1
|
Mathioudakis N. A Berberine Derivative for Treatment of Type 2 Diabetes. JAMA Netw Open 2025; 8:e2462195. [PMID: 40029665 DOI: 10.1001/jamanetworkopen.2024.62195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/05/2025] Open
Affiliation(s)
- Nestoras Mathioudakis
- Division of Endocrinology, Diabetes, and Metabolism, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
2
|
Zhang Y, Li M, Liu H, Fan Y, Liu HH. The application of procyanidins in diabetes and its complications: a review of preclinical studies. Front Pharmacol 2025; 16:1532246. [PMID: 39995417 PMCID: PMC11847907 DOI: 10.3389/fphar.2025.1532246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/14/2025] [Indexed: 02/26/2025] Open
Abstract
Diabetes mellitus (DM) and its various complications, including diabetic nephropathy, retinopathy, neuropathy, cardiovascular disease, and ulcers, pose significant challenges to global health. This review investigates the potential of procyanidins (PCs), a natural polyphenolic compound, in preventing and managing diabetes and its complications. PCs, recognized for their strong antioxidant, anti-inflammatory, and anti-hyperglycemic properties, play a crucial role in reducing oxidative stress and enhancing endothelial function, which are essential for managing diabetic complications. This review elucidates the molecular mechanisms by which PCs improve insulin sensitivity and endothelial health, thereby providing protection against the various complications of diabetes. The comprehensive analysis underscores the promising therapeutic role of PCs in diabetes care, indicating the need for further clinical studies to confirm and leverage their potential in comprehensive diabetes management strategies.
Collapse
Affiliation(s)
- Yongchuang Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengna Li
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, China
| | - Haoyuan Liu
- Rehabilitation Department, Henan Provincial Hospital of Traditional Chinese Medicine, Zhengzhou, China
| | - Yongfu Fan
- School of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Huan Huan Liu
- International institute for Traditional Chinese Medicine, Guanzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
3
|
Gasmi A, Noor S, Mujawdiya PK, Akram M, Manzoor A, Bjorklund G. Herbal Treatments for Obesity: A Review. Curr Med Chem 2025; 32:1874-1886. [PMID: 38509683 DOI: 10.2174/0109298673287491240315055726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/13/2024] [Accepted: 02/27/2024] [Indexed: 03/22/2024]
Abstract
Obesity is the most pervasive metabolic disorder, further linked with many other diseases, including diabetes, hypertension, cardiovascular disorders, and sleep apnea. To control the increasing weight of obese individuals, experts usually recommend exercise and lifestyle alterations, but medication and surgeries are also advised in severe cases. FDA-approved obesity-controlling drugs are effective but possess certain adverse effects, including dry mouth, drug abuse, dysregulation in monoamine neurotransmitters, insomnia, and many more. Medication processes are expensive; researchers have focused on safer and more effective alternative approaches than pharmaceutical drugs. Historically, a diverse array of herbal plants has been used due to their therapeutic effect, as invitro and in vivo experimentations have proved the effectiveness of herbal plants without associated mortality. In this review, we present various herbs with their metabolically active secondary metabolites, including Berberis vulgaris L, Rhizoma Coptidis, Radix Lithospermi, Aloe vera, Clerodendrum multiflorum Burm f., Astragalus membranaceus (Fisch), Boerhaavia diffusa, Achyranthes aspera L., etc. All of these herbs are responsible for anti-obesity, anti-diabetic, and anti-inflammatory effects. Most previously published clinical trials and animal studies have confirmed the significant potential of these herbal plants and their active ingredients to reduce weight by decreasing the accumulated fats in the body have also been discussed in this review. Thus, it is concluded that scientists must consider and utilize these natural treasures for safe, effective, and cost-effective treatment. It will open new and novel ways for treatment regimes.
Collapse
Affiliation(s)
- Amin Gasmi
- Department of Research, Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | - Sadaf Noor
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | | | - Muhammad Akram
- Department of Eastern Medicine, Government College University Faisalabad, Faisalabad, Pakistan
| | - Aisha Manzoor
- Department of Eastern Medicine, Government College University Faisalabad, Faisalabad, Pakistan
| | - Geir Bjorklund
- Department of Research, Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| |
Collapse
|
4
|
Teh YM, Mualif SA, Mohd Noh NI, Lim SK. The Potential of Naturally Derived Compounds for Treating Chronic Kidney Disease: A Review of Autophagy and Cellular Senescence. Int J Mol Sci 2024; 26:3. [PMID: 39795863 PMCID: PMC11719669 DOI: 10.3390/ijms26010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/11/2024] [Accepted: 12/14/2024] [Indexed: 01/13/2025] Open
Abstract
Chronic kidney disease (CKD) is characterized by irreversible progressive worsening of kidney function leading to kidney failure. CKD is viewed as a clinical model of premature aging and to date, there is no treatment to reverse kidney damage. The well-established treatment for CKD aims to control factors that may aggravate kidney progression and to provide kidney protection effects to delay the progression of kidney disease. As an alternative, Traditional Chinese Medicine (TCM) has been shown to have fewer adverse effects for CKD patients. However, there is a lack of clinical and molecular studies investigating the mechanisms by which natural products used in TCM can improve CKD. In recent years, autophagy and cellular senescence have been identified as key contributors to aging and age-related diseases. Exploring the potential of natural products in TCM to target these processes in CKD patients could slow disease progression. A better understanding of the characteristics of these natural products and their effects on autophagy and cellular senescence through clinical studies, coupled with the use of these products as complementary therapy alongside mainstream treatment, may maximize therapeutic benefits and minimize adverse effects for CKD patients. While promising, there is currently a lack of thorough research on the potential synergistic effects of these natural products. This review examines the use of natural products in TCM as an alternative treatment for CKD and discusses their active ingredients in terms of renoprotection, autophagy, and cellular senescence.
Collapse
Affiliation(s)
- Yoong Mond Teh
- Department of Biomedical Engineering and Health Science, Faculty of Electrical Engineering, University Technology Malaysia (UTM), Johor Bahru 81310, Malaysia; (Y.M.T.); (S.A.M.)
| | - Siti Aisyah Mualif
- Department of Biomedical Engineering and Health Science, Faculty of Electrical Engineering, University Technology Malaysia (UTM), Johor Bahru 81310, Malaysia; (Y.M.T.); (S.A.M.)
| | - Nur Izzati Mohd Noh
- Department of Biosciences, Faculty of Science, University Technology Malaysia (UTM), Johor Bahru 81310, Malaysia;
| | - Soo Kun Lim
- Department of Medicine, Faculty of Medicine, University of Malaysia (UM), Kuala Lumpur 59100, Malaysia
| |
Collapse
|
5
|
Li J, Lv P, Xiao Z, Xiao J. Protective Effects of Bioactive Compound-Derived Nanoparticle Against Diabetic Retinopathy Through the Modulation of the NF-κB Signaling Pathway. ACS OMEGA 2024; 9:26267-26274. [PMID: 38911745 PMCID: PMC11191572 DOI: 10.1021/acsomega.4c02066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/04/2024] [Accepted: 05/21/2024] [Indexed: 06/25/2024]
Abstract
Diabetic retinopathy is a prevalent and severe microvascular complication of diabetes, often causing visual impairment and blindness in adults. This condition significantly impacts the quality of life for many diabetes patients worldwide. Berberine (BBR), a bioactive compound known for its effects on blood glucose levels, has shown promise in managing diabetic complications. However, the exact mechanism of how BBR influences the development of diabetic retinopathy remains unclear. In this study, we focused on synthesizing a formulation derived from BBR and assessing its protective effects against diabetic retinopathy. The formulation was created using a green synthesis method and thoroughly characterized. In vitro studies demonstrated the antioxidant activity of the formulation against 2,2-diphenyl-1-picryl-hydrazyl-hydrate. We also examined the NF-κB signaling pathway at a molecular level using real-time polymerase chain reaction. To mimic diabetic retinopathy in a controlled setting, a diabetic rat model was established through streptozotocin injection. The rats were divided into normal, diabetic, and treatment groups. The treatment group received the formulated treatment via intragastric administration for several weeks, while the other groups received normal saline. Evaluation of histopathological characteristics and microstructural changes in the retina using hematoxylin and eosin staining revealed that the bioactive compound-derived nanoparticle exhibited favorable biological, chemical, and physical properties. Treatment with the formulation effectively reduced oxidative stress induced by diabetes and inhibited the NF-κB signaling pathway in the diabetic rat model. Under high glucose conditions, oxidative stress was heightened, leading to mitochondria-dependent cell apoptosis in Müller cells via the activation of the NF-κB signaling pathway. The bioactive compound-derived formulation counteracted these effects by decreasing IκB phosphorylation, preventing NF-κB nuclear translocation, and deactivating the NF-κB signaling pathway. Furthermore, treatment with the bioactive compound-derived formulation mitigated retinal micro- and ultrastructural changes associated with diabetic retinopathy. These results indicate that the formulation protects against diabetic retinopathy by suppressing oxidative stress, reducing cell apoptosis, and deactivating the NF-κB signaling pathway. This suggests that the bioactive compound-derived formulation could be a promising therapeutic option for diabetic retinopathy.
Collapse
Affiliation(s)
- Jianting Li
- Department
of Endocrinology, Central Hospital Affiliated
to Shandong First Medical University, No. 105 Jiefang Road, Jinan 250012, China
| | - Ping Lv
- Department
of Endocrinology, The Fourth People’s
Hospital of Jinan, No.
50, Normal Road, Tianqiao District, Jinan 250031, China
| | - Zhanzhan Xiao
- Department
of Medical Device Management, The Fourth
People’s Hospital of Jinan, No. 50, Normal Road, Tianqiao
District, Jinan 250031, China
| | - Juan Xiao
- Department
of Endocrinology, Qingdao Municipal Hospital, No. 1, Jiaozhou Road, Qingdao 266011, China
| |
Collapse
|
6
|
Nyulas KI, Simon-Szabó Z, Pál S, Fodor MA, Dénes L, Cseh MJ, Barabás-Hajdu E, Csipor B, Szakács J, Preg Z, Germán-Salló M, Nemes-Nagy E. Cardiovascular Effects of Herbal Products and Their Interaction with Antihypertensive Drugs-Comprehensive Review. Int J Mol Sci 2024; 25:6388. [PMID: 38928095 PMCID: PMC11203894 DOI: 10.3390/ijms25126388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Hypertension is a highly prevalent population-level disease that represents an important risk factor for several cardiovascular complications and occupies a leading position in mortality statistics. Antihypertensive therapy includes a wide variety of drugs. Additionally, the potential antihypertensive and cardioprotective effects of several phytotherapy products have been evaluated, as these could also be a valuable therapeutic option for the prevention, improvement or treatment of hypertension and its complications. The present review includes an evaluation of the cardioprotective and antihypertensive effects of garlic, Aloe vera, green tea, Ginkgo biloba, berberine, ginseng, Nigella sativa, Apium graveolens, thyme, cinnamon and ginger, and their possible interactions with antihypertensive drugs. A literature search was undertaken via the PubMed, Google Scholar, Embase and Cochrane databases. Research articles, systematic reviews and meta-analyses published between 2010 and 2023, in the English, Hungarian, and Romanian languages were selected.
Collapse
Affiliation(s)
- Kinga-Ilona Nyulas
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, 540139 Târgu Mureș, Romania
| | - Zsuzsánna Simon-Szabó
- Department of Pathophysiology, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, 540139 Târgu Mureș, Romania
| | - Sándor Pál
- Department of Laboratory Medicine, Department of Transfusion Medicine, Medical School, University of Pécs, 7622 Pécs, Hungary
| | - Márta-Andrea Fodor
- Department of Laboratory Medicine, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, 540139 Târgu Mureș, Romania
| | - Lóránd Dénes
- Department of Anatomy and Embryology, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, 540139 Târgu Mureș, Romania
| | - Margit Judit Cseh
- Master Program of Nutrition and Dietetics, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, 540139 Târgu Mureș, Romania
| | - Enikő Barabás-Hajdu
- Department of Cell Biology and Microbiology, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, 540139 Târgu Mureș, Romania
| | - Bernadett Csipor
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, 540139 Târgu Mureș, Romania
| | - Juliánna Szakács
- Department of Biophysics, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, 540139 Târgu Mureș, Romania
| | - Zoltán Preg
- Department of Family Medicine, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, 540139 Târgu Mureș, Romania
| | - Márta Germán-Salló
- Department of Internal Medicine III, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, 540139 Târgu Mureș, Romania
| | - Enikő Nemes-Nagy
- Department of Chemistry and Medical Biochemistry, Faculty of Medicine in English, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, 540139 Târgu Mureș, Romania;
| |
Collapse
|
7
|
Koushki M, Farahani M, Yekta RF, Frazizadeh N, Bahari P, Parsamanesh N, Chiti H, Chahkandi S, Fridoni M, Amiri-Dashatan N. Potential role of resveratrol in prevention and therapy of diabetic complications: a critical review. Food Nutr Res 2024; 68:9731. [PMID: 38716357 PMCID: PMC11075469 DOI: 10.29219/fnr.v68.9731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/10/2023] [Accepted: 10/09/2023] [Indexed: 01/03/2025] Open
Abstract
BACKGROUND Diabetes mellitus (DM) is a category of metabolic conditions affecting about 5% of people worldwide. High mortality associated with DM is mostly due to its severe clinical complications, including diabetic nephropathy, retinopathy, neuropathy, and cardiomyopathy. Resveratrol (RSV) is a natural, biologically active polyphenol known to have various health-promoting effects in animal models and humans. OBJECTIVE In this review, we have reviewed the preventive and therapeutic role of RSV on diabetes complications with emphasis on its molecular mechanisms of action. METHODS To prepare this review, all the basic and clinical available literatures regarding this topic were gathered through electronic databases, including PubMed, Web of Science, Scopus, and Google Scholar. Therefore, we summarized previous studies that have evaluated the effects of RSV on diabetic complications and their mechanisms. Only English language studies published up to January 2023 were included in this review. RESULTS RSV improves glucose homeostasis, decreases insulin resistance, induces autophagy, regulates lipid metabolism, protects pancreatic β-cells, ameliorates metabolic disorders, and increases the GLUT4 expression. These effects induced by RSV are strongly associated with ability of this polyphenol agent to elevation expression/activity of AMP-activated protein kinase and Sirtuin 1 in various organs of diabetic subjects, which leads to prevention and therapy of diabetic complications. In addition, antioxidant and anti-inflammatory properties of RSV were reported to be involved in its action in diabetic complications, such as retinopathy and nephropathy. CONCLUSION RSV is a promising compound for improving diabetic complications. However, the exact antidiabetic mechanisms of RSV need to be further investigated.
