. Among them, MMP2, BAX, ADORA3, HIF1A, PIM1, CA12, and ALOX5 exhibited higher expression in the peritoneum with encapsulating peritoneal sclerosis compared with those in the control, which might be crucial targets of baicalein against peritoneal fibrosis. Furthermore, KEGG and GO enrichment analyses suggested that baicalein played an anti-peritoneal fibrosis role through the regulating cell proliferation, inflammatory response, and AGE-RAGE signaling pathway. Moreover, molecular docking analysis revealed a strong potential binding between baicalein and MMP2, which was consistent with the predictive results. Importantly, using a mouse model of peritoneal fibrosis by intraperitoneally injecting 4.25% glucose dialysate, we found that baicalein treatment significantly attenuated peritoneal fibrosis, as evident by decreased collagen deposition, protein expression of α-SMA and fibronectin, and peritoneal thickness, at least, by reducing the expression of MMP2, suggesting that baicalein may have therapeutic potential in suppressing peritoneal dialysis-related fibrosis.
Collapse
Affiliation(s)
- Xiaohui Lu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology, Guangdong Provincial Key Laboratory of Nephrology, Sun Yat-sen University, Guangzhou, China
| | - Kefei Wu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology, Guangdong Provincial Key Laboratory of Nephrology, Sun Yat-sen University, Guangzhou, China
| | - Simin Jiang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology, Guangdong Provincial Key Laboratory of Nephrology, Sun Yat-sen University, Guangzhou, China
| | - Yi Li
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology, Guangdong Provincial Key Laboratory of Nephrology, Sun Yat-sen University, Guangzhou, China
| | - Yating Wang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology, Guangdong Provincial Key Laboratory of Nephrology, Sun Yat-sen University, Guangzhou, China
| | - Hongyu Li
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology, Guangdong Provincial Key Laboratory of Nephrology, Sun Yat-sen University, Guangzhou, China
| | - Guanglan Li
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology, Guangdong Provincial Key Laboratory of Nephrology, Sun Yat-sen University, Guangzhou, China
| | - Qinghua Liu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology, Guangdong Provincial Key Laboratory of Nephrology, Sun Yat-sen University, Guangzhou, China
| | - Yi Zhou
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology, Guangdong Provincial Key Laboratory of Nephrology, Sun Yat-sen University, Guangzhou, China
| | - Wei Chen
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology, Guangdong Provincial Key Laboratory of Nephrology, Sun Yat-sen University, Guangzhou, China
| | - Haiping Mao
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology, Guangdong Provincial Key Laboratory of Nephrology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
12
|
Singh S, Sharma N, Shukla S, Behl T, Gupta S, Anwer MK, Vargas-De-La-Cruz C, Bungau SG, Brisc C. Understanding the Potential Role of Nanotechnology in Liver Fibrosis: A Paradigm in Therapeutics. Molecules 2023; 28:molecules28062811. [PMID: 36985782 PMCID: PMC10057127 DOI: 10.3390/molecules28062811] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
The liver is a vital organ that plays a crucial role in the physiological operation of the human body. The liver controls the body's detoxification processes as well as the storage and breakdown of red blood cells, plasma protein and hormone production, and red blood cell destruction; therefore, it is vulnerable to their harmful effects, making it more prone to illness. The most frequent complications of chronic liver conditions include cirrhosis, fatty liver, liver fibrosis, hepatitis, and illnesses brought on by alcohol and drugs. Hepatic fibrosis involves the activation of hepatic stellate cells to cause persistent liver damage through the accumulation of cytosolic matrix proteins. The purpose of this review is to educate a concise discussion of the epidemiology of chronic liver disease, the pathogenesis and pathophysiology of liver fibrosis, the symptoms of liver fibrosis progression and regression, the clinical evaluation of liver fibrosis and the research into nanotechnology-based synthetic and herbal treatments for the liver fibrosis is summarized in this article. The herbal remedies summarized in this review article include epigallocathechin-3-gallate, silymarin, oxymatrine, curcumin, tetrandrine, glycyrrhetinic acid, salvianolic acid, plumbagin, Scutellaria baicalnsis Georgi, astragalosides, hawthorn extract, and andrographolides.
Collapse
Affiliation(s)
- Sukhbir Singh
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133207, Haryana, India
| | - Neelam Sharma
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133207, Haryana, India
| | - Saurabh Shukla
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Tapan Behl
- School of Health Sciences &Technology, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India
| | - Sumeet Gupta
- Department of Pharmacology, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133207, Haryana, India
| | - Md Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Celia Vargas-De-La-Cruz
- Department of Pharmacology, Bromatology and Toxicology, Faculty of Pharmacy and Biochemistry, Universidad Nacional Mayor de San Marcos, Lima 150001, Peru
- E-Health Research Center, Universidad de Ciencias y Humanidades, Lima 15001, Peru
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| | - Cristina Brisc
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| |
Collapse
|
13
|
Peng B, Hu Q, He R, Hou H, Lian D, Chen Y, Li H, Song L, Gao Y, Chen T, Zhang G, Li J. Baicalein alleviates fibrosis and inflammation in systemic sclerosis by regulating B-cell abnormalities. BMC Complement Med Ther 2023; 23:62. [PMID: 36810081 PMCID: PMC9942410 DOI: 10.1186/s12906-023-03885-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 02/13/2023] [Indexed: 02/23/2023] Open
Abstract
BACKGROUND Systemic sclerosis (SSc; also known as "scleroderma") is an autoimmune disorder characterized by extensive fibrosis, vascular changes, and immunologic dysregulation. Baicalein (phenolic flavonoid derived from Scutellaria baicalensis Georgi) has been used to treat the pathological processes of various fibrotic and inflammatory diseases. In this study, we investigated the effect of baicalein on the major pathologic characteristics of SSc: fibrosis, B-cell abnormalities, and inflammation. METHODS The effect of baicalein on collagen accumulation and expression of fibrogenic markers in human dermal fibroblasts were analyzed. SSc mice were produced by injecting bleomycin and treated with baicalein (25, 50, or 100 mg/kg). The antifibrotic features of baicalein and its mechanisms were investigated by histologic examination, hydroxyproline assay, enzyme-linked immunosorbent assay, western blotting and flow cytometry. RESULTS Baicalein (5-120 μM) significantly inhibited the accumulation of the extracellular matrix and fibroblast activation in transforming growth factor (TGF)-β1- and platelet derived growth factor (PDGF)-induced human dermal fibroblasts, as evidenced by abrogated deposition of total collagen, decreased secretion of soluble collagen, reduced collagen contraction capability and downregulation of various fibrogenesis molecules. In a bleomycin-induced model of dermal fibrosis in mice, baicalein (25-100 mg/kg) restored dermal architecture, ameliorated inflammatory infiltrates, and attenuated dermal thickness and collagen accumulation in a dose-dependent manner. According to flow cytometry, baicalein reduced the proportion of B cells (B220+ lymphocytes) and increased the proportion of memory B cells (B220+CD27+ lymphocytes) in the spleens of bleomycin-induced mice. Baicalein treatment potently attenuated serum levels of cytokines (interleukin (IL)-1β, IL-2, IL-4, IL-6, IL-17A, tumor necrosis factor-α), chemokines (monocyte chemoattractant protein-1, macrophage inflammatory protein-1 beta) and autoantibodies (anti-scleroderma 70 (Scl-70), anti-polymyositis-scleroderma (PM-Scl), anti-centromeres, anti-double stranded DNA (dsDNA). In addition, baicalein treatment can significantly inhibit the activation of TGF-β1 signaling in dermal fibroblasts and bleomycin-induce mice of SSc, evidenced by reducing the expression of TGF-β1 and IL-11, as well as inhibiting both small mother against decapentaplegic homolog 3 (SMAD3) and extracellular signal-related kinase (ERK) activation. CONCLUSIONS These findings suggest that baicalein has therapeutic potential against SSc, exerting modulating B-cell abnormalities, anti-inflammatory effects, and antifibrosis.
Collapse
Affiliation(s)
- Bo Peng
- grid.506261.60000 0001 0706 7839Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 People’s Republic of China
| | - Qin Hu
- grid.28703.3e0000 0000 9040 3743College of Life Sciences and Bio-Engineering, Beijing University of Technology, Beijing, 100024 People’s Republic of China
| | - Rong He
- grid.506261.60000 0001 0706 7839Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 People’s Republic of China
| | - Hongping Hou
- grid.506261.60000 0001 0706 7839Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 People’s Republic of China
| | - Dongyin Lian
- grid.506261.60000 0001 0706 7839Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 People’s Republic of China
| | - Ying Chen
- grid.506261.60000 0001 0706 7839Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 People’s Republic of China
| | - Han Li
- grid.506261.60000 0001 0706 7839Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 People’s Republic of China
| | - Ling Song
- grid.506261.60000 0001 0706 7839Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 People’s Republic of China
| | - Yunhang Gao
- grid.506261.60000 0001 0706 7839Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 People’s Republic of China
| | - Tengfei Chen
- grid.506261.60000 0001 0706 7839Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 People’s Republic of China
| | - Guangping Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China.
| | - Jianrong Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China.
| |
Collapse
|
14
|
Investigation of the Therapeutic Effect of Total Alkaloids of Corydalis saxicola Bunting on CCl 4-Induced Liver Fibrosis in Rats by LC/MS-Based Metabolomics Analysis and Network Pharmacology. Metabolites 2022; 13:metabo13010009. [PMID: 36676934 PMCID: PMC9866371 DOI: 10.3390/metabo13010009] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Liver fibrosis is a pathological result of liver injury that usually leads to a pathophysiological wound healing response. The total alkaloids of Corydalis saxicola Bunting (TACS) have been used for hepatoprotective effects on the liver. However, its exact therapeutic mechanisms of liver fibrosis are not yet well understood. To explore the potential anti-fibrosis mechanism of TACS, metabolomics coupled with network pharmacology were applied to reveal the underlying mechanisms. Ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) combined with multivariate statistical analyses were performed to estimate changes in metabolic profiles. As a result, a total of 23 metabolites in rats with liver fibrosis were altered; of these, 11 had been downregulated and 12 had been upregulated compared with the control group. After TACS treatment, the levels of 13 metabolites were significantly restored compared with the CCl4-treated group, of which 4 metabolites were up-regulated and 9 metabolites were down-regulated. Many of these metabolites are involved in the bile acid metabolism, glutathione metabolism, tryptophan metabolism and purine metabolism. Then, three key targets, including cytochrome P450 family1 subfamily A member 1 (CYP1A1), ornithine decarboxylase 1 (OCD1) and monoamine oxidase Type B (MAOB) were predicted as potential therapeutic targets of TACS against liver fibrosis through network pharmacology analysis. Finally, palmatine, tetrahydropalmatine and dehydrocavidine were screened as potential active compounds responsible for the anti-fibrosis effect of TACS by molecular docking analysis. This study reveals that TACS exerted anti-fibrosis effects by regulating the liver metabolic pathway with multiple components and multiple targets, which is helpful to further clarify the hepatoprotective mechanisms of natural plant extracts.
