1
|
Hu X, Chen Y, Ying H, He C, Ren Y, Tian Y, Tan Y. Metabolic-associated fatty liver disease (MAFLD) promotes the progression of hepatocellular carcinoma by enhancing KIF20A expression. Int Immunopharmacol 2025; 154:114589. [PMID: 40168801 DOI: 10.1016/j.intimp.2025.114589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/03/2025]
Abstract
BACKGROUND Compared to other HCC, those related to MAFLD exhibit distinct prognostic differences. This article aims to elucidate the impact of MAFLD on HCC prognosis through the lens of KIF20A, thereby providing a theoretical foundation for targeted therapies in MAFLD-related HCC. METHODS We employed the Weighted gene co-expression network analysis (WGCNA) method alongside the Mime package to identify key genes associated with MAFLD-related HCC. Subsequently, we utilized OCLR and CytoTRACE algorithms to evaluate the relationship between these genes and HCC stemness. The R package was employed to conduct immunological analyses on both mRNA sequencing and single-cell data. We validated the effects of core genes on HCC through experimental approaches, including cell culture, Transwell assays, Western Blot, and proliferation assays. Finally, we predicted potential therapeutic drugs using the OncoPredict software package. RESULTS WGCNA identified the cyan module associated with MAFLD in GSE135251 and the blue module linked to HCC in TCGA. Further analysis identified KIF20A as the core gene in MAFLD-related HCC. Utilizing the OCLR and CytoTRACE algorithms, KIF20A was found to correlate with mRNA stemness index (mRNAsi). Analysis of public databases revealed that KIF20A promotes immune tolerance through the SPP1-CD44 pathway and drives HCC progression via the G2M checkpoint. Experimental results demonstrated that lipotoxic damage in HCC cells and small extracellular vesicles (sEVs) derived from these cells upregulate KIF20A, thereby accelerating HCC progression. Finally, OncoPredict and AutoDock were employed to predict drugs targeting KIF20A. CONCLUSION MAFLD-related HCC can elevate KIF20A levels and promote tumor proliferation and migration.
Collapse
Affiliation(s)
- Xinsong Hu
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yifei Chen
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China; Department of Laboratory Medicine, Wujin Hospital Affiliated With Jiangsu University (The Wujin Clinical College of Xuzhou Medical University), Changzhou, Jiangsu, China
| | - Hao Ying
- Department of Neurology, the First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Cong He
- The Third Hospital of Zhenjiang Affiliated Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yangyang Ren
- Clinical Laboratory, Xinyi People's Hospital, Xuzhou, Jiangsu, China.
| | - Yiqing Tian
- Clinical Laboratory, Xuzhou Central Hospital, The Affiliated XuZhou Hospital of Medical College of Southeast University, Xuzhou, Jiangsu, China.
| | - Youwen Tan
- The Third Hospital of Zhenjiang Affiliated Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
2
|
Haridevamuthu B, Madesh S, Bharti AK, Kumar A, Dhivya LS, Chagaleti BK, Rajagopal R, Alfarhan A, Kathiravan MK, Arockiaraj J. Therapeutic Potential of Thiophene-Based Chalcone Analog Against Acrylamide-Induced Neurotoxicity and Osteotoxicity. Mol Neurobiol 2025; 62:5730-5743. [PMID: 39617840 DOI: 10.1007/s12035-024-04623-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/09/2024] [Indexed: 01/12/2025]
Abstract
Acrylamide (AR), a prevalent toxin in fried and baked foods, induces neurotoxicity and skeletal impairments through oxidative stress and apoptosis. A novel chalcone analog, 3-(5-bromo-2-hydroxyphenyl)-1-(5-chlorothiophen-2-yl)prop-2-en-1-one ( DC11 ), with its phenolic hydroxyl group, conjugated enone system, and chlorine atom in the thiophene ring, will contribute to the antioxidant properties. This study investigates the neuroprotective and osteoprotective effects of the chalcone derivative DC11 against AR-induced toxicity in zebrafish larvae. Our results show that DC11 effectively reduces oxidative stress, mitigates apoptosis, enhances bone mineralization, and improves locomotor functions in AR-exposed larvae. The phenolic hydroxyl group scavenges reactive oxygen species (ROS), while the enone system and chlorine atom enhance binding affinity and efficacy. Behavioral improvements in locomotion, coupled with biochemical and molecular evidence, underscore the comprehensive protective effects of DC11 against AR-induced toxicity. Although promising, further research is necessary to validate the efficacy and safety of DC11 in mammalian models and to elucidate its molecular mechanisms. Long-term studies are essential to understand potential side effects and therapeutic windows. This research identifies DC11 as a potent therapeutic candidate, addressing a critical gap in treating AR-induced neurotoxicity and osteotoxicity, and highlights its potential for mitigating these widespread health hazards.
Collapse
Affiliation(s)
- B Haridevamuthu
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, 603203, Tamil Nadu, India.
| | - S Madesh
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, 603203, Tamil Nadu, India
| | - Ankit Kumar Bharti
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, 603203, Tamil Nadu, India
| | - Ashok Kumar
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, 603203, Tamil Nadu, India
| | - L S Dhivya
- Dr APJ Abdul Kalam Research Lab, Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, 603203, Tamil Nadu, India
| | - Bharath Kumar Chagaleti
- Dr APJ Abdul Kalam Research Lab, Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, 603203, Tamil Nadu, India
| | - Rajakrishnan Rajagopal
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ahmed Alfarhan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - M K Kathiravan
- Dr APJ Abdul Kalam Research Lab, Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, 603203, Tamil Nadu, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, 603203, Tamil Nadu, India.
| |
Collapse
|
3
|
Dharshan SS, Ramamurthy K, Kaliraj S, Manikandan K, Chitra V, Rajagopal R, Alfarhan A, Namasivayam SKR, Kathiravan MK, Arockiaraj J. Combined effects of vitamin D3 and dioxopiperidinamide derivative on lipid homeostasis, inflammatory pathways, and redox imbalance in non-alcoholic fatty liver disease in vivo zebrafish model. Biotechnol Appl Biochem 2025; 72:320-339. [PMID: 39252166 DOI: 10.1002/bab.2666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/24/2024] [Indexed: 09/11/2024]
Abstract
Liver damage and metabolic dysfunctions, the defining features of non-alcoholic fatty liver disease (NAFLD), are marked by inflammation, oxidative stress, and excessive hepatic fat accumulation. The current therapeutic approaches for NAFLD are limited, necessitating exploring novel treatment strategies. Dioxopiperidinamide derivatives, particularly DOPA-33, have shown effective anti-inflammatory and antioxidant properties, potentially offering therapeutic benefits against NAFLD. This study investigated the combined potential of vitamin D3 (Vit D3) and DOPA-33 in treating NAFLD. The network pharmacology analysis identified key NAFLD targets modulated by Vit D3 and DOPA-33, emphasizing their potential mechanisms of action. In NAFLD-induced zebrafish models, Vit D3 and DOPA-33 significantly reduced hepatic lipid accumulation, oxidative stress, and apoptosis, demonstrating superior efficacy over individual treatments. The treatment also lowered reactive oxygen species (ROS) levels, decreased liver damage, and enhanced antioxidant defense mechanisms. Moreover, behavioral analyses showed improved locomotion and reduced weight gain in treated zebrafish. Biochemical analyses revealed lower triglycerides (TG) and glucose levels with improved oxidative markers. Furthermore, histological analyses indicated reduced hepatic steatosis and inflammation, with decreased expression of lipogenesis-related genes and inflammatory mediators. Finally, high-performance liquid chromatography (HPLC) confirmed a significant reduction in hepatic cholesterol levels, indicating the effectiveness of the combination therapy in addressing key NAFLD-related dyslipidemias. These findings suggest that Vit D3 + DOPA-33 targets pathways involved in lipid metabolism, inflammation, and oxidative stress by offering a promising therapeutic approach for NAFLD.