Collapse
Affiliation(s)
- Mehdi Koushki
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Masoumeh Farahani
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Naghmeh Frazizadeh
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Parisa Bahari
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Negin Parsamanesh
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hossein Chiti
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Somayeh Chahkandi
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohammadjavad Fridoni
- Department of Anatomy, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Nasrin Amiri-Dashatan
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
8
|
Rahman Z, Shaikh AS, Rao KV, Dandekar MP. Oxyberberine protects middle cerebral artery occlusion triggered cerebral injury through TLR4/NLRP3 pathway in rats. J Chem Neuroanat 2024; 136:102393. [PMID: 38246265 DOI: 10.1016/j.jchemneu.2024.102393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/18/2023] [Accepted: 01/17/2024] [Indexed: 01/23/2024]
Abstract
Cerebral ischemia is a life-threatening health concern that leads to severe neurological complications and fatalities worldwide. Although timely intervention with clot-removing agents curtails serious post-stroke neurological dysfunctions, no effective neuroprotective intervention is available for addressing post-recanalization neuroinflammation. Herein, for the first time we studied the effect of oxyberberine (OBB), a derivative of berberine, on transient middle cerebral artery occlusion (MCAO)-generated neurological consequences in Sprague-Dawley rats. The MCAO-operated rats exhibited significant somatosensory and sensorimotor dysfunctions in adhesive removal, foot fault, paw whisker, and rotarod assays at 1 and 3 days post-surgery. These MCAO-generated neurological deficits were prevented in OBB-treated (50 and 100 mg/kg) rats, and also coincided with a smaller infarct area (in 2,3,5-triphenyl tetrazolium chloride staining) and decreased neuronal death (in cresyl violet staining) in the ipsilateral hemisphere of these animals. The immunostaining of neuronal nuclear protein (NeuN) and glial-fibrillary acidic protein (GFAP) also echoes the neuroprotective nature of OBB. The increased expression of neuroinflammatory and blood-brain barrier tight junction proteins like toll-like receptor 4 (TLR4), TRAF-6, nuclear factor kappa B (NF-κB), pNF-κB, nNOS, ASC, and IKBα in the ipsilateral part of MCAO-operated rats were restored to normal following OBB treatment. We also observed the decline in plasma levels/mRNA transcription of TNF-α, IL-1β, NLRP3, IL-6, and matrix metalloproteinase-9 and increased expression of occludin and claudin in OBB-treated rats. These outcomes imply that OBB may prevent the MCAO-induced neurological consequences and neuroinflammation by interfering with TLR4 and NLRP3 signaling in rats.
Collapse
Affiliation(s)
- Ziaur Rahman
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Arbaz Sujat Shaikh
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - K Venkata Rao
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Manoj P Dandekar
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India.
| |
Collapse
|
9
|
Zhou Y, Wang F, Li G, Xu J, Zhang J, Gullen E, Yang J, Wang J. From immune checkpoints to therapies: understanding immune checkpoint regulation and the influence of natural products and traditional medicine on immune checkpoint and immunotherapy in lung cancer. Front Immunol 2024; 15:1340307. [PMID: 38426097 PMCID: PMC10902058 DOI: 10.3389/fimmu.2024.1340307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Lung cancer is a disease of global concern, and immunotherapy has brought lung cancer therapy to a new era. Besides promising effects in the clinical use of immune checkpoint inhibitors, immune-related adverse events (irAEs) and low response rates are problems unsolved. Natural products and traditional medicine with an immune-modulating nature have the property to influence immune checkpoint expression and can improve immunotherapy's effect with relatively low toxicity. This review summarizes currently approved immunotherapy and the current mechanisms known to regulate immune checkpoint expression in lung cancer. It lists natural products and traditional medicine capable of influencing immune checkpoints or synergizing with immunotherapy in lung cancer, exploring both their effects and underlying mechanisms. Future research on immune checkpoint modulation and immunotherapy combination applying natural products and traditional medicine will be based on a deeper understanding of their mechanisms regulating immune checkpoints. Continued exploration of natural products and traditional medicine holds the potential to enhance the efficacy and reduce the adverse reactions of immunotherapy.
Collapse
Affiliation(s)
- Yibin Zhou
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Fenglan Wang
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Guangda Li
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Xu
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jingjing Zhang
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Elizabeth Gullen
- Department of Pharmacology, Yale Medical School, New Haven, CT, United States
| | - Jie Yang
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Wang
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
10
|
Chen X, Li X, Cao B, Chen X, Zhang K, Han F, Kan C, Zhang J, Sun X, Guo Z. Mechanisms and efficacy of traditional Chinese herb monomers in diabetic kidney disease. Int Urol Nephrol 2024; 56:571-582. [PMID: 37552392 DOI: 10.1007/s11255-023-03703-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/04/2023] [Indexed: 08/09/2023]
Abstract
Diabetic kidney disease (DKD) is a serious complication of diabetes and is the primary cause of end-stage renal disease. Current treatment strategies primarily focus on the inhibition of the renin-angiotensin-aldosterone system and the attainment of blood glucose control. Although current medical therapies for DKD have been shown to delay disease progression and improve long-term outcomes, their efficacy is limited and they may be restricted in certain cases, particularly when hyperkalemia is present. Traditional Chinese medicine (TCM) treatment has emerged as a significant complementary approach for DKD. TCM monomers, derived from various Chinese herbs, have been found to modulate multiple therapeutic targets and exhibit a broad range of therapeutic effects in patients with DKD. This review aims to summarize the mechanisms of action of TCM monomers in the treatment of DKD, based on findings from clinical trials, as well as cell and animal studies. The results of these investigations demonstrate the potential effective use of TCM monomers in treating or preventing DKD, offering a promising new direction for future research in the field. By providing a comprehensive overview of the mechanisms and efficacy of TCM monomers in DKD, this review highlights the potential of these natural compounds as alternative therapeutic options for improving outcomes in patients with DKD.
Collapse
Affiliation(s)
- Xuexun Chen
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Xuan Li
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Bo Cao
- Department of Emergency, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Xinping Chen
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Kexin Zhang
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, Shandong, China
| | - Fang Han
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Chengxia Kan
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, Shandong, China
| | - Jingwen Zhang
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, Shandong, China
| | - Xiaodong Sun
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China.
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, Shandong, China.
| | - Zhentao Guo
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China.
| |
Collapse
|
11
|
Dan L, Hao Y, Li J, Wang T, Zhao W, Wang H, Qiao L, Xie P. Neuroprotective effects and possible mechanisms of berberine in animal models of Alzheimer's disease: a systematic review and meta-analysis. Front Pharmacol 2024; 14:1287750. [PMID: 38259291 PMCID: PMC10800531 DOI: 10.3389/fphar.2023.1287750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 10/26/2023] [Indexed: 01/24/2024] Open
Abstract
Background: Recently, multiple preclinical studies have reported the beneficial effect of berberine in the treatment of Alzheimer's disease (AD). Nevertheless, the neuroprotective effects and possible mechanisms of berberine against AD are not universally recognized. This study aimed to conduct a systematic review and meta-analysis by integrating relevant animal studies to assess the neuroprotective effects and potential mechanisms of berberine on AD. Methods: We systematically searched PubMed, Embase, Scopus and Web of Science databases that reported the effects of berberine on AD models up to 1 February 2023. The escape latency, times of crossing platform, time spent in the target quadrant and pro-oligomerized amyloid beta 42 (Aβ1-42) were included as primary outcomes. The secondary outcomes were the Tau-ps 204, Tau-ps 404, β-site of APP cleaving enzyme (BACE1), amyloid precursor protein (APP), acetylcholine esterase (AChE), tumor necrosis factor ⍺ (TNF-α), interleukin 1β (IL-1β), IL-6, nitric oxide (NO), glial fibrillary acidic protein (GFAP), malonaldehyde (MDA), glutathione S-transferase (GST), glutathione (GSH), glutathione peroxidase (GPx), Beclin-1 and neuronal apoptosis cells. This meta-analysis was conducted using RevMan 5.4 and STATA 15.1. The SYRCLE's risk of bias tool was used to assess the methodological quality. Results: Twenty-two studies and 453 animals were included in the analysis. The overall results showed that berberine significantly shortened the escape latency (p < 0.00001), increased times of crossing platform (p < 0.00001) and time spent in the target quadrant (p < 0.00001), decreased Aβ1-42 deposition (p < 0.00001), Tau-ps 202 (p < 0.00001) and Tau-ps 404 (p = 0.002), and improved BACE1, APP, AChE, Beclin-1, neuronal apoptosis cells, oxidative stress and inflammation levels. Conclusion: Berberine may be a promising drug for the treatment of AD based on preclinical evidence (especially when the dose was 5-260 mg/kg). The potential mechanisms for these protective effects may be closely related to anti-neuroinflammation, anti-oxidative stress, modulation of autophagy, inhibition of neuronal apoptosis and protection of cholinergic system. However, these results may be limited by the quality of existing research. Larger and methodologically more rigorous preclinical research are needed to provide more convincing evidence.
Collapse
Affiliation(s)
- Lijuan Dan
- School of Clinical Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanwei Hao
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiaxin Li
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tianyuan Wang
- Traditional Chinese medicine department, 363 Hospital of Chengdu, Chengdu, China
| | - Weiwei Zhao
- Department of Geriatrics, Xi’an Hospital of Traditional Chinese Medicine, Xi’an, China
| | - Hui Wang
- Department of Geriatrics, Xi’an Hospital of Traditional Chinese Medicine, Xi’an, China
| | - Liyan Qiao
- Department of Geriatrics, Xi’an Hospital of Traditional Chinese Medicine, Xi’an, China
| | - Peijun Xie
- Department of Geriatrics, Xi’an Hospital of Traditional Chinese Medicine, Xi’an, China
| |
Collapse
|
12
|
Mitra P, Jana S, Roy S. Insights into the Therapeutic uses of Plant Derive Phytocompounds onDiabetic Nephropathy. Curr Diabetes Rev 2024; 20:e230124225973. [PMID: 38265383 DOI: 10.2174/0115733998273395231117114600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 01/25/2024]
Abstract
Diabetic nephropathy (DN) is one of the primary consequences of diabetes mellitus, affecting many people worldwide and is the main cause of death under the age of sixty. Reactive oxygen species (ROS) production rises during hyperglycemia and is crucial to the development of diabetic complications. Advanced glycation end products (AGEs) are produced excessively in a diabetic state and are accumulated in the kidney, where they change renal architecture and impair renal function. Another important targeted pathway for the formation of DN includes nuclear factor kappa-B (NF-kB), Nuclear factor E2-related factor 2 (Nrf2), NLR family pyrin domain containing 3 (NLRP3), protein kinase B/mammalian target of rapamycin (Akt/mTOR), and autophagy. About 40% of individuals with diabetes eventually acquire diabetic kidney disease and end-stage renal disease that needs hemodialysis, peritoneal dialysis, or kidney transplantation to survive. The current state of acceptable therapy for this kidney ailment is limited. The studies revealed that some naturally occurring bioactive substances might shield the kidney by controlling oxidative stress, renal fibrosis, inflammation, and autophagy. In order to provide new potential therapeutic lead bioactive compounds for contemporary drug discovery and clinical management of DN, this review was designed to examine the various mechanistic pathways by which conventional plants derive phytocompounds that are effective for the control and treatment of DN.
