1
|
Huang Y, Lai Y, Chen L, Fu K, Shi D, Ma X, Yang N, Chen X, Cheng S, Lu J, Zhang X, Gao W. Danshensu enhances autophagy and reduces inflammation by downregulating TNF-α to inhibit the NF-κB signaling pathway in ischemic flaps. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 137:156378. [PMID: 39818119 DOI: 10.1016/j.phymed.2025.156378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 12/16/2024] [Accepted: 01/05/2025] [Indexed: 01/18/2025]
Abstract
BACKGROUND The significant distal necrosis of the random-pattern skin flaps greatly restricts their clinical applications in flap transplantation. Previous studies have demonstrated the potential of danshensu (DSS) to alleviate ischemic tissue injury. However, no research to date has confirmed whether DSS can improve the survival of ischemic flaps. This study employed DSS to examine its role and the mechanisms underlying its impact on flap survival. METHODS RNA sequencing was conducted to identify potential targets of DSS in ischemic flaps. The viability of random-pattern skin flaps was assessed by analyzing the survival area, tissue edema, laser Doppler blood flow, and histological examination. Western blot and immunofluorescence were used to determine the protein levels related to angiogenesis, pyroptosis, macrophage polarization, autophagy, and the TNF-α-mediated NF-κB signaling pathway. RESULTS Through RNA sequencing analysis, we observed differences in gene expression related to inflammation and cell death before and after flap injury. Based on the above, DSS, which possesses anti-inflammatory and antioxidant properties, came into our view and was confirmed to enhance the viability of ischemic flaps. The results showed that DSS promoted angiogenesis, induced macrophage polarization toward the M2 type, and reduced pyroptosis. We also demonstrated that enhancing autophagic flux promoted angiogenesis and reduced inflammation. In addition, DSS enhanced autophagy by suppressing the NF-κB signaling pathway through the downregulation of TNF-α. Overexpression of TNF-α activated the NF-κB signaling pathway, reduced autophagic flux, and eliminated the protective effect of DSS. CONCLUSION DSS promoted autophagy and reduced inflammation by downregulating TNF-α to suppress the NF-κB signaling pathway, thereby improving the vitality of ischemic flaps and providing strong support for its clinical application.
Collapse
Affiliation(s)
- Yingying Huang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China,; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China,; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Yingying Lai
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China,; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China,; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China; Department of Anesthesiology, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Liang Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China,; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China,; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Kejian Fu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China,; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China,; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Donghao Shi
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Xianhui Ma
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China,; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China,; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Ningning Yang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China,; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China,; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Xuankuai Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China,; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China,; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Sheng Cheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China,; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China,; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Jingzhou Lu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China,; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China,; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Xuzi Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China,; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China,; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Weiyang Gao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China,; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China,; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
2
|
Li Y, Liao J, Xiong L, Xiao Z, Ye F, Wang Y, Chen T, Huang L, Chen M, Chen ZS, Wang T, Zhang C, Lu Y. Stepwise targeted strategies for improving neurological function by inhibiting oxidative stress levels and inflammation following ischemic stroke. J Control Release 2024; 368:607-622. [PMID: 38423472 DOI: 10.1016/j.jconrel.2024.02.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/01/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Ischemia-reperfusion injury is caused by excessive production of reactive oxygen species (ROS) and inflammation accompanied by ischemic injury symptoms and blood-brain barrier (BBB) dysfunction. This causes neuronal damage, for which no effective treatments or drugs exist. Herein, we provided a stepwise targeted drug delivery strategy and successfully prepared multifunctional ORD@SHp@ANG nanoparticles (NPs) that consist of a stroke homing peptide (DSPE-PEG2000-SHp), BBB-targeting peptide (DSPE-PEG2000-ANG), and ROS-responsive Danshensu (salvianic acid A) chain self-assembly. ORD@SHp@ANG NPs effectively crossed the BBB by ANG peptide and selectively targeted the ischemic brain sites using stroke-homing peptide. The results showed that ORD@SHp@ANG NPs can effective at scavenging ROS, and protect SH-SY5Y cells from oxidative damage in vitro. Furthermore, ORD@SHp@ANG NPs showed excellent biocompatibility. These NPs recognized brain endothelial cells and crossed the BBB, regulated the transformation of microglia into the anti-inflammatory phenotype, and inhibited the production of inflammatory factors in a rat ischemia-reperfusion model, thereby reducing cerebral infarction, neuronal apoptosis and preserving BBB integrity. Sequencing revealed that ORD@SHp@ANG NPs promote cell proliferation, activate immune responses, suppress inflammatory responses, and ameliorate ischemic stroke. In conclusion, this study reports a simple and promising drug delivery strategy for managing ischemic stroke.
Collapse
Affiliation(s)
- Yi Li
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, or Materials Science and Engineering, Shanghai University, Shanghai 200444, China; Department of Pharmacy, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Jun Liao
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, or Materials Science and Engineering, Shanghai University, Shanghai 200444, China; Department of Pharmaceutical Science, School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Liyan Xiong
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, or Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Zhicheng Xiao
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, or Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Fei Ye
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, or Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Yun Wang
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, or Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Ting Chen
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, or Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Linzhang Huang
- Institute of Metabolic and Integrative Biology, Fudan University, Shanghai 201399, China
| | - Min Chen
- Department of Pharmacy, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York 11439, USA.
| | - Tingfang Wang
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, or Materials Science and Engineering, Shanghai University, Shanghai 200444, China.
| | - Chuan Zhang
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, or Materials Science and Engineering, Shanghai University, Shanghai 200444, China.
| | - Ying Lu
- Department of Pharmaceutical Science, School of Pharmacy, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
3
|
Wu Q, Ou C, Wang J, Wu X, Gao Z, Zhao Y, Lu G, Wu Z, Yu H. Jiawei Kongsheng Zhenzhong Pill: marker compounds, absorption into the serum (rat), and Q-markers identified by UPLC-Q-TOF-MS/MS. Front Pharmacol 2024; 15:1328632. [PMID: 38375037 PMCID: PMC10875140 DOI: 10.3389/fphar.2024.1328632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/11/2024] [Indexed: 02/21/2024] Open
Abstract
Background: The Jiawei Kongsheng Zhenzhong pill (JKZP), a Chinese herbal prescription comprised of eight Chinese crude drugs, has been historically employed to treat neurological and psychological disorders. Nevertheless, the ambiguous material basis severely hindered its progress and application. Purpose: The current study aimed to establish a rapid analytical method for identifying the chemical components of the JKZP aqueous extract and the components absorbed into the rat serum to investigate the quality markers (Q-markers) responsible for the neuroprotective effects of JKZP. Methods: The qualitative detection of the chemical components, prototype components, and metabolites of the aqueous extracts of JKZP, as well as the serum samples of rats that were administered the drug, was performed using the ultra-performance liquid chromatography- quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF-MS/MS) technology. This analysis combined information from literature reports and database comparisons. Moreover, the study was conducted to anticipate the potential Q-markers for the neuroprotective effects of JKZP based on the "five principles" of Q-marker determination. Results: A total of 67 compounds and 111 serum components (comprising 33 prototypes and 78 metabolites) were detected and identified. Combining the principles of quality transmission and traceability, compound compatibility environment, component specificity, effectiveness, and measurability, the study predicted that five key compounds, namely, senkyunolide H, danshensu, echinacoside, loganin, and 3,6'-disinapoyl sucrose, may serve as potential pharmacological bases for the neuroprotective effects of JKZP. Conclusion: To summarize, the UPLC-Q-TOF-MS/MS technique can be employed to rapidly and accurately identify compounds in JKZP. Five active compounds have been predicted to be the Q-markers for the neuroprotective effects of JKZP. This discovery serves as a reference for improving quality, advancing further research and development, and utilizing Chinese herbal prescriptions.
