1
|
Guo J, He Y, Li J, Lin M, Wu Y, Yang J, He Z, Meng L, Wang Z, Xia Q, Zhu C, Zhang Y, Feng N. In Situ Hydrogel Transformed from Dicarboxylic Anhydride-Cross-Linked Cyclodextrin Nanosponge-Encapsulated Parthenolide Restored the Intestinal Mucosal Barrier of Ulcerative Colitis. ACS APPLIED MATERIALS & INTERFACES 2025; 17:18003-18021. [PMID: 40096675 DOI: 10.1021/acsami.4c21687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Ulcerative colitis (UC), a chronic disease characterized by continuous damage to the intestinal mucosa and inflammation in the colon, comprises a series of gastrointestinal reactions and is difficult to cure. Here, we have designed a nanotherapeutic strategy combining pharmacotherapy with physical protection, which is achieved by constructing a green nanocarrier named cyclodextrin-based nanosponges (CDNSs) and encapsulating the insoluble drug parthenolide (PTL). CDNSs were transformed into a hydrogel driven by water, releasing the anti-inflammatory agent PTL and forming a sticky barrier in the position of the ulcer lesion to confront pathogenic bacteria at the same time. Notably, the resulting PTL-loaded CDNS (PTL@CDNS) had improved the solubility and intestinal cellular uptake of PTL. The orally delivered transformable PTL@CDNS via a colon-specific capsule significantly relieved UC in rats by enhancing the regulation of c-kit and STAT6 pathways as well as normalizing inflammatory cytokines, including IL-4, IL-6, IL-10, IL-13, nitric oxide, malondialdehyde, and TNF-α, with excellent biocompatibility. To sum up, transformable PTL@CDNSs were demonstrated as a promising strategy for in situ treatment of mucosal ulcers including UC.
Collapse
Affiliation(s)
- Jingwen Guo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuanzhi He
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiaqi Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Min Lin
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yihan Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiayi Yang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zehui He
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Long Meng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhi Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qing Xia
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Chunyun Zhu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yongtai Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Nianping Feng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
2
|
Dora CP, Kushwah V, Yadav V, Kuche K, Jain S. Gemcitabine-Phospholipid Complex Loaded Lipid Nanoparticles for Improving Drug Loading, Stability, and Efficacy against Pancreatic Cancer. Mol Pharm 2024; 21:2699-2712. [PMID: 38747900 DOI: 10.1021/acs.molpharmaceut.3c00983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
This study aims to encapsulate gemcitabine (GEM) using a phospholipid complex (PLC) in lipid nanoparticles (NPs) to achieve several desirable outcomes, including high drug loading, uniform particle size, improved therapeutic efficacy, and reduced toxicities. The successful preparation of GEM-loaded lipid NPs (GEM-NPs) was accomplished using the emulsification-solidification method, following optimization through Box-Behnken design. The size of the GEM-NP was 138.5 ± 6.7 nm, with a low polydispersity index of 0.282 ± 0.078, as measured by a zetasizer and confirmed by transmission electron and atomic force microscopy. GEM-NPs demonstrated sustained release behavior, surpassing the performance of the free GEM and phospholipid complex. Moreover, GEM-NPs exhibited enhanced cytotoxicity, apoptosis, and cell uptake in Panc-2 and Mia PaCa cells compared to the free GEM. The in vivo pharmacokinetics revealed approximately 4-fold higher bioavailability of GEM-NPs in comparison with free GEM. Additionally, the pharmacodynamic evaluation conducted in a DMBA-induced pancreatic cancer model, involving histological examination, serum IL-6 level estimation, and expression of cleaved caspase-3, showed the potential of GEM-NPs in the management of pancreatic cancer. Consequently, the lipid NP-based approach developed in our investigation demonstrates high stability and uniformity and holds promise for enhancing the therapeutic outcomes of GEM.
Collapse
Affiliation(s)
- Chander Parkash Dora
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, sector-67, Mohali, Punjab 160062, India
| | - Varun Kushwah
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, sector-67, Mohali, Punjab 160062, India
| | - Vivek Yadav
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, sector-67, Mohali, Punjab 160062, India
| | - Kaushik Kuche
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, sector-67, Mohali, Punjab 160062, India
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, sector-67, Mohali, Punjab 160062, India
| |
Collapse
|
3
|
Singh S, Sharma K, Sharma H. Cyclodextrin Nanosponges: A Revolutionary Drug Delivery Strategy. Pharm Nanotechnol 2024; 12:300-313. [PMID: 37807414 DOI: 10.2174/0122117385273293230927081513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 10/10/2023]
Abstract
Nanosponges are porous solid cross-linked polymeric nanostructures. This study focuses on cyclodextrin-based nanosponges. Nanosponges based on cyclodextrin can form interactions with various lipophilic or hydrophilic compounds. The release of the entrapped molecules can be altered by altering the structure to obtain either a longer or faster release kinetics. The nanosponges might increase the aqueous solubility of weakly water-soluble compounds, develop long-lasting delivery systems, or construct novel drug carriers for nanomedicine. CD-NS (cyclodextrin-based nanosponges) are evolving as flexible and promising nanomaterials for medication administration, sensing, and environmental cleanup. CD-NS are three-dimensional porous structures of cyclodextrin molecules cross-linked by a suitable polymeric network, resulting in a large surface area. This overview covers CD-NS synthesis methods and applications.
Collapse
Affiliation(s)
- Sonia Singh
- Department of Pharmacy, Institute of Pharmaceutical Research, GLA University Mathura, Uttar Pradesh, 281406, India
| | - Khushi Sharma
- Department of Pharmacy, Institute of Pharmaceutical Research, GLA University Mathura, Uttar Pradesh, 281406, India
| | - Himanshu Sharma
- Department of Computer Engineering & Applications, GLA University Mathura, Uttar Pradesh, 281406, India
| |
Collapse
|
4
|
Shah HS, Zaib S, Khan I, Sliem MA, Alharbi O, Al-Ghorbani M, Jawad Z, Shahzadi K, Awan S. Preparation and investigation of a novel combination of Solanum nigrum-loaded, arabinoxylan-cross-linked β-cyclodextrin nanosponges for the treatment of cancer: in vitro, in vivo, and in silico evaluation. Front Pharmacol 2023; 14:1325498. [PMID: 38125886 PMCID: PMC10730681 DOI: 10.3389/fphar.2023.1325498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 11/10/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction: Cancer contributes to a high mortality rate worldwide spanning its diversity from genetics to resistant therapeutic response. To date emerging strategies to combat and manage cancer are particularly focused on the development of targeted therapies as conventional treatments account for the destruction of normal cells as well. In this regard, medicinal plant-based therapies are quite promising in imposing minimal side effects; however, limitations like poor bioavailability and stability of bioactive phytochemicals are associated with them. In parallel, nanotechnology provides nominal solution to deliver particular therapeutic agent without compromising its stability. Methods: In this study, Solanum nigrum, an effective medicinal plant, loaded arabinoxylan cross-linked β-cyclodextrin nanosponges (SN-AXCDNS) were designed to evaluate antitumor activity against breast cancer. Therefore, SN-AXCDNS were prepared by using cross-linker melt method and characterized by physicochemical and pharmacological parameters. Results: Hydrodynamic size, zeta potential and entrapment efficiency (EE%) were estimated as 226 ± 4 nm, -29.15 ± 5.71 mV and 93%, respectively. Surface morphology of nanocomposites showed spherical, smooth, and porous form. Antitumor pharmacological characterization showed that SN loaded nanosponge demonstrated higher cytotoxicity (22.67 ± 6.11 μg/mL), by inducing DNA damage as compared to void SN extract. Flow cytometry analysis reported that encapsulated extract promoted cell cycle arrest at sub-G1 (9.51%). Moreover, in vivo analysis demonstrates the reduction in tumor weight and 85% survival chances in nanosponge treated mice featuring its effectiveness. In addition, in silico analysis revealed that β-cyclodextrin potentially inhibits MELK in breast cancer cell lines (B.E = -10.1 Kcal/mol). Conclusion: Therefore, findings of current study elucidated the therapeutic potential of β-cyclodextrin based nanosponges to be an alternative approach regarding the delivery and solubilization of antitumor drugs.