Collapse
Affiliation(s)
- Palash Mitra
- Nutrition Research Laboratory, Department of Paramedical and Allied Health Sciences, Midnapore City College, Kuturiya, Bhadutala, Midnapore 721129, India
- Biodiversity and Environmental Studies Research Center, Midnapore City College, Kuturiya, Bhadutala, Midnapore 721129, Paschim Medinipur, West Bengal, India
| | - Sahadeb Jana
- Nutrition Research Laboratory, Department of Paramedical and Allied Health Sciences, Midnapore City College, Kuturiya, Bhadutala, Midnapore 721129, India
- Biodiversity and Environmental Studies Research Center, Midnapore City College, Kuturiya, Bhadutala, Midnapore 721129, Paschim Medinipur, West Bengal, India
| | - Suchismita Roy
- Nutrition Research Laboratory, Department of Paramedical and Allied Health Sciences, Midnapore City College, Kuturiya, Bhadutala, Midnapore 721129, India
| |
Collapse
|
13
|
Gong M, Guo Y, Dong H, Wu F, He Q, Gong J, Lu F. Modified Hu-lu-ba-wan protects diabetic glomerular podocytes via promoting PKM2-mediated mitochondrial dynamic homeostasis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155247. [PMID: 38128393 DOI: 10.1016/j.phymed.2023.155247] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 10/07/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Mitochondrial dysfunction is implicated in the progression of diabetic kidney disease (DKD). Damaged mitochondria produce excessive reactive oxygen species (ROS) that can cause apoptosis. Mitochondrial dynamics control the quality and function of mitochondria. Targeting mitochondrial dynamics may reduce ROS-induced apoptosis and improve renal injury in DKD. Modified Hu-lu-ba-wan (MHLBW) shows distinct clinical effects on DKD patients, which are related to its role in antioxidant stress modulation. However, the relevant mechanisms of MHLBW have not been clearly explored. PURPOSE This study was aimed to evaluate the therapeutic effects of MHLBW on spontaneous DKD mice and clarify the potential mechanisms. METHODS The main components of MHLBW were identified by HPLC. Using db/db mice as DKD models, we evaluated the therapeutic effects of MHLBW on mice after an 8-week administration. We investigated the molecular mechanism of MHLBW in regulating mitochondrial dynamic homeostasis, podocyte apoptosis, and glomerular damage. After that, computational docking analysis and in vitro experiments were conducted for further mechanism verification. RESULTS Intragastric administration of MHLBW for 8 weeks in db/db mice significantly improved glucose metabolism, basement membrane thickening, mesangial expansion, glomerular fibrosis, and podocyte injury. MHLBW can reverse podocyte apoptosis via promoting mitochondrial dynamic homeostasis, which was related to regulating the PKM2/ PGC-1α/Opa1 pathway. Berberine (BBR), one of the components of MHLBW, exhibited preeminent affinity with PKM2 as reflected by computational docking analysis. In cultured podocytes, BBR can also prevent apoptosis by promoting PKM2-mediated mitochondrial dynamic homeostasis. CONCLUSION Our study demonstrates that MHLBW can treat DKD by inhibiting glomerular damage and podocyte apoptosis through positive regulation of PKM2-mediated mitochondrial dynamic homeostasis. These results may provide a potential strategy against DKD.
Collapse
Affiliation(s)
- Minmin Gong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yujin Guo
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Wu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiongyao He
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Gong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fuer Lu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
14
|
Ma X, Ma J, Leng T, Yuan Z, Hu T, Liu Q, Shen T. Advances in oxidative stress in pathogenesis of diabetic kidney disease and efficacy of TCM intervention. Ren Fail 2023; 45:2146512. [PMID: 36762989 PMCID: PMC9930779 DOI: 10.1080/0886022x.2022.2146512] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Diabetic kidney disease (DKD) is a common complication of diabetes and has become the leading cause of end-stage kidney disease. The pathogenesis of DKD is complicated, and oxidative stress is considered as a core of DKD onset. High glucose can lead to increased production of reactive oxygen species (ROS) via the polyol, PKC, AGE/RAGE and hexosamine pathways, resulting in enhanced oxidative stress response. In this way, pathways such as PI3K/Akt, TGF-β1/p38-MAPK and NF-κB are activated, inducing endothelial cell apoptosis, inflammation, autophagy and fibrosis that cause histologic and functional abnormalities of the kidney and finally result in kidney injury. Presently, the treatment for DKD remains an unresolved issue. Traditional Chinese medicine (TCM) has unique advantages for DKD prevention and treatment attributed to its multi-target, multi-component, and multi-pathway characteristics. Numerous studies have proved that Chinese herbs (e.g., Golden Thread, Kudzuvine Root, Tripterygium glycosides, and Ginseng) and patent medicines (e.g., Shenshuaining Tablet, Compound Rhizoma Coptidis Capsule, and Zishen Tongluo Granule) are effective for DKD treatment. The present review described the role of oxidative stress in DKD pathogenesis and the effect of TCM intervention for DKD prevention and treatment, in an attempt to provide evidence for clinical practice.
Collapse
Affiliation(s)
- Xiaoju Ma
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China,School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingru Ma
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tian Leng
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhongzhu Yuan
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tingting Hu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiuyan Liu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Shen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China,CONTACT Tao Shen School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu611137, China
| |
Collapse
|
15
|
Dodangeh A, Hoveizi E, Tabatabaei SRF. Simultaneous Administration of Berberine and Transplantation of Endometrial Stem Cell-Derived Insulin Precursor Cells on a Nanofibrous Scaffold to Treat Diabetes Mellitus in Mice. Mol Neurobiol 2023; 60:7032-7043. [PMID: 37526896 DOI: 10.1007/s12035-023-03540-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023]
Abstract
Today, significant success has been achieved in treating diabetes with cell therapy derived from various sources of stem and progenitors. The replacement of beta cells is one of the new diabetes treatment methods. To this end, the production of pancreatic beta precursors in cell culture has created an important research field for diabetes treatment. Endometrial stem cells were isolated using an enzymatic method, and after their identity was confirmed using a flow cytometry and differentiation potential assay, the isolated cells were cultured on an electrospun PCL/CS scaffold. Endometrial cells were differentiated into insulin-producing cells (IPCs), and gene expression was analyzed using the qRT-PCR and immunofluorescence to confirm the creation of IPCs. Then, IPCs on the scaffold along with berberine were applied to 5 groups of diabetic mice, and after 6 weeks, insulin, blood glucose, and weight of the animals were measured. The findings revealed that pancreatic markers were significantly expressed in IPCs compared to control cells. In addition, when compared to the control group and scaffolds, the receiving group of IPCs on scaffolds had a significant improvement (p ≤ 0.0015), and this improvement increased with the addition of berberine (decrease in blood sugar (133 mg/dL), and an increase in weight (5/39 g) and insulin (2.29 MIU/L). Thus, tissue engineering is a promising new strategy for treating diabetes and can be used in the future for cell therapy and suitable drugs for diabetic patients.
Collapse
Affiliation(s)
- Alireza Dodangeh
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Elham Hoveizi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | | |
Collapse
|
16
|
Zhang L, Yang C, Zhao Y, Yang Z, Meng X, Yan D. Comparative pharmacokinetic analysis of six major bioactive constituents using UPLC-MS/MS in samples isolated from normal and diabetic nephropathy rats after oral administration of Gushen Jiedu capsule. J Pharm Biomed Anal 2023; 235:115638. [PMID: 37633162 DOI: 10.1016/j.jpba.2023.115638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/07/2023] [Accepted: 08/07/2023] [Indexed: 08/28/2023]
Abstract
Berberine, palmatine, physcion, rhein, calycosin-7-O-glucoside, and ferulic acid are six major active consituents that are present in Gushen Jiedu capsule (GSJD) extracts. The aim of this study was to determine the pharmacokinetics of the six active consituents in vivo by a rapid, sensitive, and precise UPLC-MS/MS method, which were compared between normal and diabetic nephropathy (DN) rats. Good separation of the target analytes and internal standards (ketoprofen and puerarin) was obtained on a Waters BEH C18 UPLC column with a mobile phase of 0.1 % formic acid acetonitrile-0.1 % formic acid water. All the calibration curves showed good linearity with a regression coefficient (r2) of ≥ 0.9908. The lower limits of quantification (LLOQ) for berberine, palmatine, physcion, rhein, calycosin-7-O-glucoside, and ferulic acid were 20, 2.5, 20, 20, 2.5, and 2.5 ng/mL, respectively. The relative standard deviations (RSDs) of intra-day and inter-day precision were all within 12.66 %, and the relative errors of intra-day and inter-day accuracy ranged from - 15.00 to 14.93 %. Good extraction recovery and matrix effects were obtained. The stability study confirmed the stability of the six analytes (RSD < 15 %). Finally, the data showed that the pharmacokinetic parameters (especially CLz/F, AUC and Tmax) of the six target analytes in DN rats were significantly different from those in normal rats. PK studies under pathological conditions could provide new thoughts to elucidate the underlying mechanism of GSJD and promote the clinical development of GSJD to treat DN.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Beijing, China
| | - Chunjing Yang
- Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Beijing, China
| | - Yidan Zhao
- Department of Pharmacy, Fuwai Central China Cardiovascular Hospital, Zhengzhou, China
| | - Zhirui Yang
- Beijing Key Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Beijing, China; Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xintong Meng
- Beijing Key Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Beijing, China
| | - Dan Yan
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
17
|
Yuan H, Wang B, Ye Z, Li S. Berberine Alleviates the Damage, Oxidative Stress and Mitochondrial Dysfunction of PC12 Cells Induced by High Glucose by Activating the KEAP1/Nrf2/ARE Pathway. Mol Biotechnol 2023; 65:1632-1643. [PMID: 36737555 DOI: 10.1007/s12033-022-00651-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/30/2022] [Indexed: 02/05/2023]
Abstract
Diabetic encephalopathy (DE) is one of the major chronic complications of diabetes mellitus. This study aims to investigate the inhibitory effect of berberine (BBR) on the damage of PC12 cells induced by high glucose (HG). Differentiated PC12 cells were treated with different concentrations of glucose/BBR. The cell morphology, cell viability, lactate dehydrogenase (LDH) activity, apoptosis, oxidative stress (OS), mitochondrial structure, mitochondrial membrane potential (MMP), mitochondrial complex I-V activity, and adenosine triphosphate (ATP) levels were evaluated. The mRNA and protein levels of the Keap1/Nrf2/ARE pathway-related genes were assessed by RT-qPCR and Western blot. High-dose BBR and HG jointly treated-PC12 cells were treated with Nrf2-specific inhibitor ML385 to further verify whether Nrf2 was the target of BBR. The results showed that BBR inhibited cell damage, OS, and mitochondrial dysfunction induced by HG. The inhibitory effect of high BBR was more significant. The Keap1/Nrf2/ARE pathway was inhibited in PC12 cells induced by HG. BBR could activate the Keap1/Nrf2/ARE pathway, thus up-regulating the expression levels of antioxidant enzymes. ML385 antagonized the ameliorating effect of BBR on OS and mitochondrial dysfunction. The conclusion is that BBR can activate the Keap1/Nrf2/ARE pathway, upregulate the expression patterns of antioxidant enzymes, and reduce cell damage, OS, and mitochondrial dysfunction of PC12 cells induced by HG.
Collapse
Affiliation(s)
- Haoyu Yuan
- Department of Endocrinology, Guangzhou University of Chinese Medicine, No.1 South Second Street, Fei'e West Road, Baiyun District, Guangzhou, 510405, Guangdong Province, China
| | - Baohua Wang
- Department of Endocrinology, Guangzhou University of Chinese Medicine, No.1 South Second Street, Fei'e West Road, Baiyun District, Guangzhou, 510405, Guangdong Province, China
| | - Zicheng Ye
- Department of Endocrinology, Guangzhou University of Chinese Medicine, No.1 South Second Street, Fei'e West Road, Baiyun District, Guangzhou, 510405, Guangdong Province, China
| | - Saimei Li
- Department of Endocrinology, Guangzhou University of Chinese Medicine, No.1 South Second Street, Fei'e West Road, Baiyun District, Guangzhou, 510405, Guangdong Province, China.
| |
Collapse
|
18
|
Zhu LR, Li SS, Zheng WQ, Ni WJ, Cai M, Liu HP. Targeted modulation of gut microbiota by traditional Chinese medicine and natural products for liver disease therapy. Front Immunol 2023; 14:1086078. [PMID: 36817459 PMCID: PMC9933143 DOI: 10.3389/fimmu.2023.1086078] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
The gut microbiota not only constitutes intestinal microenvironment homeostasis and human health but also exerts indispensable roles in the occurrence and progression of multiple liver diseases, including alcohol-related liver disease, nonalcoholic fatty liver disease, autoimmune liver disease and liver cancer. Given the therapeutic status of these diseases, their prevention and early therapy are crucial, and the detailed mechanism of gut microbiota in liver disease urgently needs to be explored. Meanwhile, multiple studies have shown that various traditional Chinese medicines, such as Si Miao Formula, Jiangzhi Granules, Liushen Capsules, Chaihu-Shugan Power, Cassiae Semen and Gynostemma, as well as some natural products, including Costunolide, Coprinus comatus polysaccharide, Antarctic krill oil, Oridonin and Berberine, can repair liver injury, improve fatty liver, regulate liver immunity, and even inhibit liver cancer through multiple targets, links, and pathways. Intriguingly, the aforementioned effects demonstrated by these traditional Chinese medicines and natural products have been shown to be closely related to the gut microbiota, directly driving the strategy of traditional Chinese medicines and natural products to regulate the gut microbiota as one of the breakthroughs in the treatment of liver diseases. Based on this, this review comprehensively summarizes and discusses the characteristics, functions and potential mechanisms of these medicines targeting gut microbiota during liver disease treatment. Research on the potential effects on gut microbiota and the regulatory mechanisms of traditional Chinese medicine and natural products provides novel insights and significant references for developing liver disease treatment strategies. In parallel, such explorations will enhance the comprehension of traditional Chinese medicine and natural products modulating gut microbiota during disease treatment, thus facilitating their clinical investigation and application.
