1
|
Kayyal H, Cruciani F, Chandran SK, Edry E, Schif-Zuck S, Koren T, Yiannakas A, Rolls A, Ariel A, Rosenblum K. Retrieval of conditioned immune response in male mice is mediated by an anterior-posterior insula circuit. Nat Neurosci 2025; 28:589-601. [PMID: 39870921 DOI: 10.1038/s41593-024-01864-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 12/05/2024] [Indexed: 01/29/2025]
Abstract
To protect the body from infections, the brain has evolved the ability to coordinate behavioral and immunological responses. The conditioned immune response (CIR) is a form of Pavlovian conditioning wherein a sensory (for example, taste) stimulus, when paired with an immunomodulatory agent, evokes aversive behavior and an anticipatory immune response after re-experiencing the taste. Although taste and its valence are represented in the anterior insular cortex and immune response in the posterior insula and although the insula is pivotal for CIRs, the precise circuitry underlying CIRs remains unknown. Here, we demonstrated that a bidirectional circuit connecting the anterior and posterior (aIC-pIC) insula mediates the CIR in male mice. Retrieving the behavioral dimension of the association requires activity of aIC-to-pIC neurons, whereas modulating the anticipatory immunological dimension requires bidirectional projections. These results illuminate a mechanism by which experience shapes interactions between sensory internal representations and the immune system. Moreover, this newly described intrainsular circuit contributes to the preservation of brain-dependent immune homeostasis.
Collapse
Affiliation(s)
- Haneen Kayyal
- Sagol Department of Neuroscience, The Integrated Brain and Behavior Center, University of Haifa, Haifa, Israel.
| | - Federica Cruciani
- Sagol Department of Neuroscience, The Integrated Brain and Behavior Center, University of Haifa, Haifa, Israel.
| | | | - Efrat Edry
- Sagol Department of Neuroscience, The Integrated Brain and Behavior Center, University of Haifa, Haifa, Israel
- Center for Gene Manipulation in the Brain, University of Haifa, Haifa, Israel
| | - Sagie Schif-Zuck
- Department of Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
- Departments of Human Biology, University of Haifa, Haifa, Israel
| | - Tamar Koren
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Adonis Yiannakas
- Sagol Department of Neuroscience, The Integrated Brain and Behavior Center, University of Haifa, Haifa, Israel
- European University of Cyprus Medical School, Frankfurt am Main, Germany
| | - Asya Rolls
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Amiram Ariel
- Department of Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
- Departments of Human Biology, University of Haifa, Haifa, Israel
| | - Kobi Rosenblum
- Sagol Department of Neuroscience, The Integrated Brain and Behavior Center, University of Haifa, Haifa, Israel.
- Center for Gene Manipulation in the Brain, University of Haifa, Haifa, Israel.
| |
Collapse
|
2
|
Zhou Q, Wang Y, Cheng Y, Zhou J, Liu W, Ma X, Tang S, Tang S, Tang C. Ilexgenin A inhibits lipid accumulation in macrophages and reduces the progression of atherosclerosis through PTPN2/ERK1/2/ABCA1 signalling pathway. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159533. [PMID: 39009241 DOI: 10.1016/j.bbalip.2024.159533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 07/05/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
Macrophage lipid accumulation indicates a pathological change in atherosclerosis. Ilexgenin A (IA), a pentacyclic triterpenoid compound, plays a role in preventing inflammation, bacterial infection, and fatty liver and induces a potential anti-atherogenic effect. However, the anti-atherosclerotic mechanism remains unclear. The present study investigated the effects of IA on lipid accumulation in macrophage-derived foam cells and atherogenesis in apoE-/- mice. Our results indicated that the expression of adenosine triphosphate-binding cassette transporter A1 (ABCA1) was up-regulated by IA, promoting cholesterol efflux and reducing lipid accumulation in macrophages, which may be regulated by the protein tyrosine phosphatase non-receptor type 2 (PTPN2)/ERK1/2 signalling pathway. IA attenuated the progression of atherosclerosis in high-fat diet-fed apoE-/- mice. PTPN2 knockdown with siRNA or treatment with an ERK1/2 agonist (Ro 67-7476) impeded the effects of IA on ABCA1 upregulation and cholesterol efflux in macrophages. These results suggest that IA inhibits macrophage lipid accumulation and alleviates atherosclerosis progression via the PTPN2/ERK1/2 signalling pathway.
Collapse
Affiliation(s)
- Qinyi Zhou
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Department of Cardiology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yang Wang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yaqiong Cheng
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Jing Zhou
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Wang Liu
- Department of Gastrointestinal Surgery, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Xiaofeng Ma
- Department of Cardiology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Shilin Tang
- Department of Critical Care Medicine, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Shangshu Tang
- The Seventh Affiliated Hospital University of South China / Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China.
| | - Chaoke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
3
|
Wang L, Wang X, Sun N, Liu W. High mobility group box 1 mediates inflammatory responses in malignant peritoneal mesothelioma. Int Immunopharmacol 2024; 133:112039. [PMID: 38613884 DOI: 10.1016/j.intimp.2024.112039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND Serum high mobility group box 1 (HMGB1) serves as a diagnostic biomarker for malignant peritoneal mesothelioma (MPM) patients, yet its diagnostic significance within MPM tumor tissues remains uncertain. This study aims to elucidate the roles of HMGB1 in MPM. METHODS HMGB1 expression analysis was conducted in both tumor and adjacent non-cancerous tissues collected from MPM patients. The two-year follow-up of MPM patients commenced from the diagnosis date. Inflammatory cytokine analysis was performed on these tissues, and Pearson correlation coefficient analysis was applied to examine variable relationships. In vitro assays included constructing an HMGB1 knockdown cell line, assessing cell viability, apoptosis, and inflammatory cytokine levels to delineate HMGB1's roles in MPM. RESULTS HMGB1 overexpression was observed in MPM tumor tissues, particularly in stages III-IV. Diagnostic implications of HMGB1 for MPM were evident, augmenting its diagnostic value. HMGB1 overexpression correlated with diminished survival rates. Positive correlations existed between inflammatory cytokines and HMGB1 in MPM tumor tissues and cell lines. Suppression of HMGB1 regulated cell growth and apoptosis in MPM cell lines. CONCLUSION HMGB1 exhibits diagnostic potential for MPM and modulates inflammatory responses within the disease context.
