1
|
Yu W, Deng D, Li Y, Ding K, Qian Q, Shi H, Luo Q, Cai J, Liu J. Cardiomyocyte-specific Tbk1 deletion aggravated chronic doxorubicin cardiotoxicity via inhibition of mitophagy. Free Radic Biol Med 2024; 222:244-258. [PMID: 38901499 DOI: 10.1016/j.freeradbiomed.2024.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/03/2024] [Accepted: 06/14/2024] [Indexed: 06/22/2024]
Abstract
Doxorubicin (Dox) use is limited by Dox-induced cardiotoxicity. TANK-blinding kinase 1 (TBK1) is an important kinase involved in the regulation of mitophagy, but the role of TBK1 in cardiomyocytes in chronic Dox-induced cardiomyopathy remains unclear. Cardiomyocyte-specific Tbk1 knockout (Tbk1CKO) mice received Dox (6 mg/kg, injected intraperitoneally) once a week for 4 times, and cardiac assessment was performed 4 weeks after the final Dox injection. Adenoviruses encoding Tbk1 or containing shRNA targeting Tbk1, or a TBK1 phosphorylation inhibitor were used for overexpression or knockdown of Tbk1, or inhibit phosphorylation of TBK1 in isolated primary cardiomyocytes. Our results revealed that moderate Dox challenge decreased TBK1 phosphorylation (with no effect on TBK1 protein levels), resulting in compromised myocardial function, obvious mortality and overt interstitial fibrosis, and the effects were accentuated by Tbk1 deletion. Dox provoked mitochondrial membrane potential collapse and oxidative stress, the effects of which were exacerbated and mitigated by Tbk1 knockdown, specific inhibition of phosphorylation and overexpression, respectively. However, Tbk1 (Ser172A) overexpression did not alleviate these effects. Further scrutiny revealed that TBK1 exerted protective effects on mitochondria via SQSTM1/P62-mediated mitophagy. Tbk1 overexpression mediated cardioprotective effects on Dox-induced cardiotoxicity were cancelled off by Sqstm1/P62 knockdown. Moreover, TBK1-mitophagy-mitochondria cascade was confirmed in heart tissues from dilated cardiomyopathy patients. Taken together, our findings denoted a pivotal role of TBK1 in Dox-induced mitochondrial injury and cardiotoxicity possibly through its phosphorylation and SQSTM1/P62-mediated mitophagy.
Collapse
Affiliation(s)
- Wenjun Yu
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China; Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, 430071, PR China; Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, 430071, PR China.
| | - Dawei Deng
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China; Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, 430071, PR China; Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, 430071, PR China
| | - Yang Li
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China; Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, 430071, PR China; Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, 430071, PR China
| | - Kehan Ding
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China; Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, 430071, PR China; Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, 430071, PR China
| | - Qiaofeng Qian
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China; Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, 430071, PR China; Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, 430071, PR China
| | - Hongjie Shi
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China; Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, 430071, PR China; Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, 430071, PR China
| | - Qiujie Luo
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China; Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, 430071, PR China; Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, 430071, PR China
| | - Jie Cai
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China; Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, 430071, PR China; Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, 430071, PR China.
| | - Jinping Liu
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China; Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, 430071, PR China; Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, 430071, PR China.
| |
Collapse
|
2
|
Park JH, Mortaja M, Son HG, Zhao X, Sloat LM, Azin M, Wang J, Collier MR, Tummala KS, Mandinova A, Bardeesy N, Semenov YR, Mino-Kenudson M, Demehri S. Statin prevents cancer development in chronic inflammation by blocking interleukin 33 expression. Nat Commun 2024; 15:4099. [PMID: 38816352 PMCID: PMC11139893 DOI: 10.1038/s41467-024-48441-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 04/24/2024] [Indexed: 06/01/2024] Open
Abstract
Chronic inflammation is a major cause of cancer worldwide. Interleukin 33 (IL-33) is a critical initiator of cancer-prone chronic inflammation; however, its induction mechanism by environmental causes of chronic inflammation is unknown. Herein, we demonstrate that Toll-like receptor (TLR)3/4-TBK1-IRF3 pathway activation links environmental insults to IL-33 induction in the skin and pancreas inflammation. An FDA-approved drug library screen identifies pitavastatin to effectively suppress IL-33 expression by blocking TBK1 membrane recruitment/activation through the mevalonate pathway inhibition. Accordingly, pitavastatin prevents chronic pancreatitis and its cancer sequela in an IL-33-dependent manner. The IRF3-IL-33 axis is highly active in chronic pancreatitis and its associated pancreatic cancer in humans. Interestingly, pitavastatin use correlates with a significantly reduced risk of chronic pancreatitis and pancreatic cancer in patients. Our findings demonstrate that blocking the TBK1-IRF3-IL-33 signaling axis suppresses cancer-prone chronic inflammation. Statins present a safe and effective prophylactic strategy to prevent chronic inflammation and its cancer sequela.
Collapse
Affiliation(s)
- Jong Ho Park
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Anatomy, School of Medicine, Keimyung University, Daegu, South Korea
| | - Mahsa Mortaja
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Heehwa G Son
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Xutu Zhao
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lauren M Sloat
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Marjan Azin
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jun Wang
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael R Collier
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Krishna S Tummala
- Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Quantitative Biosciences, Merck Research Laboratories, Boston, MA, USA
| | - Anna Mandinova
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Nabeel Bardeesy
- Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Yevgeniy R Semenov
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, USA
| | - Mari Mino-Kenudson
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Shadmehr Demehri
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Sutar Y, Singh SK, Dhoble S, Mali J, Adams J, Yadavalli T, Date AA, Shukla D. Oral Self-Nanoemulsifying System Containing Ionic Liquid of BX795 Is Effective against Genital HSV-2 Infection in Mice. ACS Infect Dis 2024; 10:93-106. [PMID: 37807721 DOI: 10.1021/acsinfecdis.3c00212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
BX795 is an emerging drug candidate that has shown a lot of promise as a next-generation non-nucleoside antiviral agent for the topical treatment of herpes simplex virus type-1 (HSV-1) and herpes simplex virus type-2 (HSV-2) infections. Our studies indicated that BX795 has limited oral bioavailability, which could be attributed to its low and pH-dependent solubility. Lipid-based formulations such as self-nanoemulsifying systems (SNESs) can improve the solubility and oral bioavailability of BX795, but the poor lipid solubility of BX795 further limits the development of SNES. To improve the loading of BX795 into SNES, we evaluated the ability of various bulky and biocompatible anions to transform BX795 into an ionic liquid (IL) with higher lipid solubility. Our studies showed that sodium lauryl sulfate and docusate sodium were able to transform BX795 into IL. Compared to pure BX795, the developed BX795 ILs showed differential in vitro cytocompatibility to HeLa cells but exhibited similar in vitro antiviral activity against HSV-2. Interestingly, BX795 docusate (BX795-Doc), an IL of BX795 with ∼135-fold higher lipid solubility than pure BX795, could be successfully incorporated into an SNES, and the developed BX795-Doc-SNES could readily form nanoemulsions of size ≤200 nm irrespective of the pH of the buffer used for dilution. Our in vitro studies showed that BX795-Doc-SNES retained the inherent antiviral activity against HSV-2 and showed similar in vitro cytocompatibility, indicating the availability of BX795 from the SNES in vitro. Finally, orally delivered SNES containing BX795-Doc showed a significant reduction in HSV-2 infection in mice compared to the untreated control. Thus, the transformation of BX795 into IL and the subsequent incorporation of the BX795 IL into the SNES are an effective strategy to improve oral therapy of genital herpes infection.
Collapse
Affiliation(s)
- Yogesh Sutar
- Department of Pharmacology and Toxicology, R.K. Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Sudhanshu Kumar Singh
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Sagar Dhoble
- Department of Pharmacology and Toxicology, R.K. Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Jaishree Mali
- Department of Pharmacology and Toxicology, R.K. Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Joseph Adams
- Department of Pharmacology and Toxicology, R.K. Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Tejabhiram Yadavalli
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Abhijit A Date
- Department of Pharmacology and Toxicology, R.K. Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
- Department of Ophthalmology and Vision Science, University of Arizona College of Medicine, Tucson, Arizona 85711, United States
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
4
|
Yang X, Liu Z. Role of TBK1 Inhibition in Targeted Therapy of Cancer. Mini Rev Med Chem 2024; 24:1031-1045. [PMID: 38314681 DOI: 10.2174/0113895575271977231115062803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/16/2023] [Accepted: 09/16/2023] [Indexed: 02/06/2024]
Abstract
TANK-binding kinase 1 (TBK1) is a serine/threonine protein that plays a crucial role in various biological processes like immunity, autophagy, cell survival, and proliferation. The level and kinase activity of the TBK1 protein is regulated through post-translational modifications (PTMs). TBK1 mainly mediates the activation of IRF3/7 and NF-κB signaling pathways while also participating in the regulation of cellular activities such as autophagy, mitochondrial metabolism, and cell proliferation. TBK1 regulates immune, metabolic, inflammatory, and tumor occurrence and development within the body through these cellular activities. TBK1 kinase has emerged as a promising therapeutic target for tumor immunity. However, its molecular mechanism of action remains largely unknown. The identification of selective TBK1 small molecule inhibitors can serve as valuable tools for investigating the biological function of TBK1 protein and also as potential drug candidates for tumor immunotherapy. The current research progress indicates that some TBK1 inhibitors (compounds 15,16 and 21) exhibit certain antitumor effects in vitro culture systems. Here, we summarize the mechanism of action of TBK1 in tumors in recent years and the progress of small molecule inhibitors of TBK1.
