1
|
Li W, Fang W, Zhang Y, Chen Q, Shentu W, Lai Q, Cheng L, Yan S, Kong Q, Qiao S. Research progress on resistance exercise therapy for improving cognitive function in patients with AD and muscle atrophy. Front Aging Neurosci 2025; 17:1552905. [PMID: 40271180 PMCID: PMC12016217 DOI: 10.3389/fnagi.2025.1552905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 03/24/2025] [Indexed: 04/25/2025] Open
Abstract
Alzheimer's disease (AD) significantly reduces the quality of life of patients and exacerbates the burden on their families and society. Resistance exercise significantly enhances the overall cognitive function of the elderly and patients with AD while positively improving memory, executive function, and muscle strength, reducing fall risks, and alleviating psychological symptoms. As AD is a neurodegenerative disorder, some nerve factors are readily activated and released during exercise. Therefore, several prior studies have concentrated on exploring the molecular mechanisms of resistance exercise and their impact on brain function and neural plasticity. Recent investigations have identified an intrinsic relationship between individuals with AD and the pathological mechanisms of skeletal muscle atrophy, establishing a correlation between patients with AD cognitive level and skeletal muscle content. Resistance exercise primarily targets the skeletal muscle, which improves cognitive impairment in patients with AD by reducing vascular and neuroinflammatory factors and further enhances cognitive function in patients with AD by restoring the structural function of skeletal muscle. Furthermore, the effects of resistance training vary among distinct subgroups of cognitive impairment. Individuals exhibiting lower cognitive function demonstrate more pronounced adaptive responses in physical performance over time. Consequently, further investigation is warranted to determine whether tailored guidelines-such as variations in the frequency and duration of resistance exercise-should be established for patients with varying levels of dementia, in order to optimize the benefits for those experiencing cognitive impairment. This study aimed to review the relationship between AD and skeletal muscle atrophy, the impact of skeletal muscle atrophy on AD cognition, the mechanism by which resistance exercise improves cognition through skeletal muscle improvement, and the optimal resistance exercise mode to elucidate the additional advantages of resistance exercise in treating cognitive function in patients with AD and skeletal muscle atrophy.
Collapse
Affiliation(s)
- Wenyao Li
- Department of Special Inspection, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Wei Fang
- Department of Neurology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Yier Zhang
- Zhejiang Chinese Medical University Hangzhou, Hangzhou, Zhejiang, China
- Department of Neurology, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Qiulu Chen
- Department of Neurology, Zhejiang Medical and Health Group Hangzhou Hospital, Hangzhou, Zhejiang, China
| | - Wuyue Shentu
- Zhejiang Chinese Medical University Hangzhou, Hangzhou, Zhejiang, China
| | - Qilun Lai
- Department of Neurology, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Lin Cheng
- Department of Neurology, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Sicheng Yan
- Liuzhou People's Hospital, Liuzhou, Guangxi, China
| | - Qi Kong
- Department of Neurology, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Song Qiao
- Department of Neurology, Zhejiang Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Mehta RI, Capuano AW, Biswas R, Bennett DA, Arvanitakis Z. Permutations of cerebrovascular pathologies in older adults with and without diabetes. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2025; 8:100381. [PMID: 40206712 PMCID: PMC11979427 DOI: 10.1016/j.cccb.2025.100381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 04/11/2025]
Abstract
Permutations of cerebrovascular pathologies (CVP) in persons with diabetes mellitus (DM) have not been comprehensively investigated. Here, we examine diverse postmortem CVP outcomes, including permutations of single or mixed CVP, in 2163 older adults with or without DM who were followed in longitudinal studies of aging. Annual clinical evaluations included data to classify DM status by medical history (DM diagnosis), direct medication inspection (anti-diabetic therapy), and hemoglobin A1C level (≥6.5 %). Upon death, neuropathological examinations were performed and included evaluation for CVP (considering vessel pathologies and brain infarcts) and Alzheimer's disease neuropathologic change (AD-NC). Among all participants [mean age, 89.49 ± 6.89 years (SD)], single CVP were more common than mixed CVP. Logistic regression was used to analyze the association of DM with CVP permutations, controlling for age at death, sex, education, and AD-NC, and revealed increased odds of microinfarcts alone (odds ratio, 1.56 [95 %CI, 1.03-2.35]) and mixed microinfarcts and macroinfarcts (odds ratio, 1.90 [95 %CI, 1.16-3.13]). These associations remained after adjusting for demographic factors and cohort or vascular comorbidities including stroke, heart disease, hypertension, claudication, smoking, and systolic blood pressure. Furthermore, after controlling for demographic factors as well as AD-NC and APOE type, mixed microinfarcts and macroinfarcts were associated with approximate threefold increased risk of dementia (odds ratio, 2.95 [95 %CI, 1.13-7.70]) in participants with DM. Evidence suggests that older adults living with DM have higher odds of microinfarcts and mixed microinfarcts and macroinfarcts in the absence of intracranial vessel pathologies that cannot be explained by vascular comorbidities, and in this population mixed microinfarcts and macroinfarcts are associated with higher odds of dementia.
Collapse
Affiliation(s)
- Rupal I. Mehta
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Ana W. Capuano
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Roshni Biswas
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - David A. Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Zoe Arvanitakis
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
3
|
Ramos-Cazorla P, Carazo-Barrios L, Reyes-Bueno JA, Sagües-Sesé E, de Rojas-Leal C, Barbancho MA, Garzón-Maldonado FJ, de la Cruz-Cosme C, García-Arnés JA, García-Casares N. Olfactory Dysfunction as a Biomarker for Early Diagnosis of Cognitive Impairment in Patients With Type 2 Diabetes: A Systematic Review. J Diabetes Res 2024; 2024:9933957. [PMID: 39735414 PMCID: PMC11681984 DOI: 10.1155/jdr/9933957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 09/17/2024] [Accepted: 10/29/2024] [Indexed: 12/31/2024] Open
Abstract
Background: Olfactory dysfunction and cognitive impairment (CI) have been associated with Type 2 diabetes (T2DM), but the mechanisms underlying this association are broadly unknown. This systematic review tends to investigate the relationship between the onset of olfactory dysfunction and CI in patients with T2DM and to explore the potential role of olfactory dysfunction as an early diagnosis biomarker of CI. Methods: We conducted a systematic review consulting PubMed and Scopus. The articles considered eligible included patients with T2DM and cognitive and olfactory test. Results: The search identified a total of 145 articles, of which 13 were finally selected. The majority of these studies discovered a correlation between olfactory dysfunction and CI in individuals with T2DM. Additionally, other biomarkers such as functional magnetic resonance imaging demonstrated changes in brain regions associated with the sense of smell in T2DM patients. Conclusions: Olfactory dysfunction could be a biomarker for early diagnosis of CI in T2DM. However, these alterations are highly heterogeneous and more studies that include neuroimaging need to be conducted.
Collapse
Affiliation(s)
- Paula Ramos-Cazorla
- Department of Medicine, Faculty of Medicine, University of Málaga, Málaga, Spain
| | | | - Jose A. Reyes-Bueno
- Department of Neurology, Regional University Hospital of Málaga, Málaga, Spain
| | - Elena Sagües-Sesé
- Department of Medicine, Faculty of Medicine, University of Málaga, Málaga, Spain
| | - Carmen de Rojas-Leal
- Department of Neurology, University Hospital Virgen de la Victoria of Málaga, Málaga, Spain
- Biomedical Research Institute of Málaga-Nanomedicine Platform (IBIMA-Plataforma BIONAND), Málaga, Spain
| | - Miguel A. Barbancho
- Biomedical Research Institute of Málaga-Nanomedicine Platform (IBIMA-Plataforma BIONAND), Málaga, Spain
- Clinical Neurology Unit, Centro de Investigaciones Médico-Sanitarias (CIMES), Málaga, Spain
- Department of Physiology, Faculty of Medicine, University of Malaga, Málaga, Spain
| | - Francisco J. Garzón-Maldonado
- Department of Neurology, University Hospital Virgen de la Victoria of Málaga, Málaga, Spain
- Biomedical Research Institute of Málaga-Nanomedicine Platform (IBIMA-Plataforma BIONAND), Málaga, Spain
| | - C. de la Cruz-Cosme
- Department of Medicine, Faculty of Medicine, University of Málaga, Málaga, Spain
- Department of Neurology, University Hospital Virgen de la Victoria of Málaga, Málaga, Spain
- Biomedical Research Institute of Málaga-Nanomedicine Platform (IBIMA-Plataforma BIONAND), Málaga, Spain
| | - Juan A. García-Arnés
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Malaga, Málaga, Spain
| | - Natalia García-Casares
- Department of Medicine, Faculty of Medicine, University of Málaga, Málaga, Spain
- Biomedical Research Institute of Málaga-Nanomedicine Platform (IBIMA-Plataforma BIONAND), Málaga, Spain
- Clinical Neurology Unit, Centro de Investigaciones Médico-Sanitarias (CIMES), Málaga, Spain
| |
Collapse
|
4
|
Hao J, Lu Y, Zhang L, Li X, Wen H, Zhao X, Wang L, Tu J, Wang J, Yang C, Ning X, Li Y. Association of triglyceride glucose index combined with obesity indicators with cognitive impairment. Lipids Health Dis 2024; 23:397. [PMID: 39616366 PMCID: PMC11607975 DOI: 10.1186/s12944-024-02388-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 11/24/2024] [Indexed: 01/03/2025] Open
Abstract
BACKGROUND The association of a combination of the TyG index and obesity markers, specifically waist circumference (WC), with cognitive function is unknown. This research investigated the relationship between TyG-WC measurements and cognitive impairment in a low-income population in China; moreover, this study evaluated the role of diabetes mellitus and body mass index (BMI) in modulating this relationship. METHODS 1125 eligible individuals aged ≥ 60 years participated in this study. The TyG index and obesity indicators (BMI, WC, and waist-to-height ratio) were calculated for individual participants and categorized into quartiles. Multivariate logistic regression analysis was used to evaluate the correlation between TyG-WC values and cognitive impairment; the possibility of a nonlinear relationship was explored using constrained cubic spline analysis. The participants were divided into different groups according to their diabetes status and BMI category for subgroup analyses. Linear regression was used to investigate the correlation between TyG-WC values and MMSE scores. RESULTS The prevalence of cognitive impairment in the study participants was 47.3%, with a significant negative association between TyG-WC values and cognitive impairment, (odds ratio [OR] = 0.999; 95% confidence interval [CI], 0.997-1.00, P = 0.009). A U-shaped correlation was observed between the TyG-WC values and cognitive impairment (P = 0.008). Subgroup analyses showed that the inverse association between TyG-WC values and cognitive impairment was stronger in non-diabetic individuals (OR = 0.998; 95% CI, 0.997-0.999; P = 0.002) and in those with a lower BMI (< 24 kg/m2; OR = 0.996; 95% CI, 0.994-0.998; P = 0.001). A positive correlation was found between TyG-WC values and MMSE scores, particularly in men and non-diabetic individuals (β = 0.003; 95% CI, 0.0002-0.005; P = 0.031). CONCLUSION This study demonstrates a nonlinear U-shaped relationship between TyG-WC values and cognitive function. The stronger inverse association between TyG-WC values and cognitive decline in the non-diabetic and low-BMI subgroups suggests that these populations may benefit the most from targeted interventions. These findings are important for clinical practice and formulating disease-prevention policies, emphasizing the need for metabolic health management to prevent cognitive decline, particularly in low-income populations.
Collapse
Affiliation(s)
- Juan Hao
- Department of Neurology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Yuting Lu
- School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Lei Zhang
- Tianjin Medical University Jizhou Clinical College, Tianjin, 301900, China
| | - Xiao Li
- Department of Neurology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Haotian Wen
- The First Clinical School of Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Xiyu Zhao
- Department of Critical Care Medicine, Tianjin Jizhou People's Hospital, Tianjin, 301900, China
| | - Lifeng Wang
- Tianjin Medical University Jizhou Clinical College;Institute of Clinical Epidemiology & Evidence-Based Medicine, Tianjin Jizhou People's Hospital, Tianjin, 301900, China
| | - Jun Tu
- Department of Neurology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin Medical University Jizhou Clinical College;Institute of Clinical Epidemiology & Evidence-Based Medicine, Tianjin Jizhou People's Hospital, Tianjin, 301900, China
- Laboratory of Epidemiology, Tianjin Neurological Institute, Tianjin, 300052, China
- Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Tianjin Neurological Institute, Ministry of Education and Tianjin City, Tianjin, 300052, China
| | - Jinghua Wang
- Department of Neurology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin Medical University Jizhou Clinical College;Institute of Clinical Epidemiology & Evidence-Based Medicine, Tianjin Jizhou People's Hospital, Tianjin, 301900, China
- Laboratory of Epidemiology, Tianjin Neurological Institute, Tianjin, 300052, China
- Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Tianjin Neurological Institute, Ministry of Education and Tianjin City, Tianjin, 300052, China
| | - Chunsheng Yang
- Department of Neurology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.
| | - Xianjia Ning
- Department of Neurology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.
- Tianjin Medical University Jizhou Clinical College;Institute of Clinical Epidemiology & Evidence-Based Medicine, Tianjin Jizhou People's Hospital, Tianjin, 301900, China.
- Laboratory of Epidemiology, Tianjin Neurological Institute, Tianjin, 300052, China.
- Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Tianjin Neurological Institute, Ministry of Education and Tianjin City, Tianjin, 300052, China.
| | - Yan Li
- Tianjin Medical University Jizhou Clinical College;Institute of Clinical Epidemiology & Evidence-Based Medicine, Tianjin Jizhou People's Hospital, Tianjin, 301900, China.
| |
Collapse
|
5
|
Diniz DG, Bento-Torres J, da Costa VO, Carvalho JPR, Tomás AM, Galdino de Oliveira TC, Soares FC, de Macedo LDED, Jardim NYV, Bento-Torres NVO, Anthony DC, Brites D, Picanço Diniz CW. The Hidden Dangers of Sedentary Living: Insights into Molecular, Cellular, and Systemic Mechanisms. Int J Mol Sci 2024; 25:10757. [PMID: 39409085 PMCID: PMC11476792 DOI: 10.3390/ijms251910757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
With the aging of the global population, neurodegenerative diseases are emerging as a major public health issue. The adoption of a less sedentary lifestyle has been shown to have a beneficial effect on cognitive decline, but the molecular mechanisms responsible are less clear. Here we provide a detailed analysis of the complex molecular, cellular, and systemic mechanisms underlying age-related cognitive decline and how lifestyle choices influence these processes. A review of the evidence from animal models, human studies, and postmortem analyses emphasizes the importance of integrating physical exercise with cognitive, multisensory, and motor stimulation as part of a multifaceted approach to mitigating cognitive decline. We highlight the potential of these non-pharmacological interventions to address key aging hallmarks, such as genomic instability, telomere attrition, and neuroinflammation, and underscore the need for comprehensive and personalized strategies to promote cognitive resilience and healthy aging.