Collapse
Affiliation(s)
- Santhanam Sanjai Dharshan
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, Tamil Nadu, India
| | - Karthikeyan Ramamurthy
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, Tamil Nadu, India
| | - Salamuthu Kaliraj
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Krishnan Manikandan
- Department of Pharmaceutical Analysis, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Vellapandian Chitra
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Rajakrishnan Rajagopal
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Alfarhan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - S Karthick Raja Namasivayam
- Centre for Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, India
| | - Muthu Kumaradoss Kathiravan
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, Tamil Nadu, India
| |
Collapse
|
4
|
Chen Y, Zheng K, Leng Y, Zhang Z, Li X, Li X, Ou H, Wen M, Qiu F, Yu H. Alleviating effect of Lactobacillus fermentum E15 on hyperlipidemia and hepatic lipid metabolism in zebrafish fed by a high-fat diet through the production of short-chain fatty acids. Front Nutr 2025; 12:1522982. [PMID: 40098735 PMCID: PMC11911183 DOI: 10.3389/fnut.2025.1522982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 02/17/2025] [Indexed: 03/19/2025] Open
Abstract
Introduction Hyperlipidemia is regarded as one of the crucial factors leading to atherosclerosis and other cardiovascular diseases. Gut microbiota plays an important role in regulating host lipid metabolism. Nevertheless, the exact mechanisms behind this remain unclear. Methods In the present study, a hyperlipidemic zebrafish model was established using a high-cholesterol diet (HCD) to evaluate the anti-hyperlipidemic effects of Lactobacillus fermentum E15 (L. fermentum E15). Results Results showed that L. fermentum E15 effectively reduced lipid accumulation in the blood vessels and liver of HCD-fed zebrafish larvae. Meanwhile, L. fermentum E15 improved abnormal lipid levels, and normalized liver enzyme activity. Real-time quantitative polymerase chain reaction (RT-qPCR) analysis revealed that L. fermentum E15 downregulated the expression of sterol regulatory element-binding factor (SREBP-1), peroxisome proliferator-activated receptor-gamma (PPAR-γ), and fatty acid synthase (Fasn), while upregulated peroxisome proliferator-activated receptor-alpha (PPAR-α). Additionally, metabolomic analysis revealed that L. fermentum E15 produced a series of short-chain fatty acids (SCFAs), including acetic acid, propionic acid, butyric acid, and isovaleric acid. Notably, isovaleric acid contributed to the reduction of lipid droplet accumulation in the liver and blood vessels of HCD-fed zebrafish larvae. In contrast, blocking G-protein coupled receptor 43 (GPR43) with pertussis toxin (PTX) abolished the effects of L. fermentum E15 and isovaleric acid on reducing lipid accumulation in HCD-fed zebrafish larvae. RT-qPCR results further suggested that both L. fermentum E15 and isovaleric acid promoted the expression of GPR43 and leptin A, which was inhibited by PTX. Conclusion These findings suggested that L. fermentum E15 alleviates HCD-induced hyperlipidemia by activating GPR43 through SCFAs.
Collapse
Affiliation(s)
- Yishu Chen
- Laboratory Animal Center, Guangdong Medical University, Zhanjiang, China
| | - Kangdi Zheng
- Guangdong Longseek Testing Co., Ltd., Guangzhou, China
| | - Yang Leng
- Laboratory Animal Center, Guangdong Medical University, Zhanjiang, China
| | - Zhao Zhang
- Laboratory Animal Center, Guangdong Medical University, Zhanjiang, China
- Guangdong Longseek Testing Co., Ltd., Guangzhou, China
| | - Xiaoling Li
- Laboratory Animal Center, Guangdong Medical University, Zhanjiang, China
| | - Xiaoyan Li
- Laboratory Animal Center, Guangdong Medical University, Zhanjiang, China
| | - Huajun Ou
- Laboratory Animal Center, Guangdong Medical University, Zhanjiang, China
| | - Muhao Wen
- Department of Laboratory Medicine, the Seventh Affiliated Hospital of Southern Medical University, Foshan, China
| | - Feng Qiu
- Department of Laboratory Medicine, the Seventh Affiliated Hospital of Southern Medical University, Foshan, China
| | - Huajun Yu
- Laboratory Animal Center, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
5
|
Zhao Y, Seenivasan B, Li R, Li C, Zhang Y, Ravichandran V, Zhong L, Li A. Exploring daidzein dimethyl ether from Albizzia lebbeck as a novel quorum sensing inhibitor against Pseudomonas aeruginosa: Insights from in vitro and in vivo studies. Bioorg Chem 2025; 156:108168. [PMID: 39864373 DOI: 10.1016/j.bioorg.2025.108168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/03/2025] [Accepted: 01/13/2025] [Indexed: 01/28/2025]
Abstract
Infections of multidrug-resistant pathogens including Pseudomonas aeruginosa, cause a high risk of mortality in immunocompromised patients and underscore the need for novel natural antibacterial drugs. In this study, common phytochemicals prevalent in fruits and vegetables have been demonstrated for their ability to inhibit quorum sensing (QS) in Pseudomonas aeruginosa PAO1 (PA). Ten compounds were screened virtually by molecular docking, among which, daidzein dimethyl ether originally from Albizzia lebbeck showed the most significant inhibitory effect on the formation of biofilm and the accumulation of virulence factors, including elastase, pyocyanin and rhamnolipid in PA. Further, both qRT-PCR analysis of key QS components including LasR in PA and luminescence detection of LasR as a reporter in a heterologous system revealed that daidzein dimethyl ether at 10 µM significantly inhibited the transcription of lasR and its downstream targeting genes. At the same time, MD simulations also showed that daidzein dimethyl ether could reduce the stability of LasR. Furthermore, the protective effect of daidzein dimethyl ether against PA infection was demonstrated using zebrafish infection model. It was found to reduce significantly the inflammation in the PA-infected zebrafish and increase their survival rate by inhibiting prominently the accumulation of reactive oxygen species (ROS) and reducing fish mortality in PA-infected zebrafish larvae. Additionally, open field tests suggested that PA-infected zebrafish were observed with impaired swimming behaviour, but daidzein dimethyl ether-treatment rescued zebrafish from such swimming abnormalities. Histopathological analysis revealed that zebrafish treated with both PA and daidzein dimethyl ether showed obvious integrity in intestine tissues, compared to those with only PA treatment. This study firstly demonstrated the preventive advantages of daidzein dimethyl ether in an animal model against PA infection. It is worthwhile to explore further its potential therapeutic intervention as an antimicrobial agent.
