1
|
Chen Z, Behrendt R, Wild L, Schlee M, Bode C. Cytosolic nucleic acid sensing as driver of critical illness: mechanisms and advances in therapy. Signal Transduct Target Ther 2025; 10:90. [PMID: 40102400 PMCID: PMC11920230 DOI: 10.1038/s41392-025-02174-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 01/14/2025] [Accepted: 02/11/2025] [Indexed: 03/20/2025] Open
Abstract
Nucleic acids from both self- and non-self-sources act as vital danger signals that trigger immune responses. Critical illnesses such as acute respiratory distress syndrome, sepsis, trauma and ischemia lead to the aberrant cytosolic accumulation and massive release of nucleic acids that are detected by antiviral innate immune receptors in the endosome or cytosol. Activation of receptors for deoxyribonucleic acids and ribonucleic acids triggers inflammation, a major contributor to morbidity and mortality in critically ill patients. In the past decade, there has been growing recognition of the therapeutic potential of targeting nucleic acid sensing in critical care. This review summarizes current knowledge of nucleic acid sensing in acute respiratory distress syndrome, sepsis, trauma and ischemia. Given the extensive research on nucleic acid sensing in common pathological conditions like cancer, autoimmune disorders, metabolic disorders and aging, we provide a comprehensive summary of nucleic acid sensing beyond critical illness to offer insights that may inform its role in critical conditions. Additionally, we discuss potential therapeutic strategies that specifically target nucleic acid sensing. By examining nucleic acid sources, sensor activation and function, as well as the impact of regulating these pathways across various acute diseases, we highlight the driving role of nucleic acid sensing in critical illness.
Collapse
Affiliation(s)
- Zhaorong Chen
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, 53127, Bonn, Germany
| | - Rayk Behrendt
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
| | - Lennart Wild
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, 53127, Bonn, Germany
| | - Martin Schlee
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
| | - Christian Bode
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, 53127, Bonn, Germany.
| |
Collapse
|
2
|
Wang Y, Kulkarni VV, PantaleónGarcía J, Longmire MK, Lethier M, Cusack S, Evans SE. The RNA receptor RIG-I binding synthetic oligodeoxynucleotide promotes pneumonia survival. JCI Insight 2024; 9:e180584. [PMID: 39352770 PMCID: PMC11601584 DOI: 10.1172/jci.insight.180584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024] Open
Abstract
Pneumonia is a worldwide threat to public health, demanding novel preventative and therapeutic strategies. The lung epithelium is a critical environmental interface that functions as a physical barrier to pathogen invasion while also actively sensing and responding to pathogens. We have reported that stimulating lung epithelial cells with a combination therapeutic consisting of a diacylated lipopeptide and a synthetic CpG oligodeoxynucleotide (ODN) induces synergistic pneumonia protection against a wide range of pathogens. We report here that mice deficient in TLR9, the previously described receptor for ODN, still displayed partial ODN-induced protection. This prompted us to seek an alternate ODN receptor, and we discovered by mass spectroscopy that the RNA sensor RIG-I could also bind DNA-like ODN. ODN binding by RIG-I resulted in MAVS-dependent pneumonia-protective signaling events. While RIG-I is essential to native defenses against viral infections, we report that therapeutic RIG-I activation with ODN promoted pathogen killing and host survival following both viral and bacterial challenges. These data indicate that maximal ODN-induced pneumonia protection requires activation of both the TLR9/MyD88 and RIG-I/MAVS signaling pathways. These findings not only identify what we believe to be a novel pattern recognition receptor for DNA-like molecules, but reveal a potential therapeutic strategy to protect susceptible individuals against lethal pneumonias during periods of peak vulnerability.
Collapse
Affiliation(s)
- Yongxing Wang
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Vikram V. Kulkarni
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, UTHealth Houston, Houston, Texas, USA
| | - Jezreel PantaleónGarcía
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Michael K. Longmire
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, UTHealth Houston, Houston, Texas, USA
| | | | | | - Scott E. Evans
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, UTHealth Houston, Houston, Texas, USA
| |
Collapse
|
3
|
Zhang X, He Y, Zhang X, Fu B, Song Z, Wang L, Fu R, Lu X, Xing J, Lv J, Guo M, Huo X, Liu X, Lu J, Du X, Ge Z, Chen Z, Li C. Sustained exposure to Helicobacter pylori induces immune tolerance by desensitizing TLR6. Gastric Cancer 2024; 27:324-342. [PMID: 38310631 PMCID: PMC10896808 DOI: 10.1007/s10120-023-01461-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/19/2023] [Indexed: 02/06/2024]
Abstract
Helicobacter pylori (H. pylori, Hp) has been designated a class I carcinogen and is closely associated with severe gastric diseases. During colonization in the gastric mucosa, H. pylori develops immune escape by inducing host immune tolerance. The gastric epithelium acts as the first line of defense against H. pylori, with Toll-like receptors (TLRs) in gastric epithelial cells being sensitive to H. pylori components and subsequently activating the innate immune system. However, the mechanism of immune tolerance induced by H. pylori through the TLR signalling pathway has not been fully elucidated. In this research, we detected the expression of TLRs and inflammatory cytokines in GES-1 cells upon sustained exposure to H. pylori or H. pylori lysate from 1 to 30 generations and in Mongolian gerbils infected with H. pylori for 5 to 90 weeks. We found that the levels of TLR6 and inflammatory cytokines first increased and then dropped during the course of H. pylori treatment in vitro and in vivo. The restoration of TLR6 potentiated the expression of IL-1β and IL-8 in GES-1 cells, which recruited neutrophils and reduced the colonization of H. pylori in the gastric mucosa of gerbils. Mechanistically, we found that persistent infection with H. pylori reduces the sensitivity of TLR6 to bacterial components and regulates the expression of inflammatory cytokines in GES-1 cells through TLR6/JNK signaling. The TLR6 agonist obviously alleviated inflammation in vitro and in vivo. Promising results suggest that TLR6 may be a potential candidate immunotherapy drug for H. pylori infection.