Collapse
Affiliation(s)
- Hamid Saeed Shah
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Sumera Zaib
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Imtiaz Khan
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Mahmoud A. Sliem
- Department of Chemistry, Faculty of Science, Taibah University, Medinah, Saudi Arabia
| | - Osama Alharbi
- Department of Chemistry, Faculty of Science, Taibah University, Medinah, Saudi Arabia
| | - Mohammed Al-Ghorbani
- Department of Chemistry, Faculty of Science, Taibah University, Medinah, Saudi Arabia
| | - Zobia Jawad
- Ladywillingdon Hospital, King Edward Medical University, Lahore, Pakistan
| | - Kiran Shahzadi
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Sajjad Awan
- College of Pharmacy, University of Sargodha, Sargodha, Pakistan
| |
Collapse
|
5
|
Yang J, Jia L, He Z, Wang Y. Recent advances in SN-38 drug delivery system. Int J Pharm 2023; 637:122886. [PMID: 36966982 DOI: 10.1016/j.ijpharm.2023.122886] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 03/06/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
DNA topoisomerase I plays a key role in lubricatingthe wheels of DNA replication or RNA transcription through breaking and reconnecting DNA single-strand. It is widely known that camptothecin and its derivatives (CPTs) have inhibitory effects on topoisomerases I, and have obtained some clinical benefits in cancer treatment. The potent cytotoxicity makes 7-ethyl-10-hydroxycamptothecin (SN-38) become a brilliant star among these derivatives. However, some undesirable physical and chemical properties of this compound, including poor solubility and stability, seriously hinder its effective delivery to tumor sites. In recent years, strategies to alleviate these defects have aroused extensive research interest. By focusing on the loading mechanism, basic nanodrug delivery systems with SN-38 loaded, like nanoparticles, liposomes and micelles, are demonstrated here. Additionally, functionalized nanodrug delivery systems of SN-38 including prodrug and active targeted nanodrug delivery systems and delivery systems designed to overcome drug resistance are also reviewed. At last, challenges for future research in formulation development and clinical translation of SN-38 drug delivery system are discussed.
Collapse
|
6
|
Marzi M, Osanloo M, Vakil MK, Mansoori Y, Ghasemian A, Dehghan A, Zarenezhad E. Applications of Metallic Nanoparticles in the Skin Cancer Treatment. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2346941. [PMID: 36420097 PMCID: PMC9678447 DOI: 10.1155/2022/2346941] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/20/2022] [Accepted: 11/01/2022] [Indexed: 04/03/2024]
Abstract
Skin cancer is one of leading cancers globally, divided into two major categories including melanoma and nonmelanoma. Skin cancer is a global concern with an increasing trend, hence novel therapies are essential. The local treatment strategies play a key role in skin cancer therapy. Nanoparticles (NPs) exert potential applications in medicine with huge advantages and have the ability to overcome common chemotherapy problems. Recently, NPs have been used in nanomedicine as promising drug delivery systems. They can enhance the solubility of poorly water-soluble drugs, improve pharmacokinetic properties, modify bioavailability, and reduce drug metabolism. The high-efficient, nontoxic, low-cost, and specific cancer therapy is a promising goal, which can be achieved by the development of nanotechnology. Metallic NPs (MNPs) can act as important platforms. MNPs development seeks to enhance the therapeutic efficiency of medicines through site specificity, prevention of multidrug resistance, and effective delivery of therapeutic factors. MNPs are used as potential arms in the case of cancer recognition, such as Magnetic Resonance Imaging (MRI) and colloidal mediators for magnetic hyperthermia of cancer. The applications of MNPs in the cancer treatment studies are mostly due to their potential to carry a large dose of drug, resulting in a high concentration of anticancer drugs at the target site. Therefore, off-target toxicity and suffering side effects caused by high concentration of the drug in other parts of the body are avoided. MNPs have been applied as drug carriers for the of improvement of skin cancer treatment and drug delivery. The development of MNPs improves the results of many cancer treatments. Different types of NPs, such as inorganic and organic NPs have been investigated in vitro and in vivo for the skin cancer therapy. MNPs advantages mostly include biodegradability, electrostatic charge, good biocompatibility, high drug payload, and low toxicity. However, the use of controlled-release systems stimulated by electromagnetic waves, temperature, pH, and light improves the accumulation in tumor tissues and improves therapeutic outcomes. This study (2019-2022) is aimed at reviewing applications of MNPs in the skin cancer therapy.
Collapse
Affiliation(s)
- Mahrokh Marzi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Mahmoud Osanloo
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Mohammad Kazem Vakil
- Department of Internal Medicine, School of Medicine, Fasa University of Medical Science, Fasa, Iran
| | - Yaser Mansoori
- Department of Medical Genetics, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Azizallah Dehghan
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Elham Zarenezhad
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
7
|
Bertoli A, LoBue A, Quattrini L, Sartini S, Polini B, Carpi S, Frontini FP, Di Giuseppe G, Guella G, Nieri P, La Motta C. Complexing the Marine Sesquiterpene Euplotin C by Means of Cyclodextrin-Based Nanosponges: A Preliminary Investigation. Mar Drugs 2022; 20:682. [PMID: 36355005 PMCID: PMC9692710 DOI: 10.3390/md20110682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 08/22/2023] Open
Abstract
Euplotin C is a sesquiterpene of marine origin endowed with significant anti-microbial and anti-tumor properties. Despite the promising functional profile, its progress as a novel drug candidate has failed so far, due to its scarce solubility and poor stability in aqueous media, such as biological fluids. Therefore, overcoming these limits is an intriguing challenge for the scientific community. In this work, we synthesized β-cyclodextrin-based nanosponges and investigated their use as colloidal carriers for stably complex euplotin C. Results obtained proved the ability of the carrier to include the natural compound, showing remarkable values of both loading efficiency and capacity. Moreover, it also allowed us to preserve the chemical structure of the loaded compound, which was recovered unaltered once extracted from the complex. Therefore, the use of β-cyclodextrin-based nanosponges represents a viable option to vehiculate euplotin C, thus opening up its possible use as pharmacologically active compound.