Collapse
Affiliation(s)
- Li-Ran Zhu
- Anhui Institute of Pediatric Research, Anhui Provincial Children's Hospital, Hefei, Anhui, China.,Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Shan-Shan Li
- Department of Scientific Research and Education, Anhui Provincial Children's Hospital, Hefei, Anhui, China
| | - Wan-Qun Zheng
- Department of Chinese Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Wei-Jian Ni
- Department of Pharmacy, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Ming Cai
- Department of Pharmacy, Second Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, China.,Anhui Acupuncture and Moxibustion Clinical Medicine Research Center, Second Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, China
| | - Hai-Peng Liu
- Anhui Institute of Pediatric Research, Anhui Provincial Children's Hospital, Hefei, Anhui, China
| |
Collapse
|
19
|
Shi X, Chang M, Zhao M, Shi Y, Zhang Y. Traditional Chinese medicine compounds ameliorating glomerular diseases via autophagy: A mechanism review. Biomed Pharmacother 2022; 156:113916. [DOI: 10.1016/j.biopha.2022.113916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 11/29/2022] Open
|
20
|
Zhang J, Li Y, Wu H, Wang C, Salleh KM, Li H, Zakaria S. Thermally Treated Berberine-Loaded SA/PVA/PEO Electrospun Microfiber Membranes for Antibacterial Wound Dressings. Polymers (Basel) 2022; 14:polym14214473. [PMID: 36365467 PMCID: PMC9658388 DOI: 10.3390/polym14214473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 01/25/2023] Open
Abstract
This study aimed to develop a safe and advanced antibacterial material of electrospun microfiber membranes (MFMs) for wound dressings. Combinations of several materials were investigated; thermal treatment and electrospinning techniques were used to form the best quality of MFMs to suit its end applications. By comparing the fiber morphology, diameter changes, and fracture strength, the suitable ratio of raw materials and thermal treatment were obtained before and after adding Trition X-100 as a surfactant for MFMs of sodium alginate/polyvinyl alcohol/polyethylene oxide (SA/PVA/PEO). The electrospinning solution was mixed with berberine as an antibacterial substance; meanwhile, calcium chloride (CaCl2) was used as the crosslinking agent. The antibacterial properties, water dissolution resistance, water content, and fracture strength were thoroughly investigated. The results showed that the antibacterial rates of MFMs with different mass fractions of berberine (0, 3, and 5 wt.%) to Escherichia coli (E. coli) were 14.7, 92.9, and 97.2%, respectively. The moisture content and fracture strength of MFMs containing 5 wt.% berberine were 72.0% and 7.8 MPa, respectively. In addition, the produced MFMs embodied great water dissolution resistance. Berberine-loaded SA/PVA/PEO MFMs could potentially serve as an antibacterial wound dressing substrate with low cost and small side effects.
Collapse
Affiliation(s)
- Jishu Zhang
- School of Textile, Garment & Design, Changshu Institute of Technology, Changshu 215500, China
| | - Yonggang Li
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Huawei Wu
- College of Engineering and Technology, Jiyang College of Zhejiang A & F University, Shaoxing 312000, China
- Correspondence: (H.W.); (C.W.)
| | - Chunhong Wang
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
- Correspondence: (H.W.); (C.W.)
| | - Kushairi Mohd Salleh
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
- Renewable Biomass Transformation Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Hongchang Li
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Sarani Zakaria
- Bioresources and Biorefinery Laboratory, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| |
Collapse
|
21
|
Ghavipanje N, Fathi Nasri MH, Vargas-Bello-Pérez E. An insight into the potential of berberine in animal nutrition: Current knowledge and future perspectives. J Anim Physiol Anim Nutr (Berl) 2022; 107:808-829. [PMID: 36031857 DOI: 10.1111/jpn.13769] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/10/2022] [Accepted: 08/06/2022] [Indexed: 11/30/2022]
Abstract
In animal nutrition, the interest for novel feed additives has expanded with elevating industry standards and consumer awareness besides the demand for healthy animal-derived food products. Consumer and animal health are leading concerns dictating the importance of novel animal feed additives. Berberine (BBR) is a natural pentacyclic isoquinoline alkaloid that has exhibited diverse pharmacological properties, including metabolism-regulating, hepatoprotective, and inflammatory alleviative in addition to its antioxidant activity. Despite detailed information on cellular mechanisms associated with BBR therapeutics, and strong clinical evidence, only a few studies have focused on BBR applied to animal nutrition. However, great pieces of evidence have shown that dietary BBR supplementation could result in improved growth performance, enhanced oxido-inflammatory markers, and mitigated metabolic dysfunctions in both monogastric and ruminant animals. The data discussed in the present review may set the basis for further research on BBR in animal diets for developing novel strategies aiming to improve animal health as well as products with beneficial properties for humans.
Collapse
Affiliation(s)
- Navid Ghavipanje
- Department of Animal Science, Faculty of Agriculture, University of Birjand, Birjand, Iran
| | | | - Einar Vargas-Bello-Pérez
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, Reading, UK
| |
Collapse
|
22
|
Structural and Functional Basis of JAMM Deubiquitinating Enzymes in Disease. Biomolecules 2022; 12:biom12070910. [PMID: 35883466 PMCID: PMC9313428 DOI: 10.3390/biom12070910] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 02/04/2023] Open
Abstract
Deubiquitinating enzymes (DUBs) are a group of proteases that are important for maintaining cell homeostasis by regulating the balance between ubiquitination and deubiquitination. As the only known metalloproteinase family of DUBs, JAB1/MPN/Mov34 metalloenzymes (JAMMs) are specifically associated with tumorigenesis and immunological and inflammatory diseases at multiple levels. The far smaller numbers and distinct catalytic mechanism of JAMMs render them attractive drug targets. Currently, several JAMM inhibitors have been successfully developed and have shown promising therapeutic efficacy. To gain greater insight into JAMMs, in this review, we focus on several key proteins in this family, including AMSH, AMSH-LP, BRCC36, Rpn11, and CSN5, and emphatically discuss their structural basis, diverse functions, catalytic mechanism, and current reported inhibitors targeting JAMMs. These advances set the stage for the exploitation of JAMMs as a target for the treatment of various diseases.
Collapse
|
23
|
Several Alkaloids in Chinese Herbal Medicine Exert Protection in Acute Kidney Injury: Focus on Mechanism and Target Analysis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2427802. [PMID: 35602100 PMCID: PMC9122709 DOI: 10.1155/2022/2427802] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/03/2022] [Accepted: 04/21/2022] [Indexed: 12/13/2022]
Abstract
Objectives Acute kidney injury (AKI) is a loose set of kidney diseases accompanied by a variety of syndromes, which is a serious threat to human life and health. Some alkaloids are derived from various Chinese herbs have been widely concerned in the improvement of AKI. This review provides the research progress of alkaloids in AKI experimental models and discusses the related molecular mechanisms. Key Findings. Alkaloids can protect AKI through various mechanisms including antioxidant stress, improvement of mitochondrial damage, reduction of cell death, induction of autophagy, and inhibition of inflammation. These mechanisms are mainly related to the activation of Nrf2/HO-1 signaling pathway, inhibition of ferroptosis and apoptosis, regulation of PINK1/Parkin pathway, inhibition of TLR4/NF-κB pathway and NLRP3 inflammatory bodies, upregulation of Klotho protein level and so on. In addition, there are a few alkaloids that have certain toxicity on the kidney. Conclusion Alkaloids have been shown to significantly improve AKI, but only in pharmacological studies. This paper summarizes the main experimental models currently used in AKI research and describes some representative alkaloids based on recent research. Their potential roles in the prevention and treatment of AKI through different mechanisms are highlighted.
Collapse
|
24
|
Jiang X, Jiang Z, Jiang M, Sun Y. Berberine as a Potential Agent for the Treatment of Colorectal Cancer. Front Med (Lausanne) 2022; 9:886996. [PMID: 35572960 PMCID: PMC9096113 DOI: 10.3389/fmed.2022.886996] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/29/2022] [Indexed: 01/10/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most commonly diagnosed and deadly malignancies worldwide. The incidence of CRC has been increasing, especially in young people. Although great advances have been made in managing CRC, the prognosis is unfavorable. Numerous studies have shown that berberine (BBR) is a safe and effective agent presenting significant antitumor effects. Nevertheless, the detailed underlying mechanism in treating CRC remains indistinct. In this review, we herein offer beneficial evidence for the utilization of BBR in the management and treatment of CRC, and describe the underlying mechanism(s). The review emphasizes several therapeutic effects of BBR and confirms that BBR could suppress CRC by modulating gene expression, the cell cycle, the inflammatory response, oxidative stress, and several signaling pathways. In addition, BBR also displays antitumor effects in CRC by regulating the gut microbiota and mucosal barrier function. This review emphasizes BBR as a potentially effective and safe drug for CRC therapy.
Collapse
Affiliation(s)
- Xi Jiang
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhongxiu Jiang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Min Jiang
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yan Sun
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Yan Sun
| |
Collapse
|
25
|
Xu J, Wang Q, Song YF, Xu XH, Zhu H, Chen PD, Ren YP. Long noncoding RNA X-inactive specific transcript regulates NLR family pyrin domain containing 3/caspase-1-mediated pyroptosis in diabetic nephropathy. World J Diabetes 2022; 13:358-375. [PMID: 35582664 PMCID: PMC9052004 DOI: 10.4239/wjd.v13.i4.358] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/24/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND NLRP3-mediated pyroptosis is recognized as an essential modulator of renal disease pathology. Long noncoding RNAs (lncRNAs) are active participators of diabetic nephropathy (DN). X inactive specific transcript (XIST) expression has been reported to be elevated in the serum of DN patients.
AIM To evaluate the mechanism of lncRNA XIST in renal tubular epithelial cell (RTEC) pyroptosis in DN.
METHODS A DN rat model was established through streptozotocin injection, and XIST was knocked down by tail vein injection of the lentivirus LV sh-XIST. Renal metabolic and biochemical indices were detected, and pathological changes in the renal tissue were assessed. The expression of indicators related to inflammation and pyroptosis was also detected. High glucose (HG) was used to treat HK2 cells, and cell viability and lactate dehydrogenase (LDH) activity were detected after silencing XIST. The subcellular localization and downstream mechanism of XIST were investigated. Finally, a rescue experiment was carried out to verify that XIST regulates NLR family pyrin domain containing 3 (NLRP3)/caspase-1-mediated RTEC pyroptosis through the microRNA-15-5p (miR-15b-5p)/Toll-like receptor 4 (TLR4) axis.
RESULTS XIST was highly expressed in the DN models. XIST silencing improved renal metabolism and biochemical indices and mitigated renal injury. The expression of inflammation and pyroptosis indicators was significantly increased in DN rats and HG-treated HK2 cells; cell viability was decreased and LDH activity was increased after HG treatment. Silencing XIST inhibited RTEC pyroptosis by inhibiting NLRP3/caspase-1. Mechanistically, XIST sponged miR-15b-5p to regulate TLR4. Silencing XIST inhibited TLR4 by promoting miR-15b-5p. miR-15b-5p inhibition or TLR4 overexpression averted the inhibitory effect of silencing XIST on HG-induced RTEC pyroptosis.
CONCLUSION Silencing XIST inhibits TLR4 by upregulating miR-15b-5p and ultimately inhibits renal injury in DN by inhibiting NLRP3/caspase-1-mediated RTEC pyroptosis.