Collapse
Affiliation(s)
- Xueqing Yang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Zongliang Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| |
Collapse
|
5
|
Kailasam Natesan V, Balaraman S, KuppannaGounder Pitchaimuthu E. Insilico design of an allosteric modulator targeting the protein-protein interaction site of 3 Phosphoinositide dependent Kinase-1: design, synthesis and biological activity. In Silico Pharmacol 2023; 11:26. [PMID: 37767119 PMCID: PMC10519888 DOI: 10.1007/s40203-023-00160-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
The signalling pathways in human cells mostly rely on protein-protein interactions (PPI) for their function. Such a PPI site in 3 Phosphoinositide dependent Kinase-1 (PDK1) is targeted to design the small molecule modulators. Based on the hotspot residues in its PPI site, a pharmacophore with seven different features was developed and screened against 2.9 million lead like compounds in Zinc database. A phthalazine derivative was identified as a potent allosteric inhibitor through virtual screening, molecular docking and 100 ns dynamics simulations. The modified hit possessed hydrogen bonds with Lys115, Arg131, Thr148, Glu150 as well as pi-pi stacking interactions with Phe157 which are the key residues in the PIF pocket of PDK1. Comparison between the free energy profiles by metadynamics simulation with the presence and absence of the modified ligand (MH) in the binding pocket indicates that the binding of MH enhances the hinge motion making PDK1 to adopt open conformation also and stabilizes the fluctuation of the end-to-end distance in αB helix of PDK1. The modified hit compound was synthesized, characterized and found to be cytotoxic to cancerous cells that are rich in PDK1 expression. These results propose that MH can serve as a new scaffold template for the design of novel drugs targeting PDK1 as well as promising allosteric regulator of PDK1 targeting its protein-protein interface. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-023-00160-6.
Collapse
|
6
|
Jiang Q, Guan Y, Zheng J, Lu H. TBK1 promotes thyroid cancer progress by activating the PI3K/Akt/mTOR signaling pathway. Immun Inflamm Dis 2023; 11:e796. [PMID: 36988258 PMCID: PMC10013413 DOI: 10.1002/iid3.796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 03/17/2023] Open
Abstract
INTRODUCTION Thyroid cancer has received increasing attention; however, its detailed pathogenesis and pathological processes remain unclear. We investigated the role of TANK-binding kinase 1 (TBK1) in the progression of thyroid cancer. METHODS The expression of TBK1 in thyroid cancer and normal control tissues was analyzed using real-time quantitative polymerase chain reaction. The function of TBK1 on thyroid cancer cells was detected using MTT, colony formation, wound healing, and Transwell assays. The xenograft assay was carried out to check on the role of TBK1 in thyroid cancer. RESULTS TBK1 was highly expressed in thyroid tumors. High expression of TBK1 raised viability, proliferation, migration, and invasion of thyroid cancer cells. Gene set enrichment analysis revealed that TBK1 activated the phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin pathway. In addition, Myc-associated zinc finger protein (MAZ) was overexpressed in thyroid cancer and transcriptionally activated BK1. MAZ silence reversed the effects of TBK1 overexpression on thyroid cancer progression. Cotransfection with MAZ small-interfering RNA(siRNA) and TBK1 siRNA did not strengthen the inhibitory effect of TBK1 silencing on the thyroid cancer cells. The xenograft tumor assay showed that TBK1 short hairpinRNA inhibited tumor growth. CONCLUSION MAZ silencing inhibited tumor progress of thyroid cancer cells, whereas this inhibitory effect was reversed by TBK1 overexpression.
Collapse
Affiliation(s)
- Qiuli Jiang
- Department of Pathology, Xiamen Branch, Zhongshan HospitalFudan UniversityXiamenFujianP. R. China
| | - Yingying Guan
- Department of Pathology, Xiamen Branch, Zhongshan HospitalFudan UniversityXiamenFujianP. R. China
| | - Jingmei Zheng
- Department of Pathology, Xiamen Branch, Zhongshan HospitalFudan UniversityXiamenFujianP. R. China
| | - Huadong Lu
- Department of Pathology, Xiamen Branch, Zhongshan HospitalFudan UniversityXiamenFujianP. R. China
| |
Collapse
|
7
|
Shen WC, Huang BQ, Yang J. Regulatory mechanisms of retinal ganglion cell death in normal tension glaucoma and potential therapies. Neural Regen Res 2023; 18:87-93. [PMID: 35799514 PMCID: PMC9241424 DOI: 10.4103/1673-5374.344831] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Normal tension glaucoma (NTG) is a multifactorial optic neuropathy characterized by normal intraocular pressure, progressive retinal ganglion cell (RGC) death, and glaucomatous visual field loss. Recent studies have described the mechanisms underlying the pathogenesis of NTG. In addition to controlling intraocular pressure, neuroprotection and reduction of RGC degeneration may be beneficial therapies for NTG. In this review, we summarized the main regulatory mechanisms of RGC death in NTG, including autophagy, glutamate neurotoxicity, oxidative stress, neuroinflammation, immunity, and vasoconstriction. Autophagy can be induced by retinal hypoxia and axonal damage. In this process, ischemia can cause mutations of optineurin and activate the nuclear factor-kappa B pathway. Glutamate neurotoxicity is induced by the over-stimulation of N-methyl-D-aspartate membrane receptors by glutamate, which occurs in RGCs and induces progressive glaucomatous optic neuropathy. Oxidative stress also participates in NTG-related glaucomatous optic neuropathy. It impairs the mitochondrial and DNA function of RGCs through the apoptosis signal-regulating kinase-JUN N-terminal kinase pathway. Moreover, it increases inflammation and the immune response of RGCs. Endothelin 1 causes endothelial dysfunction and impairment of ocular blood flow, promoting vasospasm and glaucomatous optic neuropathy, as a result of NTG. In conclusion, we discussed research progress on potential options for the protection of RGCs, including TANK binding kinase 1 inhibitors regulating autophagy, N-methyl-D-aspartate receptor antagonists inhibiting glutamate toxicity, ASK1 inhibitors regulating mitochondrial function, and antioxidants inhibiting oxidative stress. In NTG, RGC death is regulated by a network of mechanisms, while various potential targets protect RGCs. Collectively, these findings provide insight into the pathogenesis of NTG and potential therapeutic strategies.
Collapse
|
8
|
Li S, Fan G, Li X, Cai Y, Liu R. Modulation of type I interferon signaling by natural products in the treatment of immune-related diseases. Chin J Nat Med 2023; 21:3-18. [PMID: 36641230 DOI: 10.1016/s1875-5364(23)60381-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Indexed: 01/15/2023]
Abstract
Type I interferon (IFN) is considered as a bridge between innate and adaptive immunity. Proper activation or inhibition of type I IFN signaling is essential for host defense against pathogen invasion, tumor cell proliferation, and overactive immune responses. Due to intricate and diverse chemical structures, natural products and their derivatives have become an invaluable source inspiring innovative drug discovery. In addition, some natural products have been applied in clinical practice for infection, cancer, and autoimmunity over thousands of years and their promising curative effects and safety have been well-accepted. However, whether these natural products are primarily targeting type I IFN signaling and specific molecular targets involved are not fully elucidated. In the current review, we thoroughly summarize recent advances in the pharmacology researches of natural products for their type I IFN activity, including both agonism/activation and antagonism/inhibition, and their potential application as therapies. Furthermore, the source and chemical nature of natural products with type I IFN activity are highlighted and their specific molecular targets in the type I IFN pathway and mode of action are classified. In conclusion, natural products possessing type I IFN activity represent promising therapeutic strategies and have a bright prospect in the treatment of infection, cancer, and autoimmune diseases.
Collapse
Affiliation(s)
- Shuo Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Guifang Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yajie Cai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
9
|
Kim J, Kim HS, Choi DH, Choi J, Cho SY, Kim SH, Baek HS, Yoon KD, Son SW, Son ED, Hong YD, Ko J, Cho SY, Park WS. Kaempferol tetrasaccharides restore skin atrophy via PDK1 inhibition in human skin cells and tissues: Bench and clinical studies. Biomed Pharmacother 2022; 156:113864. [DOI: 10.1016/j.biopha.2022.113864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/01/2022] [Accepted: 10/09/2022] [Indexed: 11/02/2022] Open
|
10
|
Zhang M, Zou Y, Zhou X, Zhou J. Inhibitory targeting cGAS-STING-TBK1 axis: Emerging strategies for autoimmune diseases therapy. Front Immunol 2022; 13:954129. [PMID: 36172373 PMCID: PMC9511411 DOI: 10.3389/fimmu.2022.954129] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
The cGAS-STING signaling plays an integral role in the host immune response, and the abnormal activation of cGAS-STING is highly related to various autoimmune diseases. Therefore, targeting the cGAS-STING-TBK1 axis has become a promising strategy in therapy of autoimmune diseases. Herein, we summarized the key pathways mediated by the cGAS-STING-TBK1 axis and various cGAS-STING-TBK1 related autoimmune diseases, as well as the recent development of cGAS, STING, or TBK1 selective inhibitors and their potential application in therapy of cGAS-STING-TBK1 related autoimmune diseases. Overall, the review highlights that inhibiting cGAS-STING-TBK1 signaling is an attractive strategy for autoimmune disease therapy.
