1
|
Hanieh H, Alfwuaires MA. A Quinoxaline Derivative as a New Therapeutic Agent for Sepsis through Suppression of TLR4 Signaling Pathways. Inflammation 2025:10.1007/s10753-025-02292-7. [PMID: 40285839 DOI: 10.1007/s10753-025-02292-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/03/2025] [Accepted: 03/12/2025] [Indexed: 04/29/2025]
Abstract
Sepsis is a severe systemic inflammatory syndrome and one of the leading causes of global morbidity and mortality. Preclinical studies have identified several quinoxaline-based compounds with anti-inflammatory properties, but their effects in sepsis have not been investigated. This study aimed to identify a quinoxaline derivative with anti-inflammatory properties in sepsis. Examining the inflammatory response of primary mouse macrophages to Lipopolysaccharides (LPS) revealed that 2-methoxy-N-(3-quinoxalin-2-ylphenyl)benzamide (2-MQB) is a promising molecule. It suppressed the production of several inflammatory cytokines, including Interleukin-1β (IL-1β), IL-6, IL-12p70, Interferon-γ (IFN-γ), IFN-β, and Tumor necrosis factor-α (TNF-α). Importantly, 2-MQB inhibited the transcriptional activities of Toll-like receptor 4 (TLR4) signaling pathways, including Nuclear factor-κB (NF-κB) and Interferon regulatory factor 3 (IRF3). This was accompanied by lower expression of TLR4, Myeloid differentiation primary response 88 (MyD88), TIR Domain-containing adaptor molecule 1 (Trif), and TNF Receptor-associated factor 3 (Traf3). Additionally, 2-MQB selectively reduced the expression of genes encoding CD80, CD86, and Programmed death-ligand 1 (PD-L1). In vivo, 2-MQB improved mice survival, mitigated tissue damage in the spleen, kidney, and lung, and reduced pro-inflammatory cytokine levels in both LPS-induced endotoxin shock and Cecal ligation and puncture (CLP) models. Notably, 2-MQB decreased the numbers of CD4+ and CD8+ T cells in the spleen and inhibited TLR4 signaling pathways in LPS-induced endotoxemia. In conclusion, these results introduce the quinoxaline derivative 2-MQB as a potential therapeutic agent for sepsis by inhibiting TLR4 signaling pathways, paving the way for future clinical applications.
Collapse
Affiliation(s)
- Hamza Hanieh
- Department of Basic Humanities and Sciences, Faculty of Medicine, Aqaba Medical Sciences University, Aqaba, 77110, Jordan.
| | - Manal A Alfwuaires
- Biological Sciences Department, College of Science, King Faisal University, Hofuf, 31982, Saudi Arabia
| |
Collapse
|
2
|
Turan I, Ozacmak HS, Ozacmak VH, Barut F. Modulation of the Oxidative Stress and ICAM-1/TLR4/NF-Κβ Levels by Metformin in Intestinal Ischemia/Reperfusion Injury in Rats. Cell Biochem Biophys 2025:10.1007/s12013-025-01687-5. [PMID: 40009289 DOI: 10.1007/s12013-025-01687-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2025] [Indexed: 02/27/2025]
Abstract
Metformin, a biguanide drug, is used for its antihyperglycemic effects. The purpose of the present study was to investigate the effects of metformin on the experimental model of intestinal ischemia-reperfusion (I/R) injury. Ischemia was induced by superior mesenteric artery occlusion followed by reperfusion. Metformin was administered orally by gavage at doses of 50, 100 or 200 mg/kg for one week before the surgery. Rats were divided to five groups (n = 8 for each): Sham control group; I/R control group; Metformin50 treated I/R group; Metformin100 treated I/R group; and Metformin200 treated I/R group. Tissue levels of malondialdehyde (MDA), glutathione (GSH), myeloperoxidase (MPO) activity, intercellular adhesion molecule-1 (ICAM-1), toll-like receptor 4 (TLR4), and nuclear factor-κB (NF-κB) as well as histological analysis were evaluated. Metformin treatment decreased the levels of MDA in 100 and 200 mg/kg doses besides lowering the MPO activity and ICAM-1 levels in all doses. Metformin also reduced NF-κB levels at dose of 200 mg/kg and improved histopathological scores at doses of 100 and 200 mg/kg. The treatment with metformin can prevent I/R-induced intestinal injury through down-regulating ICAM-1 and NF-κB levels, reducing oxidative stress, and lowering neutrophil accumulation. We propose that metformin could be a therapeutic agent in intestinal I/R.
Collapse
Affiliation(s)
- Inci Turan
- Zonguldak Bulent Ecevit University Faculty of Medicine, Department of Physiology, Zonguldak, Turkey.
| | - Hale Sayan Ozacmak
- Zonguldak Bulent Ecevit University Faculty of Medicine, Department of Physiology, Zonguldak, Turkey
| | - Veysel Haktan Ozacmak
- Zonguldak Bulent Ecevit University Faculty of Medicine, Department of Physiology, Zonguldak, Turkey
| | - Figen Barut
- Zonguldak Bulent Ecevit University Faculty of Medicine, Department of Pathology, Zonguldak, Turkey
| |
Collapse
|
3
|
Li X, Zhang Z, Li C, Liu J, Fang Q, Zhang M, Huang J. Novel applications of metformin in the treatment of septic myocardial injury based on metabolomics and network pharmacology. Eur J Pharmacol 2025; 986:177141. [PMID: 39566813 DOI: 10.1016/j.ejphar.2024.177141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/08/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND While metformin has shown promise in treating septic myocardial injury (SMI), its underlying mechanisms and impact on metabolic disturbances remain poorly understood. METHODS This study employed an integrated approach of metabolomics and network pharmacology to identify key targets and pathways through which metformin may act against SMI. Findings were validated using a lipopolysaccharide (LPS)-induced mouse model. RESULTS Metformin was found to counter myocardial metabolic disruptions, indicated by the reversal of 49 metabolites primarily involved in purine metabolism, pantothenate and CoA biosynthesis, and histidine metabolism. In vivo, metformin significantly improved survival rates and cardiac function, reduced cardiomyocyte apoptosis, and inhibited inflammation and oxidative stress in LPS-induced mice. Integrated analyses identified 27 potential targets for metformin in SMI treatment. KEGG pathway analysis revealed significant enrichment in TNF, HIF-1, IL-17, and PI3K/AKT signaling pathways, while protein-protein interaction analysis pinpointed ten core targets, including IL6, IL1B, CCL2, CASP3, MMP9, HIF1A, IGF1, NOS3, MMP2, and LEP. Molecular docking and dynamics simulations demonstrated metformin's high affinity for these core targets. Further, RT-qPCR and Western blot analyses confirmed that metformin modulates core target expression to mitigate SMI. Notably, our data underscore the importance of PI3K/AKT and MMP2/MMP9 signaling pathways in SMI therapy. CONCLUSION This study elucidates the metabolic and molecular mechanisms of metformin in SMI treatment, supporting its potential repurposing for SMI.
Collapse
Affiliation(s)
- Xingyu Li
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zihan Zhang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chaohong Li
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China; Henan Key Laboratory of Neurorestoratology, Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan, China
| | - Jun Liu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qinghua Fang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Muzi Zhang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Huang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
4
|
Zhang WL, Zhang LJ, Liang P, Fang HL, Wang XL, Liu YJ, Deng HF. Metformin Protects Against Acute Kidney Injury Induced by Lipopolysaccharide via Up-Regulating the MCPIP1/SIRT1 Pathway. Biochem Genet 2024; 62:4591-4602. [PMID: 38345758 DOI: 10.1007/s10528-024-10692-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 01/07/2024] [Indexed: 11/29/2024]
Abstract
In the present study, we aimed to explore the effect and underlying mechanism of metformin on lipopolysaccharide (LPS)-induced acute kidney injury (AKI). A total of 24 BALB/C mice were randomly divided into four groups: control group, LPS group and metformin group (50 or 100 mg/kg). The histological changes and cell apoptosis in kidney tissues were detected by hematoxylin-eosin staining and terminal-deoxynucleotidyl transferase-mediated nick end labeling assay, respectively. Enzyme-linked immunosorbent assay was applied to determine serum levels of blood urea nitrogen (BUN), kidney injury molecule-1 (Kim-1), creatinine (Cre), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β). Western blotting analysis were carried out to confirm the expressions of monocyte chemotactic protein-inducible protein 1 (MCPIP1), silent information regulator sirtuin 1 (SIRT1), and NF-κB p65 (acetyl K310). Compared with the control group, the mice in LPS group had glomerular capillary dilatation, renal interstitial edema, tubular cell damage and apoptosis. The serum levels of BUN, KIM-1, Cre, TNF-α, and IL-1β in LPS group were significantly higher than those in control group. Moreover, LPS also elevated the expressions of MCPIP1 and NF-κB p65 (acetyl K310) but decreased the expression of SIRT1 in kidney tissues. However, metformin distinctly decreased LPS-induced renal dysfunction, the serum levels of BUN, KIM-1, Cre, TNF-α, and IL-1β. In addition, metformin markedly increased the expressions of MCPIP1 and SIRT1 but decreased the expression of NF-κB p65 (acetyl K310) in kidney tissues. Metformin prevented LPS-induced AKI by up-regulating the MCPIP1/SIRT1 signaling pathway and subsequently inhibiting NF-κB-mediated inflammation response.
Collapse
Affiliation(s)
- Wen-Long Zhang
- The First Clinical Hospital, Xiangnan University, Chenzhou, 423000, Hunan, People's Republic of China
- Department of Medical Administration, the First People's Hospital of Chenzhou, Chenzhou, 423000, Hunan, People's Republic of China
| | - Long-Jun Zhang
- School of Basic Medical Science, Xiangnan University, Chenzhou, 423000, Hunan, People's Republic of China
| | - Piao Liang
- School of Basic Medical Science, Xiangnan University, Chenzhou, 423000, Hunan, People's Republic of China
| | - Hui-Long Fang
- School of Basic Medical Science, Xiangnan University, Chenzhou, 423000, Hunan, People's Republic of China
| | - Xiao-Li Wang
- Department of Pathology, Medical College of Jishou University, Jishou, 416000, Hunan, People's Republic of China
| | - Yan-Juan Liu
- Institute of Emergency Medicine, Hunan Provincial People's Hospital (the First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, People's Republic of China
| | - Hua-Fei Deng
- School of Basic Medical Science, Xiangnan University, Chenzhou, 423000, Hunan, People's Republic of China.
| |
Collapse
|
5
|
Hanieh H, Alfwuaires MA, Abduh MS, Abdrabu A, Qinna NA, Alzahrani AM. Protective Effects of a Dihydrodiazepine Against Endotoxin Shock Through Suppression of TLR4/NF-κB/IRF3 Signaling Pathways. Inflammation 2024:10.1007/s10753-024-02160-w. [PMID: 39400777 DOI: 10.1007/s10753-024-02160-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024]
Abstract
Sepsis and septic shock are life-threatening systemic inflammatory conditions and among the most frequent causes of morbidity and mortality globally. Preclinical evidence has identified a number of diazepine-based compounds with therapeutic potential in inflammatory diseases. However, the potential anti-inflammatory properties of diazepines in the overwhelming immune response during sepsis have been rarely examined. Thus, the current study aimed to identify a new diazepine compound with therapeutic potential in sepsis. Assessing the inflammatory response of macrophages to Lipopolysaccharides (LPS) in vitro identified 2-[7-(trifluoromethyl)-2,3-dihydro-1H-1,4-diazepin-5-yl]phenol (2-TDDP) as a potential anti-inflammatory agent. It reduced secretion of Interleukin-1β (IL-1β), IL-6, IL-12p70, IL-18, Tumor necrosis factor-α (TNF-α), Interferon-γ (IFN-γ), IFN-β, and increased the secretion of IL-10. In a mouse model of LPS-induced endotoxin shock, 2-TDDP reduced mortality and attenuated inflammation-induced tissue injury in the spleen, liver, kidney, and lung. This was accompanied by reduced serum levels of IL-1β, IL-6, IL-12p70, TNF-α, IFN-γ, IFN-β, and increased levels of IL-10. Importantly, 2-TDDP suppressed the Toll-like receptor 4 (TLR4)/Nuclear factor-κB (NF-κB) and TLR4/Interferon regulatory factor 3 (IRF3) signaling pathways through a reduction in the expression of TLR4, Myeloid differentiation primary response 88 (MyD88), P65, and TNF receptor-associated factor 3 (Traf3). Moreover, 2-TDDP suppressed the expression of CD86, Programmed death-ligand 1 (PD-L1) and C5a receptor (C5aR), but not Major histocompatibility complex II (MHCII). Analysis of splenic lymphocyte populations revealed a decrease in the number of CD4+, CD8+, and B cells. Collectively, these findings introduced the dihydrodiazepine 2-TDDP as a new anti-inflammatory agent with potent therapeutic potential in endotoxin shock, paving an avenue for future clinical application.
Collapse
Affiliation(s)
- Hamza Hanieh
- Basic Medical Sciences Department, Faculty of Medicine, Aqaba Medical Sciences University, Aqaba, 77110, Jordan.
| | - Manal A Alfwuaires
- Department of Biological Sciences, College of Science, King Faisal University, 31982, Hofuf, Saudi Arabia
| | - Maisa S Abduh
- Immune Responses in Different Diseases Research Group, Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Alyaa Abdrabu
- Basic Medical Sciences Department, Faculty of Medicine, Aqaba Medical Sciences University, Aqaba, 77110, Jordan
| | - Nidal A Qinna
- University of Petra Pharmaceutical Center (UPPC), Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | - Abdullah M Alzahrani
- Department of Biological Sciences, College of Science, King Faisal University, 31982, Hofuf, Saudi Arabia
| |
Collapse
|
6
|
Yumoto T, Coopersmith CM. Targeting AMP-activated protein kinase in sepsis. Front Endocrinol (Lausanne) 2024; 15:1452993. [PMID: 39469575 PMCID: PMC11513325 DOI: 10.3389/fendo.2024.1452993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/30/2024] [Indexed: 10/30/2024] Open
Abstract
Sepsis is a global health challenge marked by limited clinical options and high mortality rates. AMP-activated protein kinase (AMPK) is a cellular energy sensor that mediates multiple crucial metabolic pathways that may be an attractive therapeutic target in sepsis. Pre-clinical experimental studies have demonstrated that pharmacological activation of AMPK can offer multiple potential benefits during sepsis, including anti-inflammatory effects, induction of autophagy, promotion of mitochondrial biogenesis, enhanced phagocytosis, antimicrobial properties, and regulation of tight junction assembly. This review aims to discuss the existing evidence supporting the therapeutic potential of AMPK activation in sepsis management.