Collapse
Affiliation(s)
- Qiaolan Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chunxue Ou
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiayun Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaolin Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zu Gao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yue Zhao
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guangying Lu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Provincial Co-innovation Center of Classic TCM Formula, Jinan, China
| | - Zhichun Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Provincial Co-innovation Center of Classic TCM Formula, Jinan, China
| | - Huayun Yu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Provincial Co-innovation Center of Classic TCM Formula, Jinan, China
| |
Collapse
|
4
|
Ye Z, Liu Y, Song J, Gao Y, Fang H, Hu Z, Zhang M, Liao W, Cui L, Liu Y. Expanding the therapeutic potential of Salvia miltiorrhiza: a review of its pharmacological applications in musculoskeletal diseases. Front Pharmacol 2023; 14:1276038. [PMID: 38116081 PMCID: PMC10728493 DOI: 10.3389/fphar.2023.1276038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023] Open
Abstract
Salvia miltiorrhiz, commonly known as "Danshen" in Chinese medicine, has longstanding history of application in cardiovascular and cerebrovascular diseases. Renowned for its diverse therapeutic properties, including promoting blood circulation, removing blood stasis, calming the mind, tonifying the blood, and benefiting the "Qi", recent studies have revealed its significant positive effects on bone metabolism. This potential has garnered attention for its promising role in treating musculoskeletal disorders. Consequently, there is a high anticipation for a comprehensive review of the potential of Salvia miltiorrhiza in the treatment of various musculoskeletal diseases, effectively introducing an established traditional Chinese medicine into a burgeoning field. AIM OF THE REVIEW Musculoskeletal diseases (MSDs) present significant challenges to healthcare systems worldwide. Previous studies have demonstrated the high efficacy and prospects of Salvia miltiorrhiza and its active ingredients for treatment of MSDs. This review aims to illuminate the newfound applications of Salvia miltiorrhiza and its active ingredients in the treatment of various MSDs, effectively bridging the gap between an established medicine and an emerging field. METHODS In this review, previous studies related to Salvia miltiorrhiza and its active ingredients on the treatment of MSD were collected, the specific active ingredients of Salvia miltiorrhiza were summarized, the effects of Salvia miltiorrhiza and its active ingredients for the treatment of MSDs, as well as their potential molecular mechanisms were reviewed and discussed. RESULTS Based on previous publications, Salvianolic acid A, salvianolic acid B, tanshinone IIA are the representative active ingredients of Salvia miltiorrhiza. Their application has shown significant beneficial outcomes in osteoporosis, fractures, and arthritis. Salvia miltiorrhiza and its active ingredients protect against MSDs by regulating different signaling pathways, including ROS, Wnt, MAPK, and NF-κB signaling. CONCLUSION Salvia miltiorrhiza and its active ingredients demonstrate promising potential for bone diseases and have been explored across a wide variety of MSDs. Further exploration of Salvia miltiorrhiza's pharmacological applications in MSDs holds great promise for advancing therapeutic interventions and improving the lives of patients suffering from these diseases.
Collapse
Affiliation(s)
- Zhiqiang Ye
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang, China
- Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Provincial Administration of Traditional Chinese Medicine (Central People’s Hospital of Zhanjiang), Zhanjiang, China
| | - Yuyu Liu
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang, China
| | - Jintong Song
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang, China
- Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Provincial Administration of Traditional Chinese Medicine (Central People’s Hospital of Zhanjiang), Zhanjiang, China
| | - Yin Gao
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang, China
- Marine Medical Research Institute of Zhanjiang, Zhanjiang, China
| | - Haiping Fang
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang, China
| | - Zilong Hu
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang, China
| | - Min Zhang
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang, China
| | - Wenwei Liao
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang, China
| | - Liao Cui
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang, China
| | - Yanzhi Liu
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang, China
- Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Provincial Administration of Traditional Chinese Medicine (Central People’s Hospital of Zhanjiang), Zhanjiang, China
| |
Collapse
|
5
|
Li X, Liu R, Liu W, Liu X, Fan Z, Cui J, Wu Y, Yin H, Lin Q. Panax quinquefolium L. and Salvia miltiorrhiza Bunge. Enhances Angiogenesis by Regulating the miR-155-5p/HIF-1α/VEGF Axis in Acute Myocardial Infarction. Drug Des Devel Ther 2023; 17:3249-3267. [PMID: 37954484 PMCID: PMC10638910 DOI: 10.2147/dddt.s426345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/23/2023] [Indexed: 11/14/2023] Open
Abstract
Background Combination of Panax quinquefolium L and Salvia miltiorrhiza Bunge. (PS) has been widely used in the clinical treatment of ischemic heart disease. The purpose of this study was to explore the therapeutic effect and mechanism of PS on angiogenesis in rats after acute myocardial infarction (AMI). Methods A rat model of AMI was established by ligating the left anterior descending (LAD) artery. The grouping and administration scheme were as follows: sham group, model group, PS low-dose (PS-L) group, PS high-dose (PS-H) group, PX-478 group and angiotensin converting enzyme inhibitor (ACEI) group. After 28 days of treatment, echocardiography, myocardial infarct size, some angiogenesis markers and the miR-155-5p/HIF-1α/VEGF axis were measured. Results PS improved cardiac structure and function, reduced infarct size, and alleviated myocardial fibrosis and inflammatory cell infiltration in AMI rats. Mechanistically, PS enhanced the expression of HGF and bFGF in serum, increased the levels of MVD and CD31 in myocardial tissues, and inhibited the activation of the miR-155-5p/HIF-1α/VEGF pathway, which ultimately promoted angiogenesis. In addition, the regulatory effect of PS on angiogenesis was partly abolished by PX-478. Conclusion PS increased the expression of MVD and CD31 in the myocardium and stimulated angiogenesis. The above effects of PS may be associated with the inhibition of the miR-155-5p/HIF-1α/VEGF axis.
Collapse
Affiliation(s)
- Xingxing Li
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, People’s Republic of China
| | - Rongpeng Liu
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, People’s Republic of China
| | - Wei Liu
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, People’s Republic of China
| | - Xin Liu
- The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Zongjing Fan
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, People’s Republic of China
| | - Jie Cui
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, People’s Republic of China
| | - Yang Wu
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, People’s Republic of China
| | - Huijun Yin
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, People’s Republic of China
| | - Quan Lin
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, People’s Republic of China
| |
Collapse
|
6
|
Li X, Wei Z, Chen Y. CXCL12 regulates bone marrow–derived endothelial progenitor cells to promote aortic aneurysm recovery. Tissue Cell 2022; 77:101810. [DOI: 10.1016/j.tice.2022.101810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/13/2022] [Accepted: 04/24/2022] [Indexed: 11/28/2022]
|
7
|
Zhou P, An B, Zhang X, Lv J, Lin B. Therapeutic effect and mechanism of danshensu on coronary heart disease using liquid chromatography combined with mass spectrometry metabolomics. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1208:123400. [PMID: 35917776 DOI: 10.1016/j.jchromb.2022.123400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/17/2022] [Accepted: 07/26/2022] [Indexed: 11/18/2022]
Abstract
Metabolomics can discover the biomarkers and metabolic pathways, provides the possibility for insights into the pharmacological action and mechanism of natural products. The therapeutic effect and mechanism of danshensu (DSS) on total metabolic pathways has not been well investigated. The aim of this study was to explore the disturbed endogenous biomarkers and metabolic pathways reflecting the pharmacological activity of DSS, and mechanism of action of DSS using comprehensive metabolome analysis based on high-throughput metabolomics technology combined with ultra-high performance liquid chromatography (UPLC) coupled with quadrupole tandem time-of-flight mass spectrometry (Q-TOF-MS) and pattern recognition method. Through the changes of the overall metabolic profile and the related biomarkers, the intervention effect of natural product danshensu (DSS) treatment on CHD model rats was revealed. The results showed that after the model replication was established, the metabolic profile was clearly separated, and a total of 26 potential biomarkers were screened out, and involving 8 metabolic pathways. After different doses of DSS solution were given, a total of 20 biomarkers could be significantly regulated, mainly involving primary bile acid biosynthesis, glycerophospholipid metabolism, and lipid metabolism. It showed UPLC-MS-based metabolomics can be used for discovering potential biomarkers and metabolic pathways of CHD, and to further understand and dissecting pharmacological effects and mechanisms of natural products via metabolomics techniques.
