1
|
Zhou J, Gao B, Zhang H, Yang R, Huang J, Li X, Zhong Y, Wang Y, Zhu X, Luo Y, Yan F. Ginsenoside modified lipid-coated perfluorocarbon nanodroplets: A novel approach to reduce complement protein adsorption and prolong in vivo circulation. Acta Pharm Sin B 2024; 14:1845-1863. [PMID: 38572112 PMCID: PMC10985128 DOI: 10.1016/j.apsb.2023.11.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 04/05/2024] Open
Abstract
Lipid-coated perfluorocarbon nanodroplets (lp-NDs) hold great promise in bio-medicine as vehicles for drug delivery, molecular imaging and vaccine agents. However, their clinical utility is restricted by limited targeted accumulation, attributed to the innate immune system (IIS), which acts as the initial defense mechanism in humans. This study aimed to optimize lp-ND formulations to minimize non-specific clearance by the IIS. Ginsenosides (Gs), the principal components of Panax ginseng, possessing complement inhibition ability, structural similarity to cholesterol, and comparable fat solubility to phospholipids, were used as promising candidate IIS inhibitors. Two different types of ginsenoside-based lp-NDs (Gs lp-NDs) were created, and their efficacy in reducing IIS recognition was examined. The Gs lp-NDs were observed to inhibit the adsorption of C3 in the protein corona (PC) and the generation of SC5b-9. Adding Gs to lp-NDs reduced complement adsorption and phagocytosis, resulting in a longer blood circulation time in vivo compared to lp-NDs that did not contain Gs. These results suggest that Gs can act as anti-complement and anti-phagocytosis adjuvants, potentially reducing non-specific clearance by the IIS and improving lifespan.
Collapse
Affiliation(s)
- Jie Zhou
- Ultrasound Department of West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Ultrasound Imaging of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Binyang Gao
- Ultrasound Department of West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Ultrasound Imaging of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Huan Zhang
- Ultrasound Department of West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Ultrasound Imaging of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Rui Yang
- Ultrasound Department of West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Ultrasound Imaging of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jianbo Huang
- Ultrasound Department of West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Ultrasound Imaging of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xin Li
- West China Washington Mitochondria and Metabolism Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yi Zhong
- West China Washington Mitochondria and Metabolism Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yan Wang
- Research Core Facilities of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoxia Zhu
- Ultrasound Department of West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Ultrasound Imaging of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yan Luo
- Ultrasound Department of West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Ultrasound Imaging of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Feng Yan
- Ultrasound Department of West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Ultrasound Imaging of West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
2
|
Pham L, Jiang R, Liu Z, Nguyen M, Nguyen Y, Gong Y, Bi Y, Kim HR, Kim YR, Kim G. Synthesis of 9-Cinnamyl-9 H-purine Derivatives as Novel TLR4/MyD88/NF-κB Pathway Inhibitors for Anti-inflammatory Effects. ACS Med Chem Lett 2023; 14:1839-1847. [PMID: 38116448 PMCID: PMC10726439 DOI: 10.1021/acsmedchemlett.3c00437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/28/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023] Open
Abstract
The novel 9-cinnamyl-9H-purine skeleton, inspired by resveratrol and curcumin, was developed to avoid a pan-assay interference compound (PAINS) related to invalid metabolic pancreas activity (IMPS). It replaced the phenol group with purine analogues, the building blocks of DNA and RNA. Alterations to the hydroxyl group in the cinnamyl group, such as H, Me, or F substitutions, were made to impede its oxidation to a PAINS-associated quinone. Among the compounds tested, 5e significantly inhibited nitric oxide production in LPS-induced macrophages (IC50: 6.4 vs 26.4 μM for resveratrol). 5e also reduced pro-inflammatory cytokine levels (IL-6, TNF-α, IL-1β) and lowered iNOS and COX-2 protein levels. Mechanistically, 5e disrupted the TLR4-MyD88 protein interaction, leading to the suppression of the NF-κB signaling pathway suppression. In an atopic dermatitis mouse model, 5e reduced ear edema and inflammation. These findings indicate that the novel 9-cinnamyl-9H-purine skeleton provides therapeutic insight into treating various human diseases by regulating inflammation.
Collapse
Affiliation(s)
- Linh Pham
- College
of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 61186, Korea
| | - Rui Jiang
- College
of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 61186, Korea
| | - Zijing Liu
- College
of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 61186, Korea
| | - Mai Nguyen
- College
of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 61186, Korea
| | - Yen Nguyen
- College
of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 61186, Korea
| | - Yue Gong
- College
of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 61186, Korea
| | - Yanran Bi
- College
of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 61186, Korea
| | - Hong-Rae Kim
- Department
of Biomedical Sciences, College of Medicine, Korea University, Seoul 02708, Korea
| | - Young Ran Kim
- College
of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 61186, Korea
| | - Gyudong Kim
- College
of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
3
|
Zhang X, Chen Q, Zhao J, Zhao W, Fan N, Wang Y, Chen H, Rong J. A four-compound remedy AGILe protected H9c2 cardiomyocytes against oxygen glucose deprivation via targeting the TNF-α/NF-κB pathway: Implications for the therapy of myocardial infarction. Front Pharmacol 2023; 14:1050970. [PMID: 36713834 PMCID: PMC9880036 DOI: 10.3389/fphar.2023.1050970] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023] Open
Abstract
Myocardial infarction (MI) is a highly prevalent and lethal disease worldwide. Prevention and timely recovery are critical for the control of the recurrence and heart failure in MI survivors. The present study was designed to investigate the cardioprotective activity of the herbal medicine formula Baoyuan Decoction (BYD) and identify the active compounds and molecular targets. The ethanolic BYD extract (BYDE) was prepared by water extraction and ethanol precipitation of four herbal medicines, Astragali Radix, Ginseng Radix et Rhizoma, Cinnamomi Cortex, and Glycyrrhizae Radix et Rhizoma. Initially, BYDE was validated for the cardioprotective effectiveness in a mouse model of ischemia injury and rat cardiomyocyte H9C2 cells. As results, BYDE effectively reduced infarct size from 56% to 37% and preserved cardiac functions in mouse MI model while protected H9C2 cells against oxygen glucose deprivation. Subsequent network pharmacology analysis revealed that 122 bioactive ingredients, including flavonoids and saponins from the UPLC-MS/MS profile of BYDE, might target 37 MI-related proteins, including inflammatory and apoptotic mediators (e.g., TNF, NFKB1, CASPs, TNFRSF1A, CXCL12, BCL2A1). Pathway enrichment analysis suggested that BYDE might control the cardiac inflammation via targeting the tumor necrosis factor-alpha (TNF-α)/nuclear factor-κB (NF-κB) pathway while the selected targets were also implicated in IL-17 signaling pathway, lipid and atherosclerosis. Consequently, adenosine, ginsenoside Rh2, isoliquiritigenin, and licochalcone A were selected to generate the four-compound mixture AGILe and validated for the inhibitory effects on the TNF-α/NF-κB pathway. The results of the present study suggested that the mixture AGILe might be a potential cardioprotective remedy against MI.