Collapse
|
15
|
Tripathi SS, Kumar R, Bissoyi A, Rizvi SI. Baicalein maintains redox balance in experimental hyperlipidemic rats. Arch Physiol Biochem 2022; 128:1156-1164. [PMID: 32393069 DOI: 10.1080/13813455.2020.1760890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Context: An altered lipid profile may lead to the development of CVD.Objective: We evaluated the protective role of baicalein (BAC) against lipidemic and oxidative stress in hyperlipidemic challenged Wistar rats.Materials and methods: Male Wistar rats were given a high-fat diet (HFD) (suspension (w/v) of 0.5% cholesterol, 3% coconut oil and 0.25% cholic acid for 30 days) to create a hyperlipidemic model. BAC was supplemented to experimental rats (80 mg/kg body weight). Biomarkers of oxidative stress including ROS, FRAP, GSH, PMRS, AGE, MDA, PCO, AOPP, and other parameters (Paraoxonase-1, SGOT, SGPT) including TNF-α and IL-6, were estimated in blood.Results: Oxidative stress and inflammatory markers were significantly increased in the HFD treated group. BAC treatment protected rats from HFD mediated alterations.Discussion & conclusion: Our results indicate that baicalein provides protection against hyperlipidemic stress and redox imbalance induced by HFD in rats.
Collapse
Affiliation(s)
| | - Raushan Kumar
- Department of Biochemistry, University of Allahabad, Allahabad, India
| | - Akalabya Bissoyi
- Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot, Israel
| | | |
Collapse
|
16
|
Li WQ, Liu WH, Qian D, Liu J, Zhou SQ, Zhang L, Peng W, Su L, Zhang H. Traditional Chinese medicine: An important source for discovering candidate agents against hepatic fibrosis. Front Pharmacol 2022; 13:962525. [PMID: 36081936 PMCID: PMC9445813 DOI: 10.3389/fphar.2022.962525] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/28/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatic fibrosis (HF) refers to the pathophysiological process of connective tissue dysplasia in the liver caused by various pathogenic factors. Nowadays, HF is becoming a severe threat to the health of human being. However, the drugs available for treating HF are limited. Currently, increasing natural agents derived from traditional Chinese medicines (TCMs) have been found to be beneficial for HF. A systemic literature search was conducted from PubMed, GeenMedical, Sci-Hub, CNKI, Google Scholar and Baidu Scholar, with the keywords of "traditional Chinese medicine," "herbal medicine," "natural agents," "liver diseases," and "hepatic fibrosis." So far, more than 76 natural monomers have been isolated and identified from the TCMs with inhibitory effect on HF, including alkaloids, flavones, quinones, terpenoids, saponins, phenylpropanoids, and polysaccharides, etc. The anti-hepatic fibrosis effects of these compounds include hepatoprotection, inhibition of hepatic stellate cells (HSC) activation, regulation of extracellular matrix (ECM) synthesis & secretion, regulation of autophagy, and antioxidant & anti-inflammation, etc. Natural compounds and extracts from TCMs are promising agents for the prevention and treatment of HF, and this review would be of great significance to development of novel drugs for treating HF.
Collapse
Affiliation(s)
- Wen-Qing Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wen-Hao Liu
- Department of Pharmacy, Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Die Qian
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shi-Qiong Zhou
- Hospital of Nursing, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Lei Zhang
- Department of Vascular Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Su
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Hong Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
17
|
Li HL, Shan SW, Stamer WD, Li KK, Chan HHL, Civan MM, To CH, Lam TC, Do CW. Mechanistic Effects of Baicalein on Aqueous Humor Drainage and Intraocular Pressure. Int J Mol Sci 2022; 23:ijms23137372. [PMID: 35806375 PMCID: PMC9266486 DOI: 10.3390/ijms23137372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 02/06/2023] Open
Abstract
Elevated intraocular pressure (IOP) is a major risk factor for glaucoma that results from impeded fluid drainage. The increase in outflow resistance is caused by trabecular meshwork (TM) cell dysfunction and excessive extracellular matrix (ECM) deposition. Baicalein (Ba) is a natural flavonoid and has been shown to regulate cell contraction, fluid secretion, and ECM remodeling in various cell types, suggesting the potential significance of regulating outflow resistance and IOP. We demonstrated that Ba significantly lowered the IOP by about 5 mmHg in living mice. Consistent with that, Ba increased the outflow facility by up to 90% in enucleated mouse eyes. The effects of Ba on cell volume regulation and contractility were examined in primary human TM (hTM) cells. We found that Ba (1–100 µM) had no effect on cell volume under iso-osmotic conditions but inhibited the regulatory volume decrease (RVD) by up to 70% under hypotonic challenge. In addition, Ba relaxed hTM cells via reduced myosin light chain (MLC) phosphorylation. Using iTRAQ-based quantitative proteomics, 47 proteins were significantly regulated in hTM cells after a 3-h Ba treatment. Ba significantly increased the expression of cathepsin B by 1.51-fold and downregulated the expression of D-dopachrome decarboxylase and pre-B-cell leukemia transcription factor-interacting protein 1 with a fold-change of 0.58 and 0.40, respectively. We suggest that a Ba-mediated increase in outflow facility is triggered by cell relaxation via MLC phosphorylation along with inhibiting RVD in hTM cells. The Ba-mediated changes in protein expression support the notion of altered ECM homeostasis, potentially contributing to a reduction of outflow resistance and thereby IOP.
Collapse
Affiliation(s)
- Hoi-lam Li
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong; (H.-l.L.); (S.W.S.); (K.-k.L.); (H.H.-l.C.); (C.-h.T.); (T.C.L.)
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong
| | - Sze Wan Shan
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong; (H.-l.L.); (S.W.S.); (K.-k.L.); (H.H.-l.C.); (C.-h.T.); (T.C.L.)
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong
- Research Centre for Chinese Medicine Innovation (RCMI), The Hong Kong Polytechnic University, Hong Kong
| | - W. Daniel Stamer
- Department of Ophthalmology, Duke University, Durham, NC 27708, USA;
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - King-kit Li
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong; (H.-l.L.); (S.W.S.); (K.-k.L.); (H.H.-l.C.); (C.-h.T.); (T.C.L.)
| | - Henry Ho-lung Chan
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong; (H.-l.L.); (S.W.S.); (K.-k.L.); (H.H.-l.C.); (C.-h.T.); (T.C.L.)
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong
- Research Centre for Chinese Medicine Innovation (RCMI), The Hong Kong Polytechnic University, Hong Kong
| | - Mortimer M. Civan
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Chi-ho To
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong; (H.-l.L.); (S.W.S.); (K.-k.L.); (H.H.-l.C.); (C.-h.T.); (T.C.L.)
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong
- Research Centre for Chinese Medicine Innovation (RCMI), The Hong Kong Polytechnic University, Hong Kong
| | - Thomas Chuen Lam
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong; (H.-l.L.); (S.W.S.); (K.-k.L.); (H.H.-l.C.); (C.-h.T.); (T.C.L.)
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong
- Research Centre for Chinese Medicine Innovation (RCMI), The Hong Kong Polytechnic University, Hong Kong
| | - Chi-wai Do
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong; (H.-l.L.); (S.W.S.); (K.-k.L.); (H.H.-l.C.); (C.-h.T.); (T.C.L.)
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong
- Research Centre for Chinese Medicine Innovation (RCMI), The Hong Kong Polytechnic University, Hong Kong
- Research Institute of Smart Ageing (RISA), The Hong Kong Polytechnic University, Hong Kong
- Correspondence:
| |
Collapse
|
18
|
Scutellaria baicalensis and its constituents baicalin and baicalein as antidotes or protective agents against chemical toxicities: a comprehensive review. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:1297-1329. [PMID: 35676380 DOI: 10.1007/s00210-022-02258-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/21/2022] [Indexed: 10/18/2022]
Abstract
Scutellaria baicalensis (SB), also known as the Chinese skullcap, has a long history of being used in Chinese medicine to treat a variety of conditions ranging from microbial infections to metabolic syndrome and malignancies. Numerous studies have reported that treatment with total SB extract or two main flavonoids found in its root and leaves, baicalin (BA) and baicalein (BE), can prevent or alleviate the detrimental toxic effects of exposure to various chemical compounds. It has been shown that BA and BE are generally behind the protective effects of SB against toxicants. This paper aimed to review the protective and therapeutic effects of SB and its main components BA and BE against chemical compounds that can cause intoxication after acute or chronic exposure and seriously affect different vital organs including the brain, heart, liver, and kidneys. In this review paper, we had a look into a total of 221 in vitro and in vivo studies from 1995 to 2021 from the scientific databases PubMed, Scopus, and Web of Science which reported protective or therapeutic effects of BA, BE, or SB against drugs and chemicals that one might be exposed to on a professional or accidental basis and compounds that are primarily used to simulate disease models. In conclusion, the protective effects of SB and its flavonoids can be mainly attributed to increase in antioxidants enzymes, inhibition of lipid peroxidation, reduction of inflammatory cytokines, and suppression of apoptosis pathway.
Collapse
|
19
|
Wang FD, Zhou J, Chen EQ. Molecular Mechanisms and Potential New Therapeutic Drugs for Liver Fibrosis. Front Pharmacol 2022; 13:787748. [PMID: 35222022 PMCID: PMC8874120 DOI: 10.3389/fphar.2022.787748] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/17/2022] [Indexed: 12/11/2022] Open
Abstract
Liver fibrosis is the pathological process of excessive extracellular matrix deposition after liver injury and is a precursor to cirrhosis, hepatocellular carcinoma (HCC). It is essentially a wound healing response to liver tissue damage. Numerous studies have shown that hepatic stellate cells play a critical role in this process, with various cells, cytokines, and signaling pathways engaged. Currently, the treatment targeting etiology is considered the most effective measure to prevent and treat liver fibrosis, but reversal fibrosis by elimination of the causative agent often occurs too slowly or too rarely to avoid life-threatening complications, especially in advanced fibrosis. Liver transplantation is the only treatment option in the end-stage, leaving us with an urgent need for new therapies. An in-depth understanding of the mechanisms of liver fibrosis could identify new targets for the treatment. Most of the drugs targeting critical cells and cytokines in the pathogenesis of liver fibrosis are still in pre-clinical trials and there are hardly any definitive anti-fibrotic chemical or biological drugs available for clinical use. In this review, we will summarize the pathogenesis of liver fibrosis, focusing on the role of key cells, associated mechanisms, and signaling pathways, and summarize various therapeutic measures or drugs that have been trialed in clinical practice or are in the research stage.