Collapse
Affiliation(s)
- Yiming Zhao
- Helmholtz International Lab for Anti-Infectives, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Boopathi Seenivasan
- Helmholtz International Lab for Anti-Infectives, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Ruijuan Li
- Helmholtz International Lab for Anti-Infectives, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Caiyun Li
- Helmholtz International Lab for Anti-Infectives, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Youming Zhang
- Helmholtz International Lab for Anti-Infectives, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China; Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Key Laboratory of Genome Manipulation and Biosynthesis, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| | - Vinothkannan Ravichandran
- Helmholtz International Lab for Anti-Infectives, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China; Center for Drug Discovery and Development (CD3), Amity Institute of Biotechnology, Amity University Maharashtra, Panvel, Mumbai, Maharashtra 410206, India.
| | - Lin Zhong
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Key Laboratory of Genome Manipulation and Biosynthesis, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| | - Aiying Li
- Helmholtz International Lab for Anti-Infectives, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
6
|
Haridevamuthu B, Madesh S, Bharti AK, Dhivya LS, Rajagopal R, Alfarhan A, Muthu Kumaradoss K, Arockiaraj J. Protective effect of a novel furan hybrid chalcone against bisphenol A-induced craniofacial developmental toxicity in zebrafish embryos. Comp Biochem Physiol C Toxicol Pharmacol 2025; 288:110072. [PMID: 39571873 DOI: 10.1016/j.cbpc.2024.110072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/01/2024] [Accepted: 11/07/2024] [Indexed: 11/27/2024]
Abstract
Bisphenol A (BPA), a pervasive endocrine disruptor, is known to cause significant developmental toxicity, particularly affecting craniofacial structures through oxidative stress and apoptosis. A novel furan hybrid chalcone derivative, 3-(2-hydroxy-5-nitrophenyl)-1-(5-methylfuran-2-yl)prop-2-en-1-one (DK04), specifically with a hydroxyl group for its antioxidant properties and a nitro group for enhanced electron-withdrawing ability, was evaluated for its potential to mitigate these toxic effects. Zebrafish embryos were exposed to BPA and co-treated with various concentrations of DK04. Our results demonstrated that DK04 significantly reduced reactive oxygen species (ROS) generation and lipid peroxidation, increased antioxidant enzyme activities (SOD and CAT), and restored the balance between pro-apoptotic (p53) and anti-apoptotic (bcl2) genes. Furthermore, DK04 treatment improved bone mineralization and chondrogenesis by reversing BPA-induced disruptions in osteogenic markers (runx2, sox9a, bmp6, and mmp13a). The locomotion impairments observed in BPA-exposed embryos were also ameliorated by DK04, indicating its potential neuroprotective effects. These findings suggest that DK04 offers a multifaceted approach to counteract BPA toxicity, making it a promising candidate for therapeutic intervention. This research underscores the importance of developing prophylactic compounds to safeguard health against environmental toxicants like BPA. Future studies should focus on long-term safety and efficacy in mammalian models and explore synergistic effects with other protective agents to broaden the applications of DK04 and contribute to public health benefits.
Collapse
Affiliation(s)
- B Haridevamuthu
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India.
| | - S Madesh
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Ankit Kumar Bharti
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - L S Dhivya
- Dr APJ Abdul Kalam Research Lab, Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Rajakrishnan Rajagopal
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Alfarhan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Kathiravan Muthu Kumaradoss
- Dr APJ Abdul Kalam Research Lab, Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
7
|
Murugan R, Selvam M, Haridevamuthu B, Ashok K, Chagaleti BK, Priya D, Rajagopal R, Alfarhan A, Kumaradoss KM, Arockiaraj J. 1,5- diaryl pyrazole-loaded chitosan nanoparticles as COX-2 inhibitors, mitigate neoplastic growth by regulating NF-κB pathway in-vivo zebrafish model. Int J Biol Macromol 2024; 283:137599. [PMID: 39542324 DOI: 10.1016/j.ijbiomac.2024.137599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) have been researched for their capacity to reduce cancer incidence, primarily due to their COX-2 inhibition properties. However, concerns have arisen regarding the precision of their targeting abilities. Nanoparticle approaches are revolutionizing cancer treatment by enabling targeted drug delivery, which enhances the efficacy and reduces the toxicity of chemotherapy. Particularly, chitosan-based nanoparticles are noteworthy for their biocompatibility, biodegradability, and ability to improve drug delivery. In this study, we synthesized folic acid-conjugated, 1,5-diaryl pyrazole-loaded chitosan (FA-CS-DP) nanoparticles using the ionic gelation method. The bioavailability and anti-neoplastic effects in a 7,12-dimethylbenzanthracene (DMBA)-exposed zebrafish model was investigated. MTT assay showed dose-dependent cytotoxicity of FA-CS-DP nanoparticles against MCF-7 breast cancer. The nanoparticles showed no toxicity to zebrafish embryos up to 100 μg/mL. The nanoparticle reduced oxidative stress and enhanced apoptosis in zebrafish exposed to DMBA. The morphological examination suggests that tumor growth was prevented in the zebrafish's surface and internal regions. The gene expression analysis confirmed the decrease in the expression of anti-inflammatory genes, such as cox-2 and nf-κb, and apoptosis inhibitor genes, such as bcl-2 and mdm2. By regulating the anti-inflammatory and apoptosis inhibitor genes, FA-CS-DP nanoparticle prevents neoplastic growth in the zebrafish model.
Collapse
Affiliation(s)
- Raghul Murugan
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600077, Tamil Nadu, India
| | - Madesh Selvam
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - B Haridevamuthu
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - Kumar Ashok
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - Bharath Kumar Chagaleti
- Dr APJ Abdul Kalam Research Lab, Department of Pharmaceutical Chemistry, SRM, College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - D Priya
- Dr APJ Abdul Kalam Research Lab, Department of Pharmaceutical Chemistry, SRM, College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - Rajakrishnan Rajagopal
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Alfarhan
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Kathiravan Muthu Kumaradoss
- Dr APJ Abdul Kalam Research Lab, Department of Pharmaceutical Chemistry, SRM, College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
8
|
Schlichter Kadosh Y, Muthuraman S, Nisaa K, Ben-Zvi A, Karsagi Byron DL, Shagan M, Brandis A, Mehlman T, Gopas J, Saravana Kumar R, Kushmaro A. Pseudomonas aeruginosa quorum sensing and biofilm attenuation by a di-hydroxy derivative of piperlongumine (PL-18). Biofilm 2024; 8:100215. [PMID: 39148892 PMCID: PMC11326495 DOI: 10.1016/j.bioflm.2024.100215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/01/2024] [Accepted: 07/13/2024] [Indexed: 08/17/2024] Open
Abstract
Bacterial communication, Quorum Sensing (QS), is a target against virulence and prevention of antibiotic-resistant infections. 16 derivatives of Piperlongumine (PL), an amide alkaloid from Piper longum L., were screened for QS inhibition. PL-18 had the best QSI activity. PL-18 inhibited the lasR-lasI, rhlR-rhlI, and pqs QS systems of Pseudomonas aeruginosa. PL-18 inhibited pyocyanin and rhamnolipids that are QS-controlled virulence elements. Iron is an essential element for pathogenicity, biofilm formation and resilience in harsh environments, its uptake was inhibited by PL-18. Pl-18 significantly reduced the biofilm biovolume including in established biofilms. PL-18-coated silicon tubes significantly inhibited biofilm formation. The transcriptome study of treated P. aeruginosa showed that PL-18 indeed reduced the expression of QS and iron homeostasis related genes, and up regulated sulfur metabolism related genes. Altogether, PL-18 inhibits QS, virulence, iron uptake, and biofilm formation. Thus, PL-18 should be further developed against bacterial infection, antibiotic resistance, and biofilm formation.