Collapse
Affiliation(s)
- Xiuying Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Qilei Chen
- School of Chinese Medicine, Hong Kong Baptist University, Pokfulam, Hong Kong SAR, China
| | - Jia Zhao
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Wei Zhao
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Ni Fan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Yu Wang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Hubiao Chen
- School of Chinese Medicine, Hong Kong Baptist University, Pokfulam, Hong Kong SAR, China
| | - Jianhui Rong
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China,*Correspondence: Jianhui Rong,
| |
Collapse
|
4
|
Role of ginsenoside Rh2 in tumor therapy and tumor microenvironment immunomodulation. Biomed Pharmacother 2022; 156:113912. [DOI: 10.1016/j.biopha.2022.113912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/16/2022] [Accepted: 10/19/2022] [Indexed: 12/24/2022] Open
|
5
|
Xu Y, Zhu BW, Li X, Li YF, Ye XM, Hu JN. Glycogen-based pH and redox sensitive nanoparticles with ginsenoside Rh 2 for effective treatment of ulcerative colitis. Biomaterials 2021; 280:121077. [PMID: 34890974 DOI: 10.1016/j.biomaterials.2021.121077] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/07/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023]
Abstract
The purpose of this study is to construct a pH and redox sensitive nanoparticle to effectively deliver ginsenoside Rh2 for the treatment of ulcerative colitis (UC). Herein, glycogen was modified by urocanic acid and α-lipoic acid (α-LA) to obtain an amphiphilic polymer (LA-UaGly). Such polymer LA-UaGly could self-assemble to form nanoparticles (Blank NPs) in water with excellent stability, which could also successfully encapsulated ginsenoside Rh2 to form Rh2 nanoparticles (Rh2 NPs) with encapsulation efficiency of 74.36 ± 0.34%. DLS analysis indicated Rh2 NPs were spherical with a particle size of 128.9 ± 0.3 nm. As expected, Rh2 NPs exhibited typical pH and redox dual response release behaviour as well as the excellent in vivo safety. In vitro tests showed that Rh2 NPs could effectively internalize and release Rh2 into RAW264.7 cells, and protect cells from apoptosis (p < 0.05). More interestingly, Rh2 NPs exhibited strong anti-inflammatory activity via significantly inhibiting the overproduction of nitric oxide (NO) and inflammatory cytokines (TNF-α, IL-1β and IL-6) (p < 0.05). In vivo experiments suggested that Rh2 NPs significantly ameliorated the weight loss, colon length, disease activity index (DAI) score, and myeloperoxidase (MPO) activity in mice caused by dextran sulfate sodium salt (DSS) (p < 0.05). Simultaneously, pathological analysis proved that Rh2 NPs could significantly reduce histological damage and inflammatory infiltration in mice. Rh2 NPs could also effectively regulate the intestinal flora of mice by improving the species uniformity and abundance of the intestinal flora of mice and restoring the species diversity of the intestinal flora. In addition, both in vivo and in vitro experiments proved that Rh2 NPs had stronger anti-inflammatory activity than Rh2. This study provides a promising strategy for the effective treatment of UC.
Collapse
Affiliation(s)
- Yu Xu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China; College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, PR China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, PR China
| | - Bei-Wei Zhu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China; College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, PR China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, PR China
| | - Xiang Li
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, PR China
| | - Yan-Fei Li
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, PR China
| | - Xi-Mei Ye
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, PR China
| | - Jiang-Ning Hu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, PR China.