Collapse
Affiliation(s)
- Xiulin Zhang
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Laboratory for Clinical Medicine, Capital Medical University, Beijing, People's Republic of China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, Beijing, People's Republic of China
| | - Yang He
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Laboratory for Clinical Medicine, Capital Medical University, Beijing, People's Republic of China
- School of Nursing, Dalian Medical University, Dalian, People's Republic of China
| | - Xiaolu Zhang
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Laboratory for Clinical Medicine, Capital Medical University, Beijing, People's Republic of China
| | - Bo Fu
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Laboratory for Clinical Medicine, Capital Medical University, Beijing, People's Republic of China
| | - Zidai Song
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Laboratory for Clinical Medicine, Capital Medical University, Beijing, People's Republic of China
| | - Liang Wang
- Peking University Ninth School of Clinical Medicine, Beijing, People's Republic of China
| | - Rui Fu
- Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, People's Republic of China
| | - Xuancheng Lu
- Laboratory Animal Center, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Jin Xing
- Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, People's Republic of China
| | - Jianyi Lv
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Laboratory for Clinical Medicine, Capital Medical University, Beijing, People's Republic of China
| | - Meng Guo
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Laboratory for Clinical Medicine, Capital Medical University, Beijing, People's Republic of China
| | - Xueyun Huo
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Laboratory for Clinical Medicine, Capital Medical University, Beijing, People's Republic of China
| | - Xin Liu
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Laboratory for Clinical Medicine, Capital Medical University, Beijing, People's Republic of China
| | - Jing Lu
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Laboratory for Clinical Medicine, Capital Medical University, Beijing, People's Republic of China
| | - Xiaoyan Du
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Laboratory for Clinical Medicine, Capital Medical University, Beijing, People's Republic of China
| | - Zhongming Ge
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, USA
| | - Zhenwen Chen
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Laboratory for Clinical Medicine, Capital Medical University, Beijing, People's Republic of China
| | - Changlong Li
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Laboratory for Clinical Medicine, Capital Medical University, Beijing, People's Republic of China.
| |
Collapse
|
4
|
Zhu Y, Liu B, Chen Z, Wang X, Wang Y, Zhang W, Wang S, Zhang M, Li Y. Synthesis, evaluation and molecular dynamics study of human toll-like receptor 2/6 specific monoacyl lipopeptides as candidate immunostimulants. Bioorg Chem 2023; 141:106823. [PMID: 37708825 DOI: 10.1016/j.bioorg.2023.106823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/14/2023] [Accepted: 08/27/2023] [Indexed: 09/16/2023]
Abstract
TLR2 agonists typified by the S-[2,3-bis(palmitoyloxy)-(2RS)-propyl]-R-cysteinyl-S-serine (Pam2CS) motif have exhibited powerful immunostimulatory activities. Based on simplified monoacyl lipopeptide (Carbamate-linked N-Ac PamCS), we describe interesting SAR investigations where modifications are done to alter the size of substituents on the cysteine amine, introduce ionizable groups to the terminal and insert aromatic substitutions to the aliphatic chain. Our structural modifications have led to a highly specific human TLR2/6 agonist 14a (EC50 = 0.424 nM), which behaves like Pam2CSK4 by inducing NF-κB activation to trigger downstream signaling pathways, such as subsequent phosphorylation of related proteins (p65, p38) and production of key inflammatory cytokines (IL-6, IL-1β, TNF-α). Importantly, the ability to stimulate enhanced T cell response compared to Carbamate-linked N-Ac PamCS makes compound 14a a further potential candidate immunostimulant.
Collapse
Affiliation(s)
- Yueyue Zhu
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Bo Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zonglong Chen
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xianyang Wang
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yujie Wang
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Wenhong Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, 200040, China; Shanghai Huashen Institute of Microbes and Infections, NO.6 Lane 1220 Huashan Rd., Shanghai 200052, China
| | - Sen Wang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, 200040, China; Shanghai Huashen Institute of Microbes and Infections, NO.6 Lane 1220 Huashan Rd., Shanghai 200052, China
| | - Mingming Zhang
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yingxia Li
- School of Pharmacy, Fudan University, Shanghai 201203, China.