Collapse
Affiliation(s)
- Min Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, China
- Drug development and innovation center, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Yan Zou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, China
- Drug development and innovation center, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Xujun Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, China
- Drug development and innovation center, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Jinming Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, China
- Drug development and innovation center, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
- *Correspondence: Jinming Zhou,
| |
Collapse
|
11
|
Ding J, Maxwell A, Adzibolosu N, Hu A, You Y, Liao A, Mor G. Mechanisms of immune regulation by the placenta: Role of type I interferon and interferon-stimulated genes signaling during pregnancy. Immunol Rev 2022; 308:9-24. [PMID: 35306673 PMCID: PMC9189063 DOI: 10.1111/imr.13077] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/08/2022] [Accepted: 03/12/2022] [Indexed: 12/18/2022]
Abstract
Pregnancy is a unique condition where the maternal immune system is continuously adapting in response to the stages of fetal development and signals from the environment. The placenta is a key mediator of the fetal/maternal interaction by providing signals that regulate the function of the maternal immune system as well as provides protective mechanisms to prevent the exposure of the fetus to dangerous signals. Bacterial and/or viral infection during pregnancy induce a unique immunological response by the placenta, and type I interferon is one of the crucial signaling pathways in the trophoblast cells. Basal expression of type I interferon-β and downstream ISGs harbors physiological functions to maintain the homeostasis of pregnancy, more importantly, provides the placenta with the adequate awareness to respond to infections. The disruption of type I interferon signaling in the placenta will lead to pregnancy complications and can compromise fetal development. In this review, we focus the important role of placenta-derived type I interferon and its downstream ISGs in the regulation of maternal immune homeostasis and protection against viral infection. These studies are helping us to better understand placental immunological functions and provide a new perspective for developing better approaches to protect mother and fetus during infections.
Collapse
Affiliation(s)
- Jiahui Ding
- C.S Mott center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Anthony Maxwell
- C.S Mott center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
- Department of Physiology, Wayne State University, Detroit, MI, USA
| | - Nicholas Adzibolosu
- C.S Mott center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
- Department of Physiology, Wayne State University, Detroit, MI, USA
| | - Anna Hu
- C.S Mott center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Yuan You
- C.S Mott center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Aihua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Gil Mor
- C.S Mott center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
12
|
Therapeutic targeting of TANK-binding kinase signaling towards anticancer drug development: Challenges and opportunities. Int J Biol Macromol 2022; 207:1022-1037. [PMID: 35358582 DOI: 10.1016/j.ijbiomac.2022.03.157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/15/2022]
Abstract
TANK-binding kinase 1 (TBK1) plays a fundamental role in regulating the cellular responses and controlling several signaling cascades. It regulates inflammatory, interferon, NF-κB, autophagy, and Akt pathways. Post-translational modifications (PTM) of TBK1 control its action and subsequent cellular signaling. The dysregulation of the TBK1 pathway is correlated to many pathophysiological conditions, including cancer, that implicates the promising therapeutic advantage for targeting TBK1. The present study summarizes current updates on the molecular mechanisms and cancer-inducing roles of TBK1. Designed inhibitors of TBK1 are considered a potential therapeutic agent for several diseases, including cancer. Data from pre-clinical tumor models recommend that the targeting of TBK1 could be an attractive strategy for anti-tumor therapy. This review further highlighted the therapeutic potential of potent and selective TBK1 inhibitors, including Amlexanox, Compound II, BX795, MRT67307, SR8185 AZ13102909, CYT387, GSK8612, BAY985, and Domainex. These inhibitors may be implicated to facilitate therapeutic management of cancer and TBK1-associated diseases in the future.
Collapse
|
13
|
Gilbert S, Péant B, Malaquin N, Tu V, Fleury H, Leclerc-Desaulniers K, Rodier F, Mes-Masson AM, Saad F. Targeting IKKε in Androgen-Independent Prostate Cancer Causes Phenotypic Senescence and Genomic Instability. Mol Cancer Ther 2022; 21:407-418. [PMID: 34965959 PMCID: PMC9377745 DOI: 10.1158/1535-7163.mct-21-0519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/12/2021] [Accepted: 12/17/2021] [Indexed: 01/07/2023]
Abstract
Advanced prostate cancer will often progress to a lethal, castration-resistant state. We previously demonstrated that IKKε expression correlated with the aggressiveness of prostate cancer disease. Here, we address the potential of IKKε as a therapeutic target in prostate cancer. We examined cell fate decisions (proliferation, cell death, and senescence) in IKKε-depleted PC-3 cells, which exhibited delayed cell proliferation and a senescent phenotype, but did not undergo cell death. Using IKKε/TBK1 inhibitors, BX795 and Amlexanox, we measured their effects on cell fate decisions in androgen-sensitive prostate cancer and androgen-independent prostate cancer cell lines. Cell-cycle analyses revealed a G2-M cell-cycle arrest and a higher proportion of cells with 8N DNA content in androgen-independent prostate cancer cells only. Androgen-independent prostate cancer cells also displayed increased senescence-associated (SA)-β-galactosidase activity; increased γH2AX foci; genomic instability; and altered p15, p16, and p21 expression. In our mouse model, IKKε inhibitors also decreased tumor growth of androgen-independent prostate cancer xenografts but not 22Rv1 androgen-sensitive prostate cancer xenografts. Our study suggests that targeting IKKε with BX795 or Amlexanox in androgen-independent prostate cancer cells induces a senescence phenotype and demonstrates in vivo antitumor activity. These results strengthen the potential of exploiting IKKε as a therapeutic target.
Collapse
Affiliation(s)
- Sophie Gilbert
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM) et Institut du cancer de Montréal, Montréal, Quebec, Canada
| | - Benjamin Péant
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM) et Institut du cancer de Montréal, Montréal, Quebec, Canada
| | - Nicolas Malaquin
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM) et Institut du cancer de Montréal, Montréal, Quebec, Canada
| | - Véronique Tu
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM) et Institut du cancer de Montréal, Montréal, Quebec, Canada
| | - Hubert Fleury
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM) et Institut du cancer de Montréal, Montréal, Quebec, Canada
| | - Kim Leclerc-Desaulniers
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM) et Institut du cancer de Montréal, Montréal, Quebec, Canada
| | - Francis Rodier
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM) et Institut du cancer de Montréal, Montréal, Quebec, Canada.,Département de Radiologie, Radio-oncologie et Médicine Nucléaire, Université de Montréal, Montreal, Quebec, Canada
| | - Anne-Marie Mes-Masson
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM) et Institut du cancer de Montréal, Montréal, Quebec, Canada.,Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada.,Corresponding Author: Anne-Marie Mes-Masson, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) et Institut du cancer de Montréal, 900 Saint Denis Street, Montreal, Quebec H2X 0A9, Canada. Phone: 514-890-8000, ext. 25496; E-mail:
| | - Fred Saad
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM) et Institut du cancer de Montréal, Montréal, Quebec, Canada.,Department of Surgery, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
14
|
Zhong S, Peng S, Chen Z, Chen Z, Luo JL. Choosing Kinase Inhibitors for Androgen Deprivation Therapy-Resistant Prostate Cancer. Pharmaceutics 2022; 14:498. [PMID: 35335873 PMCID: PMC8950316 DOI: 10.3390/pharmaceutics14030498] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/26/2022] [Accepted: 02/22/2022] [Indexed: 11/25/2022] Open
Abstract
Androgen deprivation therapy (ADT) is a systemic therapy for advanced prostate cancer (PCa). Although most patients initially respond to ADT, almost all cancers eventually develop castration resistance. Castration-resistant PCa (CRPC) is associated with a very poor prognosis, and the treatment of which is a serious clinical challenge. Accumulating evidence suggests that abnormal expression and activation of various kinases are associated with the emergence and maintenance of CRPC. Many efforts have been made to develop small molecule inhibitors to target the key kinases in CRPC. These inhibitors are designed to suppress the kinase activity or interrupt kinase-mediated signal pathways that are associated with PCa androgen-independent (AI) growth and CRPC development. In this review, we briefly summarize the roles of the kinases that are abnormally expressed and/or activated in CRPC and the recent advances in the development of small molecule inhibitors that target kinases for the treatment of CRPC.
Collapse
Affiliation(s)
- Shangwei Zhong
- Department of General Surgery, Xiangya Hospital, Central South University, Hunan 410008, China; (S.Z.); (S.P.); (Z.C.)