| |
Collapse
|
6
|
Li Y, Yu P, Fu W, Cai L, Yu Y, Feng Z, Wang Y, Zhang F, Yu X, Xu H, Sui D. Ginseng-Astragalus-oxymatrine injection ameliorates cyclophosphamide-induced immunosuppression in mice and enhances the immune activity of RAW264.7 cells. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:114387. [PMID: 34216728 DOI: 10.1016/j.jep.2021.114387] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/23/2021] [Accepted: 06/30/2021] [Indexed: 05/14/2023]
Abstract
ETHNOPHARMACOLOGICAL SIGNIFICANCE Ginseng quinquefolium (L.), Astragalus membranaceus, and Sophora flavescens Aiton are popular folk medicines in many Asian countries and regions. These three traditional Chinese herbs and their extracts have been reported to considerably enhance the immune function. G. quinquefolium (L.) is considered the king of herbs in China. Traditionally, G. quinquefolium (L.) is believed to replenish vitality, which is considered as immune enhancement in modern Chinese pharmacy. One of the main uses of Astragalus is immunity enhancement; S. flavescens and oxymatrine obtained from its extract have been used to treat leukopenia. Considering the pharmacological properties of Ginseng, Astragalus, and oxymatrine, we evaluated the immunopotentiation effects of their combination, Ginseng-Astragalus-oxymatrine (GAO), in the present study. AIM OF THE STUDY This study aimed to expand the clinical application of GAO and to preliminarily explore its mechanism of action by determining whether GAO injection can enhance immunity in vivo and in vitro. METHODS Overall, 17 major chemical components in GAO were analysed using HPLC and LC-MS. The immunity-enhancing effect of GAO was studied in the cyclophosphamide (CTX)-induced immunosuppressive mouse model and RAW 264.7 cells. RESULTS Quantitative analysis showed that the potential active components of GAO include at least ginsenosides, astragaloside IV, and oxymatrine. GAO could significantly improve the nonspecific immunity including the indices of the thymus and spleen, number of peripheral blood leukocytes, levels of TNF-α and IL-6, phagocytic function of macrophages, and cytotoxic activity of natural killer (NK) cells. Additionally, GAO enhanced the humoural immunity, characterised by the antibody production ability of B cells, and cellular immunity, characterised by the activity of T cells, in immunosuppressed mouse. Moreover, GAO could enhance the phagocytic and adhesion functions of RAW 264.7 cells, which may be related to the activation of reactive oxygen species and NF-κB signalling pathway. CONCLUSION GAO could dramatically ameliorate CTX-induced immunosuppression in mouse and stimulate the immune activity in RAW 264.7 cells possibly by activating the NF-κB signalling pathway.
Collapse
Affiliation(s)
- Yuangeng Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China.
| | - Ping Yu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China.
| | - Wenwen Fu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China.
| | - Lijian Cai
- Changbaishan Pharmaceutical CO. LTD, Jiaohe, China.
| | - Ying Yu
- Changbaishan Pharmaceutical CO. LTD, Jiaohe, China.
| | | | - Yaozhen Wang
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China.
| | - Fuyuan Zhang
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China.
| | - Xiaofeng Yu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China.
| | - Huali Xu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China.
| | - Dayun Sui
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China.
| |
Collapse
|
7
|
Li X, Chu S, Lin M, Gao Y, Liu Y, Yang S, Zhou X, Zhang Y, Hu Y, Wang H, Chen N. Anticancer property of ginsenoside Rh2 from ginseng. Eur J Med Chem 2020; 203:112627. [PMID: 32702586 DOI: 10.1016/j.ejmech.2020.112627] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 12/20/2022]
Abstract
Ginseng has been used as a well-known traditional Chinese medicine since ancient times. Ginsenosides as its main active constituents possess a broad scope of pharmacological properties including stimulating immune function, enhancing cardiovascular health, increasing resistance to stress, improving memory and learning, developing social functioning and mental health in normal persons, and chemotherapy. Ginsenoside Rh2 (Rh2) is one of the major bioactive ginsenosides from Panax ginseng. When applied to cancer treatment, Rh2 not only exhibits the anti-proliferation, anti-invasion, anti-metastasis, induction of cell cycle arrest, promotion of differentiation, and reversal of multi-drug resistance activities against multiple tumor cells, but also alleviates the side effects after chemotherapy or radiotherapy. In the past decades, nearly 200 studies on Rh2 in the treatment of cancer have been published, however no specific reviews have been conducted by now. So the purpose of this review is to provide a systematic summary and analysis of the anticancer effects and the potential mechanisms of Rh2 extracted from Ginseng then give a future prospects about it. In the end of this paper the metabolism and derivatives of Rh2 also have been documented.
Collapse
Affiliation(s)
- Xun Li
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China; Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, 410208, PR China; Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China
| | - Shifeng Chu
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China
| | - Meiyu Lin
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Yan Gao
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China
| | - Yingjiao Liu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Songwei Yang
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Xin Zhou
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China
| | - Yani Zhang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China
| | - Yaomei Hu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Huiqin Wang
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Naihong Chen
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China; Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, 410208, PR China; Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China.