Collapse
Affiliation(s)
- Alessandra Bertoli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
- Marine Pharma Centre, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Anthea LoBue
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology, Medical Faculty, Heinrich-Heine-University, Universitätstraße 1, 40225 Düsseldorf, Germany
| | - Luca Quattrini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Stefania Sartini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Beatrice Polini
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Via Paradisa 2, 56124 Pisa, Italy
| | - Sara Carpi
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro, 56127 Pisa, Italy
| | | | - Graziano Di Giuseppe
- Marine Pharma Centre, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
- Department of Biology, University of Pisa, Via Luca Ghini 13, 56126 Pisa, Italy
| | - Graziano Guella
- Laboratory of Bioorganic Chemistry, Department of Physic, University of Trento, Via Sommarive 14, 38050 Povo Trento, Italy
| | - Paola Nieri
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
- Marine Pharma Centre, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Concettina La Motta
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
- Marine Pharma Centre, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| |
Collapse
|
8
|
Nanosponges for Drug Delivery and Cancer Therapy: Recent Advances. NANOMATERIALS 2022; 12:nano12142440. [PMID: 35889665 PMCID: PMC9323080 DOI: 10.3390/nano12142440] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/03/2022] [Accepted: 07/15/2022] [Indexed: 02/07/2023]
Abstract
Nanosponges with three-dimensional (3D) porous structures, narrow size distribution, and high entrapment efficiency are widely engineered for cancer therapy and drug delivery purposes. They protect the molecular agents from degradation and help to improve the solubility of lipophilic therapeutic agents/drugs with targeted delivery options in addition to being magnetized to attain suitable magnetic features. Nanosponge-based delivery systems have been applied for cancer therapy with high specificity, biocompatibility, degradability, and prolonged release behavior. In this context, the drug loading within nanosponges is influenced by the crystallization degree. Notably, 3D printing technologies can be applied for the development of novel nanosponge-based systems for biomedical applications. The impacts of polymers, cross-linkers, type of drugs, temperature, loading and mechanism of drug release, fabrication methods, and substitution degree ought to be analytically evaluated. Eco-friendly techniques for the manufacturing of nanosponges still need to be uncovered in addition to the existing methods, such as solvent techniques, ultrasound-assisted preparation, melting strategies, and emulsion solvent diffusion methods. Herein, the recent advancements associated with the drug delivery and cancer therapy potential of nanosponges (chiefly, cyclodextrin-based, DNAzyme, and ethylcellulose nanosponges) are deliberated, focusing on the important challenges and future perspectives.
Collapse
|
9
|
Monaghan AE, Porter A, Hunter I, Morrison A, McElroy SP, McEwan IJ. Development of a High-Throughput Screening Assay for Small-Molecule Inhibitors of Androgen Receptor Splice Variants. Assay Drug Dev Technol 2022; 20:111-124. [PMID: 35333596 PMCID: PMC9057896 DOI: 10.1089/adt.2021.128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The role of the androgen receptor (AR) in the progression of prostate cancer (PCa) is well established and competitive inhibition of AR ligand binding domain (LBD) has been the mainstay of antiandrogen therapies for advanced and metastatic disease. However, the efficacy of such drugs is often limited by the emergence of resistance, mediated through point mutations and receptor splice variants lacking the AR-LBD. As a result, the prognosis for patients with malignant, castrate-resistant disease remains poor. The amino terminal domain (NTD) of the AR has been shown to be critical for AR function. Its modular activation function (AF-1) is important for both gene regulation and participation in protein–protein interactions. However, due to the intrinsically disordered structure of the domain, its potential as a candidate for therapeutic intervention has been generally overlooked. In this article, we describe the design and development of a functional cell-based assay aimed at identifying small-molecule inhibitors of the AR-NTD. We demonstrate the suitability of the assay for high-throughput screening platforms and validate two initial hits emerging from a small, targeted, library screen in PCa cells.
Collapse
Affiliation(s)
- Amy E. Monaghan
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Alison Porter
- European Screening Centre (ESC), University of Dundee, Lanarkshire, United Kingdom
| | - Irene. Hunter
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Angus Morrison
- European Screening Centre (ESC), University of Dundee, Lanarkshire, United Kingdom
| | - Stuart P. McElroy
- European Screening Centre (ESC), University of Dundee, Lanarkshire, United Kingdom
| | - Iain J. McEwan
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
10
|
Utzeri G, Matias PMC, Murtinho D, Valente AJM. Cyclodextrin-Based Nanosponges: Overview and Opportunities. Front Chem 2022; 10:859406. [PMID: 35402388 PMCID: PMC8987506 DOI: 10.3389/fchem.2022.859406] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/02/2022] [Indexed: 01/18/2023] Open
Abstract
Nanosponges are solid cross-linked polymeric nano-sized porous structures. This broad concept involves, among others, metal organic frameworks and hydrogels. The focus of this manuscript is on cyclodextrin-based nanosponges. Cyclodextrins are cyclic oligomers of glucose derived from starch. The combined external hydrophilicity with the internal hydrophobic surface constitute a unique "microenvironment", that confers cyclodextrins the peculiar ability to form inclusion host‒guest complexes with many hydrophobic substances. These complexes may impart beneficial modifications of the properties of guest molecules such as solubility enhancement and stabilization of labile guests. These properties complemented with the possibility of using different crosslinkers and high polymeric surface, make these sponges highly suitable for a large range of applications. Despite that, in the last 2 decades, cyclodextrin-based nanosponges have been developed for pharmaceutical and biomedical applications, taking advantage of the nontoxicity of cyclodextrins towards humans. This paper provides a critical and timely compilation of the contributions involving cyclodextrins nanosponges for those areas, but also paves the way for other important applications, including water and soil remediation and catalysis.
Collapse
|
11
|
Cyclodextrin nanosponges as potential anticancer drug delivery systems to be introduced into the market, compared with liposomes. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102931] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Dai Y, Li Q, Zhang S, Shi S, Li Y, Zhao X, Zhou L, Wang X, Zhu Y, Li W. Smart GSH/pH dual-bioresponsive degradable nanosponges based on β-CD-appended hyper-cross-linked polymer for triggered intracellular anticancer drug delivery. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
13
|
Cyclodextrin Monomers and Polymers for Drug Activity Enhancement. Polymers (Basel) 2021; 13:polym13111684. [PMID: 34064190 PMCID: PMC8196804 DOI: 10.3390/polym13111684] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/13/2022] Open
Abstract
Cyclodextrins (CDs) and cyclodextrin (CD)-based polymers are well-known complexing agents. One of their distinctive features is to increase the quantity of a drug in a solution or improve its delivery. However, in certain instances, the activity of the solutions is increased not only due to the increase of the drug dose but also due to the drug complexation. Based on numerous studies reviewed, the drug appeared more active in a complex form. This review aims to summarize the performance of CDs and CD-based polymers as activity enhancers. Accordingly, the review is divided into two parts, i.e., the effect of CDs as active drugs and as enhancers in antimicrobials, antivirals, cardiovascular diseases, cancer, neuroprotective agents, and antioxidants.