Collapse
Affiliation(s)
- Jia Xu
- Department of Nephrology, Shenzhen University General Hospital, Shenzhen 518000, Guangdong Province, China
| | - Qin Wang
- Department of Nephrology, Shenzhen University General Hospital, Shenzhen 518000, Guangdong Province, China
| | - Yi-Fan Song
- Department of Nephrology, Shenzhen University General Hospital, Shenzhen 518000, Guangdong Province, China
| | - Xiao-Hui Xu
- Department of Nephrology, Shenzhen University General Hospital, Shenzhen 518000, Guangdong Province, China
| | - He Zhu
- Department of Nephrology, Shenzhen University General Hospital, Shenzhen 518000, Guangdong Province, China
| | - Pei-Dan Chen
- Department of Nephrology, Shenzhen University General Hospital, Shenzhen 518000, Guangdong Province, China
| | - Ye-Ping Ren
- Department of Nephrology, Shenzhen University General Hospital, Shenzhen 518000, Guangdong Province, China
| |
Collapse
|
26
|
Rong Q, Han B, Li Y, Yin H, Li J, Hou Y. Berberine Reduces Lipid Accumulation by Promoting Fatty Acid Oxidation in Renal Tubular Epithelial Cells of the Diabetic Kidney. Front Pharmacol 2022; 12:729384. [PMID: 35069186 PMCID: PMC8766852 DOI: 10.3389/fphar.2021.729384] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 12/15/2021] [Indexed: 12/30/2022] Open
Abstract
Abnormal lipid metabolism in renal tubular epithelial cells contributes to renal lipid accumulation and disturbed mitochondrial bioenergetics which are important in diabetic kidney disease. Berberine, the major active constituent of Rhizoma coptidis and Cortex phellodendri, is involved in regulating glucose and lipid metabolism. The present study aimed to investigate the protective effects of berberine on lipid accumulation in tubular epithelial cells of diabetic kidney disease. We treated type 2 diabetic db/db mice with berberine (300 mg/kg) for 12 weeks. Berberine treatment improved the physical and biochemical parameters of the db/db mice compared with db/m mice. In addition, berberine decreased intracellular lipid accumulation and increased the expression of fatty acid oxidation enzymes CPT1, ACOX1 and PPAR-α in tubular epithelial cells of db/db mice. The mitochondrial morphology, mitochondrial membrane potential, cytochrome c oxidase activity, mitochondrial reactive oxygen species, and mitochondrial ATP production in db/db mice kidneys were significantly improved by berberine. Berberine intervention activated the AMPK pathway and increased the level of PGC-1α. In vitro berberine suppressed high glucose-induced lipid accumulation and reversed high glucose-induced reduction of fatty acid oxidation enzymes in HK-2 cells. Importantly, in HK-2 cells, berberine treatment blocked the change in metabolism from fatty acid oxidation to glycolysis under high glucose condition. Moreover, berberine restored high glucose-induced dysfunctional mitochondria. These data suggested that berberine alleviates diabetic renal tubulointerstitial injury through improving high glucose-induced reduction of fatty acid oxidation, alleviates lipid deposition, and protect mitochondria in tubular epithelial cells.
Collapse
Affiliation(s)
- Qingfeng Rong
- Department of Endocrinology, Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Baosheng Han
- Department of Cardiac Surgery, Shanxi Cardiovascular Hospital, Taiyuan, China
| | - Yafeng Li
- Department of Nephrology, Shanxi Province People's Hospital, Taiyuan, China.,Shanxi Provincial Key Laboratory of Kidney Disease, Taiyuan, China
| | - Haizhen Yin
- Central Laboratory, Shanxi Province People's Hospital, Taiyuan, China
| | - Jing Li
- Department of Nephrology, Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Yanjuan Hou
- Department of Nephrology, Second Hospital, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
27
|
Ni WJ, Guan XM, Zeng J, Zhou H, Meng XM, Tang LQ. Berberine regulates mesangial cell proliferation and cell cycle to attenuate diabetic nephropathy through the PI3K/Akt/AS160/GLUT1 signalling pathway. J Cell Mol Med 2022; 26:1144-1155. [PMID: 35001506 PMCID: PMC8831947 DOI: 10.1111/jcmm.17167] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 12/21/2022] Open
Abstract
High glucose (HG) is one of the basic factors of diabetic nephropathy (DN), which leads to high morbidity and disability. During DN, the expression of glomerular glucose transporter 1 (GLUT1) increases, but the relationship between HG and GLUT1 is unclear. Glomerular mesangial cells (GMCs) have multiple roles in HG‐induced DN. Here, we report prominent glomerular dysfunction, especially GMC abnormalities, in DN mice, which is closely related to GLUT1 alteration. In vivo studies have shown that BBR can alleviate pathological changes and abnormal renal function indicators of DN mice. In vitro, BBR (30, 60 and 90 μmol/L) not only increased the proportion of G1 phase cells but also reduced the proportion of S phase cells under HG conditions at different times. BBR (60 μmol/L) significantly reduced the expression of PI3K‐p85, p‐Akt, p‐AS160, membrane‐bound GLUT1 and cyclin D1, but had almost no effect on total protein. Furthermore, BBR significantly declined the glucose uptake and retarded cyclin D1‐mediated GMC cell cycle arrest in the G1 phase. This study demonstrated that BBR can inhibit the development of DN, which may be due to BBR inhibiting the PI3K/Akt/AS160/GLUT1 signalling pathway to regulate HG‐induced abnormal GMC proliferation and the cell cycle, supporting BBR as a potential therapeutic drug for DN.
Collapse
Affiliation(s)
- Wei-Jian Ni
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines (Ministry of Education), Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China.,Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.,Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui, China
| | - Xi-Mei Guan
- Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jing Zeng
- Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui, China
| | - Hong Zhou
- Department of Pharmacy, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines (Ministry of Education), Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Li-Qin Tang
- Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
28
|
Berberine and lycopene as alternative or add-on therapy to metformin and statins, a review. Eur J Pharmacol 2021; 913:174590. [PMID: 34801530 DOI: 10.1016/j.ejphar.2021.174590] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 12/27/2022]
Abstract
Nutraceuticals are principally extracted from natural products that are frequently safe and well-tolerated. Lycopene and berberine are natural plants with a wide range of beneficial effects including protective activities against metabolic disorders such as diabetes and cardiovascular diseases. These compounds might be considered technically more as a drug than a nutraceutical and could be prescribed as a product. However, further studies are needed to understand if these supplements could affect metabolic syndrome outcomes. Even if nutraceuticals exert a prophylactic activity within the body, their bioactivity and bioavailability have high interindividual variation, and precise assessment of biological function of these bioactive compounds in randomized clinical trials is critical. However, these reports must be interpreted with more considerations due to the low quality of the trials. The aim of this paper is to bring evidence about the management of cardiovascular diseases and diabetes through the use of nutraceuticals with particular attention to lycopene and berberine effectiveness.
Collapse
|
29
|
Berberine Reduces Renal Cell Pyroptosis in Golden Hamsters with Diabetic Nephropathy through the Nrf2-NLRP3-Caspase-1-GSDMD Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5545193. [PMID: 35971382 PMCID: PMC9375700 DOI: 10.1155/2021/5545193] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 09/20/2021] [Accepted: 10/04/2021] [Indexed: 12/27/2022]
Abstract
Objective. To observe the effect of berberine (BBR) on kidney cell pyroptosis in golden hamsters with diabetic nephropathy (DN) and to explore the molecular mechanism of its renal protection. Methods. Fifty clean-grade male golden hamsters were randomly divided into a control group (10) and a model building group (40). The DN model was established by high-sugar and high-fat feeding and injection of a small amount of STZ. After successful establishment of the model, they were randomly divided into a model group, western medicine group, and berberine high- and low-dose groups. The western medicine group was given irbesartan 13.5 mg/kg, and the berberine high- and low-dose groups were given BBR 200 mg/kg and 100 mg/kg, respectively, for 8 consecutive weeks. An automatic biochemical analyser was used to measure blood glucose, blood lipids, kidney function, MDA, and other indicators; radioimmunoassay was used to assess serum insulin; enzyme-linked immunosorbent assay (ELISA) was used to quantify IL-1β, IL-6, IL-18, TNF-α; HE, PAS, and Masson staining were used to observe kidney pathological tissue morphology; western blot and real-time fluorescent quantitative PCR were used to assess protein and mRNA expression of molecules, such as Nrf2, NLRP3, Caspase-1, and GSDMD; and TUNEL staining was used to detect DNA damage. SPSS statistical software was used for the data analysis. Results. The kidney tissues of golden hamsters in the control group were normal; Nrf2 was highly expressed, serum MDA level was low, NLRP3 expression in kidney tissue was not obvious, Caspase-1 and GSDMD were weakly expressed, and only a few TUNEL-positive cells were observed. Compared with the control group, the golden hamsters in the model group had obvious renal pathological damage; blood glucose, blood lipids, renal function-related indexes, insulin, and inflammatory factors IL-1β, IL-6, IL-18, and TNF-α were increased (
); NLRP3, Caspase-1, and GSDMD expression was increased; Nrf2 expression was decreased; MDA level was increased (
); and the number of TUNEL-positive cells was increased. Compared with the model group, the pathological morphology of the kidney tissue of golden hamsters in the three treatment groups was significantly improved; blood glucose, blood lipids, renal function, and the expression of inflammatory factors IL-1β and IL-6 were reduced (
); NLRP3, Caspase-1, GSDMD, and other molecular proteins and mRNA expression were decreased; Nrf2 expression was increased; MDA level was decreased (
); and the number of TUNEL-positive cells was decreased. Conclusion. DN golden hamster kidney NLRP3-Caspase-1-GSDMD signalling was enhanced. BBR can reduce oxidative stress damage by regulating antioxidative Nrf2 and then regulating NLRP3-Caspase-1-GSDMD signalling to inhibit pyroptosis, antagonizing DN inflammation-induced damage.
Collapse
|
30
|
Avila-Carrasco L, García-Mayorga EA, Díaz-Avila DL, Garza-Veloz I, Martinez-Fierro ML, González-Mateo GT. Potential Therapeutic Effects of Natural Plant Compounds in Kidney Disease. Molecules 2021; 26:molecules26206096. [PMID: 34684678 PMCID: PMC8541433 DOI: 10.3390/molecules26206096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 02/06/2023] Open
Abstract
Background: The blockade of the progression or onset of pathological events is essential for the homeostasis of an organism. Some common pathological mechanisms involving a wide range of diseases are the uncontrolled inflammatory reactions that promote fibrosis, oxidative reactions, and other alterations. Natural plant compounds (NPCs) are bioactive elements obtained from natural sources that can regulate physiological processes. Inflammation is recognized as an important factor in the development and evolution of chronic renal damage. Consequently, any compound able to modulate inflammation or inflammation-related processes can be thought of as a renal protective agent and/or a potential treatment tool for controlling renal damage. The objective of this research was to review the beneficial effects of bioactive natural compounds on kidney damage to reveal their efficacy as demonstrated in clinical studies. Methods: This systematic review is based on relevant studies focused on the impact of NPCs with therapeutic potential for kidney disease treatment in humans. Results: Clinical studies have evaluated NPCs as a different way to treat or prevent renal damage and appear to show some benefits in improving OS, inflammation, and antioxidant capacity, therefore making them promising therapeutic tools to reduce or prevent the onset and progression of KD pathogenesis. Conclusions: This review shows the promising clinical properties of NPC in KD therapy. However, more robust clinical trials are needed to establish their safety and therapeutic effects in the area of renal damage.
Collapse
Affiliation(s)
- Lorena Avila-Carrasco
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Autonomous University of Zacatecas, Carretera Zacatecas-Guadalajara Km.6, Ejido la Escondida, Zacatecas 98160, Mexico; (I.G.-V.); (M.L.M.-F.)
- Academic Unit of Human Medicine and Health Sciences, Therapeutic and Pharmacology Department, Autonomous University of Zacatecas, Zacatecas 98160, Mexico; (E.A.G.-M.); (D.L.D.-A.)
- Correspondence: ; Tel.: +52-492-8926556
| | - Elda Araceli García-Mayorga
- Academic Unit of Human Medicine and Health Sciences, Therapeutic and Pharmacology Department, Autonomous University of Zacatecas, Zacatecas 98160, Mexico; (E.A.G.-M.); (D.L.D.-A.)
| | - Daisy L. Díaz-Avila
- Academic Unit of Human Medicine and Health Sciences, Therapeutic and Pharmacology Department, Autonomous University of Zacatecas, Zacatecas 98160, Mexico; (E.A.G.-M.); (D.L.D.-A.)
| | - Idalia Garza-Veloz
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Autonomous University of Zacatecas, Carretera Zacatecas-Guadalajara Km.6, Ejido la Escondida, Zacatecas 98160, Mexico; (I.G.-V.); (M.L.M.-F.)
| | - Margarita L Martinez-Fierro
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Autonomous University of Zacatecas, Carretera Zacatecas-Guadalajara Km.6, Ejido la Escondida, Zacatecas 98160, Mexico; (I.G.-V.); (M.L.M.-F.)
| | - Guadalupe T González-Mateo
- Research Institute of La Paz (IdiPAZ), University Hospital La Paz, 28046 Madrid, Spain;
- Molecular Biology Research, Centre Severo Ochoa, Spanish Council for Scientific Research (CSIC), 28049 Madrid, Spain
| |
Collapse
|
31
|
Xiong W, Xiong SH, Chen QL, Linghu KG, Zhao GD, Chu JMT, Wong GTC, Li J, Hu YJ, Wang YT, Yu H. Brij-functionalized chitosan nanocarrier system enhances the intestinal permeability of P-glycoprotein substrate-like drugs. Carbohydr Polym 2021; 266:118112. [PMID: 34044929 DOI: 10.1016/j.carbpol.2021.118112] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/05/2021] [Accepted: 04/18/2021] [Indexed: 11/23/2022]
Abstract
The highly expressed P-glycoprotein (Pgp) in the intestine plays a key role in preventing drugs across the intestinal epithelium, which linked by tight junctions (TJs). Thus increasing the oral bioavailability of Pgp substrate-like drugs (PSLDs) remains a great challenge. Herein, we construct a nanocarrier system derived from Brij-grafted-chitosan (BC) to enhance the oral bioavailability and therapeutic effect of berberine (BBR, a typical PLSD) against diabetic kidney disease. The developed BC nanoparticles (BC-NPs) are demonstrated to improve the intestinal permeability of BBR via transiently and reversibly modulating the intercellular TJs (paracellular pathway) and Pgp-mediated drug efflux (transcellular pathway). As compared to free BBR and chitosan nanoparticles, the BC-NPs enhanced the relative oral bioavailability of BBR in rats (4.4- and 2.7-fold, respectively), and the therapeutic potency of BBR in renal function and histopathology. In summary, such strategy may provide an effective nanocarrier system for oral delivery of BBR and PSLDs.