Collapse
Affiliation(s)
- Lianfen Wang
- Department of Gastroenterology, Cangzhou Central Hospital, Yunhe District, Cangzhou 061000, Hebei, China.
| | - Xuesong Wang
- Department of Anorectal Surgery, Cangzhou Central Hospital, Yunhe District, Cangzhou 061000, Hebei, China
| | - Ningning Sun
- Department of Gastroenterology, Cangzhou Central Hospital, Yunhe District, Cangzhou 061000, Hebei, China
| | - Weili Liu
- Medical Department, Cangzhou Central Hospital, Yunhe District, Cangzhou 061000, Hebei, China
| |
Collapse
|
4
|
Odarenko KV, Salomatina OV, Chernikov IV, Salakhutdinov NF, Zenkova MA, Markov AV. Soloxolone Methyl Reduces the Stimulatory Effect of Leptin on the Aggressive Phenotype of Murine Neuro2a Neuroblastoma Cells via the MAPK/ERK1/2 Pathway. Pharmaceuticals (Basel) 2023; 16:1369. [PMID: 37895840 PMCID: PMC10610011 DOI: 10.3390/ph16101369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Despite the proven tumorigenic effect of leptin on epithelial-derived cancers, its impact on the aggressiveness of neural crest-derived cancers, notably neuroblastoma, remains largely unexplored. In our study, for the first time, transcriptome analysis of neuroblastoma tissue demonstrated that the level of leptin is elevated in neuroblastoma patients along with the severity of the disease and is inversely correlated with patient survival. The treatment of murine Neuro2a neuroblastoma cells with leptin significantly stimulated their proliferation and motility and reduced cell adhesion, thus rendering the phenotype of neuroblastoma cells more aggressive. Given the proven efficacy of cyanoenone-bearing semisynthetic triterpenoids in inhibiting the growth of neuroblastoma and preventing obesity in vivo, the effect of soloxolone methyl (SM) on leptin-stimulated Neuro2a cells was further investigated. We found that SM effectively abolished leptin-induced proliferation of Neuro2a cells by inducing G1/S cell cycle arrest and restored their adhesiveness to extracellular matrix (ECM) proteins to near control levels through the upregulation of vimentin, zonula occludens protein 1 (ZO-1), cell adhesion molecule L1 (L1cam), and neural cell adhesion molecule 1 (Ncam1). Moreover, SM significantly suppressed the leptin-associated phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and ribosomal protein S6 kinase A1 (p90RSK), which are key kinases that ensure the survival and proliferation of cancer cells. Further molecular modeling studies demonstrated that the inhibitory effect of SM on the mitogen-activated protein kinase (MAPK)/ERK1/2 signaling pathway can be mediated by its direct interaction with ERK2 and its upstream regulators, son of sevenless homolog 1 (SOS) and mitogen-activated protein kinase kinase 1 (MEK1). Taken together, our findings in murine Neuro2a cells provide novel evidence of the stimulatory effect of leptin on the aggressiveness of neuroblastoma, which requires further detailed studies in human neuroblastoma cells and relevant animal models. The obtained results indicate that SM can be considered a promising drug candidate capable of reducing the impact of adipokines on tumor progression.
Collapse
Affiliation(s)
- Kirill V. Odarenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (K.V.O.); (O.V.S.); (I.V.C.); (M.A.Z.)
| | - Oksana V. Salomatina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (K.V.O.); (O.V.S.); (I.V.C.); (M.A.Z.)
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Ivan V. Chernikov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (K.V.O.); (O.V.S.); (I.V.C.); (M.A.Z.)
| | - Nariman F. Salakhutdinov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Marina A. Zenkova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (K.V.O.); (O.V.S.); (I.V.C.); (M.A.Z.)
| | - Andrey V. Markov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (K.V.O.); (O.V.S.); (I.V.C.); (M.A.Z.)
| |
Collapse
|
5
|
Hu CY, Li GY, Li CT. Thiopental sodium attenuates hypoxia/reoxygenation-induced injury in osteoblasts by modulating AKT signaling. In Vitro Cell Dev Biol Anim 2023; 59:528-535. [PMID: 37556024 DOI: 10.1007/s11626-023-00801-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/14/2023] [Indexed: 08/10/2023]
Abstract
Thiopental sodium (TPTS) is a barbiturate general anesthetic, while its effects on hypoxia/reoxygenation (H/R)-induced injury are still unclear. This study aimed to investigate whether TPTS exerts protective effects against the H/R-induced osteoblast cell injury and explore the underlying mechanisms. Osteoblast cell injury model was induced by the H/R condition, which was treated with or without TPTS. Cell viability and lactate dehydrogenase (LDH) release were determined by the corresponding commercial kits. The levels of oxidative stress were determined in the experimental groups. Cell apoptosis and Caspase-3 activities were determined by propidium iodide staining and substrate-based assay, respectively. Western blotting and qRT-PCR were performed to measure the mRNA and protein levels, respectively. Treatment with TPTS was able to increase cell viability and reduce LDH release in H/R-induced osteoblasts. Additionally, TPTS regulated oxidative stress in H/R-induced osteoblasts by suppressing malondialdehyde (MDA) and reactive oxygen species (ROS) as well as boosting superoxide dismutase (SOD). TPTS was able to suppress cell apoptosis by suppressing Caspase-3 activity and cleavage. TPTS exerted protective effects against cell injury and apoptosis induced by the H/R conditions, which were associated with its regulation of Akt signaling. Moreover, TPTS induced osteoblast differentiation under the H/R condition. In summary, TPTS attenuates H/R-induced injury in osteoblasts by regulating AKT signaling.
Collapse
Affiliation(s)
- Chuan-Yu Hu
- Department of Orthopedics Ward 4, Dongzhimen Hospital Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Guo-Yan Li
- Department of Anesthesiology, Dongzhimen Hospital Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Chun-Tian Li
- Department of Acupuncture, Dongzhimen Hospital Beijing University of Chinese Medicine, Beijing, 100700, China
| |
Collapse
|
6
|
Puopolo T, Li H, Ma H, Schrader JM, Liu C, Seeram NP. Uncovering the anti-inflammatory mechanisms of phenolic-enriched maple syrup extract in lipopolysaccharide-induced peritonitis in mice: insights from data-independent acquisition proteomics analysis. Food Funct 2023; 14:6690-6706. [PMID: 37403713 PMCID: PMC10399132 DOI: 10.1039/d3fo01386c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Our group has previously reported on the phytochemical composition and biological activities of a phenolic-enriched maple syrup extract (MSX), which showed promising anti-inflammatory effects in several disease models including diabetes and Alzheimer's disease. However, the efficacious doses of MSX and its molecular targets involved in the anti-inflammatory effects are not fully elucidated. Herein, the efficacy of MSX in a peritonitis mouse model was evaluated in a dose-finding study and the underlying mechanisms were explored using data-independent acquisition (DIA) proteomics assay. MSX (at 15, 30 and 60 mg kg-1) alleviated lipopolysaccharide-induced peritonitis by reducing the levels of pro-inflammatory cytokines including interleukin-1 beta (IL-1β), IL-6, and tumor necrosis factor alpha (TNF-α) in the serum and major organs of the mice. Furthermore, DIA proteomics analyses identified a panel of proteins that were significantly altered (both up- and down-regulated) in the peritonitis group, which were counteracted by the MSX treatments. MSX treatment also modulated several inflammatory upstream regulators including interferon gamma and TNF. Ingenuity pathway analysis suggested that MSX may modulate several signaling pathways in the processes of initiation of cytokine storm, activation of liver regeneration, and suppression of hepatocyte apoptosis. Together, these proteomic and in vivo findings indicate that MSX could regulate inflammation signaling pathways and modulate inflammatory markers and proteins, providing critical insight to its therapeutic potential.