Collapse
Affiliation(s)
- Yael Schlichter Kadosh
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben Gurion University of the Negev, Beer Sheva, Israel
| | | | - Khairun Nisaa
- Department of Life Science, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Anat Ben-Zvi
- Department of Life Science, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Danit Lisa Karsagi Byron
- Department of Civil and Environmental Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Marilou Shagan
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Alexander Brandis
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Tevie Mehlman
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Jacob Gopas
- Department of Microbiology, Immunology and Genetics Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | | | - Ariel Kushmaro
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben Gurion University of the Negev, Beer Sheva, Israel
- The Ilse Katz Center for Nanoscale Science and Technology, Ben Gurion University of the Negev, Beer Sheva, Israel
- School of Sustainability and Climate Change, Ben Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
9
|
Haridevamuthu B, Nayak SPRR, Madesh S, Dhivya LS, Chagaleti BK, Pasupuleti M, Rajakrishnan R, Alfarhan A, Muthu Kumaradoss K, Arockiaraj J. A novel brominated chalcone derivative as a promising multi-target inhibitor against multidrug-resistant Listeria monocytogenes. Microb Pathog 2024; 196:106968. [PMID: 39307201 DOI: 10.1016/j.micpath.2024.106968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Foodborne pathogens continue to challenge public health due to their ability to cause severe illness and their increasing resistance to current antimicrobial treatments. Listeria monocytogenes is a resilient foodborne pathogen that poses significant risks to vulnerable populations, leading to severe infections and high hospitalization rates. The emergence of antimicrobial-resistant (AMR) strains of L. monocytogenes underscores the need for novel therapeutic strategies. In this study, we investigated the antimicrobial efficacy of the (2E)-3-(3,5-dibromo-2-hydroxylphenyl)-1-(5-methylfuran-2-yl) prop-2-en-1-one (DK06) against multidrug-resistant L. monocytogenes. DK06 exhibited a significant dose-dependent inhibition of L. monocytogenes growth, achieving a maximum inhibition of 92.9 % at 320 μM. Molecular docking and dynamics simulations revealed high binding affinities for key virulence proteins PlcB and ArgA, with stable protein-ligand interactions. DK06 also disrupted biofilm formation at sub-MIC levels, reducing extracellular polymeric substances (EPS) and biofilm mass, as observed by scanning electron microscopy (SEM) analysis. Furthermore, DK06 downregulated the expression of virulence genes (plcB, argA, and hly) and decreased hemolytic activity. In vivo zebrafish studies confirmed the safety of DK06 up to 80 μM, demonstrating its efficacy in reducing mortality and oxidative stress associated with L. monocytogenes infection. DK06 also attenuated inflammation by downregulating key inflammatory markers (tnfa, il1b, il6, and nfkb). These findings indicate that DK06 is a promising multi-target inhibitor with potential application in treating infections and combating antimicrobial resistance.
Collapse
Affiliation(s)
- B Haridevamuthu
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, 602105, Chennai, Tamil Nadu, India.
| | - S P Ramya Ranjan Nayak
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - S Madesh
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - L S Dhivya
- Dr APJ Abdul Kalam Research Lab, Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Bharath Kumar Chagaleti
- Dr APJ Abdul Kalam Research Lab, Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Mukesh Pasupuleti
- Division of Molecular Microbiology & Immunology, CSIR - Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow, 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - R Rajakrishnan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ahmed Alfarhan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Kathiravan Muthu Kumaradoss
- Dr APJ Abdul Kalam Research Lab, Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
10
|
Dai Y, Chen J, Fang J, Liang S, Zhang H, Li H, Chen W. Piperlongumine, a natural alkaloid from Piper longum L. ameliorates metabolic-associated fatty liver disease by antagonizing the thromboxane A 2 receptor. Biochem Pharmacol 2024; 229:116518. [PMID: 39236933 DOI: 10.1016/j.bcp.2024.116518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 08/02/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) encompasses a broad spectrum of hepatic disorders, including hyperglycemia, hepatic steatosis, and insulin resistance. Piperlongumine (PL), a natural amide alkaloid extracted from the fruits of Piper longum L., exhibited hepatoprotective effects in zebrafish and liver injury mice. This study aimed to investigate the therapeutic potential of PL on MAFLD and its underlying mechanisms. The findings demonstrate that PL effectively combats MAFLD induced by a high-fat diet (HFD) and improves metabolic characteristics in mice. Additionally, our results suggest that the anti-MAFLD effect of PL is attributed to the suppression of excessive hepatic gluconeogenesis, inhibition of de novo lipogenesis, and alleviation of insulin resistance. Importantly, the results indicate that, on the one hand, the hypoglycemic effect of PL is closely associated with CREB-regulated transcriptional coactivators (CRTC2)-dependent cyclic AMP response element binding protein (CREB) phosphorylation; on the other hand, the lipid-lowering effect of PL is attributed to reducing the nuclear localization of sterol regulatory element-binding proteins 1c (Srebp-1c). Mechanistically, PL could alleviate insulin resistance induced by endoplasmic reticulum stress by antagonizing the thromboxane A2 receptor (TP)/Ca2+ signaling, and the TP receptor serves as the potential target for PL in the treatment of MAFLD. Therefore, our results suggested PL effectively improved the major hallmarks of MAFLD induced by HFD, highlighting a potential therapeutic strategy for MAFLD.
Collapse
Affiliation(s)
- Yufeng Dai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jinxiang Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jialong Fang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Shuxiao Liang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Haitao Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
11
|
Haridevamuthu B, Nayak SPRR, Murugan R, Sudhakaran G, Pachaiappan R, Manikandan K, Chitra V, Almutairi MH, Almutairi BO, Kathiravan MK, Arockiaraj J. Co-occurrence of azorubine and bisphenol A in beverages increases the risk of developmental toxicity: A study in zebrafish model. Food Chem Toxicol 2024; 191:114861. [PMID: 38992409 DOI: 10.1016/j.fct.2024.114861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/06/2024] [Accepted: 07/06/2024] [Indexed: 07/13/2024]
Abstract
The prevalent use of Azorubine (E122) and the unintentional food additive, Bisphenol A (BPA), in ready-to-drink (RTD) beverages raises significant health concerns, especially for children. The combined impact on embryonic development must be explored despite individual safety assessments. Our investigation revealed that the combined exposure of E122 and BPA at beverage concentration significantly induces mortality and morphological deformities, including reduced growth, pericardial edema, and yolk sac edema. The co-exposure triggers oxidative stress, impairing antioxidant enzyme responses and resulting in lipid and cellular damage. Notably, apoptotic cells are observed in the neural tube and notochord of the co-exposed larvae. Critical genes related to the antioxidant response elements (nrf2, ho1, and nqo1), apoptosis activation (bcl2, bax, and p53), and pro/anti-inflammatory cytokines (nfkb, tnfa, il1b, tgfb, il10, and il12) displayed substantial changes, highlighting the molecular mechanisms. Behavior studies indicated hypo-locomotion with reduced thigmotaxis and touch response in co-exposed larvae, distinguishing it from individual exposures. These findings underscore the neurodevelopmental impacts of E122 and BPA at reported beverage concentrations, emphasizing the urgent need for comprehensive safety assessments, particularly for child consumption.