| |
Collapse
|
5
|
Velasco WV, Khosravi N, Castro-Pando S, Torres-Garza N, Grimaldo MT, Krishna A, Clowers MJ, Umer M, Tariq Amir S, Del Bosque D, Daliri S, De La Garza MM, Ramos-Castaneda M, Evans SE, Moghaddam SJ. Toll-like receptors 2, 4, and 9 modulate promoting effect of COPD-like airway inflammation on K-ras-driven lung cancer through activation of the MyD88/NF-ĸB pathway in the airway epithelium. Front Immunol 2023; 14:1118721. [PMID: 37283745 PMCID: PMC10240392 DOI: 10.3389/fimmu.2023.1118721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/02/2023] [Indexed: 06/08/2023] Open
Abstract
Introduction Toll-like receptors (TLRs) are an extensive group of proteins involved in host defense processes that express themselves upon the increased production of endogenous damage-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs) due to the constant contact that airway epithelium may have with pathogenic foreign antigens. We have previously shown that COPD-like airway inflammation induced by exposure to an aerosolized lysate of nontypeable Haemophilus influenzae (NTHi) promotes tumorigenesis in a K-ras mutant mouse model of lung cancer, CCSPCre/LSL-K-rasG12D (CC-LR) mouse. Methods In the present study, we have dissected the role of TLRs in this process by knocking out TLR2, 4, and 9 and analyzing how these deletions affect the promoting effect of COPD-like airway inflammation on K-ras-driven lung adenocarcinoma. Results We found that knockout of TLR 2, 4, or 9 results in a lower tumor burden, reduced angiogenesis, and tumor cell proliferation, accompanied by increased tumor cell apoptosis and reprogramming of the tumor microenvironment to one that is antitumorigenic. Additionally, knocking out of downstream signaling pathways, MyD88/NF-κB in the airway epithelial cells further recapitulated this initial finding. Discussion Our study expands the current knowledge of the roles that TLR signaling plays in lung cancer, which we hope, can pave the way for more reliable and efficacious prevention and treatment modalities for lung cancer.
Collapse
Affiliation(s)
- Walter V. Velasco
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nasim Khosravi
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Susana Castro-Pando
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nelly Torres-Garza
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo Leon, Mexico
| | - Maria T. Grimaldo
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Avantika Krishna
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Michael J. Clowers
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Misha Umer
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sabah Tariq Amir
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Diana Del Bosque
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Soudabeh Daliri
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Maria Miguelina De La Garza
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo Leon, Mexico
| | - Marco Ramos-Castaneda
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo Leon, Mexico
| | - Scott E. Evans
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Seyed Javad Moghaddam
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
6
|
Korkmaz FT, Traber KE. Innate immune responses in pneumonia. Pneumonia (Nathan) 2023; 15:4. [PMID: 36829255 PMCID: PMC9957695 DOI: 10.1186/s41479-023-00106-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 01/05/2023] [Indexed: 02/26/2023] Open
Abstract
The lungs are an immunologically unique environment; they are exposed to innumerable pathogens and particulate matter daily. Appropriate clearance of pathogens and response to pollutants is required to prevent overwhelming infection, while preventing tissue damage and maintaining efficient gas exchange. Broadly, the innate immune system is the collection of immediate, intrinsic immune responses to pathogen or tissue injury. In this review, we will examine the innate immune responses of the lung, with a particular focus on their role in pneumonia. We will discuss the anatomic barriers and antimicrobial proteins of the lung, pathogen and injury recognition, and the role of leukocytes (macrophages, neutrophils, and innate lymphocytes) and lung stromal cells in innate immunity. Throughout the review, we will focus on new findings in innate immunity as well as features that are unique to the lung.
Collapse
Affiliation(s)
- Filiz T Korkmaz
- Department of Medicine, Division of Immunology & Infectious Disease, University of Massachusetts, Worcester, MA, USA
- Pulmonary Center, Boston University School of Medicine, Boston, MA, USA
| | - Katrina E Traber
- Pulmonary Center, Boston University School of Medicine, Boston, MA, USA.
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
7
|
Bagheri-Hosseinabadi Z, Mohammadizadeh Ranjbar F, Nassiri M, Amiri A, Abbasifard M. Nasopharyngeal epithelial cells from patients with coronavirus disease 2019 express abnormal levels of Toll-like receptors. Pathog Glob Health 2023; 117:401-408. [PMID: 36651678 PMCID: PMC10177669 DOI: 10.1080/20477724.2023.2166378] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Aberrant activation of the immune system has been attributed with etiology and pathogenesis of coronavirus disease 2019 (COVID-19). Here, the transcript levels of toll-like receptors (TLRs) were measured in the nasopharyngeal epithelial cells obtained from COVID-19 patients to assess the involvement of these molecules in the clinical outcome of COVID-19 patients. Nasopharyngeal swab samples were used to obtain epithelial cells from 120 COVID-19 patients and 100 healthy controls. COVID-19 cases were classified into those having clinical symptoms/needing for hospitalization, having clinical symptoms/not needing for hospitalization, and those without clinical symptoms. The mRNA expression levels of TLRs were measured in the nasopharyngeal epithelial cells. Overall, mRNA expression of TLR1, TLR2, TLR4, and TLR6 was significantly higher in COVID-19 cases compared to controls. The mRNA expression of TLRs were all higher significantly in the samples from COVID-19 patients having clinical symptoms and needing hospitalization as well as in those with clinical symptoms/not needing for hospitalization in comparison to controls. TLR expression was significantly higher in those with clinical symptoms/needing for hospitalization and those with clinical symptoms/not needing for hospitalization compared to COVID-19 cases without clinical symptoms. In cases with clinical symptoms/needing for hospitalization and those with clinical symptoms/not needing for hospitalization, there was a correlation between TLR expression and clinicopathological findings. In conclusion, aberrant expression of TLRs in the nasopharyngeal epithelial cells from COVID-19 cases may predict the severity of the diseases and necessity for supportive cares in the hospital.