Collapse
Affiliation(s)
- Tetsuya Yumoto
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, Atlanta, GA, United States
- Department of Emergency, Critical Care and Disaster Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Craig M. Coopersmith
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
7
|
Chen YZ, Zhao L, Wei W, Gu J, Liu ZH, Shan WY, Dong J, Li C, Qin LQ, Xu JY. The Effect of Metformin on Radiation-Induced Lung Fibrosis in Mice. Dose Response 2024; 22:15593258241308051. [PMID: 39664837 PMCID: PMC11632958 DOI: 10.1177/15593258241308051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/28/2024] [Accepted: 11/17/2024] [Indexed: 12/13/2024] Open
Abstract
Introduction: Radiation-induced lung fibrosis (RILF) is a common complication of thoracic radiotherapy. Metformin has been suggested to have a radioprotective effect. Objective: This study explored the radioprotective effects of metformin on RILF and its mechanisms. Methods: C57BL/6J mice were randomly divided into control, ionizing radiation (IR), low-dose metformin (L-Met), and high-dose metformin (H-Met) groups. The IR, L-Met, and H-Met groups received 15 Gy chest irradiation. The L-Met and H-Met groups were administrated 100 or 200 mg/kg metformin from 3 days before irradiation and continued for 6 months. The mice were then sacrificed, and samples were collected for further analysis. Results: RILF was induced in the irradiated mice. Metformin improved lung pathology, inhibited collagen deposition, and reduced inflammatory factors such as high mobility group box 1 (HMGB1), interleukin-1 beta, interleukin-6, tumor necrosis factor alpha in lung tissue, lavage fluid, and serum. Western blot and quantitative real-time PCR analyses revealed that metformin downregulated HMGB1, toll-like receptor 4 (TLR4), and nuclear factor kappaB (NF-κB) expression. Additionally, metformin reversed the irradiation-induced reduction in the abundance of Lactobacillus and Lachnospiraceae at the genus level. Conclusion: Our findings indicated that metformin ameliorates RILF by downregulating the inflammatory-related HMGB1/TLR4/NF-κB pathway and improving intestinal flora disorder.
Collapse
Affiliation(s)
- Yu-Zhong Chen
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
- Yancheng Municipal Center for Disease Control and Prevention, Yancheng, China
| | - Lin Zhao
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Wei Wei
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Jia Gu
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Zhen-Hua Liu
- Department of Radiotherapy, The Yancheng Clinical College of Xuzhou Medical University, The First people’s Hospital of Yancheng, Yancheng, China
| | - Wen-Yue Shan
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Jie Dong
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
- The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chao Li
- Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, China
| | - Li-Qiang Qin
- Department of Nutrition and Food Hygiene School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Jia-Ying Xu
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| |
Collapse
|
8
|
Yang Z, Gao Y, Zhao L, Lv X, Du Y. Molecular mechanisms of Sepsis attacking the immune system and solid organs. Front Med (Lausanne) 2024; 11:1429370. [PMID: 39267971 PMCID: PMC11390691 DOI: 10.3389/fmed.2024.1429370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/15/2024] [Indexed: 09/15/2024] Open
Abstract
Remarkable progress has been achieved in sepsis treatment in recent times, the mortality rate of sepsis has experienced a gradual decline as a result of the prompt administration of antibiotics, fluid resuscitation, and the implementation of various therapies aimed at supporting multiple organ functions. However, there is still significant mortality and room for improvement. The mortality rate for septic patients, 22.5%, is still unacceptably high, accounting for 19.7% of all global deaths. Therefore, it is crucial to thoroughly comprehend the pathogenesis of sepsis in order to enhance clinical diagnosis and treatment methods. Here, we summarized classic mechanisms of sepsis progression, activation of signal pathways, mitochondrial quality control, imbalance of pro-and anti- inflammation response, diseminated intravascular coagulation (DIC), cell death, presented the latest research findings for each mechanism and identify potential therapeutic targets within each mechanism.
Collapse
Affiliation(s)
- Zhaoyun Yang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, China
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Yan Gao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biomedical Sciences, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Lijing Zhao
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Xuejiao Lv
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Yanwei Du
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| |
Collapse
|
9
|
Zheng Y, Gao Y, Zhu W, Bai XG, Qi J. Advances in molecular agents targeting toll-like receptor 4 signaling pathways for potential treatment of sepsis. Eur J Med Chem 2024; 268:116300. [PMID: 38452729 DOI: 10.1016/j.ejmech.2024.116300] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/23/2024] [Accepted: 03/01/2024] [Indexed: 03/09/2024]
Abstract
Sepsis is a systemic inflammatory response syndrome caused by an infection. Toll-like receptor 4 (TLR4) is activated by endogenous molecules released by injured or necrotic tissues. Additionally, TLR4 is remarkably sensitive to infection of various bacteria and can rapidly stimulate host defense responses. The TLR4 signaling pathway plays an important role in sepsis by activating the inflammatory response. Accordingly, as part of efforts to improve the inflammatory response and survival rate of patients with sepsis, several drugs have been developed to regulate the inflammatory signaling pathways mediated by TLR4. Inhibition of TLR4 signal transduction can be directed toward either TLR4 directly or other proteins in the TLR4 signaling pathway. Here, we review the advances in the development of small-molecule agents and peptides targeting regulation of the TLR4 signaling pathway, which are characterized according to their structural characteristics as polyphenols, terpenoids, steroids, antibiotics, anthraquinones, inorganic compounds, and others. Therefore, regulating the expression of the TLR4 signaling pathway and modulating its effects has broad prospects as a target for the treatment of lung, liver, kidneys, and other important organs injury in sepsis.
Collapse
Affiliation(s)
- Yunyun Zheng
- Medicine College of Pingdingshan University, Pingdingshan, Henan, 467000, China
| | - Yingying Gao
- Medicine College of Pingdingshan University, Pingdingshan, Henan, 467000, China
| | - Weiru Zhu
- Medicine College of Pingdingshan University, Pingdingshan, Henan, 467000, China
| | - Xian-Guang Bai
- Medicine College of Pingdingshan University, Pingdingshan, Henan, 467000, China.
| | - Jinxu Qi
- Medicine College of Pingdingshan University, Pingdingshan, Henan, 467000, China.
| |
Collapse
|
10
|
Ozcan MS, Savran M, Kumbul Doguc D, Kubra Dogan H, Altintas M, Cosan S. Dexpanthenol ameliorates lipopolysaccharide-induced cardiovascular toxicity by regulating the IL-6/HIF1α/VEGF pathway. Heliyon 2024; 10:e24007. [PMID: 38268590 PMCID: PMC10806266 DOI: 10.1016/j.heliyon.2024.e24007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 12/13/2023] [Accepted: 01/02/2024] [Indexed: 01/26/2024] Open
Abstract
Introduction Lipopolysaccharide (Lps) is an essential component responsible for the virulence of gram-negative bacteria. Lps can cause damage to many organs, including the heart, kidneys, and lungs. Dexpanthenol (Dex) is an agent that exhibits anti-oxidative and anti-inflammatory effects and stimulates epithelialization. In this study, we aimed to investigate the effects of Dex on Lps-induced cardiovascular toxicity. Methods Rats were divided into four groups: control, Lps (5 mg/kg, intraperitoneal), Dex (500 mg/kg, intraperitoneal), and Lps + Dex. The control group received saline intraperitoneally (i.p.) once daily for three days. The Lps group received saline i.p. once daily for three days and a single dose of Lps i.p. was administered on the third day. The Dex group received Dex i.p. once daily for three days and saline on the third day. The Lps + Dex group received Dex i.p. once daily for three days and a single dose of Lps i.p. on the third day. Heart and aortic tissues were taken for biochemical, histopathological, immunohistochemical, and genetic analysis. Results Lps injection caused histopathological changes in both heart and aortic tissues and significantly increased total oxidant status and oxidative stress index levels. Interleukin-6, and Tumor necrosis factor-α mRNA expressions were significantly altered in heart and aorta, likely do to the anti-inflammatory and antioxidative effects of Dex. Furthermore, Dex affected Caspase-3 and Hypoxia-inducible factor 1-α staining patterns. Conclusions Our results show that Dex treatment has a protective effect on Lps-induced cardiac and endothelial damage in rats by reducing inflammation, oxidative stress, and apoptosis.
Collapse
Affiliation(s)
- Mustafa Soner Ozcan
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Mehtap Savran
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Duygu Kumbul Doguc
- Department of Biochemistry, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Hatice Kubra Dogan
- Department of Bioengineering, Institute of Science, Suleyman Demirel University, Isparta, Turkey
| | - Melike Altintas
- Department of Pathology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Samet Cosan
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
11
|
Siddiqui MR, Reddy NM, Faridi HM, Shahid M, Shanley TP. Metformin alleviates lung-endothelial hyperpermeability by regulating cofilin-1/PP2AC pathway. Front Pharmacol 2023; 14:1211460. [PMID: 37361221 PMCID: PMC10285707 DOI: 10.3389/fphar.2023.1211460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Background: Microvascular endothelial hyperpermeability is an earliest pathological hallmark in Acute Lung Injury (ALI), which progressively leads to Acute Respiratory Distress Syndrome (ARDS). Recently, vascular protective and anti-inflammatory effect of metformin, irrespective of glycemic control, has garnered significant interest. However, the underlying molecular mechanism(s) of metformin's barrier protective benefits in lung-endothelial cells (ECs) has not been clearly elucidated. Many vascular permeability-increasing agents weakened adherens junctions (AJ) integrity by inducing the reorganization of the actin cytoskeleton and stress fibers formation. Here, we hypothesized that metformin abrogated endothelial hyperpermeability and strengthen AJ integrity via inhibiting stress fibers formation through cofilin-1-PP2AC pathway. Methods: We pretreated human lung microvascular ECs (human-lung-ECs) with metformin and then challenged with thrombin. To investigate the vascular protective effects of metformin, we studied changes in ECs barrier function using electric cell-substrate impedance sensing, levels of actin stress fibers formation and inflammatory cytokines IL-1β and IL-6 expression. To explore the downstream mechanism, we studied the Ser3-phosphorylation-cofilin-1 levels in scramble and PP2AC-siRNA depleted ECs in response to thrombin with and without metformin pretreatment. Results: In-vitro analyses showed that metformin pretreatment attenuated thrombin-induced hyperpermeability, stress fibers formation, and the levels of inflammatory cytokines IL-6 and IL-β in human-lung-ECs. We found that metformin mitigated Ser3-phosphorylation mediated inhibition of cofilin-1 in response to thrombin. Furthermore, genetic deletion of PP2AC subunit significantly inhibited metformin efficacy to mitigate thrombin-induced Ser3-phosphorylation cofilin-1, AJ disruption and stress fibers formation. We further demonstrated that metformin increases PP2AC activity by upregulating PP2AC-Leu309 methylation in human-lung-ECs. We also found that the ectopic expression of PP2AC dampened thrombin-induced Ser3-phosphorylation-mediated inhibition of cofilin-1, stress fibers formation and endothelial hyperpermeability. Conclusion: Together, these data reveal the unprecedented endothelial cofilin-1/PP2AC signaling axis downstream of metformin in protecting against lung vascular endothelial injury and inflammation. Therefore, pharmacologically enhancing endothelial PP2AC activity may lead to the development of novel therapeutic approaches for prevention of deleterious effects of ALI on vascular ECs.
Collapse
Affiliation(s)
- M. Rizwan Siddiqui
- Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital of Chicago, Stanley Manne Children’s Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Narsa M. Reddy
- Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital of Chicago, Stanley Manne Children’s Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Hafeez M. Faridi
- Drug Discovery Center, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Mohd Shahid
- Department of Pharmaceutical Sciences, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Thomas P. Shanley
- Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital of Chicago, Stanley Manne Children’s Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
12
|
Lipopolysaccharide-induced endotoxaemia during adolescence promotes stress vulnerability in adult mice via deregulation of nuclear factor erythroid 2-related factor 2 in the medial prefrontal cortex. Psychopharmacology (Berl) 2023; 240:713-724. [PMID: 36847832 DOI: 10.1007/s00213-022-06285-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/19/2022] [Indexed: 03/01/2023]
Abstract
RATIONALE Sepsis is a severe inflammatory response to infection that leads to long-lasting cognitive impairment and depression after resolution. The lipopolysaccharide (LPS)-induced endotoxaemia model is a well-established model of gram-negative bacterial infection and recapitulates the clinical characteristics of sepsis. However, whether LPS-induced endotoxaemia during adolescence can modulate depressive and anxiety-like behaviours in adulthood remains unclear. OBJECTIVES To determine whether LPS-induced endotoxaemia in adolescence can modulate the stress vulnerability to depressive and anxiety-like behaviours in adulthood and explore the underlying molecular mechanisms. METHODS Quantitative real-time PCR was used to measure inflammatory cytokine expression in the brain. A stress vulnerability model was established by exposure to subthreshold social defeat stress (SSDS), and depressive- and anxiety-like behaviours were evaluated by the social interaction test (SIT), sucrose preference test (SPT), tail suspension test (TST), force swimming test (FST), elevated plus-maze (EPM) test, and open field test (OFT). Western blotting was used to measure Nrf2 and BDNF expression levels in the brain. RESULTS Our results showed that inflammation occurred in the brain 24 h after the induction of LPS-induced endotoxaemia at P21 but resolved in adulthood. Furthermore, LPS-induced endotoxaemia during adolescence promoted the inflammatory response and the stress vulnerability after SSDS during adulthood. Notably, the expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and BDNF in the mPFC were decreased after SSDS exposure in mice treated with LPS during adolescence. Activation of the Nrf2-BDNF signalling pathway by sulforaphane (SFN), an Nrf2 activator, ameliorated the effect of LPS-induced endotoxaemia during adolescence on stress vulnerability after SSDS during adulthood. CONCLUSIONS Our study identified adolescence as a critical period during which LPS-induced endotoxaemia can promote stress vulnerability during adulthood and showed that this effect is mediated by impairment of Nrf2-BDNF signalling in the mPFC.