Collapse
Affiliation(s)
- B Haridevamuthu
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, 602105, Chennai, Tamil Nadu, India.
| | - S P Ramya Ranjan Nayak
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Raghul Murugan
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, 600077, Chennai, Tamil Nadu, India
| | - Gokul Sudhakaran
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, 602105, Chennai, Tamil Nadu, India
| | - Raman Pachaiappan
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - K Manikandan
- Department of Pharmaceutical Analysis, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Vellapandian Chitra
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Mikhlid H Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Bader O Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - M K Kathiravan
- Dr APJ Abdul Kalam Research Lab, Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
12
|
Haridevamuthu B, Ranjan Nayak SPR, Murugan R, Pachaiappan R, Ayub R, Aljawdah HM, Arokiyaraj S, Guru A, Arockiaraj J. Prophylactic effects of apigenin against hyperglycemia-associated amnesia via activation of the Nrf2/ARE pathway in zebrafish. Eur J Pharmacol 2024; 976:176680. [PMID: 38810716 DOI: 10.1016/j.ejphar.2024.176680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/27/2024] [Accepted: 05/27/2024] [Indexed: 05/31/2024]
Abstract
The escalating focus on ageing-associated disease has generated substantial interest in the phenomenon of cognitive impairment linked to diabetes. Hyperglycemia exacerbates oxidative stress, contributes to β-amyloid accumulation, disrupts mitochondrial function, and impairs cognitive function. Existing therapies have certain limitations, and apigenin (AG), a natural plant flavonoid, has piqued interest due to its antioxidant, anti-inflammatory, and anti-hyperglycemic properties. So, we anticipate that AG might be a preventive medicine for hyperglycemia-associated amnesia. To test our hypothesis, naïve zebrafish were trained to acquire memory and pretreated with AG. Streptozotocin (STZ) was administered to mimic hyperglycemia-induced memory dysfunction. Spatial memory was assessed by T-maze and object recognition through visual stimuli. Acetylcholinesterase (AChE) activity, antioxidant enzyme status, and neuroinflammatory genes were measured, and histopathology was performed in the brain to elucidate the neuroprotective mechanism. AG exhibits a prophylactic effect and improves spatial learning and discriminative memory of STZ-induced amnesia in zebrafish under hyperglycemic conditions. AG also reduces blood glucose levels, brain oxidative stress, and AChE activity, enhancing cholinergic neurotransmission. AG prevented neuronal damage by regulating brain antioxidant response elements (ARE), collectively contributing to neuroprotective properties. AG demonstrates a promising effect in alleviating memory dysfunction and mitigating pathological changes via activation of the Nrf2/ARE mechanism. These findings underscore the therapeutic potential of AG in addressing memory dysfunction and neurodegenerative changes associated with hyperglycemia.
Collapse
Affiliation(s)
- B Haridevamuthu
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - S P Ramya Ranjan Nayak
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Raghul Murugan
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Raman Pachaiappan
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Rashid Ayub
- College of Science, King Saud University, P.O. Box 2454, Riyadh, 11451, Saudi Arabia
| | - Hossam M Aljawdah
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Selvaraj Arokiyaraj
- Department of Food Science & Biotechnology, Sejong University, Seoul, 05006, South Korea
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
13
|
Nayak SPRR, Boopathi S, Almutairi BO, Arokiyaraj S, Kathiravan MK, Arockiaraj J. Indole-3-acetic acid induced cardiogenesis impairment in in-vivo zebrafish via oxidative stress and downregulation of cardiac morphogenic factors. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 109:104479. [PMID: 38821154 DOI: 10.1016/j.etap.2024.104479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 05/15/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
Plant growth regulators (PGRs) are increasingly used to promote sustainable agriculture, but their unregulated use raises concerns about potential environmental risks. Indole-3-acetic acid (IAA), a commonly used PGR, has been the subject of research on its developmental toxicity in the in-vivo zebrafish model. IAA exposure to zebrafish embryos caused oxidative stress, lipid peroxidation, and cellular apoptosis. The study also revealed that critical antioxidant genes including sod, cat, and bcl2 were downregulated, while pro-apoptotic genes such as bax and p53 were upregulated. IAA exposure also hampered normal cardiogenesis by downregulating myl7, amhc, and vmhc genes and potentially influencing zebrafish neurobehavior. The accumulation of IAA was confirmed by HPLC analysis of IAA-exposed zebrafish tissues. These findings underscore the need for further study on the potential ecological consequences of IAA use and the need for sustainable agricultural practices.
Collapse
Affiliation(s)
- S P Ramya Ranjan Nayak
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, 603203, Tamil Nadu, India
| | - Seenivasan Boopathi
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, 603203, Tamil Nadu, India
| | - Bader O Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Selvaraj Arokiyaraj
- Department of Food Science & Biotechnology, Sejong University, Seoul 05006, South Korea
| | - M K Kathiravan
- Dr APJ Abdul Kalam Research Lab, Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur 603203, Tamil Nadu, India
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, 603203, Tamil Nadu, India.
| |
Collapse
|
14
|
Haridevamuthu B, Sudhakaran G, Pachaiappan R, Kathiravan MK, Manikandan K, Almutairi MH, Almutairi BO, Arokiyaraj S, Arockiaraj J. Daidzein ameliorates nonmotor symptoms of manganese-induced Parkinsonism in zebrafish model: Behavioural and biochemical approach. Br J Pharmacol 2024; 181:2947-2963. [PMID: 38679467 DOI: 10.1111/bph.16382] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/14/2024] [Accepted: 03/08/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND AND PURPOSE Parkinson's disease (PD) is a prevalent neurodegenerative movement disorder characterized by motor dysfunction. Environmental factors, especially manganese (Mn), contribute significantly to PD. Existing therapies are focused on motor coordination, whereas nonmotor features such as neuropsychiatric symptoms are often neglected. Daidzein (DZ), a phytoestrogen, has piqued interest due to its antioxidant, anti-inflammatory, and anxiolytic properties. Therefore, we anticipate that DZ might be an effective drug to alleviate the nonmotor symptoms of Mn-induced Parkinsonism. EXPERIMENTAL APPROACH Naïve zebrafish were exposed to 2 mM of Mn for 21 days and intervened with DZ. Nonmotor symptoms such as anxiety, social behaviour, and olfactory function were assessed. Acetylcholinesterase (AChE) activity and antioxidant enzyme status were measured from brain tissue through biochemical assays. Dopamine levels and histology were performed to elucidate neuroprotective mechanism of DZ. KEY RESULTS DZ exhibited anxiolytic effects in a novel environment and also improved intra and inter fish social behaviour. DZ improved the olfactory function and response to amino acid stimuli in Mn-induced Parkinsonism. DZ reduced brain oxidative stress and AChE activity and prevented neuronal damage. DZ increased DA level in the brain, collectively contributing to neuroprotection. CONCLUSION AND IMPLICATIONS DZ demonstrated a promising effect on alleviating nonmotor symptoms such as anxiety and olfactory dysfunction, through the mitigation of cellular damage. These findings underscore the therapeutic potential of DZ in addressing nonmotor neurotoxicity induced by heavy metals, particularly in the context of Mn-induced Parkinsonism.