| |
Collapse
|
8
|
Kang HK, Hyun CG. Anti-inflammatory Effect of d-(+)-Cycloserine Through Inhibition of NF-κB and MAPK Signaling Pathways in LPS-Induced RAW 264.7 Macrophages. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20920481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recently, additional therapeutic potentials of classical antibiotics are gaining considerable attention. The discovery of penicillin in the 1920s had a major impact on the history of human health. Penicillin has been used for the treatment for fatal microbial infections in humans and has led to the discovery of several new antibiotics. d-(+)-Cycloserine (DCS) is an antibiotic isolated from Streptomyces orchidaceous and is used in conjunction with other drugs in the treatment of tuberculosis. However, there have been no studies on the anti-inflammatory effects of DCS in RAW 264.7 macrophage cell line. To investigate the anti-inflammatory effects of DCS, we examined the ability of DCS to inhibit the inflammatory responses in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages in this study. Cell viability was analyzed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The cells were pretreated with various concentrations (2, 4, and 6 mM) of DCS, then treated with 1 μg/mL LPS to detect its anti-inflammatory effects. d-(+)-Cycloserine inhibited the production of nitric oxide (NO) in a concentration-dependent manner, and to some extent, inhibited the production of prostaglandin E2. Consistent with these findings, DCS suppressed the expression of pro-inflammatory cytokines such as interleukin (IL)-1β and IL-6. However, it had no effect on the expression of tumor necrosis factor-α. Western blot analysis demonstrated that DCS inhibited inducible nitric oxide synthase and suppressed cyclooxygenase type-2 (COX-2) expression. In addition, investigation of its effects on nuclear factor kappa B signaling showed that DCS inhibited phosphorylation of inhibitory kappa B-α (IκB-α) and increased intracellular IκB-α in a concentration-dependent manner. Furthermore, DCS inhibited the phosphorylation of LPS-induced extracellular signal-regulated kinase, however it did not affect phosphorylation of c-jun N-terminal kinase and p38. Further studies confirmed that the inhibition of phosphorylation of IκB-α was mediated through the inhibition of phosphoinositide 3-kinase/Akt (PI3K/Akt) pathway. To determine the applicability of DCS to the skin, cytotoxicity on HaCaT keratinocytes was measured following treatment with various concentrations (2, 4, 6, 8, and 10 mM) of DCS using MTT assay. These results suggest that DCS may be used as a potential drug for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Hyun-Kyu Kang
- Department of Chemistry and Cosmetics, Jeju National University, Republic of Korea
| | - Chang-Gu Hyun
- Department of Chemistry and Cosmetics, Jeju National University, Republic of Korea
| |
Collapse
|
9
|
Guo RH, Park JU, Jo SJ, Ahn JH, Park JH, Yang JY, Lee SS, Park MJ, Kim YR. Anti-allergic Inflammatory Effects of the Essential Oil From Fruits of Zanthoxylum coreanum Nakai. Front Pharmacol 2018; 9:1441. [PMID: 30618741 PMCID: PMC6299012 DOI: 10.3389/fphar.2018.01441] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/22/2018] [Indexed: 12/26/2022] Open
Abstract
Zanthoxylum coreanum Nakai is a rare shrub which grows in Korea and China. Pericarp of Z. coreanum has been used as a crude medicine, but there are few researches about the pharmacologic activities. The present study was designed to investigate the anti-allergic inflammatory activities of the essential oil from fruits of Zanthoxylum coreanum Nakai (ZCO). Our findings showed that ZCO inhibited both the IgE-antigen complex or PMA/A23187-induced β-hexosaminidase release and IL-4 production dose-dependently in RBL-2H3 mast cells, and confirmed that ZCO at the tested concentrations did not show cytotoxicity to RBL-2H3 cells by MTS assay. Additionally, we found that ZCO showed the significant inhibition on LPS-induced overproduction of TNF-α, IL-6 and NO. Consistently, the protein levels of iNOS and COX-2 were also remarkably decreased by ZCO treatment. Herein, Our mechanistic studies revealed that ZCO significantly suppressed the activation of transcription factor NF-κB in PMA-activated 293T cells, and further inhibited NF-κB p65 translocation into the nucleus in LPS-stimulated RAW264.7 cells. Further investigation identified that ZCO down-regulated LPS-induced phosphorylation of MAPK (JNK, ERK, and p38) signal pathway. For incremental research, we established an DNCB-induced atopic dermatitis model in BALB/c mice, and found that ZCO remarkably inhibited DNCB-induced ear swelling and AD-like symptoms. Based on these findings, ZCO is suggested to have a therapeutic potential for the allergic inflammatory diseases.
Collapse
Affiliation(s)
- Rui Hong Guo
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju, South Korea
| | - Jung Up Park
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju, South Korea
| | - Se Jin Jo
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju, South Korea
| | - Jae Hun Ahn
- Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, South Korea
| | - Jong Hwan Park
- Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, South Korea
| | - Ji Yoon Yang
- Division of Wood Chemistry, Department of Forest Products, National Institute of Forest Science, Seoul, South Korea
| | - Sung Suk Lee
- Division of Wood Chemistry, Department of Forest Products, National Institute of Forest Science, Seoul, South Korea
| | - Mi Jin Park
- Division of Wood Chemistry, Department of Forest Products, National Institute of Forest Science, Seoul, South Korea
| | - Young Ran Kim
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
10
|
Baatar D, Siddiqi MZ, Im WT, Ul Khaliq N, Hwang SG. Anti-Inflammatory Effect of Ginsenoside Rh 2-Mix on Lipopolysaccharide-Stimulated RAW 264.7 Murine Macrophage Cells. J Med Food 2018; 21:951-960. [PMID: 30239266 DOI: 10.1089/jmf.2018.4180] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Ginsenoside Rh2, a protopanaxadiol saponin from ginseng, has been reported to have strong anti-inflammatory activity. However, the concentration of ginsenoside Rh2 is very low (>0.001%) in the total ginseng extracted, which is not enough for production despite its high pharmacological effects. Thus, in this study, we evaluated the anti-inflammatory effect of ginsenoside Rh2-mix (GRh2-mix) on lipopolysaccharide (LPS)-stimulated RAW 264.7 murine macrophage cells. From the high-performance liquid chromatography analysis, it was confirmed that the GRh2-mix was mainly composed of 20(S)-Rh2, 20(R)-Rh2, Rk2, and Rh3. The LPS-stimulated RAW 264.7 cells were treated with different concentrations of GRh2-mix (100, 200, 400, 500 μg/mL). The cell counting kit-8 assay showed that the GRh2-mix treatment increased cell proliferation in LPS-stimulated RAW 264.7 murine macrophage cells. The GRh2-mix inhibited nitric oxide production in a dose-dependent manner, suggesting an anti-inflammatory effect. Furthermore, reverse transcription polymerase chain reaction and Western blot results also indicated that the GRh2-mix suppressed inflammatory genes such as iNOS, TNF-α, COX-2, IL-1β, IL-6, and NF-κB. In summary, these results suggest that the GRh2-mix exhibits anti-inflammatory activity via the downregulation of the NF-κB pathway and has high efficiency with a simple production procedure.