Collapse
Affiliation(s)
- Zahra Bagheri-Hosseinabadi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | | - Mohammad Nassiri
- Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ali Amiri
- Department of Orthodontics, College of Stomatology, The First Affiliated Stomatological Hospital, Xi'an Jiaotong University, Xi'an, PR China
| | - Mitra Abbasifard
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Department of Internal Medicine, Ali-Ibn Abi-Talib Hospital, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
8
|
Batool S, Chokkakula S, Song MS. Influenza Treatment: Limitations of Antiviral Therapy and Advantages of Drug Combination Therapy. Microorganisms 2023; 11:183. [PMID: 36677475 PMCID: PMC9865513 DOI: 10.3390/microorganisms11010183] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/23/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Influenza infection is serious and debilitating for humans and animals. The influenza virus undergoes incessant mutation, segment recombination, and genome reassortment. As a result, new epidemics and pandemics are expected to emerge, making the elimination challenging of the disease. Antiviral therapy has been used for the treatment of influenza since the development of amantadine in the 1960s; however, its use is hampered by the emergence of novel strains and the development of drug resistance. Thus, combinational therapy with two or more antivirals or immunomodulators with different modes of action is the optimal strategy for the effective treatment of influenza infection. In this review, we describe current options for combination therapy, their performance, and constraints imposed by resistance, calling attention to the advantages of combination therapy against severe influenza infections. We also discuss the challenges of influenza therapy and the limitations of approved antiviral drugs.
Collapse
Affiliation(s)
| | | | - Min-Suk Song
- Department of Microbiology, Chungbuk National University, College of Medicine and Medical Research Institute, Cheongju 28644, Chungbuk, Republic of Korea
| |
Collapse
|
9
|
Seo SU, Seong BL. Prospects on Repurposing a Live Attenuated Vaccine for the Control of Unrelated Infections. Front Immunol 2022; 13:877845. [PMID: 35651619 PMCID: PMC9149153 DOI: 10.3389/fimmu.2022.877845] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/31/2022] [Indexed: 12/03/2022] Open
Abstract
Live vaccines use attenuated microbes to acquire immunity against pathogens in a safe way. As live attenuated vaccines (LAVs) still maintain infectivity, the vaccination stimulates diverse immune responses by mimicking natural infection. Induction of pathogen-specific antibodies or cell-mediated cytotoxicity provides means of specific protection, but LAV can also elicit unintended off-target effects, termed non-specific effects. Such mechanisms as short-lived genetic interference and non-specific innate immune response or long-lasting trained immunity and heterologous immunity allow LAVs to develop resistance to subsequent microbial infections. Based on their safety and potential for interference, LAVs may be considered as an alternative for immediate mitigation and control of unexpected pandemic outbreaks before pathogen-specific therapeutic and prophylactic measures are deployed.
Collapse
Affiliation(s)
- Sang-Uk Seo
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Baik-Lin Seong
- Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea.,Vaccine Innovative Technology ALliance (VITAL)-Korea, Yonsei University, Seoul, South Korea
| |
Collapse
|
10
|
Banerjee S, Banerjee D, Singh A, Saharan VA. A Comprehensive Investigation Regarding the Differentiation of the Procurable COVID-19 Vaccines. AAPS PharmSciTech 2022; 23:95. [PMID: 35314902 PMCID: PMC8936379 DOI: 10.1208/s12249-022-02247-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/06/2022] [Indexed: 11/30/2022] Open
Abstract
COVID-19 caused by coronavirus SARS-CoV-2 became a serious threat to humankind for the past couple of years. The development of vaccine and its immediate application might be the only to escape from the grasp of this demoniac pandemic. Approximately 343 clinical trials on COVID-19 vaccines are ongoing currently, and almost all countries are motivating ongoing researches at warp speed for the development of vaccines against COVID-19. This review explores the progress in the development of the vaccines, their current status of ongoing clinical research, mechanisms, and regulatory approvals. Many pharmaceutical companies are already in the endgame for manufacturing various vaccines of which some are already being marketed across the globe, while others are yet to get approval for marketing. The primary aim of this review is to compare regulatory accepted vaccines in terms of their composition, doses, regulatory status, and efficacy. The study is conducted by grouping into approved and unapproved vaccines for marketing. Different routes of administration of vaccines along with the efficacy of the routes are also presented in the review. A wide range of database and clinical trial data is reviewed for sorting out the information on different vaccines. Unfortunately, many mutations (alpha, beta, gamma, delta, kappa, omicron etc.) of SARS-CoV-2 have attacked people in very short time, which is the great challenge for investigational vaccines. Moreover, some vaccines like Pfizer's BNT162, Oxford's ChAdOx1, Moderna's mRNA-1273, and Bharat Biotech's Covaxin have got regulatory approval in some countries for its distribution which may prove to stand tall against the pandemic.
Collapse
Affiliation(s)
- Surojit Banerjee
- School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Balawala, Dehradun, 248001, Uttarakhand, India.
| | - Debadri Banerjee
- School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Balawala, Dehradun, 248001, Uttarakhand, India
| | - Anupama Singh
- School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Balawala, Dehradun, 248001, Uttarakhand, India
| | - Vikas Anand Saharan
- School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Balawala, Dehradun, 248001, Uttarakhand, India
| |
Collapse
|
11
|
José RJ, Dickey BF, Sheshadri A. Airway disease in hematologic malignancies. Expert Rev Respir Med 2022; 16:303-313. [PMID: 35176948 PMCID: PMC9067103 DOI: 10.1080/17476348.2022.2043746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 02/15/2022] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Hematologic malignancies are cancers of the blood, bone marrow and lymph nodes and represent a heterogenous group of diseases that affect people of all ages. Treatment generally involves chemotherapeutic or targeted agents that aim to kill malignant cells. In some cases, hematopoietic stem cell transplantation (HCT) is required to replenish the killed blood and stem cells. Both disease and therapies are associated with pulmonary complications. As survivors live longer with the disease and are treated with novel agents that may result in secondary immunodeficiency, airway diseases and respiratory infections will increasingly be encountered. To prevent airways diseases from adding to the morbidity of survivors or leading to long-term mortality, improved understanding of the pathogenesis and treatment of viral bronchiolitis, BOS, and bronchiectasis is necessary. AREAS COVERED This review focuses on viral bronchitis, BOS and bronchiectasis in people with hematological malignancy. Literature was reviewed from Pubmed for the areas covered. EXPERT OPINION Airway disease impacts significantly on hematologic malignancies. Viral bronchiolitis, BOS and bronchiectasis are common respiratory manifestations in hematological malignancy. Strategies to identify patients early in their disease course may improve the efficacy of treatment and halt progression of lung function decline and improve quality of life.