Collapse
Affiliation(s)
- Daniel Guerreiro Diniz
- Laboratório de Microscopia Eletrônica, Instituto Evandro Chagas, Seção de Hepatologia, Belém 66.093-020, Pará, Brazil;
- Núcleo de Pesquisas em Oncologia, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil;
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
| | - João Bento-Torres
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
- Programa de Pós-Graduação em Ciências do Movimento Humano, Universidade Federal do Pará, Belém 66.050-160, Pará, Brazil
| | - Victor Oliveira da Costa
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
| | - Josilayne Patricia Ramos Carvalho
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
- Programa de Pós-Graduação em Ciências do Movimento Humano, Universidade Federal do Pará, Belém 66.050-160, Pará, Brazil
| | - Alessandra Mendonça Tomás
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
- Campus Samabaia, Universidade Federal de Goiás (EBTT), CEPAE, Goiânia 74.001-970, Goiás, Brazil
| | - Thaís Cristina Galdino de Oliveira
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
- Faculdade de Ceilândia, Ceilândia, Universidade de Brasília, Brasília 72.220-900, Brazil
| | - Fernanda Cabral Soares
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
| | - Liliane Dias e Dias de Macedo
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
- Campus Tucurui, Universidade do Estado do Pará, Tucurui 68.455-210, Pará, Brazil
| | - Naina Yuki Vieira Jardim
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
- Campus Tucurui, Universidade do Estado do Pará, Tucurui 68.455-210, Pará, Brazil
- Programa de Pós-Graduação em Neurociências e Biologia Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66.075-110, Pará, Brazil
| | - Natáli Valim Oliver Bento-Torres
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
- Programa de Pós-Graduação em Ciências do Movimento Humano, Universidade Federal do Pará, Belém 66.050-160, Pará, Brazil
| | - Daniel Clive Anthony
- Laboratory of Experimental Neuropathology, Department of Pharmacology, University of Oxford, Oxford OX1 2JD, UK;
| | - Dora Brites
- Faculty of Pharmacy, Department of Pharmaceutical Sciences and Medicines, Universidade de Lisboa, 1649-003 Lisbon, Portugal;
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Cristovam Wanderley Picanço Diniz
- Núcleo de Pesquisas em Oncologia, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil;
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
- Programa de Pós-Graduação em Neurociências e Biologia Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66.075-110, Pará, Brazil
| |
Collapse
|
6
|
Fraiha-Pegado J, de Paula VJR, Alotaibi T, Forlenza O, Hajek T. Trace lithium levels in drinking water and risk of dementia: a systematic review. Int J Bipolar Disord 2024; 12:32. [PMID: 39212809 PMCID: PMC11364728 DOI: 10.1186/s40345-024-00348-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/13/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Since its debut in 1949, lithium (Li) has been regarded as a gold standard therapy for mood stabilization. Neuroprotective effects of Li have been replicated across many different paradigms ranging from tissue cultures to human studies. This has generated interest in potentially repurposing this drug. However, the optimal dosage required for neuroprotective effects remains unclear and may be different than the doses needed for treatment of bipolar disorders. Recent studies on trace-Li levels in the water suggest that Li, could slow cognitive decline and prevent dementia with long-term use even at very low doses. The current review aims to synthesize the data on the topic and challenge the conventional high-dose paradigm. RESULTS We systematically reviewed five available studies, which reported associations between trace-Li in water and incidence or mortality from dementia. Association between trace-Li levels and a lower risk or mortality from dementia were observed at concentrations of Li in drinking water as low as 0.002 mg/L and 0.056 mg/L. Meanwhile, levels below 0.002 mg/L did not elicit this effect. Although three of the five studies found dementia protective properties of Li in both sexes, a single study including lower Li levels (0.002 mg/l) found such association only in women. CONCLUSION: The reviewed evidence shows that trace-Li levels in the water are sufficient to lower the incidence or mortality from dementia. Considering the lack of options for the prevention or treatment of dementia, we should not ignore these findings. Future trials of Li should focus on long term use of low or even micro doses of Li in the prevention or treatment of dementia.
Collapse
Affiliation(s)
- Julia Fraiha-Pegado
- Department of Psychiatry, Dalhousie University, 909 Veteran's Memorial Lane, Halifax, Canada
| | - Vanessa J Rodrigues de Paula
- Laboratory of Neuroscience (LIM27), Department and Institute of Psychiatry, HCFMUSP-Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Tariq Alotaibi
- Department of Psychiatry, Dalhousie University, 909 Veteran's Memorial Lane, Halifax, Canada
- Department of Medical Specialities, College of Medicine, Majmmah University, Majmmah City, Saudi Arabia
| | - Orestes Forlenza
- Laboratory of Neuroscience (LIM27), Department and Institute of Psychiatry, HCFMUSP-Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Tomas Hajek
- Department of Psychiatry, Dalhousie University, 909 Veteran's Memorial Lane, Halifax, Canada.
| |
Collapse
|
7
|
Li M, Li Y, Zhao K, Qin C, Chen Y, Liu Y, Qiu S, Tan X, Liang Y. Abnormal cerebral blood flow and brain function in type 2 diabetes mellitus. Endocrine 2024; 85:433-442. [PMID: 37340286 DOI: 10.1007/s12020-023-03342-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 02/25/2023] [Indexed: 06/22/2023]
Abstract
PURPOSE Type 2 diabetes mellitus (T2DM) lead to impaired cerebral blood perfusion, which leads to changes in brain function and affects the cognitive function of patients. In this study, cerebral blood flow (CBF) was used to evaluate the effect of T2DM on cerebral perfusion, and functional connectivity (FC) analysis was further used to explore whether the FC between the abnormal CBF region and the whole brain was changed. In addition, amplitude of low-frequency fluctuation (ALFF) and degree centrality (DC) were used to investigate the changes in spontaneous activity and connectivity strength of the brain network. METHODS We recruited 40 T2DM patients and 55 healthy controls (HCs). They underwent 3D-T1WI, rs-fMRI, arterial spin labeling (ASL) sequence scans and a series of cognitive tests. Cognitive test scores and brain imaging indicators were compared between the two groups, and the relationships among laboratory indicators, cognitive test scores, and brain imaging indicators were explored in the T2DM group. RESULTS Compared to HCs, The CBF values of Calcarine_L and Precuneus_R in the T2DM group were lower. The DC value of Paracentral_Lobule_L and Precuneus_L, and the ALFF value of Hippocampus_L in the T2DM group were higher. In addition, the CBF values of Calcarine_L was negatively correlated with fasting insulin and HOMA_IR. CONCLUSION This study found that there were regions of cerebral hypoperfusion in T2DM patients, which are associated with insulin resistance. In addition, we found abnormally elevated brain activity and enhanced functional connectivity in T2DM patients, which we speculated was the compensatory mechanism of brain neural activity.
Collapse
Affiliation(s)
- Mingrui Li
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Radiology, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Magnatic Resonance Imaging, Zhanjiang First Hospital of Traditional Chinese Medicine, Zhanjiang, China
| | - Yifan Li
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Radiology, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kui Zhao
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Radiology, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chunhong Qin
- Department of Radiology, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuna Chen
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Radiology, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yujie Liu
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Radiology, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shijun Qiu
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.
- Department of Radiology, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Xin Tan
- Department of Radiology, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Yi Liang
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.
- Department of Radiology, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
8
|
do Nascimento FV, de Freitas BS, Dos Passos MP, Kleverston L, de Souza Dos Santos C, Kist LW, Bogo MR, Bromberg E, Schröder N. A high fat diet potentiates neonatal iron overload-induced memory impairments in rats. Eur J Nutr 2024; 63:1163-1175. [PMID: 38358514 DOI: 10.1007/s00394-024-03333-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 01/23/2024] [Indexed: 02/16/2024]
Abstract
PURPOSE The present study aimed at evaluating possible synergistic effects between two risk factors for cognitive decline and neurodegenerative disorders, i.e. iron overload and exposure to a hypercaloric/hyperlipidic diet, on cognition, insulin resistance, and hippocampal GLUT1, GLUT3, Insr mRNA expression, and AKT phosporylation. METHODS Male Wistar rats were treated with iron (30 mg/kg carbonyl iron) or vehicle (5% sorbitol in water) from 12 to 14th post-natal days. Iron-treated rats received a standard laboratory diet or a high fat diet from weaning to adulthood (9 months of age). Recognition and emotional memory, peripheral blood glucose and insulin levels were evaluated. Glucose transporters (GLUT 1 and GLUT3) and insulin signaling were analyzed in the hippocampus of rats. RESULTS Both iron overload and exposure to a high fat diet induced memory deficits. Remarkably, the association of iron with the high fat diet induced more severe cognitive deficits. Iron overload in the neonatal period induced higher insulin levels associated with significantly higher HOMA-IR, an index of insulin resistance. Long-term exposure to a high fat diet resulted in higher fasting glucose levels. Iron treatment induced changes in Insr and GLUT1 expression in the hippocampus. At the level of intracellular signaling, both iron treatment and the high fat diet decreased AKT phosphorylation. CONCLUSION The combination of iron overload with exposure to a high fat diet only led to synergistic deleterious effect on emotional memory, while the effects induced by iron and by the high fat diet on AKT phosphorylation were comparable. These findings indicate that there is, at least to some extent, an additive effect of iron combined with the diet. Further studies investigating the mechanisms associated to deleterious effects on cognition and susceptibility for the development of age-associated neurodegenerative disorders are warranted.
Collapse
Affiliation(s)
- Filipe Valvassori do Nascimento
- Neurobiology and Developmental Biology Laboratory, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Betânia Souza de Freitas
- Neurobiology and Developmental Biology Laboratory, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Maiara Priscila Dos Passos
- Neurobiology and Developmental Biology Laboratory, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Luiza Kleverston
- Neurobiology and Developmental Biology Laboratory, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Cristophod de Souza Dos Santos
- Neurobiology and Developmental Biology Laboratory, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Luiza Wilges Kist
- Laboratory of Genomics and Molecular Biology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
- Excitotoxicity and Neuroprotection (INCT-EN), National Institute of Science and Technology for Brain Diseases, Porto Alegre, Brazil
| | - Maurício Reis Bogo
- Laboratory of Genomics and Molecular Biology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
- Excitotoxicity and Neuroprotection (INCT-EN), National Institute of Science and Technology for Brain Diseases, Porto Alegre, Brazil
| | - Elke Bromberg
- Neurobiology and Developmental Biology Laboratory, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
- National Institute of Science and Technology for Translational Medicine (INCT-TM), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brasília, Brazil
| | - Nadja Schröder
- National Institute of Science and Technology for Translational Medicine (INCT-TM), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brasília, Brazil.
- Department of Physiology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
9
|
Meer N, Fischer T. Medium-Chain Triglycerides (MCTs) for the Symptomatic Treatment of Dementia-Related Diseases: A Systematic Review. J Nutr Metab 2024; 2024:9672969. [PMID: 38715705 PMCID: PMC11074881 DOI: 10.1155/2024/9672969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/13/2024] [Accepted: 03/25/2024] [Indexed: 05/12/2024] Open
Abstract
Pathomechanisms of dementias involve increasing damage to neuronal energy metabolism, resulting in degeneration-related insulin resistance and glucose hypometabolism. In this case, ketone bodies can provide an alternative energy source. Supplementation with medium-chain triglycerides (MCTs), which can induce ketogenesis, may alleviate brain energy deficits and improve neuronal function. This review aims to determine the effectiveness of MCT as a symptomatic treatment approach. The systematic literature search was conducted in April 2023 following the Cochrane Handbook and PRISMA guidelines. A total of 21 studies were included, comprising eight uncontrolled trials and 13 RCTs investigating the effects of MCT on Alzheimer's disease (AD) and mild cognitive impairment (MCI). A substantial increase in plasma ketone levels and brain metabolic rates was observed. Cognitive assessments showed only occasional or domain-specific performance improvements. The effects on functional abilities or psychological outcomes have been inadequately studied. Besides gastrointestinal side effects, no harmful effects were observed. However, the evidence was severely weakened by heterogeneous and poorly designed study protocols, bias, and conflicts of interest. In conclusion, the ketogenic properties of MCTs may have beneficial effects on brain metabolism in AD and MCI but do not always result in measurable clinical improvement. Current evidence is insufficient to recommend MCT as a comparable symptomatic treatment option.
Collapse
Affiliation(s)
- Nike Meer
- FH Muenster-University of Applied Sciences, Department of Food, Nutrition, and Facilities, Corrensstraße 25, Muenster 48149, Germany
| | - Tobias Fischer
- FH Muenster-University of Applied Sciences, Department of Food, Nutrition, and Facilities, Corrensstraße 25, Muenster 48149, Germany
| |
Collapse
|
10
|
Alkabbani W, Maxwell CJ, Marrie RA, Tyas SL, Lega IC, Gamble JM. Insulin, hypoglycaemia and dementia: A causal mediation analysis showcasing challenges and potential opportunities. Diabetes Obes Metab 2024; 26:1120-1124. [PMID: 38012861 DOI: 10.1111/dom.15385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 11/29/2023]
Affiliation(s)
- Wajd Alkabbani
- School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| | - Colleen J Maxwell
- School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
- School of Public Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Ruth Ann Marrie
- Departments of Internal Medicine and Community Health Science, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Suzanne L Tyas
- School of Public Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Iliana C Lega
- Women's College Research Institute (WCRI), Women's College Hospital, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
11
|
Etholén A, Kouvonen A, Hänninen M, Kulmala J, Rahkonen O, Mänty M, Lallukka T. Individual and dual trajectories of insomnia symptoms and body mass index before and after retirement and their associations with changes in subjective cognitive functioning. Prev Med 2024; 179:107830. [PMID: 38142966 DOI: 10.1016/j.ypmed.2023.107830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
BACKGROUND We examined individual and dual trajectories of insomnia symptoms and body mass index (BMI) before and after retirement, and their associations with changes in subjective cognitive functioning after retirement. METHODS We used the Helsinki Health Study's (n = 2360, 79% women, aged 40-60 at baseline, Finland) repeated surveys to identify the developmental patterns of insomnia symptoms and BMI (2000-2017) and changes in subjective cognitive functioning (2017-2022). We analysed the data using latent group-based dual trajectory modelling and logistic regression analysis. RESULTS Three latent groups were identified for insomnia symptoms (stable low, decreasing and increasing symptoms) and BMI (stable healthy weight, stable overweight and stable obesity). Insomnia symptoms were associated with declining subjective cognitive functioning and largely explained the effects in the dual models. CONCLUSION The association between dual trajectories of insomnia symptoms and BMI with subjective cognitive decline is dominated by insomnia symptoms.