Collapse
Affiliation(s)
- Delgerzul Baatar
- 1 Department of Animal Life and Environmental Science, and Hankyong National University , Anseong-si, Gyeonggi-do, Korea
| | - Muhammad Zubair Siddiqi
- 2 Department of Biotechnology, Hankyong National University , Anseong-si, Gyeonggi-do, Korea.,3 Center for Genetic Information, Graduate School of Bio and Information Technology, Hankyong National University , Anseong-si, Gyeonggi-do, Korea
| | - Wan Taek Im
- 2 Department of Biotechnology, Hankyong National University , Anseong-si, Gyeonggi-do, Korea.,3 Center for Genetic Information, Graduate School of Bio and Information Technology, Hankyong National University , Anseong-si, Gyeonggi-do, Korea
| | | | - Seong Gu Hwang
- 1 Department of Animal Life and Environmental Science, and Hankyong National University , Anseong-si, Gyeonggi-do, Korea
| |
Collapse
|
11
|
Jung J, Lee NK, Paik HD. Bioconversion, health benefits, and application of ginseng and red ginseng in dairy products. Food Sci Biotechnol 2017; 26:1155-1168. [PMID: 30263648 PMCID: PMC6049797 DOI: 10.1007/s10068-017-0159-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/01/2017] [Accepted: 05/03/2017] [Indexed: 12/17/2022] Open
Abstract
Ginseng and red ginseng are popular as functional foods in Asian countries such as Korea, Japan, and China. They possess various pharmacologic effects, including antioxidant, anti-inflammatory, anti-cancer, anti-obesity, and anti-viral activities. Ginsenosides are a class of pharmacologically active components in ginseng and red ginseng. Major ginsenosides are converted to minor ginsenosides, which have better bioavailability and cellular uptake, by microorganisms and enzymes. Studies have shown that ginseng and red ginseng can affect the physicochemical and sensory properties, ginsenosides content, and functional properties of dairy products. In addition, lactic acid bacteria in dairy products can convert into minor ginsenosides and ginseng and red ginseng improve functionality of products. This review will discuss the characteristics of ginseng and red ginseng, and their bioconversion, functionality, and application in dairy products.
Collapse
Affiliation(s)
- Jieun Jung
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Korea
| | - Na-Kyoung Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Korea
- Bio/Molecular Informatics Center, Konkuk University, Seoul, 05029 Korea
| |
Collapse
|
12
|
Lee H, Lee S, Jeong D, Kim SJ. Ginsenoside Rh2 epigenetically regulates cell-mediated immune pathway to inhibit proliferation of MCF-7 breast cancer cells. J Ginseng Res 2017; 42:455-462. [PMID: 30337805 PMCID: PMC6187096 DOI: 10.1016/j.jgr.2017.05.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/31/2017] [Accepted: 05/08/2017] [Indexed: 12/03/2022] Open
Abstract
Background Ginsenoside Rh2 has been known to enhance the activity of immune cells, as well as to inhibit the growth of tumor cells. Although the repertoire of genes regulated by Rh2 is well-known in many cancer cells, the epigenetic regulation has yet to be determined, especially for comprehensive approaches to detect methylation changes. Methods The effect of Rh2 on genome-wide DNA methylation changes in breast cancer cells was examined by treating cultured MCF-7 with Rh2. Pyrosequencing analysis was carried out to measure the methylation level of a global methylation marker, LINE1. Genome-wide methylation analysis was carried out to identify epigenetically regulated genes and to elucidate the most prominent signaling pathway affected by Rh2. Apoptosis and proliferation were monitored to examine the cellular effect of Rh2. Results LINE1 showed induction of hypomethylation at specific CpGs by 1.6–9.1% (p < 0.05). Genome-wide methylation analysis identified the “cell-mediated immune response”-related pathway as the top network. Cell proliferation of MCF-7 was retarded by Rh2 in a dose-dependent manner. Hypermethylated genes such as CASP1, INSL5, and OR52A1 showed downregulation in the Rh2-treated MCF-7, while hypomethylated genes such as CLINT1, ST3GAL4, and C1orf198 showed upregulation. Notably, a higher survival rate was associated with lower expression of INSL5 and OR52A1 in breast cancer patients, while with higher expression of CLINT1. Conclusion The results indicate that Rh2 induces epigenetic methylation changes in genes involved in immune response and tumorigenesis, thereby contributing to enhanced immunogenicity and inhibiting the growth of cancer cells.
Collapse
Affiliation(s)
- Hyunkyung Lee
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Seungyeon Lee
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Dawoon Jeong
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Sun Jung Kim
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| |
Collapse
|
13
|
Wu L, Fan Y, Fan C, Yu Y, Sun L, Jin Y, Zhang Y, Ye RD. Licocoumarone isolated from Glycyrrhiza uralensis selectively alters LPS-induced inflammatory responses in RAW 264.7 macrophages. Eur J Pharmacol 2017; 801:46-53. [PMID: 28263754 DOI: 10.1016/j.ejphar.2017.02.049] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/28/2017] [Accepted: 02/28/2017] [Indexed: 01/12/2023]
Abstract
The effects of licocoumarone (LC) isolated from Glycyrrhiza uralensis were studied in LPS-stimulated RAW 264.7 macrophages. Our study demonstrated that LC dose-dependently attenuated LPS-induced NO production by down-regulating iNOS expression. Additionally, the treatment with LC inhibited LPS-induced expression of cytokines including IL-1β, IL-6 and IL-10, but not TNF-α, at both mRNA and protein levels. Similar suppressive effects of LC were observed on LPS-stimulated murine peritoneal macrophages as well. Furthermore, LC significantly reduced LPS-stimulated NF-κB activation by inhibition of IκBα degradation and p65 phosphorylation. The results from NF-κB-luc reporter gene assay further support the inhibitory effect of LC on NF-κB activation. Further studies showed that LC also interfered with the MAPKs and STAT3 signaling pathways, which are typical inflammatory signaling pathways triggered by LPS. Taken together, these results show that LC attenuates LPS-induced cytokine gene expression in RAW 264.7 macrophages through mechanisms that involve NF-κB, MAPKs and STAT3 signaling pathways, but the pattern of inhibition differs from that of a global immunosuppresant. Our study indicates that LC is a functional constituent of Glycyrrhiza uralensis with potential implications in infectious and immune-related diseases.