Collapse
Affiliation(s)
| | | | - En-Qiang Chen
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Hu Z, Guan Y, Hu W, Xu Z, Ishfaq M. An overview of pharmacological activities of baicalin and its aglycone baicalein: New insights into molecular mechanisms and signaling pathways. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:14-26. [PMID: 35656442 PMCID: PMC9118284 DOI: 10.22038/ijbms.2022.60380.13381] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/27/2021] [Indexed: 11/28/2022]
Abstract
The flavonoids, baicalin, and its aglycone baicalein possess multi-fold therapeutic properties and are mainly found in the roots of Oroxylum indicum (L.) Kurz and Scutellaria baicalensis Georgi. These flavonoids have been reported to possess various pharmacological properties, including antibacterial, antiviral, anticancer, anticonvulsant, anti-oxidant, hepatoprotective, and neuroprotective effects. The pharmacological properties of baicalin and baicalein are due to their abilities to scavenge reactive oxygen species (ROS) and interaction with various signaling molecules associated with apoptosis, inflammation, autophagy, cell cycle, mitochondrial dynamics, and cytoprotection. In this review, we summarized the molecular mechanisms underlying the chemopreventive and chemotherapeutic applications of baicalin and baicalein in the treatment of cancer and inflammatory diseases. In addition, the preventive effects of baicalin and baicalein on mitochondrial dynamics and functions were highlighted with a particular emphasis on their anti-oxidative and cytoprotective properties. The current review highlights could be useful for future prospective studies to further improve the pharmacological applications of baicalein and baicalin. These studies should define the threshold for optimal drug exposure, dose optimization and focus on therapeutic drug monitoring, objective disease markers, and baicalin/baicalein drug levels.
Collapse
Affiliation(s)
- Zhihua Hu
- College of Computer Science, Huanggang Normal University, Huanggang 438000, China.,These authors contributed equally to this work
| | - Yurong Guan
- College of Computer Science, Huanggang Normal University, Huanggang 438000, China.,These authors contributed equally to this work
| | - Wanying Hu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| | - Zhiyong Xu
- Hubei Zhiying Medical Imaging Center, Radiology Department of Huanggang Hospital of Traditional Chinese Medicine, China
| | - Muhammad Ishfaq
- College of Computer Science, Huanggang Normal University, Huanggang 438000, China
| |
Collapse
|
21
|
Zheng WV, Li Y, Cheng X, Xu Y, Zhou T, Li D, Xiong Y, Wang S, Chen Z. Uridine alleviates carbon tetrachloride-induced liver fibrosis by regulating the activity of liver-related cells. J Cell Mol Med 2021; 26:840-854. [PMID: 34970843 PMCID: PMC8817115 DOI: 10.1111/jcmm.17131] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/28/2021] [Accepted: 12/01/2021] [Indexed: 12/17/2022] Open
Abstract
At present, liver fibrosis is a major challenge of global health. When hepatocyte regeneration cannot compensate for hepatocyte death, it will develop into liver fibrosis in chronic liver disease. Initially, collagen produced by myofibroblasts plays a role in maintaining liver integrity, but excessive collagen accumulation can inhibit the residual liver function, leading to liver failure. At present, many scientists are actively looking for drugs to alleviate liver fibrosis. In the current study, we investigated the potential role of uridine in the treatment of liver fibrosis (uridine is a plant/animal‐derived pyrimidine nucleoside, therefore uridine can also be ingested and absorbed by the body, accompanied by the process of food intake). For this, we systematically studied the effect of uridine on CCl4‐induced liver fibrosis in vitro and in vivo through a series of technologies, such as Western blot, laser confocal scanning microscope, ELISA and immunohistochemistry. The experimental results showed that uridine can effectively reduce the accumulation of collagen in liver. Furthermore, uridine can improve the activity of liver cells and alleviate CCl4‐induced liver injury. Furthermore, uridine can significantly alleviate the risk factors caused by hepatic stellate cell activation, uridine treatment significantly down‐regulated the expression of α‐SMA, collagen type‐I and fibronectin. In conclusion, the current research shows that uridine can alleviate CCl4‐induced liver fibrosis, suggesting that uridine can be used as a potential drug to alleviate liver fibrosis.
Collapse
Affiliation(s)
- Wei V Zheng
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yaqin Li
- Department of Infectious Disease, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xianyi Cheng
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, China.,Department of Minimally Invasion Intervention, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yanwei Xu
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, China
| | - Tao Zhou
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, China
| | - Dezhi Li
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yu Xiong
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, China.,Department of Minimally Invasion Intervention, Peking University Shenzhen Hospital, Shenzhen, China
| | - Shaobin Wang
- Health Management Center, Peking University Shenzhen Hospital, Shenzhen, China
| | - Zaizhong Chen
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, China.,Department of Minimally Invasion Intervention, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
22
|
Zhou Y, Tan Z, Huang H, Zeng Y, Chen S, Wei J, Huang G, Qian C, Yuan G, He S. Baicalein pre-treatment alleviates hepatic ischemia/reperfusion injury in mice by regulating the Nrf2/ARE pathway. Exp Ther Med 2021; 22:1380. [PMID: 34650628 PMCID: PMC8506949 DOI: 10.3892/etm.2021.10816] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/04/2021] [Indexed: 12/17/2022] Open
Abstract
Hepatic ischemia-reperfusion injury (HIRI) is caused by blood flow recovery following ischemia. Baicalein (BAI), a natural antioxidant used in traditional Chinese medicine, eliminates excessive free radicals and protects the structure of the cell membrane. However, its protective mechanism against HIRI is still unclear. The present study investigated underlying mechanism using a mouse HIRI model. Liver injury was evaluated using serum levels of alanine aminotransferase and aspartate aminotransferase, and hematoxylin-eosin staining was performed to evaluate the pathological changes in liver tissue. Apoptosis of hepatocytes was detected by TUNEL staining. The expression levels of reactive oxygen species (ROS), malondialdehyde (MDA) and superoxide dismutase (SOD) in the liver were detected to evaluate oxidative stress. Western blotting was performed to assess expression levels of nuclear factor E2-related factor 2 (Nrf2)/antioxidant response elements (ARE) pathway proteins in liver tissue. BAI pre-treatment significantly decreased elevation of serum aminotransferase levels induced by IR and alleviated histological damage to the liver. BAI decreased production of ROS and MDA in liver tissue induced by IR and increased the activity of SOD. At the same time, BAI inhibited apoptosis of liver cells induced by oxidative stress. Furthermore, BAI promoted the translocation of Nrf2 into the nucleus and increased the expression of total heme oxygenase-1 and NAD(P)H dehydrogenase quinone-1. The Nrf2 inhibitor ML385 reversed the protective effect of BAI on HIRI. These results indicated that BAI served a protective effect in HIRI by regulating the Nrf2/ARE pathway.
Collapse
Affiliation(s)
- Yi Zhou
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, P.R. China
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Department of Science and Technology of Guangxi, Nanning, Guangxi 530021, P.R. China
| | - Zhi Tan
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, P.R. China
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Department of Science and Technology of Guangxi, Nanning, Guangxi 530021, P.R. China
| | - Hao Huang
- Division of Hepatobiliary Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Yonglian Zeng
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, P.R. China
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Department of Science and Technology of Guangxi, Nanning, Guangxi 530021, P.R. China
| | - Shilian Chen
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, P.R. China
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Department of Science and Technology of Guangxi, Nanning, Guangxi 530021, P.R. China
| | - Jie Wei
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, P.R. China
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Department of Science and Technology of Guangxi, Nanning, Guangxi 530021, P.R. China
| | - Guozhen Huang
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, P.R. China
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Department of Science and Technology of Guangxi, Nanning, Guangxi 530021, P.R. China
| | - Chaosi Qian
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, P.R. China
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Department of Science and Technology of Guangxi, Nanning, Guangxi 530021, P.R. China
| | - Guandou Yuan
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, P.R. China
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Department of Science and Technology of Guangxi, Nanning, Guangxi 530021, P.R. China
| | - Songqing He
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, P.R. China
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Department of Science and Technology of Guangxi, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
23
|
Hepatoprotective Effects of Vernonia amygdalina (Astereaceae) Extract on CCl 4-Induced Liver Injury in Broiler Chickens. Animals (Basel) 2021; 11:ani11123371. [PMID: 34944148 PMCID: PMC8698013 DOI: 10.3390/ani11123371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Since the ban on the use of antibiotics as growth promoters in poultry feed, many studies have focused on the use of plants in poultry feed as an alternative to this ban. Currently, many plants are used to improve the growth performance and health status of poultry. Few studies are conducted to evaluate the hepatoprotective effects of these plants in poultry. The current study showed that Vernonia amygdalina extract confers a hepatoprotective effect on poultry. Abstract The aim of this study was to evaluate the effect of Vernonia amygdalina leaf extract (VALE) on the carbon tetrachloride-induced hepatotoxicity (CCl4) in broiler chickens. A total of 360-day-old broilers were divided into 4 treatments of 90 birds each consisting of 6 replicates of 15 birds each. The treatments were birds offered 1 mL/kg BW saline (control group), 100 mg/kg BW VALE, 1 mL/kg BW CCl4 (CCl4-treated group), and 100 mg/kg BW VALE + 1 mL/kg BW CCl4 (VALE + CCl4 group). Blood samples were collected at 42 days of age and analyzed for the liver enzymes: alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and selected biochemical parameters. The experiment was laid out in a completely randomized design. The results obtained showed that VALE had the potential to mitigate the adverse effects of CCl4 on protein and lipid metabolism as reflected in the low serum malondialdehyde (MDA) levels, which is a marker of lipid peroxidation. The aqueous extract of Vernonia amygdalina (VA) at a dose of 100 mg/kg body weight showed a moderate hepatoprotective effect by reducing serum AST levels (p < 0.05). The levels of serum AST, ALP, ALT, and GGT were significantly increased in CCl4-treated birds compared to the control group, reflecting carbon tetrachloride-induced liver damage. The VALE + CCl4 group showed a significantly higher amount of ALP compared to birds treated with carbon tetrachloride, suggesting a hepatoprotective effect. To conclude, Vernonia amygdalina aqueous extract can be used to confer protection against hepatotoxicity, which can induce severe hepatocellular damage in birds.