Collapse
Affiliation(s)
- Antti Etholén
- Department of Public Health, PO BOX 20 (Tukholmankatu 8 B), 00014 University of Helsinki, Finland.
| | - Anne Kouvonen
- Faculty of Social Sciences, University of Helsinki, POB 54, 00014 University of Helsinki, Finland; Centre for Public Health, Queen's University Belfast, Royal Victoria Hospital, Belfast BT12 6BA, UK.
| | - Mirja Hänninen
- Department of Public Health, PO BOX 20 (Tukholmankatu 8 B), 00014 University of Helsinki, Finland; Western Uusimaa Wellbeing Services County, Social and Health Care Services, P.O. BOX 33, 02033 Espoo, Finland.
| | - Jenni Kulmala
- Faculty of Social Sciences (Health Sciences) and Gerontology Research Center (GEREC), Tampere University, Arvo Ylpön katu 34, 33520 Tampere, Finland; Population Health Unit, Finnish Institute for Health and Welfare, POB 30, 00271 Helsinki, Finland; Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solnavägen 1, 171 77 Solna, Sweden.
| | - Ossi Rahkonen
- Department of Public Health, PO BOX 20 (Tukholmankatu 8 B), 00014 University of Helsinki, Finland.
| | - Minna Mänty
- Department of Public Health, PO BOX 20 (Tukholmankatu 8 B), 00014 University of Helsinki, Finland.
| | - Tea Lallukka
- Department of Public Health, PO BOX 20 (Tukholmankatu 8 B), 00014 University of Helsinki, Finland.
| |
Collapse
|
12
|
Mancinetti F, Xenos D, De Fano M, Mazzieri A, Porcellati F, Boccardi V, Mecocci P. Diabetes-Alzheimer's connection in older age: SGLT2 inhibitors as promising modulators of disease pathways. Ageing Res Rev 2023; 90:102018. [PMID: 37481164 DOI: 10.1016/j.arr.2023.102018] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023]
Abstract
Late-onset Alzheimer's disease (LOAD) is the most frequent cause of dementia in older persons. Subjects affected by type 2 diabetes mellitus (T2DM) are at higher risk of vascular disease, cognitive decline, and dementia. LOAD has many characteristics shared with impaired insulin signaling pathways, and substantial evidence has demonstrated a pivotal role in dysregulated glucose metabolism in its pathogenesis. Recent studies have shown that some anti-diabetic drugs, other than regulating the metabolism of peripheral tissues, can also modulate the brain's metabolism, reduce inflammation, and have a direct neuroprotective effect. Sodium-glucose cotransporter-2 inhibitors (SGLT2i) are a newer class with many pleiotropic effects that may have strong neuroprotective potential. After a summary of the principal "anti-diabetic" drugs acting as suitable candidates in treating LOAD, this narrative review explored the potential role of SGLT2i on cognition from pre-clinical to clinical studies.
Collapse
Affiliation(s)
- Francesca Mancinetti
- Institute of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Italy
| | - Dionysios Xenos
- Institute of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Italy
| | - Michelantonio De Fano
- Institute of Internal Medicine, Endocrinology and Metabolism, Department of Medicine and Surgery, University of Perugia, Italy
| | - Alessio Mazzieri
- Institute of Internal Medicine, Endocrinology and Metabolism, Department of Medicine and Surgery, University of Perugia, Italy
| | - Francesca Porcellati
- Institute of Internal Medicine, Endocrinology and Metabolism, Department of Medicine and Surgery, University of Perugia, Italy
| | - Virginia Boccardi
- Institute of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Italy.
| | - Patrizia Mecocci
- Institute of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Italy; Division of Clinical Geriatrics, NVS Department, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
13
|
Zhou W, Xie Y, Yu L, Yu C, Bao H, Cheng X. Positive association between weight-adjusted-waist index and dementia in the Chinese population with hypertension: a cross-sectional study. BMC Psychiatry 2023; 23:519. [PMID: 37468882 DOI: 10.1186/s12888-023-05027-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/13/2023] [Indexed: 07/21/2023] Open
Abstract
PURPOSE The links between obesity and dementia remain equivocal. Therefore, this study aimed to explore the association between weight-adjusted waist index (WWI), a new anthropometric indicator reflecting obesity, and dementia in the Chinese population with hypertension. METHODS A total of 10,289 participants with hypertension were enrolled in this cross-sectional study, a subset of the China H-type hypertension registry study. WWI was calculated as waist circumference (WC) divided by the square root of bodyweight. Mini-mental state examination (MMSE) scale was performed to evaluate the cognitive function. According to educational background, different MMSE cut-off values were applied to define dementia: < 24 for participants with ≥ 7 years of education, < 20 for those with 1-6 years of education, and < 17 for illiterate participants. Multivariable linear regression and multivariable binary logistic regression analyses were conducted to assess the associations between WWI and MMSE and dementia, respectively. RESULTS Overall, the mean age was 63.7 ± 9.7 years, and 49.0% were males. Multivariate linear regression analyses showed that WWI was negatively associated with MMSE (β, -1.09; 95% confidence interval [CI]: -1.24, -0.94). Consistently, multivariable binary logistic regression analyses found a positive association between WWI and the risk of dementia (odds ratio [OR], 1.45; 95% CI: 1.35, 1.56). Compared with individuals in quartile 1 of WWI, the adjusted β and OR values of WWI for MMSE and dementia were -2.28 (95% CI: -2.62, -1.94) and 2.12 (95% CI: 1.81, 2.48), respectively. Results of smoothing curve fitting confirmed the linear association between WWI and MMSE and dementia. Subgroup analysis showed a stronger association between WWI and dementia in participants with hypertension with midday napping. CONCLUSION WWI was independently and positively associated with dementia among the population with hypertension, especially in those with midday napping. The data suggests that WWI may serve as a simple and effective tool for the assessment of the risk of dementia in clinical practice.
Collapse
Affiliation(s)
- Wei Zhou
- Center for Prevention and Treatment of Cardiovascular Diseases, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- Jiangxi Sub-Center of National Clinical Research Center for Cardiovascular Diseases, Nanchang, 330006, Jiangxi, China
- Jiangxi Provincial Cardiovascular Disease Clinical Medical Research Center, Nanchang, 330006, Jiangxi, China
| | - Yanyou Xie
- Center for Prevention and Treatment of Cardiovascular Diseases, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- Jiangxi Sub-Center of National Clinical Research Center for Cardiovascular Diseases, Nanchang, 330006, Jiangxi, China
- Jiangxi Provincial Cardiovascular Disease Clinical Medical Research Center, Nanchang, 330006, Jiangxi, China
- Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Lingling Yu
- Department of Rehabilitation, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| | - Chao Yu
- Center for Prevention and Treatment of Cardiovascular Diseases, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
- Jiangxi Sub-Center of National Clinical Research Center for Cardiovascular Diseases, Nanchang, 330006, Jiangxi, China.
- Jiangxi Provincial Cardiovascular Disease Clinical Medical Research Center, Nanchang, 330006, Jiangxi, China.
| | - Huihui Bao
- Center for Prevention and Treatment of Cardiovascular Diseases, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- Jiangxi Sub-Center of National Clinical Research Center for Cardiovascular Diseases, Nanchang, 330006, Jiangxi, China
- Jiangxi Provincial Cardiovascular Disease Clinical Medical Research Center, Nanchang, 330006, Jiangxi, China
- Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Xiaoshu Cheng
- Center for Prevention and Treatment of Cardiovascular Diseases, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- Jiangxi Sub-Center of National Clinical Research Center for Cardiovascular Diseases, Nanchang, 330006, Jiangxi, China
- Jiangxi Provincial Cardiovascular Disease Clinical Medical Research Center, Nanchang, 330006, Jiangxi, China
- Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| |
Collapse
|
14
|
Gladding JM, Lingawi NW, Leung BK, Kendig MD, Chieng BC, Laurent V. High fat diet allows food-predictive stimuli to energize action performance in the absence of hunger, without distorting insulin signaling on accumbal cholinergic interneurons. Appetite 2023:106769. [PMID: 37399905 DOI: 10.1016/j.appet.2023.106769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Obesity can disrupt how food-predictive stimuli control action performance and selection. These two forms of control recruit cholinergic interneurons (CIN) located in the nucleus accumbens core (NAcC) and shell (NAcS), respectively. Given that obesity is associated with insulin resistance in this region, we examined whether interfering with CIN insulin signaling disrupts how food-predictive stimuli control actions. To interfere with insulin signaling we used a high-fat diet (HFD) or genetic excision of insulin receptor (InsR) from cholinergic cells. HFD left intact the capacity of food-predictive stimuli to energize performance of an action earning food when mice were tested hungry. However, it allowed this energizing effect to persist when the mice were tested sated. This persistence was linked to NAcC CIN activity but was not associated with distorted CIN insulin signaling. Accordingly, InsR excision had no effect on how food-predicting stimuli control action performance. Next, we found that neither HFD nor InsR excision altered the capacity of food-predictive stimuli to guide action selection. Yet, this capacity was associated with changes in NAcS CIN activity. These results indicate that insulin signaling on accumbal CIN does not modulate how food-predictive stimuli control action performance and selection. However, they show that HFD allows food-predictive stimuli to energize performance of an action earning food in the absence of hunger.
Collapse
Affiliation(s)
- Joanne M Gladding
- Decision Neuroscience Laboratory, School of Psychology, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Nura W Lingawi
- Decision Neuroscience Laboratory, School of Psychology, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Beatrice K Leung
- Decision Neuroscience Laboratory, School of Psychology, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Michael D Kendig
- Brain & Behaviour Group, School of Life Sciences, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Billy C Chieng
- Decision Neuroscience Laboratory, School of Psychology, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Vincent Laurent
- Decision Neuroscience Laboratory, School of Psychology, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
15
|
Loughman A, Adler CJ, Macpherson H. Unlocking Modifiable Risk Factors for Alzheimer's Disease: Does the Oral Microbiome Hold Some of the Keys? J Alzheimers Dis 2023; 92:1111-1129. [PMID: 36872775 DOI: 10.3233/jad-220760] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Advancing age is recognized as the primary risk factor for Alzheimer's disease (AD); however approximately one third of dementia cases are attributable to modifiable risk factors such as hypertension, diabetes, smoking, and obesity. Recent research also implicates oral health and the oral microbiome in AD risk and pathophysiology. The oral microbiome contributes to the cerebrovascular and neurodegenerative pathology of AD via the inflammatory, vascular, neurotoxic, and oxidative stress pathways of known modifiable risk factors. This review proposes a conceptual framework that integrates the emerging evidence regarding the oral microbiome with established modifiable risk factors. There are numerous mechanisms by which the oral microbiome may interact with AD pathophysiology. Microbiota have immunomodulatory functions, including the activation of systemic pro-inflammatory cytokines. This inflammation can affect the integrity of the blood-brain barrier, which in turn modulates translocation of bacteria and their metabolites to brain parenchyma. Amyloid-β is an antimicrobial peptide, a feature which may in part explain its accumulation. There are microbial interactions with cardiovascular health, glucose tolerance, physical activity, and sleep, suggesting that these modifiable lifestyle risk factors of dementia may have microbial contributors. There is mounting evidence to suggest the relevance of oral health practices and the microbiome to AD. The conceptual framework presented here additionally demonstrates the potential for the oral microbiome to comprise a mechanistic intermediary between some lifestyle risk factors and AD pathophysiology. Future clinical studies may identify specific oral microbial targets and the optimum oral health practices to reduce dementia risk.
Collapse
Affiliation(s)
- Amy Loughman
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, Barwon Health, Geelong, Victoria, Australia
| | - Christina J Adler
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Helen Macpherson
- Deakin University, IPAN - the Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Geelong, Victoria, Australia
| |
Collapse
|
16
|
Zhou C, Dong C, Xie Z, Hao W, Fu C, Sun H, Zhu D. Sex-specific associations between diabetes and dementia: the role of age at onset of disease, insulin use and complications. Biol Sex Differ 2023; 14:9. [PMID: 36804018 PMCID: PMC9940390 DOI: 10.1186/s13293-023-00491-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Whether the association of type 2 diabetes (T2DM) with dementia was differed by sex remains unclear, and the roles of age at onset of disease, insulin use and diabetes' complications in their association are unknown. METHODS This study analyzed data of 447 931 participants from the UK Biobank. We used Cox proportional hazards models to estimate sex-specific hazard ratios (HRs) and 95% confidence intervals (CI), and women-to-men ratio of HRs (RHR) for the association between T2DM and incident dementia [all-cause dementia, Alzheimer's disease (AD), and vascular dementia (VD)]. The roles of age at onset of disease, insulin use and diabetes' complications in their association were also analyzed. RESULTS Compared to people with no diabetes at all, people with T2DM had increased risk of all-cause dementia (HR 2.85, 95% CI 2.56-3.17). The HRs between T2DM and AD were higher in women than men, with an RHR (95%CI) of 1.56 (1.20, 2.02). There was a trend that people who experienced T2DM before age 55 had higher risk of VD than those who had T2DM after age 55. In addition, there was a trend that T2DM had higher effect on VD that occurred before age 75 years than events that occurred after age 75. Patients with T2DM using insulin had higher risk of all-cause dementia than those without insulin, with an RHR (95%CI) of 1.54 (1.00-2.37). People with complications had doubled risk of all-cause dementia, AD and VD. CONCLUSIONS Adopting a sex-sensitive strategy to address the risk of dementia in patients with T2DM is instrumental for a precision medicine approach. Meanwhile, it is warranted to consider patients' age at onset of T2DM, insulin use status and complications conditions.