Collapse
Affiliation(s)
- Tess Puopolo
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA.
| | - Huifang Li
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA.
| | - Hang Ma
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA.
| | - Joseph M Schrader
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA.
| | - Chang Liu
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA.
| | - Navindra P Seeram
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA.
| |
Collapse
|
7
|
Dos Santos Nascimento IJ, da Silva-Júnior EF. TNF-α Inhibitors from Natural Compounds: An Overview, CADD Approaches, and their Exploration for Anti-inflammatory Agents. Comb Chem High Throughput Screen 2022; 25:2317-2340. [PMID: 34269666 DOI: 10.2174/1386207324666210715165943] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023]
Abstract
Inflammation is a natural process that occurs in the organism in response to harmful external agents. Despite being considered beneficial, exaggerated cases can cause severe problems for the body. The main inflammatory manifestations are pain, increased temperature, edema, decreased mobility, and quality of life for affected individuals. Diseases such as arthritis, cancer, allergies, infections, arteriosclerosis, neurodegenerative diseases, and metabolic problems are mainly characterized by an exaggerated inflammatory response. Inflammation is related to two categories of substances: pro- and anti-inflammatory mediators. Among the pro-inflammatory mediators is Tumor Necrosis Factor-α (TNF-α). It is associated with immune diseases, cancer, and psychiatric disorders which increase its excretion. Thus, it becomes a target widely used in discovering new antiinflammatory drugs. In this context, secondary metabolites biosynthesized by plants have been used for thousands of years and continue to be one of the primary sources of new drug scaffolds against inflammatory diseases. To decrease costs related to the drug discovery process, Computer-Aided Drug Design (CADD) techniques are broadly explored to increase the chances of success. In this review, the main natural compounds derived from alkaloids, flavonoids, terpene, and polyphenols as promising TNF-α inhibitors will be discussed. Finally, we applied a molecular modeling protocol involving all compounds described here, suggesting that their interactions with Tyr59, Tyr119, Tyr151, Leu57, and Gly121 residues are essential for the activity. Such findings can be useful for research groups worldwide to design new anti-inflammatory TNF-α inhibitors.
Collapse
Affiliation(s)
| | - Edeildo Ferreira da Silva-Júnior
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Brazil.,Laboratory of Medicinal Chemistry, Pharmaceutical Sciences Institute, Federal University of Alagoas, Maceió, Brazil
| |
Collapse
|
8
|
Balkrishna A, Solleti SK, Singh H, Sharma N, Varshney A. Withanolides from Withania somnifera Ameliorate Neutrophil Infiltration in Endotoxin-Induced Peritonitis by Regulating Oxidative Stress and Inflammatory Cytokines. PLANTA MEDICA 2022; 88:466-478. [PMID: 33862643 DOI: 10.1055/a-1438-2816] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Identification of novel anti-inflammatory strategies are needed to avoid the side effects associated with the currently available therapies. Use of anti-inflammatory herbal remedies is gaining attention. The purpose of the present investigation was to evaluate the pharmacological potential of the withanolide-rich root extracts of the medical plant Withania somnifera (L.) Dunal using in vivo and in vitro models of endotoxin-induced inflammation and oxidative stress. The pharmacological effects of W. somnifera root extracts were evaluated using a mouse model of endotoxin (lipopolysaccharide)-induced peritonitis and various relevant human cell lines. HPLC analysis of the W. somnifera root extracts identified the presence of various bioactive withanolides. In vivo challenge of mice with endotoxin resulted in the infiltration of various leukocytes, specifically neutrophils, along with monocytes and lymphocytes into the peritoneal cavity. Importantly, prophylactic treatment with W. somnifera inhibited the migration of neutrophils, lymphocytes, and monocytes and decreased the release of interleukin-1β, TNF-α, and interleukin-6 cytokines into the peritoneal cavity as identified by ELISA. Liver (glutathione peroxidase, glutathione, glutathione disulfide, superoxide dismutase, malondialdehyde, myeloperoxidase) and peritoneal fluid (nitrite) biochemical analysis revealed the antioxidant profile of W. somnifera. Similarly, in human HepG2 cells, W. somnifera significantly modulated the antioxidant levels. In THP-1 cells, W. somnifera decreased the secretion of interleukin-6 and TNF-α. In HEK-Blue reporter cells, W. somnifera inhibited TNF-α-induced nuclear factor-κB/activator protein 1 transcriptional activity. Our findings suggest the pharmacological effects of root extracts of W. somnifera rich in withanolides inhibit neutrophil infiltration, oxidative hepatic damage, and cytokine secretion via modulating the nuclear factor-κB/activator protein 1 pathway.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, Uttarakhand, India
- Department of Allied and Applied Sciences, University of Patanjali, Patanjali Yog Peeth, Haridwar, Uttarakhand, India
- Patanjali UK Trust, Glasgow, Scotland, United Kingdom
| | - Siva Kumar Solleti
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, Uttarakhand, India
| | - Hoshiyar Singh
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, Uttarakhand, India
| | - Niti Sharma
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, Uttarakhand, India
| | - Anurag Varshney
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, Uttarakhand, India
- Department of Allied and Applied Sciences, University of Patanjali, Patanjali Yog Peeth, Haridwar, Uttarakhand, India
| |
Collapse
|
9
|
Prodea A, Mioc A, Banciu C, Trandafirescu C, Milan A, Racoviceanu R, Ghiulai R, Mioc M, Soica C. The Role of Cyclodextrins in the Design and Development of Triterpene-Based Therapeutic Agents. Int J Mol Sci 2022; 23:ijms23020736. [PMID: 35054925 PMCID: PMC8775686 DOI: 10.3390/ijms23020736] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 12/25/2022] Open
Abstract
Triterpenic compounds stand as a widely investigated class of natural compounds due to their remarkable therapeutic potential. However, their use is currently being hampered by their low solubility and, subsequently, bioavailability. In order to overcome this drawback and increase the therapeutic use of triterpenes, cyclodextrins have been introduced as water solubility enhancers; cyclodextrins are starch derivatives that possess hydrophobic internal cavities that can incorporate lipophilic molecules and exterior surfaces that can be subjected to various derivatizations in order to improve their biological behavior. This review aims to summarize the most recent achievements in terms of triterpene:cyclodextrin inclusion complexes and bioconjugates, emphasizing their practical applications including the development of new isolation and bioproduction protocols, the elucidation of their underlying mechanism of action, the optimization of triterpenes’ therapeutic effects and the development of new topical formulations.
Collapse
Affiliation(s)
- Alexandra Prodea
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (A.P.); (A.M.); (R.R.); (R.G.); (M.M.); (C.S.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania;
| | - Alexandra Mioc
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania;
- Department of Anatomy, Physiology, Pathophysiology, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Christian Banciu
- Department of Internal Medicine IV, Faculty of Medicine, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania
- Correspondence: (C.B.); (C.T.); Tel.: +40-256-494-604 (C.B. & C.T.)
| | - Cristina Trandafirescu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (A.P.); (A.M.); (R.R.); (R.G.); (M.M.); (C.S.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania;
- Correspondence: (C.B.); (C.T.); Tel.: +40-256-494-604 (C.B. & C.T.)