Collapse
|
24
|
Saha P, Bose S, Srivastava AK, Chaudhary AA, Lall R, Prasad S. Jeopardy of COVID-19: Rechecking the Perks of Phytotherapeutic Interventions. Molecules 2021; 26:6783. [PMID: 34833873 PMCID: PMC8621307 DOI: 10.3390/molecules26226783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 01/31/2023] Open
Abstract
The novel coronavirus disease (COVID-19), the reason for worldwide pandemic, has already masked around 220 countries globally. This disease is induced by Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2). Arising environmental stress, increase in the oxidative stress level, weak immunity and lack of nutrition deteriorates the clinical status of the infected patients. Though several researches are at its peak for understanding and bringing forward effective therapeutics, yet there is no promising solution treating this disease directly. Medicinal plants and their active metabolites have always been promising in treating many clinical complications since time immemorial. Mother nature provides vivid chemical structures, which act multi-dimensionally all alone or synergistically in mitigating several diseases. Their unique antioxidant and anti-inflammatory activity with least side effects have made them more effective candidate for pharmacological studies. These medicinal plants inhibit attachment, encapsulation and replication of COVID-19 viruses by targeting various signaling molecules such as angiotensin converting enzyme-2, transmembrane serine protease 2, spike glycoprotein, main protease etc. This property is re-examined and its potency is now used to improve the existing global health crisis. This review is an attempt to focus various antiviral activities of various noteworthy medicinal plants. Moreover, its implications as prophylactic or preventive in various secondary complications including neurological, cardiovascular, acute kidney disease, liver disease are also pinpointed in the present review. This knowledge will help emphasis on the therapeutic developments for this novel coronavirus where it can be used as alone or in combination with the repositioned drugs to combat COVID-19.
Collapse
Affiliation(s)
- Priyanka Saha
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, WB, India; (P.S.); (S.B.); (A.K.S.)
| | - Subhankar Bose
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, WB, India; (P.S.); (S.B.); (A.K.S.)
| | - Amit Kumar Srivastava
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, WB, India; (P.S.); (S.B.); (A.K.S.)
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSUI), Riyadh 11623, Saudi Arabia;
| | - Rajiv Lall
- Noble Pharma, LLC, 4602 Domain Drive, Menomonie, WI 54751, USA;
| | - Sahdeo Prasad
- Noble Pharma, LLC, 4602 Domain Drive, Menomonie, WI 54751, USA;
| |
Collapse
|
25
|
Inhibition of Oxidative Stress and ALOX12 and NF-κB Pathways Contribute to the Protective Effect of Baicalein on Carbon Tetrachloride-Induced Acute Liver Injury. Antioxidants (Basel) 2021; 10:antiox10060976. [PMID: 34207230 PMCID: PMC8235740 DOI: 10.3390/antiox10060976] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 02/06/2023] Open
Abstract
This study investigates the protective effect of baicalein on carbon tetrachloride (CCl4)-induced acute liver injury and the underlying molecular mechanisms. Mice were orally administrated baicalein at 25 and 100 mg/kg/day for 7 consecutive days or ferrostatin-1 (Fer-1) at 10 mg/kg was i.p. injected in mice at 2 and 24 h prior to CCl4 injection or the vehicle. Our results showed that baicalein or Fer-1 supplementation significantly attenuated CCl4 exposure-induced elevations of serum alanine aminotransferase and aspartate aminotransferase, and malondialdehyde levels in the liver tissues and unregulated glutathione levels. Baicalein treatment inhibited the nuclear factor kappa-B (NF-κB) pathway, activated the erythroid 2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1) pathway in liver tissues, and markedly improved CCl4-induced apoptosis, inflammation and ferroptosis in liver tissues exposed with CCl4. In vitro, baicalein treatment improved CCl4 -induced decreases of cell viabilities and knockdown of Nrf2 and arachidonate 12-lipoxygenase (ALOX12) genes partly abolished the protective effect of baicalein on CCl4 -induced cytotoxicity in HepG2 cells. In conclusion, our results reveal that baicalein supplementation ameliorates CCl4-induced acute liver injury in mice by upregulating the antioxidant defense pathways and downregulating oxidative stress, apoptosis, inflammation and ferroptosis, which involved the activation of Nrf2 pathway and the inhibition of ALOX12 and NF-κB pathways.
Collapse
|
26
|
Zeng B, Liao B, Zhou D, Bai Y, Chen H, Chen B, Zhu Z. [Inhibitory effect of Xinhui citrus fermentation liquor on liver fibrosis in mice]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:588-592. [PMID: 33963720 DOI: 10.12122/j.issn.1673-4254.2021.04.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the inhibitory effect of Xinhui citrus fermentation liquor on liver fibrosis in mice. OBJECTIVE Mouse models of liver fibrosis were established by intraperitoneal injection of CCl4 in 105 male C57BL/6 mice, followed by gavage of 0.1 mL 40% CCl4 olive oil 3 times a week (model group, n=49) or daily gavage of citrus liquor at the dose of 0.26 mL (citrus liquor group, n=56) for 8 weeks. Seven mice receiving only olive oil treatment (0.1 mL, 3 times a week) and another 7 treated with citrus liquor served as the control group. Liver tissues and serum samples were collected from 7 mice in the citrus liquor group and model group each week and from the mice in the two control groups at the 8th week for pathological examination of the liver tissues using HE staining and Sirius red staining and for determination of the biochemical indexes of liver function. OBJECTIVE The mice in the model group showed progressively worsened liver fibrosis with obvious hepatic steatosis, necrosis and inflammatory cell infiltration. These liver pathologies were much ameliorated in citrus liquor group, which showed significantly reduced vacuolation, inflammatory cell infiltration, collagen deposition and the Ishak score of the liver tissue (P < 0.05). Serum levels of cholyglycine, alanine aminotransferase, transglutaminase and alanine aminotransferase were all significantly lower in citrus liquor group than in the model group (P < 0.05). OBJECTIVE Xinhui citrus fermentation liquor has protective effect on the liver and can significantly ameliorate liver fibrosis in mice.
Collapse
Affiliation(s)
- B Zeng
- Clinical Research Center, TCM-Integrated Hospital of Southern Medical University, Guangzhou 510315, China
| | - B Liao
- Clinical Research Center, TCM-Integrated Hospital of Southern Medical University, Guangzhou 510315, China
| | - D Zhou
- Department of Clinical Laboratory, TCM-Integrated Hospital of Southern Medical University, Guangzhou 510315, China
| | - Y Bai
- Department of Clinical Laboratory, TCM-Integrated Hospital of Southern Medical University, Guangzhou 510315, China
| | - H Chen
- Department of Clinical Laboratory, TCM-Integrated Hospital of Southern Medical University, Guangzhou 510315, China
| | - B Chen
- Guangdong Xinbaotang Biological Technology Co, Ltd., Jiangmen 529100, China
| | - Z Zhu
- Clinical Research Center, TCM-Integrated Hospital of Southern Medical University, Guangzhou 510315, China
| |
Collapse
|
27
|
Shen J, Li P, Liu S, Liu Q, Li Y, Sun Y, He C, Xiao P. Traditional uses, ten-years research progress on phytochemistry and pharmacology, and clinical studies of the genus Scutellaria. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113198. [PMID: 32739568 DOI: 10.1016/j.jep.2020.113198] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/08/2020] [Accepted: 07/17/2020] [Indexed: 05/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Scutellaria (Lamiaceae), which includes approximately 360-469 accepted species, is widespread in Europe, North America, East Asia, and South America. Several species have a long history being used as traditional medicines to treat respiratory, peptic, neurological, and hepatic and gall diseases. The phytochemistry and pharmacology of the genus Scutellaria have been developed dramatically in the past ten years, and the traditional uses and clinical studies of the genus have not been systematically summarized. Therefore, it is especially valuable to review the current state of knowledge to provide a basis for further exploration of its medicinal potential. AIM OF THE REVIEW The review aims to provide updated information on the ethnopharmacology, the ten-year research progress of phytochemistry and pharmacology, and clinical studies of Scutellaria and to explore the potential medicinal values and further studies of Scutellaria. MATERIALS AND METHODS This review is based on published studies and books from the library and electronic sources, including SciFinder, Scopus, PubMed, Web of Science, Baidu Scholar, CNKI, the online ethnobotanical database, and ethnobotanical monographs. This literature is related to ethnopharmacology, the ten-year research progress on the phytochemistry and pharmacology, and clinical studies of Scutellaria. RESULTS A total of 50 species, 5 subspecies and 17 varieties of the genus Scutellaria are used as traditional medicine with various biological activities. In the past ten years, 208 chemical constituents have been identified from 16 species and 1 variety of the genus Scutellaria, such as neo-clerodane diterpenoids, sesterterpenoids, terpenoids, flavonoids. Pharmacological research has demonstrated that the extracts and compounds identified from this genus exhibit extensive biological activities, including anticancer, antioxidant, anti-inflammatory, antiviral and antibacterial activities, effects on cardiovascular, cerebrovascular diseases as well as hepatoprotective and neuroprotective effects. The species S. baicalensis, S. barbata, and S. lateriflora and the main compounds baicalein, baicalin and wogonin are involved in clinical trials, which point the way for us to conduct further studies, such as study on the anticancer, antihypertensive, anti-infective, anti-inflammatory, neuroprotective and other effects of Scutellaria. CONCLUSIONS The species included in the genus Scutellaria can be used to treat cancer, infection, hepatic disorders, cardiovascular and cerebrovascular diseases, neurodegenerative diseases, and other diseases. Some indications in traditional medicines have been confirmed by modern pharmacological studies, such as anticancer, anti-inflammatory, anti-infective activity, and hepatoprotective and neuroprotective effects. The available literature indicated that most of the bioactivities could be attributed to flavonoids and neo-clerodane diterpenoids. Although there are some uses of Scutellaria in clinical practice, the existing research on this genus is still limited. In order to expand the development of medicinal resources of Scutellaria, the already studied species in this genus are recommended for more comprehensive investigation on their active substances, pharmacological mechanisms, quality control, clinical use and new drug research. Additionally, it is necessary to study species that their chemical composition or pharmacological activity have not yet been investigated, especially those used in folk medicine.