Collapse
Affiliation(s)
- Chunmiao Zhou
- grid.27255.370000 0004 1761 1174Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, 250012 Shandong China
| | - Caiyun Dong
- grid.27255.370000 0004 1761 1174Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, 250012 Shandong China
| | - Ziwei Xie
- grid.27255.370000 0004 1761 1174Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, 250012 Shandong China
| | - Wenting Hao
- grid.27255.370000 0004 1761 1174Centre for Health Management and Policy Research, School of Public Health, , Cheeloo College of Medicine, Shandong University, Jinan, 250012 China ,grid.27255.370000 0004 1761 1174NHC Key Lab of Health Economics and Policy Research (Shandong University), Jinan, 250012 China
| | - Chunying Fu
- grid.27255.370000 0004 1761 1174Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, 250012 Shandong China
| | - Huizi Sun
- grid.27255.370000 0004 1761 1174Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, 250012 Shandong China
| | - Dongshan Zhu
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, 250012, Shandong, China.
| |
Collapse
|
17
|
Liu C, Wong PY, Chow SKH, Cheung WH, Wong RMY. Does the regulation of skeletal muscle influence cognitive function? A scoping review of pre-clinical evidence. J Orthop Translat 2023; 38:76-83. [PMID: 36381246 PMCID: PMC9619139 DOI: 10.1016/j.jot.2022.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/25/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022] Open
Abstract
Background Cognitive impairment is a major challenge for elderlies, as it can progress in a rapid manner and effective treatments are limited. Sarcopenic elderlies have a higher risk of dementia. This scoping review aims to reveal whether muscle is a mediator of cognitive function from pre-clinical evidence. Methods PubMed, Embase, and Web of Science were searched to Feb 2nd, 2022, using the keywords (muscle) AND (cognition OR dementia OR Alzheimer) AND (mouse OR rat OR animal). The PRISMA guideline was used in this study. Results A total of 17 pre-clinical studies were selected from 7638 studies. 4 studies reported that muscle atrophy and injury harmed memory, functional factors, and neurons in the brain for rodents with or without Alzheimer's disease (AD). 3 studies observed exercise induced muscle to secrete factors, including lactate, fibronectin type III domain-containing protein 5 (FNDC5), and cathepsin B, which plays essential roles in the elevation of cognitive functions and brain-derived neurotrophic factor (BDNF) levels. Muscle-targeted treatments including electrical stimulation and intramuscular injections had effective remote effects on the hippocampus. 6 studies showed that muscle-specific overexpression of scFv59 and Neprilysin, or myostatin knockdown alleviated AD symptoms. 1 study showed that muscle insulin resistance also led to deficient hippocampal neurogenesis in MKR mice. Conclusions The skeletal muscle is involved in the mediation of cognitive function. The evidence was established by the response in the brain (altered number of neurons, functional factors, and other AD pathological characteristics) with muscle atrophy or injury, muscle secretory factors, and muscle-targeted treatments. The translational potential of this paper This study summarizes the current evidence in how muscle affects cognition in molecular levels, which supports muscle-specific treatments as potential clinical strategies to prevent cognitive dysfunction.
Collapse
Affiliation(s)
- Chaoran Liu
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Pui Yan Wong
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Simon Kwoon Ho Chow
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wing Hoi Cheung
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ronald Man Yeung Wong
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
18
|
Toppala S, Ekblad LL, Viitanen M, Rinne JO, Jula A. Impaired Early Insulin Response to Glucose Load Predicts Episodic Memory Decline: A 10-Year Population-Based Cohort Follow-Up of 45-74-Year-Old Men and Women. J Alzheimers Dis 2023; 92:349-359. [PMID: 36744339 PMCID: PMC10041429 DOI: 10.3233/jad-220894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Diabetes increases the risk for cognitive decline, but the mechanisms behind this association remain unknown. Impaired early insulin secretion in elderly men and insulin resistance, both of which are pathophysiological features of type 2 diabetes, have previously been linked to Alzheimer's disease. OBJECTIVE To examine if the early insulin response to oral glucose load predicts cognitive performance after 10 years in men and women aged 45-74 years. METHODS This study was based on a subpopulation of the Health 2000 Survey, a Finnish nationwide, population-based health examination study, and its follow-up, the Health 2011 Study. In total, 961 45-74-year-old individuals (mean age at baseline 55.6 years, 55.8% women) were examined. An oral glucose tolerance test was performed in 2001-2002, and early insulin response was defined as the ratio of the 30-min increment in insulin concentration to that of glucose concentration. Cognitive function was evaluated at baseline and follow-up with categorical verbal fluency, word-list learning, and word-list delayed recall. Statistical analyses were performed using multivariable linear models adjusted for age, sex, education, APOE&z.epsi;4 genotype, vascular risk factors including diabetes, and depressive symptoms. RESULTS A lower early insulin response to glucose load predicted lower performance (β: 0.21, p = 0.03) and greater decline (β: 0.19, p = 0.03) in the word-list delayed recall test. Baseline early insulin response did not predict verbal fluency or word-list learning (all p-values≥0.13). CONCLUSION Our results suggest that decreased early insulin secretion predicts episodic memory decline in middle-aged to elderly men and women.
Collapse
Affiliation(s)
- Sini Toppala
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland.,Kuopio City Home Care, Rehabilitation and Medical Services for Elderly, Kuopio, Finland
| | - Laura L Ekblad
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Matti Viitanen
- City of Turku, Welfare Division, Department of Geriatrics, Turku City Hospital and University of Turku, Turku, Finland.,Division of Clinical Geriatrics, NVS, Karolinska Institutet, Stockholm, Sweden
| | - Juha O Rinne
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland.,InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Antti Jula
- National Institute for Health and Welfare, Turku, Finland
| |
Collapse
|
19
|
Lee YH, Lee WJ, Peng LN, Lin MH, Hsiao FY, Chen LK. Cardiovascular Disease Risk Burden, Cognitive Impairments and Incident Dementia among Community-Dwelling Middle-Aged and Older Adults: An 8-Year Longitudinal Follow-up Study. J Nutr Health Aging 2023; 27:641-648. [PMID: 37702337 DOI: 10.1007/s12603-023-1954-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/11/2023] [Indexed: 09/14/2023]
Abstract
OBJECTIVES To evaluate the associations between cardiovascular disease (CVD) risk burden (estimated by the World Health Organization (WHO) algorithm) and cognitive impairments (e.g., incident dementia, global and domain-specific impairments) among CVD-, dementia- and disability-free, community-dwelling middle-aged and older adults during an 8-year follow-up. DESIGN A community-based longitudinal cohort study. SETTING Yuanshan township in Yi-Lan County, Taiwan. PARTICIPANTS A total of 889 community-dwelling residents aged 50 years or older. MEASUREMENTS Age, sex, educational level, employment status, alcohol status, body mass index, physical activity, gait speed, depressive symptoms, WHO region-specific CVD risk scores (10-year CV risk, low: <10% vs. moderate-to-high: ≥ 10%), Chinese version of the Mini-Mental State Examination (MMSE), verbal memory by the delay-free recall in the Chinese Version Verbal Learning Test (CVVLT), language function by the Boston Naming Test and the category (animal) Verbal Fluency Test, visuospatial function by the Taylor Complex Figure Test, executive function by the digit backward and the Clock Drawing Test. RESULTS Compared to those with low CVD risk, middle-aged and older adults with moderate-to-high CVD risk were at greater risk for cognitive impairments with respect to the MMSE (adjusted odds ratio (aOR) 1.60 [95% confidence interval (CI) 1.19-2.15], P=0.002), verbal memory (aOR 1.97 [1.43-2.70], P< 0.001) and language (aOR 1.99 [1.46-2.70], P< 0.001), as well as incident dementia (aOR 2.40 [1.33-4.33], P=0.004). After adjusting for all covariates, CVD risk was not associated with other domains of cognitive impairment. CONCLUSIONS Among healthy, community-dwelling, middle-aged and older adults, those with moderate-to-high cardiovascular risk burden were significantly associated with incident dementia and global and domain-specific cognitive impairments (verbal memory and language), which suggests the existence of a relationship between early cognitive deficits and CVD risk burden. Further studies are needed to elucidate the pathophysiological mechanism of the link between CVD risk burden and cognitive impairment.
Collapse
Affiliation(s)
- Y-H Lee
- Prof. Liang-Kung Chen, Center for Geriatrics and Gerontology, Taipei Veterans General Hospital, No. 201, Sec 2, Shih-Pai Road, Taipei, Taiwan, TEL: +886-2-28757830, FAX: +886-2-28757711,
| | | | | | | | | | | |
Collapse
|
20
|
Kulminski AM, Feng F, Loiko E, Nazarian A, Loika Y, Culminskaya I. Prevailing Antagonistic Risks in Pleiotropic Associations with Alzheimer's Disease and Diabetes. J Alzheimers Dis 2023; 94:1121-1132. [PMID: 37355909 PMCID: PMC10666173 DOI: 10.3233/jad-230397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2023]
Abstract
BACKGROUND The lack of efficient preventive interventions against Alzheimer's disease (AD) calls for identifying efficient modifiable risk factors for AD. As diabetes shares many pathological processes with AD, including accumulation of amyloid plaques and neurofibrillary tangles, insulin resistance, and impaired glucose metabolism, diabetes is thought to be a potentially modifiable risk factor for AD. Mounting evidence suggests that links between AD and diabetes may be more complex than previously believed. OBJECTIVE To examine the pleiotropic architecture of AD and diabetes mellitus (DM). METHODS Univariate and pleiotropic analyses were performed following the discovery-replication strategy using individual-level data from 10 large-scale studies. RESULTS We report a potentially novel pleiotropic NOTCH2 gene, with a minor allele of rs5025718 associated with increased risks of both AD and DM. We confirm previously identified antagonistic associations of the same variants with the risks of AD and DM in the HLA and APOE gene clusters. We show multiple antagonistic associations of the same variants with AD and DM in the HLA cluster, which were not explained by the lead SNP in this cluster. Although the ɛ2 and ɛ4 alleles played a major role in the antagonistic associations with AD and DM in the APOE cluster, we identified non-overlapping SNPs in this cluster, which were adversely and beneficially associated with AD and DM independently of the ɛ2 and ɛ4 alleles. CONCLUSION This study emphasizes differences and similarities in the heterogeneous genetic architectures of AD and DM, which may differentiate the pathogenic mechanisms of these diseases.
Collapse
Affiliation(s)
- Alexander M Kulminski
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, 27705, USA
| | - Fan Feng
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, 27705, USA
| | - Elena Loiko
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, 27705, USA
| | - Alireza Nazarian
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, 27705, USA
| | - Yury Loika
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, 27705, USA
| | - Irina Culminskaya
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, 27705, USA
| |
Collapse
|
21
|
Avorgbedor F, Blumenthal JA, Hinderliter A, Ingle K, Lin P, Craighead L, Tyson C, Kraus W, Sherwood A, Smith PJ. Inflammation moderates the effects of lifestyle modification on neurocognition among individuals with resistant hypertension. J Clin Hypertens (Greenwich) 2022; 25:106-110. [PMID: 36541028 PMCID: PMC9832225 DOI: 10.1111/jch.14591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/06/2022] [Accepted: 10/09/2022] [Indexed: 12/24/2022]
Abstract
Individuals with resistant hypertension (RH) have the greatest risk of cerebrovascular disease and cognitive impairment among individuals with hypertension. Elevated levels of pro-inflammatory cytokines may represent a critical yet unexamined factor influencing the impact of healthy lifestyle changes on cognitive function. We explored the influence of inflammation on changes in cognition following lifestyle modification among individuals with RH participating in the TRIUMPH clinical trial. One hundred forty participants with RH completed a battery of neurocognitive tests along with the inflammatory marker C-reactive protein (hsCRP) and were subsequently randomized to an intensive 4-month lifestyle modification intervention or to education and physician advice control. Results indicated that the effects of lifestyle modification on Executive Function and Learning were moderated by pre-intervention hsCRP levels (P = .049), with treatment efficacy increasing across levels of baseline inflammation levels (low: d = 0.12; mild: d = 0.43; moderate: d = 0.81). We conclude that inflammatory profiles may help identify individuals more likely to improve executive functioning resulting from lifestyle modification.
Collapse
Affiliation(s)
- Forgive Avorgbedor
- School of NursingUniversity of North Carolina at GreensboroNorth CarolinaUSA,Department of Psychiatry and Behavioral SciencesDuke University Medical CenterDurhamNorth CarolinaUSA
| | - James A. Blumenthal
- Department of Psychiatry and Behavioral SciencesDuke University Medical CenterDurhamNorth CarolinaUSA
| | - Alan Hinderliter
- Department of MedicineUniversity of North Carolina at Chapel HillNorth CarolinaUSA
| | - Krista Ingle
- Department of Psychiatry and Behavioral SciencesDuke University Medical CenterDurhamNorth CarolinaUSA
| | - Pao‐Hwa Lin
- Department of MedicineDuke University Medical CenterDurhamNorth CarolinaUSA
| | | | - Crystal Tyson
- Department of MedicineDuke University Medical CenterDurhamNorth CarolinaUSA
| | - William Kraus
- Department of MedicineDuke University Medical CenterDurhamNorth CarolinaUSA
| | - Andrew Sherwood
- Department of Psychiatry and Behavioral SciencesDuke University Medical CenterDurhamNorth CarolinaUSA
| | - Patrick J. Smith
- Department of Psychiatry and Behavioral SciencesDuke University Medical CenterDurhamNorth CarolinaUSA
| |
Collapse
|
22
|
Hamzé R, Delangre E, Tolu S, Moreau M, Janel N, Bailbé D, Movassat J. Type 2 Diabetes Mellitus and Alzheimer's Disease: Shared Molecular Mechanisms and Potential Common Therapeutic Targets. Int J Mol Sci 2022; 23:ijms232315287. [PMID: 36499613 PMCID: PMC9739879 DOI: 10.3390/ijms232315287] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The global prevalence of diabetes mellitus and Alzheimer's disease is increasing alarmingly with the aging of the population. Numerous epidemiological data suggest that there is a strong association between type 2 diabetes and an increased risk of dementia. These diseases are both degenerative and progressive and share common risk factors. The amyloid cascade plays a key role in the pathophysiology of Alzheimer's disease. The accumulation of amyloid beta peptides gradually leads to the hyperphosphorylation of tau proteins, which then form neurofibrillary tangles, resulting in neurodegeneration and cerebral atrophy. In Alzheimer's disease, apart from these processes, the alteration of glucose metabolism and insulin signaling in the brain seems to induce early neuronal loss and the impairment of synaptic plasticity, years before the clinical manifestation of the disease. The large amount of evidence on the existence of insulin resistance in the brain during Alzheimer's disease has led to the description of this disease as "type 3 diabetes". Available animal models have been valuable in the understanding of the relationships between type 2 diabetes and Alzheimer's disease, but to date, the mechanistical links are poorly understood. In this non-exhaustive review, we describe the main molecular mechanisms that may link these two diseases, with an emphasis on impaired insulin and IGF-1 signaling. We also focus on GSK3β and DYRK1A, markers of Alzheimer's disease, which are also closely associated with pancreatic β-cell dysfunction and type 2 diabetes, and thus may represent common therapeutic targets for both diseases.