Collapse
Affiliation(s)
- Wei Xiong
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao
| | - Shi Hang Xiong
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao
| | - Qi Ling Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao
| | - Ke Gang Linghu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao
| | - Guan Ding Zhao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao
| | - John M T Chu
- Department of Anaesthesiology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Gordon T C Wong
- Department of Anaesthesiology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Juan Li
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yuan Jia Hu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao
| | - Yi Tao Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao
| | - Hua Yu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao; HKBU Shenzhen Research Center, Shenzhen, Guangdong, China.
| |
Collapse
|
32
|
Li Q, Huang Z, Liu D, Zheng J, Xie J, Chen J, Zeng H, Su Z, Li Y. Effect of Berberine on Hyperuricemia and Kidney Injury: A Network Pharmacology Analysis and Experimental Validation in a Mouse Model. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:3241-3254. [PMID: 34349501 PMCID: PMC8326381 DOI: 10.2147/dddt.s317776] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/12/2021] [Indexed: 01/04/2023]
Abstract
Purpose Berberine (BBR) is an active component of Phellodendri Cortex (PC), which is a traditional Chinese medicine that has been prescribed clinically for hyperuricemia (HUA) for hundreds of years. Many studies reported the anti-inflammatory and nephroprotective properties of BBR and PC; however, the therapeutic effects of BBR on HUA have not been explored. This study aims to investigate the efficacy and mechanism of BBR for treating HUA. Methods The mechanism of BBR in the treatment of HUA were predicted by network pharmacology. A mouse model of HUA established by potassium oxonate and hypoxanthine was used to verify the prediction. The levels of serum uric acid (UA), urea nitrogen (BUN) and creatinine (CRE) were determined by biochemical test kits. Hematoxylin and eosin staining of kidney tissues was used to observe the kidney damage. ELISA kits were applied to detect the levels of interleukin (IL)-1β and IL-18 in serum and kidney tissues. Quantitative real-time PCR and Western blotting were adopted to analyze the expression of NLRP3, ASC, Caspase1, IL-1β and URAT1. The expressions of URAT1 in the kidney tubules were visualized by immunohistochemical staining. Molecular docking was used to assess the interaction between URAT1 and BBR. Results The network pharmacology screened out 82 genes and several inflammation-related signaling pathways related to the anti-hyperuricemia effect of BBR. In the in vivo experiment, BBR substantially decreased the level of UA, BUN and CRE, and alleviated the kidney damage in mice with HUA. BBR reduced IL-1β and IL-18, and downregulated expressions of NLRP3, ASC, Caspase1 and IL-1β. BBR also inhibited expression of URAT1 and exhibited strong affinity with this target in silico docking. Conclusion BBR exerts anti-HUA and nephroprotective effects via inhibiting activation of NLRP3 inflammasome and correcting the aberrant expression of URAT1 in kidney. BBR might be a novel therapeutic agent for treating HUA.
Collapse
Affiliation(s)
- Qiaoping Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Ziwei Huang
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Defu Liu
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Jingna Zheng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Jianhui Xie
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, People's Republic of China.,State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, People's Republic of China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, 510120, People's Republic of China
| | - Jiannan Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Huifang Zeng
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Ziren Su
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Yucui Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| |
Collapse
|
33
|
Shende P, Narvenker R. Herbal nanotherapy: A new paradigm over conventional obesity treatment. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
34
|
Yan H, Xu F, Xu J, Song MA, Wang K, Wang L. Activation of Akt-dependent Nrf2/ARE pathway by restoration of Brg-1 remits high glucose-induced oxidative stress and ECM accumulation in podocytes. J Biochem Mol Toxicol 2020; 35:e22672. [PMID: 33270355 DOI: 10.1002/jbt.22672] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/29/2020] [Accepted: 11/16/2020] [Indexed: 12/20/2022]
Abstract
Brahma-related gene 1 (Brg-1) is perceived as a cytoprotective protein due to its role in alleviating oxidative stress and apoptosis. Our study aimed to explore the role and mechanism of Brg-1 in high glucose (HG)-stimulated podocytes. The HG exposure downregulated Brg-1 and inactivated the protein kinase B (Akt) pathway in podocytes. Restoration of Brg-1 inhibited HG-induced viability reduction of podocytes. The HG-induced increase of reactive oxygen species and malondialdehyde levels and decrease of superoxide dismutase activity in podocytes were reversed by the Brg-1 overexpression. The Brg-1 overexpression terminated the HG-induced production of fibronectin, collagen IV, transforming growth factor-β1, and connective tissue growth factor. In addition, the Brg-1 overexpression activated Akt-dependent nuclear factor E2-related factor 2 (Nrf2)/antioxidant response element (ARE) signaling in HG-stimulated podocytes. However, inhibition of the Akt pathway or Nrf2 silencing counteracted the protective effects of Brg-1 in HG-stimulated podocytes. In conclusion, the Brg-1 overexpression suppressed HG-induced oxidative stress and extracellular matrix accumulation by activation of Akt-dependent Nrf2/ARE signaling in podocytes.
Collapse
Affiliation(s)
- Hao Yan
- Department of Nephrology, Nanyang First People's Hospital, Nanyang, China
| | - Fei Xu
- Department of ICU, Lianshui County People's Hospital Affiliated to Kangda College of Nanjing Medical University, Huai'an, China
| | - Jun Xu
- Department of Neonatology, Nanyang First People's Hospital, Nanyang, China
| | - Ming-Ai Song
- Department of Nephrology, Nanyang First People's Hospital, Nanyang, China
| | - Kai Wang
- Department of Nephrology, Nanyang First People's Hospital, Nanyang, China
| | - Lulu Wang
- Department of Emergency, The Second People's Hospital of Huai'an, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| |
Collapse
|
35
|
Liu Y, Liu X, Zhang N, Yin M, Dong J, Zeng Q, Mao G, Song D, Liu L, Deng H. Berberine diminishes cancer cell PD-L1 expression and facilitates antitumor immunity via inhibiting the deubiquitination activity of CSN5. Acta Pharm Sin B 2020; 10:2299-2312. [PMID: 33354502 PMCID: PMC7745128 DOI: 10.1016/j.apsb.2020.06.014] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/11/2020] [Accepted: 06/23/2020] [Indexed: 12/28/2022] Open
Abstract
Programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1) blocking therapy has become a major pillar of cancer immunotherapy. Compared with antibodies targeting, small-molecule checkpoint inhibitors which have favorable pharmacokinetics are urgently needed. Here we identified berberine (BBR), a proven anti-inflammation drug, as a negative regulator of PD-L1 from a set of traditional Chinese medicine (TCM) chemical monomers. BBR enhanced the sensitivity of tumour cells to co-cultured T-cells by decreasing the level of PD-L1 in cancer cells. In addition, BBR exerted its antitumor effect in Lewis tumor xenograft mice through enhancing tumor-infiltrating T-cell immunity and attenuating the activation of immunosuppressive myeloid-derived suppressor cells (MDSCs) and regulatory T-cells (Tregs). BBR triggered PD-L1 degradation through ubiquitin (Ub)/proteasome-dependent pathway. Remarkably, BBR selectively bound to the glutamic acid 76 of constitutive photomorphogenic-9 signalosome 5 (CSN5) and inhibited PD-1/PD-L1 axis through its deubiquitination activity, resulting in ubiquitination and degradation of PD-L1. Our data reveals a previously unrecognized antitumor mechanism of BBR, suggesting BBR is small-molecule immune checkpoint inhibitor for cancer treatment.
Collapse
Key Words
- AMC, 7-amino-4-methylcoumarin
- BBR, berberine
- Baf, bafilomycin
- Berberine
- CHX, cycloheximide
- COP9 signalosome 5
- CQ, chloroquine
- CSN5, COP9 signalosome 5
- IB, immunoblotting
- ICB, immune checkpoint blockade
- IFN-γ, interferon-gamma
- IHC, immunohistochemistry
- Immune checkpoint blockade
- MDSCs, myeloid-derived suppressor cells
- NFAT, nuclear factor of activated T-cells
- NSCLC, non-small cell lung cancer
- PD-1, programmed cell death-1
- PD-1/PD-L1 axis
- PD-L1
- PD-L1, programmed cell death ligand-1
- SPR, surface plasmon resonance
- T-cell immunity
- TCM, traditional Chinese medicine
- TILs, tumor-infiltrating lymphocytes
- TNF-α, tumor necrosis factor-α
- Tregs, regulatory T-lymphocytes
- Ub, ubiquitin
- qRT-PCR, quantitative real-time polymerase chain reaction
Collapse
Affiliation(s)
- Yang Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiaojia Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Na Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Mingxiao Yin
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jingwen Dong
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Qingxuan Zeng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Genxiang Mao
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou 310013, China
| | - Danqing Song
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Lu Liu
- Qingdao Women and Children's Hospital, Qingdao University, Qingdao 266034, China
- Corresponding author. Tel.: +86 10 63169876, fax: +86 10 63017302 (Hongbin Deng); Tel.: +86 532 68661375, fax: +86 532 68661111 (Lu Liu).
| | - Hongbin Deng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Corresponding author. Tel.: +86 10 63169876, fax: +86 10 63017302 (Hongbin Deng); Tel.: +86 532 68661375, fax: +86 532 68661111 (Lu Liu).
| |
Collapse
|
36
|
Xiang XY, Liu T, Wu Y, Jiang XS, He JL, Chen XM, Du XG. Berberine alleviates palmitic acid‑induced podocyte apoptosis by reducing reactive oxygen species‑mediated endoplasmic reticulum stress. Mol Med Rep 2020; 23:3. [PMID: 33179098 PMCID: PMC7673344 DOI: 10.3892/mmr.2020.11641] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 06/22/2020] [Indexed: 02/06/2023] Open
Abstract
Lipid accumulation in podocytes can lead to the destruction of cellular morphology, in addition to cell dysfunction and apoptosis, which is a key factor in the progression of chronic kidney disease (CKD). Berberine (BBR) is an isoquinoline alkaloid extracted from medicinal plants such as Coptis chinensis, which has been reported to have a lipid-lowering effect and prevent CKD progression. Therefore, the present study aimed to investigate the effect of BBR on palmitic acid (PA)-induced podocyte apoptosis and its specific mechanism using an in vitro model. Cell death was measured using the Cell Counting Kit-8 colorimetric assay. Cell apoptotic rate was assessed by flow cytometry. The expression of endoplasmic reticulum (ER) stress- and apoptosis-related proteins was detected by western blotting or immunofluorescence. Reactive oxygen species (ROS) were evaluated by 2′,7′-dichlorofluorescein diacetate fluorescence staining. The results of the present study revealed that BBR treatment decreased PA-induced podocyte apoptosis. In addition, 4-phenylbutyric acid significantly reduced PA-induced cell apoptosis and the expression of ER stress-related proteins, which indicated that ER stress was involved in PA-induced podocyte apoptosis. In addition, N-acetylcysteine inhibited PA-induced excessive ROS production, ER stress and cell apoptosis of podocytes. BBR also significantly reduced PA-induced ROS production and ER stress in podocytes. These results suggested that PA mediated podocyte apoptosis through enhancing ER stress and the production of ROS. In conclusion, BBR may protect against PA-induced podocyte apoptosis, and suppression of ROS-dependent ER stress may be the key mechanism underlying the protective effects of BBR.
Collapse
Affiliation(s)
- Xing-Yang Xiang
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, P.R. China
| | - Ting Liu
- Department of Nephrology, Chengdu Fifth People's Hospital, Chengdu, Sichuan 611130, P.R. China
| | - Yue Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, P.R. China
| | - Xu-Shun Jiang
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, P.R. China
| | - Jun-Ling He
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Xue-Mei Chen
- Emergency Department, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, P.R. China
| | - Xiao-Gang Du
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, P.R. China
| |
Collapse
|
37
|
Kwon M, Lim DY, Lee CH, Jeon JH, Choi MK, Song IS. Enhanced Intestinal Absorption and Pharmacokinetic Modulation of Berberine and Its Metabolites through the Inhibition of P-Glycoprotein and Intestinal Metabolism in Rats Using a Berberine Mixed Micelle Formulation. Pharmaceutics 2020; 12:pharmaceutics12090882. [PMID: 32957491 PMCID: PMC7558015 DOI: 10.3390/pharmaceutics12090882] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023] Open
Abstract
We aimed to develop a berberine formulation to enhance the intestinal absorption and plasma concentrations of berberine through the inhibition of P-glycoprotein (P-gp)-mediated efflux and the intestinal metabolism of berberine in rats. We used pluronic P85 (P85) and tween 80, which have the potential to inhibit P-gp and cytochrome P450s (i.e., CYP1A2, 2C9, 2C19, 2D6, and 3A4). A berberine-loaded mixed micelle formulation with ratios of berberine: P85: tween 80 of 1:5:0.5 (w/w/w) was developed. This berberine mixed micelle formulation had a mean size of 12 nm and increased the cellular accumulation of digoxin via P-gp inhibition. It also inhibited berberine metabolism in rat intestinal microsomes, without significant cytotoxicity, up to a berberine concentration of 100 μM. Next, we compared the pharmacokinetics of berberine and its major metabolites in rat plasma following the oral administration of the berberine formulation (50 mg/kg) in rats with the oral administration of berberine alone (50 mg/kg). The plasma exposure of berberine was significantly greater in rats administered the berberine formulation compared to rats administered only berberine, which could be attributed to the increased berberine absorption by inhibiting the P-gp-mediated berberine efflux and intestinal berberine metabolism by berberine formulation. In conclusion, we successfully prepared berberine mixed micelle formulation using P85 and tween 80 that has inhibitory potential for P-gp and CYPs (CYP2C19, 2D6, and 3A4) and increased the berberine plasma exposure. Therefore, a mixed micelle formulation strategy with P85 and tween 80 for drugs with high intestinal first-pass effects could be applied to increase the oral absorption and plasma concentrations of the drugs.