Collapse
Affiliation(s)
- Peng Zhou
- School of Continuing Education, Heilongjiang University of Traditional Chinese Medicine, Heping Road No. 24, Xiangfang District, Harbin City, Heilongjiang Province, China.
| | - Baisong An
- Drug Safety Evaluation Center of Heilongjiang University of Traditional Chinese Medicine, Heping Road No. 24, Xiangfang District, Harbin City, Heilongjiang Province, China
| | - Xiaolei Zhang
- School of Continuing Education, Heilongjiang University of Traditional Chinese Medicine, Heping Road No. 24, Xiangfang District, Harbin City, Heilongjiang Province, China
| | - Jiming Lv
- Drug Purchasing Center, Daqing Traditional Chinese Medicine Hospital, Health Road No. 8, Saertu District, Daqing City, Heilongjiang Province, China
| | - Baisong Lin
- Department of Blood Transfusion, Jiamusi Central Hospital, 256 Zhongshan Street, Xiangyang District, Jiamusi City, Heilongjiang Province, China.
| |
Collapse
|
8
|
Fan D, Liu C, Guo Z, Huang K, Peng M, Li N, Luo H, Wang T, Cen Z, Cai W, Gu L, Chen S, Li Z. Resveratrol Promotes Angiogenesis in a FoxO1-Dependent Manner in Hind Limb Ischemia in Mice. Molecules 2021; 26:molecules26247528. [PMID: 34946610 PMCID: PMC8707225 DOI: 10.3390/molecules26247528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/29/2021] [Accepted: 12/09/2021] [Indexed: 12/29/2022] Open
Abstract
Critical limb ischemia (CLI) is a severe form of peripheral artery diseases (PAD) and seriously endangers the health of people. Therapeutic angiogenesis represents an important treatment strategy for CLI; various methods have been applied to enhance collateral circulation. However, the current development drug therapy to promote angiogenesis is limited. Resveratrol (RSV), a polyphenol compound extracted from plants, has various properties such as anti-oxidative, anti-inflammatory and anti-cancer effects. Whether RSV exerts protective effects on CLI remains elusive. In the current study, we demonstrated that oral intake of RSV significantly improved hind limb ischemia in mice, and increased the expression of phosphorylated Forkhead box class-O1 (FoxO1). RSV treatment in human umbilical vein endothelial cells (HUVECs) could increase the phosphorylation of FoxO1 and its cytoplasmic re-localization to promote angiogenesis. Then we manipulated FoxO1 in HUVECs to further verify that the effect of RSV on angiogenesis is in a FoxO1-dependent manner. Furthermore, we performed metabolomics to screen the metabolic pathways altered upon RSV intervention. We found that the pathways of pyrimidine metabolism, purine metabolism, as well as alanine, aspartate and glutamate metabolism, were highly correlated with the beneficial effects of RSV on the ischemic muscle. This study provides a novel direction for the medical therapy to CLI.
Collapse
Affiliation(s)
- Dongxiao Fan
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; (D.F.); (C.L.); (K.H.); (N.L.)
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China;
| | - Chenshu Liu
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; (D.F.); (C.L.); (K.H.); (N.L.)
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China;
| | - Zeling Guo
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China;
| | - Kan Huang
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; (D.F.); (C.L.); (K.H.); (N.L.)
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China;
| | - Meixiu Peng
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China;
| | - Na Li
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; (D.F.); (C.L.); (K.H.); (N.L.)
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China;
| | - Hengli Luo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; (H.L.); (T.W.); (Z.C.)
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Tengyao Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; (H.L.); (T.W.); (Z.C.)
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Zhipeng Cen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; (H.L.); (T.W.); (Z.C.)
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Weikang Cai
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY 11568, USA;
| | - Lei Gu
- Max Planck Institute for Heart and Lung Research and Cardiopulmonary Institute (CPI), 61231 Bad Nauheim, Germany;
| | - Sifan Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; (H.L.); (T.W.); (Z.C.)
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Correspondence: (S.C.); (Z.L.)
| | - Zilun Li
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; (D.F.); (C.L.); (K.H.); (N.L.)
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China;
- Correspondence: (S.C.); (Z.L.)
| |
Collapse
|
9
|
Role of Stromal Cell-Derived Factor-1 in Endothelial Progenitor Cell-Mediated Vascular Repair and Regeneration. Tissue Eng Regen Med 2021; 18:747-758. [PMID: 34449064 PMCID: PMC8440704 DOI: 10.1007/s13770-021-00366-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 12/13/2022] Open
Abstract
Endothelial progenitor cells (EPCs) are immature endothelial cells that participate in vascular repair and postnatal neovascularization and provide a novel and promising therapy for the treatment of vascular disease. Studies in different animal models have shown that EPC mobilization through pharmacological agents and autologous EPC transplantation contribute to restoring blood supply and tissue regeneration after ischemic injury. However, these effects of the progenitor cells in clinical studies exhibit mixed results. The therapeutic efficacy of EPCs is closely associated with the number of the progenitor cells recruited into ischemic regions and their functional abilities and survival in injury tissues. In this review, we discussed the regulating role of stromal cell-derived factor-1 (also known CXCL12, SDF-1) in EPC mobilization, recruitment, homing, vascular repair and neovascularization, and analyzed the underlying machemisms of these functions. Application of SDF-1 to improve the regenerative function of EPCs following vascular injury was also discussed. SDF-1 plays a crucial role in mobilizing EPC from bone marrow into peripheral circulation, recruiting the progenitor cells to target tissue and protecting against cell death under pathological conditions; thus improve EPC regenerative capacity. SDF-1 are crucial for regulating EPC regenerative function, and provide a potential target for improve therapeutic efficacy of the progenitor cells in treatment of vascular disease.
Collapse
|
10
|
Zhang L, Chen L, Li C, Shi H, Wang Q, Yang W, Fang L, Leng Y, Sun W, Li M, Xue Y, Gao X, Wang H. Oroxylin a Attenuates Limb Ischemia by Promoting Angiogenesis via Modulation of Endothelial Cell Migration. Front Pharmacol 2021; 12:705617. [PMID: 34413777 PMCID: PMC8370028 DOI: 10.3389/fphar.2021.705617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/16/2021] [Indexed: 11/15/2022] Open
Abstract
Oroxylin A (OA) has been shown to simultaneously increase coronary flow and provide a strong anti-inflammatory effect. In this study, we described the angiogenic properties of OA. OA treatment accelerated perfusion recovery, reduced tissue injury, and promoted angiogenesis after hindlimb ischemia (HLI). In addition, OA regulated the secretion of multiple cytokines, including vascular endothelial growth factor A (VEGFA), angiopoietin-2 (ANG-2), fibroblast growth factor-basic (FGF-2), and platelet derived growth factor BB (PDGF-BB). Specifically, those multiple cytokines were involved in cell migration, cell population proliferation, and angiogenesis. These effects were observed at 3, 7, and 14 days after HLI. In skeletal muscle cells, OA promoted the release of VEGFA and ANG-2. After OA treatment, the conditioned medium derived from skeletal muscle cells was found to significantly induce endothelial cell (EC) proliferation. OA also induced EC migration by activating the Ras homolog gene family member A (RhoA)/Rho-associated coiled-coil kinase 2 (ROCK-II) signaling pathway and the T-box20 (TBX20)/prokineticin 2 (PROK2) signaling pathway. In addition, OA was able to downregulate the number of macrophages and neutrophils, along with the secretion of interleukin-1β, at 3 days after HLI. These results expanded current knowledge about the beneficial effects of OA in angiogenesis and blood flow recovery. This research could open new directions for the development of novel therapeutic intervention for patients with peripheral artery disease (PAD).
Collapse
Affiliation(s)
- Lusha Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lu Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, Tianjin, China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chunxiao Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, Tianjin, China
| | - Hong Shi
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, Tianjin, China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qianyi Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenjie Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Leyu Fang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuze Leng
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wei Sun
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mengyao Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuejin Xue
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiumei Gao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Hong Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, Tianjin, China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin, China.,School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
11
|
Zhao C, Wang W, Yan K, Sun H, Han J, Hu Y. The therapeutic effect and mechanism of Qishen Yiqi dripping pills on cardiovascular and cerebrovascular diseases and diabetic complications. Curr Mol Pharmacol 2021; 15:547-556. [PMID: 34382512 DOI: 10.2174/1874467214666210811153610] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/30/2021] [Accepted: 06/25/2021] [Indexed: 11/22/2022]
Abstract
The alterations in vascular homeostasis is deeply involved in the development of numerous diseases, such as coronary heart disease, stroke, and diabetic complications. Changes in blood flow and endothelial permeability caused by vascular dysfunction are the common mechanisms for these three types of diseases. The disorders of glucose and lipid metabolism can result in changes of the energy production patterns in endothelium and surrounding cells which may consequently cause local energy metabolic disorders, oxidative stress and inflammatory responses. Traditional Chinese medicine (TCM) follows the principle of the "treatment by the syndrome differentiation". TCM considers of that coronary heart disease, stroke and diabetes complications all as the type of "Qi deficiency and Blood stasis" syndrome, which mainly happens to the vascular system. Therefore, the common pathogenesis of these three types of diseases suggests the treatment strategy by TCM should be in a close manner and named as "treating different diseases by the same treatment". Qishen Yiqi dripping pills is a modern Chinese herbal medicine which has been widely used for treatment of patients with coronary heart disease characterized as "Qi deficiency and blood stasis" in China. Recently, many clinical reports have demonstrated the potent therapeutic effects of Qishen Yiqi dripping pills on ischemic stroke and diabetic nephropathy. Based on these reports, we will summarize the clinical applications of Qishen Yiqi dripping pills on coronary heart disease, ischemic stroke and diabetic nephropathy, including the involved mechanisms with basic researches.