Collapse
Affiliation(s)
- Rim Hamzé
- Team Biology and Pathology of the Endocrine Pancreas, Unité de Biologie Fonctionnelle et Adaptative, CNRS, Université Paris Cité, F-75013 Paris, France
| | - Etienne Delangre
- Team Biology and Pathology of the Endocrine Pancreas, Unité de Biologie Fonctionnelle et Adaptative, CNRS, Université Paris Cité, F-75013 Paris, France
| | - Stefania Tolu
- Team Biology and Pathology of the Endocrine Pancreas, Unité de Biologie Fonctionnelle et Adaptative, CNRS, Université Paris Cité, F-75013 Paris, France
| | - Manon Moreau
- Team Degenerative Process, Stress and Aging, Unité de Biologie Fonctionnelle et Adaptative, CNRS, Université Paris Cité, F-75013 Paris, France
| | - Nathalie Janel
- Team Degenerative Process, Stress and Aging, Unité de Biologie Fonctionnelle et Adaptative, CNRS, Université Paris Cité, F-75013 Paris, France
| | - Danielle Bailbé
- Team Biology and Pathology of the Endocrine Pancreas, Unité de Biologie Fonctionnelle et Adaptative, CNRS, Université Paris Cité, F-75013 Paris, France
| | - Jamileh Movassat
- Team Biology and Pathology of the Endocrine Pancreas, Unité de Biologie Fonctionnelle et Adaptative, CNRS, Université Paris Cité, F-75013 Paris, France
- Correspondence: ; Tel.: +33-1-57-27-77-82; Fax: +33-1-57-27-77-91
| |
Collapse
|
23
|
Chellammal HSJ, Hasan MH, Kshirsagar RP, Musukula VKR, Ramachandran D, Diwan PV. Metformin inhibits cardiometabolic syndrome associated cognitive deficits in high fat diet rats. J Diabetes Metab Disord 2022; 21:1415-1426. [PMID: 36404813 PMCID: PMC9672285 DOI: 10.1007/s40200-022-01074-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 10/17/2022]
Abstract
Objectives Glucose intolerance and insulin resistance are hallmarks of metabolic syndrome and lead to Alzheimer's disease (AD). The purpose of this study is to elucidate the neuroprotective effect of metformin through insulin regulation with cardiometabolic and neurotransmitter metabolic enzyme regulation in high-fat, high-sucrose diet and streptozotocin (HFHS-STZ)-induced rats. Methods Male Wistar rats were treated with metformin (180 mg/kg and 360 mg/kg). STZ (35 mg/kg i.p.) injection was performed on the 14th day of 42 days of HFHS diet treatment. Brain neurotransmitter metabolic enzymes (acetylcholinesterase and monoamine oxidase) were determined along with sodium-potassium ATPase (Na+K+-ATPase). Plasma lipids and homeostasis model assessment of insulin resistance (HOMA-IR) was performed. Mean arterial blood pressure, heart rate and electrocardiogram (QT, QTc and RR intervals) were analysed with PowerLab. Results Metformin treatment significantly (p < 0.001) reduced the HOMA-IR index and decreased neurotransmitter metabolic enzymes such as AChE and MAO (p < 0.01 and p < 0.05). The lipid profile was significantly (p < 0.001) controlled with cardiometabolic functions. Conclusions Our investigation revealed that metformin has a remarkable role in regulating brain insulin, vascular system with monoaminergic metabolic enzymes and enhancing synaptic plasticity. Metformin may be a selective early therapeutic agent in metabolic syndrome associated with cognitive decline.
Collapse
Affiliation(s)
- Hanish Singh Jayasingh Chellammal
- Department of Pharmacology and Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam, Selangor 42300 Malaysia
| | - Mizaton Hazizul Hasan
- Department of Pharmacology and Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam, Selangor 42300 Malaysia
| | - Rahul P Kshirsagar
- Department of Pharmacology, Yashodeep Institute of Pharmacy, Sangram Nagar, Aurangabad, 431001 India
- Department of Pharmacology, Anurag Group of Institutions, Venkatapur, Ghatkesar, Hyderabad, Telangana 500088 India
| | | | - Dhani Ramachandran
- Unit of Pathology, International Medical School, Management & Science University, University Drive, Off Persiaran Olahraga, Section 13, Shah Alam, Selangor Darul Ehsan 40100 Malaysia
| | - Prakash V Diwan
- Department of Pharmacology, Anurag Group of Institutions, Venkatapur, Ghatkesar, Hyderabad, Telangana 500088 India
- Central Research Laboratory, Maratha Mandal Group of Institutions, Belgaum, Karnataka 590019 India
| |
Collapse
|
24
|
Kubis-Kubiak A, Wiatrak B, Piwowar A. Hyper-glycemia and insulinemia induce morphological changes and modulate secretion of S100B, S100A8, amyloid β 1–40 and amyloid β 1–42, in a model of human dopaminergic neurons. Biomed Pharmacother 2022; 156:113869. [DOI: 10.1016/j.biopha.2022.113869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/02/2022] Open
|
25
|
“Ferrocrinology”—Iron Is an Important Factor Involved in Gluco- and Lipocrinology. Nutrients 2022; 14:nu14214693. [DOI: 10.3390/nu14214693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
“Ferrocrinology” is the term used to describe the study of iron effects on the functioning of adipose tissue, which together with muscle tissue makes the largest endocrine organ in the human body. By impairing exercise capacity, reducing AMP-activated kinase activity, and enhancing insulin resistance, iron deficiency can lead to the development of obesity and type 2 diabetes mellitus. Due to impaired browning of white adipose tissue and reduced mitochondrial iron content in adipocytes, iron deficiency (ID) can cause dysfunction of brown adipose tissue. By reducing ketogenesis, aconitase activity, and total mitochondrial capacity, ID impairs muscle performance. Another important aspect is the effect of ID on the impairment of thermogenesis due to reduced binding of thyroid hormones to their nuclear receptors, with subsequently impaired utilization of norepinephrine in tissues, and impaired synthesis and distribution of cortisol, which all make the body’s reactivity to stress in ID more pronounced. Iron deficiency can lead to the development of the most common endocrinopathy, autoimmune thyroid disease. In this paper, we have discussed the role of iron in the cross-talk between glucocrinology, lipocrinology and myocrinology, with thyroid hormones acting as an active bystander.
Collapse
|
26
|
Muacevic A, Adler JR. Can Alzheimer's Disease Be Secondary to Type-2 Diabetes Mellitus? Cureus 2022; 14:e31273. [PMID: 36505102 PMCID: PMC9732418 DOI: 10.7759/cureus.31273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022] Open
Abstract
Alzheimer's disease and insulin resistance are prevalent in older adults. Insulin's ability to effectively affect target tissues is diminished by IR. Hyperglycemia, higher blood pressure, elevated triglyceride levels, decreased HDL levels and central obesity are the outcomes of a condition, namely metabolic syndrome. Cognitive impairment and abnormalities of the brain have been linked to metabolic syndrome (MetS), a grouping of risk factors for type 2 diabetes mellitus. Type-2 diabetes mellitus and its relationship to other conditions have been investigated on the assorted extent in the pair of, human and animal subjects. First, it was shown that insulin receptors are present in the brain, namely the hippocampus. Most insulin is delivered to the brain by crossing the blood-brain barrier. Second, numerous research revealed that insulin impacts various neurotransmitters in a way that enhances memory and cognition. Thirdly, several pathological research has also shown that beta-amyloid plaques, hyperphosphorylated tau protein, and brain shrinkage, particularly in the hippocampus, are shared brain lesions between insulin and Alzheimer's disease. In light of this, type 2 diabetes mellitus may be viewed as a liability for dementia and Alzheimer's disease.
Collapse
|
27
|
Review of the effects of polycystic ovary syndrome on Cognition: Looking beyond the androgen hypothesis. Front Neuroendocrinol 2022; 67:101038. [PMID: 36154816 DOI: 10.1016/j.yfrne.2022.101038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 11/21/2022]
Abstract
Polycystic-ovary syndrome (PCOS) is the most common endocrine disorder affecting women of reproductive age, and many features associated with PCOS - such as elevated androgens, insulin resistance and inflammation - are known to affect cognition. However, effects of PCOS on cognition are not well-understood. Here we review the current literature on PCOS and cognition, note the extent of PCOS symptomatology studied in relation to cognitive outcomes, and identify key research gaps and common methodological concerns. Findings indicate a pattern of worse performance across cognitive domains and brain measures in women with PCOS relative to non-PCOS controls, as well as a lack of evidence for the common assumption that women with PCOS will have higher performance on tasks with a demonstrated male-advantage due to high testosterone levels. We suggest strategies for moving beyond the focus on elevated androgens, in favor of research practices that account for the nuances and heterogeneity of PCOS symptoms.
Collapse
|
28
|
Kackley ML, Brownlow ML, Buga A, Crabtree CD, Sapper TN, O’Connor A, Volek JS. The effects of a 6-week controlled, hypocaloric ketogenic diet, with and without exogenous ketone salts, on cognitive performance and mood states in overweight and obese adults. Front Neurosci 2022; 16:971144. [PMID: 36248655 PMCID: PMC9563373 DOI: 10.3389/fnins.2022.971144] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Background Ketogenic diets are a commonly used weight loss method, but little is known how variations in sodium content and ketones influence cognition and mood during the early keto-adaptation period. Objectives To investigate the effects of an exogenous ketone salt (KS) as part of a hypocaloric KD on mood and cognitive outcomes in overweight and obese adults. A secondary objective was to evaluate changes in biochemical markers associated with inflammatory and cognitive responses. Materials and methods Adults who were overweight or obese participated in a 6-week controlled-feeding intervention comparing hypocaloric diets (∼75% of energy expenditure). KD groups received twice daily ketone salt (KD + KS; n = 12) or a flavor-matched placebo, free of minerals (KD + PL; n = 13). A separate group of age and BMI matched adults were later assigned to an isoenergetic low-fat diet (LFD; n = 12) as comparison to KD. Mood was assessed by shortened Profile of Mood States and Visual Analog Mood Scale surveys. Cognitive function was determined by the Automated Neuropsychological Assessment Metrics mental test battery. Results Both KD groups achieved nutritional ketosis. Fasting serum glucose decreased in both KD groups, whereas glucose was unaffected in the LFD. Insulin decreased at week 2 and remained lower in all groups. At week 2, depression scores in the KD + PL group were higher compared to KD + KS. Performance in the math processing and go/no-go cognitive tests were lower for KD + PL and LFD participants, respectively, compared to KD + KS. Serum leptin levels decreased for all groups throughout the study but were higher for KD + KS group at week 6. Serum TNF-α steadily increased for LFD participants, reaching significance at week 6. Conclusion During a short-term hypocaloric diet, no indication of a consistent decline in mood or cognitive function were seen in participants following either KD, despite KD + PL being relatively low in sodium. WK2 scores of “anger” and “depression” were higher in the LFD and KD + PL groups, suggesting that KS may attenuate negative mood parameters during the early intervention stages.
Collapse
Affiliation(s)
- Madison L. Kackley
- Department of Human Sciences, The Ohio State University, Columbus, OH, United States
| | - Milene L. Brownlow
- Research and Development Department, Metagenics Inc., Gig Harbor, WA, United States
| | - Alex Buga
- Department of Human Sciences, The Ohio State University, Columbus, OH, United States
| | - Chris D. Crabtree
- Department of Human Sciences, The Ohio State University, Columbus, OH, United States
| | - Teryn N. Sapper
- Department of Human Sciences, The Ohio State University, Columbus, OH, United States
| | - Annalouise O’Connor
- Research and Development Department, Metagenics Inc., Gig Harbor, WA, United States
| | - Jeff S. Volek
- Department of Human Sciences, The Ohio State University, Columbus, OH, United States
- *Correspondence: Jeff S. Volek,
| |
Collapse
|
29
|
Szklarz M, Gontarz-Nowak K, Matuszewski W, Bandurska-Stankiewicz E. Can Iron Play a Crucial Role in Maintaining Cardiovascular Health in the 21st Century? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11990. [PMID: 36231287 PMCID: PMC9565681 DOI: 10.3390/ijerph191911990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/01/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
In the 21st century the heart is facing more and more challenges so it should be brave and iron to meet these challenges. We are living in the era of the COVID-19 pandemic, population aging, prevalent obesity, diabetes and autoimmune diseases, environmental pollution, mass migrations and new potential pandemic threats. In our article we showed sophisticated and complex regulations of iron metabolism. We discussed the impact of iron metabolism on heart diseases, treatment of heart failure, diabetes and obesity. We faced the problems of constant stress, climate change, environmental pollution, migrations and epidemics and showed that iron is really essential for heart metabolism in the 21st century.
Collapse
|
30
|
Gentreau M, Reynes C, Sabatier R, Maller JJ, Meslin C, Deverdun J, Le Bars E, Raymond M, Berticat C, Artero S. Glucometabolic Changes Are Associated with Structural Gray Matter Alterations in Prodromal Dementia. J Alzheimers Dis 2022; 89:1293-1302. [PMID: 36031896 DOI: 10.3233/jad-220490] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Glucometabolic changes, such as high glycemic load (GL) diet and insulin resistance (IR), are potential risk factor of Alzheimer's disease (AD). Yet, the effect of these factors on brain alterations that contribute to AD pathology has not been clearly demonstrated. OBJECTIVE We aimed to assess the relationship of GL and IR with gray matter volumes involved in prodromal dementia. METHODS GL and Triglyceride-Glucose (TyG) index, an IR surrogate marker, were calculated in 497 participants who underwent magnetic resonance imaging (MRI). The gray matter volumes most related to prodromal dementia/mild cognitive impairment (diagnosed in 18/158 participants during the 7-year follow-up) were identified using a data-driven machine learning algorithm. RESULTS Higher GL diet was associated with reduced amygdala volume. The TyG index was negatively associated with the hippocampus, amygdala, and putamen volumes. CONCLUSION These results suggest that GL and IR are associated with lower gray matter volumes in brain regions involved in AD pathology.