Collapse
Affiliation(s)
- Lehao Wu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yunpeng Fan
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Chao Fan
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yang Yu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Sun
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yu Jin
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| | - Yan Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Richard D Ye
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; Institute of Chinese Medical Sciences, University of Macau, Macau, SAR, China.
| |
Collapse
|
14
|
Ge G, Yan Y, Cai H. Ginsenoside Rh2 Inhibited Proliferation by Inducing ROS Mediated ER Stress Dependent Apoptosis in Lung Cancer Cells. Biol Pharm Bull 2017; 40:2117-2124. [DOI: 10.1248/bpb.b17-00463] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Guanqun Ge
- Department of Breast Surgery, The First Affiliated Hospital of Xi’an Jiaotong University
| | - Yan Yan
- The Second Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University
| | - Hui Cai
- Department of Vascular Surgery, The First Affiliated Hospital of Xi’an Jiaotong University
| |
Collapse
|
15
|
Kim JH, Yi YS, Kim MY, Cho JY. Role of ginsenosides, the main active components of Panax ginseng, in inflammatory responses and diseases. J Ginseng Res 2016; 41:435-443. [PMID: 29021688 PMCID: PMC5628327 DOI: 10.1016/j.jgr.2016.08.004] [Citation(s) in RCA: 363] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 08/09/2016] [Indexed: 01/06/2023] Open
Abstract
Panax ginseng is one of the most universally used herbal medicines in Asian and Western countries. Most of the biological activities of ginseng are derived from its main constituents, ginsenosides. Interestingly, a number of studies have reported that ginsenosides and their metabolites/derivatives—including ginsenoside (G)-Rb1, compound K, G-Rb2, G-Rd, G-Re, G-Rg1, G-Rg3, G-Rg5, G-Rh1, G-Rh2, and G-Rp1—exert anti-inflammatory activities in inflammatory responses by suppressing the production of proinflammatory cytokines and regulating the activities of inflammatory signaling pathways, such as nuclear factor-κB and activator protein-1. This review discusses recent studies regarding molecular mechanisms by which ginsenosides play critical roles in inflammatory responses and diseases, and provides evidence showing their potential to prevent and treat inflammatory diseases.
Collapse
Affiliation(s)
- Ji Hye Kim
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Young-Su Yi
- Department of Pharmaceutical Engineering, Cheongju University, Cheongju, Republic of Korea
| | - Mi-Yeon Kim
- School of Systems Biomedical Science, Soongsil University, Seoul, Republic of Korea
| | - Jae Youl Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
16
|
Li LC, Piao HM, Zheng MY, Lin ZH, Choi YH, Yan GH. Ginsenoside Rh2 attenuates allergic airway inflammation by modulating nuclear factor-κB activation in a murine model of asthma. Mol Med Rep 2016; 12:6946-54. [PMID: 26502836 DOI: 10.3892/mmr.2015.4272] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 07/21/2015] [Indexed: 11/05/2022] Open
Abstract
Allergic asthma is a chronic inflammatory disease that is regulated by coordination of T-helper type 2 cell cytokines and inflammatory signaling molecules. Ginsenoside Rh2 (G-Rh2) is an active component of ginseng with anti-inflammatory and anti-tumor effects. The aim of the present study was to determine the inhibitory effects of G-Rh2 on allergic airway inflammation in a murine model of asthma, in which mice develop the following pathophysiological features of asthma: Increased abundance of inflammatory cells; increased levels of interleukin-4 (IL-4), IL-5 and IL-13; decreased abundance of interferon gamma in the bronchoalveolar lavage fluid and lung tissue; increased total and ovalbumin (OVA)-specific immunoglobulin E (IgE) levels in the serum; increased airway hyperresponsiveness (AHR); and activation of nuclear factor kappa B (NF-κB) in lung tissue. In the asthmatic mice, administration of G-Rh2 markedly reduced peribronchiolar inflammation, recruitment of airway inflammatory cells, cytokine production, total and OVA-specific IgE levels and AHR. G-Rh2 administration inhibited NF-κB activation and p38 mitogen-activated protein kinase (MAPK) phosphorylation induced by OVA inhalation. These results suggested that G-Rh2 attenuates allergic airway inflammation by regulating NF-κB activation and p38 MAPK phosphorylation. The present study identified the molecular mechanisms of action of G-Rh2, which supported the potential use of G-Rh2 to prevent and/or treat asthma and other airway inflammatory disorders.