Collapse
|
13
|
Zhao H, Chen Y, Qian L, Du L, Wu X, Tian Y, Deng C, Liu S, Yang W, Lu C, Zhang Y, Ren J, Yang Y. Lycorine protects against septic myocardial injury by activating AMPK-related pathways. Free Radic Biol Med 2023; 197:1-14. [PMID: 36669544 DOI: 10.1016/j.freeradbiomed.2023.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/19/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023]
Abstract
Cardiac dysfunction is a common complication in patients with sepsis triggering high morbidity and mortality. Lycorine (LYC), the main effective monomer component extracted from Lycoris bulbs, possesses antiviral, anti-inflammatory, analgesic, liver protection properties. In this study, the effect of LYC pre- and post-treatment as well as the underlying mechanism were evaluated in the cecal ligation and puncture (CLP) model of Balb/c mice. The survival rate, anal temperature, sepsis score, blood biochemical/routine indicators, cardiac function, sepsis-related pathophysiological processes, and AMPK signaling in septic mice were observed by echocardiography, histological staining, western blot, qPCR, and etc. LYC pretreatment attenuated myocardial injury in septic mice by improving survival rate, sepsis score, blood biochemical/routine indicators, cardiac function and structure, inhibiting inflammation and oxidative stress, improving mitochondrial function, modulating endoplasmic reticulum stress, and activating AMPK pathway. In particular, AMPK deficiency and AMPK inhibitor (Compound C) partially reversed the protective effects of LYC in septic mice. In addition, LYC posttreatment also has slight protective phenotypes on septic myocardial injury, but the effect is not as ideal as pretreatment. Taken together, these findings suggest that LYC may be a potential drug for the treatment of sepsis.
Collapse
Affiliation(s)
- Huadong Zhao
- Department of General Surgery, Tangdu Hospital, The Airforce Military Medical University, 1 Xinsi Road, Xi'an, China
| | - Ying Chen
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, China
| | - Lu Qian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China; Department of Neurology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an, China
| | - Luyang Du
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China; Department of Neurology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an, China
| | - Xue Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China; Department of Neurology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an, China
| | - Ye Tian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China; Department of Neurology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an, China
| | - Chao Deng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, China
| | - Shuai Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China; Department of Neurology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an, China
| | - Wenwen Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China; Department of Neurology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an, China
| | - Chenxi Lu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China; Department of Neurology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an, China
| | - Yan Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China; Department of Neurology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an, China
| | - Jun Ren
- Department of Cardiology, Zhongshan Hospital, Fudan University; Shanghai Institute of Cardiovascular Diseases, Shanghai, China.
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China; Department of Neurology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an, China.
| |
Collapse
|
14
|
Vaez H, Soraya H, Garjani A, Gholikhani T. Toll-Like Receptor 4 (TLR4) and AMPK Relevance in Cardiovascular Disease. Adv Pharm Bull 2023; 13:36-47. [PMID: 36721803 PMCID: PMC9871286 DOI: 10.34172/apb.2023.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/04/2021] [Accepted: 09/28/2021] [Indexed: 02/03/2023] Open
Abstract
Toll-like receptors (TLRs) are essential receptors of the innate immune system, playing a significant role in cardiovascular diseases. TLR4, with the highest expression among TLRs in the heart, has been investigated extensively for its critical role in different myocardial inflammatory conditions. Studies suggest that inhibition of TLR4 signaling pathways reduces inflammatory responses and even prevents additional injuries to the already damaged myocardium. Recent research results have led to a hypothesis that there may be a relation between TLR4 expression and 5' adenosine monophosphate-activated protein kinase (AMPK) signaling in various inflammatory conditions, including cardiovascular diseases. AMPK, as a cellular energy sensor, has been reported to show anti-inflammatory effects in various models of inflammatory diseases. AMPK, in addition to its physiological acts in the heart, plays an essential role in myocardial ischemia and hypoxia by activating various energy production pathways. Herein we will discuss the role of TLR4 and AMPK in cardiovascular diseases and a possible relation between TLRs and AMPK as a novel therapeutic target. In our opinion, AMPK-related TLR modulators will find application in treating different immune-mediated inflammatory disorders, especially inflammatory cardiac diseases, and present an option that will be widely used in clinical practice in the future.
Collapse
Affiliation(s)
- Haleh Vaez
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Corresponding Author: Haleh Vaez, Tel:+984133344798, Fax:+984133344798,
| | - Hamid Soraya
- Department of Pharmacology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Alireza Garjani
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tooba Gholikhani
- Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Nanora Pharmaceuticals Ltd, Tabriz, Iran
| |
Collapse
|
15
|
Zhang L, Wen K, Zhang Z, Ma C, Zheng N. 3,4-Dihydroxyphenylethanol ameliorates lipopolysaccharide-induced septic cardiac injury in a murine model. Open Life Sci 2022; 16:1313-1320. [PMID: 35005242 PMCID: PMC8691377 DOI: 10.1515/biol-2021-0125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
3,4-Dihydroxyphenylethanol (DOPET) is a polyphenol found in olive oil. The present study evaluated the protective role of DOPET on LPS provoked septic cardiac injury in a murine model. Four groups were used in the study (n = 3): control, LPS, DOPET alone, and DOPET + LPS. LPS (15 mg/kg; i.p.); they were used to induce cardiac sepsis. The cardiac markers like LDH, CK-MB, and troponin-T, as well as inflammatory cytokines like TNF-α and IL-6 were measured in the serum. The antioxidants and oxidative stress parameters were measured in cardiac tissues. RT-PCR and western blot methods were done to evaluate the expression of inflammatory mediators and apoptotic markers. DOPET significantly decreased the cardiac markers (LDH, CK-MB, and troponin-T) and TNF-α and IL-6 level in the serum. DOPET effectively reduced the levels of MDA and NO in LPS intoxicated rats. DOPET also increased the levels of antioxidants like SOD, CAT, GPx, and GSH in LPS intoxicated rats. The mRNA levels of TNF-α, IL-6, and NF-κB were significantly downregulated by DOPET in cardiac tissues of LPS rats. The protein expression of Bcl-2 was upregulated, and Bax and caspase-3 were downregulated by DOPET. DOPET effectively attenuates LPS-induced cardiac dysfunction through its antioxidant, anti-inflammatory, and anti-apoptotic mechanisms.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Intensive Care Unit, The Second Hospital of Shandong University, Jinan, Shandong Province, 250033, China
| | - Kun Wen
- Department of Intensive Care Unit, The Second Hospital of Shandong University, Jinan, Shandong Province, 250033, China
| | - Zhiqiang Zhang
- Department of Intensive Care Unit, The Second Hospital of Shandong University, Jinan, Shandong Province, 250033, China
| | - Chengen Ma
- Department of Intensive Care Unit, The Second Hospital of Shandong University, Jinan, Shandong Province, 250033, China
| | - Ni Zheng
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324 Jingwu Weiqi Road, Jinan, Shandong Province, 250021, China
| |
Collapse
|
16
|
Zhang T, Liu CF, Zhang TN, Wen R, Song WL. Overexpression of Peroxisome Proliferator-Activated Receptor γ Coactivator 1-α Protects Cardiomyocytes from Lipopolysaccharide-Induced Mitochondrial Damage and Apoptosis. Inflammation 2021; 43:1806-1820. [PMID: 32529514 DOI: 10.1007/s10753-020-01255-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mitochondrial damage is considered one of the main pathogenetic mechanisms in septic cardiomyopathy. Peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α) is critical for maintaining energy homeostasis in different organs and in various physiological and pathological states. It is also a key regulator gene in mitochondrial metabolism. In this study, we investigated whether regulation of the PGC-1α gene had protective effects on septic cardiomyopathy. We developed a rat model of septic cardiomyopathy. H9c2 myocardiocytes were treated with lipopolysaccharide (LPS) and PGC-1α expression measured. PGC-1α-overexpressing lentivirus was used to transfect H9c2 cells. ZLN005 was used to activate PGC-1α. The effect of the inhibition of PGC-1α expression on myocardial cell injury and its underlying mechanisms were also explored. Cell viability was measured by CCK-8 assay. Mitochondrial damage was determined by measuring cellular ATP, reactive oxygen species, and the mitochondrial membrane potential. An apoptosis analysis kit was used to measure cellular apoptosis. Mitochondrial DNA was extracted and real-time PCR performed. LC3B, mitochondrial transcription factor A (TFA), P62, Bcl2, and Bax were determined by immunofluorescence. LC3B, TFA, P62, Parkin, PTEN-induced putative kinase 1, and PGC-1α proteins were determined by Western blotting. We found mitochondrial damage and apoptotic cells in the myocardial tissue of rats with septic cardiomyopathy and in LPS-treated cardiomyocytes. PGC-1α expression was decreased in the late phase of septic cardiomyopathy and in LPS-treated cardiomyocytes. PGC-1α activation by ZLN005 and PGC-1α overexpression reduced apoptosis in myocardiocytes after LPS incubation. PGC-1α gene overexpression alleviated LPS-induced cardiomyocyte mitochondrial damage by activating mitochondrial biogenesis and autophagy functions. Our study indicated that mitochondrial damage and apoptosis occurred in septic cardiomyopathy and LPS-treated cardiomyocytes. The low expression level of PGC-1α protein may have contributed to this damage. By activating the expression of PGC-1α, apoptosis was reduced in cardiomyocytes. The underlying mechanism may be that PGC-1α can activate mitochondrial biogenesis and autophagy functions, reducing mitochondrial damage and thereby reducing apoptosis.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, No. 36, SanHao Street, Shenyang, Liaoning, 110004, People's Republic of China
| | - Chun-Feng Liu
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, No. 36, SanHao Street, Shenyang, Liaoning, 110004, People's Republic of China.
| | - Tie-Ning Zhang
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, No. 36, SanHao Street, Shenyang, Liaoning, 110004, People's Republic of China
| | - Ri Wen
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, No. 36, SanHao Street, Shenyang, Liaoning, 110004, People's Republic of China
| | - Wen-Liang Song
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, No. 36, SanHao Street, Shenyang, Liaoning, 110004, People's Republic of China
| |
Collapse
|
17
|
Maleki Dizaji N, Garjani A, Mousavi S, Mohammadi M, Vaez H. Time-dependent influence of infliximab on hemodynamic responses and cardiac injuries of isoproterenol-induced myocardial infarction in rats. Eur J Pharmacol 2021; 903:174122. [PMID: 33932452 DOI: 10.1016/j.ejphar.2021.174122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 04/04/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
Immune-induced inflammation plays an important role both in aggravating and healing of post myocardial infarction (MI) injuries. Potent anti-inflammatory and local immunomodulatory activity of infliximab has been suggested to have modulating effects on immune responses after MI. The aim of the present study was to evaluate the efficacy of infliximab on hemodynamic responses and myocardial injuries following isoproterenol-induced myocardial infarction. Male Wistar rats, weighting 260 ± 20 g were assigned into ten groups (n = 6) of saline (normal saline), infliximab (7 mg/kg), isoproterenol (100 mg/kg for two consecutive days), and isoproterenol plus infliximab (30 min after the second injection of isoproterenol). The heart tissues and serums were analyzed 24, 48, 72, and 96 h post-MI and hemodynamic parameters, histopathological changes, malondialdehyde (MDA), Total antioxidant capacity (TAC), lactate dehydrogenase (LDH), and lactate levels were assessed in the respective groups. Infliximab partially improved hemodynamic depression in the first days after MI, but the heart became more suppressed later. A similar result also obtained at the MDA tissue levels but not serum levels. Anti-inflammatory effects of Infliximab may improve cardiac function and prevent heart tissue injury early after MI; however, it can worsen the condition later by inhibiting compensatory reactions such as cardiac remodeling and tissue repair.
Collapse
Affiliation(s)
- Nasrin Maleki Dizaji
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Garjani
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samin Mousavi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdieh Mohammadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Haleh Vaez
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
18
|
Li T, Luo Q, He L, Li D, Li Q, Wang C, Xie J, Yi C. Interferon Regulatory Factor-2 Binding Protein 2 Ameliorates Sepsis-Induced Cardiomyopathy via AMPK-Mediated Anti-Inflammation and Anti-Apoptosis. Inflammation 2021; 43:1464-1475. [PMID: 32239393 DOI: 10.1007/s10753-020-01224-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cardiomyopathy commonly occurs after sepsis and is closely associated with high mortality in clinic. Interferon regulatory factor-2 binding protein 2 (IRF2BP2) has been identified as a negative regulator of inflammation, but its role in septic cardiomyopathy is unknown. The current study aims to illuminate the regulatory function of IRF2BP2 on sepsis-induced cardiomyopathy and to explore the underlying mechanisms. Protein expression of IRF2BP2 in response to sepsis-induced cardiomyopathy was examined in the heart of mice challenged by LPS intraperitoneal injection. AAV9-delivered IRF2BP2 overexpression in the heart was applied to evaluate the regulatory role of IRF2BP2 in sepsis-induced myocardial depression, inflammatory response, and cell death. The molecular mechanisms underlying IRF2BP2-regulated cardiomyopathy were explored using western blot screening assay. Primary cardiomyocytes have been isolated to further confirm the role and mechanism of IRF2BP2 during septic cardiomyopathy. IRF2BP2 expression was dramatically increased in the heart of mice after LPS administration. AAV9-mediated IRF2BP2 overexpression significantly improved sepsis-induced cardiac dysfunction, inhibited inflammatory cell infiltration and cytokine production, and blocked cell death after LPS treatment. Mechanistically, IRF2BP2 activated AMPK signaling in cardiomyocytes, while inhibiting AMPK activation largely reversed IRF2BP2-benefited inflammatory suppression and cell survival. These findings clearly demonstrated that IRF2BP2 is a potent suppressor of sepsis-induced myocardial depression and related heart impairment. Targeting IRF2BP2 represents a promising therapeutic strategy for septic cardiomyopathy.