Collapse
Affiliation(s)
- Mélissa Gentreau
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | | | - Robert Sabatier
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Jerome J Maller
- Monash Alfred Psychiatry Research Centre, Melbourne, Victoria, Australia.,General Electric Healthcare, Richmond, Melbourne, Australia
| | - Chantal Meslin
- Centre for Mental Health Research, Australian National University, Canberra, Australia
| | - Jeremy Deverdun
- I2FH, Department of Neuroradiology, Montpellier University Hospital Center, Gui de Chauliac Hospital, University of Montpellier, Montpellier, France
| | - Emmanuelle Le Bars
- I2FH, Department of Neuroradiology, Montpellier University Hospital Center, Gui de Chauliac Hospital, University of Montpellier, Montpellier, France
| | - Michel Raymond
- ISEM, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Claire Berticat
- ISEM, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Sylvaine Artero
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
31
|
Falling Short: The Contribution of Central Insulin Receptors to Gait Dysregulation in Brain Aging. Biomedicines 2022; 10:biomedicines10081923. [PMID: 36009470 PMCID: PMC9405648 DOI: 10.3390/biomedicines10081923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/23/2022] Open
Abstract
Insulin resistance, which manifests as a reduction of insulin receptor signaling, is known to correlate with pathological changes in peripheral tissues as well as in the brain. Central insulin resistance has been associated with impaired cognitive performance, decreased neuronal health, and reduced brain metabolism; however, the mechanisms underlying central insulin resistance and its impact on brain regions outside of those associated with cognition remain unclear. Falls are a leading cause of both fatal and non-fatal injuries in the older population. Despite this, there is a paucity of work focused on age-dependent alterations in brain regions associated with ambulatory control or potential therapeutic approaches to target these processes. Here, we discuss age-dependent alterations in central modalities that may contribute to gait dysregulation, summarize current data supporting the role of insulin signaling in the brain, and highlight key findings that suggest insulin receptor sensitivity may be preserved in the aged brain. Finally, we present novel results showing that administration of insulin to the somatosensory cortex of aged animals can alter neuronal communication, cerebral blood flow, and the motivation to ambulate, emphasizing the need for further investigations of intranasal insulin as a clinical management strategy in the older population.
Collapse
|
32
|
Oudbier SJ, Goh J, Looijaard SMLM, Reijnierse EM, Meskers CGM, Maier AB. Pathophysiological mechanisms explaining the association between low skeletal muscle mass and cognitive function. J Gerontol A Biol Sci Med Sci 2022; 77:1959-1968. [PMID: 35661882 PMCID: PMC9536455 DOI: 10.1093/gerona/glac121] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Indexed: 11/15/2022] Open
Abstract
Low skeletal muscle mass is associated with cognitive impairment and dementia in older adults. This review describes the possible underlying pathophysiological mechanisms: systemic inflammation, insulin metabolism, protein metabolism, and mitochondrial function. We hypothesize that the central tenet in this pathophysiology is the dysfunctional myokine secretion consequent to minimal physical activity. Myokines, such as fibronectin type III domain containing 5/irisin and cathepsin B, are released by physically active muscle and cross the blood–brain barrier. These myokines upregulate local neurotrophin expression such as brain-derived neurotrophic factor (BDNF) in the brain microenvironment. BDNF exerts anti-inflammatory effects that may be responsible for neuroprotection. Altered myokine secretion due to physical inactivity exacerbates inflammation and impairs muscle glucose metabolism, potentially affecting the transport of insulin across the blood–brain barrier. Our working model also suggests other underlying mechanisms. A negative systemic protein balance, commonly observed in older adults, contributes to low skeletal muscle mass and may also reflect deficient protein metabolism in brain tissues. As a result of age-related loss in skeletal muscle mass, decrease in the abundance of mitochondria and detriments in their function lead to a decrease in tissue oxidative capacity. Dysfunctional mitochondria in skeletal muscle and brain result in the excessive production of reactive oxygen species, which drives tissue oxidative stress and further perpetuates the dysfunction in mitochondria. Both oxidative stress and accumulation of mitochondrial DNA mutations due to aging drive cellular senescence. A targeted approach in the pathophysiology of low muscle mass and cognition could be to restore myokine balance by physical activity.
Collapse
Affiliation(s)
- Susanne Janette Oudbier
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Outpatient Clinics, Amsterdam Public Health research institute, De Boelelaan, Amsterdam, The Netherlands
| | - Jorming Goh
- Healthy Longevity Translational Research Program and Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Centre for Healthy Longevity, @AgeSingapore, National University Health System, Singapore
| | | | - Esmee Mariëlle Reijnierse
- Amsterdam UMC location Vrije Universiteit Amsterdam, Rehabilitation Medicine, De Boelelaan, Amsterdam, The Netherlands.,Amsterdam Movement Sciences, Ageing & Vitality, Amsterdam, The Netherlands.,Department of Medicine and Aged Care, @AgeMelbourne, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Carolus Gerardus Maria Meskers
- Amsterdam UMC location Vrije Universiteit Amsterdam, Rehabilitation Medicine, De Boelelaan, Amsterdam, The Netherlands.,Amsterdam Movement Sciences, Ageing & Vitality, Amsterdam, The Netherlands
| | - Andrea Britta Maier
- Healthy Longevity Translational Research Program and Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Department of Medicine and Aged Care, @AgeMelbourne, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia.,Department of Human Movement Sciences, @AgeAmsterdam, Faculty of Behavioral and Movement Sciences, VU University Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| |
Collapse
|
33
|
Chakrabarty R, Yousuf S, Singh MP. Contributive Role of Hyperglycemia and Hypoglycemia Towards the Development of Alzheimer's Disease. Mol Neurobiol 2022; 59:4274-4291. [PMID: 35503159 DOI: 10.1007/s12035-022-02846-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/20/2022] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is one of the causes of dementia that results from several infections/biological conditions leading to either cell disruption or loss of neuronal communication. Studies have documented the accumulation of two proteins, beta-amyloid (Aβ), which accumulates on the exteriors of neurons, and tau (Tau), which assembles at the interiors of brain cells and is chiefly liable for the progression of the disease. Several molecular and cellular pathways account for the accumulation of amyloid-β and the formation of neurofibrillary tangles, which are phosphorylated variants of Tau protein. Moreover, research has revealed a potential connection between AD and diabetes. It has also been demonstrated that both hypoglycemia and hyperglycemia have a significant role in the development of AD. In addition, SUMO (small ubiquitin-like modifier protein) plays a crucial role in the pathogenesis of AD. SUMOylation is the process by which modification of amyloid precursor protein (APP) and Tau takes place. Furthermore, Drosophila melanogaster has proven to be an efficient model organism in studies to establish the relationship between AD and variations in blood glucose levels. In addition, the review successfully identifies the common pathway that links the effects of fluctuations in glucose levels on AD pathogenesis and advancements.
Collapse
Affiliation(s)
- Riya Chakrabarty
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar-Ludhiana National Highway, Phagwara, Punjab, 144411, India
| | - Sumaira Yousuf
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar-Ludhiana National Highway, Phagwara, Punjab, 144411, India
| | - Mahendra P Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar-Ludhiana National Highway, Phagwara, Punjab, 144411, India.
| |
Collapse
|
34
|
Arjunan A, Sah DK, Jung YD, Song J. Hepatic Encephalopathy and Melatonin. Antioxidants (Basel) 2022; 11:837. [PMID: 35624703 PMCID: PMC9137547 DOI: 10.3390/antiox11050837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/06/2022] [Accepted: 04/24/2022] [Indexed: 11/25/2022] Open
Abstract
Hepatic encephalopathy (HE) is a severe metabolic syndrome linked with acute/chronic hepatic disorders. HE is also a pernicious neuropsychiatric complication associated with cognitive decline, coma, and death. Limited therapies are available to treat HE, which is formidable to oversee in the clinic. Thus, determining a novel therapeutic approach is essential. The pathogenesis of HE has not been well established. According to various scientific reports, neuropathological symptoms arise due to excessive accumulation of ammonia, which is transported to the brain via the blood-brain barrier (BBB), triggering oxidative stress and inflammation, and disturbing neuronal-glial functions. The treatment of HE involves eliminating hyperammonemia by enhancing the ammonia scavenging mechanism in systemic blood circulation. Melatonin is the sole endogenous hormone linked with HE. Melatonin as a neurohormone is a potent antioxidant that is primarily synthesized and released by the brain's pineal gland. Several HE and liver cirrhosis clinical studies have demonstrated impaired synthesis, secretion of melatonin, and circadian patterns. Melatonin can cross the BBB and is involved in various neuroprotective actions on the HE brain. Hence, we aim to elucidate how HE impairs brain functions, and elucidate the precise molecular mechanism of melatonin that reverses the HE effects on the central nervous system.
Collapse
Affiliation(s)
- Archana Arjunan
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Korea;
| | - Dhiraj Kumar Sah
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Korea;
| | - Young Do Jung
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Korea;
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Korea;
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, 264 Seoyangro, Hwasun 58128, Korea
| |
Collapse
|
35
|
Al Haj Ahmad RM, Ababneh NA, Al-Domi HA. Brain insulin resistance as a mechanistic mediator links peripheral metabolic disorders with declining cognition. Diabetes Metab Syndr 2022; 16:102468. [PMID: 35364449 DOI: 10.1016/j.dsx.2022.102468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND AIMS Studies continue to investigate the underlying mechanism of the association between the increased risk of different types of cognitive decline and metabolic dysregulation. Brain insulin resistance (BIR) has been suggested to explain this association. The vital role of insulin in the body has been examined intensively and extensively; however, its role in the brain requires further investigation. Herein, we confined our focus to summarize the role of brain insulin signaling and the negative effect of dysmetabolism on insulin functioning in the brain. METHODS Published scientific manuscripts between 1998 and 2020 that discussed the effect of selected metabolic disorder conditions such as obesity, type 2 diabetes mellitus (T2DM), and high-fat diet (HFD) on brain functions were reviewed. The main keywords used were insulin resistance, brain insulin resistance, obesity, T2DM, and cognition. RESULTS Various metabolic disorders were linked to the increased risk of BIR, and was suggested to increase the probability of cognition impairment occurrence. Several proposed mechanisms explain this association among which insulin resistance and hyperinsulinemia were primary factors attributed to an increased risk of BIR among various metabolic disorders. CONCLUSIONS Understanding the trajectory of the association between metabolic disorders and alternation in cognition status could expand our vision of those overlapping conditions and pave the road to both treatment and preventative strategies for cognitive disorders.
Collapse
Affiliation(s)
- Reem M Al Haj Ahmad
- Department of Nutrition and Food Technology, School of Agriculture, The University of Jordan, Amman, Jordan.
| | - Nidaa A Ababneh
- Cell Therapy Center (CTC), The University of Jordan, Amman, Jordan.
| | - Hayder A Al-Domi
- Department of Nutrition and Food Technology, School of Agriculture, The University of Jordan, Amman, Jordan.
| |
Collapse
|
36
|
Juby AG, Blackburn TE, Mager DR. Use of medium chain triglyceride (MCT) oil in subjects with Alzheimer's disease: A randomized, double-blind, placebo-controlled, crossover study, with an open-label extension. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2022; 8:e12259. [PMID: 35310527 PMCID: PMC8919247 DOI: 10.1002/trc2.12259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 06/25/2021] [Accepted: 12/21/2021] [Indexed: 12/23/2022]
Abstract
Introduction Cerebral glucose and insulin metabolism is impaired in Alzheimer's disease (AD). Ketones provide alternative energy. Will medium chain triglyceride (MCT) oil, a nutritional source of ketones, impact cognition in AD? Methods This was a 6-month randomized, double-blind, placebo-controlled, crossover study, with 6-month open-label extension in probable AD subjects, on stable medications. MCT dose was 42 g/day, or maximum tolerated. Cognition was assessed with Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), and Cognigram®. Results Twenty subjects, average age 72.6 years, 45% women, 70% university educated had baseline MMSE 22.6/30 (10-29); MoCA 15.6/30 (4-27); baseline Cognigram® Part 1: 65-106, Part 2: 48-107. Average MCT oil consumption was 1.8 tablespoons/day (25.2 g, 234 kcal). Eighty percent remained stable or improved. Longer MCT exposure and age > 73, resulted in higher final MMSE (P < .001) and Cognigram® 1 scores. Discussion This is the longest duration MCT AD study to date. Eighty percent had stabilization or improvement in cognition, and better response with 9-month continual MCT oil.
Collapse
Affiliation(s)
- Angela G. Juby
- Division of Geriatrics, Department of Medicine, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
| | - Toni E. Blackburn
- Division of Geriatrics, Department of Medicine, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
| | - Diana R. Mager
- Department of Agriculture, Food and Nutrition ScienceUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
37
|
Huang YC, Hsu SM, Shie FS, Shiao YJ, Chao LJ, Chen HW, Yao HH, Chien MA, Lin CC, Tsay HJ. Reduced mitochondria membrane potential and lysosomal acidification are associated with decreased oligomeric Aβ degradation induced by hyperglycemia: A study of mixed glia cultures. PLoS One 2022; 17:e0260966. [PMID: 35073330 PMCID: PMC8786178 DOI: 10.1371/journal.pone.0260966] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 11/20/2021] [Indexed: 01/21/2023] Open
Abstract
Diabetes is a risk factor for Alzheimer’s disease (AD), a chronic neurodegenerative disease. We and others have shown prediabetes, including hyperglycemia and obesity induced by high fat and high sucrose diets, is associated with exacerbated amyloid beta (Aβ) accumulation and cognitive impairment in AD transgenic mice. However, whether hyperglycemia reduce glial clearance of oligomeric amyloid-β (oAβ), the most neurotoxic Aβ aggregate, remains unclear. Mixed glial cultures simulating the coexistence of astrocytes and microglia in the neural microenvironment were established to investigate glial clearance of oAβ under normoglycemia and chronic hyperglycemia. Ramified microglia and low IL-1β release were observed in mixed glia cultures. In contrast, amoeboid-like microglia and higher IL-1β release were observed in primary microglia cultures. APPswe/PS1dE9 transgenic mice are a commonly used AD mouse model. Microglia close to senile plaques in APPswe/PS1dE9 transgenic mice exposed to normoglycemia or chronic hyperglycemia exhibited an amoeboid-like morphology; other microglia were ramified. Therefore, mixed glia cultures reproduce the in vivo ramified microglial morphology. To investigate the impact of sustained high-glucose conditions on glial oAβ clearance, mixed glia were cultured in media containing 5.5 mM glucose (normal glucose, NG) or 25 mM glucose (high glucose, HG) for 16 days. Compared to NG, HG reduced the steady-state level of oAβ puncta internalized by microglia and astrocytes and decreased oAβ degradation kinetics. Furthermore, the lysosomal acidification and lysosomal hydrolysis activity of microglia and astrocytes were lower in HG with and without oAβ treatment than NG. Moreover, HG reduced mitochondrial membrane potential and ATP levels in mixed glia, which can lead to reduced lysosomal function. Overall, continuous high glucose reduces microglial and astrocytic ATP production and lysosome activity which may lead to decreased glial oAβ degradation. Our study reveals diabetes-induced hyperglycemia hinders glial oAβ clearance and contributes to oAβ accumulation in AD pathogenesis.