Collapse
Affiliation(s)
- Balasubramanian Haridevamuthu
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, 600105, India
| | - Gokul Sudhakaran
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, 600105, India
| | - Raman Pachaiappan
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India
| | - Muthu Kumaradoss Kathiravan
- Dr APJ Abdul Kalam Research Lab, Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India
| | - Krishnan Manikandan
- Department of Pharmaceutical Analysis, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India
| | - Mikhlid H Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Bader O Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Selvaraj Arokiyaraj
- Department of Food Science & Biotechnology, Sejong University, Seoul, 05006, Korea
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India
| |
Collapse
|
15
|
Priya PS, Pratiksha Nandhini P, Vaishnavi S, Pavithra V, Almutairi MH, Almutairi BO, Arokiyaraj S, Pachaiappan R, Arockiaraj J. Rhodamine B, an organic environmental pollutant induces reproductive toxicity in parental and teratogenicity in F1 generation in vivo. Comp Biochem Physiol C Toxicol Pharmacol 2024; 280:109898. [PMID: 38508353 DOI: 10.1016/j.cbpc.2024.109898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/28/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
This study investigated the reproductive toxicity of rhodamine B in zebrafish and its transgenerational effects on the F1 generation. In silico toxicity predictions revealed high toxicity of rhodamine B, mainly targeting pathways associated with the reproductive and endocrine systems. In vivo experiments on zebrafish demonstrated that rhodamine B exposure at a concentration of 1.5 mg/L led to significant impairments in fecundity parameters, particularly affecting females. Histopathological analysis revealed distinct changes in reproductive organs, further confirming the reproductive toxicity of rhodamine B, with females being more susceptible than males. Gene expression studies indicated significant suppression of genes crucial for ovulation in rhodamine B-treated female fish, highlighting hormonal imbalance as a potential mechanism of reproductive toxicity. Furthermore, bioaccumulation studies showed the presence of rhodamine B in both adult fish gonads and F1 generation samples, suggesting transgenerational transfer of the dye. Embryotoxicity studies on F1 generation larvae demonstrated reduced survival rates, lower hatching rates, and increased malformations in groups exposed to rhodamine B. Moreover, rhodamine B induced oxidative stress in F1 generation larvae, as evidenced by elevated levels of reactive oxygen species and altered antioxidant enzyme activity. Neurotoxicity assessments revealed reduced acetylcholinesterase activity, indicating potential neurological impairments in F1 generation larvae. Additionally, locomotory defects and skeletal abnormalities were observed in F1 generation larvae exposed to rhodamine B. This study provides comprehensive evidence of the reproductive toxicity of rhodamine B in adult zebrafish and its transgenerational effects on the F1 generation.
Collapse
Affiliation(s)
- P Snega Priya
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur 603203, Chengalpattu District, Tamil Nadu, India
| | - P Pratiksha Nandhini
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur 603203, Chengalpattu District, Tamil Nadu, India
| | - S Vaishnavi
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur 603203, Chengalpattu District, Tamil Nadu, India
| | - V Pavithra
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur 603203, Chengalpattu District, Tamil Nadu, India
| | - Mikhlid H Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Bader O Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Selvaraj Arokiyaraj
- Department of Food Science & Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | - Raman Pachaiappan
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
16
|
Mitra S, Biswas P, Bandyopadhyay A, Gadekar VS, Gopalakrishnan AV, Kumar M, Radha, Nandy S. Piperlongumine: the amazing amide alkaloid from Piper in the treatment of breast cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2637-2650. [PMID: 37955690 DOI: 10.1007/s00210-023-02673-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/12/2023] [Indexed: 11/14/2023]
Abstract
Piperlongumine (PL), an alkaloid found primarily in the fruits and roots of the plant Piper longum L. (Piperaceae), is a natural compound that exhibits potent activity against various cancer cell proliferation. The most frequently caused malignancy in women globally, breast cancer (BC), has been demonstrated to be significantly inhibited by PL. Apoptosis, cell cycle arrest, increased ROS generation, and changes in the signalling protein's expression are all caused by the numerous signalling pathways that PL impacts. Since BC cells resist conventional chemotherapeutic drugs (doxorubicin, docetaxel etc.), researchers have shown that the drugs in combination with PL can exhibit a synergistic effect, greater than the effects of the drug or PL alone. Recently, techniques for drug packaging based on nanotechnology have been employed to improve PL release. The review has presented an outline of the chemistry of PL, its molecular basis in BC, its bioavailability, toxicity, and nanotechnological applications. An attempt to understand the future prospects and direction of research about the compound has also been discussed.
Collapse
Affiliation(s)
- Shatakshi Mitra
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | - Protha Biswas
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | - Anupriya Bandyopadhyay
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | | | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research On Cotton Technology, Mumbai, 400019, India
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, Himachal Pradesh, India
| | - Samapika Nandy
- Department of Botany, Vedanta College, 33A, Shiv Krishna Daw Lane, Phool Bagan, Kolkata, 700054, West Bengal, India.
- School of Pharmacy, Graphic Era Hill University, Bell Road, Clement Town, Dehradun, 248002, Uttarakhand, India.
| |
Collapse
|
17
|
Murugan R, Ramya Ranjan Nayak SP, Haridevamuthu B, Priya D, Chitra V, Almutairi BO, Arokiyaraj S, Saravanan M, Kathiravan MK, Arockiaraj J. Neuroprotective potential of pyrazole benzenesulfonamide derivative T1 in targeted intervention against PTZ-induced epilepsy-like condition in in vivo zebrafish model. Int Immunopharmacol 2024; 131:111859. [PMID: 38492342 DOI: 10.1016/j.intimp.2024.111859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Epilepsy is a chronic neurological disease characterized by a persistent susceptibility to seizures. Pharmaco-resistant epilepsies, impacting around 30 % of patients, highlight the urgent need for improved treatments. Neuroinflammation, prevalent in epileptogenic brain regions, is a key player in epilepsy, prompting the search for new mechanistic therapies. Hence, in this study, we explored the anti-inflammatory potential of pyrazole benzenesulfonamide derivative (T1) against pentylenetetrazole (PTZ) induced epilepsy-like conditions in in-vivo zebrafish model. The results from the survival assay showed 79.97 ± 6.65 % at 150 µM of T1 compared to PTZ-group. The results from reactive oxygen species (ROS), apoptosis and histology analysis showed that T1 significantly reduces cellular damage due to oxidative stress in PTZ-exposed zebrafish. The gene expression analysis and neutral red assay results demonstrated a notable reduction in the inflammatory response in zebrafish pre-treated with T1. Subsequently, the open field test unveiled the anti-convulsant activity of T1, particularly at a concentration of 150 μM. Moreover, both RT-PCR and immunohistochemistry findings indicated a concentration-dependent potential of T1, which inhibited COX-2 in zebrafish exposed to PTZ. In summary, T1 protected zebrafish against PTZ-induced neuronal damage, and behavioural changes by mitigating the inflammatory response through the inhibition of COX-2.
Collapse
Affiliation(s)
- Raghul Murugan
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - S P Ramya Ranjan Nayak
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - B Haridevamuthu
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - D Priya
- Dr APJ Abdul Kalam Research Lab, Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - Vellapandian Chitra
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - Bader O Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Selvaraj Arokiyaraj
- Department of Food Science & Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | - Muthupandian Saravanan
- AMR and Nanotherapeutics Laboratory, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu 600077, India
| | - M K Kathiravan
- Dr APJ Abdul Kalam Research Lab, Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
18
|
Haridevamuthu B, Raj D, Chandran A, Murugan R, Seetharaman S, Dhanaraj M, Almutairi BO, Arokiyaraj S, Arockiaraj J. Sustainable food packaging: Harnessing biowaste of Terminalia catappa L. for chitosan-based biodegradable active films for shrimp storage. Carbohydr Polym 2024; 329:121798. [PMID: 38286562 DOI: 10.1016/j.carbpol.2024.121798] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/31/2024]
Abstract
Shrimp, a globally consumed perishable food, faces rapid deterioration during storage and marketing, causing nutritional and economic losses. With a rising environmental consciousness regarding conventional plastic packaging, consumers seek sustainable options. Utilizing natural waste resources for packaging films strengthens the food industry. In this context, we aim to create chitosan-based active films by incorporating Terminalia catappa L. leaves extract (TCE) to enhance barrier properties and extend shrimp shelf life under refrigeration. Incorporation of TCE improves mechanical, microstructural, UV, and moisture barrier properties of the chitosan film due to cross-linking interactions, resulting in robust, foldable packaging film. Active TCE film exhibits high antioxidant property due to polyphenols. These films also exhibited low wettability and showed hydrophobicity than neat CH films which is essential for meat packaging. These biodegradable films offer an eco-friendly end-of-life option when buried in soil. TCE-loaded films effectively control spoilage organisms, prevent biochemical spoilage, and maintain shrimp freshness compared to neat CH films during refrigerated condition. The active TCE film retains sensory attributes better than neat chitosan, aligning with consumer preference. The developed edible and active film from waste sources might offer sustainable, alternative packaging material with a lower carbon footprint than petroleum-based sources.