| | - Andreea Milan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (A.P.); (A.M.); (R.R.); (R.G.); (M.M.); (C.S.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania;
| | - Roxana Racoviceanu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (A.P.); (A.M.); (R.R.); (R.G.); (M.M.); (C.S.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania;
| | - Roxana Ghiulai
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (A.P.); (A.M.); (R.R.); (R.G.); (M.M.); (C.S.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania;
| | - Marius Mioc
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (A.P.); (A.M.); (R.R.); (R.G.); (M.M.); (C.S.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania;
| | - Codruta Soica
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (A.P.); (A.M.); (R.R.); (R.G.); (M.M.); (C.S.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania;
| |
Collapse
|
10
|
Wang N, Gan G, Yang J, Wang L. Barbaloin Promotes Osteogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells: Involvement of Wnt/β-catenin Signaling Pathway. Curr Med Chem 2022; 29:6100-6111. [PMID: 35770399 DOI: 10.2174/0929867329666220629150656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/08/2022] [Accepted: 05/16/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Barbaloin, found in Aloe vera, exerts broad pharmacological activities, including antioxidant, anti-inflammatory, and anti-cancer. This study aims to investigate the effects of barbaloin on the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). METHODS Osteogenic induction of hBMSCs was performed in the presence or absence of barbaloin. Cell viability was determined by using the CCK-8 assay. The characteristic of hBMSCs was identified by using flow cytometry. Intracellular alkaline phosphatase (ALP) staining was performed to evaluate the ALP activity in hBMSCs. Alizarin Red S staining was performed to evaluate the matrix mineralization. The mRNA and protein levels of target genes were determined using qRT-PCR and western blotting, respectively. RESULTS Treatment with barbaloin (10 and 20 μg/mL) significantly increased cell viability of hBMSCs after 72 hours. In addition, treatment with barbaloin increased the mRNA expression levels of ALP and its activities. Treatment with barbaloin also increased matrix mineralization and the mRNA and protein levels of late-differentiated osteoblast marker genes BMP2, RUNX2, and SP7 in hBMSCs. The underlying mechanisms revealed that barbaloin increased the protein expressions of Wnt/β-catenin pathway-related biomarkers. CONCLUSION Barbaloin promotes osteogenic differentiation of hBMSCs by the regulation of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Nan Wang
- Department of Emergency Surgery, the First Affiliated Hospital of Zhengzhou University; Henan Medical Key Laboratory of Emergency and Trauma Research; No. 1 Jianshe East Road, Zhengzhou 450052, Henan, China
| | - Guoli Gan
- Department of Emergency Surgery, the First Affiliated Hospital of Zhengzhou University; Henan Medical Key Laboratory of Emergency and Trauma Research; No. 1 Jianshe East Road, Zhengzhou 450052, Henan, China
| | - Jihao Yang
- Department of Emergency Surgery, the First Affiliated Hospital of Zhengzhou University; Henan Medical Key Laboratory of Emergency and Trauma Research; No. 1 Jianshe East Road, Zhengzhou 450052, Henan, China
| | - Luyao Wang
- Stomatological Center, the First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou 450052, Henan, China
| |
Collapse
|
11
|
Transcriptomics Changes in the Peritoneum of Mice with Lipopolysaccharide-Induced Peritonitis. Int J Mol Sci 2021; 22:ijms222313008. [PMID: 34884814 PMCID: PMC8657704 DOI: 10.3390/ijms222313008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 12/26/2022] Open
Abstract
Peritonitis caused by LPS is a severe clinical challenge, which causes organ damage and death. However, the mechanism of LPS-induced peritonitis has not been fully revealed yet. Here, we investigated the transcriptome profile of the peritoneal tissue of LPS-induced peritonitis in mice. A model of LPS-induced peritonitis in mice was established (LPS 10 mg/kg, i.p.), and the influence of TAK 242 (TLR4 inhibitor) on the level of inflammatory cytokines in mouse peritoneal lavage fluid was investigated by using an ELISA test. Next, the peritoneal tissues of the three groups of mice (Control, LPS, and LPS+TAK 242) (n = 6) were isolated and subjected to RNA-seq, followed by a series of bioinformatics analyses, including differentially expressed genes (DEGs), enrichment pathway, protein-protein interaction, and transcription factor pathway. Then, qPCR verified-hub genes that may interact with TAK 242 were obtained. Subsequently, the three-dimensional structure of hub proteins was obtained by using homology modeling and molecular dynamics optimization (300 ns). Finally, the virtual docking between TAK 242 and hub proteins was analyzed. Our results showed that TAK 242 significantly inhibited the production of inflammatory cytokines in the peritoneal lavage fluid of mice with peritonitis, including IL-6, IFN-γ, IL-1β, NO, and TNF-α. Compared with the Control group, LPS treatment induced 4201 DEGs (2442 down-regulated DEGs and 1759 up-regulated DEGs). Compared with the LPS group, 30 DEGs were affected by TAK 242 (8 down-regulated DEGs and 22 up-regulated DEGs). A total of 10 TAK 242-triggered hub genes were obtained, and the possible docking modes between TAK 242 and hub proteins were acquired. Overall, our data demonstrated that a large number of DEGs were affected in LPS-triggered peritonitis mice. Moreover, the TLR4 inhibitor TAK 242 is capable of suppressing the inflammatory response of LPS-induced peritonitis. Our work provides clues for understanding the pathogenesis of LPS-induced peritonitis in mice.
Collapse
|
12
|
Zhou Z, Chen Y, Min HS, Wan Y, Shan H, Lin Y, Xia W, Yin F, Jiang C, Yu X. Merlin functions as a critical regulator in Staphylococcus aureus-induced osteomyelitis. J Cell Physiol 2021; 237:815-823. [PMID: 34378805 DOI: 10.1002/jcp.30550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/12/2021] [Accepted: 08/02/2021] [Indexed: 11/07/2022]
Abstract
Merlin is known as a tumor suppressor, while its role in osteomyelitis remains unclear. This study aimed to investigate the role of Merlin in Staphylococcus aureus-induced osteomyelitis and its underlying mechanisms. S. aureus-induced osteomyelitis mouse model was established in Merlinfl/fl Lyz2cre/+ and Merlinfl/fl Lyz2+/+ mice. Bone marrow-derived macrophages (BMDMs) were isolated and stimulated by lipopolysaccharide (LPS). Bioassays, including quantitative reverse transcription polymerase chain reaction (qRT-PCR), Western blot analysis, and enzyme-linked immunosorbent assays, were conducted to determine the levels of target genes or proteins. Immunoprecipitation was applied to determine the interactions between proteins. DCAF1fl/fl mice were further crossed with Lyz2-Cre mice to establish myeloid cell conditional knockout mice (DCAF1fl/fl Lyz2cre/+ ). It was found that the level of Merlin was elevated in patients with osteomyelitis and S. aureus-infected BMDMs. Merlin deficiency in macrophages suppressed the production of inflammatory cytokines and ameliorated the symptoms of osteomyelitis induced by S. aureus. Merlin deficiency in macrophages also suppressed the production of proinflammatory cytokines in BMDMs induced by LPS. The inhibitory effects of Merlin deficiency on the inflammatory response were associated with DDB1-Cul4-associated factor 1 (DCAF1). In summary, Merlin deficiency ameliorates S. aureus-induced osteomyelitis through the regulation of DCAF1.