Collapse
Affiliation(s)
- Chunlai Zhao
- GeneNet Pharmaceuticals Co. Ltd., Tianjin. China
| | - Wenjia Wang
- GeneNet Pharmaceuticals Co. Ltd., Tianjin. China
| | - Kaijing Yan
- GeneNet Pharmaceuticals Co. Ltd., Tianjin. China
| | - He Sun
- GeneNet Pharmaceuticals Co. Ltd., Tianjin. China
| | - Jihong Han
- Department of Biochemistry and Molecular Biology, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin. China
| | - Yunhui Hu
- GeneNet Pharmaceuticals Co. Ltd., Tianjin. China
| |
Collapse
|
12
|
Xue F, Bai Y, Jiang Y, Liu J, Jian K. Construction and a preliminary study of paracrine effect of bone marrow-derived endothelial progenitor cell sheet. Cell Tissue Bank 2021; 23:185-197. [PMID: 34052984 PMCID: PMC8854320 DOI: 10.1007/s10561-021-09932-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/21/2021] [Indexed: 12/14/2022]
Abstract
The release of paracrine factors from endothelial progenitor cell (EPC) sheet is a central mechanism of tissue repair. The purpose of this study was to constuct the rat bone marrow derived-endothelial progenitor cell (BM-EPCs) sheet and investigate invest the role of stromal cell-derived factor-1α (SDF-1α)/CXCR4 axis in the biological function of BM-EPCs sheet. BM-EPC cells were identified by the cell-surface markers-CD34/CD133/VE-cadherin/KDR using flow cytometry and dual affinity for acLDL and UEA-1. After 7 days of incubation, the BM-EPC single-cell suspensions were seeded on thermo-sensitive plate to harvest the BM-EPC cell sheets. The expression levels of SDF-1α/CXCR4 axis-associated genes and proteins were examined using RT-qPCR and western blot analysis, and enzyme-linked immunosorbent assay (ELISA) was applied to determine the concentration of vascular endothelial growth factor (VEGF), epidermal growth factor (EGF) and SDF-1α in the cell culture medium. The BM-EPC cell sheets were successfully harvested. Moreover, BM-EPC cell sheets have superior migration and tube formation activity when compared with single cell suspension. When capillary-like tube were formed from EPCs sheets, the releasing of paracrine factors such as VEGF, EGF and SDF-1α were increased. To reveal the mechanism of tube formation of BM-EPCs sheets, our research showed that the activation of PI3K/AKT/eNOS pathway was involved in the process, because the phosphorylation of CXCR, PI3K, AKT and eNOS were increased. BM-EPC cell sheets have superior paracrine and tube formation activity than the BM-EPC single-cell. The strong ability to secrete paracrine factors was be potentially related to the SDF-1α/CXCR4 axis through PI3K/AKT/eNOS pathway.
Collapse
Affiliation(s)
- Fenlong Xue
- Department of Cardiovascular Surgery, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Yunpeng Bai
- Department of Cardiovascular Surgery, Tianjin Chest Hospital, Tianjin, 300051, China
| | - Yiyao Jiang
- Department of Cardiovascular Surgery, Tianjin First Central Hospital, Tianjin, 300192, China
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Bengbu Medical College, Anhui, 233004, China
| | - Jianshi Liu
- Department of Cardiovascular Surgery, DeltaHealth Hospital Shanghai, Shanghai, 200336, China
| | - Kaitao Jian
- Department of Cardiovascular Surgery, Tianjin Chest Hospital, Tianjin, 300051, China.
- Department of Cardiovascular Surgery, DeltaHealth Hospital Shanghai, Shanghai, 200336, China.
| |
Collapse
|
13
|
Wang J, Wang Y, Zuo Y, Duan J, Pan A, Li JM, Yan XX, Liu F. MFGE8 mitigates brain injury in a rat model of SAH by maintaining vascular endothelial integrity via TIGβ5/PI3K/CXCL12 signaling. Exp Brain Res 2021; 239:2193-2205. [PMID: 33991211 DOI: 10.1007/s00221-021-06111-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 04/08/2021] [Indexed: 12/25/2022]
Abstract
Leaked blood components, injured endothelial cells, local inflammatory response and vasospasm may converge to promote microthrombosis following subarachnoid hemorrhage (SAH). Previously, we showed that the milk fat globule-epidermal growth factor 8 (MFGE8) can mitigate SAH-induced microthrombosis. This present study was aimed to explore the molecular pathway participated in MFGE8-dependent protection on vascular endothelium. Immunofluorescence, immunoblot and behavioral tests were used to determine the molecular partner and signaling pathway mediating the effect of MFGE8 in vascular endothelium in rats with experimental SAH and controls, together with the applications of RNA silencing and pharmacological intervention methods. Relative to control, recombinant human MFGE8 (rhMFGE8) treatment increased 5-bromo-2'-deoxyuridine (BrdU) labeled new endothelial cells, reduced TUNUL-positive endothelial cells and elevated the expression of phosphatidylinositol 3-kinase (PI3K) and chemokine (C-X-C motif) ligand 12 (CXCL12), in the brains of SAH rats. These effects were reversed by MFGE8 RNA silencing, as well as following cilengitide and wortmannin intervention. These results suggest that MFGE8 promotes endothelial regeneration and mitigates endothelial DNA damage through the activation of the TIGβ5/PI3K/CXCL12 signaling pathway.
Collapse
Affiliation(s)
- Jikai Wang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Sun Yat-sen University, No. 52 Meihuadong Road, Zhuhai, 519000, Guangdong, China
| | - Yiping Wang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Sun Yat-sen University, No. 52 Meihuadong Road, Zhuhai, 519000, Guangdong, China
| | - Yuchun Zuo
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jiajia Duan
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Aihua Pan
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Jian-Ming Li
- Department of Anatomy, School of Basic Sciences, Changsha Medical University, Changsha, 410219, Hunan, China
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Fei Liu
- Department of Neurosurgery, The Fifth Affiliated Hospital of Sun Yat-sen University, No. 52 Meihuadong Road, Zhuhai, 519000, Guangdong, China.
| |
Collapse
|
14
|
Xing Z, Zhao C, Wu S, Zhang C, Liu H, Fan Y. Hydrogel-based therapeutic angiogenesis: An alternative treatment strategy for critical limb ischemia. Biomaterials 2021; 274:120872. [PMID: 33991951 DOI: 10.1016/j.biomaterials.2021.120872] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 04/24/2021] [Accepted: 05/02/2021] [Indexed: 02/08/2023]
Abstract
Critical limb ischemia (CLI) is the most severe clinical manifestation of peripheral arterial disease (PAD), resulting in the total or partial loss of limb function. Although the conventional treatment strategy of CLI (e.g., medical treatment and surgery) can improve blood perfusion and restore limb function, many patients are unsuitable for these strategies and they still face the threats of amputation or death. Therapeutic angiogenesis, as a potential solution for these problems, attempts to manipulate blood vessel growth in vivo for augment perfusion without the help of extra pharmaceutics and surgery. With the rise of interdisciplinary research, regenerative medicine strategies provide new possibilities for treating many clinical diseases. Hydrogel, as an excellent biocompatibility material, is an ideal candidate for delivering bioactive molecules and cells for therapeutic angiogenesis. Besides, hydrogel could precisely deliver, control release, and keep the bioactivity of cargos, making hydrogel-based therapeutic angiogenesis a new strategy for CLI therapy. In this review, we comprehensively discuss the approaches of hydrogel-based strategy for CLI treatment as well as their challenges, and future directions.
Collapse
Affiliation(s)
- Zheng Xing
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, PR China
| | - Chen Zhao
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, PR China
| | - Siwen Wu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Chunchen Zhang
- Key Laboratory for Biomedical Engineering of Education Ministry of China, Zhejiang University, Hangzhou, 310027, PR China; Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, PR China
| | - Haifeng Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, PR China.