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33459, USA
| | - Shoujiao Peng
- Department of General Surgery, Xiangya Hospital, Central South University, Hunan 410008, China; (S.Z.); (S.P.); (Z.C.)
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33459, USA
| | - Zihua Chen
- Department of General Surgery, Xiangya Hospital, Central South University, Hunan 410008, China; (S.Z.); (S.P.); (Z.C.)
| | - Zhikang Chen
- Department of General Surgery, Xiangya Hospital, Central South University, Hunan 410008, China; (S.Z.); (S.P.); (Z.C.)
| | - Jun-Li Luo
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33459, USA
| |
Collapse
|
15
|
High content screening and proteomic analysis identify a kinase inhibitor that rescues pathological phenotypes in a patient-derived model of Parkinson's disease. NPJ Parkinsons Dis 2022; 8:15. [PMID: 35149677 PMCID: PMC8837749 DOI: 10.1038/s41531-022-00278-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 01/12/2022] [Indexed: 11/30/2022] Open
Abstract
Combining high throughput screening approaches with induced pluripotent stem cell (iPSC)-based disease modeling represents a promising unbiased strategy to identify therapies for neurodegenerative disorders. Here we applied high content imaging on iPSC-derived neurons from patients with familial Parkinson’s disease bearing the G209A (p.A53T) α-synuclein (αSyn) mutation and launched a screening campaign on a small kinase inhibitor library. We thus identified the multi-kinase inhibitor BX795 that at a single dose effectively restores disease-associated neurodegenerative phenotypes. Proteomics profiling mapped the molecular pathways underlying the protective effects of BX795, comprising a cohort of 118 protein-mediators of the core biological processes of RNA metabolism, protein synthesis, modification and clearance, and stress response, all linked to the mTORC1 signaling hub. In agreement, expression of human p.A53T-αSyn in neuronal cells affected key components of the mTORC1 pathway resulting in aberrant protein synthesis that was restored in the presence of BX795 with concurrent facilitation of autophagy. Taken together, we have identified a promising small molecule with neuroprotective actions as candidate therapeutic for PD and other protein conformational disorders.
Collapse
|
16
|
Chilamakuri R, Rouse DC, Yu Y, Kabir AS, Muth A, Yang J, Lipton JM, Agarwal S. BX-795 inhibits neuroblastoma growth and enhances sensitivity towards chemotherapy. Transl Oncol 2021; 15:101272. [PMID: 34823094 PMCID: PMC8626612 DOI: 10.1016/j.tranon.2021.101272] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022] Open
Abstract
AKT overexpression correlates with poor prognosis in neuroblastoma patients. BX-795 inhibits PDK1 and abrogates the AKT signaling pathway activation. BX-795 demonstrates strong efficacy in neuroblastoma spheroid tumor model. Combination with BX-795 synergistically enhances doxorubicin antitumor activity. BX-795 synergistically sensitized ALK mutated neuroblastoma cell lines to crizotinib.
High-risk neuroblastoma (NB) represents a major clinical challenge in pediatric oncology due to relapse of metastatic, drug-resistant disease, and treatment-related toxicities. An analysis of 1235 primary NB patient dataset revealed significant increase in AKT1 and AKT2 gene expression with cancer stage progression. Additionally, Both AKT1 and AKT2 expression inversely correlate with poor overall survival of NB patients. AKT1 and AKT2 genes code for AKT that drive a major oncogenic cell signaling pathway known in many cancers, including NB. To inhibit AKT pathway, we repurposed an antiviral inhibitor BX-795 that inhibits PDK1, an upstream activator of AKT. BX-795 potently inhibits NB cell proliferation and colony growth in a dose-dependent manner. BX-795 significantly enhances apoptosis and blocks cell cycle progression at mitosis phase in NB. Additionally, BX-795 potently inhibits tumor formation and growth in a NB spheroid tumor model. We further tested dual therapeutic approaches by combining BX-795 with either doxorubicin or crizotinib and found synergistic and significant inhibition of NB growth, in contrast to either drug alone. Overall, our data demonstrate that BX-795 inhibits AKT pathway to inhibit NB growth, and combining BX-795 with current therapies is an effective and clinically tractable therapeutic approach for NB.
Collapse
Affiliation(s)
- Rameswari Chilamakuri
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, NY, USA
| | - Danielle C Rouse
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, NY, USA
| | - Yang Yu
- Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Abbas S Kabir
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, NY, USA
| | - Aaron Muth
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, NY, USA
| | - Jianhua Yang
- Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Jeffery M Lipton
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, New York, NY, USA
| | - Saurabh Agarwal
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, NY, USA.
| |
Collapse
|
17
|
Alam M, Hasan GM, Hassan MI. A review on the role of TANK-binding kinase 1 signaling in cancer. Int J Biol Macromol 2021; 183:2364-2375. [PMID: 34111484 DOI: 10.1016/j.ijbiomac.2021.06.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/19/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023]
Abstract
TANK-binding kinase 1 (TBK1) regulates various biological processes including, NF-κB signaling, immune response, autophagy, cell division, Ras-mediated oncogenesis, and AKT pro-survival signaling. Enhanced TBK1 activity is associated with autoimmune diseases and cancer, suggesting its role in therapeutic targeting of interferonopathies. In addition, dysregulation of TBK1 activity promotes several inflammatory disorders and oncogenesis. Structural and biochemical study reports provide the molecular process of TBK1 activation and recap the substrate selection about TBK1. This review summarizes recent findings on the molecular mechanisms by which TBK1 is involved in cancer signaling. The IKK-ε and TBK1 are together associated with inflammatory diseases by inducing type I IFNs. Furthermore, TBK1 signaling regulates radiation-induced epithelial-mesenchymal transition by controlling phosphorylation of GSK-3β and expression of Zinc finger E-box-binding homeobox 1, suggesting, TBK1 could be targeted for radiotherapy-induced metastasis therapy. Despite a considerable increase in the list of TBK1 inhibitors, only a few has potential to control cancer. Among them, a compound BX795 is considered a potent and selective inhibitor of TBK1. We discussed the therapeutic potential of small-molecule inhibitors of TBK1, particularly those with high selectivity, which will enable further exploration in the therapeutic management of cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, PO Box 173, Al-Kharj 11942, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
18
|
Xiang S, Song S, Tang H, Smaill JB, Wang A, Xie H, Lu X. TANK-binding kinase 1 (TBK1): An emerging therapeutic target for drug discovery. Drug Discov Today 2021; 26:2445-2455. [PMID: 34051368 DOI: 10.1016/j.drudis.2021.05.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 04/20/2021] [Accepted: 05/22/2021] [Indexed: 12/16/2022]
Abstract
Dysregulation of TANK-binding kinase 1 (TBK1) homeostasis leads to the occurrence and progression of many diseases, such as inflammation, autoimmune diseases, metabolic diseases, and cancer. Therefore, there is a need to develop TBK1 inhibitors as therapeutic agents. In this review, we highlight the diverse biological functions of TBK1 and summarize the promising small-molecule inhibitors of TBK1 that have the potential to be developed as therapeutic candidates.
Collapse
Affiliation(s)
- Shuang Xiang
- Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Shukai Song
- Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Haotian Tang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Jeff B Smaill
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Aiqun Wang
- Department of Anesthesiology, Guangzhou Red Cross Hospital Affiliated to Jinan University, Guangzhou 510220, China.
| | - Hua Xie
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
| | - Xiaoyun Lu
- Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| |
Collapse
|
19
|
Abreha MH, Ojelade S, Dammer EB, McEachin ZT, Duong DM, Gearing M, Bassell GJ, Lah JJ, Levey AI, Shulman JM, Seyfried NT. TBK1 interacts with tau and enhances neurodegeneration in tauopathy. J Biol Chem 2021; 296:100760. [PMID: 33965374 PMCID: PMC8191334 DOI: 10.1016/j.jbc.2021.100760] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022] Open
Abstract
One of the defining pathological features of Alzheimer's disease (AD) is the deposition of neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau in the brain. Aberrant activation of kinases in AD has been suggested to enhance phosphorylation and toxicity of tau, making the responsible tau kinases attractive therapeutic targets. The full complement of tau-interacting kinases in AD brain and their activity in disease remains incompletely defined. Here, immunoaffinity enrichment coupled with mass spectrometry (MS) identified TANK-binding kinase 1 (TBK1) as a tau-interacting partner in human AD cortical brain tissues. We validated this interaction in human AD, familial frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17) caused by mutations in MAPT (R406W & P301L) and corticobasal degeneration (CBD) postmortem brain tissues as well as human cell lines. Further, we document increased TBK1 activation in both AD and FTDP-17 and map TBK1 phosphorylation sites on tau based on in vitro kinase assays coupled to MS. Lastly, in a Drosophila tauopathy model, activating expression of a conserved TBK1 ortholog triggers tau hyperphosphorylation and enhanced neurodegeneration, whereas knockdown had the reciprocal effect, suppressing tau toxicity. Collectively, our findings suggest that increased TBK1 activation may promote tau hyperphosphorylation and neuronal loss in AD and related tauopathies.