Collapse
Affiliation(s)
- Zubin Zhou
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yuanliang Chen
- Department of Orthopaedic Surgery, Haikou Orthopedic and Diabetes Hospital of Shanghai Sixth People's Hospital, Haikou, Hainan, China
| | - Hong Sung Min
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yongbai Wan
- Department of Orthopaedic Surgery, Haikou Orthopedic and Diabetes Hospital of Shanghai Sixth People's Hospital, Haikou, Hainan, China
| | - Haojie Shan
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yiwei Lin
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wenyang Xia
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Fuli Yin
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chaolai Jiang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiaowei Yu
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
13
|
Qin H, Wu T, Liu J, Wang G, Fan L, Wang B, Shen Y. MALT-1 inhibition attenuates the inflammatory response of ankylosing spondylitis by targeting NF-κB activation. Injury 2021; 52:1287-1293. [PMID: 33827774 DOI: 10.1016/j.injury.2021.03.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/11/2021] [Accepted: 03/24/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND The present study aimed to investigate the effects of mucosa-associated lymphoid tissue lymphoma translocation protein (MALT)-1 on ankylosing spondylitis and its underlying mechanisms. METHODS Proteoglycan induced ankylosing spondylitis (PGIA) mouse model was established and the expression patterns of MALT-1 were determined in joint tissue. Next, the mice were intraarticularly administrated with MALT-1 in the PGIA mouse model. Meanwhile, shRNA was intraarticularly administrated to PGIA mice. The incidence of arthritis and clinical score was evaluated. Besides, the levels of inflammatory cytokines and matrix metalloproteinases (MMPs) were measured. Protein expressions of full-length CYLD (FL-CYLD), C-terminal cleavage fragment (CYLD-CL), and nuclear factor (NF)-κB were determined. RESULTS The mRNA and protein levels of MALT1 were increased in the PGIA mouse model. The treatment of MALT-1 accelerated arthritis incidence and joint damage, whereas shMALT-1 suppressed arthritis symptoms in the PGIA mouse model. In addition, treatment of shMALT-1 suppressed the levels of inflammatory cytokines (tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β), MMP-3, and MMP-9. Furthermore, the treatment of shMALT-1 suppressed the levels of CYLD and NF-κB in the joint tissues in the PGIA mouse model. CONCLUSION The inhibition of MALT-1 suppressed the inflammatory response in ankylosing spondylitis in part by the regulation of CYLD and NF-κB.
Collapse
Affiliation(s)
- Hu Qin
- Department of Orthopedics, the Second Affiliated Hospital of Nanjing Medical University, No. 121 Jiangjiayuan, Nanjing 210011, Jiangsu, China
| | - Tao Wu
- Department of Orthopedics, the Second Affiliated Hospital of Nanjing Medical University, No. 121 Jiangjiayuan, Nanjing 210011, Jiangsu, China.
| | - Jun Liu
- Department of Orthopedics, the Second Affiliated Hospital of Nanjing Medical University, No. 121 Jiangjiayuan, Nanjing 210011, Jiangsu, China.
| | - Gang Wang
- Department of Orthopedics, the Second Affiliated Hospital of Nanjing Medical University, No. 121 Jiangjiayuan, Nanjing 210011, Jiangsu, China
| | - Lei Fan
- Department of Orthopedics, the Second Affiliated Hospital of Nanjing Medical University, No. 121 Jiangjiayuan, Nanjing 210011, Jiangsu, China
| | - Boyao Wang
- Department of Orthopedics, the Second Affiliated Hospital of Nanjing Medical University, No. 121 Jiangjiayuan, Nanjing 210011, Jiangsu, China
| | - Yajun Shen
- Department of Orthopedics, the Second Affiliated Hospital of Nanjing Medical University, No. 121 Jiangjiayuan, Nanjing 210011, Jiangsu, China
| |
Collapse
|
14
|
Wang H, Wu C, Kong D. miR-140-5p Overexpression Protects Against Lipopolysaccharide-Induced Necrotizing Pneumonia via Targeting Toll-Like Receptor 4. Cell Mol Bioeng 2021; 14:339-348. [PMID: 34295443 DOI: 10.1007/s12195-021-00673-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 04/27/2021] [Indexed: 01/04/2023] Open
Abstract
Objective This study is to identify the effects of miRNA-140-5p on necrotizing pneumonia (NP) and its underlying mechanism. Methods The mRNA levels of miRNA-140-5p and TLR4 and secretion of IL-1β, IL-6, and TNF-α in peripheral blood from children with NP and healthy volunteers were determined using qRT-PCR and specific ELISAs. The interactions between miRNA-140-5p and TLR4 were investigated using a dual-luciferase reporter system. Cell viabilities were determined using a CCK-8 assay. qRT-PCR, western blotting, and specific ELISAs were applied to determine the expressions of genes in the cells. Peripheral blood from children with NP had significantly elevated levels of TLR4 but significantly lower levels of miR-140-5p compared to the control. Results Spearman's rank correlation analysis showed a negative correlation between TLR4 and miR-140-5p. miR-140-5p regulated the expressions of TLR4 in A549 cells. Additionally, LPS induced a significant enhancement in the levels of TLR4 but significant reduction in the levels of miR-140-5p. The overexpression of miR-140-5p suppressed cell apoptosis and induced the release of inflammatory cytokines in the LPS-induced A549 cells. Conclusion The underlying mechanisms of miR-140-5p on the regulation of TLR4 are in part by the regulation of p65. The miR-140-5p inhibits necrotizing pneumonia by regulating TLR-4 via TNF-p65 signaling pathway. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-021-00673-0.
Collapse
Affiliation(s)
- Haichao Wang
- School of Biology and Food Engineering, Suzhou University, No. 49 Bianhe Middle Road, Suzhou, 234000 Anhui China
| | - Changhao Wu
- School of Biology and Food Engineering, Suzhou University, No. 49 Bianhe Middle Road, Suzhou, 234000 Anhui China
| | - Dehui Kong
- School of Biology and Food Engineering, Suzhou University, No. 49 Bianhe Middle Road, Suzhou, 234000 Anhui China
| |
Collapse
|
15
|
Zong Y, Shan H, Yin F, Ma X, Jiang C, Wang N, Zhou L, Lin Y, Zhou Z, Yu X. Ddb1-Cullin4-Associated-Factor 1 in Macrophages Restricts the Staphylococcus aureus-Induced Osteomyelitis. J Inflamm Res 2021; 14:1667-1676. [PMID: 33953594 PMCID: PMC8091595 DOI: 10.2147/jir.s307316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/12/2021] [Indexed: 11/23/2022] Open
Abstract
Introduction Ddb1-cullin4-associated-factor 1 (DCAF1) is known to regulate protein ubiquitination, while the roles of DCAF1 in osteomyelitis remain unknown. This study aims to investigate the effects of DCAF1 deficiency in macrophages on osteomyelitis and elucidate the molecular mechanism. Methods Staphylococcus aureus-induced mouse model of osteomyelitis was established on the DCAF1fl/flLyz2cre/+ and DCAF1fl/flLyz2+/+ (control) mice. Flow cytometry was conducted to analyze the populations of adaptive and innate immune cells. Lipopolysaccharides (LPS)-induced bone marrow-derived macrophages (BMDMs) were established. qRT-PCR and immunoblot analysis were used to determine the levels of inflammation-related biomarkers. ELISA was used to determine the release of inflammatory cytokines including IL-1β, IL-6, and TNF. Results The populations of immune cells in the bone marrow and spleen were not affected due to DCAF1 deficiency in macrophages. DCAF1 suppressed inflammatory cytokines in LPS-induced BMDMs. Additionally, DCAF1 deficiency in macrophages induced severe symptoms including less bacterial load in the femur, cortical bone loss, and reactive bone formation. Mechanistic study revealed that DCAF1 deficiency induced p38 hyperactivation. Discussion DCAF1 in macrophages suppressed the Staphylococcus aureus-induced mouse model of osteomyelitis.