Collapse
Affiliation(s)
- Ricardo J José
- Department of Respiratory Medicine, Host Defence, Royal Brompton Hospital, Chelsea, London, UK
- Centre for Inflammation and Tissue Repair, UCL Respiratory, London, UK
| | - Burton F Dickey
- Department of Pulmonary Medicine, University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Ajay Sheshadri
- Department of Pulmonary Medicine, University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
12
|
Abstract
Influenza A virus (IAV) causes seasonal epidemics annually and pandemics every few decades. Most antiviral treatments used for IAV are only effective if administered during the first 48 h of infection and antiviral resistance is possible. Therapies that can be initiated later during IAV infection and that are less likely to elicit resistance will significantly improve treatment options. Pyruvate, a key metabolite, and an end product of glycolysis, has been studied for many uses, including its anti-inflammatory capabilities. Sodium pyruvate was recently shown by us to decrease inflammasome activation during IAV infection. Here, we investigated sodium pyruvate’s effects on IAV in vivo. We found that nebulizing mice with sodium pyruvate decreased morbidity and weight loss during infection. Additionally, treated mice consumed more chow during infection, indicating improved symptoms. There were notable improvements in pro-inflammatory cytokine production (IL-1β) and lower virus titers on day 7 post-infection in mice treated with sodium pyruvate compared to control animals. As pyruvate acts on the host immune response and metabolic pathways and not directly on the virus, our data demonstrate that sodium pyruvate is a promising treatment option that is safe, effective, and unlikely to elicit antiviral resistance.
Collapse
|
13
|
Host-directed therapy in foals can enhance functional innate immunity and reduce severity of Rhodococcus equi pneumonia. Sci Rep 2021; 11:2483. [PMID: 33510265 PMCID: PMC7844249 DOI: 10.1038/s41598-021-82049-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 01/13/2021] [Indexed: 11/08/2022] Open
Abstract
Pneumonia caused by the intracellular bacterium Rhodococcus equi is an important cause of disease and death in immunocompromised hosts, especially foals. Antibiotics are the standard of care for treating R. equi pneumonia in foals, and adjunctive therapies are needed. We tested whether nebulization with TLR agonists (PUL-042) in foals would improve innate immunity and reduce the severity and duration of pneumonia following R. equi infection. Neonatal foals (n = 48) were nebulized with either PUL-042 or vehicle, and their lung cells infected ex vivo. PUL-042 increased inflammatory cytokines in BAL fluid and alveolar macrophages after ex vivo infection with R. equi. Then, the in vivo effects of PUL-042 on clinical signs of pneumonia were examined in 22 additional foals after intrabronchial challenge with R. equi. Foals infected and nebulized with PUL-042 or vehicle alone had a shorter duration of clinical signs of pneumonia and smaller pulmonary lesions when compared to non-nebulized foals. Our results demonstrate that host-directed therapy can enhance neonatal immune responses against respiratory pathogens and reduce the duration and severity of R. equi pneumonia.
Collapse
|
14
|
Colalto C. Volatile molecules for COVID-19: A possible pharmacological strategy? Drug Dev Res 2020; 81:950-968. [PMID: 32779824 PMCID: PMC7404447 DOI: 10.1002/ddr.21716] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/01/2020] [Accepted: 06/24/2020] [Indexed: 12/27/2022]
Abstract
COVID-19 is a novel coronavirus disease with a higher incidence of bilateral pneumonia and pleural effusion. The high pulmonary tropism and contagiousness of the virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), have stimulated new approaches to combat its widespread diffusion. In developing new pharmacological strategies, the chemical characteristic of volatility can add therapeutic value to the hypothetical drug candidate. Volatile molecules are characterized by a high vapor pressure and are consequently easily exhaled by the lungs after ingestion. This feature could be exploited from a pharmacological point of view, reaching the site of action in an uncommon way but allowing for drug delivery. In this way, a hypothetical molecule for COVID-19 should have a balance between its lung exhalation characteristics and both antiviral and anti-inflammatory pharmacological action. Here, the feasibility, advantages, and disadvantages of a therapy based on oral administration of possible volatile drugs for COVID-19 will be discussed. Both aerosolized antiviral therapy and oral intake of volatile molecules are briefly reviewed, and an evaluation of 1,8-cineole is provided in view of a possible clinical use and also for asymptomatic COVID-19.