Collapse
|
14
|
Schmidt KT, Chau CH, Strope JD, Huitema ADR, Sissung TM, Price DK, Figg WD. Antitumor Activity of NLG207 (Formerly CRLX101) in Combination with Enzalutamide in Preclinical Prostate Cancer Models. Mol Cancer Ther 2021; 20:915-924. [PMID: 33632874 PMCID: PMC8102325 DOI: 10.1158/1535-7163.mct-20-0228] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/06/2020] [Accepted: 02/11/2021] [Indexed: 11/16/2022]
Abstract
Effective treatments for patients with metastatic castration-resistant prostate cancer following disease progression on enzalutamide are currently an unmet clinical need. Simultaneous inhibition of the hypoxia-inducible factor (HIF)-1α and androgen receptor (AR) pathways has been previously shown to overcome enzalutamide resistance in vitro Combination treatment with NLG207, a nanoparticle-drug conjugate of camptothecin and inhibitor of HIF-1α, and enzalutamide was evaluated in preclinical prostate cancer models of enzalutamide resistance. The effect of NLG207 and enzalutamide on average tumor volume and tumor re-growth after 3 weeks of treatment was evaluated in vivo using the subcutaneous 22Rv1 xenograft and castrated subcutaneous VCaP xenograft models. Correlative assessments of antitumor activity were evaluated in vitro using cell proliferation and qPCR assays. NLG207 8 mg/kg alone and in combination with enzalutamide reduced average tumor volume by 93% after 3 weeks of treatment (P < 0.05) in comparison with vehicle control in the subcutaneous 22Rv1 xenograft model. Notably, the addition of NLG207 also enhanced the efficacy of enzalutamide alone in the castrated subcutaneous VCaP xenograft model, decreasing the median rate of tumor growth by 51% (P = 0.0001) in comparison with enzalutamide alone. In vitro assessments of cell proliferation and gene expression further demonstrated antitumor activity via AR-HIF-1α crosstalk inhibition. Combination treatment with NLG207 and enzalutamide was shown to be effective in preclinical prostate cancer models of enzalutamide resistance. Clinical investigation of this treatment combination is ongoing (NCT03531827).
Collapse
Affiliation(s)
- Keith T Schmidt
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Cindy H Chau
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jonathan D Strope
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Alwin D R Huitema
- Department Pharmacy and Pharmacology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Tristan M Sissung
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Douglas K Price
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - William D Figg
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
15
|
Tannous M, Caldera F, Hoti G, Dianzani U, Cavalli R, Trotta F. Drug-Encapsulated Cyclodextrin Nanosponges. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2207:247-283. [PMID: 33113141 DOI: 10.1007/978-1-0716-0920-0_19] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To date, a number of nanocarriers, either inorganic or organic, have been developed to improve the delivery and therapeutic efficacy of various drugs. Drug delivery systems have attempted to overcome the undesirable pharmacokinetic problems encountered. Among the various nanomaterials that have been designed as potential nanocarriers, cyclodextrin-based polymers are of particular interest in this review.Cyclodextrins (CD) are a class of cyclic glucopyranose oligomers, obtained from starch by enzymatic action, with a characteristic toroidal shape that forms a truncated cone-shaped lipophilic cavity. The main common native cyclodextrins are named α, β, and γ which comprise six, seven, and eight glucopyranose units, respectively. Cyclodextrins have the capability to include compounds whose size and polarity are compatible with those of their cavity.Cyclodextrin-based cross-linked polymers, often referred to as "cyclodextrin nanosponges" (CDNSs), attract great attention from researchers for solving major bioavailability problems such as inadequate solubility, poor dissolution rate, and limited stability of some agents, as well as increasing their effectiveness and decreasing unwanted side effects.Registered patents about this novel system in various fields, different pharmaceutical applications, and classes of drugs encapsulated by CDNSs are detailed. The features outlined make CDNSs a promising platform for the development of innovative and advanced delivery systems.
Collapse
Affiliation(s)
- Maria Tannous
- Dipartimento di Chimica, Università di Torino, Torino, Italy.,Department of Chemistry, University of Balamand, Tripoli, Lebanon
| | | | - Gjylije Hoti
- Dipartimento di Chimica, Università di Torino, Torino, Italy
| | - Umberto Dianzani
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, Torino, Italy
| | - Roberta Cavalli
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Torino, Italy
| | | |
Collapse
|
16
|
Dombe S, Shirote P. Nanosponges Encapsulated Phytochemicals for Targeting Cancer: A Review. Curr Drug Targets 2021; 22:443-462. [PMID: 33045959 DOI: 10.2174/1389450121999201012201455] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/16/2020] [Accepted: 09/02/2020] [Indexed: 11/22/2022]
Abstract
Cancer is the most ruinous disease globally. Natural products have impressive characteristics, such as exceptional chemical versatility, chemical and biological properties of macromolecular specificity and less toxicity which make them good leads in finding novel drugs. The phytochemicals not only help to prevent but also treat chronic cancerous conditions. The present review attempts to put forth some selected anticancer phytochemicals that had reported omics characteristic and specifically suppressed cancer with in vitro and in vivo activity. Certain issues pertaining to anticancer phytochemicals like delivery to target site in the body and achieving controlled release in order to prevent overdoses have been a major concern for medical researchers worldwide. The most conventional chemotherapy protocols for the treatment of cancer lead to adverse effects that limit biological efficacy and compromise patient outcomes. In order to defeat incompetency of current and upcoming natural anticancer agents and to attain targeted drug delivery with good efficacy and fewer side effects, there is a special focus on novel nanostructured particles and nano approaches consisting of carrier system. Recent studies have led to the discovery of mesoporous and nanoporous drug delivery mechanisms, such as inorganic or organic-based nanosponges. The metal based inorganic systems have exhibited toxicity and non-biodegradable character in vivo. As a result of problems related to inorganic systems, major shift of research from inorganic to organic nanosystems has occurred. About decades ago, researchers developed organic nanosponges to control the limitation of drug delivery and cancer therapies. This review article discusses the development and application of nanosponges encapsulated phytochemicals for cancer therapy.
Collapse
Affiliation(s)
- Shailaja Dombe
- Department of Pharmaceutics, Arvind Gavali College of Pharmacy, Satara, Shivaji University, Satara-415004, India
| | - Pramodkumar Shirote
- Department of Pharmaceutical Chemistry, Arvind Gavali College of Pharmacy, Satara, Shivaji University, Satara- 415004, India
| |
Collapse
|
17
|
Antifungal Properties of Essential Oils and Their Compounds for Application in Skin Fungal Infections: Conventional and Nonconventional Approaches. MOLECULES (BASEL, SWITZERLAND) 2021; 26:molecules26041093. [PMID: 33669627 PMCID: PMC7922942 DOI: 10.3390/molecules26041093] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/29/2021] [Accepted: 01/31/2021] [Indexed: 01/07/2023]
Abstract
Essential oils (EOs) are known to have varying degrees of antimicrobial properties that are mainly due to the presence of bioactive compounds. These include antiviral, nematicidal, antifungal, insecticidal and antioxidant properties. This review highlights the potential of EOs and their compounds for application as antifungal agents for the treatment of skin diseases via conventional and nonconventional approaches. A search was conducted using three databases (Scopus, Web of Science, Google Scholar), and all relevant articles from the period of 2010-2020 that are freely available in English were extracted. In our findings, EOs with a high percentage of monoterpenes showed strong ability as potential antifungal agents. Lavandula sp., Salvia sp., Thymus sp., Citrus sp., and Cymbopogon sp. were among the various species found to show excellent antifungal properties against various skin diseases. Some researchers developed advanced formulations such as gel, semi-solid, and ointment bases to further evaluate the effectiveness of EOs as antifungal agents. To date, most studies on the application of EOs as antifungal agents were performed using in vitro techniques, and only a limited number pursued in vivo and intervention-based research.