Collapse
Affiliation(s)
- Yang Zong
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Haojie Shan
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Fuli Yin
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Xin Ma
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Chaolai Jiang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Nan Wang
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Lihui Zhou
- Department of Orthopaedic Surgery, Xiangshan First People's Hospital, Ningbo, Zhejiang, 315700, People's Republic of China
| | - Yiwei Lin
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Zubin Zhou
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Xiaowei Yu
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| |
Collapse
|
16
|
He Y, Long H, Zou C, Yang W, Jiang L, Xiao Z, Li Q, Long S. Anti-nociceptive effect of Portulaca oleracea L. ethanol extracts attenuated zymosan-induced mouse joint inflammation via inhibition of Nrf2 expression. Innate Immun 2021; 27:230-239. [PMID: 33611955 PMCID: PMC8054150 DOI: 10.1177/1753425921994190] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The aim of this study was to explore the effects of ethanol extracts from Portulaca oleracea L. (ePO) on joint inflammation and to explain the underlying mechanisms. A joint inflammation mouse model was constructed by injecting zymosan, and the Von Frey method was employed and the joint thickness measured. The numbers of leukocytes, neutrophils, and monocytes were counted in the joint cavity and the infiltration of inflammatory cells was assessed by joint histopathological analysis. The mRNA levels of inflammatory cytokines were determined by quantitative RT-PCR and their secretion levels were determined by specific ELISAs. Pre-treatment with ePO inhibited articular mechanical hyperalgesia and edema and ameliorated the recruitment of mononuclear neutrophils and leukocytes. In addition, pre-treatment with ePO improved pathological alternations in the joint tissues by reducing the number of inflammatory cells. Pre-treatment with ePO regulated the nuclear factor erythroid 2-related factor 2 (Nrf2)-related proteins and thereby inhibited oxidative stress. In addition, ePO inhibited NLR family pyrin domain containing 3 (NLRP3) inflammasome-related genes (NLRP3, ASC, pro-caspase-1 and pro-IL-1ß), modulated inflammatory cytokines and the activation of NF-κB. ePO attenuated zymosan-induced joint inflammation by regulating oxidative stress, NLRP3 inflammasome, and NF-κB.
Collapse
Affiliation(s)
- Yunwu He
- Department of Pain, the Second Hospital Affiliated to University of South China, Hengyang, Hunan, China
| | - Hui Long
- Department of Pain, the Second Hospital Affiliated to University of South China, Hengyang, Hunan, China
| | - Cong Zou
- Department of Pain, the Second Hospital Affiliated to University of South China, Hengyang, Hunan, China
| | - Wuzhou Yang
- Department of Pain, the Second Hospital Affiliated to University of South China, Hengyang, Hunan, China
| | - Liping Jiang
- Department of Pain, the Second Hospital Affiliated to University of South China, Hengyang, Hunan, China
| | - Zhenping Xiao
- Department of Pain, the Second Hospital Affiliated to University of South China, Hengyang, Hunan, China
| | - Qing Li
- Department of Pain, the Second Hospital Affiliated to University of South China, Hengyang, Hunan, China
| | - Shiyin Long
- Department of Biochemistry and Molecular Biology, Medical College, University of South China, Hengyang, Hunan, China
| |
Collapse
|
17
|
Conegundes JLM, Silva JMD, Mendes RDF, Fernandes MF, Pinto NDCC, Almeida MAD, Dib PRB, Andrade RDO, Rodrigues MN, Castañon MCMN, Macedo GC, Scio E. Anti-inflammatory and antinociceptive activity of Siparuna guianensis Aublet, an amazonian plant traditionally used by indigenous communities. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113344. [PMID: 32890711 DOI: 10.1016/j.jep.2020.113344] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 08/18/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Siparuna guianensis Aublet leaves, known as negramina, are used by indigenous and local communities in Brazil and other countries in the Americas to treat pain and inflammatory diseases. AIM OF THE STUDY To characterize the chemical constituents and to evaluate the antioxidant, anti-inflammatory, antinociceptive and locomotor activities of the dichloromethane fraction (DF) of S. guianensis leaves. Also, an acute oral toxicity test was accomplished. MATERIAL AND METHODS The chemical characterization of DF was performed by ultra-high pressure liquid chromatography (UHPLC) analyses coupled with a high-resolution mass spectrometer. The antioxidant potential of DF was investigated using nitric oxide (NO) and hydroxyl radical (OH) scavenging test. The evaluation study of the anti-inflammatory activity was carried out in vitro by NO measurement in stimulated macrophages and, in vivo, by croton oil-induced ear edema, LPS-induced peritonitis, and zymosan-induced arthritis in mice. Different mechanisms of central and peripheral nociception were stimulated by acetic acid-induced writhing, formalin, and tail-flick tests. Besides that, the open field assay was performed. RESULTS UHPLC analyses of DF showed the presence of a mixture of glycosylated and methoxylated flavonoids. DF was able to scavenge NO and OH radicals in vitro and showed anti-inflammatory activity by inhibiting NO production in LPS-stimulated murine macrophages. Oral administration of DF considerably inhibited the ear edema after croton oil application and reduced the leukocyte infiltrated in LPS-induced peritonitis. In the inflammatory intra-articular zymosan-induced process, DF showed a significant reduction in the inflammatory area and of the cells in the synovial and connective tissues adjacent to the joint. Also, DF was able to reduce the intra-articular edema. In nociception models, the oral administration of DF considerably inhibited the acetic acid-induced writhings. The formalin test showed that DF attenuated the licking time in both phases, which suggested that DF reduce the nociception by central and peripheral mechanisms. In the tail-flick test, DF showed no activity. Besides that, DF did not affect the animal locomotion, and no acute toxicity was observed. CONCLUSIONS For the first time, the anti-inflammatory and antinociceptive activities of S. guianensis were reported, supporting its ethnopharmacological uses for some inflammatory diseases and painful conditions.
Collapse
Affiliation(s)
- Jessica Leiras Mota Conegundes
- Laboratory of Bioactive Natural Products, Department of Biochemistry, Biological Science Institute, Federal University of Juiz de Fora, 36036-900, Juiz de Fora, MG, Brazil.
| | - Josiane Mello da Silva
- Laboratory of Bioactive Natural Products, Department of Biochemistry, Biological Science Institute, Federal University of Juiz de Fora, 36036-900, Juiz de Fora, MG, Brazil.
| | - Renata de Freitas Mendes
- Laboratory of Bioactive Natural Products, Department of Biochemistry, Biological Science Institute, Federal University of Juiz de Fora, 36036-900, Juiz de Fora, MG, Brazil.
| | - Maria Fernanda Fernandes
- Laboratory of Bioactive Natural Products, Department of Biochemistry, Biological Science Institute, Federal University of Juiz de Fora, 36036-900, Juiz de Fora, MG, Brazil.
| | - Nícolas de Castro Campos Pinto
- Laboratory of Bioactive Natural Products, Department of Biochemistry, Biological Science Institute, Federal University of Juiz de Fora, 36036-900, Juiz de Fora, MG, Brazil.
| | - Maycon Alcantara de Almeida
- Laboratory of Bioactive Natural Products, Department of Biochemistry, Biological Science Institute, Federal University of Juiz de Fora, 36036-900, Juiz de Fora, MG, Brazil.