Collapse
Affiliation(s)
- Measho H Abreha
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA; Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Shamsideen Ojelade
- Department of Neurology, Baylor College of Medicine, Houston, Texas, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA
| | - Eric B Dammer
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA; Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, Georgia, USA; Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Zachary T McEachin
- Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, Georgia, USA; Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Duc M Duong
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA; Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, Georgia, USA; Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Marla Gearing
- Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, Georgia, USA; Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA; Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Gary J Bassell
- Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, Georgia, USA; Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - James J Lah
- Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, Georgia, USA; Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Allan I Levey
- Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, Georgia, USA; Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Joshua M Shulman
- Department of Neurology, Baylor College of Medicine, Houston, Texas, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA; Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA.
| | - Nicholas T Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA; Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, Georgia, USA; Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, USA.
| |
Collapse
|
20
|
Revach OY, Liu S, Jenkins RW. Targeting TANK-binding kinase 1 (TBK1) in cancer. Expert Opin Ther Targets 2020; 24:1065-1078. [PMID: 32962465 PMCID: PMC7644630 DOI: 10.1080/14728222.2020.1826929] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/18/2020] [Indexed: 12/16/2022]
Abstract
INTRODUCTION TANK-binding kinase 1 (TBK1) is a Ser/Thr kinase with a central role in coordinating the cellular response to invading pathogens and regulating key inflammatory signaling cascades. While intact TBK1 signaling is required for successful anti-viral signaling, dysregulated TBK1 signaling has been linked to a variety of pathophysiologic conditions, including cancer. Several lines of evidence support a role for TBK1 in cancer pathogenesis, but the specific roles and regulation of TBK1 remain incompletely understood. A key challenge is the diversity of cellular processes that are regulated by TBK1, including inflammation, cell cycle, autophagy, energy homeostasis, and cell death. Nevertheless, evidence from pre-clinical cancer models suggests that targeting TBK1 may be an effective strategy for anti-cancer therapy in specific settings. AREAS COVERED This review provides an overview of the roles and regulation of TBK1 with a focus on cancer pathogenesis and drug targeting of TBK1 as an anti-cancer strategy. Relevant literature was derived from a PubMed search encompassing studies from 1999 to 2020. EXPERT OPINION TBK1 is emerging as a potential target for anti-cancer therapy. Inhibition of TBK1 alone may be insufficient to restrain the growth of most cancers; hence, combination strategies will likely be necessary. Improved understanding of tumor-intrinsic and tumor-extrinsic TBK1 signaling will inform novel therapeutic strategies.
Collapse
Affiliation(s)
- Or-yam Revach
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Shuming Liu
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Russell W. Jenkins
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
21
|
Knockdown of Amphiregulin Triggers Doxorubicin-Induced Autophagic and Apoptotic Death by Regulating Endoplasmic Reticulum Stress in Glioblastoma Cells. J Mol Neurosci 2020; 70:1461-1470. [PMID: 32472393 DOI: 10.1007/s12031-020-01598-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 05/15/2020] [Indexed: 12/13/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common type of malignant brain tumor. The present standard treatment for GBM has not been effective; therefore, the prognosis remains dramatically poor and prolonged survival after treatment is still limited. The new therapeutic strategies are urgently needed to improve the treatment efficiency. Doxorubicin (Dox) has been widely used in the treatment of many cancers for decades. In recent years, with the advancement of delivery technology, more and more research indicates that Dox has the opportunity to be used in the treatment of GBM. Amphiregulin (AREG), a ligand of the epidermal growth factor receptor (EGFR), has been reported to have oncogenic effects in many cancer cell types and is implicated in drug resistance. However, the biological function and molecular mechanism of AREG in Dox treatment of GBM are still unclear. Here, we demonstrate that knockdown of AREG can boost Dox-induced endoplasmic reticulum (ER) stress to trigger activation in both autophagy and apoptosis in GBM cells, ultimately leading to cell death. To explore the importance of AREG in the clinic, we used available bioinformatics tools and found AREG is highly expressed in GBM tumor tissues that are associated with poor survival. In addition, we also used antibody array analysis to dissect pathways that are likely to be activated by AREG. Taken together, our results revealed AREG can serve as a potential therapeutic target and a promising biomarker in GBM.
Collapse
|
22
|
Zhang YH, Aldo P, You Y, Ding J, Kaislasuo J, Petersen JF, Lokkegaard E, Peng G, Paidas MJ, Simpson S, Pal L, Guller S, Liu H, Liao AH, Mor G. Trophoblast-secreted soluble-PD-L1 modulates macrophage polarization and function. J Leukoc Biol 2020; 108:983-998. [PMID: 32386458 DOI: 10.1002/jlb.1a0420-012rr] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/22/2022] Open
Abstract
Decidual macrophages are in close contact with trophoblast cells during placenta development, and an appropriate crosstalk between these cellular compartments is crucial for the establishment and maintenance of a healthy pregnancy. During different phases of gestation, macrophages undergo dynamic changes to adjust to the different stages of fetal development. Trophoblast-secreted factors are considered the main modulators responsible for macrophage differentiation and function. However, the phenotype of these macrophages induced by trophoblast-secreted factors and the factors responsible for their polarization has not been elucidated. In this study, we characterized the phenotype and function of human trophoblast-induced macrophages. Using in vitro models, we found that human trophoblast-educated macrophages were CD14+ CD206+ CD86- and presented an unusual transcriptional profile in response to TLR4/LPS activation characterized by the expression of type I IFN-β expression. IFN-β further enhances the constitutive production of soluble programmed cell death ligand 1 (PD-L1) from trophoblast cells. PD-1 blockage inhibited trophoblast-induced macrophage differentiation. Soluble PD-L1 (sPD-L1) was detected in the blood of pregnant women and increased throughout the gestation. Collectively, our data suggest the existence of a regulatory circuit at the maternal fetal interface wherein IFN-β promotes sPD-L1 expression/secretion by trophoblast cells, which can then initiate a PD-L1/PD-1-mediated macrophage polarization toward an M2 phenotype, consequently decreasing inflammation. Macrophages then maintain the expression of sPD-L1 by the trophoblasts through IFN-β production induced through TLR4 ligation.
Collapse
Affiliation(s)
- Yong-Hong Zhang
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA.,Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Paulomi Aldo
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Yuan You
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics, Gynecology, Wayne State University, Detroit, Michigan, USA
| | - Jiahui Ding
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics, Gynecology, Wayne State University, Detroit, Michigan, USA
| | - Janina Kaislasuo
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA.,Department of Obstetrics and Gynecology, University of Helsinki and the Helsinki University Hospital, Helsinki, Finland
| | - Jesper F Petersen
- Department of Obstetrics and Gynecology, North Zealand Hospital, Hilleroed, Denmark
| | - Ellen Lokkegaard
- Department of Obstetrics and Gynecology, North Zealand Hospital, Hilleroed, Denmark
| | - Gang Peng
- Department of Biostatistics, School of Public Health, Yale University, New Haven, Connecticut, USA
| | - Michael J Paidas
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Samantha Simpson
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Lubna Pal
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Seth Guller
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Hong Liu
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Ai Hua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Gil Mor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA.,C.S. Mott Center for Human Growth and Development, Department of Obstetrics, Gynecology, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
23
|
Iqbal A, Suryawanshi R, Yadavalli T, Volety I, Shukla D. BX795 demonstrates potent antiviral benefits against herpes simplex Virus-1 infection of human cell lines. Antiviral Res 2020; 180:104814. [PMID: 32380150 DOI: 10.1016/j.antiviral.2020.104814] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/09/2020] [Accepted: 04/27/2020] [Indexed: 01/09/2023]
Abstract
Herpes simplex virus-1 (HSV-1) infection is known to cause skin blisters, keratitis as well as deadly cases of encephalitis in some situations. Only a few therapeutic modalities are available for this globally prevalent infection. Very recently, a small molecule BX795 was identified as an inhibitor of HSV-1 protein synthesis in an ocular model of infection. In order to demonstrate its broader antiviral benefits, this study was aimed at evaluating the antiviral efficacy, mode-of-action, and toxicity of BX795 against HSV-1 infection of three human cell lines: HeLa, HEK, and HCE. Several different assays, including cell survival analysis, imaging, plaque analysis, Immunoblotting, and qRT-PCR, were performed. In all cases, BX795 demonstrated low toxicity at therapeutic concentration and showed strong antiviral benefits. Quite interestingly, cell line-dependent differences in the mechanism of antiviral action and cytokine response to infection were seen upon BX795 treatment. Taken together, our results suggest that BX795 may exert its antiviral benefits via cell-line specific mechanisms.
Collapse
Affiliation(s)
- Aqsa Iqbal
- Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL 60612, USA.
| | - Rahul Suryawanshi
- Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL 60612, USA.
| | - Tejabhiram Yadavalli
- Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL 60612, USA.
| | - Ipsita Volety
- Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL 60612, USA.