Collapse
|
18
|
Guineo-Alvarado J, Quilaqueo M, Hermosilla J, González S, Medina C, Rolleri A, Lim LT, Rubilar M. Degree of crosslinking in β-cyclodextrin-based nanosponges and their effect on piperine encapsulation. Food Chem 2020; 340:128132. [PMID: 33011468 DOI: 10.1016/j.foodchem.2020.128132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 08/26/2020] [Accepted: 09/16/2020] [Indexed: 10/23/2022]
Abstract
Piperine (PIP) is an alkaloid which is potent as a therapeutic agent. However, its applications are restricted by its poor water solubility. Nanosponges (NS) derived from polymers are versatile carriers for poor water-soluble substances. The aim of this work was to synthesize β-cyclodextrin NS, by microwave-assisted fusion, for the encapsulation of PIP. Different formulations of NS were synthesized by varying the molar ratio of β-cyclodextrin:diphenyl carbonate (β-CD:DPC; 1:2, 1:6 and 1:10). NS specimens derived from 1:2, 1:6 and 1:10 β-CD:DPC molar ratios exhibited degree of substitution values of 0.345, 0.629 and 0.878, respectively. The crystallinity of NS was enhanced by increasing diphenyl carbonate concentration. A high degree of crosslinking in the NS increased the loading efficiency due to increased surface area available for bioactive inclusion. This study demonstrated the feasibility of synthesizing NS derived from β-cyclodextrin of high crystallinity for the encapsulation of PIP at high loading capacity.
Collapse
Affiliation(s)
- Juan Guineo-Alvarado
- Master of Engineering Sciences with Specialization in Biotechnology, Universidad de La Frontera, Temuco, Chile
| | - Marcela Quilaqueo
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco, Chile; Scientific and Technological Bioresource Nucleus, BIOREN, Universidad de La Frontera, Avenida Francisco Salazar, 01145 Temuco, Chile
| | - Jeyson Hermosilla
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco, Chile; Scientific and Technological Bioresource Nucleus, BIOREN, Universidad de La Frontera, Avenida Francisco Salazar, 01145 Temuco, Chile
| | - Sofía González
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco, Chile; Scientific and Technological Bioresource Nucleus, BIOREN, Universidad de La Frontera, Avenida Francisco Salazar, 01145 Temuco, Chile
| | - Camila Medina
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco, Chile; Scientific and Technological Bioresource Nucleus, BIOREN, Universidad de La Frontera, Avenida Francisco Salazar, 01145 Temuco, Chile
| | - Aldo Rolleri
- Institute of Forests and Society, Faculty of Forest Science and Natural Resources, Universidad Austral de Valdivia, Valdivia, Chile
| | - Loong-Tak Lim
- Department of Food Science, University of Guelph, Guelph, Ontario, N1G2W1, Canada
| | - Mónica Rubilar
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco, Chile; Scientific and Technological Bioresource Nucleus, BIOREN, Universidad de La Frontera, Avenida Francisco Salazar, 01145 Temuco, Chile.
| |
Collapse
|
19
|
Appleton SL, Tannous M, Argenziano M, Muntoni E, Rosa AC, Rossi D, Caldera F, Scomparin A, Trotta F, Cavalli R. Nanosponges as protein delivery systems: Insulin, a case study. Int J Pharm 2020; 590:119888. [PMID: 32950667 DOI: 10.1016/j.ijpharm.2020.119888] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/11/2020] [Accepted: 09/13/2020] [Indexed: 12/28/2022]
Abstract
Cyclodextrin-based nanosponges have been found to bepromising drug delivery systems. This paper investigates an application that still needs to be studied in depth, that is, the oral delivery of peptides and proteins, choosing insulin as a case study. The nanospongewas synthesized by crosslinkingβ-cyclodextrins withpyromellitic dianhydride, adopting a top-down approach for its subsequent formulation. Aphysicochemical characterization, in-vitro andin-vivo tests were carried out on the formulation developed. It was nanometric (around 250 nm) with high negative zeta potential, mucoadhesion and swelling properties, good loading capability (about 14%) and encapsulation efficiency (above 90%). The in-vitro release of insulin was negligible at a gastric pH (below 2%) while sustained at an intestinal pH, thus showing a pH-sensitive behaviour of the nanosponge. The Caco-2 cell permeability assay proved that the intestinal permeation of insulin was enhanced when loaded inside the nanosponge. The in-vivo studies confirmed the presence of insulin in rat plasma and a marked hypoglycemic effect in diabetic mice after duodenal and oral administrations, respectively. These preliminary results are encouraging with a view to continuing to study this β-cyclodextrin nanosponge technology for the oral administration of insulin and extending this approach to other proteins of pharmaceutical interest.
Collapse
Affiliation(s)
| | - Maria Tannous
- Department of Chemistry, University of Turin, via P. Giuria 7, 10125 Turin, Italy.
| | - Monica Argenziano
- Department of Drug Science and Technology, University of Turin, via P. Giuria 9, 10125 Turin, Italy.
| | - Elisabetta Muntoni
- Department of Drug Science and Technology, University of Turin, via P. Giuria 9, 10125 Turin, Italy.
| | - Arianna Carolina Rosa
- Department of Drug Science and Technology, University of Turin, via P. Giuria 9, 10125 Turin, Italy.
| | - Davide Rossi
- Department of Chemistry, University of Turin, via P. Giuria 7, 10125 Turin, Italy.
| | - Fabrizio Caldera
- Department of Chemistry, University of Turin, via P. Giuria 7, 10125 Turin, Italy.
| | - Anna Scomparin
- Department of Drug Science and Technology, University of Turin, via P. Giuria 9, 10125 Turin, Italy.
| | - Francesco Trotta
- Department of Chemistry, University of Turin, via P. Giuria 7, 10125 Turin, Italy.
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Turin, via P. Giuria 9, 10125 Turin, Italy.
| |
Collapse
|
20
|
Cyclodextrin nanosponge as a temoporfin nanocarrier: Balancing between accumulation and penetration in 3D tumor spheroids. Eur J Pharm Biopharm 2020; 154:33-42. [PMID: 32634570 DOI: 10.1016/j.ejpb.2020.06.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/15/2020] [Accepted: 06/30/2020] [Indexed: 01/19/2023]
Abstract
As the intertissue delivery of hydrophobic temoporfin (mTHPC) remains inefficient, we propose the use of cyclodextrin-based nanosponges as a smart, advanced system for improved mTHPC delivery. Recently, we demonstrated that cyclodextrins (CDs) allow mTHPC to penetrate into tumor spheroids via a nanoshuttle mechanism. However, the CD complexes were very sensitive to the dilution, thus limiting their translation invivo. Hypercrosslinked CD monomers in a three-dimensional network (namely, CD nanosponges), however, may form both inclusion and non-inclusion complexes with drug molecules, providing controlled release and prolonged exposure to the drug. In the present work, we demonstrate that epichlorohydrin-crosslinked CD nanosponges based on β-CD (βCDp) and carboxymethyl-β-CD (CMβCDp) monomers efficiently encapsulated mTHPC. We calculated the apparent binding constants between mTHPC and CD polymers (K=(6.3-8.8) × 106M-1 and K=(1.2-1.7) × 106M-1 for βCDp and CMβCDp, respectively) using fluorescence titration curve fitting. The encapsulation of mTHPC in a CD polymer matrix had slower photosensitizer (PS) release compared to monomer CD units, providing deep penetration of mTHPC in 3D tumor spheroids in a concentration-dependent manner. However, the improvement of mTHPC penetration in 3D human pharynx squamous cell carcinoma (FaDu) spheroids using CD polymers was strongly accompanied by the inhibition of PS cellular uptake, demonstrating the delicate balance between the accumulation and the penetration of PS in FaDu spheroids. In summary, mTHPC-loaded CD nanosponges are a strong candidate for further invivo study in preclinical models, which could be considered as an advanced smart system for mTHPC delivery.