Collapse
Affiliation(s)
- Tianyu Li
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang avenue, Wuhan, 430030, China
| | - Qiang Luo
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang avenue, Wuhan, 430030, China
| | - Li He
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang avenue, Wuhan, 430030, China
| | - Da Li
- Department of Pharmacy, The Seventh People's Hospital of Chengdu, Chengdu, Sichuan, China
| | - Qingnian Li
- Department of Intensive Care Unit, Tongji Hospital, Tongji Medical College of Huazhong, University of Science and Technology, 1095 Jiefang avenue, Wuhan, 430030, China
| | - Chuntao Wang
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang avenue, Wuhan, 430030, China
| | - Jie Xie
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang avenue, Wuhan, 430030, China
| | - Chengla Yi
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang avenue, Wuhan, 430030, China.
| |
Collapse
|
19
|
Jenke A, Yazdanyar M, Miyahara S, Chekhoeva A, Immohr MB, Kistner J, Boeken U, Lichtenberg A, Akhyari P. AdipoRon Attenuates Inflammation and Impairment of Cardiac Function Associated With Cardiopulmonary Bypass-Induced Systemic Inflammatory Response Syndrome. J Am Heart Assoc 2021; 10:e018097. [PMID: 33666100 PMCID: PMC8174216 DOI: 10.1161/jaha.120.018097] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background Cardiac surgery using cardiopulmonary bypass (CPB) frequently provokes a systemic inflammatory response syndrome, which is triggered by TLR4 (Toll‐like receptor 4) and TNF‐α (tumor necrosis factor α) signaling. Here, we investigated whether the adiponectin receptor 1 and 2 agonist AdipoRon modulates CPB‐induced inflammation and cardiac dysfunction. Methods and Results Rats underwent CPB with deep hypothermic circulatory arrest and were finally weaned from the heart‐lung machine. Compared with vehicle, AdipoRon application attenuated the CPB‐induced impairment of mean arterial pressure following deep hypothermic circulatory arrest. During the weaning and postweaning phases, heart rate and mean arterial pressure in all AdipoRon animals (7 of 7) remained stable, while cardiac rhythm was irretrievably lost in 2 of 7 of the vehicle‐treated animals. The AdipoRon‐mediated improvements of cardiocirculatory parameters were accompanied by increased plasma levels of IL (interleukin) 10 and diminished concentrations of lactate and K+. In myocardial tissue, AdipoRon activated AMP‐activated protein kinase (AMPK) while attenuating CPB‐induced degradation of nuclear factor κB inhibitor α (IκBα), upregulation of TNF‐α, IL‐1β, CCL2 (C‐C chemokine ligand 2), nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, and inducible nitric oxide synthase. Correspondingly, in cultured cardiac myocytes, cardiac fibroblasts, and vascular endothelial cells, AdipoRon activated AMPK, upregulated IL‐10, and attenuated activation of nuclear factor κB, as well as upregulation of TNF‐α, IL‐1β, CCL2, NADPH oxidase, and inducible nitric oxide synthase induced by lipopolysaccharide or TNF‐α. In addition, the treatment of cardiac myocytes with the AMPK activator 5‐aminoimidazole‐4‐carboxamide 1‐β‐D‐ribofuranoside resulted in a similar inhibition of lipopolysaccharide‐ and TNF‐α–induced inflammatory cell phenotypes as for AdipoRon. Conclusions Our observations indicate that AdipoRon attenuates CPB‐induced inflammation and impairment of cardiac function through AMPK‐mediated inhibition of proinflammatory TLR4 and TNF‐α signaling in cardiac cells and upregulation of immunosuppressive IL‐10.
Collapse
Affiliation(s)
- Alexander Jenke
- Department of Cardiac Surgery Düsseldorf University Hospital Düsseldorf Germany.,Research Group Experimental Surgery Medical Faculty Heinrich Heine University Düsseldorf Düsseldorf Germany
| | - Mariam Yazdanyar
- Department of Cardiac Surgery Düsseldorf University Hospital Düsseldorf Germany.,Research Group Experimental Surgery Medical Faculty Heinrich Heine University Düsseldorf Düsseldorf Germany
| | - Shunsuke Miyahara
- Department of Cardiac Surgery Düsseldorf University Hospital Düsseldorf Germany.,Research Group Experimental Surgery Medical Faculty Heinrich Heine University Düsseldorf Düsseldorf Germany
| | - Agunda Chekhoeva
- Department of Cardiac Surgery Düsseldorf University Hospital Düsseldorf Germany.,Research Group Experimental Surgery Medical Faculty Heinrich Heine University Düsseldorf Düsseldorf Germany
| | - Moritz Benjamin Immohr
- Department of Cardiac Surgery Düsseldorf University Hospital Düsseldorf Germany.,Research Group Experimental Surgery Medical Faculty Heinrich Heine University Düsseldorf Düsseldorf Germany
| | - Julia Kistner
- Department of Cardiac Surgery Düsseldorf University Hospital Düsseldorf Germany.,Research Group Experimental Surgery Medical Faculty Heinrich Heine University Düsseldorf Düsseldorf Germany
| | - Udo Boeken
- Department of Cardiac Surgery Düsseldorf University Hospital Düsseldorf Germany.,Research Group Experimental Surgery Medical Faculty Heinrich Heine University Düsseldorf Düsseldorf Germany
| | - Artur Lichtenberg
- Department of Cardiac Surgery Düsseldorf University Hospital Düsseldorf Germany.,Research Group Experimental Surgery Medical Faculty Heinrich Heine University Düsseldorf Düsseldorf Germany
| | - Payam Akhyari
- Department of Cardiac Surgery Düsseldorf University Hospital Düsseldorf Germany.,Research Group Experimental Surgery Medical Faculty Heinrich Heine University Düsseldorf Düsseldorf Germany
| |
Collapse
|
20
|
Kar E, Alataş Ö, Şahıntürk V, Öz S. Effects of metformin on lipopolysaccharide induced inflammation by activating fibroblast growth factor 21. Biotech Histochem 2021; 97:44-52. [PMID: 33663305 DOI: 10.1080/10520295.2021.1894353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Lipopolysaccharide (LPS) is a component of the cell wall of Gram-negative bacteria that produces endotoxemia, which may cause septic shock. Metformin (MET) is a widely used hypoglycemic drug that exhibits anti-inflammatory properties. Fibroblast growth factor 21 (FGF21) is an endocrine polypeptide that affects glucose and lipid metabolism, and also possesses anti-inflammatory properties. We investigated the effects of MET and FGF21 on inflammation due to LPS induced endotoxemia in male rats. Animals were divided into five groups: control, LPS, pre-MET LPS, LPS + 1 h MET and LPS + 3 h MET. Serum levels of alanine aminotransferase, aspartate aminotransferase, FGF2, interleukin-10 and tumor necrosis factor alpha were measured. Malondialdehyde, myeloperoxidase and FGF21 levels were measured in liver tissue samples. Histopathology of all groups was assessed using hematoxylin and eosin stained sections. LPS caused severe inflammatory liver damage. MET exhibited a partially protective effect and reduced inflammation significantly. FGF21 is produced in the liver following inflammation and MET may increase its production.
Collapse
Affiliation(s)
- Ezgi Kar
- Department of Medical Biochemistry, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Özkan Alataş
- Department of Medical Biochemistry, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - Varol Şahıntürk
- Department of Histology and Embryology, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - Semih Öz
- Vocational School of Health Services, Eskişehir Osmangazi University, Eskişehir, Turkey
| |
Collapse
|
21
|
Yu P, Li Y, Fu W, Li X, Liu Y, Wang Y, Yu X, Xu H, Sui D. Panax quinquefolius L. Saponins Protect Myocardial Ischemia Reperfusion No-Reflow Through Inhibiting the Activation of NLRP3 Inflammasome via TLR4/MyD88/NF-κB Signaling Pathway. Front Pharmacol 2021; 11:607813. [PMID: 33628178 PMCID: PMC7898550 DOI: 10.3389/fphar.2020.607813] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/11/2020] [Indexed: 12/24/2022] Open
Abstract
At present, many patients who undergo reperfusion immediately after percutaneous coronary intervention will undergo microvascular obstruction and reduction in myocardial blood flow. This phenomenon is called "no-reflow (NR)," and there is still no effective therapy for NR. Studies showed Panax quinquefolius L. saponins (PQS) have effect on MI/R injury, while the effect and mechanism of PQS on MI/R induced NR are not clear. In this study, we established a MI/R model to investigate whether PQS decrease NR phenomenon via suppression of inflammation. We found that PQS significantly alleviated the symptoms of NR by reducing ischemia, infarction, and NR area; improving cardiac function; preventing pathological morphology changes of myocardium; depressing leukocytes' aggregation and adhesion; and suppressing the excessive inflammation. Further study demonstrated that PQS remarkably inhibited TLR4, MyD88, p-NF-κB, and NLRP3 inflammasome-associated protein, and these effects could be reversed by LPS. These results indicated that PQS may protect NR by inhibiting the activation of NLRP3 inflammasome via TLR4/MyD88/NF-κB signaling pathway in part, suggesting that PQS exist potential in preventing NR induced by MI/R.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Huali Xu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Dayun Sui
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| |
Collapse
|
22
|
Khoshkhouy F, Farshbaf A, Mahmoudabady M, Gholamnezhad Z. Effects of moderate exercise on lipopolysaccharide-induced inflammatory responses in rat's cardiac tissue. Cytokine 2020; 138:155409. [PMID: 33360764 DOI: 10.1016/j.cyto.2020.155409] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 01/03/2023]
Abstract
The effects of moderate exercise on cardiac tissue inflammation, oxidative stress markers and apoptosis in lipopolysaccharide (LPS)-administered rats were evaluated. Wistar rats were divided into three groups (N = 8): (1) control; (2) LPS (1 mg/kg); and (3) LPS + moderate training (LPS + EX: 15 m/min, 30 min/day, for 9 weeks (week 1-9)). LPS was injected intraperitoneally for 5 days during week 9. Finally, the rats' heart were removed for biochemical and expression assessments. LPS increased the levels of tumor necrosis factor α (TNF-α), interleukin (IL)- 1β, C-reactive protein (CRP), malondialdehyde (MDA) and nitric oxide (NO) metabolites in cardiac tissue, but decreased thiol contents and catalase (CAT) and superoxide dismutase (SOD) activity in cardiac tissue compared to the control group (p < 0.05-p < 0.001). In LPS + EX group, the level of NO metabolites was increased (p < 0.05) and thiol contents were decreased (p < 0.001) compared to the control group. Moderate training decreased the levels of TNF-α, IL-1β, CRP and NO metabolites while increased CAT activity in the LPS + EX group compared to the LPS group (p < 0.05-p < 0.001). The mRNA level of BAX in the LPS group and the BCL2/BAX ratio in both LPS and LPS + EX groups increased compared to the control group (p < 0.05-p < 0.01). These results indicated that moderate training improved LPS-induced deleterious effects on cardiac tissue by attenuating proinflammatory cytokine levels, apoptosis and oxidative damage.
Collapse
Affiliation(s)
- Fatemeh Khoshkhouy
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alieh Farshbaf
- Dental Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Mahmoudabady
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Gholamnezhad
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
23
|
Didari T, Hassani S, Baeeri M, Navaei-Nigjeh M, Rahimifard M, Haghi-Aminjan H, Gholami M, Nejad SM, Hassan FI, Mojtahedzadeh M, Abdollahi M. Short-term Effects of Metformin on Cardiac and Peripheral Blood Cells Following Cecal Ligation and Puncture-induced Sepsis. Drug Res (Stuttg) 2020; 71:257-264. [PMID: 33348389 DOI: 10.1055/a-1322-7478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
AIM OF THE STUDY Sepsis has well-documented inflammatory effects on cardiovascular and blood cells. This study is designed to investigate potential anti-inflammatory effects of metformin on cardiac and blood cells 12 and 24 h following cecal ligation and puncture (CLP)-induced sepsis. METHODS For the purpose of this study, 36 male Wistar rats were divided into six groups: two groups underwent CLP, two groups underwent CLP and received metformin, and two groups only received sham operations. 12 h later, 18 rats (half of rats in each of the three aforementioned groups) were sacrificed and cardiac and blood cells were harvested. Subsequently, 12 h later, the rest of the rats were euthanatized. In all harvested blood and cardiac cells, oxidative stress indicators, antioxidant properties, count of blood cells, neutrophil infiltration, percentage of weight loss and pathological assessment were conducted. RESULTS In our experiment, metformin elevated antioxidant levels, improved function of blood cells and percentage of weight loss. Moreover, in the groups which received metformin, oxidative stress and neutrophil infiltration markers were decreased significantly. Moreover, pathological investigations of cardiac cell injury were reduced in the metformin group. CONCLUSIONS Our findings suggest that in CLP induced sepsis model, metformin can improve the function of blood and cardiac cells through alleviating inflammation, improvement of anti-inflammation properties, and enhancement of blood profile, and all these effects are more pronounced after 24 h in comparison with 12 h after induction of sepsis.