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL 60612, USA; Department of Bioengineering, University of Illinois, Chicago, IL 60607, USA.
| |
Collapse
|
24
|
Yu T, Wang Z, Jie W, Fu X, Li B, Xu H, Liu Y, Li M, Kim E, Yang Y, Cho JY. The kinase inhibitor BX795 suppresses the inflammatory response via multiple kinases. Biochem Pharmacol 2020; 174:113797. [DOI: 10.1016/j.bcp.2020.113797] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/07/2020] [Indexed: 02/06/2023]
|
25
|
Choi EA, Choi YS, Lee EJ, Singh SR, Kim SC, Chang S. A pharmacogenomic analysis using L1000CDS 2 identifies BX-795 as a potential anticancer drug for primary pancreatic ductal adenocarcinoma cells. Cancer Lett 2019; 465:82-93. [PMID: 31404615 DOI: 10.1016/j.canlet.2019.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/07/2019] [Accepted: 08/07/2019] [Indexed: 01/18/2023]
Abstract
Pancreatic cancer is one of the leading causes of cancer death, mainly due to the absence of early diagnostic tool and effective therapeutic agents. To identify an effective therapeutic agent for pancreatic ductal adenocarcinoma cells (PDAC), we used 10 Gene Expression Omnibus (GEO) data sets and L1000CDS2 pharmacogenetic search tool and obtained chemical "perturvants" that were predicted to reverse the abnormal gene expression changes in PDAC. Among 20 initial candidates, we measured IC50 for six compounds and identified BX-795, PDK1/TBK1 inhibitor, as a therapeutic candidate. We found that BX-795 inhibits primary PDAC cell proliferation more effectively than normal cells. Following molecular analysis revealed that BX-795 down-regulates mTOR-GSK3β pathway and trigger apoptosis. Moreover, we found that BX-795 suppresses primary PDAC cell migration via downregulation of Snail and Slug. Finally, efficacy test in patient-derived xenograft model of PDAC showed BX-795 can inhibit in vivo tumor growth as efficient as gemcitabine and a combination with trametinib further suppresses tumor growth. Collectively, these results demonstrate the BX-795 as an effective therapeutic candidate for PDAC treatment.
Collapse
Affiliation(s)
- Eun A Choi
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Yeon-Sook Choi
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Eun Ji Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Shree Ram Singh
- Basic Research Laboratory, National Cancer Institute, Frederick, MD, 21702, USA.
| | - Song Cheol Kim
- Department of Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea.
| | - Suhwan Chang
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea; Department of Physiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea.
| |
Collapse
|
26
|
Khan T, Relitti N, Brindisi M, Magnano S, Zisterer D, Gemma S, Butini S, Campiani G. Autophagy modulators for the treatment of oral and esophageal squamous cell carcinomas. Med Res Rev 2019; 40:1002-1060. [PMID: 31742748 DOI: 10.1002/med.21646] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/16/2019] [Accepted: 11/08/2019] [Indexed: 02/06/2023]
Abstract
Oral squamous cell carcinomas (OSCC) and esophageal squamous cell carcinomas (ESCC) exhibit a survival rate of less than 60% and 40%, respectively. Late-stage diagnosis and lack of effective treatment strategies make both OSCC and ESCC a significant health burden. Autophagy, a lysosome-dependent catabolic process, involves the degradation of intracellular components to maintain cell homeostasis. Targeting autophagy has been highlighted as a feasible therapeutic strategy with clinical utility in cancer treatment, although its associated regulatory mechanisms remain elusive. The detection of relevant biomarkers in biological fluids has been anticipated to facilitate early diagnosis and/or prognosis for these tumors. In this context, recent studies have indicated the presence of specific proteins and small RNAs, detectable in circulating plasma and serum, as biomarkers. Interestingly, the interplay between biomarkers (eg, exosomal microRNAs) and autophagic processes could be exploited in the quest for targeted and more effective therapies for OSCC and ESCC. In this review, we give an overview of the available biomarkers and innovative targeted therapeutic strategies, including the application of autophagy modulators in OSCC and ESCC. Additionally, we provide a viewpoint on the state of the art and on future therapeutic perspectives combining the early detection of relevant biomarkers with drug discovery for the treatment of OSCC and ESCC.
Collapse
Affiliation(s)
- Tuhina Khan
- Department of Biotechnology, Chemistry, and Pharmacy, Department of Excellence 2018-2022, University of Siena, Siena, Italy
| | - Nicola Relitti
- Department of Biotechnology, Chemistry, and Pharmacy, Department of Excellence 2018-2022, University of Siena, Siena, Italy
| | - Margherita Brindisi
- Department of Pharmacy, Department of Excellence 2018-2022, University of Napoli Federico IL, Napoli, Italy
| | - Stefania Magnano
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160, Pearse Street, Dublin, Dublin 2, Ireland
| | - Daniela Zisterer
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160, Pearse Street, Dublin, Dublin 2, Ireland
| | - Sandra Gemma
- Department of Biotechnology, Chemistry, and Pharmacy, Department of Excellence 2018-2022, University of Siena, Siena, Italy
| | - Stefania Butini
- Department of Biotechnology, Chemistry, and Pharmacy, Department of Excellence 2018-2022, University of Siena, Siena, Italy
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry, and Pharmacy, Department of Excellence 2018-2022, University of Siena, Siena, Italy
| |
Collapse
|
27
|
Lin CW, Chin HK, Lee SL, Chiu CF, Chung JG, Lin ZY, Wu CY, Liu YC, Hsiao YT, Feng CH, Bai LY, Weng JR. Ursolic acid induces apoptosis and autophagy in oral cancer cells. ENVIRONMENTAL TOXICOLOGY 2019; 34:983-991. [PMID: 31062913 DOI: 10.1002/tox.22769] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 04/19/2019] [Accepted: 04/24/2019] [Indexed: 06/09/2023]
Abstract
Oral squamous cell carcinoma (OSCC) is the fifth common cause of cancer mortality in Taiwan with high incidence and recurrence and needs new therapeutic strategies. In this study, ursolic acid (UA), a triterpenoid, was examined the antitumor potency in OSCC cells. Our results showed that UA inhibited the proliferation of OSCC cells in a dose- and time-dependent manner in both Ca922 and SCC2095 oral cancer cells. UA induced caspase-dependent apoptosis accompanied with the modulation of various biological biomarkers including downregulating Akt/mTOR/NF-κB signaling, ERK, and p38. In addition, UA inhibited angiogenesis as evidenced by abrogation of migration/invasion and blocking MMP-2 secretion in Ca922 cells. Interestingly, UA induced autophagy in OSCC cells, as manifested by LC3B-II conversion and increased p62 expression and accumulation of autophagosomes. Inhibition by autophagy inhibitor enhanced UA-mediated apoptosis in Ca922 cells. The experiment provides a rationale for using triterpenoid in the treatment of OSCC.
Collapse
Affiliation(s)
- Cheng-Wen Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Wufeng, Taichung, Taiwan
| | - Hsien-Kuo Chin
- Division of Cardiovascular Surgery, Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Shou-Lun Lee
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chang-Fang Chiu
- College of Medicine, China Medical University, Taichung, Taiwan
- Cancer Center, China Medical University Hospital, Taichung, Taiwan
| | - Jing-Gung Chung
- Department of Biotechnology, Asia University, Wufeng, Taichung, Taiwan
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Zi-Yin Lin
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chia-Yung Wu
- Cancer Center, China Medical University Hospital, Taichung, Taiwan
| | - Ying-Chen Liu
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Yung-Ting Hsiao
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chia-Hsien Feng
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Li-Yuan Bai
- College of Medicine, China Medical University, Taichung, Taiwan
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Jing-Ru Weng
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
28
|
Type I interferon signaling, regulation and gene stimulation in chronic virus infection. Semin Immunol 2019; 43:101277. [PMID: 31155227 DOI: 10.1016/j.smim.2019.05.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 05/21/2019] [Accepted: 05/24/2019] [Indexed: 12/12/2022]
Abstract
Type I Interferons (IFN-I) mediate numerous immune interactions during viral infections, from the establishment of an antiviral state to invoking and regulating innate and adaptive immune cells that eliminate infection. While continuous IFN-I signaling plays critical roles in limiting virus replication during both acute and chronic infections, sustained IFN-I signaling also leads to chronic immune activation, inflammation and, consequently, immune exhaustion and dysfunction. Thus, an understanding of the balance between the desirable and deleterious effects of chronic IFN-I signaling will inform our quest for IFN-based therapies for chronic viral infections as well as other chronic diseases, including cancer. As such the factors involved in induction, propagation and regulation of IFN-I signaling, from the initial sensing of viral nucleotides within the cell to regulatory downstream signaling factors and resulting IFN-stimulated genes (ISGs) have received significant research attention. This review summarizes recent work on IFN-I signaling in chronic infections, and provides an update on therapeutic approaches being considered to counter such infections.