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, PR China.
| |
Collapse
|
15
|
Hu J, Zhao Y, Wu Y, Yang K, Hu K, Sun A, Ge J. Shexiang Baoxin Pill Attenuates Ischemic Injury by Promoting Angiogenesis by Activation of Aldehyde Dehydrogenase 2. J Cardiovasc Pharmacol 2021; 77:408-417. [PMID: 33662981 DOI: 10.1097/fjc.0000000000000967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 11/12/2020] [Indexed: 11/25/2022]
Abstract
ABSTRACT Promoting angiogenesis is a critical treatment strategy for ischemic cardiovascular diseases. Shexiang Baoxin Pill (SBP), a traditional Chinese medicine, has been reported to be capable of relieving angina and improve heart function by promoting angiogenesis. The aim of this study was to determine the role of mitochondrial aldehyde dehydrogenase 2 (ALDH2) in SBP-induced angiogenesis. Left femoral artery ligation was performed in wild-type mice (WT) and ALDH2 knockout mice, which were administrated with SBP (20 mg/kg/d) or equal volume saline per day by gastric gavage for 2 weeks. Perfusion recovery, angiogenesis in chronic hind limb ischemia, was significantly improved in the WT + SBP group than in the WT group. However, these beneficial effects were absent in ALDH2 knockout mice. In vitro, hypoxia impaired the ability of proliferation, migration and tube formation, sprouting angiogenesis, and promoted apoptosis in cardiovascular microvascular endothelial cells, whereas the hypoxia damage was restored by SBP. The protective effect of SBP was remarkably weakened by ALDH2 knockdown. Furthermore, SBP suppressed hypoxia-induced ALDH2/protein kinase B (AKT)/mammalian target of rapamycin pathways. In conclusion, this study demonstrated that SBP protected lower limb from ischemia injury through the ALDH2-dependent pathway. The protective mechanism of SBP in cardiovascular microvascular endothelial cells was partly mediated through ALDH2/AKT/mammalian target of rapamycin pathways.
Collapse
Affiliation(s)
- Jingjing Hu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yongchao Zhao
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yonghui Wu
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, Zhejiang, China ; and
| | - Kun Yang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kai Hu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Aijun Sun
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
- Institute of Biomedical Science, Fudan University, Shanghai, China
| | - Junbo Ge
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
- Institute of Biomedical Science, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Herrera-Zelada N, Zuñiga-Cuevas U, Ramirez-Reyes A, Lavandero S, Riquelme JA. Targeting the Endothelium to Achieve Cardioprotection. Front Pharmacol 2021; 12:636134. [PMID: 33603675 PMCID: PMC7884828 DOI: 10.3389/fphar.2021.636134] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
Despite considerable improvements in the treatment of myocardial infarction, it is still a highly prevalent disease worldwide. Novel therapeutic strategies to limit infarct size are required to protect myocardial function and thus, avoid heart failure progression. Cardioprotection is a research topic with significant achievements in the context of basic science. However, translation of the beneficial effects of protective approaches from bench to bedside has proven difficult. Therefore, there is still an unmet need to study new avenues leading to protecting the myocardium against infarction. In line with this, the endothelium is an essential component of the cardiovascular system with multiple therapeutic targets with cardioprotective potential. Endothelial cells are the most abundant non-myocyte cell type in the heart and are key players in cardiovascular physiology and pathophysiology. These cells can regulate vascular tone, angiogenesis, hemostasis, and inflammation. Accordingly, endothelial dysfunction plays a fundamental role in cardiovascular diseases, which may ultimately lead to myocardial infarction. The endothelium is of paramount importance to protect the myocardium from ischemia/reperfusion injury via conditioning strategies or cardioprotective drugs. This review will provide updated information on the most promising therapeutic agents and protective approaches targeting endothelial cells in the context of myocardial infarction.
Collapse
Affiliation(s)
- Nicolas Herrera-Zelada
- Advanced Center for Chronic Disease (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas and Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Ursula Zuñiga-Cuevas
- Advanced Center for Chronic Disease (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas and Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Andres Ramirez-Reyes
- Advanced Center for Chronic Disease (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas and Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Disease (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas and Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Jaime A. Riquelme
- Advanced Center for Chronic Disease (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas and Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
17
|
Xiao G, Lyu M, Li Z, Cao L, Liu X, Wang Y, He S, Chen Z, Du H, Feng Y, Wang J, Zhu Y. Restoration of early deficiency of axonal guidance signaling by guanxinning injection as a novel therapeutic option for acute ischemic stroke. Pharmacol Res 2021; 165:105460. [PMID: 33513357 DOI: 10.1016/j.phrs.2021.105460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/22/2020] [Accepted: 01/22/2021] [Indexed: 01/12/2023]
Abstract
Despite of its high morbidity and mortality, there is still a lack of effective treatment for ischemic stroke in part due to our incomplete understanding of molecular mechanisms of its pathogenesis. In this study, we demonstrate that SHH-PTCH1-GLI1-mediated axonal guidance signaling and its related neurogenesis, a central pathway for neuronal development, also plays a critical role in early stage of an acute stroke model. Specifically, in vivo, we evaluated the effect of GXNI on ischemic stroke mice via using the middle cerebral artery embolization model, and found that GXNI significantly alleviated cerebral ischemic reperfusion (I/R) injury by reducing the volume of cerebral infarction, neurological deficit score and cerebral edema, reversing the BBB permeability and histopathological changes. A combined approach of RNA-seq and network pharmacology analysis was used to reveal the underlying mechanisms of GXNI followed by RT-PCR, immunohistochemistry and western blotting validation. It was pointed out that axon guidance signaling pathway played the most prominent role in GXNI action with Shh, Ptch1, and Gli1 genes as the critical contributors in brain protection. In addition, GXNI markedly prevented primary cortical neuron cells from oxygen-glucose deprivation/reoxygenation damage in vitro, and promoted axon growth and synaptogenesis of damaged neurons, which further confirmed the results of in vivo experiments. Moreover, due to the inhibition of the SHH-PTCH1-GLI1 signaling pathway by cyclopropylamine, the effect of GXNI was significantly weakened. Hence, our study provides a novel option for the clinical treatment of acute ischemic stroke by GXNI via SHH-PTCH1-GLI1-mediated axonal guidance signaling, a neuronal development pathway previously considered for after-stroke recovery.
Collapse
Affiliation(s)
- Guangxu Xiao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin, 301617, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, 220 Dongting Road, TEDA, Tianjin, 300457, China
| | - Ming Lyu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin, 301617, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, 220 Dongting Road, TEDA, Tianjin, 300457, China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zhixiong Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin, 301617, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, 220 Dongting Road, TEDA, Tianjin, 300457, China
| | - Linghua Cao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin, 301617, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, 220 Dongting Road, TEDA, Tianjin, 300457, China
| | - Xinyan Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin, 301617, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, 220 Dongting Road, TEDA, Tianjin, 300457, China
| | - Yule Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin, 301617, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, 220 Dongting Road, TEDA, Tianjin, 300457, China
| | - Shuang He
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin, 301617, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, 220 Dongting Road, TEDA, Tianjin, 300457, China
| | - Zihao Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin, 301617, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, 220 Dongting Road, TEDA, Tianjin, 300457, China
| | - Hongxia Du
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin, 301617, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, 220 Dongting Road, TEDA, Tianjin, 300457, China
| | - Yuxin Feng
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin, 301617, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, 220 Dongting Road, TEDA, Tianjin, 300457, China
| | - Jigang Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yan Zhu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin, 301617, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, 220 Dongting Road, TEDA, Tianjin, 300457, China.
| |
Collapse
|
18
|
Zhao C, Li S, Zhang J, Huang Y, Zhang L, Zhao F, Du X, Hou J, Zhang T, Shi C, Wang P, Huo R, Woodman OL, Qin CX, Xu H, Huang L. Current state and future perspective of cardiovascular medicines derived from natural products. Pharmacol Ther 2020; 216:107698. [PMID: 33039419 DOI: 10.1016/j.pharmthera.2020.107698] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
The contribution of natural products (NPs) to cardiovascular medicine has been extensively documented, and many have been used for centuries. Cardiovascular disease (CVD) is the leading cause of morbidity and mortality worldwide. Over the past 40 years, approximately 50% of newly developed cardiovascular drugs were based on NPs, suggesting that NPs provide essential skeletal structures for the discovery of novel medicines. After a period of lower productivity since the 1990s, NPs have recently regained scientific and commercial attention, leveraging the wealth of knowledge provided by multi-omics, combinatorial biosynthesis, synthetic biology, integrative pharmacology, analytical and computational technologies. In addition, as a crucial part of complementary and alternative medicine, Traditional Chinese Medicine has increasingly drawn attention as an important source of NPs for cardiovascular drug discovery. Given their structural diversity and biological activity NPs are one of the most valuable sources of drugs and drug leads. In this review, we briefly described the characteristics and classification of NPs in CVDs. Then, we provide an up to date summary on the therapeutic potential and the underlying mechanisms of action of NPs in CVDs, and the current view and future prospect of developing safer and more effective cardiovascular drugs based on NPs.