Collapse
Affiliation(s)
- Jie Shen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China.
| | - Pei Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China.
| | - Shuangshuang Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China.
| | - Qing Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China.
| | - Yue Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China.
| | - Yuhua Sun
- Xinjiang Institute of Materia Medica, Urumqi, 830004, China.
| | - Chunnian He
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China.
| | - Peigen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China.
| |
Collapse
|
28
|
Liu H, Lv C, Lu J. Panax ginseng C. A. Meyer as a potential therapeutic agent for organ fibrosis disease. Chin Med 2020; 15:124. [PMID: 33292321 PMCID: PMC7683279 DOI: 10.1186/s13020-020-00400-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/27/2020] [Accepted: 11/06/2020] [Indexed: 12/14/2022] Open
Abstract
Background Ginseng (Panax ginseng C. A. Meyer), a representative Chinese herbal medicine, can improve the body’s antioxidant and anti-inflammatory capacity. Recently, scientists have shifted emphasis towards the initial stages of different malignant diseases—corresponding organ fibrosis and explored the essential role of P. ginseng in the treatment of fibrotic diseases. Main body In the first instance, the review generalizes the molecular mechanisms and common therapeutic methods of fibrosis. Next, due to the convenience and safety of individual medication, the research progress of ginseng extract and formulas in treating liver fibrosis, pulmonary fibrosis, myocardial fibrosis, and renal fibrosis has been systematically summarized. Finally, we describe active ingredients isolated from P. ginseng for their outstanding anti-fibrotic properties and further reveal the potential therapeutic prospect and limitations of P. ginseng in fibrotic diseases. Conclusions P. ginseng can be regarded as a valuable herbal medicine against fibrous tissue proliferation. Ginseng extract, derived formulas and monomers can inhibit the abundant deposition of extracellular matrix which caused by repeated damage and provide protection for fibrotic organs. Although the molecular mechanisms such as transforming growth factor β signal transduction have been confirmed, future studies should still focus on exploring the underlying mechanisms of P. ginseng in treating fibrotic disease including the therapeutic targets of synergistic action of multiple components in P. ginseng. Moreover, it is also necessary to carry out clinical trial to evaluate the feasibility of P. ginseng in combination with common fibrosis drugs.
Collapse
Affiliation(s)
- Hao Liu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110006, PR China
| | - Chongning Lv
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110006, PR China.,Liaoning Provincial Key Laboratory of TCM Resources Conservation and Development, Shenyang Pharmaceutical University, Shenyang, 110006, PR China
| | - Jincai Lu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110006, PR China. .,Liaoning Provincial Key Laboratory of TCM Resources Conservation and Development, Shenyang Pharmaceutical University, Shenyang, 110006, PR China.
| |
Collapse
|
29
|
A Comprehensive Review of Natural Products against Liver Fibrosis: Flavonoids, Quinones, Lignans, Phenols, and Acids. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:7171498. [PMID: 33082829 PMCID: PMC7556091 DOI: 10.1155/2020/7171498] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/23/2020] [Accepted: 07/25/2020] [Indexed: 12/18/2022]
Abstract
Liver fibrosis resulting from continuous long-term hepatic damage represents a heavy burden worldwide. Liver fibrosis is recognized as a complicated pathogenic mechanism with extracellular matrix (ECM) accumulation and hepatic stellate cell (HSC) activation. A series of drugs demonstrate significant antifibrotic activity in vitro and in vivo. No specific agents with ideally clinical efficacy for liver fibrosis treatment have been developed. In this review, we summarized the antifibrotic effects and molecular mechanisms of 29 kinds of common natural products. The mechanism of these compounds is correlated with anti-inflammatory, antiapoptotic, and antifibrotic activities. Moreover, parenchymal hepatic cell survival, HSC deactivation, and ECM degradation by interfering with multiple targets and signaling pathways are also involved in the antifibrotic effects of these compounds. However, there remain two bottlenecks for clinical breakthroughs. The low bioavailability of natural products should be improved, and the combined application of two or more compounds should be investigated for more prominent pharmacological effects. In summary, exploration on natural products against liver fibrosis is becoming increasingly extensive. Therefore, natural products are potential resources for the development of agents to treat liver fibrosis.
Collapse
|
30
|
Zhang J, Deng Y, Cheng B, Huang Y, Meng Y, Zhong K, Xiong G, Guo J, Liu Y, Lu H. Protective effects and molecular mechanisms of baicalein on thioacetamide-induced toxicity in zebrafish larvae. CHEMOSPHERE 2020; 256:127038. [PMID: 32470728 DOI: 10.1016/j.chemosphere.2020.127038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
Baicalein is a flavonoid that is widely found in plants. Studies have shown that baicalein has anti-inflammatory, anti-cancer, and liver-protective effects. However, the effects of baicalein on TAA-induced toxicity and the underlying molecular mechanisms in zebrafish larvae are still unknown. Here, we investigated the effects of baicalein on liver development and its anti-inflammatory effects in zebrafish larvae. The results showed that baicalein has significant anti-embryonic developmental toxicity and significant antioxidant and anti-inflammatory capabilities in TAA-induced zebrafish larvae and promotes liver development and cell proliferation, reduces the expression of apoptotic proteins, and induces the expression of anti-apoptotic proteins. At the molecular level of TAA-treated zebrafish larvae, there was a decrease in the relative expression levels of mRNAs of three subfamilies, P38, ERK1, and ERK2, of the MAPK-signaling pathway and of the products of peroxisome proliferator-activated receptor (PPAR)α. Compared with TAA-treated zebrafish larvae, zebrafish larvae treated with baicalein showed an increase in the relative expression levels of P38, ERK1, and ERK2 mRNAs and the downstream products of PPARα. When MAPK signal inhibitor (SB203580) was added, it was found that liver development was inhibited and baicalin had no protective effect on TAA induced hepatotoxicity in zebrafish larvae. The results showed baicalein can protect the zebrafish larvae against toxicity induced by TAA through MAPK signal pathway. Several molecular mechanisms discovered in this study may help in the development of new drugs.
Collapse
Affiliation(s)
- June Zhang
- College of life sciences, Jiangxi Normal university, Nanchang, Jiangxi, China
| | - Yunyun Deng
- College of life sciences, Jiangxi Normal university, Nanchang, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China
| | - Bo Cheng
- Center for drug screening and research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China
| | - Yong Huang
- Center for drug screening and research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China
| | - Yunlong Meng
- Center for drug screening and research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China
| | - Keyuan Zhong
- Center for drug screening and research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Guanghua Xiong
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China
| | - Jing Guo
- College of life sciences, Jiangxi Normal university, Nanchang, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China
| | - Yi Liu
- College of life sciences, Jiangxi Normal university, Nanchang, Jiangxi, China
| | - Huiqiang Lu
- Center for drug screening and research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China.
| |
Collapse
|
31
|
Sun X, Cui X, Chen X, Jiang X. Baicalein alleviated TGF β1-induced type I collagen production in lung fibroblasts via downregulation of connective tissue growth factor. Biomed Pharmacother 2020; 131:110744. [PMID: 32932046 DOI: 10.1016/j.biopha.2020.110744] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 01/10/2023] Open
Abstract
Although we have reported that baicalein ameliorated bleomycin-induced pulmonary fibrosis in rats and inhibited fibroblast-to-myofibroblast differentiation, the mechanisms of the capability of baicalein to suppress the production of type I collagen in fibroblasts remains unclear. Here, we showed that baicalein suppressed transforming growth factor β1 (TGF β1)-stimulated the production of type I collagen in lung fibroblast MRC-5 cells. By applying SILAC-based proteomic technology, 158 proteins were identified as baicalein-modulated proteins in TGF β1-stimulated the accumulation of type I collagen in MRC-5 cells. Our proteomic and biochemical analysis demonstrated that baicalein decreased the expression levels of connective tissue growth factor (CTGF) in TGF β1-stimulated MRC-5 cells. In addition, CTGF overexpression elevated the levels of type I collagen in baicalein-treated fibroblasts. Moreover, our results demonstrated that baicalein-downregulated CTGF expression might be related with the decrease of Smad2 phosphorylation, but not SP1. This work not only linked CTGF to TGF β1-stimulated the production of type I collagen in its attribution to the effects of baicalein, but also might provide valuable information for enhancing the knowledge of the pharmacological inhibition of collagen production, which might represent a promising strategy for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Xionghua Sun
- College of Pharmaceutical Sciences, Soochow University, China
| | - Xinjian Cui
- College of Pharmaceutical Sciences, Soochow University, China
| | - Xihua Chen
- College of Pharmaceutical Sciences, Soochow University, China
| | - Xiaogang Jiang
- College of Pharmaceutical Sciences, Soochow University, China.
| |
Collapse
|
32
|
Sun P, Zhu Y, Han Y, Hu K, Huang S, Wang M, Wu H, Tang G. Radiosynthesis and biological evaluation of an fluorine-18 labeled galactose derivative [ 18F]FPGal for imaging the hepatic asialoglycoprotein receptor. Bioorg Med Chem Lett 2020; 30:127187. [PMID: 32307237 DOI: 10.1016/j.bmcl.2020.127187] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/09/2020] [Accepted: 04/09/2020] [Indexed: 12/12/2022]
Abstract
The asialoglycoprotein receptor (ASGPR) is abundantly expressed on the surface of hepatocytes where it recognizes and endocytoses glycoproteins with galactosyl and N-acetylgalactosamine groups. Given its hepatic distribution, the asialoglycoprotein receptor can be targeted by positron imaging agents to study liver function using PET imaging. In this study, the positron imaging agent [18F]FPGal was designed to specifically target hepatic asialoglycoprotein receptor and its effectiveness was assessed in in vitro and in vivo models. The radiosynthesis of [18F]FPGal required 50 min with total radiochemical yields of [18F]FPGal from [18F]fluoride as 10% (corrected radiochemical yield). The Kd of [18F]FPGal to ASGPR in HepG2 cells was 1.99 ± 0.05 mM. Uptake values of 0.55% were observed within 30 min of incubation with HepG2 cells, which could be blocked by 200 mM d(+)-galactose (<0.1%). In vivo biodistribution analysis showed that the liver accumulation of [18F]FPGal at 30 min was 4.47 ± 0.96% ID/g in normal mice compared to 1.33 ± 0.07% ID/g in hepatic fibrotic mice (P < 0.01). Reduced uptake in the hepatic fibrosis mouse models was confirmed through PET/CT images at 30 min. Compared to normal mice, the standard uptake value (SUV) in the hepatic fibrosis mice was significantly lower when assessed through dynamic data collection for 1 h. Therefore, [18F]FPGal is a feasible PET probe that provide insight into ASGPR related liver disease.