Collapse
|
17
|
Yu T, Rhee MH, Lee J, Kim SH, Yang Y, Kim HG, Kim Y, Kim C, Kwak YS, Kim JH, Cho JY. Ginsenoside Rc from Korean Red Ginseng (Panax ginseng C.A. Meyer) Attenuates Inflammatory Symptoms of Gastritis, Hepatitis and Arthritis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:595-615. [DOI: 10.1142/s0192415x16500336] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Korean Red Ginseng (KRG) is an herbal medicine prescribed worldwide that is prepared from Panax ginseng C.A. Meyer (Araliaceae). Out of ginseng’s various components, ginsenosides are regarded as the major ingredients, exhibiting anticancer and anti-inflammatory activities. Although recent studies have focused on understanding the anti-inflammatory activities of KRG, compounds that are major anti-inflammatory components, precisely how these can suppress various inflammatory processes has not been fully elucidated yet. In this study, we aimed to identify inhibitory saponins, to evaluate the in vivo efficacy of the saponins, and to understand the inhibitory mechanisms. To do this, we employed in vitro lipopolysaccharide-treated macrophages and in vivo inflammatory mouse conditions, such as collagen (type II)-induced arthritis (CIA), EtOH/HCl-induced gastritis, and lipopolysaccharide (LPS)/D-galactosamine (D-GalN)-triggered hepatitis. Molecular mechanisms were also verified by real-time PCR, immunoblotting analysis, and reporter gene assays. Out of all the ginsenosides, ginsenoside Rc (G-Rc) showed the highest inhibitory activity against the expression of tumor necrosis factor (TNF)-[Formula: see text], interleukin (IL)-1[Formula: see text], and interferons (IFNs). Similarly, this compound attenuated inflammatory symptoms in CIA, EtOH/HCl-mediated gastritis, and LPS/D-galactosamine (D-GalN)-triggered hepatitis without altering toxicological parameters, and without inducing gastric irritation. These anti-inflammatory effects were accompanied by the suppression of TNF-[Formula: see text] and IL-6 production and the induction of anti-inflammatory cytokine IL-10 in mice with CIA. G-Rc also attenuated the increased levels of luciferase activity by IRF-3 and AP-1 but not NF-[Formula: see text]B. In support of this phenomenon, G-Rc reduced TBK1, IRF-3, and ATF2 phosphorylation in the joint and liver tissues of mice with hepatitis. Therefore, our results strongly suggest that G-Rc may be a major component of KRG with useful anti-inflammatory properties due to its suppression of IRF-3 and AP-1 pathways.
Collapse
Affiliation(s)
- Tao Yu
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Medical College, Qingdao University, Qingdao 266021, P. R. China
| | - Man Hee Rhee
- College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jongsung Lee
- Department of Genetic Engineering, Sungkyunkwan University, 2066 Seobu-ro Jangan-gu, Suwon 16419, Republic of Korea
| | - Seung Hyung Kim
- Institute of Traditional Medicine and Bioscience, Daejeon University, Daejeon 34520, Republic of Korea
| | - Yanyan Yang
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Medical College, Qingdao University, Qingdao 266021, P. R. China
| | - Han Gyung Kim
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yong Kim
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Chaekyun Kim
- Department of Pharmacology, Inha University School of Medicine, Incheon 22212, Republic of Korea
| | - Yi-Seong Kwak
- Korean Ginseng Corporation, Central Research Institute, Daejeon 34337, Republic of Korea
| | - Jong-Hoon Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Republic of Korea
| | - Jae Youl Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
18
|
Anti-Inflammatory Effects of Ginsenoside-Rh2 Inhibits LPS-Induced Activation of Microglia and Overproduction of Inflammatory Mediators Via Modulation of TGF-β1/Smad Pathway. Neurochem Res 2016; 41:951-7. [PMID: 26738987 DOI: 10.1007/s11064-015-1804-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 12/02/2015] [Accepted: 12/09/2015] [Indexed: 12/13/2022]
Abstract
Microglia activation plays an important role in neuroinflammation and contributes to several neurological disorders. Hence, inhibition of both microglia activation and pro-inflammatory cytokines may lead to the effective treatment of neurodegenerative diseases. In this study, we found that GRh2 inhibited the inflammatory response to lipopolysaccharide (LPS) and prevented the LPS-induced neurotoxicity in microglia cells. GRh2 significantly decreased the generation of nitric oxide production, and tumor necrosis factor-α, interleukin (IL)-6, IL-1β, cyclooxygenase-2 and inducible nitric oxide synthase in LPS-induced activated microglia cells. Furthermore, GRh2 (20 and 50 μM) significantly increased TGF-β1 expression and reduced the expression of Smad. These results suggest that GRh2 effectively inhibits microglia activation and production of pro-inflammatory cytokines via modulating the TGF-β1/Smad pathway.
Collapse
|
19
|
Roberts KK, Hill TE, Davis MN, Holbrook MR, Freiberg AN. Cytokine response in mouse bone marrow derived macrophages after infection with pathogenic and non-pathogenic Rift Valley fever virus. J Gen Virol 2015; 96:1651-1663. [PMID: 25759029 PMCID: PMC4635452 DOI: 10.1099/vir.0.000119] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 03/09/2015] [Indexed: 12/23/2022] Open
Abstract
Rift Valley fever virus (RVFV) is the most pathogenic member of the genus Phlebovirus within the family Bunyaviridae, and can cause severe disease in humans and livestock. Until recently, limited information has been published on the cellular host response elicited by RVFV, particularly in macrophages and dendritic cells, which play critical roles in stimulating adaptive and innate immune responses to viral infection. In an effort to define the initial response of host immunomodulatory cells to infection, primary mouse bone marrow derived macrophages (BMDM) were infected with the pathogenic RVFV strain ZH501, or attenuated strains MP-12 or MP-12 based Clone13 type (rMP12-C13 type), and cytokine secretion profiles examined. The secretion of T helper (Th)1-associated antiviral cytokines, chemokines and various interleukins increased rapidly after infection with the attenuated rMP12-C13 type RVFV, which lacks a functional NSs virulence gene. In comparison, infection with live-attenuated MP-12 encoding a functional NSs gene appeared to cause a delayed immune response, while pathogenic ZH501 ablates the immune response almost entirely. These data demonstrate that NSs can inhibit components of the BMDM antiviral response and supports previous work indicating that NSs can specifically regulate the type I interferon response in macrophages. Furthermore, our data demonstrate that genetic differences between ZH501 and MP-12 reduce the ability of MP-12 to inhibit antiviral signalling and subsequently reduce virulence in BMDM, demonstrating that viral components other than NSs play a critical role in regulating the host response to RVFV infection.