| | - Paula Ribeiro Braga Dib
- Department of Parasitology, Microbiology, and Immunology, Biological Science Institute, Federal University of Juiz de Fora, 36036-900, Juiz de Fora, MG, Brazil.
| | - Rafaela de Oliveira Andrade
- Department of Morphology, Biological Sciences Institute, Federal University of Juiz de Fora, 36036 900, Juiz de Fora, MG, Brazil.
| | - Matheus Nehrer Rodrigues
- Department of Morphology, Biological Sciences Institute, Federal University of Juiz de Fora, 36036 900, Juiz de Fora, MG, Brazil.
| | | | - Gilson Costa Macedo
- Department of Parasitology, Microbiology, and Immunology, Biological Science Institute, Federal University of Juiz de Fora, 36036-900, Juiz de Fora, MG, Brazil.
| | - Elita Scio
- Laboratory of Bioactive Natural Products, Department of Biochemistry, Biological Science Institute, Federal University of Juiz de Fora, 36036-900, Juiz de Fora, MG, Brazil.
| |
Collapse
|
18
|
Huang J, Chen X, Lv Y. HMGB1 Mediated Inflammation and Autophagy Contribute to Endometriosis. Front Endocrinol (Lausanne) 2021; 12:616696. [PMID: 33815277 PMCID: PMC8018282 DOI: 10.3389/fendo.2021.616696] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/23/2021] [Indexed: 11/13/2022] Open
Abstract
AIM High mobility group box (HMGB)-1 has been implicated in endometriosis due to the important regulatory roles of inflammation in endometriosis. The aim of the present study was to explore the roles of HMGB-1 in endometriosis and to elucidate the underlying mechanism. METHODS Endometrial specimens were collected from women with endometriosis and healthy volunteers. Immunohistochemistry staining was used to determine the expression patterns and localization of HMGB-1 in the normal, eutopic and ectopic endometrial tissues. Western blotting and qRT-PCR were used to determine the mRNA and protein levels of inflammatory cytokines [interleukin (IL)-6, tumor necrosis factor (TNF)-α and IL-1β], autophagy-related markers [beclin-1, autophagy-related (atg)13, microtubule-associated protein light chain (LC)3-I, LC-II and p62] and HMGB-1, respectively. Spearman's rank correlation analysis was employed to investigate the correlation between HMGB-1 with inflammatory cytokines and beclin-1. Besides, human endometrial stromal cells (HESCs) were isolated from ectopic endometrium and subsequently transfected with shRNA against HMGB-1. After the transfected cells were subjected to hypoxia, ELISA was used to determine the levels of HMGB-1 and inflammatory cytokines in the cell supernatant. Western blotting was used to determine the expression levels of autophagy-related markers in the cells. RESULTS Positive correlations were observed between HMGB-1 and the inflammatory cytokines. In addition, a positive correlation was also identified between HMGB-1 and beclin-1 in the ectopic endometrium. Further results demonstrated that autophagy-related markers beclin-1, atg13 and p62 were significantly upregulated in the ectopic endometrium. In addition, HMGB-1 knockdown suppressed the levels of inflammatory cytokines IL-6, TNF-α and IL-1β and autophagy-related markers beclin-1 and atg13, while upregulated p62 in HESCs under hypoxic condition. CONCLUSION Knockdown of HMGB-1 under hypoxic condition regulated inflammatory cytokines and autophagy-related markers. HMGB-1 might contribute to the development of endometriosis in part through regulating inflammatory response and autophagy.
Collapse
|
19
|
Pu T, Liu W, Wu Y, Zhao Y. ABIN1 alleviates inflammatory responses and colitis via facilitating A20 activity. Ther Adv Chronic Dis 2020; 11:2040622320944782. [PMID: 32843955 PMCID: PMC7418473 DOI: 10.1177/2040622320944782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/25/2020] [Indexed: 12/28/2022] Open
Abstract
Background Macrophages-mediated inflammation is involved in the progress of colitis. The present study aims to explore the roles of A20-binding inhibitor of NF-κB (ABIN1) in the macrophages and its underlying mechanisms. Methods ABIN1 myeloid cell-conditional transgenic mice were established and genotyped by PCR and immunoblotting assays. Tumor necrosis factor (TNF)-α was applied to pre-treat bone marrow-derived macrophages (BMDMs) in the presence of lipopolysaccharide. The mRNA and protein levels of pro-inflammatory cytokines were determined by qRT-PCR and ELISA, respectively. Dextran sulfate sodium (DSS)-induced colitis was established to determine the effects of ABIN1 on the survival time, body weight, colon length, and colon histopathological changes. Western blotting was applied to determine the expressions of signaling proteins. Results ABIN1 overexpression did not affect cell populations of macrophages and neutrophils in mice. Its overexpression reduced the productions of pro-inflammatory cytokines in BMDMs and ameliorated survival rate and colitis symptoms in the DSS-induced mouse model. The underlying mechanisms revealed that ABIN1 impaired macrophages-mediated inflammatory responses, in part by regulating the NF-κB signal pathway, and its ameliorated effects on the symptoms of DSS-induced colitis were associated with A20/tumor necrosis factor α-induced protein 3 (TNFAIP3). Conclusion ABIN1 attenuated inflammatory responses and colitis by regulating A20/TNFAIP3 activities.
Collapse
Affiliation(s)
- Tian Pu
- Department of Gastroenterology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wenzheng Liu
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Yijun Wu
- Department of Gastroenterology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ye Zhao
- Department of Gastroenterology, the First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, Henan 450052, China
| |
Collapse
|
20
|
Tang H, Li T, Han X, Sun J. TLR4 antagonist ameliorates combined allergic rhinitis and asthma syndrome (CARAS) by reducing inflammatory monocytes infiltration in mice model. Int Immunopharmacol 2019; 73:254-260. [PMID: 31121415 DOI: 10.1016/j.intimp.2019.05.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/20/2019] [Accepted: 05/10/2019] [Indexed: 01/08/2023]
Abstract
The present study aims to investigate the effects of toll-like receptor 4 (TLR4) antagonist in an ovalbumin (OVA)-induced mouse model of combined allergic rhinitis and asthma syndrome (CARAS). An OVA-induced mouse model of CARAS was established and TLR4 antagonist, TAK-242, was administrated intranasally or intraperitoneally. The number of sneezing and nasal rubbing was counted. The frequency of different cell types in the bronchoalveolar lavage fluid (BALF) and nasal lavage fluid (NLF) was analyzed using flow cytometry. Expressions of protein in nasal mucosa and lungs were determined using western blotting. Levels of interleukin (IL)-4, IL-5, and IL-13 were determined using Enzyme-linked Immunosorbent Assay (ELISA). Histological scores were applied for the assessment of lung injury. Treatment of TAK-242 downregulated CCL2 expression and reduced monocyte infiltration in nasal mucosa and lung tissues. Additionally, treatment of TAK-242 ameliorated upper airway symptoms including the sneezing and nasal rubbing by the regulation of cytokines including IL-4, IL-5, and IL-13. Furthermore, treatment of TAK-242 ameliorated lower airway symptoms including decreasing the frequency of CD45+SiglecF+CD11b+CD11c- eosinophils in BALF and IL13+ Th2 cells in the lungs. In conclusion, treatment of TAK-242 ameliorated CARAS-related lung injury by inhibiting lymphocyte infiltration, reducing monocytes infiltration, as well as regulating the frequency of eosinophils and Th2 cells.