Collapse
Affiliation(s)
- Penghui Sun
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.
| | - Yun Zhu
- Liver Tumor Center, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yanjiang Han
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Kongzhen Hu
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Shun Huang
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Meng Wang
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Hubing Wu
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Ganghua Tang
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
33
|
Separation and quantification of bioactive flavonoids from Scutellaria barbata using a green procedure. FOOD AND BIOPRODUCTS PROCESSING 2019. [DOI: 10.1016/j.fbp.2019.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
34
|
Kinetics and mass transfer considerations for an ultrasound-assisted supercritical CO2 procedure to produce extracts enriched in flavonoids from Scutellaria barbata. J CO2 UTIL 2019. [DOI: 10.1016/j.jcou.2019.04.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Han Y, Pan L, Ran S, Song Y, Sun FF, Wang YZ, Hong Y. Rhizoma Paridis saponins ameliorates hepatic fibrosis in rats by downregulating expression of angiogenesis‑associated growth factors. Mol Med Rep 2019; 19:3548-3554. [PMID: 30864692 PMCID: PMC6471138 DOI: 10.3892/mmr.2019.10006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 12/18/2018] [Indexed: 02/07/2023] Open
Abstract
Previously, we demonstrated that Rhizoma Paridis saponins (RPS), the major active component of Rhizoma Paridis, may exhibit hepatoprotective effects. The present study aimed to identify the potential mechanism of RPS on hepatic injury and improvement in hepatic fibrosis (HF). A HF model was created in Sprague-Dawley rats by administration of carbon tetrachloride. RPS was administered for treatment following creation of the HF model. The protein and mRNA expression of vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), extracellular signal-regulated kinase (ERK)1/2 and α-smooth muscle actin (SMA) was detected by reverse transcription quantitative polymerase chain reaction and western blot analysis. RPS was demonstrated to improve hepatic inflammation and decrease HF severity according to hematoxylin and eosin and Masson trichrome staining. Following RPS treatment, the level of alanine aminotransferase, aspartate aminotransferase and malondialdehyde, and expression levels of the mRNA and protein of VEGF, ERK1/2, PDGF and α-SMA in the model group was decreased. By contrast, the content of glutathione-PX and superoxide dismutase was increased. These data suggest that RPS may treat HF primarily through downregulation of the expression levels of the mRNA and phosphorylated VEGF, ERK1/2, PDGF and α-SMA proteins.
Collapse
Affiliation(s)
- Yanquan Han
- Grade 3 Laboratory of Traditional Chinese Medicine Preparation, The First Affiliated Hospital, Anhui University of Chinese Medicine, State Administration of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Lingyu Pan
- Grade 3 Laboratory of Traditional Chinese Medicine Preparation, The First Affiliated Hospital, Anhui University of Chinese Medicine, State Administration of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Shan Ran
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Yan Song
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Fang-Fang Sun
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Yong-Zhong Wang
- Grade 3 Laboratory of Traditional Chinese Medicine Preparation, The First Affiliated Hospital, Anhui University of Chinese Medicine, State Administration of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Yan Hong
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| |
Collapse
|
36
|
Emerging role and therapeutic implication of Wnt signaling pathways in liver fibrosis. Gene 2018; 674:57-69. [PMID: 29944952 DOI: 10.1016/j.gene.2018.06.053] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/14/2018] [Accepted: 06/16/2018] [Indexed: 02/08/2023]
Abstract
Activation of hepatic stellate cells (HSCs) is a pivotal cellular event in liver fibrosis. Therefore, improving our understanding of the molecular pathways that are involved in these processes is essential to generate new therapies for liver fibrosis. Greater knowledge of the role of the Wnt signaling pathway in liver fibrosis could improve understanding of the liver fibrosis pathogenesis. The aim of this review is to describe the present knowledge about the Wnt signaling pathway, which significantly participates in liver fibrosis and HSC activation, and look ahead on new perspectives of Wnt signaling pathway research. Moreover, we will discuss the different interactions with Wnt signaling pathway-regulated liver fibrosis. The Wnt signaling pathway modulates several important aspects of function, including cell proliferation, activation and differentiation. Targeting the Wnt signaling pathway can be a promising direction in liver fibrosis treatment. We discuss new perspectives of Wnt signaling pathway activation in liver fibrosis. For example, antagonist to Wnt and Wnt ligands could inhibit liver fibrosis by regulating Wnt/β-catenin signaling pathway. These findings identify the Wnt signaling pathway as a potentially important for therapeutic targets in liver fibrosis. Future studies are needed in order to find safer and more effective Wnt-based drugs.
Collapse
|
37
|
Shi L, Hao Z, Zhang S, Wei M, Lu B, Wang Z, Ji L. Baicalein and baicalin alleviate acetaminophen-induced liver injury by activating Nrf2 antioxidative pathway: The involvement of ERK1/2 and PKC. Biochem Pharmacol 2018; 150:9-23. [DOI: 10.1016/j.bcp.2018.01.026] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/10/2018] [Indexed: 12/15/2022]
|
38
|
Chang WC, Hung CT, Chen YS, Hsueh CC, Hou CW, Lay HL. Amelioration of carbon tetrachloride-induced hepatic injury by emulsified Antrodia extract. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2018; 21:230-235. [PMID: 29511488 PMCID: PMC5817165 DOI: 10.22038/ijbms.2018.21545.5554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Objective(s): Antrodia cinnamomea (AC) is found with anti-inflammatory and immunomodulatory biological activities. In this study, we investigated the anti-hepatitis effect of the emulsified AC extract from RO water or supercritical fluid CO2 with ethanol co-solvent extract methods of AC preparations. Materials and Methods: Five groups of eight to ten weeks male rats with a count of ten for each group were studied to evaluate the protection of two kinds of AC extract from hepatic injury. Acute liver injury of rats was induced by injecting 40% carbon tetrachloride (CCl4) 1 mg/kg intraperitoneally. Positive and negative control groups rats were perfused with CCl4 or isotonic saline, respectively. Experimental groups received oral administration once/day of AC preparations before CCl4 treatment: water AC extract (WAE group), or emulsified AC extract from supercritical fluid extraction (EAE group) for 5 days, and sacrificed on the 6th day and the blood and liver samples were collected under chloral hydrate anesthesia. The anti-inflammatory, antioxidant markers, and relevant signaling pathways were measured (AST, ALT, ROS, IL-1, IL-6, NO, and COX-2, MAPKs, and caspase-3). Results: EAE at 50 mg/kg significantly decreased the serum AST, ALT, IL-1, IL-6, NO, and ROS levels. Both extracts reduced the activation of p-ERK in the liver samples, but EAE inhibited COX-2 and caspase-3 protein expression better than WAE. The EAE ameliorated CCl4-induced hepatic injury significantly; as compared with WAE and the positive control. Conclusion: The hepatoprotection of EAE could be attributed to the antioxidant and anti-inflammatory effects of Antrodia.
Collapse
Affiliation(s)
- Wei-Chih Chang
- Graduate Institute of Bioresources, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Chang-Tsen Hung
- Department of Health and Leisure Management, Yuanpei University of Medical Technology, Hsinchu, Taiwan
| | - Yuh-Shuen Chen
- Department of Food Science and Technology, Hungkuang University, Taichung, Taiwan
| | - Chih-Chi Hsueh
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu, Taiwan
| | - Chien-Wei Hou
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu, Taiwan
| | - Horng-Liang Lay
- Department of Plant Industry, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
39
|
Cao H, Li S, Xie R, Xu N, Qian Y, Chen H, Hu Q, Quan Y, Yu Z, Liu J, Xiang M. Exploring the Mechanism of Dangguiliuhuang Decoction Against Hepatic Fibrosis by Network Pharmacology and Experimental Validation. Front Pharmacol 2018; 9:187. [PMID: 29556199 PMCID: PMC5844928 DOI: 10.3389/fphar.2018.00187] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 02/19/2018] [Indexed: 12/11/2022] Open
Abstract
Dangguiliuhuang decoction (DGLHD) has been demonstrated to be effective in treating inflammatory, hepatic steatosis, and insulin resistance. In the study, we tried to elucidate the pharmacological efficacy and mechanism of DGLHD against liver fibrosis and predicate potential active ingredients and targets via network analysis and experimental validation. In the formula, we totally discovered 76 potential active ingredients like baicalein, berberine, and wogonin, and 286 corresponding targets including PTGS (prostaglandin-endoperoxide synthase) 2, PPAR (peroxisome proliferator-activated receptors) -γ, and NF-κB (nuclear factor-κB). Pathway and functional enrichment analysis of these putative targets indicated that DGLHD obviously influenced NF-κB and PPAR signaling pathway. Consistently, DGLHD downregulated levels of ALT (alanine transaminase) and AST (aspartate transaminase), reduced production of proinflammatory cytokines-TNF (tumor necrosis factor) -α and IL (Interleukin) -1β in serum and liver from mice with hepatic fibrosis, and inhibited hepatic stellate cell (HSC)-T6 cells proliferation. DGLHD decreased TGF (transforming growth factor) -β1 and α-SMA (smooth muscle actin) expression as well, maintained MMP (matrix metalloprotein) 13-TIMP (tissue inhibitor of metalloproteinases) 1 balance, leading to mitigated ECM (extracellular matrix) deposition in vivo and in vitro. Moreover, our experimental data confirmed that the alleviated inflammation and ECM accumulation were pertinent to NF-κB inhibition and PPAR-γ activation. Overall, our results suggest that DGLHD aims at multiply targets and impedes the progression of hepatic fibrosis by ameliorating abnormal inflammation and ECM deposition, thereby serving as a novel regimen for treating hepatic fibrosis in clinic.