Collapse
|
21
|
Argenziano M, Foglietta F, Canaparo R, Spagnolo R, Della Pepa C, Caldera F, Trotta F, Serpe L, Cavalli R. Biological Effect Evaluation of Glutathione-Responsive Cyclodextrin-Based Nanosponges: 2D and 3D Studies. Molecules 2020; 25:molecules25122775. [PMID: 32560204 PMCID: PMC7355809 DOI: 10.3390/molecules25122775] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 06/13/2020] [Indexed: 02/07/2023] Open
Abstract
This study aims to evaluate the bioeffects of glutathione-responsive β-cyclodextrin-based nanosponges (GSH-NSs) on two- (2D) and three-dimensional (3D) cell cultures. The bioeffects of two types of GSH-NS formulations, with low (GSH-NS B) and high (GSH-NS D) disulfide-bond content, were evaluated on 2D colorectal (HCT116 and HT-29) and prostatic (DU-145 and PC3) cancer cell cultures. In particular, the cellular uptake of GSH-NS was evaluated, as their effects on cell growth, mitochondrial activity, membrane integrity, cell cycle distribution, mRNA expression, and reactive oxygen species production. The effect of GSH-NSs on cell growth was also evaluated on multicellular spheroids (MCS) and a comparison of the GSH-NS cell growth inhibitory activity, in terms of inhibition concentration (IC)50 values, was performed between 2D and 3D cell cultures. A significant decrease in 2D cell growth was observed at high GSH-NS concentrations, with the formulation with a low disulfide-bond content, GSH-NS B, being more cytotoxic than the formulation with a high disulfide-bond content, GSH-NS D. The cell growth decrease induced by GSH-NS was owing to G1 cell cycle arrest. Moreover, a significant down-regulation of mRNA expression of the cyclin genes CDK1, CDK2, and CDK4 and up-regulation of mRNA expression of the cyclin inhibitor genes CDKN1A and CDKN2A were observed. On the other hand, a significant decrease in MCS growth was also observed at high GSH-NS concentrations, but not influenced by the nanosponge disulfide-bond content, with the MCS IC50 values being significantly higher than those obtained on 2D cell cultures. GSH-NSs are suitable nanocarries as they provoke limited cellular effects, as cell cycle arrest only occurred at concentrations significantly higher than those used for drug delivery.
Collapse
Affiliation(s)
- Monica Argenziano
- Department of Drug Science and Technology, University of Torino, Via Pietro Giuria 9, 10125 Torino, Italy; (M.A.); (F.F.); (R.C.); (R.S.); (C.D.P.); (L.S.)
| | - Federica Foglietta
- Department of Drug Science and Technology, University of Torino, Via Pietro Giuria 9, 10125 Torino, Italy; (M.A.); (F.F.); (R.C.); (R.S.); (C.D.P.); (L.S.)
| | - Roberto Canaparo
- Department of Drug Science and Technology, University of Torino, Via Pietro Giuria 9, 10125 Torino, Italy; (M.A.); (F.F.); (R.C.); (R.S.); (C.D.P.); (L.S.)
| | - Rita Spagnolo
- Department of Drug Science and Technology, University of Torino, Via Pietro Giuria 9, 10125 Torino, Italy; (M.A.); (F.F.); (R.C.); (R.S.); (C.D.P.); (L.S.)
| | - Carlo Della Pepa
- Department of Drug Science and Technology, University of Torino, Via Pietro Giuria 9, 10125 Torino, Italy; (M.A.); (F.F.); (R.C.); (R.S.); (C.D.P.); (L.S.)
| | - Fabrizio Caldera
- Department of Chemistry, University of Torino, Via Pietro Giuria 7, 10125 Torino, Italy; (F.C.); (F.T.)
| | - Francesco Trotta
- Department of Chemistry, University of Torino, Via Pietro Giuria 7, 10125 Torino, Italy; (F.C.); (F.T.)
| | - Loredana Serpe
- Department of Drug Science and Technology, University of Torino, Via Pietro Giuria 9, 10125 Torino, Italy; (M.A.); (F.F.); (R.C.); (R.S.); (C.D.P.); (L.S.)
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Torino, Via Pietro Giuria 9, 10125 Torino, Italy; (M.A.); (F.F.); (R.C.); (R.S.); (C.D.P.); (L.S.)
- Correspondence: ; Tel.: +39-011-670-7190; Fax: +39-011-670-7162
| |
Collapse
|
22
|
Ünal S, Aktaş Y, Benito JM, Bilensoy E. Cyclodextrin nanoparticle bound oral camptothecin for colorectal cancer: Formulation development and optimization. Int J Pharm 2020; 584:119468. [PMID: 32470483 DOI: 10.1016/j.ijpharm.2020.119468] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 01/15/2023]
Abstract
Chemotherapeutic drugs for colorectal cancer(CRC) which is currently the third most lethal cancer globally, are administered intravenously (iv) due to their low oral bioavailability resulting from their physicochemical properties. Non-selective biodistribution and difficulties of parenteral administration reduce treatment efficacy. The aim of this work is to develop cyclodextrin (CD) based cationic nanoparticles (NPs) for CRC treatment with model drug camptothecin (CPT) that can be administered orally, protecting CPT through gastrointestinal tract (GIT), accumulating at mucus layer and providing an effective local treatment for the tumor area. NPs using two different amphiphilic CDs were prepared and coated with polyethylenimine (PEI) or chitosan (CS) to obtain positively charged surface for all formulations. Pre-formulation studies resulted in optimal formulation, CPT loaded Poly-β-CD-C6 NPs, with 135 nm diameter and zeta potential of + 40 mV. In vitro release study was designed to represent gastrointestinal pH and transit time revealing 52% of encapsulated CPT successfully delivered all the way to simulated colon. CPT bound to Poly-β-CD-C6 NPs exhibited higher cytotoxicity on HT-29 cells compared to equivalent CPT in solution. Caco-2 cell permeability studies showed 276% increase in CPT permeability and significantly higher mucosal penetration in cationic CD nanoparticle form.