Collapse
Affiliation(s)
- Tina Didari
- Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Shokoufeh Hassani
- Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Baeeri
- Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mona Navaei-Nigjeh
- Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mahban Rahimifard
- Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Haghi-Aminjan
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mahdi Gholami
- Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Solmaz Mohammadi Nejad
- Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Fatima Ismail Hassan
- Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Mojtahedzadeh
- Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Department of Clinical Pharmacy, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Lin CS, Chang CC, Yeh CC, Chang YC, Chen TL, Liao CC. Outcomes after surgery in patients with diabetes who used metformin: a retrospective cohort study based on a real-world database. BMJ Open Diabetes Res Care 2020; 8:e001351. [PMID: 33257420 PMCID: PMC7705543 DOI: 10.1136/bmjdrc-2020-001351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 08/06/2020] [Accepted: 08/15/2020] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Limited information was available regarding the perioperative outcomes in patients with and without use of metformin. This study aims to evaluate the complications and mortality after major surgery in patients with diabetes who use metformin. RESEARCH DESIGN AND METHODS Using a real-world database of Taiwan's National Health Insurance from 2008 to 2013, we conducted a matched cohort study of 91 356 patients with diabetes aged >20 years who used metformin and later underwent major surgery. Using a propensity score-matching technique adjusted for sociodemographic characteristics, medical condition, surgery type, and anesthesia type, 91 356 controls who underwent surgery but did not use metformin were selected. Logistic regression was used to calculate the ORs with 95% CIs for postoperative complications and 30-day mortality associated with metformin use. RESULTS Patients who used metformin had a lower risk of postoperative septicemia (OR 0.94, 95% CI 0.90 to 0.98), acute renal failure (OR 0.87, 95% CI 0.79 to 0.96), and 30-day mortality (OR 0.79, 95% CI 0.71 to 0.88) compared with patients who did not use metformin, in both sexes and in every age group. Metformin users who underwent surgery also had a decreased risk of postoperative intensive care unit admission (OR 0.60, 95% CI 0.59 to 0.62) and lower medical expenditures (p<0.0001) than non-use controls. CONCLUSIONS Among patients with diabetes, those who used metformin and underwent major surgery had a lower risk of complications and mortality compared with non-users. Further randomized clinical trials are needed to show direct evidence of how metformin improves perioperative outcomes.
Collapse
Affiliation(s)
- Chao-Shun Lin
- Department of Anesthesiology, Taipei Medical University Hospital, Taipei, Taiwan
- Anesthesiology and Health Policy Research Center, Taipei Medical University Hospital, Taipei, Taiwan
- Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chuen-Chau Chang
- Department of Anesthesiology, Taipei Medical University Hospital, Taipei, Taiwan
- Anesthesiology and Health Policy Research Center, Taipei Medical University Hospital, Taipei, Taiwan
- Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chun-Chieh Yeh
- Department of Surgery, China Medical University Hospital, Taichung, Taiwan
- Department of Surgery, University of Illinois, Chicago, Illinois, USA
| | - Yi-Cheng Chang
- Division of Endocrinology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Ta-Liang Chen
- Anesthesiology and Health Policy Research Center, Taipei Medical University Hospital, Taipei, Taiwan
- Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Anesthesiology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chien-Chang Liao
- Department of Anesthesiology, Taipei Medical University Hospital, Taipei, Taiwan
- Anesthesiology and Health Policy Research Center, Taipei Medical University Hospital, Taipei, Taiwan
- Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Research Center of Big Data and Meta-Analysis, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
25
|
Xu P, Zhang WQ, Xie J, Wen YS, Zhang GX, Lu SQ. Shenfu injection prevents sepsis-induced myocardial injury by inhibiting mitochondrial apoptosis. JOURNAL OF ETHNOPHARMACOLOGY 2020; 261:113068. [PMID: 32592888 DOI: 10.1016/j.jep.2020.113068] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/25/2020] [Accepted: 05/31/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shenfu injection (SFI) is a well-known Chinese herbal medicine widely used in the treatment of septic shock in China. AIMS The aims of this study are to investigate the protective effects of SFI on sepsis-induced myocardial injury in mice and to identify the underlying mechanism of action. MATERIALS AND METHODS Seventy-two male C57/B6J mice (5-6 weeks old) were randomly divided into five groups: control (NC), sham sepsis (sham), sepsis (Lipopolysaccharide- LPS), sepsis treated with a low dose SFI, and sepsis treated with a high dose SFI. Sepsis was induced in mice by intraperitoneal injection of LPS. Myocardial tissue samples were collected from different groups at 6 h, 12 h, and 24 h post-LPS injection. Myocardial injury was examined using hematoxylin-eosin (H&E) and TUNEL staining. Western-blot analysis was performed to determine the protein expression of B-cell lymphoma 2 (Bcl-2), BH3 interacting-domain death agonist (Bid), truncated-Bid (t-Bid) and caspase-9 in all the groups. Moreover, the structural changes in the mitochondria of cardiomyocytes were also observed by transmission electron microscopy. RESULTS H&E staining revealed structural damage, local necrosis, interstitial edema, inflammatory cell infiltration and vacuolar changes in the myocardial tissue in the sepsis (LPS) group; almost intact myocardial tissue was observed in the high dose SFI group with improvements in interstitial edema and inflammatory cell infiltration. We observed that LPS-induced cardiomyocyte apoptosis was significantly improved with high dose SFI as compared with sepsis (LPS) group (P ˂ 0.05). LPS was found to decrease the protein expression of Bcl-2 and increase the level of Bid, t-Bid and caspase-9. Treatment with SFI significantly increased the Bcl-2 protein expression (P ˂ 0.05) and decreased the protein expression of Bid, t-Bid and caspase-9 as compared with LPS group (P ˂ 0.05). Markedly swollen myocardial mitochondria with partial vacuolation were observed in LPS treated mice while SFI treatment was found to significantly improve the LPS-induced morphological damage of the mitochondria. CONCLUSION In conclusion, we demonstrate that SFI protects against sepsis-induced myocardial injury in mice through the suppression of myocardial apoptosis. It upregulates the protein expression of Bcl-2 and downregulates the protein expression of Bid, t-Bid and caspase-9, and alleviates sepsis-induced mitochondrial damage.
Collapse
Affiliation(s)
- Po Xu
- Department of Emergency, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China; Department of Intensive Care Unit, JingJiang Chinese Medicine Hospital, Jingjiang, 214500, China.
| | - Wen-Qing Zhang
- Department of Intensive Care Unit, Jingjiang People's Hospital, Jingjiang, 214500, China.
| | - Jing Xie
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Ying-Shi Wen
- Department of Intensive Care Unit, Jingjiang People's Hospital, Jingjiang, 214500, China.
| | - Guo-Xing Zhang
- Department of Physiology and Neuroscience, Medical College of Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Shi-Qi Lu
- Department of Emergency, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| |
Collapse
|
26
|
Shi Y, Zheng X, Zheng M, Wang L, Chen Y, Shen Y. Identification of mitochondrial function-associated lncRNAs in septic mice myocardium. J Cell Biochem 2020; 122:53-68. [PMID: 32786114 DOI: 10.1002/jcb.29831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 05/30/2020] [Accepted: 07/07/2020] [Indexed: 12/31/2022]
Abstract
The present study aimed to analyze long noncoding RNA (lncRNA) and messenger RNA (mRNA) expression profiles in septic mice heart and to identify potential lncRNAs and mRNAs that be responsible for cardiac mitochondrial dysfunction during sepsis. Mice were treated with 10 mg/kg of lipopolysaccharides to induce sepsis. LncRNAs and mRNAs expression were evaluated by using lncRNA and mRNA microarray or real-time polymerase chain reaction technique. LncRNA-mRNA coexpression network assay, Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed. The results showed that 1275 lncRNAs were differentially expressed in septic myocardium compared with those in the control group. A total of 2769 mRNAs were dysregulated in septic mice heart, most of which are mainly related to the process of inflammation, mitochondrial metabolism, oxidative stress, and apoptosis. Coexpression network analysis showed that 14 lncRNAs were highly correlated with 11 mitochondria-related differentially expressed mRNA. Among all lncRNAs and their cis-acting mRNAs, 41 lncRNAs-mRNA pairs (such as NONMMUG004378 and Apaf1 gene) were enriched in GO terms and KEGG pathways. In summary, we gained some specific lncRNAs and their potential target mRNAs that might be involved in mitochondrial dysfunction in septic myocardium. These findings provide a panoramic view of lncRNA and might allow developing new treatment strategies for sepsis.
Collapse
Affiliation(s)
- Yingzhou Shi
- Department of Basic Medicine Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaohe Zheng
- Department of Basic Medicine Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Mingzhi Zheng
- Department of Pharmacology, Hangzhou Medical College, Hangzhou, China
| | - Linlin Wang
- Department of Basic Medicine Sciences, Zhejiang University School of Medicine, Hangzhou, China.,Department of Orthopaedics of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yingying Chen
- Department of Basic Medicine Sciences, Zhejiang University School of Medicine, Hangzhou, China.,Department of Obstetrics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yueliang Shen
- Department of Basic Medicine Sciences, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
27
|
Jansen T, Kvandová M, Daiber A, Stamm P, Frenis K, Schulz E, Münzel T, Kröller-Schön S. The AMP-Activated Protein Kinase Plays a Role in Antioxidant Defense and Regulation of Vascular Inflammation. Antioxidants (Basel) 2020; 9:antiox9060525. [PMID: 32560060 PMCID: PMC7346208 DOI: 10.3390/antiox9060525] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases represent the leading cause of global deaths and life years spent with a severe disability. Endothelial dysfunction and vascular oxidative stress are early precursors of atherosclerotic processes in the vascular wall, all of which are hallmarks in the development of cardiovascular diseases and predictors of future cardiovascular events. There is growing evidence that inflammatory processes represent a major trigger for endothelial dysfunction, vascular oxidative stress and atherosclerosis and clinical data identified inflammation as a cardiovascular risk factor on its own. AMP-activated protein kinase (AMPK) is a central enzyme of cellular energy balance and metabolism that has been shown to confer cardio-protection and antioxidant defense which thereby contributes to vascular health. Interestingly, AMPK is also redox-regulated itself. We have previously shown that AMPK largely contributes to a healthy endothelium, confers potent antioxidant effects and prevents arterial hypertension. Recently, we provided deep mechanistic insights into the role of AMPK in cardiovascular protection and redox homeostasis by studies on arterial hypertension in endothelial and myelomonocytic cell-specific AMPK knockout (Cadh5CrexAMPKfl/fl and LysMCrexAMPKfl/fl) mice. Using these cell-specific knockout mice, we revealed the potent anti-inflammatory properties of AMPK representing the molecular basis of the antihypertensive effects of AMPK. Here, we discuss our own findings in the context of literature data with respect to the anti-inflammatory and antioxidant effects of AMPK in the specific setting of arterial hypertension as well as cardiovascular diseases in general.
Collapse
Affiliation(s)
- Thomas Jansen
- Center for Cardiology, Department of Cardiology 1—Molecular Cardiology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (T.J.); (M.K.); (P.S.); (K.F.); (T.M.)
| | - Miroslava Kvandová
- Center for Cardiology, Department of Cardiology 1—Molecular Cardiology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (T.J.); (M.K.); (P.S.); (K.F.); (T.M.)
| | - Andreas Daiber
- Center for Cardiology, Department of Cardiology 1—Molecular Cardiology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (T.J.); (M.K.); (P.S.); (K.F.); (T.M.)
- Partner Site Rhine-Main, German Center for Cardiovascular Research (DZHK), Langenbeckstr. 1, 55131 Mainz, Germany
- Correspondence: (A.D.); (S.K.-S); Tel.: +49-(0)6131-176280 (A.D.); Fax: +49-(0)6131-176293 (A.D.)
| | - Paul Stamm
- Center for Cardiology, Department of Cardiology 1—Molecular Cardiology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (T.J.); (M.K.); (P.S.); (K.F.); (T.M.)
| | - Katie Frenis
- Center for Cardiology, Department of Cardiology 1—Molecular Cardiology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (T.J.); (M.K.); (P.S.); (K.F.); (T.M.)
| | - Eberhard Schulz
- Department of Cardiology, Allgemeines Krankenhaus Celle, 29223 Celle, Germany;
| | - Thomas Münzel
- Center for Cardiology, Department of Cardiology 1—Molecular Cardiology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (T.J.); (M.K.); (P.S.); (K.F.); (T.M.)
- Partner Site Rhine-Main, German Center for Cardiovascular Research (DZHK), Langenbeckstr. 1, 55131 Mainz, Germany
| | - Swenja Kröller-Schön
- Center for Cardiology, Department of Cardiology 1—Molecular Cardiology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (T.J.); (M.K.); (P.S.); (K.F.); (T.M.)