Collapse
Affiliation(s)
- Cristiano Colalto
- Working Group “Pharmacognosy, Phytotherapy and Nutraceuticals”Italian Pharmacological SocietyMilanItaly
| |
Collapse
|
15
|
Labetoulle R, Detoc M, Gagnaire J, Berthelot P, Pelissier C, Fontana L, Botelho-Nevers E, Gagneux-Brunon A. COVID-19 in health-care workers: lessons from SARS and MERS epidemics and perspectives for chemoprophylaxis and vaccines. Expert Rev Vaccines 2020; 19:937-947. [PMID: 33107353 DOI: 10.1080/14760584.2020.1843432] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Introduction: The world is now facing the COVID-19 pandemic. Experience with SARS-CoV and MERS-CoV, and early reports about SARS-CoV-2 infection suggest that health-care settings and health-care workers (HCWs) are vulnerable in the context of the emergence of a new coronavirus. Areas covered: To highlight the need for prophylactic strategies particularly for HCWs, we identified SARS-CoV, MERS-CoV, and SARS-CoV-2 outbreaks in health-care settings and the incidence of infections in HCWs by a search on MEDLINE and MEDxRIV (for SARS-Cov-2). To identify prophylactic strategies against, we conducted a search on MEDLINE and clinicaltrials.gov about studies involving SARS-CoV, MERS-CoV, and SARS-CoV-2. Expert opinion: HCWs account for a great part of SARS, MERS, and SARS-CoV-2 infections, they may also contribute to the spread of the disease, particularly in health-care settings, and contribute to nosocomial outbreaks. Some preventive strategies were evaluated in previous emerging coronavirus epidemics, particularly in MERS-CoV. For COVID-19 prevention, different chemoprophylaxis with drug repositioning and new agents are under evaluation, and different vaccine candidates entered clinical development, with clinical trials. HCWs are a crucial target population for pre-exposure and post-exposure prophylaxis.
Collapse
Affiliation(s)
- Rémi Labetoulle
- Department of Microbiology, University Hospital of Saint-Etienne , Saint-Etienne, France
| | - Maëlle Detoc
- Department of Infectious Diseases and Infection Control, University Hospital of Saint-Etienne , Saint-Etienne, France.,CIC-1408 Vaccinologie INSERM, University Hospital of Saint-Etienne , Saint-Etienne, France
| | - Julie Gagnaire
- Department of Infectious Diseases and Infection Control, University Hospital of Saint-Etienne , Saint-Etienne, France
| | - Philippe Berthelot
- Department of Infectious Diseases and Infection Control, University Hospital of Saint-Etienne , Saint-Etienne, France.,Groupe Immunité des Muqueuses et Agents Pathogènes, GIMAP EA 3064 Université Jean Monnet, Université De Lyon , Saint-Etienne, France.,Chaire Prévention, Vaccination et Contrôle de l'Infection, PRESAGE Institute, PREVACCI department, Université De Lyon , Saint-Etienne, France
| | - Carole Pelissier
- Department of Occupational Medicine, University Hospital of Saint-Etienne , France
| | - Luc Fontana
- Department of Occupational Medicine, University Hospital of Saint-Etienne , France
| | - Elisabeth Botelho-Nevers
- Department of Infectious Diseases and Infection Control, University Hospital of Saint-Etienne , Saint-Etienne, France.,CIC-1408 Vaccinologie INSERM, University Hospital of Saint-Etienne , Saint-Etienne, France.,Groupe Immunité des Muqueuses et Agents Pathogènes, GIMAP EA 3064 Université Jean Monnet, Université De Lyon , Saint-Etienne, France.,Chaire Prévention, Vaccination et Contrôle de l'Infection, PRESAGE Institute, PREVACCI department, Université De Lyon , Saint-Etienne, France
| | - Amandine Gagneux-Brunon
- Department of Infectious Diseases and Infection Control, University Hospital of Saint-Etienne , Saint-Etienne, France.,CIC-1408 Vaccinologie INSERM, University Hospital of Saint-Etienne , Saint-Etienne, France.,Groupe Immunité des Muqueuses et Agents Pathogènes, GIMAP EA 3064 Université Jean Monnet, Université De Lyon , Saint-Etienne, France.,Chaire Prévention, Vaccination et Contrôle de l'Infection, PRESAGE Institute, PREVACCI department, Université De Lyon , Saint-Etienne, France
| |
Collapse
|
16
|
Florindo HF, Kleiner R, Vaskovich-Koubi D, Acúrcio RC, Carreira B, Yeini E, Tiram G, Liubomirski Y, Satchi-Fainaro R. Immune-mediated approaches against COVID-19. NATURE NANOTECHNOLOGY 2020; 15:630-645. [PMID: 32661375 PMCID: PMC7355525 DOI: 10.1038/s41565-020-0732-3] [Citation(s) in RCA: 220] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 06/08/2020] [Indexed: 05/05/2023]
Abstract
The coronavirus disease-19 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The long incubation period of this new virus, which is mostly asymptomatic yet contagious, is a key reason for its rapid spread across the world. Currently, there is no worldwide-approved treatment for COVID-19. Therefore, the clinical and scientific communities have joint efforts to reduce the severe impact of the outbreak. Research on previous emerging infectious diseases have created valuable knowledge that is being exploited for drug repurposing and accelerated vaccine development. Nevertheless, it is important to generate knowledge on SARS-CoV-2 mechanisms of infection and its impact on host immunity, to guide the design of COVID-19 specific therapeutics and vaccines suitable for mass immunization. Nanoscale delivery systems are expected to play a paramount role in the success of these prophylactic and therapeutic approaches. This Review provides an overview of SARS-CoV-2 pathogenesis and examines immune-mediated approaches currently explored for COVID-19 treatments, with an emphasis on nanotechnological tools.