Collapse
Affiliation(s)
- Hui Cao
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Senlin Li
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Xie
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Na Xu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Qian
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongdan Chen
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinyu Hu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yihong Quan
- Department of Traditional Chinese Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhihong Yu
- Department of Traditional Chinese Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junjun Liu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Xiang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
40
|
Wu J, Pan L, Jin X, Li W, Li H, Chen J, Yang W. The role of oxymatrine in regulating TGF-β1 in rats with hepatic fibrosis. Acta Cir Bras 2018; 33:207-215. [DOI: 10.1590/s0102-865020180030000002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/20/2018] [Indexed: 02/07/2023] Open
Affiliation(s)
- Jing Wu
- Ningxia Medical University, China
| | - Lin Pan
- Ningxia Medical University, China
| | | | | | | | | | - Wen Yang
- Ningxia Medical University, China
| |
Collapse
|
41
|
Wu X, Zhi F, Lun W, Deng Q, Zhang W. Baicalin inhibits PDGF-BB-induced hepatic stellate cell proliferation, apoptosis, invasion, migration and activation via the miR-3595/ACSL4 axis. Int J Mol Med 2018; 41:1992-2002. [PMID: 29393361 PMCID: PMC5810201 DOI: 10.3892/ijmm.2018.3427] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 12/22/2017] [Indexed: 12/15/2022] Open
Abstract
Hepatic fibrosis is a physiological response to liver injury that includes a range of cell types. The pathogenesis of hepatic fibrosis currently focuses on hepatic stellate cell (HSC) activation into muscle fiber cells and fibroblasts. Baicalin is a flavone glycoside. It is the glucuronide of baicalein, which is extracted from the dried roots of Scutellaria baicalensis Georgi. Previous work focused on the anti-viral, -inflammatory and -tumor properties of baicalin. However, the potential anti-fibrotic effects and mechanisms of baicalin are not known. The present study demonstrated that baicalin influenced the activation, proliferation, apoptosis, invasion and migration of platelet-derived growth factor-BB-induced activated HSC-T6 cells in a dose-dependent manner. To investigate the anti-fibrotic effect of baicalin, a one-color micro (mi)RNA array and reverse transcription-quantitative polymerase chain reaction analyses were used. Results demonstrated that baicalin increased the expression of the miRNA, miR-3595. In addition, the inhibition of miR-3595 substantially reversed the anti-fibrotic effect of baicalin. The present data also suggested that miR-3595 negatively regulates the long-chain-fatty-acid-CoA ligase 4 (ACSL4). Furthermore, ACSL4 acted in a baicalin-dependent manner to exhibit anti-fibrotic effects. Taken together, it was concluded that baicalin induces miR-3595 expression that modulates the expression levels of ACSL4. To the best of our knowledge, the present study is the first to demonstrate that baicalin induces overexpression of human miR-3595, and subsequently decreases the expression of ACSL4, resulting in an anti-fibrotic effect.
Collapse
Affiliation(s)
- Xiongjian Wu
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Fachao Zhi
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Weijian Lun
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qiliang Deng
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Wendi Zhang
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
42
|
Yin H, Huang L, Ouyang T, Chen L. Baicalein improves liver inflammation in diabetic db/db mice by regulating HMGB1/TLR4/NF-κB signaling pathway. Int Immunopharmacol 2017; 55:55-62. [PMID: 29223854 DOI: 10.1016/j.intimp.2017.12.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 11/29/2017] [Accepted: 12/02/2017] [Indexed: 01/06/2023]
Abstract
The current study was designed to investigate the hepatoprotective effects and possible mechanisms of Baicalein (BA) on the diabetic liver injury in vivo and in vitro. The results exhibited that BA significantly restored the blood glucose in oral glucose tolerance test (OGTT) and inhibited the levels of insulin, alanine aminotransferase (ALT), aspartate aminotransaminase (AST), total cholesterol (TC) and triglyceride (TG) in C57BL/KsJ-db/db mice. Moreover, BA strikingly attenuated the extent of steatosis in the liver tissues of diabetic mice. These results confirmed the hepatoprotective effects of BA on diabetic liver injury. Further in vivo investigations revealed that the hepatoprotective activities of BA was due to the effects on remarkably suppressing the inflammatory cascade, including attenuating the expressions of HMGB1, TLR4, Myd88, NF-κB and IκB proteins and inhibiting the production of interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α in diabetic mice. Finally, the hepatoprotective effects of BA were characterized in human hepatic HepG2 cells. With response to palmitic acid-challenge, increased amount of insulin, ALT, AST, TG, TC were observed, whereas BA pretreatment significantly restored these changes in HepG2 cells. Inflammation condition was also recovered with BA treatment as shown by the changes of HMGB1, TLR4, Myd88, NF-κB and IκB expressions and the levels of IL-1β, IL-6 and TNF-α. These findings elucidated that BA exhibited prominent hepatoprotective activities in diabetic live injury.
Collapse
Affiliation(s)
- Huafeng Yin
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, PR China; Jiangxi Qingfeng Pharmaceutical Co., Ltd, Ganzhou 341000, PR China
| | - Lihao Huang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, PR China
| | - Ting Ouyang
- Jiangxi Qingfeng Pharmaceutical Co., Ltd, Ganzhou 341000, PR China.
| | - Lvyi Chen
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, PR China.
| |
Collapse
|
43
|
Wang YF, Tang ZH, Li T, Xu XH, Chen X, Wang Y, Wang YT, Lu JJ. Baicalein protects tert‑butyl hydroperoxide‑induced hepatotoxicity dependent of reactive oxygen species removal. Mol Med Rep 2017; 16:8392-8398. [PMID: 28944883 DOI: 10.3892/mmr.2017.7592] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 03/30/2017] [Indexed: 11/05/2022] Open
Abstract
Baicalein (BA), one of the major bioactive flavonoids isolated from Scutellariae Radix, possesses various pharmacological activities. The present study aimed to investigate the protective effects of BA on tert‑butyl hydroperoxide (t‑BHP)‑induced hepatotoxicity, and to investigate the potential mechanisms in LO2 cells. BA was demonstrated to possess protective properties against t‑BHP injury in LO2 cells, as evidenced by MTT and lactate dehydrogenase assays. BA significantly prevented t‑BHP‑induced depolarization of mitochondrial membrane potential (MMP), decreased the percentage of apoptotic cells caused by t‑BHP, and prevented intracellular reactive oxygen species (ROS) generation in LO2 cells. Furthermore, BA slightly triggered autophagy in LO2 cells, as evidenced by the elevation of LC3‑II expression, while BA combined treatment with an autophagy inhibitor (chloroquine) or activator (rapamycin) did not alter the hepatoprotective properties. In conclusion, BA may possess a hepatoprotective effect against t‑BHP‑induced liver cell injury, dependent on ROS removal. Therefore, BA may represent a potential drug candidate in protecting hepatotoxicity.
Collapse
Affiliation(s)
- Ya-Fang Wang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau 999078, P.R. China
| | - Zheng-Hai Tang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau 999078, P.R. China
| | - Ting Li
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau 999078, P.R. China
| | - Xiao-Huang Xu
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau 999078, P.R. China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau 999078, P.R. China
| | - Ying Wang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau 999078, P.R. China
| | - Yi-Tao Wang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau 999078, P.R. China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau 999078, P.R. China
| |
Collapse
|
44
|
Lai CC, Huang PH, Yang AH, Chiang SC, Tang CY, Tseng KW, Huang CH. Baicalein Attenuates Lung Injury Induced by Myocardial Ischemia and Reperfusion. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2017; 45:791-811. [PMID: 28521514 DOI: 10.1142/s0192415x17500422] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Baicalein is an active component of Scutellaria baicalensis Georgi, which has traditionally been used to treat cardiovascular diseases in China. In this study, we investigated if treatment with baicalein can attenuate the lung injury induced by myocardial ischemia and reperfusion (I/R). Myocardial I/R, induced by a 40-min occlusion of the left anterior descending coronary artery and a 3-h reperfusion, significantly increased histological damage and the wet-to-dry weight ratio of lungs in rats. The terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-positive nuclei and caspase-3 activation was significantly increased in the lungs. Serum and bronchoalveolar lavage fluid levels of tumor necrosis factor-[Formula: see text] (TNF-[Formula: see text]), interleukin-1[Formula: see text] (IL-1[Formula: see text]), and interleukin-6 (IL-6) were significantly elevated, as were TNF-[Formula: see text] levels in the lung. Intravenous administration with baicalein at doses of 3, 10, and 30[Formula: see text]mg/kg for ten minutes before myocardial I/R significantly reduced histological damage, the wet-to-dry weight ratio, and apoptosis in the lung. Baicalein also significantly inhibited the increase in levels of TNF-[Formula: see text], IL-1[Formula: see text], and IL-6. Moreover, baicalein increased Bcl-2 and decreased p53, Bax, and cytochrome [Formula: see text] in lungs. Phosphorylation of the prosurvival kinases, including Akt and extracellular signal-regulated kinases 1 and 2 (ERK1/2), was increased, while the phosphorylation of the pro-apoptotic mitogen-activated protein kinases, including p38 and c-Jun N-terminal kinase (JNK), was decreased. In conclusion, treatment with baicalein attenuates the lung injury induced by myocardial I/R. The mechanisms might be related to the limiting of apoptosis, possibly via the inhibition of both the extrinsic and intrinsic pathways of apoptosis, including the inhibition of TNF-[Formula: see text] production and modulation of pro- and anti-apoptotic signaling elements.
Collapse
Affiliation(s)
- Chang-Chi Lai
- * Division of Cardiovascular Surgery, Department of Surgery, Taipei Veterans General Hospital, National Yang-Ming University School of Medicine, Taipei, Taiwan.,† Institute of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,∥ Department of Physical Education and Health, University of Taipei, Taipei, Taiwan
| | - Po-Hsun Huang
- † Institute of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,‡ Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, National Yang-Ming University School of Medicine, Taipei, Taiwan.,** Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
| | - An-Han Yang
- § Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Shu-Chiung Chiang
- ¶ Institute of Hospital and Health Care Administration, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Chia-Yu Tang
- * Division of Cardiovascular Surgery, Department of Surgery, Taipei Veterans General Hospital, National Yang-Ming University School of Medicine, Taipei, Taiwan.,† Institute of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Kuo-Wei Tseng
- ∥ Department of Physical Education and Health, University of Taipei, Taipei, Taiwan
| | - Cheng-Hsiung Huang
- * Division of Cardiovascular Surgery, Department of Surgery, Taipei Veterans General Hospital, National Yang-Ming University School of Medicine, Taipei, Taiwan
| |
Collapse
|
45
|
Su G, Chen G, An X, Wang H, Pei YH. Metabolic Profiling Analysis of the Alleviation Effect of Treatment with Baicalin on Cinnabar Induced Toxicity in Rats Urine and Serum. Front Pharmacol 2017; 8:271. [PMID: 28567014 PMCID: PMC5434134 DOI: 10.3389/fphar.2017.00271] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 05/01/2017] [Indexed: 01/23/2023] Open
Abstract
Objectives: Baicalin is the main bioactive flavonoid constituent isolated from Scutellaria baicalensis Georgi. The mechanisms of protection of liver remain unclear. In this study, 1H NMR-based metabonomics approach has been used to investigate the alleviation effect of Baicalin. Method:1H NMR metabolomics analyses of urine and serum from rats, was performed to illuminate the alleviation effect of Baicalin on mineral medicine (cinnabar)-induced liver and kidney toxicity. Results: The metabolic profiles of groups receiving Baicalin at a dose of 80 mg/kg were remarkably different from cinnabar, and meanwhile, the level of endogenous metabolites returned to normal compared to group cinnabar. PLS-DA scores plots demonstrated that the variation tendency of control and Baicalein are apart from Cinnabar. The metabolic profiles of group Baicalein were similar to those of group control. Statistics results were confirmed by the histopathological examination and biochemical assay. Conclusion: Baicalin have the alleviation effect to the liver and kidney damage induced by cinnabar. The Baicalin could regulate endogenous metabolites associated with the energy metabolism, choline metabolism, amino acid metabolism, and gut flora.