Collapse
Affiliation(s)
- Chunhui Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Sen Li
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Junhong Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuanyun Huang
- Biology Department, Cornell University, Ithaca, NY 14850, United States of America
| | - Luoqi Zhang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Feng Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xia Du
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710003, China
| | - Jinli Hou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Tong Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chenjing Shi
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ping Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ruili Huo
- China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Owen L Woodman
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3800, Australia
| | - Cheng Xue Qin
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3800, Australia; School of Pharmaceutical Science, Shandong University, Shandong 250100, China; Qilu Hospital, Cheeloo College of Medicine, Shandong University, Shandong 250100, China.
| | - Haiyu Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
19
|
Ferrero-Andrés A, Panisello-Roselló A, Roselló-Catafau J, Folch-Puy E. NLRP3 Inflammasome-Mediated Inflammation in Acute Pancreatitis. Int J Mol Sci 2020; 21:5386. [PMID: 32751171 PMCID: PMC7432368 DOI: 10.3390/ijms21155386] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/17/2020] [Accepted: 07/28/2020] [Indexed: 12/11/2022] Open
Abstract
The discovery of inflammasomes has enriched our knowledge in the pathogenesis of multiple inflammatory diseases. The NLR pyrin domain-containing protein 3 (NLRP3) has emerged as the most versatile and well-characterized inflammasome, consisting of an intracellular multi-protein complex that acts as a central driver of inflammation. Its activation depends on a tightly regulated two-step process, which includes a wide variety of unrelated stimuli. It is therefore not surprising that the specific regulatory mechanisms of NLRP3 inflammasome activation remain unclear. Inflammasome-mediated inflammation has become increasingly important in acute pancreatitis, an inflammatory disorder of the pancreas that is one of the fatal diseases of the gastrointestinal tract. This review presents an update on the progress of research into the contribution of the NLRP3 inflammasome to acute pancreatic injury, examining the mechanisms of NLRP3 activation by multiple signaling events, the downstream interleukin 1 family of cytokines involved and the current state of the literature on NLRP3 inflammasome-specific inhibitors.
Collapse
Affiliation(s)
- Ana Ferrero-Andrés
- Experimental Pathology Department, Institut d’Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones científicas (IIBB-CSIC), Barcelona, 08036 Catalonia, Spain; (A.F.-A.); (A.P.-R.)
| | - Arnau Panisello-Roselló
- Experimental Pathology Department, Institut d’Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones científicas (IIBB-CSIC), Barcelona, 08036 Catalonia, Spain; (A.F.-A.); (A.P.-R.)
| | - Joan Roselló-Catafau
- Experimental Pathology Department, Institut d’Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones científicas (IIBB-CSIC), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, 08036 Catalonia, Spain;
| | - Emma Folch-Puy
- Experimental Pathology Department, Institut d’Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones científicas (IIBB-CSIC), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, 08036 Catalonia, Spain;
| |
Collapse
|
20
|
Abstract
Previous studies have demonstrated that individuals with type 2 diabetes mellitus (T2DM) have a two- to fourfold propensity to develop cardiovascular disease (CVD) than nondiabetic population, making CVD a major cause of death and disability among people with T2DM. The present treatment options for management of diabetes propose the earlier and more frequent use of new antidiabetic drugs that could control hyperglycaemia and reduce the risk of cardiovascular events. Findings from basic and clinical studies pointed out DPP-4 inhibitors as potentially novel pharmacological tools for cardioprotection. There is a growing body of evidence suggesting that these drugs have ability to protect the heart against acute ischaemia-reperfusion injury as well as reduce the size of infarction. Consequently, the prevention of degradation of the incretin hormones by the use of DPP-4 inhibitors represents a new strategy in the treatment of patients with T2DM and reduction of CV events in these patients. Here, we discuss the cardioprotective effects of DPP-4 inhibitors as well as proposed pathways that these hypoglycaemic agents target in the cardiovascular system.
Collapse
|
21
|
Lu P, Xing Y, Peng H, Liu Z, Zhou Q(T, Xue Z, Ma Z, Kebebe D, Zhang B, Liu H. Physicochemical and Pharmacokinetic Evaluation of Spray-Dried Coformulation of Salvia miltiorrhiza Polyphenolic Acid and L-Leucine with Improved Bioavailability. J Aerosol Med Pulm Drug Deliv 2020; 33:73-82. [DOI: 10.1089/jamp.2019.1538] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Peng Lu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin, China
| | - Yue Xing
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin, China
| | - Hui Peng
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin, China
| | - Zhidong Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin, China
| | - Qi (Tony) Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana
| | - Zhifeng Xue
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin, China
| | - Zhe Ma
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin, China
| | - Dereje Kebebe
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin, China
- School of Pharmacy, Institute of Health Science, Jimma University, Jimma, Ethiopia
| | - Bing Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin, China
| | - Hongfei Liu
- College of Pharmacy, Jiangsu University, Zhenjiang, China
| |
Collapse
|
22
|
Inhibition of nuclear factor kappa B as a mechanism of Danshensu during Toll-like receptor 2-triggered inflammation in macrophages. Int Immunopharmacol 2020; 83:106419. [PMID: 32200153 DOI: 10.1016/j.intimp.2020.106419] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 01/08/2023]
Abstract
Danshensu (DSS) is a water-soluble phenolic compound in Danshen (Salvia Miltiorrhiza Radix et Rhizoma). Although various pharmacological activities have been recognized, little is known regarding its anti-inflammatory effect and related molecular mode of action. In the current study, bone marrow-derived macrophages (BMMs) were activated by a Toll-like receptor 2 (TLR2) agonist Pam3CSK4 with or without DSS intervention. Production of pro-inflammatory cytokines interleukin-6 (IL-6) and interleukin-12 (IL-12) was detected by both enzyme-linked immunosorbent assay (ELISA) and real-time quantitative PCR (RT-qPCR). Activation of signaling pathways involving nuclear factor kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) was assessed by Western blot. Additionally, RNA sequencing (RNA-seq) combined with bioinformatics analyses was applied to investigate the molecular mechanisms of DSS. Emphasis was placed on the construction of the protein-protein interaction (PPI) network and transcription factor (TF) enrichment analysis of data including co-regulated differentially expressed genes (DEGs) in the Pam3CSK4 vs. control and DSS vs. Pam3CSK4 groups. The RT-qPCR and ELISA results showed that DSS effectively inhibited the expressions of IL-6 and IL-12, indicating a significant anti-inflammatory effect. Western blot verified that DSS suppressed the phosphorylation of p65, which was in accordance with the results of the TF enrichment analysis. Additionally, the PPI network analysis showed several key molecules, including lactoferrin (Ltf), CC-chemokine receptor 7 (Ccr7), interferon-gamma (IFN-γ) and C-X-C motif chemokine ligand 9 (Cxcl9), to be regulatory genes that responded to DSS treatment. Overall, our study revealed that DSS has a pronounced anti-inflammatory effect involving TLR2 and macrophages through the NF-κB signaling pathway, which supports the novel application of DSS in the treatment of relevant diseases including atherosclerosis and ischemic or ischemic/perfusion injury of the heart and brain.
Collapse
|
23
|
Jia J, Mo X, Liu J, Yan F, Wang N, Lin Y, Li H, Zheng Y, Chen D. Mechanism of danshensu-induced inhibition of abnormal epidermal proliferation in psoriasis. Eur J Pharmacol 2020; 868:172881. [PMID: 31866405 DOI: 10.1016/j.ejphar.2019.172881] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/15/2019] [Accepted: 12/17/2019] [Indexed: 01/16/2023]
Abstract
Psoriasis is a chronic, inflammatory skin disease with high incidence and high rates of relapse, for which no satisfactory treatments are currently available. Yes-associated protein (YAP) is highly expressed in psoriasis and may regulate the proliferation and apoptosis of keratinocytes. Danshen is a traditional Chinese medicine, commonly used in the treatment of psoriasis. Danshensu is the most abundant water-soluble component of Danshen, but its therapeutic mechanism is still unclear. In this study, MTT was used to detect the effects of different danshensu concentrations (0.125, 0.25, 0.5 mmol/l) on the proliferation of an M5-based psoriasis cell model. The effects of danshensu on cell cycle and apoptosis were detected by flow cytometry. Cyclins and apoptosis-related proteins were evaluated by Western blot. Danshensu (20, 40, 80 mg/kg/day) was administered intraperitoneally to the imiquimod (IMQ) psoriasis mouse model. After 7 days, the expression of YAP in the lesions was detected by immunohistochemistry and Western blot. We found that danshensu reduced the expression of YAP in the M5 psoriasis cell model, inhibited cell proliferation, induced cell cycle arrest in G0/G1 phase, and promoted cell apoptosis. All these effects were partly reverted by YAP overexpression. The skin lesions of IMQ mice were thinned and the scales reduced after intragastric administration of danshensu, which also resulted in dose-dependent inhibition of YAP expression. We concluded that danshensu prevents abnormal epidermis proliferation in psoriasis possibly by modulating YAP expression. Our work can provide a theoretical basis for the clinical application of Danshen in the treatment of psoriasis.