Collapse
Affiliation(s)
- Helena F Florindo
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.
| | - Ron Kleiner
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Daniella Vaskovich-Koubi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Rita C Acúrcio
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Barbara Carreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Eilam Yeini
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Galia Tiram
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yulia Liubomirski
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
17
|
Van Herck S, De Geest BG. Nanomedicine-mediated alteration of the pharmacokinetic profile of small molecule cancer immunotherapeutics. Acta Pharmacol Sin 2020; 41:881-894. [PMID: 32451411 PMCID: PMC7471422 DOI: 10.1038/s41401-020-0425-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/20/2020] [Indexed: 12/21/2022]
Abstract
The advent of immunotherapy is a game changer in cancer therapy with monoclonal antibody- and T cell-based therapeutics being the current flagships. Small molecule immunotherapeutics might offer advantages over the biological drugs in terms of complexity, tissue penetration, manufacturing cost, stability, and shelf life. However, small molecule drugs are prone to rapid systemic distribution, which might induce severe off-target side effects. Nanotechnology could aid in the formulation of the drug molecules to improve their delivery to specific immune cell subsets. In this review we summarize the current efforts in changing the pharmacokinetic profile of small molecule immunotherapeutics with a strong focus on Toll-like receptor agonists. In addition, we give our vision on limitations and future pathways in the route of nanomedicine to the clinical practice.
Collapse
Affiliation(s)
- Simon Van Herck
- Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Bruno G De Geest
- Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium.
| |
Collapse
|
18
|
Goldblatt DL, Flores JR, Valverde Ha G, Jaramillo AM, Tkachman S, Kirkpatrick CT, Wali S, Hernandez B, Ost DE, Scott BL, Chen J, Evans SE, Tuvim MJ, Dickey BF. Inducible epithelial resistance against acute Sendai virus infection prevents chronic asthma-like lung disease in mice. Br J Pharmacol 2020; 177:2256-2273. [PMID: 31968123 DOI: 10.1111/bph.14977] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 12/16/2019] [Accepted: 01/03/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Respiratory viral infections play central roles in the initiation, exacerbation and progression of asthma in humans. An acute paramyxoviral infection in mice can cause a chronic lung disease that resembles human asthma. We sought to determine whether reduction of Sendai virus lung burden in mice by stimulating innate immunity with aerosolized Toll-like receptor (TLR) agonists could attenuate the severity of chronic asthma-like lung disease. EXPERIMENTAL APPROACH Mice were treated by aerosol with 1-μM oligodeoxynucleotide (ODN) M362, an agonist of the TLR9 homodimer, and 4-μM Pam2CSK4 (Pam2), an agonist of the TLR2/6 heterodimer, within a few days before or after Sendai virus challenge. KEY RESULTS Treatment with ODN/Pam2 caused ~75% reduction in lung Sendai virus burden 5 days after challenge. The reduction in acute lung virus burden was associated with marked reductions 49 days after viral challenge in eosinophilic and lymphocytic lung inflammation, airway mucous metaplasia, lumenal mucus occlusion and hyperresponsiveness to methacholine. Mechanistically, ODN/Pam2 treatment attenuated the chronic asthma phenotype by suppressing IL-33 production by type 2 pneumocytes, both by reducing the severity of acute infection and by down-regulating Type 2 (allergic) inflammation. CONCLUSION AND IMPLICATIONS These data suggest that treatment of susceptible human hosts with aerosolized ODN and Pam2 at the time of a respiratory viral infection might attenuate the severity of the acute infection and reduce initiation, exacerbation and progression of asthma.
Collapse
Affiliation(s)
- David L Goldblatt
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jose R Flores
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gabriella Valverde Ha
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ana M Jaramillo
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sofya Tkachman
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carson T Kirkpatrick
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shradha Wali
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Belinda Hernandez
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David E Ost
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Jichao Chen
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Scott E Evans
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael J Tuvim
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Burton F Dickey
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
19
|
Galeas-Pena M, McLaughlin N, Pociask D. The role of the innate immune system on pulmonary infections. Biol Chem 2019; 400:443-456. [PMID: 29604208 DOI: 10.1515/hsz-2018-0304] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/19/2018] [Indexed: 12/15/2022]
Abstract
Inhalation is required for respiration and life in all vertebrates. This process is not without risk, as it potentially exposes the host to environmental pathogens with every breath. This makes the upper respiratory tract one of the most common routes of infection and one of the leading causes of morbidity and mortality in the world. To combat this, the lung relies on the innate immune defenses. In contrast to the adaptive immune system, the innate immune system does not require sensitization, previous exposure or priming to attack foreign particles. In the lung, the innate immune response starts with the epithelial barrier and mucus production and is reinforced by phagocytic cells and T cells. These cells are vital for the production of cytokines, chemokines and anti-microbial peptides that are critical for clearance of infectious agents. In this review, we discuss all aspects of the innate immune response, with a special emphasis on ways to target aspects of the immune response to combat antibiotic resistant bacteria.