Collapse
Affiliation(s)
- Yung-Cheng Huang
- Department of Physical Medicine and Rehabilitation, Cheng-Hsin General Hospital, Taipei, Taiwan, Republic of China
- National Taipei University of Nursing and Health Sciences, Taipei City, Taiwan, R.O.C
| | - Shu-Meng Hsu
- Institute of Neuroscience, School of Life Science, National Yang Ming Chiao Tung University, Taipei, Taiwan, R.O.C
| | - Feng-Shiun Shie
- Center for Neuropsychiatric Research National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan, R.O.C
| | - Young-Ji Shiao
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan
- Ph.D. Program in Clinical Drug Development of Chinese Herbal Medicine, Taipei Medical University, Taipei, Taiwan, R.O.C
- Institute of Biopharmaceutical Science, National Yang Ming Chiao Tung University, Taipei, Taiwan, R.O.C
| | - Li-Jung Chao
- Institute of Neuroscience, School of Life Science, National Yang Ming Chiao Tung University, Taipei, Taiwan, R.O.C
| | - Hui-Wen Chen
- Institute of Neuroscience, School of Life Science, National Yang Ming Chiao Tung University, Taipei, Taiwan, R.O.C
| | - Heng-Hsiang Yao
- Institute of Neuroscience, School of Life Science, National Yang Ming Chiao Tung University, Taipei, Taiwan, R.O.C
| | - Meng An Chien
- Institute of Neuroscience, School of Life Science, National Yang Ming Chiao Tung University, Taipei, Taiwan, R.O.C
| | - Chung-Chih Lin
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan, Republic of China
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan, Republic of China
- Biophotonics Interdisciplinary Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan, Republic of China
- * E-mail: (CCL); (HJT)
| | - Huey-Jen Tsay
- Institute of Neuroscience, School of Life Science, National Yang Ming Chiao Tung University, Taipei, Taiwan, R.O.C
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan, Republic of China
- * E-mail: (CCL); (HJT)
| |
Collapse
|
38
|
DURAN R, PANCUR S, BAHADORİ F. The Effect of Type 2 Diabetes Mellitus on the Development of Alzheimer’s Disease and Its Molecular Mechanism. BEZMIALEM SCIENCE 2022. [DOI: 10.14235/bas.galenos.2020.4491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
39
|
Mohseni-Moghaddam P, Ghobadian R, Khaleghzadeh-Ahangar H. Dementia in Diabetes mellitus and Atherosclerosis; Two Interrelated Systemic Diseases. Brain Res Bull 2022; 181:87-96. [DOI: 10.1016/j.brainresbull.2022.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/18/2021] [Accepted: 01/24/2022] [Indexed: 12/06/2022]
|
40
|
Hou J, Jeon B, Baek J, Yun Y, Kim D, Chang B, Kim S, Kim S. High fat diet-induced brain damaging effects through autophagy-mediated senescence, inflammation and apoptosis mitigated by ginsenoside F1-enhanced mixture. J Ginseng Res 2022; 46:79-90. [PMID: 35058728 PMCID: PMC8753566 DOI: 10.1016/j.jgr.2021.04.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 03/24/2021] [Accepted: 04/11/2021] [Indexed: 01/20/2023] Open
Abstract
Background Herbal medicines are popular approaches to capably prevent and treat obesity and its related diseases. Excessive exposure to dietary lipids causes oxidative stress and inflammation, which possibly induces cellular senescence and contribute the damaging effects in brain. The potential roles of selective enhanced ginsenoside in regulating high fat diet (HFD)-induced brain damage remain unknown. Methods The protection function of Ginsenoside F1-enhanced mixture (SGB121) was evaluated by in vivo and in vitro experiments. Human primary astrocytes and SH-SY5Y cells were treated with palmitic acid conjugated Bovine Serum Albumin, and the effects of SGB121 were determined by MTT and lipid uptake assays. For in vivo tests, C57BL/6J mice were fed with high fat diet for 3 months with or without SGB121 administration. Thereafter, immunohistochemistry, western blot, PCR and ELISA assays were conducted with brain tissues. Results and conclusion SGB121 selectively suppressed HFD-induced oxidative stress and cellular senescence in brain, and reduced subsequent inflammation responses manifested by abrogated secretion of IL-6, IL-1β and TNFα via NF-κB signaling pathway. Interestingly, SGB121 protects against HFD-induced damage by improving mitophagy and endoplasmic reticulum-stress associated autophagy flux and inhibiting apoptosis. In addition, SGB121 regulates lipid uptake and accumulation by FATP4 and PPARα. SGB121 significantly abates excessively phosphorylated tau protein in the cortex and GFAP activation in corpus callosum. Together, our results suggest that SGB121 is able to favor the resistance of brain to HFD-induced damage, therefore provide explicit evidence of the potential to be a functional food. High fat diet induces oxidative stress and subsequent cellular senescence in mice brain. High fat diet induces pathologies in cortex and GFAP activation in corpus callosum. Ginsenoside F1-enhanced mixture ameliorates damaging effect by modulating autophagy flux and inflammation.
Collapse
|
41
|
IRS1 expression in hippocampus is age-dependent and is required for mature spine maintenance and neuritogenesis. Mol Cell Neurosci 2021; 118:103693. [PMID: 34942345 DOI: 10.1016/j.mcn.2021.103693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 11/21/2022] Open
Abstract
Insulin and insulin-like growth factor type I (IGF-1) play prominent roles in brain activity throughout the lifespan. Insulin/IGF1 signaling starts with the activation of the intracellular insulin receptor substrates (IRS). In this work, we performed a comparative study of IRS1 and IRS2, together with the IGF1 (IGF1R) and insulin (IR) receptor expression in the hippocampus and prefrontal cortex during development. We found that IRS1 and IRS2 expression is prominent during development and declines in the aged hippocampus, contrary to IR, which increases in adulthood and aging. In contrast, IGF1R expression is unaffected by age. Expression patterns are similar in the prefrontal cortex. Neurite development occurs postnatally in the rodent hippocampus and cortex, and it declines in the mature and aged brain and is influenced by trophic factors. In our previous work, we demonstrated that knockdown of IRS1 by shRNA impairs learning and reduces synaptic plasticity in a rat model, as measured by synaptophysin puncta in axons. In this study, we report that shIRS1 alters spine maturation in adult hilar hippocampal neurons. Lastly, to understand the role of IRS1 in neuronal neurite tree, we transfect shIRS1 into primary neuronal cultures and observed that shIRS1 reduced neurite branching and neurite length. Our results demonstrate that IRS1/2 and insulin/IGF1 receptors display different age-dependent expression profiles and that IRS1 is required for spine maturation, demonstrating a novel role for IRS1 in synaptic plasticity.
Collapse
|
42
|
Dominguez LJ, Veronese N, Vernuccio L, Catanese G, Inzerillo F, Salemi G, Barbagallo M. Nutrition, Physical Activity, and Other Lifestyle Factors in the Prevention of Cognitive Decline and Dementia. Nutrients 2021; 13:4080. [PMID: 34836334 PMCID: PMC8624903 DOI: 10.3390/nu13114080] [Citation(s) in RCA: 188] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 02/07/2023] Open
Abstract
Multiple factors combined are currently recognized as contributors to cognitive decline. The main independent risk factor for cognitive impairment and dementia is advanced age followed by other determinants such as genetic, socioeconomic, and environmental factors, including nutrition and physical activity. In the next decades, a rise in dementia cases is expected due largely to the aging of the world population. There are no hitherto effective pharmaceutical therapies to treat age-associated cognitive impairment and dementia, which underscores the crucial role of prevention. A relationship among diet, physical activity, and other lifestyle factors with cognitive function has been intensively studied with mounting evidence supporting the role of these determinants in the development of cognitive decline and dementia, which is a chief cause of disability globally. Several dietary patterns, foods, and nutrients have been investigated in this regard, with some encouraging and other disappointing results. This review presents the current evidence for the effects of dietary patterns, dietary components, some supplements, physical activity, sleep patterns, and social engagement on the prevention or delay of the onset of age-related cognitive decline and dementia.
Collapse
Affiliation(s)
- Ligia J. Dominguez
- Geriatric Unit, Department of Medicine, University of Palermo, 90100 Palermo, Italy; (N.V.); (L.V.); (G.C.); (F.I.); (M.B.)
- Faculty of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy
| | - Nicola Veronese
- Geriatric Unit, Department of Medicine, University of Palermo, 90100 Palermo, Italy; (N.V.); (L.V.); (G.C.); (F.I.); (M.B.)
| | - Laura Vernuccio
- Geriatric Unit, Department of Medicine, University of Palermo, 90100 Palermo, Italy; (N.V.); (L.V.); (G.C.); (F.I.); (M.B.)
| | - Giuseppina Catanese
- Geriatric Unit, Department of Medicine, University of Palermo, 90100 Palermo, Italy; (N.V.); (L.V.); (G.C.); (F.I.); (M.B.)
| | - Flora Inzerillo
- Geriatric Unit, Department of Medicine, University of Palermo, 90100 Palermo, Italy; (N.V.); (L.V.); (G.C.); (F.I.); (M.B.)
| | - Giuseppe Salemi
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, University of Palermo, 90100 Palermo, Italy;
- UOC of Neurology, University Hospital “Paolo Giaccone”, 90100 Palermo, Italy
| | - Mario Barbagallo
- Geriatric Unit, Department of Medicine, University of Palermo, 90100 Palermo, Italy; (N.V.); (L.V.); (G.C.); (F.I.); (M.B.)
| |
Collapse
|
43
|
Khan T, Khan S, Akhtar M, Ali J, Najmi AK. Empagliflozin nanoparticles attenuates type2 diabetes induced cognitive impairment via oxidative stress and inflammatory pathway in high fructose diet induced hyperglycemic mice. Neurochem Int 2021; 150:105158. [PMID: 34391818 DOI: 10.1016/j.neuint.2021.105158] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 01/21/2023]
Abstract
There is snowballing evidence that type 2 diabetes (T2D) predisposes to neuropathophysiological alterations including oxidative stress and triggered inflammatory responses in brain that eventually culminates into cognitive impairment.Accumulating evidences suggest that SGLT2 inhibitor can be a promising intervention for cognitive decline in T2DM. In the present paper, the potential effects of Empagliflozin (EMPA), a SGLT2 inhibitor, against T2D induced cognitive dysfunction have been explored. The effect of EMPA on array of inflammatory mediators including Interleukin-6(IL-6), Interleukin -1β (IL-1β), and Tumour necrosis factor-α(TNF-α)), neuronal proteins including glycogen synthase kinase-3β (GSK- 3β), Phosphorylated tau (p-tau), amyloid beta (Aβ) (1-40, 1-42) and altered oxidative parameters including SOD, catalase, TBARS was determined in the high fructose diet induced hyperglycaemic mice. The obtained results were compared with EMPA nanoparticles (Nps) formulated in our laboratory and found that EMPA Nps significantly showed reduced levels of inflammatory mediators and oxidative stress. Further, decrease in levels of p-tau, Aβ (1-40) and Aβ (1-42) were also observed with EMPA nanoparticles.Thus, the study has demonstrated that EMPA Nps could be a promising therapy to alleviate the progression of cognitive decline in T2D.
Collapse
Affiliation(s)
- Tahira Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia, Hamdard, New Delhi, India
| | - Sana Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia, Hamdard, New Delhi, India
| | - Mohd Akhtar
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia, Hamdard, New Delhi, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia, Hamdard, New Delhi, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia, Hamdard, New Delhi, India.
| |
Collapse
|
44
|
Bahar B, Kanagasingam S, Tambuwala MM, Aljabali AAA, Dillon SA, Doaei S, Welbury R, Chukkapalli SS, Singhrao SK. Porphyromonas gingivalis (W83) Infection Induces Alzheimer's Disease-Like Pathophysiology in Obese and Diabetic Mice. J Alzheimers Dis 2021; 82:1259-1275. [PMID: 34151813 DOI: 10.3233/jad-210465] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Periodontal disease(s) and metabolic illnesses negatively impact the quality of life and, eventually mental health. OBJECTIVE This study investigated the effect of Porphyromonas gingivalis (W83) oral infection on the development of Alzheimer's disease (AD) pathophysiology in a wild-type obese, diabetic (db/db) mouse model. METHODS The db/db mice were either orally infected with P. gingivalis and Fusobacterium nucleatum or sham infected for 16 weeks. The presence of amyloid-β (Aβ) and neurofibrillary tangles (NFTs) were assessed using a silver impregnation technique and subsequently by immunohistochemistry for tau and neuroinflammation. The mRNA abundance of a panel of 184 genes was performed using quantitative real-time PCR, and the differentially expressed genes were analyzed by Ingenuity Pathway Analysis. RESULTS While no Aβ plaques and NFTs were evident by silver impregnation, immunohistochemistry (glial cell markers) of the P. gingivalis-infected mice tissue sections exhibited neuroinflammation in the form of reactive microglia and astrocytes. Anti-tau immunopositivity, in addition to cells, was prominent in thickened axons of hippocampal CA neurons. The mRNA abundance of crucial genes in the insulin signaling pathway (INSR, IGF1, IRS, IDE, PIK3R, SGK1, GYS, GSK3B, AKT1) were upregulated, potentially exacerbating insulin resistance in the brain by P. gingivalis oral infection. Increased mRNA abundance of several kinases, membrane receptors, transcription factors, and pro-inflammatory mediators indicated hyperactivation of intracellular cascades with potential for tau phosphorylation and Aβ release in the same infection group. CONCLUSION P. gingivalis W83 infection of db/db mice provides a disease co-morbidity model with the potential to reproduce AD pathophysiology with induced periodontal disease.