Collapse
Affiliation(s)
- B Haridevamuthu
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - David Raj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - Abhirami Chandran
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - Raghul Murugan
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - S Seetharaman
- Foundation for Aquaculture Innovations and Technology Transfer (FAITT), Kumaran Kudil, Thoraipakkam, Chennai 600097, Tamil Nadu, India
| | - M Dhanaraj
- Foundation for Aquaculture Innovations and Technology Transfer (FAITT), Kumaran Kudil, Thoraipakkam, Chennai 600097, Tamil Nadu, India
| | - Bader O Almutairi
- Department of Zoology, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Selvaraj Arokiyaraj
- Department of Food Science & Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
19
|
Li Q, Pei R, Chen E, Zheng F, Zhang Y, Meng S. Efficacy of Jiuzao polysaccharides in ameliorating alcoholic fatty liver disease and modulating gut microbiota. Heliyon 2024; 10:e26167. [PMID: 38420496 PMCID: PMC10900577 DOI: 10.1016/j.heliyon.2024.e26167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 03/02/2024] Open
Abstract
Jiuzao, the residue from Baijiu production, has shown radical scavenging properties in prior investigations, suggesting its potential as a hepatoprotective agent against acute liver damage. This study reveals that Jiuzao polysaccharides ameliorated liver morphological damage in zebrafish larvae afflicted with alcoholic fatty liver disease (AFLD), as evidenced by Oil red O, H&E, and Nile red staining. These polysaccharides notably modulated antioxidant enzyme levels and lipid peroxidation components. The real-time quantitative polymerase chain reactions analyses illustrated the significant impact of Jiuzao polysaccharides on genes integral to ethanol and lipid metabolism. The 16 S rRNA results showed that Jiuzao polysaccharides could improve the intestinal flora in zebrafish larvae exposed to ethanol. In summary, Jiuzao polysaccharides efficaciously mitigate liver lipid accumulation, enhance ethanol metabolism, and reduce oxidative stress by downregulating genes involved in AFLD development. They also regulate the changes in gut microbiota, providing further protection against acute alcoholic liver insult in zebrafish larvae.
Collapse
Affiliation(s)
- Qing Li
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing, 100048, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, 100048, China
- Key Laboratory of Quality and Safety of Alcoholic Beverages of China Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Ronghong Pei
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing, 100048, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, 100048, China
- Key Laboratory of Quality and Safety of Alcoholic Beverages of China Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Erbao Chen
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing, 100048, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, 100048, China
- Key Laboratory of Quality and Safety of Alcoholic Beverages of China Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Fuping Zheng
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing, 100048, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, 100048, China
- Key Laboratory of Quality and Safety of Alcoholic Beverages of China Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Yuhang Zhang
- Hebei Hengshui Laobaigan Liquor Co., Ltd., Hengshui, 053009, China
| | - Shihao Meng
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing, 100048, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, 100048, China
- Key Laboratory of Quality and Safety of Alcoholic Beverages of China Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| |
Collapse
|
20
|
Nayak SPRR, Basty C, Boopathi S, Dhivya LS, Alarjani KM, Gawwad MRA, Hager R, Kathiravan MK, Arockiaraj J. Furan-based Chalcone Annihilates the Multi-Drug-Resistant Pseudomonas aeruginosa and Protects Zebra Fish Against its Infection. J Microbiol 2024; 62:75-89. [PMID: 38383881 DOI: 10.1007/s12275-024-00103-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 02/23/2024]
Abstract
The emergence of carbapenem-resistant Pseudomonas aeruginosa, a multi-drug-resistant bacteria, is becoming a serious public health concern. This bacterium infects immunocompromised patients and has a high fatality rate. Both naturally and synthetically produced chalcones are known to have a wide array of biological activities. The antibacterial properties of synthetically produced chalcone were studied against P. aeruginosa. In vitro, study of the compound (chalcone derivative named DKO1), also known as (2E)-1-(5-methylfuran-2-yl)-3-(4-nitrophenyl) prop-2-en-1-one, had substantial antibacterial and biofilm disruptive action. DKO1 effectively shielded against P. aeruginosa-induced inflammation, oxidative stress, lipid peroxidation, and apoptosis in zebrafish larvae. In adult zebrafish, the treatment enhanced the chances of survivability and reduced the sickness-like behaviors. Gene expression, biochemical analysis, and histopathology studies found that proinflammatory cytokines (TNF-α, IL-1β, IL-6, iNOS) were down regulated; antioxidant enzymes such as superoxide dismutase (SOD) and catalase (CAT) levels increased, and histoarchitecture was restored in zebrafish. The data indicate that DKO1 is an effective antibacterial agent against P. aeruginosa demonstrated both in vitro and in vivo.
Collapse
Affiliation(s)
- Santosh Pushpa Ramya Ranjan Nayak
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Chennai, Tamil Nadu, 603203, India
| | - Catharine Basty
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Chennai, Tamil Nadu, 603203, India
| | - Seenivasan Boopathi
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Chennai, Tamil Nadu, 603203, India
| | - Loganathan Sumathi Dhivya
- Dr. APJ Abdul Kalam Research Lab, Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Chennai, Tamil Nadu, 603203, India
| | - Khaloud Mohammed Alarjani
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohamed Ragab Abdel Gawwad
- Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Sarajevo, 71210, Bosnia and Herzegovina
| | - Raghda Hager
- Department of Medical Microbiology and Immunology, King Salman International University, South Sinai, Egypt
| | - Muthu Kumaradoss Kathiravan
- Dr. APJ Abdul Kalam Research Lab, Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Chennai, Tamil Nadu, 603203, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Chennai, Tamil Nadu, 603203, India.
| |
Collapse
|
21
|
Haridevamuthu B, Murugan R, Seenivasan B, Meenatchi R, Pachaiappan R, Almutairi BO, Arokiyaraj S, M K K, Arockiaraj J. Synthetic azo-dye, Tartrazine induces neurodevelopmental toxicity via mitochondria-mediated apoptosis in zebrafish embryos. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132524. [PMID: 37741213 DOI: 10.1016/j.jhazmat.2023.132524] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/18/2023] [Accepted: 09/09/2023] [Indexed: 09/25/2023]
Abstract
Tartrazine (TZ), or E 102 or C Yellow, is a commonly used azo dye in the food and dyeing industries. Its excessive usage beyond permissible levels threatens human health and the aquatic environment. While previous studies have reported adverse effects such as mutagenicity, carcinogenicity, and reproductive toxicity. Our study aimed to comprehensively evaluate the developmental neurotoxicity of TZ exposure via biochemical and behavioral examinations and explored the underlying mechanism via gene expression analyses. TZ at an environmentally relevant concentration (50 mg/L) significantly induces oxidative stress, altered antioxidant (SOD, CAT and GSH) response, triggered cellular damage (MDA and LDH), and induced neuro-biochemical changes (AChE and NO). Gene expression analyses revealed broad disruptions in genes associated with antioxidant defense (sod1, cat, and gstp1), mitochondrial dysfunction (mfn2, opa1, and fis1),evoked inflammatory response (nfkb, tnfa, and il1b), apoptosis activation (bcl2, bax, and p53), and neural development (bdnf, mbp, and syn2a). Behavioral analysis indicated altered thigmotaxis, touch response, and locomotion depending on the concentration of TZ exposure. Remarkably, the observed effective concentrations were consistent with the permitted levels in food products, highlighting the neurodevelopmental effects of TZ at environmentally relevant concentrations. These findings provide valuable insights into the underlying molecular mechanisms, particularly the role of mitochondria-mediated apoptosis, contributing to TZ-induced neurodevelopmental disorders in vivo.