Collapse
Affiliation(s)
- Mihwa Kwon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea; (M.K.); (J.-H.J.)
| | - Dong Yu Lim
- College of Pharmacy, Dankook University, Cheon-an 31116, Korea; (D.Y.L.); (C.H.L.)
| | - Chul Haeng Lee
- College of Pharmacy, Dankook University, Cheon-an 31116, Korea; (D.Y.L.); (C.H.L.)
| | - Ji-Hyeon Jeon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea; (M.K.); (J.-H.J.)
| | - Min-Koo Choi
- College of Pharmacy, Dankook University, Cheon-an 31116, Korea; (D.Y.L.); (C.H.L.)
- Correspondence: (M.-K.C.); (I.-S.S.); Tel.: 8253-950-8575 (I.-S.S.)
| | - Im-Sook Song
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea; (M.K.); (J.-H.J.)
- Correspondence: (M.-K.C.); (I.-S.S.); Tel.: 8253-950-8575 (I.-S.S.)
| |
Collapse
|
38
|
Jugran AK, Rawat S, Devkota HP, Bhatt ID, Rawal RS. Diabetes and plant-derived natural products: From ethnopharmacological approaches to their potential for modern drug discovery and development. Phytother Res 2020; 35:223-245. [PMID: 32909364 DOI: 10.1002/ptr.6821] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 06/08/2020] [Accepted: 07/02/2020] [Indexed: 02/06/2023]
Abstract
Diabetes is a disease of serious concern faced by the health care industry today. Primary diabetes mellitus and its complications are still costly to manage with modern drugs. Extensive research on the screening of anti-diabetic agents in past decades established natural products as one of the major potential sources of drug discovery. However, only a few drugs of plant origin have been scientifically validated. Therefore, the development of new anti-diabetic drugs is of great demand. Hence, natural products could be explored as potential anti-diabetic drugs. Natural plants derived extracts and molecules like berberine, ginsenosides, curcumin, stevioside, gingerols, capsaicin, catechins, simple phenolic compounds, anthocyanins, resveratrol, genistein and hesperidin obtained from different species are used for curing diabetes and found to possess different action mechanisms. In this review, the importance of medicinal plants and their active constituents for anti-diabetic agents are described. The present study also emphasized the importance of diabetes control, reduction in its complications and use of the anti-diabetic agents. The detailed action mechanism of these extracts/compounds for their activities are also described. However, the anti-diabetic drugs from plant origin require scientific validation through animal and clinical studies to exploit in terms of modern commercial medicines.
Collapse
Affiliation(s)
- Arun K Jugran
- Garhwal Regional Centre, G. B. Pant National Institute of Himalayan Environment (NIHE), Srinagar, Uttarakhand, India
| | - Sandeep Rawat
- Sikkim Regional Centre, G. B. Pant National Institute of Himalayan Environment (NIHE), Gangtok, Sikkim, India
| | - Hari P Devkota
- Department of Instrumental Analysis, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Indra D Bhatt
- Center for Biodiversity Conservation and Management (CBCM), G. B. Pant National Institute of Himalayan Environment (NIHE), Kosi-Katarmal, Almora, Uttarakhand, India
| | - Ranbeer S Rawal
- Center for Biodiversity Conservation and Management (CBCM), G. B. Pant National Institute of Himalayan Environment (NIHE), Kosi-Katarmal, Almora, Uttarakhand, India
| |
Collapse
|
39
|
Qin X, Jiang M, Zhao Y, Gong J, Su H, Yuan F, Fang K, Yuan X, Yu X, Dong H, Lu F. Berberine protects against diabetic kidney disease via promoting PGC-1α-regulated mitochondrial energy homeostasis. Br J Pharmacol 2020. [PMID: 31734944 DOI: 10.1111/bph.1493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023] Open
Abstract
BACKGROUND AND PURPOSE Disordered lipid metabolism and disturbed mitochondrial bioenergetics play pivotal roles in the initiation and development of diabetic kidney disease (DKD). Berberine is a plant alkaloid, used in Chinese herbal medicine. It has multiple therapeutic actions on diabetes mellitus and its complications, including regulation of glucose and lipid metabolism, improvement of insulin sensitivity, and alleviation of oxidative damage. Here, we investigated the reno-protective effects of berberine. EXPERIMENTAL APPROACH We used samples from DKD patients and experiments with models of DKD (db/db mice) and cultured podocytes, to characterize energy metabolism profiles using metabolomics. Molecular targets and mechanisms involved in the regulation of mitochondrial function and bioenergetics by berberine were investigated, along with its effects on metabolic alterations in DKD mice. KEY RESULTS Metabolomic analysis suggested altered mitochondrial fuel usage and generalized mitochondrial dysfunction in patients with DKD. In db/db mice, berberine treatment reversed the disordered metabolism, podocyte damage and glomerulosclerosis. Lipid accumulation, excessive generation of mitochondrial ROS, mitochondrial dysfunction, and deficient fatty acid oxidation in DKD mouse models and in cultured podocytes were suppressed by berberine. These protective effects of berberine were accompanied by activation of the peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) signalling pathway, which promoted mitochondrial energy homeostasis and fatty acid oxidation in podocytes. CONCLUSION AND IMPLICATIONS PGC-1α-mediated mitochondrial bioenergetics could play a key role in lipid disorder-induced podocyte damage and development of DKD in mice. Restoration of PGC-1α activity and the energy homeostasis by berberine might be a potential therapeutic strategy against DKD.
Collapse
Affiliation(s)
- Xin Qin
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Jiang
- College of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Zhao
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Gong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Su
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fen Yuan
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Fang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyi Yuan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Yu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fuer Lu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
40
|
Qin X, Jiang M, Zhao Y, Gong J, Su H, Yuan F, Fang K, Yuan X, Yu X, Dong H, Lu F. Berberine protects against diabetic kidney disease via promoting PGC-1α-regulated mitochondrial energy homeostasis. Br J Pharmacol 2020; 177:3646-3661. [PMID: 31734944 PMCID: PMC7393204 DOI: 10.1111/bph.14935] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 12/28/2022] Open
Abstract
Background and Purpose Disordered lipid metabolism and disturbed mitochondrial bioenergetics play pivotal roles in the initiation and development of diabetic kidney disease (DKD). Berberine is a plant alkaloid, used in Chinese herbal medicine. It has multiple therapeutic actions on diabetes mellitus and its complications, including regulation of glucose and lipid metabolism, improvement of insulin sensitivity, and alleviation of oxidative damage. Here, we investigated the reno‐protective effects of berberine. Experimental Approach We used samples from DKD patients and experiments with models of DKD (db/db mice) and cultured podocytes, to characterize energy metabolism profiles using metabolomics. Molecular targets and mechanisms involved in the regulation of mitochondrial function and bioenergetics by berberine were investigated, along with its effects on metabolic alterations in DKD mice. Key Results Metabolomic analysis suggested altered mitochondrial fuel usage and generalized mitochondrial dysfunction in patients with DKD. In db/db mice, berberine treatment reversed the disordered metabolism, podocyte damage and glomerulosclerosis. Lipid accumulation, excessive generation of mitochondrial ROS, mitochondrial dysfunction, and deficient fatty acid oxidation in DKD mouse models and in cultured podocytes were suppressed by berberine. These protective effects of berberine were accompanied by activation of the peroxisome proliferator‐activated receptor γ coactivator‐1α (PGC‐1α) signalling pathway, which promoted mitochondrial energy homeostasis and fatty acid oxidation in podocytes. Conclusion and Implications PGC‐1α‐mediated mitochondrial bioenergetics could play a key role in lipid disorder‐induced podocyte damage and development of DKD in mice. Restoration of PGC‐1α activity and the energy homeostasis by berberine might be a potential therapeutic strategy against DKD.
Collapse
Affiliation(s)
- Xin Qin
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Jiang
- College of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Zhao
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Gong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Su
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fen Yuan
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Fang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyi Yuan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Yu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fuer Lu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
41
|
Effect of Berberine on Glycation, Aldose Reductase Activity, and Oxidative Stress in the Lenses of Streptozotocin-Induced Diabetic Rats In Vivo-A Preliminary Study. Int J Mol Sci 2020; 21:ijms21124278. [PMID: 32560082 PMCID: PMC7349706 DOI: 10.3390/ijms21124278] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus affects the eye lens, leading to cataract formation by glycation, osmotic stress, and oxidative stress. Berberine, an isoquinoline alkaloid, is a natural compound that has been reported to counteract all these pathological processes in various tissues and organs. The goal of this study was to evaluate whether berberine administered at a dose of 50 mg/kg by oral gavage for 28 days to rats with streptozotocin-induced diabetes reveals such effects on the biochemical parameters in the lenses. For this purpose, the following lenticular parameters were studied: concentrations of soluble protein, non-protein sulfhydryl groups (NPSH), advanced oxidation protein products (AOPP), advanced glycation end-products (AGEs), thiobarbituric acid reactive substances (TBARS), and activities of aldose reductase (AR), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). Diabetes induced unfavorable changes in the majority of the examined parameters. The administration of berberine resulted in an increased soluble protein level, decreased activity of AR, and lowered AOPP and AGEs levels. The results suggest that berberine administered orally positively affects the lenses of diabetic rats, and should be further examined with regard to its anticataract potential.
Collapse
|
42
|
The effect of berberine supplementation on obesity parameters, inflammation and liver function enzymes: A systematic review and meta-analysis of randomized controlled trials. Clin Nutr ESPEN 2020; 38:43-49. [PMID: 32690176 DOI: 10.1016/j.clnesp.2020.04.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/31/2020] [Accepted: 04/20/2020] [Indexed: 12/30/2022]
Abstract
INTRODUCTION So far, no study has summarized the findings on the effects of berberine intake on anthropometric parameters, C-reactive protein (CRP) and liver enzymes. This systematic review and meta-analysis were done based upon randomized controlled trials (RCTs) to analyze the effects of berberine on anthropometric parameters, CRP and liver enzymes. METHOD Following databases were searched for eligible studies published from inception to 30 July 2019: MEDLINE, EMBASE, Web of Science, Cochrane Library, PubMed and Google scholar. Necessary data were extracted. Data were pooled by the inverse variance method and expressed as mean difference with 95% Confidence Intervals (95% CI). RESULT 12 studies were included. Berberine treatment moderately but significantly decreased body weight (WMD = -2.07 kg, 95% CI -3.09, -1.05, P < 0.001), body mass index (BMI) (WMD = -0.47 kg/m2, 95% CI -0.70, -0.23, P < 0.001), waist circumference (WC) (WMD = -1.08 cm, 95% CI -1.97, -0.19, P = 0.018) and C-reactive protein (CRP) concentrations (WMD = -0.42 mg/L, 95% CI -0.82, -0.03, P = 0.034). However, berberine intake did not affect liver enzymes, including alanine aminotransferase (ALT) (WMD = -1.66 I/U, 95% CI -3.98, 0.65, P = 0.160) and aspartate aminotransferase (AST) (WMD = -0.87 I/U, 95% CI -2.56, 0.82, P = 0.311). CONCLUSION This meta-analysis found a significant reduction of body weight, BMI, WC and CRP levels associated with berberine intake which may have played an indirect role in improved clinical symptoms in diseases with metabolic disorders. Berberine administration had no significant effect on ALT and AST levels.
Collapse
|
43
|
A rapid method for simultaneous quantification of berberine, berbamine, magnoflorine and berberrubine in mouse serum using UPLC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1142:122040. [DOI: 10.1016/j.jchromb.2020.122040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/23/2020] [Accepted: 02/23/2020] [Indexed: 01/22/2023]
|
44
|
Amin AR, Kassab RB, Abdel Moneim AE, Amin HK. Comparison Among Garlic, Berberine, Resveratrol, Hibiscus sabdariffa, Genus Zizyphus, Hesperidin, Red Beetroot, Catha edulis, Portulaca oleracea, and Mulberry Leaves in the Treatment of Hypertension and Type 2 DM: A Comprehensive Review. Nat Prod Commun 2020; 15. [DOI: 10.1177/1934578x20921623] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025] Open
Abstract
Diabetes mellitus (DM) and hypertension are 2 of the most prevalent diseases with poor impact on health status worldwide. In most cases, they coexist with other metabolic disorders as well as cardiac, micro- and macrovascular complications. Many plants are known for their hypotensive, cardioprotective, and/or antidiabetic activities. Their active ingredients either identified and isolated or still utilized as herbal preparations of certain plant parts. The use of medicinal plants comprises the main basis for most of the traditional medicine (TM) systems and procedures. As conventional medicines seem insufficient to control such progressive diseases, herbal agents from TM could be used as adjuvant with good impact on disease control and progression as well as other concomitant health conditions. The aim of this study is to compare the efficacy of 10 different herbal medicines of botanical origin or herbal preparations in the management of hypertension and its cardiovascular complications and type 2 DM along with various coexisting health disorders. These herbal medicines are garlic, berberine, resveratrol, Hibiscus sabdariffa, Zizyphus ( oxyphylla, mucronate, jujube, rugosa), hesperidin, red beetroot, Catha edulis, mulberry leaves, and Portulaca oleracea.