Collapse
Affiliation(s)
- Kimberly K. Roberts
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Terence E. Hill
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Melissa N. Davis
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Michael R. Holbrook
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
- Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Integrated Research Facility, National Institute of Allergy and Infectious Disease, National Institutes of Health, Frederick, MD, USA
| | - Alexander N. Freiberg
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
- Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
20
|
Pro-oxidant activity of indicaxanthin from Opuntia ficus indica modulates arachidonate metabolism and prostaglandin synthesis through lipid peroxide production in LPS-stimulated RAW 264.7 macrophages. Redox Biol 2014; 2:892-900. [PMID: 25180166 PMCID: PMC4143813 DOI: 10.1016/j.redox.2014.07.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 07/09/2014] [Accepted: 07/11/2014] [Indexed: 11/24/2022] Open
Abstract
Macrophages come across active prostaglandin (PG) metabolism during inflammation, shunting early production of pro-inflammatory towards anti-inflammatory mediators terminating the process. This work for the first time provides evidence that a phytochemical may modulate the arachidonate (AA) metabolism in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages, promoting the ultimate formation of anti-inflammatory cyclopentenone 15deoxy-PGJ2. Added 1 h before LPS, indicaxanthin from Opuntia Ficus Indica prevented activation of nuclear factor-κB (NF-κB) and over-expression of PGE2 synthase-1 (mPGES-1), but up-regulated cyclo-oxygenase-2 (COX-2) and PGD2 synthase (H-PGDS), with final production of the anti-inflammatory cyclopentenone. The effects were positively related with concentration between 50 and 100 µM. Indicaxanthin did not have any effect in the absence of LPS. A kinetic study investigating the redox status of LPS-stimulated macrophages between 0.5 and 12 h, either in the absence or in the presence of 50–100 µM indicaxanthin, revealed a differential control of ROS production, with early (0.5–3 h) modest inhibition, followed by a progressive (3–12 h) concentration-dependent enhancement over the level induced by LPS alone. In addition, indicaxanthin caused early (0.5–3 h) concentration-dependent elevation of conjugated diene lipid hydroperoxides, and production of hydroxynonenal-protein adducts, over the amount induced by LPS. In LPS-stimulated macrophages indicaxanthin did not affect PG metabolism when co-incubated with either an inhibitor of NADPH oxidase or vitamin E. It is concluded that LPS-induced pro-oxidant activity of indicaxanthin at the membrane level allows formation of signaling intermediates whose accumulation modulates PG biosynthetic pathway in inflamed macrophages. Phytochemical indicaxanthin promotes synthesis of anti-inflammatory prostaglandins. Prooxidant activity of indicaxanthin causes anti-inflammatory response in macrophages. Indicaxanthin modulates the redox status of LPS-stimulated macrophages. Membrane lipid peroxides are signaling intermediates in inflamed macrophages.
Collapse
|
21
|
Lv S, Yi PF, Shen HQ, Zhang LY, Dong HB, Wu SC, Xia F, Guo X, Wei XB, Fu BD. Ginsenoside Rh2-B1 stimulates cell proliferation and IFN-γ production by activating the p38 MAPK and ERK-dependent signaling pathways in CTLL-2 cells. Immunopharmacol Immunotoxicol 2013; 36:43-51. [PMID: 24294901 DOI: 10.3109/08923973.2013.864669] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Ginsenoside Rh2, an active component of ginseng, exhibits immunoregulatory and anti-inflammatory properties. Rh2-B1, a sulfated derivative, was prepared to enhance its water solubility. We studied the effect of Rh2-B1 on CTLL-2, a CD8⁺ cytotoxic T cell line that was known for protecting against viral infection. OBJECTIVE We aimed to investigate the effect of Rh2-B1 on interferon (IFN)-γ production and cell proliferation and its possible mechanism. MATERIALS AND METHODS Enzyme-linked immunosorbent assay (ELISA) was employed to analyze the IFN-γ concentration of the whole blood and the supernatant of CTLL-2 cell culture. Cell proliferation assay was conducted using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Western blots were used to evaluate changes in signal transduction pathways in CTLL-2 cells. RESULTS Rh2-B1 was able to enhance IFN-γ production from whole blood culture of Balb/c mice. We then evaluated the effect of Rh2-B1 on a cytotoxic T cell line, CTLL-2 for cell proliferation, IFN-γ production and its molecular mechanism. Rh2-B1 promoted cell proliferation and IFN-γ production of CTLL-2 cells. It also induced activation of p38 mitogen-activated protein kinase (MAPK) and extracellular-signal-regulated kinases (ERK), but inhibited p56 Lck and transducer and activator of transcription 5 (STAT5) expression. The effect was blocked by the specific p38 MAPK inhibitor SB203580 and ERK inhibitor U0126. CONCLUSION Rh2-B1 could stimulate cell proliferation and IFN-γ production by activating the p38 MAPK- and ERK-dependent signaling pathways in cytotoxic T cells. This may be a novel medicine for treatment of viral infections.
Collapse
Affiliation(s)
- Shuang Lv
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University , Changchun, Jilin , China
| | | | | | | | | | | | | | | | | | | |
Collapse
|