Collapse
Affiliation(s)
- B Haridevamuthu
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur 603203, Tamil Nadu, India
| | - Raghul Murugan
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur 603203, Tamil Nadu, India
| | - Boopathi Seenivasan
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur 603203, Tamil Nadu, India
| | - Ramu Meenatchi
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur 603203, Tamil Nadu, India
| | - Raman Pachaiappan
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur 603203, Tamil Nadu, India
| | - Bader O Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Selvaraj Arokiyaraj
- Department of Food Science & Biotechnology, Sejong University, Seoul 05006, South Korea
| | - Kathiravan M K
- Dr APJ Abdul Kalam Research Lab, Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur 603203, Tamil Nadu, India
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur 603203, Tamil Nadu, India.
| |
Collapse
|
22
|
Haridevamuthu B, Murugan R, Seenivasan B, Meenatchi R, Pachaiappan R, Almutairi BO, Arokiyaraj S, M. K K, Arockiaraj J. Synthetic azo-dye, Tartrazine induces neurodevelopmental toxicity via mitochondria-mediated apoptosis in zebrafish embryos. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132524. [DOI: https:/doi.org/10.1016/j.jhazmat.2023.132524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
|
23
|
Murugan R, Haridevamuthu B, Gopinath P, Rajagopal R, Arokiyaraj S, Arockiaraj J. Deacetylepoxyazadiradione ameliorates diabesity in in-vivo zebrafish larval model by influencing the level of regulatory adipokines and oxidative stress. Eur J Pharmacol 2023; 961:176214. [PMID: 37992886 DOI: 10.1016/j.ejphar.2023.176214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 11/24/2023]
Abstract
Obesity and diabetes constitute significant global health issues associated with one another. In contrast to diabetes, which is characterised by oxidative stress that enhances cellular damage and the following complications. Obesity dynamics involve chronic inflammation that promotes insulin resistance and metabolic disruptions. Anti-inflammatory and antioxidant agents, therefore, hold promise for synergistic effects, addressing inflammation and oxidative stress, key factors in managing obesity and diabetes. These agents can be utilized in novel drug delivery approaches. The complex interactions between deacetylepoxyazadiradione (DEA) and zebrafish larva subjected to metabolic impairment due to a high-fat diet (HFD) are examined in this study. The survival assay showed a significantly lower rate (79% survival rate) in the larvae exposed to HFD. Contrastingly, DEA treatment showed significant results with survival rates increasing dose-dependently (84%, 89%, and 94% at concentrations of 50 μM, 100 μM, and 150 μM, respectively). Further investigations revealed that DEA could reduce hyperlipidemic and hyperglycemic conditions in zebrafish larvae. Glucose levels significantly dropped in the DEA treatment, which was associated with a decline in larval weight, lipid accumulation, oxidative stress and apoptosis. Enzyme assays revealed higher antioxidant enzyme concentrations in DEA treated in-vivo larval models, which were associated with reduced expression of pro-inflammatory genes. In conclusion, the results demonstrate that DEA can alleviate oxidative stress and inflammation, effectively easing the diabesity-like state in zebrafish larvae. This offers potential avenues for developing DEA as a valuable drug candidate to manage the intricate diabesity condition.
Collapse
Affiliation(s)
- Raghul Murugan
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - B Haridevamuthu
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Pushparathinam Gopinath
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Rajakrishnan Rajagopal
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Selvaraj Arokiyaraj
- Department of Food Science & Biotechnology, Sejong University, Seoul, 05006, South Korea
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
24
|
Priya PS, Pavithra V, Vaishnavi S, Pachaiappan R, Kumar TTA, Rady A, Darwish NM, Arokiyaraj S, Karthick Raja Namasivayam S, Arockiaraj J. Understanding the mechanisms and implications of acacetin in mitigating diabetic osteoporosis: Insights from a zebrafish model. Process Biochem 2023; 134:63-74. [DOI: 10.1016/j.procbio.2023.09.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2023]
|
25
|
Sudhakaran G, Chandran A, Sreekutty AR, Madesh S, Pachaiappan R, Almutairi BO, Arokiyaraj S, Kari ZA, Tellez-Isaias G, Guru A, Arockiaraj J. Ophthalmic Intervention of Naringenin Decreases Vascular Endothelial Growth Factor by Counteracting Oxidative Stress and Cellular Damage in In Vivo Zebrafish. Molecules 2023; 28:5350. [PMID: 37513223 PMCID: PMC10385844 DOI: 10.3390/molecules28145350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Diabetes Mellitus is a metabolic disease that leads to microvascular complications like Diabetic retinopathy (DR), a major cause of blindness worldwide. Current medications for DR are expensive and report multiple side effects; therefore, an alternative medication that alleviates the disease condition is required. An interventional approach targeting the vascular endothelial growth factor (VEGF) remains a treatment strategy for DR. Anti-VEGF medicines are being investigated as the main therapy for managing vision-threatening complications of DR, such as diabetic macular oedema. Therefore, this study investigated the effect of flavonoid naringenin (NG) from citrus fruits on inhibiting early DR in zebrafish. When exposed to 130 mM glucose, the zebrafish larvae developed a hyperglycaemic condition accompanied by oxidative stress, cellular damage, and lipid peroxidation. Similarly, when adult zebrafish were exposed to 4% Glucose, high glucose levels were observed in the ocular region and massive destruction in the retinal membrane. High glucose upregulated the expression of VEGF. In comparison, the co-exposure to NG inhibited oxidative stress and cellular damage and restored the glutathione levels in the ocular region of the zebrafish larvae. NG regressed the glucose levels and cellular damage along with an inhibition of macular degeneration in the retina of adult zebrafish and normalized the overexpression of VEGF as a promising strategy for treating DR. Therefore, intervention of NG could alleviate the domestication of alternative medicine in ophthalmic research.
Collapse
Affiliation(s)
- Gokul Sudhakaran
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, India; (G.S.); (A.C.); (A.R.S.); (S.M.)
| | - Abhirami Chandran
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, India; (G.S.); (A.C.); (A.R.S.); (S.M.)
| | - A. R. Sreekutty
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, India; (G.S.); (A.C.); (A.R.S.); (S.M.)
| | - S. Madesh
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, India; (G.S.); (A.C.); (A.R.S.); (S.M.)
| | - Raman Pachaiappan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, India;
| | - Bader O. Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Selvaraj Arokiyaraj
- Department of Food Science & Biotechnology, Sejong University, Seoul 05006, Republic of Korea;
| | - Zulhisyam Abdul Kari
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli 17600, Malaysia;
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli 17600, Malaysia
| | | | - Ajay Guru
- Department of Cardiology, Saveetha Dental College and Hospitals, SIMATS, Chennai 600077, India
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, India; (G.S.); (A.C.); (A.R.S.); (S.M.)
| |
Collapse
|