Collapse
Affiliation(s)
- Sedat Ünal
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Erciyes University, Kayseri 38280, Turkey; Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara 06100, Turkey
| | - Yeşim Aktaş
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Erciyes University, Kayseri 38280, Turkey
| | - Juan M Benito
- Institute for Chemical Research, CSIC - University of Sevilla, Av. Americo Vespucio 49, Sevilla 41092, Spain
| | - Erem Bilensoy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara 06100, Turkey.
| |
Collapse
|
23
|
History of Cyclodextrin Nanosponges. Polymers (Basel) 2020; 12:polym12051122. [PMID: 32423091 PMCID: PMC7285114 DOI: 10.3390/polym12051122] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/17/2022] Open
Abstract
Nowadays, research in the field of nanotechnology and nanomedicine has become increasingly predominant, focusing on the manipulation and development of materials on a nanometer scale. Polysaccharides have often been used as they are safe, non-toxic, hydrophilic, biodegradable and are low cost. Among them, starch derivatives and, in particular, cyclodextrin-based nanosponges (CD NSs) have recently emerged due to the outstanding properties attributable to their peculiar structure. In fact, alongside the common polysaccharide features, such as the presence of tunable functional groups and their ability to interact with biological tissues, thus giving rise to bioadhesion, which is particularly useful in drug delivery, what makes CD NSs unique is their three-dimensional network made up of crosslinked cyclodextrin units. The name “nanosponge” appeared for the first time in the 1990s due to their nanoporous, sponge-like structure and responded to the need to overcome the limitations of native cyclodextrins (CDs), particularly their water solubility and inability to encapsulate charged and large molecules efficiently. Since CD NSs were introduced, efforts have been made over the years to understand their mechanism of action and their capability to host molecules with low or high molecular weight, charged, hydrophobic or hydrophilic by changing the type of cyclodextrin, crosslinker and degree of crosslinking used. They enabled great advances to be made in various fields such as agroscience, pharmaceutical, biomedical and biotechnological sectors, and NS research is far from reaching its conclusion. This review gives an overview of CD NS research, focusing on the origin and key points of the historical development in the last 50 years, progressing from relatively simple crosslinked networks in the 1960s to today’s multifunctional polymers. The approach adopted in writing the present study consisted in exploring the historical evolution of NSs in order to understand their role today, and imagine their future.
Collapse
|
24
|
Development of (G3-C12)-mediated camptothecin polymeric prodrug targeting to Galectin-3 receptor against androgen-independent prostate cancer. Int J Pharm 2020; 580:119123. [PMID: 32035258 DOI: 10.1016/j.ijpharm.2020.119123] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/07/2020] [Accepted: 02/04/2020] [Indexed: 01/08/2023]
Abstract
The development of small molecule anticancer drugs, with low water solubility and high toxicity, into polymeric prodrugs has developed into a promising strategy in clinical application. In this study, we synthesized a novel G3-C12-mediated esterase-sensitive tumor-targeting polymeric prodrug of camptothecin (CPT), P(OEGMA-co-CPT-co-G3-C12), and explored its anticancer activity against androgen-independent prostate cancer in vitro and in vivo. Compared to free CPT, the multifunctional polymeric prodrug demonstrated improved water solubility and stability, higher intracellular uptake, and enhanced cytotoxicity in DU145 cells in vitro. Furthermore, it displayed an improved accumulation in the tumor and an enhanced anticancer activity in vivo. Hence, P(OEGMA-co-CPT-co-G3-C12) could be a promising drug in the treatment of androgen-independent prostate cancer.
Collapse
|
25
|
Abstract
The particular β-cyclodextrin 3D structure, with its hydrophilic surface and
apolar cavity, has enabled to partially or totally encapsulate hydrophobic molecules of appropriated
size and shape in aqueous solution as well as in solid-state through the formation
of a reversible host–guest complex. Accordingly, β-cyclodextrin based nanosponges
have been prepared and used in previous years for the synthesis of organic compounds. In
this review, we are going to mention some of the recent reports on the application of β-
cyclodextrin 3D nanosponges in organic synthesis catalysis. Furthermore, it should be
mentioned that these compounds have also been utilized for numerous applications including
drug delivery, gas storage, rubber manufacture, diagnostics, cosmetics, agriculture,
smart fabrics, water purification, and flame retardants.
Collapse
Affiliation(s)
- Ali R. Kiasat
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Seyyed J. Saghanezhad
- Department of Chemistry, ACECR-Production Technology Research Institute, Ahvaz, Iran
| | - Samaneh Noori
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
26
|
Fabrication of β-cyclodextrin and sialic acid copolymer by single pot reaction to site specific drug delivery. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2017.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
27
|
Dehshahri A, Ashrafizadeh M, Ghasemipour Afshar E, Pardakhty A, Mandegary A, Mohammadinejad R, Sethi G. Topoisomerase inhibitors: Pharmacology and emerging nanoscale delivery systems. Pharmacol Res 2019; 151:104551. [PMID: 31743776 DOI: 10.1016/j.phrs.2019.104551] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/11/2019] [Accepted: 11/16/2019] [Indexed: 02/07/2023]
Abstract
Topoisomerase enzymes have shown unique roles in replication and transcription. These enzymes which were initially found in Escherichia coli have attracted considerable attention as target molecules for cancer therapy. Nowadays, there are several topoisomerase inhibitors in the market to treat or at least control the progression of cancer. However, significant toxicity, low solubility and poor pharmacokinetic properties have limited their wide application and these characteristics need to be improved. Nano-delivery systems have provided an opportunity to modify the intrinsic properties of molecules and also to transfer the toxic agent to the target tissues. These delivery systems leads to the re-introduction of existing molecules present in the market as novel therapeutic agents with different physicochemical and pharmacokinetic properties. This review focusses on a variety of nano-delivery vehicles used for the improvement of pharmacological properties of topoisomerase inhibitors and thus enabling their potential application as novel drugs in the market.
Collapse
Affiliation(s)
- Ali Dehshahri
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Elham Ghasemipour Afshar
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Mandegary
- Physiology Research Center, Institute of Neuropharmacology, and Department of Toxicology & Pharmacology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| |
Collapse
|
28
|
Allahyari S, Trotta F, Valizadeh H, Jelvehgari M, Zakeri-Milani P. Cyclodextrin-based nanosponges as promising carriers for active agents. Expert Opin Drug Deliv 2019; 16:467-479. [PMID: 30845847 DOI: 10.1080/17425247.2019.1591365] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION In recent years, new drug delivery systems have attempted to overcome the undesirable pharmacokinetic problems of various drugs. Among them, cyclodextrin nanosponges (CDNSs) attract great attention from researchers for solving major bioavailability problems such as inadequate solubility, poor dissolution rate, and the limited stability of some agents, as well as increasing their effectiveness and decreasing unwanted side effects. This novel system can also be prepared as different dosage forms. AREAS COVERED This review will give an insight into the effects of CDNSs on the pharmacokinetic parameters and permeability of active agents. Different classes of drugs delivered by this system are mentioned and we designate which CD is used most widely in their production process. We also inform why this carrier can be introduced as a versatile carrying system in pharmaceutical fields. Registered patents about this novel system in various fields are also mentioned. EXPERT OPINION The readers will be informed on CDNSs as a novel carrier especially for the delivery of drugs. Versatile characteristics and applications of them can also be known by this review. Finally, CDNSs may be introduced as a remarkable vehicle in the pharmaceutical market in coming years.