Collapse
Affiliation(s)
- Michelle Galeas-Pena
- Department of Pulmonary Critical Care and Environmental Medicine, Tulane University School of Medicine, 333 S. Liberty St., New Orleans, LA 70112, USA
| | - Nathaniel McLaughlin
- Department of Pulmonary Critical Care and Environmental Medicine, Tulane University School of Medicine, 333 S. Liberty St., New Orleans, LA 70112, USA
| | - Derek Pociask
- Department of Pulmonary Critical Care and Environmental Medicine, Tulane University School of Medicine, 333 S. Liberty St., New Orleans, LA 70112, USA
| |
Collapse
|
20
|
Georgel AF, Cayet D, Pizzorno A, Rosa-Calatrava M, Paget C, Sencio V, Dubuisson J, Trottein F, Sirard JC, Carnoy C. Toll-like receptor 5 agonist flagellin reduces influenza A virus replication independently of type I interferon and interleukin 22 and improves antiviral efficacy of oseltamivir. Antiviral Res 2019; 168:28-35. [PMID: 31078648 DOI: 10.1016/j.antiviral.2019.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 03/31/2019] [Accepted: 05/06/2019] [Indexed: 01/08/2023]
Abstract
Influenza infections remain a burden on health care systems despite vaccination programs and marketed antiviral drugs. Immunomodulation through activation of innate sensors could represent innovative approaches to fight the flu. This study evaluated the ability of flagellin, agonist of Toll-like receptor 5 (TLR5), to control the replication of influenza A virus (IAV) in mice. First, we showed that systemic or intranasal administration of flagellin activated transcription of anti-viral genes in lung tissue. Prophylactic and therapeutic flagellin administration resulted in decreased levels of viral RNA and infectious virus in the lungs of H3N2 IAV-infected mice. The effect of the flagellin on viral replication was also observed in Ifnar-/- and Il22-/- IAV-infected mice, suggesting a mechanism independent of type I interferon and interleukin 22 signaling. In addition, a combination therapy associating the neuraminidase inhibitor oseltamivir and flagellin was more effective than standalone treatments in reducing pulmonary viral replication. Thus, this study highlights the therapeutic potential of the flagellin to control the replication of the influenza virus.
Collapse
Affiliation(s)
- Anne-France Georgel
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR8204, CIIL-Center for Infection and Immunity of Lille, Lille, France; Groupement des Hôpitaux de l'Institut Catholique de Lille, Lille, France
| | - Delphine Cayet
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR8204, CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Andrés Pizzorno
- Laboratoire Virologie et Pathologie Humaine - VirPath Team, Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Manuel Rosa-Calatrava
- Laboratoire Virologie et Pathologie Humaine - VirPath Team, Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France; VirNext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, 69008, France
| | - Christophe Paget
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR8204, CIIL-Center for Infection and Immunity of Lille, Lille, France; INSERM U1100, Centre d'Etude des Pathologies Respiratoires (CEPR), Université de Tours, France
| | - Valentin Sencio
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR8204, CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Jean Dubuisson
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR8204, CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - François Trottein
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR8204, CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Jean-Claude Sirard
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR8204, CIIL-Center for Infection and Immunity of Lille, Lille, France.
| | - Christophe Carnoy
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR8204, CIIL-Center for Infection and Immunity of Lille, Lille, France.
| |
Collapse
|
21
|
Affiliation(s)
- Regina K Rowe
- University of Texas Southwestern Medical Center, Department of Immunology, Dallas, Texas
| | - Michelle A Gill
- University of Texas Southwestern Medical Center, Department of Pediatrics, Dallas, Texas
- University of Texas Southwestern Medical Center, Department of Immunology, Dallas, Texas
- University of Texas Southwestern Medical Center, Department of Internal Medicine, Dallas, Texas
| |
Collapse
|
22
|
Attenuation of Influenza A Virus Disease Severity by Viral Coinfection in a Mouse Model. J Virol 2018; 92:JVI.00881-18. [PMID: 30232180 DOI: 10.1128/jvi.00881-18] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/13/2018] [Indexed: 12/13/2022] Open
Abstract
Influenza viruses and rhinoviruses are responsible for a large number of acute respiratory viral infections in human populations and are detected as copathogens within hosts. Clinical and epidemiological studies suggest that coinfection by rhinovirus and influenza virus may reduce disease severity and that they may also interfere with each other's spread within a host population. To determine how coinfection by these two unrelated respiratory viruses affects pathogenesis, we established a mouse model using a minor serogroup rhinovirus (rhinovirus strain 1B [RV1B]) and mouse-adapted influenza A virus (A/Puerto Rico/8/1934 [PR8]). Infection of mice with RV1B 2 days before PR8 reduced the severity of infection by a low or medium, but not high, dose of PR8. Disease attenuation was associated with an early inflammatory response in the lungs and enhanced clearance of PR8. However, coinfection by RV1B did not reduce PR8 viral loads early in infection or inhibit replication of PR8 within respiratory epithelia or in vitro Inflammation in coinfected mice remained focal compared to diffuse inflammation and damage in the lungs of mice infected by PR8. The timing of RV1B coinfection was a critical determinant of protection, suggesting that sufficient time is needed to induce this response. Finally, disease attenuation was not unique to RV1B: dose-dependent coinfection by a murine coronavirus (mouse hepatitis virus strain 1 [MHV-1]) also reduced the severity of PR8 infection. Unlike RV1B, coinfection with MHV-1 reduced early PR8 replication, which was associated with upregulation of beta interferon (IFN-β) expression. This model is critical for understanding the mechanisms responsible for influenza disease attenuation during coinfection by unrelated respiratory viruses.IMPORTANCE Viral infections in the respiratory tract can cause severe disease and are responsible for a majority of pediatric hospitalizations. Molecular diagnostics have revealed that approximately 20% of these patients are infected by more than one unrelated viral pathogen. To understand how viral coinfection affects disease severity, we inoculated mice with a mild viral pathogen (rhinovirus or murine coronavirus), followed 2 days later by a virulent viral pathogen (influenza A virus). This model demonstrated that rhinovirus can reduce the severity of influenza A virus, which corresponded with an early but controlled inflammatory response in the lungs and early clearance of influenza A virus. We further determined the dose and timing parameters that were important for effective disease attenuation and showed that influenza disease is also reduced by coinfection with a murine coronavirus. These findings demonstrate that coinfecting viruses can alter immune responses and pathogenesis in the respiratory tract.
Collapse
|