- Correspondence: (A.D.); (S.K.-S); Tel.: +49-(0)6131-176280 (A.D.); Fax: +49-(0)6131-176293 (A.D.)
| |
Collapse
|
28
|
Xu X, Rui S, Chen C, Zhang G, Li Z, Wang J, Luo Y, Zhu H, Ma X. Protective effects of astragalus polysaccharide nanoparticles on septic cardiac dysfunction through inhibition of TLR4/NF-κB signaling pathway. Int J Biol Macromol 2020; 153:977-985. [DOI: 10.1016/j.ijbiomac.2019.10.227] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 10/17/2019] [Accepted: 10/24/2019] [Indexed: 12/19/2022]
|
29
|
McBride MA, Owen AM, Stothers CL, Hernandez A, Luan L, Burelbach KR, Patil TK, Bohannon JK, Sherwood ER, Patil NK. The Metabolic Basis of Immune Dysfunction Following Sepsis and Trauma. Front Immunol 2020; 11:1043. [PMID: 32547553 PMCID: PMC7273750 DOI: 10.3389/fimmu.2020.01043] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 04/30/2020] [Indexed: 12/13/2022] Open
Abstract
Critically ill, severely injured and high-risk surgical patients are vulnerable to secondary infections during hospitalization and after hospital discharge. Studies show that the mitochondrial function and oxidative metabolism of monocytes and macrophages are impaired during sepsis. Alternatively, treatment with microbe-derived ligands, such as monophosphoryl lipid A (MPLA), peptidoglycan, or β-glucan, that interact with toll-like receptors and other pattern recognition receptors on leukocytes induces a state of innate immune memory that confers broad-spectrum resistance to infection with common hospital-acquired pathogens. Priming of macrophages with MPLA, CPG oligodeoxynucleotides (CpG ODN), or β-glucan induces a macrophage metabolic phenotype characterized by mitochondrial biogenesis and increased oxidative metabolism in parallel with increased glycolysis, cell size and granularity, augmented phagocytosis, heightened respiratory burst functions, and more effective killing of microbes. The mitochondrion is a bioenergetic organelle that not only contributes to energy supply, biosynthesis, and cellular redox functions but serves as a platform for regulating innate immunological functions such as production of reactive oxygen species (ROS) and regulatory intermediates. This review will define current knowledge of leukocyte metabolic dysfunction during and after sepsis and trauma. We will further discuss therapeutic strategies that target leukocyte mitochondrial function and might have value in preventing or reversing sepsis- and trauma-induced immune dysfunction.
Collapse
Affiliation(s)
- Margaret A. McBride
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Allison M. Owen
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Cody L. Stothers
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Antonio Hernandez
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Liming Luan
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Katherine R. Burelbach
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Tazeen K. Patil
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Julia K. Bohannon
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Edward R. Sherwood
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Naeem K. Patil
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
30
|
Ajzashokouhi AH, Bostan HB, Jomezadeh V, Hayes AW, Karimi G. A review on the cardioprotective mechanisms of metformin against doxorubicin. Hum Exp Toxicol 2020; 39:237-248. [PMID: 31735071 DOI: 10.1177/0960327119888277] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Doxorubicin (DOX) is an antineoplastic agent obtained from Streptomyces peucetius. It is utilized in treating different kinds of cancers, such as leukemia, lymphoma, and lung, and breast cancers. The main side effect of DOX is cardiotoxicity. Metformin (MET) is an antihyperglycemic drug used for type 2 diabetes treatment. It is proposed that MET has a protective effect against DOX cardiotoxicity. Our review demonstrated that MET has several possible mechanisms of action, which can prevent or at least reduce DOX cardiotoxicity including a decrease of free radical generation and oxidative stress, 5' adenosine monophosphate-activated protein kinase activation, and ferritin heavy chain expression in cardiomyocytes cells. The combination of MET and DOX has been shown to enhance the anticancer activity of DOX by a number of authors. The literature reviewed in the present report supports the hypothesis that MET can reduce the cardiotoxicity that often occurs with DOX treatment.
Collapse
Affiliation(s)
- A H Ajzashokouhi
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - H B Bostan
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - V Jomezadeh
- Department of Surgery, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A W Hayes
- University of South Florida, Tampa, FL, USA
- Michigan State University, East Lansing, MI, USA
| | - G Karimi
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
31
|
Ismail Hassan F, Didari T, Khan F, Niaz K, Mojtahedzadeh M, Abdollahi M. A Review on The Protective Effects of Metformin in Sepsis-Induced Organ Failure. CELL JOURNAL 2020; 21:363-370. [PMID: 31376317 PMCID: PMC6722446 DOI: 10.22074/cellj.2020.6286] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 11/17/2018] [Indexed: 02/02/2023]
Abstract
Despite advances in sepsis management, it remains a major intensive-care-unit (ICU) concern. From new prospective, positive effects of metformin, such as anti-oxidant and anti-inflammatory properties are considered potentially beneficial properties for management of septic patients. This article reviewed the potential ameliorative effects of metformin in sepsis-induced organ failure. Information were retrieved from PubMed, Scopus, Embase, and Google Scholar. Multi-organ damage, oxidative stress, inflammatory cytokine stimulation, and altered circulation are hallmarks of sepsis. Metformin exerts its effect via adenosine monophosphate-activated protein kinase (AMPK) activation. It improves sepsis-induced organ failure by inhibiting the production of reactive oxygen species (ROS) and pro-inflammatory cytokines, preventing the activation of transcription factors related to inflammation, decreasing neutrophil accumulation/infiltration, and also maintaining mitochondrial membrane potential. Studies reported the safety of metformin therapeutic doses, with no evidence of lactic acidosis, in septic patients.
Collapse
Affiliation(s)
- Fatima Ismail Hassan
- The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Tina Didari
- The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Fazlullah Khan
- The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Kamal Niaz
- The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Mojtahedzadeh
- The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Tehran University of Medical Sciences, Tehran, Iran
- Department of Clinical Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran. Electronic Address:
- Department of Toxicology and Pharmacology, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
32
|
Wang HW, Lai EHH, Yang CN, Lin SK, Hong CY, Yang H, Chang JZC, Kok SH. Intracanal Metformin Promotes Healing of Apical Periodontitis via Suppressing Inducible Nitric Oxide Synthase Expression and Monocyte Recruitment. J Endod 2019; 46:65-73. [PMID: 31753516 DOI: 10.1016/j.joen.2019.10.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/17/2019] [Accepted: 10/02/2019] [Indexed: 12/12/2022]
Abstract
INTRODUCTION We have previously shown that intracanal metformin ameliorates apical periodontitis, partially by modulation of osteoblast apoptosis. The action of metformin on other cell types pertinent to the development of apical periodontitis needs to be examined. In the present study, we aimed to analyze whether its effects on the expression of inducible nitric oxide synthase (iNOS) and monocyte recruitment contribute to the therapeutic effect on apical periodontitis. METHODS Lipopolysaccharide (LPS)-induced expression of iNOS in a human monocytic cell line, Mono-Mac-6, was assessed by Western blot. The amount of nitrite in culture medium was assessed to quantify nitric oxide (NO) production. C-C motif chemokine ligand-2 (CCL-2) synthesis was measured by enzyme-linked immunosorbent assay. Experimental apical periodontitis in rats was treated with root canal debridement with or without intracanal metformin medication. Lesion progression was assessed by conventional radiography and micro-computed tomographic imaging. Cellular expression of iNOS and the number of monocytes/macrophages were assessed by immunohistochemistry. RESULTS Metformin suppressed LPS-induced iNOS and NO production by monocytes. More importantly, metformin inhibited LPS-enhanced CCL-2 synthesis through modulation of the iNOS/NO pathway. Intracanal metformin reduced bone resorption associated with apical periodontitis and suppressed iNOS expression and monocyte recruitment. CONCLUSIONS Our results confirmed the therapeutic efficacy of intracanal metformin for apical periodontitis. Suppression of monocyte recruitment through modulation of iNOS expression and NO production is an important mechanism underlying the beneficial effect of metformin.
Collapse
Affiliation(s)
- Han-Wei Wang
- Graduate Institute of Clinical Dentistry, National Taiwan University, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Eddie Hsiang-Hua Lai
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan; Department of Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Cheng-Ning Yang
- Department of Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Sze-Kwan Lin
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan; Department of Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chi-Yuan Hong
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan; Department of Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan; College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Hsiang Yang
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Jenny Zwei-Chieng Chang
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan; Department of Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Sang-Heng Kok
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan; Department of Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
33
|
El-Shoura EAM, Sharkawi SMZ, Messiha BAS, Bakr AG, Hemeida RAM. Perindopril mitigates LPS-induced cardiopulmonary oxidative and inflammatory damage via inhibition of renin angiotensin system, inflammation and oxidative stress. Immunopharmacol Immunotoxicol 2019; 41:630-643. [DOI: 10.1080/08923973.2019.1688346] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Ehab A. M. El-Shoura
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Souty M. Z. Sharkawi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Basim A. S. Messiha
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Adel G. Bakr
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Ramadan A. M. Hemeida
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Deraya University, Minya, Egypt
| |
Collapse
|
34
|
Ding J, Chen Y, Gao Y. Effect of propofol, midazolam and dexmedetomidine on ICU patients with sepsis and on arterial blood gas. Exp Ther Med 2019; 18:4340-4346. [PMID: 31772630 PMCID: PMC6862072 DOI: 10.3892/etm.2019.8091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/25/2019] [Indexed: 12/29/2022] Open
Abstract
Effects of propofol, midazolam and dexmedetomidine on patients with sepsis in intensive care unit (ICU) and on arterial blood gas (ABG) were studied. In total 429 ICU patients with sepsis, admitted to Renji Hospital, School of Medicine, Shanghai Jiaotong University from May 2015 to January 2019, were selected as research subjects for a prospective analysis. All patients received basic treatment, such as anti-infection treatment, correction of shock and improvement of microcirculation. One hundred and fifty-two patients who were treated with propofol for sedation served as group A, 146 patients who were treated with midazolam for sedation served as group B, and 131 patients who were treated with dexmedetomidine for sedation served as group C. The three groups of patients were compared in terms of diastolic blood pressure (DBP), systolic blood pressure (SBP), heart rate (HR), arterial partial pressure of oxygen (PaO2), arterial partial pressure of carbon dioxide (PaCO2), cardiac troponin T (cTnT) and creatine kinase-MB (CK-MB) before and after treatment. APACHE II score was used to evaluate the sedative effects. The wake-up time of the patients, the length of ICU stay and the adverse reactions were recorded. There was no significant difference among groups A, B and C in terms of HR, SBP, DBP, PaO2, PaCO2, cTnT, CK-MB and APACHE II score before treatment, and SBP, DBP, cTnT and HR after treatment (P>0.050). After treatment, there was no significant difference between groups A and B with respect to CK-MB and APACHE II score (P>0.050). The wake-up time in group A was significantly longer than that in groups B and C (P<0.001). In conclusion, propofol, midazolam and dexmedetomidine are effective and safe in the sedative treatment of ICU patients with sepsis, but dexmedetomidine has the best effect on protecting blood pressure and cardiac functions, which is worthy of use in the clinic.
Collapse
Affiliation(s)
- Jia Ding
- Department of Intensive Care Unit, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, P.R. China
| | - Yuwen Chen
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, P.R. China
| | - Yuan Gao
- Department of Intensive Care Unit, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, P.R. China
| |
Collapse
|
35
|
Reitsema VA, Star BS, de Jager VD, van Meurs M, Henning RH, Bouma HR. Metabolic Resuscitation Strategies to Prevent Organ Dysfunction in Sepsis. Antioxid Redox Signal 2019; 31:134-152. [PMID: 30403161 DOI: 10.1089/ars.2018.7537] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Significance: Sepsis is the main cause of death among patients admitted to the intensive care unit. As current treatment is limited to antimicrobial therapy and supportive care, mortality remains high, which warrants efforts to find novel therapies. Recent Advances: Mitochondrial dysfunction is emerging as a key process in the induction of organ dysfunction during sepsis, and metabolic resuscitation might reveal to be a novel cornerstone in the treatment of sepsis. Critical Issues: Here, we review novel strategies to maintain organ function in sepsis by precluding mitochondrial dysfunction by lowering energetic demand to allow preservation of adenosine triphosphate-levels, while reducing free radical generation. As the most common strategy to suppress metabolism, that is, cooling, does not reveal unequivocal beneficial effects and may even increase mortality, caloric restriction or modulation of energy-sensing pathways (i.e., sirtuins and AMP-activated protein kinase) may offer safe alternatives. Similar effects may be offered when mimicking hibernation by hydrogen sulfide (H2S). In addition H2S may also confer beneficial effects through upregulation of antioxidant mechanisms, similar to the other gasotransmitters nitric oxide and carbon monoxide, which display antioxidant and anti-inflammatory effects in sepsis. In addition, oxidative stress may be averted by systemic or mitochondria-targeted antioxidants, of which a wide range are able to lower inflammation, as well as reduce organ dysfunction and mortality from sepsis. Future Directions: Mitochondrial dysfunction plays a key role in the pathophysiology of sepsis. As a consequence, metabolic resuscitation might reveal to be a novel cornerstone in the treatment of sepsis.
Collapse
Affiliation(s)
- Vera A Reitsema
- 1 Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Bastiaan S Star
- 1 Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Vincent D de Jager
- 1 Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Matijs van Meurs
- 2 Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Robert H Henning
- 1 Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hjalmar R Bouma
- 1 Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,3 Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
36
|
Wu Y, Yao YM, Lu ZQ. Mitochondrial quality control mechanisms as potential therapeutic targets in sepsis-induced multiple organ failure. J Mol Med (Berl) 2019; 97:451-462. [PMID: 30788535 DOI: 10.1007/s00109-019-01756-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 12/24/2018] [Accepted: 02/06/2019] [Indexed: 02/07/2023]
Abstract
Sepsis is a dysregulated response to severe infection characterized by life-threatening organ failure and is the leading cause of mortality worldwide. Multiple organ failure is the central characteristic of sepsis and is associated with poor outcome of septic patients. Ultrastructural damage to the mitochondria and mitochondrial dysfunction are reported in sepsis. Mitochondrial dysfunction with subsequent ATP deficiency, excessive reactive oxygen species (ROS) release, and cytochrome c release are all considered to contribute to organ failure. Consistent mitochondrial dysfunction leads to reduced mitochondrial quality control capacity, which eliminates dysfunctional and superfluous mitochondria to maintain mitochondrial homeostasis. Mitochondrial quality is controlled through a series of processes including mitochondrial biogenesis, mitochondrial dynamics, mitophagy, and transport processes. Several studies have indicated that multiple organ failure is ameliorated by restoring mitochondrial quality control mechanisms and is further amplified by defective quality control mechanisms. This review will focus on advances concerning potential mechanisms in regulating mitochondrial quality control and impacts of mitochondrial quality control on the progression of sepsis.