Collapse
Affiliation(s)
- Guangyue Su
- Department of Traditional Chinese Materia Medica, Shenyang Pharmaceutical UniversityShenyang, China.,Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical UniversityShenyang, China
| | - Gang Chen
- Department of Traditional Chinese Materia Medica, Shenyang Pharmaceutical UniversityShenyang, China.,Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical UniversityShenyang, China
| | - Xiao An
- Department of Traditional Chinese Materia Medica, Shenyang Pharmaceutical UniversityShenyang, China
| | - Haifeng Wang
- Department of Traditional Chinese Materia Medica, Shenyang Pharmaceutical UniversityShenyang, China.,Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical UniversityShenyang, China
| | - Yue-Hu Pei
- Department of Traditional Chinese Materia Medica, Shenyang Pharmaceutical UniversityShenyang, China.,Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical UniversityShenyang, China
| |
Collapse
|
46
|
Dinda B, Dinda S, DasSharma S, Banik R, Chakraborty A, Dinda M. Therapeutic potentials of baicalin and its aglycone, baicalein against inflammatory disorders. Eur J Med Chem 2017; 131:68-80. [PMID: 28288320 DOI: 10.1016/j.ejmech.2017.03.004] [Citation(s) in RCA: 370] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/20/2017] [Accepted: 03/03/2017] [Indexed: 02/08/2023]
Abstract
The flavonoids, baicalin (5,6-dihydroxy-2-phenyl-4H-1-benzopyran-4-one-7-O-d-β-glucuronic acid) 1 and its aglycone, baicalein 2 are found in edible medicinal plants, Scutellaria baicalensis Georgi and Oroxylum indicum (L.) Kurz in abundant quantities. The antioxidant and anti-inflammatory effects of these flavonoids have been demonstrated in various disease models, including diabetes, cardiovascular diseases, inflammatory bowel diseases, gout and rheumatoid arthritis, asthma, neurodegenerative-, liver- and kidney diseases, encephalomyelitis, and carcinogenesis. These flavonoids have almost no toxicity to human normal epithelial, peripheral and myeloid cells. Their antioxidant and anti-inflammatory activities are largely due to their abilities to scavenge the reactive oxygen species (ROS) and improvement of antioxidant status by attenuating the activity of NF-κB and suppressing the expression of several inflammatory cytokines and chemokines including monocyte chemotactic protein-1 (MCP-1), nitric oxide synthase, cyclooxygenases, lipoxygenases, cellular adhesion molecules, tumor necrosis factor and interleukins. In this review, we summarize the antioxidant and anti-inflammatory effects of baicalin and baicalein with molecular mechanisms for their chemopreventive and chemotherapeutic applications in the treatment of inflammatory-related diseases.
Collapse
Affiliation(s)
- Biswanath Dinda
- Department of Chemistry, Tripura University, Suryamaninagar 799022, Tripura, India.
| | - Subhajit Dinda
- Department of Chemistry, Dasaratha Deb Memorial College, Khowai 799201, Tripura, India
| | - Saikat DasSharma
- Department of Chemistry, Dasaratha Deb Memorial College, Khowai 799201, Tripura, India
| | - Rajarshi Banik
- Department of Chemistry, National Institute of Technology, Agartala 799055, Tripura, India
| | - Ankita Chakraborty
- Department of Chemistry, Tripura University, Suryamaninagar 799022, Tripura, India
| | - Manikarna Dinda
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, Charlottesville, 1300 Jefferson Park Ave, VA22908, USA
| |
Collapse
|
47
|
Meng XM, Ren GL, Gao L, Li HD, Wu WF, Li XF, Xu T, Wang XF, Ma TT, Li Z, Huang C, Huang Y, Zhang L, Lv XW, Li J. Anti-fibrotic effect of wogonin in renal tubular epithelial cells via Smad3-dependent mechanisms. Eur J Pharmacol 2016; 789:134-143. [DOI: 10.1016/j.ejphar.2016.07.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/22/2016] [Accepted: 07/07/2016] [Indexed: 12/16/2022]
|
48
|
Mohammed A, Abd Al Haleem EN, El-Bakly WM, El-Demerdash E. Deferoxamine alleviates liver fibrosis induced by CCl4 in rats. Clin Exp Pharmacol Physiol 2016; 43:760-768. [PMID: 27168353 DOI: 10.1111/1440-1681.12591] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 05/04/2016] [Accepted: 05/07/2016] [Indexed: 11/28/2022]
Abstract
Several chronic liver diseases can lead to the occurrence of hepatic fibrosis through the accumulation of iron, which causes induction of oxidative stress and consequently activation of fibrogenesis. The present study was designed to investigate the potential antifibrotic and anti-oxidant effects of deferoxamine (DFO), a well-known iron chelator in an experimental rat model of liver injury using carbon tetrachloride (CCl4 ). First, the potential effective dose of DFO was screened against CCl4 -induced acute hepatotoxicity. Then, rats were co-treated with DFO (300 mg/kg, i.p.) for 6 weeks starting from the third week of CCl4 induction of chronic hepatotoxicity. Liver function was assessed in addition to histopathological examination. Furthermore, oxidative stress and fibrosis markers were assessed. It was found that treatment of animals with DFO significantly counteracted the changes in liver function; histopathological lesions and hepatic iron deposition that were induced by CCl4 . DFO also significantly counteracted the CCl4 -induced lipid peroxidation increase and reduction in antioxidant activities of superoxide dismutase and glutathione peroxidase enzymes. In addition, DFO ameliorated significantly liver fibrosis markers including hydroxyproline, collagen accumulation, and the expression of the hepatic stellate cells (HSCs) activation marker; alpha smooth muscle actin and transforming growth factor-beta (TGF-β). Together, these findings indicate that DFO possesses a potent antifibrotic effect due to its antioxidant properties that counteracted oxidative stress and lipid peroxidation and restored antioxidant enzymes activities as well as reducing HSCs activation and fibrogenesis.
Collapse
Affiliation(s)
- Aya Mohammed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Ekram N Abd Al Haleem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Wesam M El-Bakly
- Department of Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Ebtehal El-Demerdash
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| |
Collapse
|
49
|
Antifibrotic effect of meloxicam in rat liver: role of nuclear factor kappa B, proinflammatory cytokines, and oxidative stress. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:971-83. [PMID: 27245167 DOI: 10.1007/s00210-016-1263-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 05/24/2016] [Indexed: 01/01/2023]
Abstract
This study was aimed at investigating the antifibrotic effect of meloxicam in CCl4-induced liver fibrosis and elucidating its underlying mechanism. Forty male rats were equally randomized for 8-week treatment with corn oil (negative control), CCl4 (to induce liver fibrosis), and/or meloxicam. Meloxicam effectively ameliorated the CCl4-induced alterations in liver histology, liver weight to body weight ratio, liver functions, and serum markers for liver fibrosis (hyaluronic acid, laminin, and PCIII). Meloxicam significantly abrogated CCl4-induced elevation of messenger RNA (mRNA) expressions for collagen I and alpha smooth muscle actin (α-SMA) and hepatic contents of hydroxyproline, transforming growth factor beta (TGF-β), and tissue inhibitor of matrix metalloproteases (TIMP-1). Meloxicam mitigated CCl4-induced elevation in hepatic levels of nuclear factor kappa B (NF-κB), tumor necrosis factor alpha (TNF-α), total nitric oxide (NO), interleukin-l beta (IL 1β), and prostaglandin E2 (PGE2). Meloxicam modulated CCl4-induced disturbance of liver cytochrome P450 subfamily 2E1 (CYP2E1) and glutathione-S-transferase (GST). The attenuation of meloxicam to liver fibrosis was associated with suppression of oxidative stress via reduction of lipid peroxides along with induction of reduced glutathione content and enhancement of superoxide dismutase, glutathione peroxidase, and catalase activities. This study provides an evidence for antifibrotic effect of meloxicam against CCl4-induced liver fibrosis in rat. The antifibrotic mechanism of meloxicam could be through decreasing NF-κB level and subsequent proinflammatory cytokine production (TNF-α, NO, IL-1 beta, and PGE2) and, hence, collagen deposition through inhibition of TIMP-1 and TGF-β. Abrogation of oxidative stress and modulation of liver-metabolizing enzymes (CYP2E1 and GST) were also involved.
Collapse
|
50
|
Baicalein pretreatment reduces liver ischemia/reperfusion injury via induction of autophagy in rats. Sci Rep 2016; 6:25042. [PMID: 27150843 PMCID: PMC4858649 DOI: 10.1038/srep25042] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 04/08/2016] [Indexed: 12/13/2022] Open
Abstract
We previously demonstrated that baicalein could protect against liver ischemia/reperfusion (I/R) injury in mice. The exact mechanism of baicalein remains poorly understood. Autophagy plays an important role in protecting against I/R injury. This study was designed to determine whether baicalein could protect against liver I/R injury via induction of autophagy in rats. Baicalein was intraperitoneally injected 1 h before warm ischemia. Pretreatment with baicalein prior to I/R insult significantly blunted I/R-induced elevations of serum aminotransferase levels and significantly improved the histological status of livers. Electron microscopy and expression of the autophagic marker LC3B-II suggested induction of autophagy after baicalein treatment. Moreover, inhibition of the baicalein-induced autophagy using 3-methyladenine (3-MA) worsened liver injury. Furthermore, baicalein treatment increased heme oxygenase (HO)-1 expression, and pharmacological inhibition of HO-1 with tin protoporphyrin IX (SnPP) abolished the baicalein-mediated autophagy and the hepatocellular protection. In primary rat hepatocytes, baicalein-induced autophagy also protected hepatocytes from hypoxia/reoxygenation injury in vitro and the beneficial effect was abrogated by 3-MA or Atg7 siRNA, respectively. Suppression of HO-1 activity by SnPP or HO-1 siRNA prevented the baicalein-mediated autophagy and resulted in increased hepatocellular injury. Collectively, these results suggest that baicalein prevents hepatocellular injury via induction of HO-1-mediated autophagy.
Collapse
|