Collapse
Affiliation(s)
- Jinjing Jia
- Department of Dermatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Xiumei Mo
- Department of Dermatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Junfeng Liu
- Department of Dermatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Fenggen Yan
- Department of Dermatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Ning Wang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, School of Medicine, Xi'an, China
| | - Ying Lin
- Department of Dermatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Hongyi Li
- Department of Dermatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Yan Zheng
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, School of Medicine, Xi'an, China.
| | - Dancan Chen
- Department of Dermatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.
| |
Collapse
|
24
|
He S, Guo H, Zhao T, Meng Y, Chen R, Ren J, Pan L, Fan G, Jiang M, Qin G, Zhu Y, Gao X. A Defined Combination of Four Active Principles From the Danhong Injection Is Necessary and Sufficient to Accelerate EPC-Mediated Vascular Repair and Local Angiogenesis. Front Pharmacol 2019; 10:1080. [PMID: 31607924 PMCID: PMC6767990 DOI: 10.3389/fphar.2019.01080] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 08/26/2019] [Indexed: 12/21/2022] Open
Abstract
Many compounds in Chinese medicine formulae, including Danhong injection (DHI) formulae, are capable of stimulating angiogenesis and promoting vascular repair, but their chemical basis and action mechanisms remain poorly defined. The aim of this study is to determine the minimal native chemical composition of DHI for the pro-angiogenesis activity and to evaluate its contribution from local endothelial cells (ECs) and bone marrow-derived endothelial progenitor cells (EPCs). Our study demonstrated that the action of DHI in accelerating the recovery of hindlimb blood flow in a ischemic rat model was attributable to its local CXCR4-mediated pro-angiogenesis activity in mature endothelial cells, as well as to its ability to promote the proliferation, migration, adhesion, and angiogenesis of EPCs via integrated activation of SDF-1α/CXCR4, VEGF/KDR, and eNOS/MMP-9 signal pathways. Combination experiments narrowed down the angiogenic activity into a few components in DHI. Reconstitution experiment defined that a combination of tanshinol, protocatechuic aldehyde, salvianolic acid B, and salvianolic acid C in their native proportion was necessary and sufficient for DHI's angiogenic activity. Compared with the full DHI, the minimal reconstituted four active principles had the same effects in promoting tube formation in vitro, improving perfusion and recovery of ischemic limb, and enhancing angiogenesis in ischemic mice post-hindlimb ischemia in vivo.
Collapse
Affiliation(s)
- Shuang He
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of Traditional Chinese Medicine, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Hao Guo
- Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Tiechan Zhao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of Traditional Chinese Medicine, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Yanzhi Meng
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of Traditional Chinese Medicine, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Rongrong Chen
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of Traditional Chinese Medicine, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Jie Ren
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of Traditional Chinese Medicine, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Lanlan Pan
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of Traditional Chinese Medicine, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Guanwei Fan
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Ministry of Education, Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, and Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Miaomiao Jiang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of Traditional Chinese Medicine, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Gangjian Qin
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Molecular Cardiology Program, Department of Biomedical Engineering, School of Medicine & School of Engineering, The University of Alabama at Birmingham (UAB), Birmingham, AL, United States
| | - Yan Zhu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of Traditional Chinese Medicine, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Xiumei Gao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Ministry of Education, Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, and Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
25
|
Wu D, Jin L, Xu H. The Effects of the CXCR4 Antagonist, AMD3465, on Human Retinal Vascular Endothelial Cells (hRVECs) in a High Glucose Model of Diabetic Retinopathy. Med Sci Monit 2019; 25:6946-6954. [PMID: 31860633 PMCID: PMC6761849 DOI: 10.12659/msm.917186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND High blood glucose levels in diabetes result in retinal angiogenesis, which is the key feature of diabetic retinopathy. This study aimed to investigate the effects of the CXCR4 antagonist, AMD3465, on human retinal vascular endothelial cells (hRVECs) [i]in vitro[/i]. MATERIAL AND METHODS Cell viability and the protein expression levels of CXCR4 and stromal cell-derived factor 1 (SDF-1) were evaluated in high glucose (HG)-treated human retinal vascular endothelial cells (hRVECs). The cell counting kit 8 (CCK-8) assay, the colony formation assay, immunofluorescence, and Western blot were used to investigate the effects of AMD3465 on hRVEC cell viability, colony formation, cell proliferation, and expression of CXCR4 and SDF-1. Cell apoptosis and angiogenesis were assessed by flow cytometry and Western blot. RESULTS Treatment with high glucose reduced the viability of hRVECs and increased the protein expression levels of CXCR4 and SDF-1. Following treatment with AMD3465, the colony formation capacity and cell proliferation in hRVECs increased, and there was a significant reduction in apoptosis rate compared with the untreated cells. AMD3465 significantly reduced the expression of angiogenesis-associated proteins, including ICAM1, VCAM1, VEGF, and AngII. AMD3465 significantly reduced the protein expression levels of TNF-α, IL-1β, NF-κB, and p-p65. CONCLUSIONS The CXCR4 antagonist, AMD3465, reduced apoptosis of HG-treated hRVECs in an [i]in vitro[/i] model of diabetic retinopathy.
Collapse
Affiliation(s)
- Di Wu
- Department of Endocrinology, The Third Affiliated Hospital of Qiqihar Medical College, Qiqihar, Heilongjiang, China (mainland)
| | - Li Jin
- Department of Endocrinology, The Third Affiliated Hospital of Qiqihar Medical College, Qiqihar, Heilongjiang, China (mainland)
| | - Hongshuang Xu
- Department of Endocrinology, The Third Affiliated Hospital of Qiqihar Medical College, Qiqihar, Heilongjiang, China (mainland)
| |
Collapse
|
26
|
De Clercq E. Mozobil® (Plerixafor, AMD3100), 10 years after its approval by the US Food and Drug Administration. Antivir Chem Chemother 2019; 27:2040206619829382. [PMID: 30776910 PMCID: PMC6379795 DOI: 10.1177/2040206619829382] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
AMD3100 (plerixafor, Mozobil®) was first identified as an anti-HIV agent
specifically active against the T4-lymphotropic HIV strains, as it selectively
blocked the CXCR4 receptor. Through interference with the interaction of CXCR4
with its natural ligand, SDF-1 (also named CXCL12), it also mobilized the
CD34+stem cells from the bone marrow into the peripheral blood
stream. In December 2008, AMD3100 was formally approved by the US FDA for
autologous transplantation in patients with Non-Hodgkin’s Lymphoma or multiple
myeloma. It may be beneficially used in various other malignant diseases as well
as hereditary immunological disorders such as WHIM syndrome, and
physiopathological processes such as hepatopulmonary syndrome.
Collapse
|
27
|
Zhang J, Liang R, Wang L, Yang B. Effects and mechanisms of Danshen-Shanzha herb-pair for atherosclerosis treatment using network pharmacology and experimental pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2019; 229:104-114. [PMID: 30312741 DOI: 10.1016/j.jep.2018.10.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/29/2018] [Accepted: 10/01/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The danshen (the root of Salvia miltiorrhiza Bge.)-shanzha (the fruit of Crataegus pinnatifida Bge. var. major N.E.Br.) (DS) herb combination is a commonly used traditional Chinese medicine with cardiovascular disease (CVD) treatment potential. MATERIALS AND METHODS In this study, we investigated the anti-atherosclerotic effects and mechanisms of DS by the integration of network pharmacology and polypharmacology. Eight main components were selected for target fishing by PharmMapper. RESULTS The network pharmacological study indicated that DS may target 41 proteins and 16 pathways associated with inflammation, lipid metabolism and endothelial protection, which indicates that DS probably adjusts these processes as part of its anti-atherosclerotic activities. Furthermore, this hypothesis was verified by polypharmacology using an atherosclerotic model. Histopathological examination showed that DS inhibited pathological changes in the arteries of atherosclerotic rats and reduced the intima-media thickness (IMT). DS significantly reduced the levels of total cholesterol (TC), triglyceride (TG), and low-density lipoprotein-cholesterol (LDL-C) and increased the high-density lipoprotein-cholesterol (HDL-C) level in the blood. DS also decreased the concentrations of interleukin (IL)-1β and IL-18, indicating anti-inflammation activity. In addition, DS increased the serum levels of nitric oxide (NO) and 6-keto-prostaglandin F1α (6-keto-PGF1α) and decreased the serum levels of endothelin (ET) and thromboxane B2 (TXB2), indicating an endothelial protective effect. CONCLUSIONS In conclusion, DS has an anti-atherosclerotic ability to lower lipid concentrations and to protect endothelial function, and it also has anti-inflammatory activity.