Collapse
Affiliation(s)
- Bojlul Bahar
- Nutrition Sciences and Applied Food Safety Studies, Research Centre for Global Development, School of Sport & Health Sciences, University of Central Lancashire, Preston, UK
| | - Shalini Kanagasingam
- Brain and Behavior Centre, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, Northern Ireland, UK
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Stephanie A Dillon
- Nutrition Sciences and Applied Food Safety Studies, Research Centre for Global Development, School of Sport & Health Sciences, University of Central Lancashire, Preston, UK
| | - Saeid Doaei
- Research Center of Health and Environment, Shool of Health, Guilan University of Medical Sciences, Rasht, Iran
| | - Richard Welbury
- Brain and Behavior Centre, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK
| | - Sasanka S Chukkapalli
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Sim K Singhrao
- Brain and Behavior Centre, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK
| |
Collapse
|
45
|
Gong J, Harris K, Hackett M, Peters SAE, Brodaty H, Cooper M, Hamet P, Harrap S, Mancia G, MacMahon S, Chalmers J, Woodward M. Sex differences in risk factors for cognitive decline and dementia, including death as a competing risk, in individuals with diabetes: Results from the ADVANCE trial. Diabetes Obes Metab 2021; 23:1775-1785. [PMID: 33783955 DOI: 10.1111/dom.14391] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/16/2021] [Accepted: 03/25/2021] [Indexed: 12/18/2022]
Abstract
AIM To estimate the associations between risk factors and cognitive decline (CD)/dementia, and the sex differences in these risk factors in individuals with type 2 diabetes, while accounting for the competing risk of death. MATERIALS AND METHODS The Action in Diabetes and Vascular Disease: Preterax and Diamicron Modified Release Controlled Evaluation (ADVANCE) trial of 11,140 individuals with type 2 diabetes was used to estimate the odds of CD/dementia using multinomial logistic regression. RESULTS During a median 5-year follow-up, 1827 participants (43.2% women) had CD/dementia (1718 with CD only; 21 with dementia only; 88 with CD and dementia), and 929 (31.0% women) died without CD/dementia. Women had lower odds of CD/dementia than men (odds ratio [OR] [95% confidence interval], 0.88 [0.77, 1.00]); older age, higher total cholesterol, HbA1c, waist circumference, waist-to-height ratio, moderately increased albumin-creatinine ratio, stroke/transient ischaemic attack and retinal disease were each associated with greater odds of CD/dementia; higher years at education completion, baseline cognitive function, taller stature and current alcohol use were inversely associated. Higher waist circumference (women-to-men ratio of ORs [ROR], 1.05 [1.00, 1.10] per 5 cm) and presence of anxiety/depression (ROR, 1.28 [1.01, 1.63]) were associated with greater ORs for CD/dementia in women than men. CONCLUSIONS Several risk factors were associated with CD/dementia. Higher waist circumference and mental health symptoms were more strongly associated with CD/dementia in women than men. Further studies should examine the mechanisms that underlie these sex differences.
Collapse
Affiliation(s)
- Jessica Gong
- The George Institute for Global Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Katie Harris
- The George Institute for Global Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Maree Hackett
- The George Institute for Global Health, University of New South Wales, Sydney, New South Wales, Australia
- Faculty of Health and Wellbeing, the University of Central Lancashire, Lancashire, UK
| | - Sanne A E Peters
- The George Institute for Global Health, University of New South Wales, Sydney, New South Wales, Australia
- The George Institute for Global Health, Imperial College London, London, UK
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Henry Brodaty
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
- Dementia Centre for Research Collaboration, University of New South Wales, Sydney, New South Wales, Australia
| | - Mark Cooper
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Pavel Hamet
- Montréal Diabetes Research Centre, Centre Hospitalier de l'Université de Montréal, Quebec, Montreal, Canada
| | - Stephen Harrap
- Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Giuseppe Mancia
- Policlinico di Monza and IRCCS Istituto Auxologico Italiano, University of Milano-Bicocca, Milan, Italy
| | - Stephen MacMahon
- The George Institute for Global Health, University of New South Wales, Sydney, New South Wales, Australia
- The George Institute for Global Health, Imperial College London, London, UK
| | - John Chalmers
- The George Institute for Global Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Mark Woodward
- The George Institute for Global Health, University of New South Wales, Sydney, New South Wales, Australia
- The George Institute for Global Health, Imperial College London, London, UK
- Department of Epidemiology, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
46
|
Sarahian N, Sarvazad H, Sajadi E, Rahnejat N, Eskandari Roozbahani N. Investigation of common risk factors between polycystic ovary syndrome and Alzheimer's disease: a narrative review. Reprod Health 2021; 18:156. [PMID: 34311759 PMCID: PMC8314638 DOI: 10.1186/s12978-021-01203-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/13/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The most common endocrine and metabolic disorders in premenopausal women is polycystic ovary syndrome (PCOS), characterized by hyperandrogenism, chronic anovulation, and/or ultrasound evidence of small ovarian cysts. Obesity and insulin resistance are also the main factors influencing the clinical manifestations of this syndrome. Alzheimer's disease (AD) is the most typical progressive neurodegenerative disorder of the brain, and recent studies suggest a relationship between endocrinal dysregulation and neuronal loss during AD pathology. AIM This study aimed to evaluate the common risk factors for Alzheimer's and PCOS based on previous studies. Knowing the common risk factors and eliminating them may prevent neurodegenerative Alzheimer's disease in the future. METHOD In this narrative review, international databases, including Google Scholar, Scopus, PubMed, and the Web of Science, were searched to retrieve the relevant studies. The relevant studies' summaries were categorized to discuss the possible pathways that may explain the association between Alzheimer's and PCOS signs/symptoms and complications. RESULTS According to our research, the factors involved in Alzheimer's and PCOS disorders may share some common risk factors. In patients with PCOS, increased LH to FSH ratio, decreased vitamin D, insulin resistance, and obesity are some of the most important factors that may increase the risk of Alzheimer's disease.
Collapse
Affiliation(s)
- Nahid Sarahian
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hosna Sarvazad
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Sajadi
- Department of Basic Science, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Nasrin Rahnejat
- Faculty of Nursing and Midwifery, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Narges Eskandari Roozbahani
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
47
|
Grattan DR, Andrews ZB. Insulin as a neuroendocrine hormone. J Neuroendocrinol 2021; 33:e12966. [PMID: 33786903 DOI: 10.1111/jne.12966] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/11/2022]
Abstract
The year 2021 marks 100 years since the discovery of insulin and this Special Issue of the Journal of Neuroendocrinology was conceived as a way to mark that historic breakthrough. The discovery of insulin and its subsequent use in the treatment of diabetes is one of the most striking success stories in biomedical research. From a neuroendocrinology perspective, the recognition that insulin also exerts widespread and varied actions in the brain is more recent, but potentially also of equal importance with relevance for conditions ranging from obesity to dementia. The reviews contained in this Special Issue were selected to cover the range of known actions of insulin in neuroendocrine function, and also to highlight areas where further understanding of insulin actions in the brain hold great promise for further improvements in human health.
Collapse
Affiliation(s)
- David R Grattan
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
| | - Zane B Andrews
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
48
|
Rhea EM, Banks WA. A historical perspective on the interactions of insulin at the blood-brain barrier. J Neuroendocrinol 2021; 33:e12929. [PMID: 33433042 PMCID: PMC8052275 DOI: 10.1111/jne.12929] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/18/2020] [Accepted: 12/02/2020] [Indexed: 11/30/2022]
Abstract
Subsequent to the discovery of insulin in 1921, the role of insulin in the brain has been investigated throughly. The ability of insulin to act within the brain to regulate peripheral glucose levels helped evolve the research surrounding the ability of insulin to be transported into the brain. Investigations aiming to determine the transport of insulin into the brain from the circulation soon followed. Once it was established that insulin could enter the brain, the ability of insulin to bind brain microvessels and regulators of this process were determined. As technology advanced, quantitative measurements to specify the transport rate of insulin across the blood-brain barrier (BBB) and the impact of physiological conditions and diseases were the logical next steps. Lastly, with the advent of genetic mouse models and high-specificity antagonists, the specific role of the insulin receptor in mediating insulin transport could begin to be explored. In this review, we summarise the main findings throughout the decades regarding the interactions of insulin at the BBB.
Collapse
Affiliation(s)
- Elizabeth M. Rhea
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA 98159
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, 1660 S Columbian Way, Seattle, Washington, USA 98108
- Corresponding author: Elizabeth M. Rhea;
| | - William A. Banks
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA 98159
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, 1660 S Columbian Way, Seattle, Washington, USA 98108
| |
Collapse
|
49
|
Sanke H, Mita T, Yoshii H, Someya Y, Yamashiro K, Shimizu T, Ohmura C, Onuma T, Watada H. Olfactory dysfunction predicts the development of dementia in older patients with type 2 diabetes. Diabetes Res Clin Pract 2021; 174:108740. [PMID: 33711397 DOI: 10.1016/j.diabres.2021.108740] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/23/2021] [Accepted: 03/01/2021] [Indexed: 01/21/2023]
Abstract
AIMS Olfactory dysfunction is associated with the transition from normal cognition to dementia in persons without type 2 diabetes. This study aimed to investigate whether olfactory dysfunction could be an early marker of future dementia in older patients with type 2 diabetes. METHODS This exploratory study included 151 older Japanese outpatients with type 2 diabetes who did not have a diagnosis of probable dementia at baseline. A multivariate logistic regression model was used to determine whether Open Essence (OE) test score at baseline is associated with the development of probable dementia. RESULTS Over 3 years, approximately 9% of the study subjects developed probable dementia. Subjects with olfactory dysfunction at baseline developed probable dementia more frequently than those without. Multivariate logistic regression showed that lower OE test score, higher age, lower Mini-Mental State Examination (MMSE) score, higher total protein concentration, and more frequent use of a sulfonylurea are significantly associated with the development of probable dementia. Stepwise multivariate regression analysis demonstrated that change in OE test score over 3 years is significantly associated with change in MMSE score. CONCLUSIONS Our study suggested that olfactory dysfunction precedes the development of probable dementia in older patients with type 2 diabetes.
Collapse
Affiliation(s)
- Haruna Sanke
- Department of Metabolism & Endocrinology, 2-1-1 Hongo, Bunkyoku, Tokyo 113-8421, Japan
| | - Tomoya Mita
- Department of Metabolism & Endocrinology, 2-1-1 Hongo, Bunkyoku, Tokyo 113-8421, Japan; Center for Therapeutic Innovations in Diabetes, 2-1-1 Hongo, Bunkyoku, Tokyo 113-8421, Japan.
| | - Hidenori Yoshii
- Department of Medicine, Diabetology & Endocrinology Juntendo Tokyo Koto Geriatric Medical Center, Shinsuna 3-3-20, Koto-ku, Tokyo 136-0075, Japan
| | - Yuki Someya
- Department of Metabolism & Endocrinology, 2-1-1 Hongo, Bunkyoku, Tokyo 113-8421, Japan; Sportology Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyoku, Tokyo 113-8421, Japan
| | - Keiko Yamashiro
- Department of Medicine, Diabetology & Endocrinology Juntendo Tokyo Koto Geriatric Medical Center, Shinsuna 3-3-20, Koto-ku, Tokyo 136-0075, Japan
| | - Tomoaki Shimizu
- Department of Metabolism & Endocrinology, 2-1-1 Hongo, Bunkyoku, Tokyo 113-8421, Japan
| | - Chie Ohmura
- Department of Metabolism & Endocrinology, 2-1-1 Hongo, Bunkyoku, Tokyo 113-8421, Japan
| | - Tomio Onuma
- Department of Medicine, Diabetology & Endocrinology Juntendo Tokyo Koto Geriatric Medical Center, Shinsuna 3-3-20, Koto-ku, Tokyo 136-0075, Japan
| | - Hirotaka Watada
- Department of Metabolism & Endocrinology, 2-1-1 Hongo, Bunkyoku, Tokyo 113-8421, Japan; Center for Therapeutic Innovations in Diabetes, 2-1-1 Hongo, Bunkyoku, Tokyo 113-8421, Japan; Center for Molecular Diabetology, 2-1-1 Hongo, Bunkyoku, Tokyo 113-8421, Japan; Sportology Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyoku, Tokyo 113-8421, Japan
| |
Collapse
|
50
|
Torabi N, Noursadeghi E, Shayanfar F, Nazari M, Fahanik-Babaei J, Saghiri R, Khodagholi F, Eliassi A. Intranasal insulin improves the structure-function of the brain mitochondrial ATP-sensitive Ca 2+ activated potassium channel and respiratory chain activities under diabetic conditions. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166075. [PMID: 33444710 DOI: 10.1016/j.bbadis.2021.166075] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/06/2020] [Accepted: 12/30/2020] [Indexed: 11/21/2022]
Abstract
Although it is well established that diabetes impairs mitochondrial respiratory chain activity, little is known of the effects of intranasal insulin (INI) on the mitochondrial respiratory chain and structure-function of mitoBKCa channel in diabetes. We have investigated this mechanism in an STZ-induced early type 2 diabetic model. Single ATP-sensitive mitoBKCa channel activity was considered in diabetic and INI-treated rats using a channel incorporated into the bilayer lipid membrane. Because mitoBKCa channels have been involved in mitochondrial respiratory chain activity, a study was undertaken to investigate whether the NADH, complexes I and IV, mitochondrial ROS production, and ΔΨm are altered in an early diabetic model. In this work, we provide evidence for a significant decrease in channel open probability and conductance in diabetic rats. Evidence has been shown that BKCa channel β2 subunits induce a left shift in the BKCa channel voltage dependent curve in low Ca2+ conditions,; our results indicated a significant decrease in mitoBKCa β2 subunits using Western blot analysis. Importantly, INI treatment improved mitoBKCa channel behaviors and β2 subunits expression up to ~70%. We found that early diabetes decreased activities of complex I and IV and increased NADH, ROS production, and ΔΨm. Surprisingly, INI modified the mitochondrial respiratory chain, ROS production, and ΔΨm up to ~70%. Our results thus demonstrate an INI improvement in respiratory chain activity and ROS production in brain mitochondrial preparations coming from the STZ early diabetic rat model, an effect potentially linked to INI improvement in mitoBKCa channel activity and channel β2 subunit expression.
Collapse
Affiliation(s)
- Nihad Torabi
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Physiology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Noursadeghi
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Shayanfar
- Department of Physiology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Nazari
- Department of Physiology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Fahanik-Babaei
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Saghiri
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Evin, Tehran, Iran
| | - Afsaneh Eliassi
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Physiology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|