Collapse
Affiliation(s)
- Amira R. Amin
- Cardiology and Oncology Section, Nasser Institute for Research and Treatment, Cairo, Egypt
| | - Rami B. Kassab
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Ahmed E. Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Hatem K. Amin
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Egypt
| |
Collapse
|
45
|
Ni W, Zhou H, Ding H, Tang L. Berberine ameliorates renal impairment and inhibits podocyte dysfunction by targeting the phosphatidylinositol 3-kinase-protein kinase B pathway in diabetic rats. J Diabetes Investig 2020; 11:297-306. [PMID: 31336024 PMCID: PMC7078081 DOI: 10.1111/jdi.13119] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/09/2019] [Accepted: 07/21/2019] [Indexed: 02/06/2023] Open
Abstract
AIMS/INTRODUCTION Amelioration of renal impairment is the key to diabetic nephropathy (DN) therapy. The progression of DN is closely related to podocyte dysfunction, but the detailed mechanism has not yet been clarified. The present study aimed to explore the renal impairment amelioration effect of berberine and related mechanisms targeting podocyte dysfunction under the diabetic state. MATERIALS AND METHODS Streptozotocin (35 mg/kg) was used to develop a DN rat model together with a high-glucose/high-lipid diet. Renal functional parameters and glomerular ultrastructure changes were recorded. The alterations of phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt) and phosphorylated Akt in the kidney cortex were determined by western blot. Meanwhile, podocyte dysfunction was induced and treated with berberine and LY294002. After that, podocyte adhesion functional parameters, protein biomarker and the alterations of the PI3K-Akt pathway were detected. RESULTS Berberine reduces the increased levels of biochemical indicators, and significantly improves the abnormal expression of PI3K, Akt and phosphorylated Akt in a rat kidney model. In vitro, a costimulating factor could obviously reduce the podocyte adhesion activity, including decreased expression of nephrin, podocin and adhesion molecule α3β1 levels, to induce podocyte dysfunction, and the trends were markedly reversed by berberine and LY294002 therapy. Furthermore, reduction of PI3K and phosphorylated Akt levels were observed in the berberine (30 and 60 μmol/L) and LY294002 (40 μmol/L) treatment group, but the Akt protein expression showed little change. CONCLUSIONS Berberine could be a promising antidiabetic nephropathy drug through ameliorating renal impairment and inhibiting podocyte dysfunction in diabetic rats, and the underlying molecular mechanisms might be involved in the regulation of the PI3K-Akt signaling pathway.
Collapse
Affiliation(s)
- Wei‐Jian Ni
- Department of PharmacyAnhui Provincial HospitalAnhui Medical UniversityHefeiAnhuiChina
- Department of PharmacyAnhui Provincial HospitalThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhuiChina
| | - Hong Zhou
- Department of PharmacyAnhui Provincial Cancer HospitalWest District of The First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhuiChina
| | - Hai‐Hua Ding
- Department of PharmacyAnhui Provincial HospitalAnhui Medical UniversityHefeiAnhuiChina
| | - Li‐Qin Tang
- Department of PharmacyAnhui Provincial HospitalThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhuiChina
| |
Collapse
|
46
|
Du L, Wang L, Wang B, Wang J, Hao M, Chen YB, Li XZ, Li Y, Jiang YF, Li CC, Yang H, Gu XK, Yin XX, Lu Q. A novel compound AB38b attenuates oxidative stress and ECM protein accumulation in kidneys of diabetic mice through modulation of Keap1/Nrf2 signaling. Acta Pharmacol Sin 2020; 41:358-372. [PMID: 31645661 PMCID: PMC7470857 DOI: 10.1038/s41401-019-0297-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/06/2019] [Indexed: 12/29/2022]
Abstract
Extracellular matrix (ECM) deposition following reactive oxygen species (ROS) overproduction has a key role in diabetic nephropathy (DN), thus, antioxidant therapy is considered as a promising strategy for treating DN. Here, we investigated the therapeutic effects of AB38b, a novel synthetic α, β-unsaturated ketone compound, on the oxidative stress (OS) and ECM accumulation in type 2 diabetes mice, and tried to clarify the mechanisms underlying the effects in high glucose (HG, 30 mM)-treated mouse glomerular mesangial cells (GMCs). Type 2 diabetes model was established in mice with high-fat diet feeding combined with streptozocin intraperitoneal administration. The diabetic mice were then treated with AB38b (10, 20, 40 mg· kg-1· d-1, ig) or a positive control drug resveratrol (40 mg· kg-1· d-1, ig) for 8 weeks. We showed that administration of AB38b or resveratrol prevented the increases in malondialdehyde level, lactate dehydrogenase release, and laminin and type IV collagen deposition in the diabetic kidney. Simultaneously, AB38b or resveratrol markedly lowered the level of Keap1, accompanied by evident activation of Nrf2 signaling in the diabetic kidney. The underlying mechanisms of antioxidant effect of AB38b were explored in HG-treated mouse GMCs. AB38b (2.5-10 μM) or resveratrol (10 μM) significantly alleviated OS and ECM accumulation in HG-treated GMCs. Furthermore, AB38b or resveratrol treatment effectively activated Nrf2 signaling by inhibiting Keap1 expression without affecting the interaction between Keap1 and Nrf2. Besides, AB38b treatment effectively suppressed the ubiquitination of Nrf2. Taken together, this study demonstrates that AB38b ameliorates experimental DN through antioxidation and modulation of Keap1/Nrf2 signaling pathway.
Collapse
|
47
|
Huang DD, Shi G, Jiang Y, Yao C, Zhu C. A review on the potential of Resveratrol in prevention and therapy of diabetes and diabetic complications. Biomed Pharmacother 2020; 125:109767. [PMID: 32058210 DOI: 10.1016/j.biopha.2019.109767] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/18/2019] [Accepted: 11/29/2019] [Indexed: 02/08/2023] Open
Abstract
Diabetes mellitus (DM) is a major world health problem and one of the most studied diseases, which are highly prevalent in the whole world, it is frequently associated with severe clinical complications, such as diabetic cardiomyopathy, nephropathy, retinopathy, neuropathy etc. Scientific research is continuously casting about for new monomer molecules from Chinese herbal medicine that could be invoked as candidate drugs for fighting against diabetes and its complications. Resveratrol (RES), a polyphenol phytoalexin, possesses diverse biochemical and physiological actions, including antiplatelet, estrogenic, and anti-inflammatory properties. It is recently gaining scientific interest for RES in controlling blood sugar and fighting against diabetes and its complications properties in various types of diabetic models. These beneficial effects seem to be due to the multiple actions of RES on cellular functions, which make RES become a promising molecule for the treatment of diabetes and diabetic complications. Here, we review the mechanism of action and potential therapeutic use of RES in prevention and mitigation of these diseases in recent ten years to provide a reference for further research and development of RES.
Collapse
Affiliation(s)
- Dan-Dan Huang
- Department of Pharmacy, The Second Affiliated Hospital of Fujian Medical University, Fujian, 362000, China
| | - Guangjiang Shi
- School of pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yaping Jiang
- School of Pharmacology, Ningxia Hui Medicine Modern Engineering Research Center and Collaborative Innovation Center, Ningxia Medical University, Yinchuan, 750004, China
| | - Chao Yao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, 211198, China
| | - Chuanlin Zhu
- Department of Laboratory Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China.
| |
Collapse
|
48
|
Li C, Guan XM, Wang RY, Xie YS, Zhou H, Ni WJ, Tang LQ. Berberine mitigates high glucose-induced podocyte apoptosis by modulating autophagy via the mTOR/P70S6K/4EBP1 pathway. Life Sci 2020; 243:117277. [DOI: 10.1016/j.lfs.2020.117277] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/01/2020] [Accepted: 01/02/2020] [Indexed: 12/16/2022]
|
49
|
Liu Y, Hua W, Li Y, Xian X, Zhao Z, Liu C, Zou J, Li J, Fang X, Zhu Y. Berberine suppresses colon cancer cell proliferation by inhibiting the SCAP/SREBP-1 signaling pathway-mediated lipogenesis. Biochem Pharmacol 2019; 174:113776. [PMID: 31874145 DOI: 10.1016/j.bcp.2019.113776] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/19/2019] [Indexed: 02/07/2023]
Abstract
Lipid metabolism is a significant section of energy homeostasis, and it affects the development of various cancers. Previous studies have revealed that berberine has strong anticancer and blood lipid-lowering effects. Here, we further investigated the effects of berberine on cell proliferation and lipogenesis in colon cancer cells and the relationship between the two effects. We found that berberine inhibited cell proliferation by inducing G0/G1 phase cell cycle arrest in colon cancer cells. Moreover, the expressions of key lipogenic enzymes were down-regulated by berberine and led to the suppressed lipid synthesis, which was linked to cell proliferation via Wnt/β-catenin pathway. Importantly, berberine inhibited sterol regulatory element-binding protein-1 (SREBP-1) activation and SREBP cleavage-activating protein (SCAP) expression, resulting in the downregulation of these lipogenic enzymes. Knockdown of SCAP by shRNA could abolish the effect of berberine on SREBP-1 activation. Besides the inhibitory effects in vitro, berberine suppressed the growth and lipogenesis of colon cancer xenograft in a SCAP-dependent manner as well. Together, our results suggest that berberine may serve as a candidate against tumor growth of colon cancer partially through targeting SCAP/SREBP-1 pathway driving lipogenesis.
Collapse
Affiliation(s)
- Yunxin Liu
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing 210029, PR China; School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Weiwei Hua
- School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China; Department of Pharmacy, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, PR China
| | - Yao Li
- School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Xirui Xian
- School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Zheng Zhao
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing 210029, PR China; School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Chao Liu
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing 210029, PR China; School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Jianjun Zou
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing 210029, PR China; School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Jun Li
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing 210029, PR China; School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Xianjun Fang
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China.
| | - Yubing Zhu
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing 210029, PR China; School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| |
Collapse
|
50
|
Wu Y, Chen F, Huang X, Zhang R, Yu Z, Chen Z, Liu J. Berberine (BBR) Attenuated Palmitic Acid (PA)-Induced Lipotoxicity in Human HK-2 Cells by Promoting Peroxisome Proliferator-Activated Receptor α (PPAR-α). Med Sci Monit 2019; 25:7702-7708. [PMID: 31607744 PMCID: PMC6812469 DOI: 10.12659/msm.916686] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/21/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Berberine (BBR), a natural alkaloid isolated from Coptis chinensis, has frequently been reported as an antidiabetic reagent, partly due to its lipid-lowering activity. Evidence suggests that BBR ameliorates palmitate-induced lipid deposition and apoptosis in renal tubular epithelial cells (TECs), which tracks in tandem with the enhancement of peroxisome proliferator-activated receptor alpha (PPAR-alpha). The study aim was to investigate the roles of BBR in renal lipotoxicity in vitro, and investigate whether PPAR-alpha was the underlying mechanism. MATERIAL AND METHODS Human TECs (HK-2 cells) were injured with palmitic acid (PA), and then treated with BBR, BBR+PPAR-alpha inhibitor (GW6471), and PA+PPAR-alpha agonist (fenofibrate). Endoplasmic reticulum (ER) stress was assessed by measuring the expression of prospective evaluation of radial keratotomy (PERK), C/EBP-homologous protein (CHOP), and 78 kDa glucose-regulated protein (GRP78). Lipid metabolism was assessed by determining lipid anabolism-associated genes, including fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC), and lipoprotein lipase (LPL), as well as lipid catabolism-associated gene, including carnitine palmitoyl transferase 1 (CPT1). Inflammatory response of HK-2 cells was evaluated by measuring interleukin (IL)-6 and tumor necrosis factor (TNF)-alpha. Cell apoptosis and protein levels of cleaved-caspase-3 were evaluated. RESULTS PA downregulated PPAR-alpha and induced server lipotoxicity in HK-2 cells by ER stress, increasing lipid deposition, and elevating inflammatory response of HK-2 cells accompanied with inducting cell apoptosis and cleaved-caspase-3, which were obviously reversed by additional treatment of BBR or PPAR-alpha agonist. However, the protective effect of BBR in PA-induced lipotoxicity in HK-2 cells was significantly ameliorated by PPAR-alpha inhibitor. CONCLUSIONS BBR attenuated PA-induced lipotoxicity via the PPAR-alpha pathway.
Collapse
|