Collapse
|
29
|
Zhao C, Zhao W. TANK-binding kinase 1 as a novel therapeutic target for viral diseases. Expert Opin Ther Targets 2019; 23:437-446. [DOI: 10.1080/14728222.2019.1601702] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Chunyuan Zhao
- Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
- Department of Cell Biology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Wei Zhao
- Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
- Department of Cell Biology, School of Basic Medical Science, Shandong University, Jinan, China
| |
Collapse
|
30
|
Roles for the IKK-Related Kinases TBK1 and IKKε in Cancer. Cells 2018; 7:cells7090139. [PMID: 30223576 PMCID: PMC6162516 DOI: 10.3390/cells7090139] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/11/2018] [Accepted: 09/13/2018] [Indexed: 01/21/2023] Open
Abstract
While primarily studied for their roles in innate immune response, the IκB kinase (IKK)-related kinases TANK-binding kinase 1 (TBK1) and IKKε also promote the oncogenic phenotype in a variety of cancers. Additionally, several substrates of these kinases control proliferation, autophagy, cell survival, and cancer immune responses. Here we review the involvement of TBK1 and IKKε in controlling different cancers and in regulating responses to cancer immunotherapy.
Collapse
|
31
|
ACGH detects distinct genomic alterations of primary intrahepatic cholangiocarcinomas and matched lymph node metastases and identifies a poor prognosis subclass. Sci Rep 2018; 8:10637. [PMID: 30006612 PMCID: PMC6045619 DOI: 10.1038/s41598-018-28941-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/03/2018] [Indexed: 12/17/2022] Open
Abstract
Lymph node metastases (LNM) are an important prognostic factor for patients with intrahepatic cholangiocarcinoma, but underlying genetic alterations are poorly understood. Whole genome array comparative genomic hybridization (aCGH) was performed in 37 tumors and 14 matched LNM. Genomic analyses of tumors confirmed known and identified new (gains in 19q) copy number alterations (CNA). Tumors with LNM (N1) had more alterations and exclusive gains (3p, 4q, 5p, 13q) and losses (17p and 20p). LNM shared most alterations with their matched tumors (86%), but 79% acquired new isolated gains [12q14 (36%); 1p13, 2p23, 7p22, 7q11, 11q12, 13q13 and 14q12 (>20%)]. Unsupervised clustering revealed a poor prognosis subclass with increased alterations significantly associated to tumor differentiation and survival. TP53 and KRAS mutations occurred in 19% of tumors and 6% of metastases. Pathway analyses revealed association to cancer-associated pathways. Advanced tumor stage, microvascular/perineural invasion, and microscopic positive resection margin (R1) were significantly correlated to metastases, while N1-status, R1-resection, and poor tumor differentiation were significantly correlated to survival. ACGH identified clear differences between N0 (no LNM) and N1 tumors, while N1 tumors and matched LNM displayed high clonality with exclusive gains in the metastases. A novel subclass with increased CNAs and poor tumor differentiation was significantly correlated to survival.
Collapse
|
32
|
Relevance of placental type I interferon beta regulation for pregnancy success. Cell Mol Immunol 2018; 15:1010-1026. [PMID: 29907882 DOI: 10.1038/s41423-018-0050-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 05/16/2018] [Indexed: 12/21/2022] Open
Abstract
Pregnancy is a unique immunologic and microbial condition that requires an adequate level of awareness to provide a fast and protective response against pathogens as well as to maintain a state of tolerance to paternal antigens. Dysregulation of inflammatory pathways in the placenta triggered by pathogens is one of the main factors responsible for pregnancy complications. Type I IFNs are key molecules modulating immune responses at the level of the placenta and are crucial for protection of the pregnancy via their antiviral and immune modulatory properties. In this study, we elucidate the mechanisms controlling the basal expression of IFNβ and its negative feedback. Using in vitro and in vivo animal models, we found that TLR signaling maintains basal IFNβ levels through the TLR4-MyD88-independent TBK/IRF3 signaling pathway. We describe the role of the TAM receptor Axl in the regulation of IFNβ function in human and mouse trophoblast cells. The absence of TAM receptors in vivo is associated with fetal demise due to dysregulation of IFNβ expression and its pro-apoptotic downstream effectors. Collectively, our data describe a feedback signaling pathway controlling the expression and function of IFNβ in the trophoblast that is essential for an effective response during viral and microbial infections.
Collapse
|
33
|
Liu ZH, Liu HB, Wang J. Astragaloside IV protects against the pathological cardiac hypertrophy in mice. Biomed Pharmacother 2017; 97:1468-1478. [PMID: 29793309 DOI: 10.1016/j.biopha.2017.09.092] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 09/02/2017] [Accepted: 09/18/2017] [Indexed: 12/20/2022] Open
Abstract
Although pathologic hypertrophic hearts currently maintain output, sustained cardiac hypertrophy could predispose a patient to arrhythmia and sudden death, and also cause heart failure. Thus, finding effective treatment and exploring the underlying molecular mechanisms of cardiac hypertrophy is urgently necessary. Astragaloside IV (AST-IV) is the main active component, extracted from the traditional Chinese medicinal herb Astragalus membranaceus. Previous studies have indicated that AST-IV has various bioactivities, such as anti-cancer, anti-oxidative stress and anti-inflammation. In the present study, we aimed to explore the effects of AST-IV on cardiac hypertrophy induced by aortic banding (AB) surgery in mice, and to reveal the underlying signaling mechanisms. The suppressor of IKKε (SIKE) is a negative regulator of the interferon pathway, which could be enhanced by AST-IV to ameliorate pathological cardiac hypertrophy in mice through inactivating TANK-binding kinase 1 (TBK1)/PI3K/AKT signaling pathway. AST-IV attenuated cardiac hypertrophy, collagen accumulation and abnormal cardiac functions. In addition, AB-induced apoptosis and inflammation in the heart tissue samples of mice, which were attenuated by AST-IV administration through inhibiting SIKE expression levels. Together, the findings above indicated that AST-IV might be a potential candidate to prevent cardiac hypertrophy via elevating SIKE to suppress TBK1/PI3K/AKT activity.
Collapse
Affiliation(s)
- Zhen-Hu Liu
- Department of Pediatrics, Liaocheng People's Hospital, Liaocheng, Shandong 252000, China
| | - Hong-Bo Liu
- Department of Pediatrics, Liaocheng People's Hospital, Liaocheng, Shandong 252000, China
| | - Jun Wang
- Department of Pediatrics, Liaocheng People's Hospital, Liaocheng, Shandong 252000, China.
| |
Collapse
|
34
|
Lian YG, Zhao HY, Wang SJ, Xu QL, Xia XJ. NLRP4 is an essential negative regulator of fructose-induced cardiac injury in vitro and in vivo. Biomed Pharmacother 2017; 91:590-601. [PMID: 28486191 DOI: 10.1016/j.biopha.2017.04.120] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 04/19/2017] [Accepted: 04/27/2017] [Indexed: 01/22/2023] Open
Abstract
High fructose consumption leads to metabolic syndrome and enhances cardiovascular disease risk. However, our knowledge of the molecular mechanism underlying the cardiac disease caused by fructose feeding is still poor. Nod-like receptors (NLRs) are intracellular sensors, responding to a variety of intracellular danger signals to induce injuries. NLRP4 is a negative regulator of nuclear factor-κB (NF-κB) signaling pathway through interactions with kinase IκB kinase (IKK). Here, we illustrated that NLRP4 attenuates pro-inflammatory cytokines releasing, including Transforming growth factor (TGF-β1), Tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-18 (IL-18) and interleukin-6 (IL-6), in fructose-treated cardiac cells by means of RT-qPCR, and western blotting analysis. In addition, NLRP4 could reduce the expression of TANK-binding kinase 1/interferon regulatory factor 3 (TBK1/IRF3), reducing inflammation response and achieving its anti-hypertrophic action. TBK1 plays critical roles in the IRF3 signaling pathway, modulating inflammation response. The inhibition of IKK/NF-κB signaling pathway by NLRP4 is confirmed by NLRP4 over-expression and knockdown. In vivo, high fructose feeding induced cardiac injury, accompanied with reduced expression of NLRP4 in heart tissue samples, indicating the possible role of NLRP4 in ameliorating heart injury. In conclusion, the findings above indicated that NLRP4 is an important mediator of cardiac remodeling in vitro and in vivo through negatively regulating TBK1/IRF3 and IKK/NF-κB signaling pathways, indicating that NLRP4 might be a promising therapeutic target against cardiac inflammation.