Collapse
Affiliation(s)
- Huaping Tang
- Department of Respiratory, Qingdao Municipal Hospital (Eastern Campus), No. 5 Donghai Zhong Road, Qingdao 266071, Shandong, China
| | - Tingtian Li
- Department of Respiratory, Qingdao Municipal Hospital (Eastern Campus), School of Medicine Qingdao University, No. 5 Donghai Zhong Road, Qingdao 266071, Shandong, China
| | - Xiaolei Han
- Department of Health Care, Qingdao Municipal Hospital (Eastern Campus), No. 5 Donghai Zhong Road, Qingdao 266071, Shandong, China
| | - Jie Sun
- International Clinic, Qingdao Municipal Hospital (Eastern Campus), No. 5 Donghai Zhong Road, Qingdao 266071, Shandong, China.
| |
Collapse
|
21
|
Huang S, Meng N, Chang B, Quan X, Yuan R, Li B. Anti-Inflammatory Activity of Epimedium brevicornu Maxim Ethanol Extract. J Med Food 2018; 21:726-733. [DOI: 10.1089/jmf.2017.4088] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Shan Huang
- Department of Pharmacy, Qingdao University of Science & Technology, Qingdao, China
| | - Ning Meng
- Department of Pharmacy, Qingdao University of Science & Technology, Qingdao, China
| | - Bingquan Chang
- Department of Pharmacy, Qingdao University of Science & Technology, Qingdao, China
| | - Xianghua Quan
- Department of Medicament, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - RuiYing Yuan
- Department of Medicament, College of Medicine, Tibet University, Lhasa, China
| | - Bin Li
- Department of Pharmacy, Qingdao University of Science & Technology, Qingdao, China
| |
Collapse
|
22
|
Yang X, Yang G, Li W, Zhang Y, Wang J. Therapeutic Effect of Ilex hainanensis Merr. Extract on Essential Hypertension: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Front Pharmacol 2018; 9:424. [PMID: 29867454 PMCID: PMC5953335 DOI: 10.3389/fphar.2018.00424] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/11/2018] [Indexed: 12/24/2022] Open
Abstract
With a rapidly aging population, the prevalence of hypertension in adults continues to rise, placing a substantial and escalating social and economic burden. Ilex hainanensis Merr. is commonly used as a folk remedy for treating hypertension, dyslipidemia, and inflammation in China. This systematic review aims to evaluate current evidence for the therapeutic effect of Ilex hainanensis Merr. extract (EIH) on essential hypertension. Six electronic databases (Pubmed, MEDLINE, The Cochrane Central Register of Controlled Trials, Chinese Scientific Journals Database, Wanfang and CNKI) were searched to identify eligible randomized controlled trials (RCTs) relevant to EIH on essential hypertension up to Jan 2018. Six RCTs including 772 participants met eligibility criteria. Methodological quality of the trials was generally low. Meta-analysis showed that EIH demonstrated a beneficial effect for lowering systolic and diastolic blood pressure (SBP/DBP), left ventricular mass (LVM) in participants with essential hypertension. There was no significant difference between EIH and antihypertensive drugs in SBP (WMD: -0.44 [-2.30, 1.43]; P = 0.65), DBP (WMD: WMD: -0.02 [-1.13, 1.09]; P = 0.98) and LVM (WMD: -1.36 [-4.99, 2.26]; P = 0.46). Moreover, one trial showed that EIH combined with antihypertensive drugs was more effective in lowering blood pressure than those antihypertensive drugs used alone. However, the findings were limited by the small sample sizes, duration and low methodological quality of the trials. This is the first systematic review of EIH on essential hypertension. More rigorous RCTs with high quality are still needed to prove the effectiveness and safety of EIH and its preparations for essential hypertension.
Collapse
Affiliation(s)
- Xiaochen Yang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guoyan Yang
- Centre for Complementary Medicine Research, University of Western Sydney, Sydney, NSW, Australia
| | - Weina Li
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yun Zhang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Wang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
23
|
Liu C, Shen YJ, Tu QB, Zhao YR, Guo H, Wang J, Zhang L, Shi HW, Sun Y. Pedunculoside, a novel triterpene saponin extracted from Ilex rotunda, ameliorates high-fat diet induced hyperlipidemia in rats. Biomed Pharmacother 2018. [PMID: 29518607 DOI: 10.1016/j.biopha.2018.02.131] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Pedunculoside (PE) is a novel triterpene saponin extracted from the dried barks of Ilex rotunda Thunb. The present study aims to explore lipid-lowering effects of PE on hyperlipidemia rat induced by high-fat diet. The rats were fed with the high-fat diet and subjected to intragastric administration of PE at doses of 30, 15, or 5 mg/kg daily for 7 weeks. The results demonstrated that treatment with PE for 7-week dramatically decreased serum total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) and reduced liver TC in hyperlipidemia rat induced by high-fat diet. Furthermore, the results also showed that PE modulated the expression of enzymes involved in lipid metabolism including peroxisome proliferator-activated receptor α (PPAR-α), sterol regulatory element-binding protein 1 (SREBP-1), fatty acid synthase (FAS) and stearoyl CoA desaturase-1 (SCD-1) mRNA in liver. Besides, PE-treated group decreased weights and diameters of epididymal adipose hyperlipidemia rat. Mechanism study demonstrated that PE regulated PPAR-γ, CCAAT/Enhancer-binding Protein α (C/EBPα)、and SREBP-1 expression as well as inhibited phosphorylation of AMPK in MDI (methylisobutylxanthine, dexamethasone, insulin) induced-3T3L1 cells. Molecular Docking confirmed interaction between PE with proteins involving PPAR-γ, C/EBPα and SREBP-1. In summary, these findings may support that PE is a novel lipid-lowering drug candidate.
Collapse
Affiliation(s)
- Chang Liu
- College of Medicine, Yangzhou University, Yangzhou 225001, Jiangsu, PR China; School of Pharmacy, University of Rhode Island, RI, 02881, United States
| | - Yan-Jun Shen
- College of Medicine, Yangzhou University, Yangzhou 225001, Jiangsu, PR China
| | - Qing-Bo Tu
- College of Hanlin, Nanjing University of China Medicine, Taizhou 225300, Jiangsu, PR China
| | - Yan-Ran Zhao
- College of Hanlin, Nanjing University of China Medicine, Taizhou 225300, Jiangsu, PR China
| | - Hao Guo
- School of Pharmacy, University of Rhode Island, RI, 02881, United States; Department of Dermatology, No. 1 Hospital of China Medical University, 155N. Nanjing Street, Shenyang 110001, PR China
| | - Juan Wang
- College of Medicine, Yangzhou University, Yangzhou 225001, Jiangsu, PR China; College of Hanlin, Nanjing University of China Medicine, Taizhou 225300, Jiangsu, PR China
| | - Li Zhang
- School of Pharmacy, University of Missouri-Kansas City, MO, 64108, United States
| | - Hua-Wei Shi
- College of Medicine, Yangzhou University, Yangzhou 225001, Jiangsu, PR China
| | - Yun Sun
- College of Medicine, Yangzhou University, Yangzhou 225001, Jiangsu, PR China; College of Hanlin, Nanjing University of China Medicine, Taizhou 225300, Jiangsu, PR China.
| |
Collapse
|