Collapse
Affiliation(s)
- You Wu
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China.,Wenzhou Municipal Key Laboratory of Emergency, Critical Care and Disaster Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Yong-Ming Yao
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China. .,Trauma Research Center, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, People's Republic of China.
| | - Zhong-Qiu Lu
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China. .,Wenzhou Municipal Key Laboratory of Emergency, Critical Care and Disaster Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China. .,College of Nursing, Wenzhou Medical University, Wenzhou, People's Republic of China.
| |
Collapse
|
37
|
Liang H, Ding X, Li L, Wang T, Kan Q, Wang L, Sun T. Association of preadmission metformin use and mortality in patients with sepsis and diabetes mellitus: a systematic review and meta-analysis of cohort studies. Crit Care 2019; 23:50. [PMID: 30777119 PMCID: PMC6379943 DOI: 10.1186/s13054-019-2346-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 02/06/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Recent studies have reported that preadmission metformin users had lower mortality than non-metformin users in patients with sepsis and diabetes mellitus; however, these results are still controversial. Therefore, we conducted a systematic review and meta-analysis of published observational cohort data to determine the association between preadmission metformin use and mortality in septic adult patients with diabetes mellitus. METHODS The MEDLINE, EMBASE, and Cochrane CENTRAL databases were searched from their inception to September 30, 2018. Cohort studies that evaluated the use of metformin in septic adult patients with diabetes mellitus were included. The quality of outcomes was evaluated using the Newcastle-Ottawa Scale (NOS). The inverse variance method with random effects modelling was used to calculate the pooled odds ratios (ORs) and 95% CIs. RESULTS Five observational cohort studies (1282 patients) that were all judged as having a low risk of bias were included. In this meta-analysis, metformin use was associated with a significantly lower mortality rate (OR, 0.59; 95% CI, 0.43-0.79, P = 0.001). CONCLUSIONS This meta-analysis indicated an association between metformin use prior to admission and lower mortality in septic adult patients with diabetes mellitus. This finding suggested that the possible effect of metformin should be evaluated in future clinical trials.
Collapse
Affiliation(s)
- Huoyan Liang
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou, 450052 China
| | - Xianfei Ding
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou, 450052 China
| | - Lifeng Li
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Tian Wang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Quancheng Kan
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Lexin Wang
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW 2650 Australia
| | - Tongwen Sun
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou, 450052 China
| |
Collapse
|
38
|
Alí A, Boutjdir M, Aromolaran AS. Cardiolipotoxicity, Inflammation, and Arrhythmias: Role for Interleukin-6 Molecular Mechanisms. Front Physiol 2019; 9:1866. [PMID: 30666212 PMCID: PMC6330352 DOI: 10.3389/fphys.2018.01866] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/11/2018] [Indexed: 12/12/2022] Open
Abstract
Fatty acid infiltration of the myocardium, acquired in metabolic disorders (obesity, type-2 diabetes, insulin resistance, and hyperglycemia) is critically associated with the development of lipotoxic cardiomyopathy. According to a recent Presidential Advisory from the American Heart Association published in 2017, the current average dietary intake of saturated free-fatty acid (SFFA) in the US is 11–12%, which is significantly above the recommended <10%. Increased levels of circulating SFFAs (or lipotoxicity) may represent an unappreciated link that underlies increased vulnerability to cardiac dysfunction. Thus, an important objective is to identify novel targets that will inform pharmacological and genetic interventions for cardiomyopathies acquired through excessive consumption of diets rich in SFFAs. However, the molecular mechanisms involved are poorly understood. The increasing epidemic of metabolic disorders strongly implies an undeniable and critical need to further investigate SFFA mechanisms. A rapidly emerging and promising target for modulation by lipotoxicity is cytokine secretion and activation of pro-inflammatory signaling pathways. This objective can be advanced through fundamental mechanisms of cardiac electrical remodeling. In this review, we discuss cardiac ion channel modulation by SFFAs. We further highlight the contribution of downstream signaling pathways involving toll-like receptors and pathological increases in pro-inflammatory cytokines. Our expectation is that if we understand pathological remodeling of major cardiac ion channels from a perspective of lipotoxicity and inflammation, we may be able to develop safer and more effective therapies that will be beneficial to patients.
Collapse
Affiliation(s)
- Alessandra Alí
- Cardiovascular Research Program, VA New York Harbor Healthcare System, Brooklyn, NY, United States.,Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Department of Pharmacology, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Mohamed Boutjdir
- Cardiovascular Research Program, VA New York Harbor Healthcare System, Brooklyn, NY, United States.,Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Department of Pharmacology, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Department of Medicine, New York University School of Medicine, New York, NY, United States
| | - Ademuyiwa S Aromolaran
- Cardiovascular Research Program, VA New York Harbor Healthcare System, Brooklyn, NY, United States.,Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Department of Pharmacology, State University of New York Downstate Medical Center, Brooklyn, NY, United States
| |
Collapse
|
39
|
Nozu T, Miyagishi S, Kumei S, Nozu R, Takakusaki K, Okumura T. Metformin inhibits visceral allodynia and increased gut permeability induced by stress in rats. J Gastroenterol Hepatol 2019; 34:186-193. [PMID: 29966173 DOI: 10.1111/jgh.14367] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/06/2018] [Accepted: 06/17/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND AIM Metformin has been shown to have anti-cytokine property. Lipopolysaccharide (LPS)-induced or repeated water avoidance stress (WAS)-induced visceral allodynia and increased gut permeability were pro-inflammatory cytokine-dependent responses, which were considered to be animal models of irritable bowel syndrome (IBS). We hypothesized that metformin improves symptoms in the patients with IBS by attenuating these visceral changes and tested the hypothesis in rats. METHODS The threshold of the visceromotor response induced by colonic balloon distention was measured. Colonic permeability was determined in vivo by quantifying the absorbed Evans blue for 15 min spectrophotometrically. RESULTS Subcutaneously injected LPS (1 mg/kg) reduced the threshold of visceromotor response, and metformin (5-50 mg/kg for 3 days) intraperitoneally attenuated this response in a dose-dependent manner. Repeated WAS (1 h daily for 3 days) induced visceral allodynia, which was also blocked by metformin. The antinociceptive effect of metformin on the LPS-induced allodynia was reversed by compound C, an adenosine monophosphate-activated protein kinase inhibitor or NG -nitro-L-arginine methyl ester, a nitric oxide synthesis inhibitor but not modified by naloxone. Additionally, it was blocked by sulpiride, a dopamine D2 receptor antagonist, but domperidone, a peripheral dopamine D2 receptor antagonist, did not alter it. Metformin also blocked the LPS-induced or repeated WAS-induced increased colonic permeability. CONCLUSIONS Metformin attenuated the visceral allodynia and increased gut permeability in animal IBS models. These actions may be evoked via activation of adenosine monophosphate-activated protein kinase, nitric oxide, and central dopamine D2 pathways. These results indicate the possibility that metformin can be useful for treating IBS.
Collapse
Affiliation(s)
- Tsukasa Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Saori Miyagishi
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Shima Kumei
- Department of General Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Rintaro Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Kaoru Takakusaki
- Research Center for Brain Function and Medical Engineering, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Toshikatsu Okumura
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan.,Department of General Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| |
Collapse
|
40
|
Zheng L, Shen X, Ye J, Xie Y, Yan S. Metformin alleviates hyperglycemia-induced apoptosis and differentiation suppression in osteoblasts through inhibiting the TLR4 signaling pathway. Life Sci 2018; 216:29-38. [PMID: 30414431 DOI: 10.1016/j.lfs.2018.11.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/27/2018] [Accepted: 11/05/2018] [Indexed: 02/07/2023]
Abstract
AIMS Metformin was found to protect against hyperglycemia-induced injury in osteoblasts, but the cellular mechanisms involved remain unclear. Therefore, the aim of this study was to determine the effect of metformin on hyperglycemia-induced apoptosis and differentiation suppression in osteoblasts and to explore its relationships with the TLR4 signaling pathway. MAIN METHODS A mouse osteoblast cell line, MC3T3-E1, and a diabetic rat model were used to survey the protective effects of metformin on hyperglycemia-induced injury. TLR4 expression was altered using small interfering (si)RNA and lentivirus-mediated TLR4 overexpression. LPS was used as a specific TLR4 activator, and CLI-095 was used as a TLR4 inhibitor. KEY FINDINGS Metformin improved osteoblast differentiation, reduced apoptosis in hyperglycemic osteoblasts, and inhibited TLR4, MyD88 and NF-κB expression in a dose-dependent manner. Down-regulating the expression or inhibiting the activity of TLR4 enhanced these protective effects of metformin on osteoblast differentiation, cell viability and cell apoptosis in hyperglycemic conditions, whereas up-regulating the expression or activating the activity of TLR4 had the opposite effects. Activating NF-κB suppressed the protective effects of metformin, while inhibiting NF-κB activity had the opposite effects. Metformin increased ALP and OCN secretion, enhanced BMP-2 expression, improved bone mineral density (BMD), and decreased TLR4, MyD88 and NF-κB levels in the femur tissues of diabetic rats. SIGNIFICANCE Taken together our experimentation support the hypothesis that metformin may alleviate hyperglycemia-induced apoptosis and differentiation suppression in osteoblasts by inhibiting the TLR4/MyD88/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Lifeng Zheng
- Department of Orthopedics, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian, China
| | - Ximei Shen
- Department of Endocrinology, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian, China; Diabetes Research Institute of Fujian Province, Fuzhou 350005, Fujian, China
| | - Junjian Ye
- Department of Orthopedics, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian, China
| | - Yun Xie
- Department of Orthopedics, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian, China
| | - Sunjie Yan
- Department of Endocrinology, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian, China; Diabetes Research Institute of Fujian Province, Fuzhou 350005, Fujian, China.
| |
Collapse
|
41
|
Silwal P, Kim JK, Yuk JM, Jo EK. AMP-Activated Protein Kinase and Host Defense against Infection. Int J Mol Sci 2018; 19:ijms19113495. [PMID: 30404221 PMCID: PMC6274990 DOI: 10.3390/ijms19113495] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/05/2018] [Accepted: 11/05/2018] [Indexed: 02/07/2023] Open
Abstract
5′-AMP-activated protein kinase (AMPK) plays diverse roles in various physiological and pathological conditions. AMPK is involved in energy metabolism, which is perturbed by infectious stimuli. Indeed, various pathogens modulate AMPK activity, which affects host defenses against infection. In some viral infections, including hepatitis B and C viral infections, AMPK activation is beneficial, but in others such as dengue virus, Ebola virus, and human cytomegaloviral infections, AMPK plays a detrimental role. AMPK-targeting agents or small molecules enhance the antiviral response and contribute to the control of microbial and parasitic infections. In addition, this review focuses on the double-edged role of AMPK in innate and adaptive immune responses to infection. Understanding how AMPK regulates host defenses will enable development of more effective host-directed therapeutic strategies against infectious diseases.
Collapse
Affiliation(s)
- Prashanta Silwal
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon 35015, Korea.
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea.
| | - Jin Kyung Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon 35015, Korea.
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea.
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea.
| | - Jae-Min Yuk
- Department of Infection Biology, Chungnam National University School of Medicine, Daejeon 35015, Korea.
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon 35015, Korea.
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea.
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea.