Collapse
Affiliation(s)
- Yong-Gang Lian
- Department of Emergency Internal Medicine, Linyi People's Hospital, Jiefang Road 27, Linyi, Shandong Province, 276003, China
| | - Hai-Ying Zhao
- Department of Emergency Internal Medicine, Linyi People's Hospital, Jiefang Road 27, Linyi, Shandong Province, 276003, China
| | - Sheng-Ji Wang
- Department of Emergency Internal Medicine, Linyi People's Hospital, Jiefang Road 27, Linyi, Shandong Province, 276003, China
| | - Qin-Liang Xu
- Department of Emergency Internal Medicine, Linyi People's Hospital, Jiefang Road 27, Linyi, Shandong Province, 276003, China
| | - Xiang-Jun Xia
- Department of Emergency Internal Medicine, Linyi People's Hospital, Jiefang Road 27, Linyi, Shandong Province, 276003, China.
| |
Collapse
|
35
|
Weng JR, Bai LY, Lin WY, Chiu CF, Chen YC, Chao SW, Feng CH. A Flavone Constituent from Myoporum bontioides Induces M-Phase Cell Cycle Arrest of MCF-7 Breast Cancer Cells. Molecules 2017; 22:molecules22030472. [PMID: 28294989 PMCID: PMC6155216 DOI: 10.3390/molecules22030472] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/04/2017] [Accepted: 03/13/2017] [Indexed: 12/27/2022] Open
Abstract
Myoporum bontioides is a traditional medicinal plant in Asia with various biological activities, including anti-inflammatory and anti-bacterial characteristics. To identify the bioactive constituents from M. bontioides, a newly-identified flavone, 3,4'-dimethoxy-3',5,7-trihydroxyflavone (compound 1), along with eight known compounds, were investigated in human MCF-7 breast cancer, SCC4 oral cancer, and THP-1 monocytic leukemia cells. Among these compounds, compound 1 exhibited the strongest antiproliferative activity with half-maximal inhibitory concentration (IC50) values ranging from 3.3 μM (MCF-7) to 8.6 μM (SCC4). Flow cytometric analysis indicated that compound 1 induced G2/M cell cycle arrest in MCF-7 cells. Mechanistic evidence suggests that the G2/M arrest could be attributable to compound 1's modulatory effects on the phosphorylation and expression of numerous key signaling effectors, including cell division cycle 2 (CDC2), CDC25C, and p53. Notably, compound 1 downregulated the expression of histone deacetylase 2 (HDAC2) and HDAC4, leading to increased histone H3 acetylation and p21 upregulation. Together, these findings suggest the translational potential of compound 1 as a breast cancer treatment.
Collapse
Affiliation(s)
- Jing-Ru Weng
- Department of Marine Technology and Resources, National Sun-Yat-sen University, Kaohisung 804, Taiwan.
| | - Li-Yuan Bai
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan.
- College of Medicine, China Medical University, Taichung 404, Taiwan.
| | - Wei-Yu Lin
- Department of Pharmacy, Kinmen Hospital, Kinmen 891, Taiwan.
| | - Chang-Fang Chiu
- College of Medicine, China Medical University, Taichung 404, Taiwan.
- Cancer Center, China Medical University Hospital, Taichung 404, Taiwan.
| | - Yu-Chang Chen
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Shi-Wei Chao
- School of Pharmacy, Taipei Medical University, Taipei 110, Taiwan.
| | - Chia-Hsien Feng
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
36
|
Chiu CF, Weng JR, Jadhav A, Wu CY, Sargeant AM, Bai LY. T315 Decreases Acute Myeloid Leukemia Cell Viability through a Combination of Apoptosis Induction and Autophagic Cell Death. Int J Mol Sci 2016; 17:ijms17081337. [PMID: 27537872 PMCID: PMC5000734 DOI: 10.3390/ijms17081337] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/07/2016] [Accepted: 08/10/2016] [Indexed: 12/19/2022] Open
Abstract
T315, an integrin-linked kinase (ILK) inhibitor, has been shown to suppress the proliferation of breast cancer, stomach cancer and chronic lymphocytic leukemia cells. Here we demonstrate that T315 decreases cell viability of acute myeloid leukemia (AML) cell lines (HL-60 and THP-1) and primary leukemia cells from AML patients in a dose-responsive manner. Normal human bone marrow cells are less sensitive than leukemia cells to T315. T315 down regulates protein kinase B (Akt) and p-Akt and induces caspase activation, poly-ADP-ribose polymerase (PARP) cleavage, apoptosis and autophagy through an ILK-independent manner. Interestingly, pretreatment with autophagy inhibitors rescues cells from apoptosis and concomitant PARP cleavage, which implicates a key role of autophagic cell death in T315-mediated cytotoxicity. T315 also demonstrates efficacy in vivo, suppressing the growth of THP-1 xenograft tumors in athymic nude mice when administered intraperitoneally. This study shows that autophagic cell death and apoptosis cooperatively contribute to the anticancer activity of T315 in AML cells. In conclusion, the complementary roles of apoptotic and autophagic cell death should be considered in the future assessment of the translational value of T315 in AML therapy.
Collapse
Affiliation(s)
- Chang-Fang Chiu
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung 40447, Taiwan.
- Cancer Center, China Medical University Hospital, Taichung 40447, Taiwan.
- College of Medicine, School of Medicine, China Medical University, Taichung 40402, Taiwan.
| | - Jing-Ru Weng
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
- Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan.
| | - Appaso Jadhav
- Division of Medicinal Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA.
| | - Chia-Yung Wu
- Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan.
| | - Aaron M Sargeant
- Charles River Laboratories, Preclinical Services, Spencerville, OH 45887, USA.
| | - Li-Yuan Bai
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung 40447, Taiwan.
- College of Medicine, School of Medicine, China Medical University, Taichung 40402, Taiwan.
| |
Collapse
|
37
|
Sun L, Pan S, Yang Y, Sun J, Liang D, Wang X, Xie X, Hu J. Toll-like receptor 9 regulates melanogenesis through NF-κB activation. Exp Biol Med (Maywood) 2016; 241:1497-504. [PMID: 27075928 DOI: 10.1177/1535370216642529] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/01/2016] [Indexed: 12/22/2022] Open
Abstract
Toll-like receptors play essential roles in the modulation of melanogenesis, which has been implicated in the pathogenesis of hyper- or hypopigmentation-related diseases. However, little is currently known regarding the role of TLR9 in human melanocytes. TLR9 recognizes unmethylated cytosine-phosphate-guanine motif-containing oligodeoxynucleotides, and cytosine-phosphate-guanine ODN2006 acts as an hTLR9 agonist. The aim of the present study was to investigate the effect of cytosine-phosphate-guanine ODN2006 on melanogenesis in the human melanocyte cells. MTT assay and enzyme-linked immunosorbent assay indicated that ODN2006 stimulation (0, 1, 5, 10 µM) dose-dependently reduced cell viability and promoted the production of TNF-α, IL-6, and IL-8 in PIG1 melanocytes. The mRNA and protein levels of PMEL and TYRosinase were elevated at 6 h, and then decreased 24 h later, but were significantly augmented 72 h later following ODN2006 stimulation; whereas, TLR9 expressions were time-dependently increased in PIG1 melanocytes. Moreover, ultraviolet B irradiation combined with ODN2006 stimulation induced much more significant enhancement of PMEL, TYRosinase, and TLR9 mRNA and protein after three days in PIG1 melanocytes, and the similar results were obtained using the primary human melanocytes. The expression of TLR9 protein was down-regulated by TLR9 siRNA transfection. ODN2006 had an additive effect on ultraviolet B-induced melanogenesis and PMEL expression, as well as NF-κB activation, which could be blocked by TLR9 knockdown, the NF-κB specific inhibitor PDTC, or the TBK1 inhibitor BX795. Collectively, we concluded that TLR9 regulates melanogenesis through NF-κB activation, suggesting that TLR9 may play a role in microbial-induced melanogenesis.
Collapse
Affiliation(s)
- Lijun Sun
- Shaanxi Provincial Key Laboratory of Infectious and Immunological Diseases, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Shengjun Pan
- Department of Nursing, Huanghuai University, Zhumadian 463000, China
| | - Yuejin Yang
- Kaifeng Center for Disease Control and Prevention, Kaifeng 475004, China
| | - Jingying Sun
- Shaanxi Provincial Key Laboratory of Infectious and Immunological Diseases, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Daoyan Liang
- Shaanxi Provincial Key Laboratory of Infectious and Immunological Diseases, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Xin Wang
- Shaanxi Provincial Key Laboratory of Infectious and Immunological Diseases, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Xin Xie
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an 710069, China Department of Translational Medicine, Institute of Integrated Medical Information, Xi'an 710016, China
| | - Jun Hu
- Shaanxi Provincial Key Laboratory of Infectious and Immunological Diseases, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| |
Collapse
|
38
|
A triterpenoid from wild bitter gourd inhibits breast cancer cells. Sci Rep 2016; 6:22419. [PMID: 26926586 PMCID: PMC4772478 DOI: 10.1038/srep22419] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/15/2016] [Indexed: 01/06/2023] Open
Abstract
The antitumor activity of 3β,7β,25-trihydroxycucurbita-5,23(E)-dien-19-al (TCD), a triterpenoid isolated from wild bitter gourd, in breast cancer cells was investigated. TCD suppressed the proliferation of MCF-7 and MDA-MB-231 breast cancer cells with IC50 values at 72 h of 19 and 23 μM, respectively, via a PPARγ−independent manner. TCD induced cell apoptosis accompanied with pleiotrophic biological modulations including down-regulation of Akt-NF-κB signaling, up-regulation of p38 mitogen-activated protein kinase and p53, increased reactive oxygen species generation, inhibition of histone deacetylases protein expression, and cytoprotective autophagy. Together, these findings provided the translational value of TCD and wild bitter gourd as an antitumor agent for patients with breast cancer.
Collapse
|