Collapse
Affiliation(s)
- Jianyong Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Rixin Liang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lan Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bin Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
28
|
Liao W, Ma X, Li J, Li X, Guo Z, Zhou S, Sun H. A review of the mechanism of action of Dantonic® for the treatment of chronic stable angina. Biomed Pharmacother 2019; 109:690-700. [DOI: 10.1016/j.biopha.2018.10.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/30/2018] [Accepted: 10/03/2018] [Indexed: 01/04/2023] Open
|
29
|
Bao XY, Zheng Q, Tong Q, Zhu PC, Zhuang Z, Zheng GQ, Wang Y. Danshensu for Myocardial Ischemic Injury: Preclinical Evidence and Novel Methodology of Quality Assessment Tool. Front Pharmacol 2018; 9:1445. [PMID: 30618743 PMCID: PMC6297803 DOI: 10.3389/fphar.2018.01445] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 11/22/2018] [Indexed: 12/09/2022] Open
Abstract
Background: Danshensu (DSS) possesses unique bioactivity on the cardiovascular system. However, there is a lack of systematical summary of DSS for acute myocardial ischemia injury and no quality assessment tool for the systematical review of cell experiments. Here, we aimed to assess the preclinical evidences and possible mechanisms of DSS for myocardial ischemia injury, and to develop a quality assessment tool for the systematical review of cell experiments. Methods: Thirty-two studies with 473 animals and 134 cells were identified by searching seven databases. All data analysis was performed using RevMan 5.3. CAMARADES 10-item checklist was used to assess the methodological quality of animal experiments. A new 10-item checklist was first developed to assess the methodological quality of cell studies. Results: The score of study quality ranged from 3 to 7 points in animal studies, while the cell studies scored 3–6 points. Meta-analysis showed that DSS had significant effects on reducing myocardial infarct (MI) size in vivo, and increasing cell viability and reducing apoptosis rate in vitro compared with controls (P < 0.01). The possible mechanisms of DSS for MI are improving circulation, antioxidant, anti-apoptosis, anti-inflammatory, promoting angiogenesis, anti-excessive autophagy, anti-calcium overload, and improving energy metabolism. Conclusions: DSS could exert cardioprotective effect on myocardial ischemia injury, and thus is a probable candidate for further clinical trials andtreatment of AMI. In addition, the newly devloped 10-item checklist for assessing methodological quality of cell study that recommened to use the sysmatic review of cell studies.
Collapse
Affiliation(s)
- Xiao-Yi Bao
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qun Zheng
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiang Tong
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Peng-Chong Zhu
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhuang Zhuang
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guo-Qing Zheng
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yan Wang
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
30
|
Haybar H, Shahrabi S, Deris Zayeri Z, Pezeshki S. Strategies to increase cardioprotection through cardioprotective chemokines in chemotherapy-induced cardiotoxicity. Int J Cardiol 2018; 269:276-282. [DOI: 10.1016/j.ijcard.2018.07.087] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/19/2018] [Accepted: 07/18/2018] [Indexed: 01/08/2023]
|
31
|
Chiazza F, Tammen H, Pintana H, Lietzau G, Collino M, Nyström T, Klein T, Darsalia V, Patrone C. The effect of DPP-4 inhibition to improve functional outcome after stroke is mediated by the SDF-1α/CXCR4 pathway. Cardiovasc Diabetol 2018; 17:60. [PMID: 29776406 PMCID: PMC5960142 DOI: 10.1186/s12933-018-0702-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/05/2018] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Dipeptidyl peptidase-4 (DPP-4) inhibitors (gliptins) are approved drugs for the treatment of hyperglycemia in patients with type 2 diabetes. These effects are mainly mediated by inhibiting endogenous glucagon-like peptide-1 (GLP-1) cleavage. Interestingly, gliptins can also improve stroke outcome in rodents independently from GLP1. However, the underlying mechanisms are unknown. Stromal cell-derived factor-1α (SDF-1α) is a DPP-4 substrate and CXCR4 agonist promoting beneficial effects in injured brains. However, SDF-1α involvement in gliptin-mediated neuroprotection after ischemic injury is unproven. We aimed to determine whether the gliptin linagliptin improves stroke outcome via the SDF-1α/CXCR4 pathway, and identify additional effectors behind the efficacy. METHODS Mice were subjected to stroke by transient middle cerebral artery occlusion (MCAO). linagliptin was administered for 3 days or 3 weeks from stroke onset. The CXCR4-antagonist AMD3100 was administered 1 day before MCAO until 3 days thereafter. Stroke outcome was assessed by measuring upper-limb function, infarct volume and neuronal survival. The plasma and brain levels of active GLP-1, GIP and SDF-1α were quantified by ELISA. To identify additional gliptin-mediated molecular effectors, brain samples were analyzed by mass spectrometry. RESULTS Linagliptin specifically increased active SDF-1α but not glucose-dependent insulinotropic peptide (GIP) or GLP-1 brain levels. Blocking of SDF-1α/CXCR4 pathway abolished the positive effects of linagliptin on upper-limb function and histological outcome after stroke. Moreover, linagliptin treatment after stroke decreased the presence of peptides derived from neurogranin and from an isoform of the myelin basic protein. CONCLUSIONS We showed that linagliptin improves functional stroke outcome in a SDF-1α/CXCR4-dependent manner. Considering that Calpain activity and intracellular Ca2+ regulate neurogranin and myelin basic protein detection, our data suggest a gliptin-mediated neuroprotective mechanism via the SDF-1α/CXCR4 pathway that could involve the regulation of Ca2+ homeostasis and the reduction of Calpain activity. These results provide new insights into restorative gliptin-mediated effects against stroke.
Collapse
Affiliation(s)
- Fausto Chiazza
- Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, 118 83, Stockholm, Sweden.
| | | | - Hiranya Pintana
- Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, 118 83, Stockholm, Sweden
| | - Grazyna Lietzau
- Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, 118 83, Stockholm, Sweden
| | - Massimo Collino
- Department of Drug Science and Technology, University of Turin, Torino, Italy
| | - Thomas Nyström
- Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, 118 83, Stockholm, Sweden
| | - Thomas Klein
- Department of CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Vladimer Darsalia
- Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, 118 83, Stockholm, Sweden.
| | - Cesare Patrone
- Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, 118 83, Stockholm, Sweden.
| |
Collapse
|
32
|
Li ZM, Xu SW, Liu PQ. Salvia miltiorrhizaBurge (Danshen): a golden herbal medicine in cardiovascular therapeutics. Acta Pharmacol Sin 2018; 39:802-824. [PMID: 29698387 PMCID: PMC5943903 DOI: 10.1038/aps.2017.193] [Citation(s) in RCA: 340] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 12/31/2017] [Indexed: 02/07/2023]
Abstract
Salvia miltiorrhiza Burge (Danshen) is an eminent medicinal herb that possesses broad cardiovascular and cerebrovascular protective actions and has been used in Asian countries for many centuries. Accumulating evidence suggests that Danshen and its components prevent vascular diseases, in particular, atherosclerosis and cardiac diseases, including myocardial infarction, myocardial ischemia/reperfusion injury, arrhythmia, cardiac hypertrophy and cardiac fibrosis. The published literature indicates that lipophilic constituents (tanshinone I, tanshinone IIa, tanshinone IIb, cryptotanshinone, dihydrotanshinone, etc) as well as hydrophilic constituents (danshensu, salvianolic acid A and B, protocatechuic aldehyde, etc) contribute to the cardiovascular protective actions of Danshen, suggesting a potential synergism among these constituents. Herein, we provide a systematic up-to-date review on the cardiovascular actions and therapeutic potential of major pharmacologically active constituents of Danshen. These bioactive compounds will serve as excellent drug candidates in small-molecule cardiovascular drug discovery. This article also provides a scientific rationale for understanding the traditional use of Danshen in cardiovascular therapeutics.
Collapse
Affiliation(s)
- Zhuo-ming Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou 510006, China
| | - Suo-wen Xu
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, 14642, USA
| | - Pei-qing Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|