| |
Collapse
|
42
|
Huang SH, Xu M, Wu HM, Wan CX, Wang HB, Wu QQ, Liao HH, Deng W, Tang QZ. Isoquercitrin Attenuated Cardiac Dysfunction Via AMPKα-Dependent Pathways in LPS-Treated Mice. Mol Nutr Food Res 2018; 62:e1800955. [PMID: 30359483 DOI: 10.1002/mnfr.201800955] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 09/11/2018] [Indexed: 12/11/2022]
Abstract
SCOPE Isoquercitrin (IQC) has been reported to play a protective role in many pathological conditions. Here, the effects of IQC on lipopolysaccharide (LPS)-induced cardiac dysfunction are investigated, exploring its potential molecular mechanisms. METHODS AND RESULTS C57BL/6 mice or H9c2 cardiomyoblasts are subjected to LPS challenge for 12 h. Pretreatment with IQC attenuates LPS-induced cardiac dysfunction. IQC remarkably reduces LPS-mediated inflammatory responses by inhibiting the mRNA levels of TNF-α, IL6, and MCP1 as well as the protein levels of p-IKKβ, p-IκBα, and p-p65 in vivo and in vitro. Interestingly, IQC administration also improves energy deficiencies caused by LPS, manifesting as significant increases in cardiac and cellular ATP levels. Furthermore, ATP levels increase due to the upregulation of PGC1β and PPAR-α, which enhances fatty acid oxidation in vivo and in vitro. However, the protective roles of IQC against LPS-mediated increased inflammatory responses and decreased acid fatty oxidation are partially blunted by inhibiting AMPKα in vitro, and suppressing AMPKα partially blocks the increased cardiac function elicited by IQC in LPS-treated mice. CONCLUSION IQC attenuates LPS-induced cardiac dysfunction by inhibiting inflammatory responses and by enhancing fatty acid oxidation, partially by activating AMPKα. IQC might be a potential drug for sepsis-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Si-Hui Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P.R. China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, P.R. China.,Hubei Key Laboratory of Cardiology, Wuhan, 430060, P.R. China
| | - Man Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P.R. China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, P.R. China.,Hubei Key Laboratory of Cardiology, Wuhan, 430060, P.R. China
| | - Hai-Ming Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P.R. China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, P.R. China.,Hubei Key Laboratory of Cardiology, Wuhan, 430060, P.R. China
| | - Chun-Xia Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P.R. China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, P.R. China.,Hubei Key Laboratory of Cardiology, Wuhan, 430060, P.R. China
| | - Hui-Bo Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P.R. China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, P.R. China.,Hubei Key Laboratory of Cardiology, Wuhan, 430060, P.R. China
| | - Qing-Qing Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P.R. China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, P.R. China.,Hubei Key Laboratory of Cardiology, Wuhan, 430060, P.R. China
| | - Hai-Han Liao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P.R. China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, P.R. China.,Hubei Key Laboratory of Cardiology, Wuhan, 430060, P.R. China
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P.R. China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, P.R. China.,Hubei Key Laboratory of Cardiology, Wuhan, 430060, P.R. China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P.R. China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, P.R. China.,Hubei Key Laboratory of Cardiology, Wuhan, 430060, P.R. China
| |
Collapse
|
43
|
Wu W, Wang S, Liu Q, Shan T, Wang Y. Metformin Protects against LPS-Induced Intestinal Barrier Dysfunction by Activating AMPK Pathway. Mol Pharm 2018; 15:3272-3284. [DOI: 10.1021/acs.molpharmaceut.8b00332] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Weiche Wu
- College of Animal Science, Zhejiang University, Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, Zhejiang Provincial Laboratory of Feed and Animal Nutrition, No. 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Sisi Wang
- College of Animal Science, Zhejiang University, Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, Zhejiang Provincial Laboratory of Feed and Animal Nutrition, No. 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Qing Liu
- College of Animal Science, Zhejiang University, Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, Zhejiang Provincial Laboratory of Feed and Animal Nutrition, No. 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Tizhong Shan
- College of Animal Science, Zhejiang University, Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, Zhejiang Provincial Laboratory of Feed and Animal Nutrition, No. 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Yizhen Wang
- College of Animal Science, Zhejiang University, Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, Zhejiang Provincial Laboratory of Feed and Animal Nutrition, No. 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| |
Collapse
|
44
|
Luo Q, Liu G, Chen G, Guo D, Xu L, Hang M, Jin M. Apelin protects against sepsis‑induced cardiomyopathy by inhibiting the TLR4 and NLRP3 signaling pathways. Int J Mol Med 2018; 42:1161-1167. [PMID: 29749463 DOI: 10.3892/ijmm.2018.3665] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 05/02/2018] [Indexed: 11/06/2022] Open
Affiliation(s)
- Qiancheng Luo
- Department of Emergency Medicine, Shanghai Pudong New Area Gongli Hospital, The Second Military Medical University, Shanghai 200135, P.R.�China
| | - Guorong Liu
- Department of Emergency Medicine, Shanghai Pudong New Area Gongli Hospital, The Second Military Medical University, Shanghai 200135, P.R. China
| | - Guo Chen
- Department of Emergency Medicine, Shanghai Pudong New Area Gongli Hospital, The Second Military Medical University, Shanghai 200135, P.R. China
| | - Dongfeng Guo
- Department of Emergency Medicine, Shanghai Pudong New Area Gongli Hospital, The Second Military Medical University, Shanghai 200135, P.R. China
| | - Lei Xu
- Department of Emergency Medicine, Shanghai Pudong New Area Gongli Hospital, The Second Military Medical University, Shanghai 200135, P.R. China
| | - Min Hang
- Department of Emergency Medicine, Shanghai Pudong New Area Gongli Hospital, The Second Military Medical University, Shanghai 200135, P.R. China
| | - Mingming Jin
- Department of Clinical Laboratory, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai 200135, P.R.�China
| |
Collapse
|
45
|
Liu Y, Jiang X, Chen X. Liraglutide and Metformin alone or combined therapy for type 2 diabetes patients complicated with coronary artery disease. Lipids Health Dis 2017; 16:227. [PMID: 29197387 PMCID: PMC5712174 DOI: 10.1186/s12944-017-0609-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/05/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND This study is to compare the effects of Liraglutide and Metformin alone or combined treatment on the cardiac function in T2DM patients complicated with CAD. METHODS 120 T2DM patients were included at Endocrinology Department of Tianjin First Center Hospital (Tianjin, China) from April 2012 to September 2013. The study contained two sections. Section 1: 30 patients in group 1 was treated with Liraglutide (Novo Nordisk) (1.2 mg/d), and 30 patients in group 2 with Metformin (Shiguibao) (1500 mg/d) for 24 weeks. Section 2: 30 patients in group1 was treated with Liraglutide (1.8 mg/d) and 30 in group 2 with Liraglutide (1.2 mg/d) plus Metformin (1500 mg/d) for 24 weeks. Fasting blood glucose (FBG), postprandial glucose (PPG), glycated hemoglobin (HbA1c), body mass index (BMI), blood pressure (BP), triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), C reactive protein (CRP), left ventricular end-diastolic diameter (LVEDD), ejection fraction (EF) and the ratio of early (E) to late (A) ventricular filling velocities (E/A ratio) were measured before and after the 24-week treatment. RESULTS After 24-week treatment, when blood glucose level was controlled in 4 groups, Liraglutide alone treatment showed better improvements than on all measuring except TG in Section 1, however, combined treatment of Liraglutide and Metformin showed better improvements on all measuring except BMI, TG and BP in Section 2. CONCLUSIONS With similar glycemic control, the Liraglutide (1.2 mg/d) monotherapy showed the better effects than either Metformin alone, or combination of Liraglutide and Metformin on lipid metabolism and cardiovascular function. TRIAL REGISTRATION This trial was registered at Chinese Clinical Trial Registry ( chictr.org.cn ) # ChiCTR-IPR-16008578 .
Collapse
Affiliation(s)
- Ying Liu
- Department of Endocrinology, Tianjin First Center Hospital, 24 Fukang Road, Nankai District, Tianjin, 300192, China.
| | - Xia Jiang
- Department of Endocrinology, Tianjin First Center Hospital, 24 Fukang Road, Nankai District, Tianjin, 300192, China
| | - Xin Chen
- Department of Cardiovascular Medicine, Tianjin First Center Hospital, Tianjin, 300192, China
| |
Collapse
|
46
|
Ethanol extract of Atractylodis macrocephalae Rhizoma ameliorates insulin resistance and gut microbiota in type 2 diabetic db/db mice. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.10.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
47
|
Kim SS, Park SH, Lee JR, Jung JS, Suh HW. The activation of α 2-adrenergic receptor in the spinal cord lowers sepsis-induced mortality. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2017; 21:495-507. [PMID: 28883754 PMCID: PMC5587600 DOI: 10.4196/kjpp.2017.21.5.495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 05/09/2017] [Accepted: 06/09/2017] [Indexed: 01/27/2023]
Abstract
The effect of clonidine administered intrathecally (i.t.) on the mortality and the blood glucose level induced by sepsis was examined in mice. To produce sepsis, the mixture of D-galactosamine (GaLN; 0.6 g/10 ml)/lipopolysaccharide (LPS; 27 µg/27 µl) was treated intraperitoneally (i.p.). The i.t. pretreatment with clonidine (5 µg/5 µl) increased the blood glucose level and attenuated mortality induced by sepsis in a dose-dependent manner. The i.t. post-treatment with clonidine up to 3 h caused an elevation of the blood glucose level and protected sepsis-induced mortality, whereas clonidine post-treated at 6, 9, or 12 h did not affect. The pre-treatment with oral D-glucose for 30 min prior to i.t. post-treatment (6 h) with clonidine did not rescue sepsis-induced mortality. In addition, i.t. pretreatment with pertussis toxin (PTX) reduced clonidine-induced protection against mortality and clonidine-induced hyperglycemia, suggesting that protective effect against sepsis-induced mortality seems to be mediated via activating PTX-sensitive G-proteins in the spinal cord. Moreover, pretreatment with clonidine attenuated the plasma tumor necrosis factor α (TNF-α) induced by sepsis. Clonidine administered i.t. or i.p. increased p-AMPKα1 and p-AMPKα2, but decreased p-Tyk2 and p-mTOR levels in both control and sepsis groups, suggesting that the up-regulations of p-AMPKα1 and p-AMPKα2, or down-regulations of p-mTOR and p-Tyk2 may play critical roles for the protective effect of clonidine against sepsis-induced mortality.
Collapse
Affiliation(s)
- Sung-Su Kim
- Department of Pharmacology, Institute of Natural Medicine, College of Medicine Hallym University, Chuncheon 24252, Korea
| | - Soo-Hyun Park
- Department of Pharmacology, Institute of Natural Medicine, College of Medicine Hallym University, Chuncheon 24252, Korea
| | - Jae-Ryung Lee
- Department of Pharmacology, Institute of Natural Medicine, College of Medicine Hallym University, Chuncheon 24252, Korea
| | - Jun-Sub Jung
- Department of Pharmacology, Institute of Natural Medicine, College of Medicine Hallym University, Chuncheon 24252, Korea
| | - Hong-Won Suh
- Department of Pharmacology, Institute of Natural Medicine, College of Medicine Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
48
|
Tang G, Yang H, Chen J, Shi M, Ge L, Ge X, Zhu G. Metformin ameliorates sepsis-induced brain injury by inhibiting apoptosis, oxidative stress and neuroinflammation via the PI3K/Akt signaling pathway. Oncotarget 2017; 8:97977-97989. [PMID: 29228667 PMCID: PMC5716707 DOI: 10.18632/oncotarget.20105] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 07/25/2017] [Indexed: 01/30/2023] Open
Abstract
Sepsis-induced brain injuries increase mortality, morbidity, cognitive impairment and lack of effective therapeutic treatment. Previous studies have suggested that metformin provides neuroprotective effects against ischemia, brain trauma and other brain damage, but whether metformin protects a septic brain remains unknown. Thus, the aim of this study is to investigate the possible effects and the mechanism of metformin against septic brain damage using the cecal ligation and puncture (CLP) model. Mice were randomly divided into five groups: the Sham group, CLP group, CLP+ Met group, CLP+ vehicle group and CLP+ Met+ LY group. The survival percentage and brain water content were examined, and the Morris water maze was conducted to determine the protective effect of metformin. Neuronal apoptosis in the cerebral cortex, striatum and hippocampus was examined using TUNEL assay and immunohistochemistry, and western blot was applied to measure the expression of p-Akt. The results indicate that metformin can increase survival percentage, decrease brain edema, preserve the blood-brain barrier (BBB) and improve cognitive function. Metformin also reduced the neuronal apoptosis induced by sepsis and increased the phosphorylation of Akt. However, the protective effect of metformin can be reversed by LY294002, a PI3K inhibitor. In summary, our results demonstrate that metformin can exert a neuroprotective effect by activating the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Guangming Tang
- Department of Internal Medicine, Soochow University Affiliated Children's Hospital, Suzhou, Jiangsu, P.R. China
| | - Huiyun Yang
- Neonate Department, Soochow University Affiliated Children's Hospital, Suzhou, Jiangsu, P.R. China
| | - Jing Chen
- Neonate Department, Soochow University Affiliated Children's Hospital, Suzhou, Jiangsu, P.R. China
| | - Mengrao Shi
- Neonate Department, Soochow University Affiliated Children's Hospital, Suzhou, Jiangsu, P.R. China
| | - Lingqing Ge
- Neonate Department, Soochow University Affiliated Children's Hospital, Suzhou, Jiangsu, P.R. China
| | - Xuhua Ge
- Department of General Medicine, Yangpu Hospital Tongji University School of Medicine, Shanghai, P.R. C
| | - Guoji Zhu
- Department of Internal Medicine, Soochow University Affiliated Children's Hospital, Suzhou, Jiangsu, P.R. China
| |
Collapse
|
49
|
Tao L, Cao F, Xu G, Xie H, Zhang M, Zhang C. Mogroside IIIE Attenuates LPS-Induced Acute Lung Injury in Mice Partly Through Regulation of the TLR4/MAPK/NF-κB Axis via AMPK Activation. Phytother Res 2017; 31:1097-1106. [DOI: 10.1002/ptr.5833] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 03/24/2017] [Accepted: 04/19/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Lijun Tao
- Research Department of Pharmacognosy; China Pharmaceutical University; Nanjing 211198 People's Republic of China
| | - Fengyan Cao
- Research Department of Pharmacognosy; China Pharmaceutical University; Nanjing 211198 People's Republic of China
| | - Gonghao Xu
- Research Department of Pharmacognosy; China Pharmaceutical University; Nanjing 211198 People's Republic of China
| | - Haifeng Xie
- Chengdu Biopurity Chengdu Biopurity Phytochemicals Ltd; Chengdu 611131 People's Republic of China
| | - Mian Zhang
- Research Department of Pharmacognosy; China Pharmaceutical University; Nanjing 211198 People's Republic of China
| | - Chaofeng Zhang
- Research Department of Pharmacognosy; China Pharmaceutical University; Nanjing 211198 People's Republic of China
| |
Collapse
|
50
|
Grilo GA, Shaver PR, de Castro Brás LE. Mechanisms of cardioprotection via modulation of the immune response. Curr Opin Pharmacol 2017; 33:6-11. [PMID: 28388508 PMCID: PMC11034833 DOI: 10.1016/j.coph.2017.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/03/2017] [Accepted: 03/08/2017] [Indexed: 10/19/2022]
Abstract
Both morbidity and mortality as a result of cardiovascular disease remain significant worldwide and account for approximately 31% of annual deaths in the US. Current research is focused on novel therapeutic strategies to protect the heart during and after ischemic events and from subsequent adverse myocardial remodeling. After cardiac insult, the immune system is activated and plays an essential role in the beginning, development, and resolution of the healing cascade. Uncontrolled inflammatory responses can cause chronic disease and exacerbate progression to heart failure and therefore, constitute a major area of focus of cardiac therapies. In the present overview, we share novel insights and promising therapeutic cardioprotective strategies that target the immune response.
Collapse
Affiliation(s)
- Gabriel A Grilo
- The Brody School of Medicine, Department of Physiology, East Carolina University, 600 Moye Blvd, Greenville NC 27834, USA
| | - Patti R Shaver
- The Brody School of Medicine, Department of Physiology, East Carolina University, 600 Moye Blvd, Greenville NC 27834, USA
| | - Lisandra E de Castro Brás
- The Brody School of Medicine, Department of Physiology, East Carolina University, 600 Moye Blvd, Greenville NC 27834, USA.
| |
Collapse
|