Collapse
Affiliation(s)
- Saeideh Allahyari
- a Faculty of Pharmacy , Tabriz University of Medical Science , Tabriz , Iran.,b Student Research Committee , Tabriz University of Medical Science , Tabriz , Iran
| | - Francesco Trotta
- c Department of Chemistry , University of Torino , Turin , IT , Italy
| | - Hadi Valizadeh
- d Drug Applied Research Center and Faculty of Pharmacy , Tabriz University of Medical Science , Tabriz , Iran
| | - Mitra Jelvehgari
- a Faculty of Pharmacy , Tabriz University of Medical Science , Tabriz , Iran
| | - Parvin Zakeri-Milani
- e Liver and Gastrointestinal Diseases Research Center and Faculty of Pharmacy , Tabriz University of Medical Sciences , Tabriz , Iran
| |
Collapse
|
29
|
Menezes PDP, Andrade TDA, Frank LA, de Souza EPBSS, Trindade GDGG, Trindade IAS, Serafini MR, Guterres SS, Araújo AADS. Advances of nanosystems containing cyclodextrins and their applications in pharmaceuticals. Int J Pharm 2019; 559:312-328. [PMID: 30703500 DOI: 10.1016/j.ijpharm.2019.01.041] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 10/27/2022]
Abstract
For many years, researchers have worked with supramolecular structures involving inclusion complexes with cyclodextrins. These studies have resulted in new commercially available drugs which have been of great benefit. More recently, studies using nanoparticles, including nanosystems containing cyclodextrins, have become a focus of academic research due to the versatility of the systems and their remarkable therapeutic potential. This review focuses on studies published between 2002 and 2018 involving nanosystems containing cyclodextrins. We consider the type of nanosystems, their importance in a health context, the physicochemical techniques used to show the quality of these systems and their potential for the development of novel pharmaceutical formulations. These have been developed in recent studies which have mainly been focusing on basic science with no clinical trials as yet being performed. This is important to note because it means that the studies do not include any toxicity tests. Despite this limitation, the characterization assays performed suggest that these new formulations may have therapeutic potential. However, more research is required to assess the efficacy and safety of these nanosystems.
Collapse
Affiliation(s)
| | | | - Luiza Abrahão Frank
- College of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | | | | | | | | | | | | |
Collapse
|
30
|
Argenziano M, Lombardi C, Ferrara B, Trotta F, Caldera F, Blangetti M, Koltai H, Kapulnik Y, Yarden R, Gigliotti L, Dianzani U, Dianzani C, Prandi C, Cavalli R. Glutathione/pH-responsive nanosponges enhance strigolactone delivery to prostate cancer cells. Oncotarget 2018; 9:35813-35829. [PMID: 30533197 PMCID: PMC6254672 DOI: 10.18632/oncotarget.26287] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 10/24/2018] [Indexed: 12/11/2022] Open
Abstract
Strigolactones (SLs) are carotenoid-derived plant hormones that exhibit anti-cancer activities. We previously demonstrated that two SL analogues, MEB55 and ST362, inhibit the growth and survival of various cancer cell lines. However, these compounds have low aqueous solubility and stability at physiological pH. Here, we generated SL-loaded glutathione/pH-responsive nanosponges (GSH/pH-NS) to selectively deliver SLs to prostate cancer cells and enhance their therapeutic efficacy. The SLs were readily incorporated into the GSH/pH-NS. The drug loading efficiency was 13.9% for MEB55 and 15.4% for ST362, and the encapsulation efficiency was 88.7% and 96.5%, respectively. Kinetic analysis revealed that release of MEB55 and ST362 from the GSH/pH-NS was accelerated at acidic pH and in the presence of a high GSH concentration. Evaluation of the effects of MEB55- and ST362-loaded GSH/pH-NS on the growth of DU145 (high GSH) and PC-3 (low GSH) prostate cancer cells revealed that the GSH/pH-NS inhibited the proliferation of DU145 cells to a greater extent than free MEB55 or ST362 over a range of concentrations. These findings indicate GSH/pH-NS are efficient tools for controlled delivery of SLs to prostate cancer cells and may enhance the therapeutic efficacy of these compounds.
Collapse
Affiliation(s)
- Monica Argenziano
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | | | - Benedetta Ferrara
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | | | | | | | - Hinanit Koltai
- Agricultural Research Organization, Volcani Center, Rishon LeTsiyon, Israel
| | - Yoram Kapulnik
- Agricultural Research Organization, Volcani Center, Rishon LeTsiyon, Israel
| | - Ronit Yarden
- Georgetown University Medical Center, Washington DC, USA
| | - Luca Gigliotti
- Department of Health Sciences, Universita del Piemonte Orientale, Novara, Italy
| | - Umberto Dianzani
- Department of Health Sciences, Universita del Piemonte Orientale, Novara, Italy
| | - Chiara Dianzani
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | | | - Roberta Cavalli
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| |
Collapse
|
31
|
Dramou P, Fizir M, Taleb A, Itatahine A, Dahiru NS, Mehdi YA, Wei L, Zhang J, He H. Folic acid-conjugated chitosan oligosaccharide-magnetic halloysite nanotubes as a delivery system for camptothecin. Carbohydr Polym 2018; 197:117-127. [DOI: 10.1016/j.carbpol.2018.05.071] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/15/2018] [Accepted: 05/24/2018] [Indexed: 12/15/2022]
|
32
|
Osmani RA, Kulkarni P, Manjunatha S, Gowda V, Hani U, Vaghela R, Bhosale R. Cyclodextrin Nanosponges in Drug Delivery and Nanotherapeutics. ENVIRONMENTAL NANOTECHNOLOGY 2018. [DOI: 10.1007/978-3-319-76090-2_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
33
|
Gigliotti CL, Ferrara B, Occhipinti S, Boggio E, Barrera G, Pizzimenti S, Giovarelli M, Fantozzi R, Chiocchetti A, Argenziano M, Clemente N, Trotta F, Marchiò C, Annaratone L, Boldorini R, Dianzani U, Cavalli R, Dianzani C. Enhanced cytotoxic effect of camptothecin nanosponges in anaplastic thyroid cancer cells in vitro and in vivo on orthotopic xenograft tumors. Drug Deliv 2017; 24:670-680. [PMID: 28368209 PMCID: PMC8241155 DOI: 10.1080/10717544.2017.1303856] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/02/2017] [Accepted: 03/05/2017] [Indexed: 12/30/2022] Open
Abstract
Anaplastic carcinoma of the thyroid (ATC) is a lethal human malignant cancer with median survival of 6 months. To date, no treatment has substantially changed its course, which makes urgent need for the development of novel drugs or novel formulations for drug delivery. Nanomedicine has enormous potential to improve the accuracy of cancer therapy by enhancing availability and stability, decreasing effective doses and reducing side effects of drugs. Camptothecin (CPT) is an inhibitor of DNA topoisomerase-I with several anticancer properties but has poor solubility and a high degradation rate. Previously, we reported that CPT encapsulated in β-cyclodextrin-nanosponges (CN-CPT) increased solubility, was protected from degradation and inhibited the growth of prostate tumor cells both in vitro and in vivo. The aim of this study was to extend that work by assessing the CN-CPT effectiveness on ATC both in vitro and in vivo. Results showed that CN-CPT significantly inhibited viability, clonogenic capacity and cell-cycle progression of ATC cell lines showing a faster and enhanced effect compared to free CPT. Moreover, CN-CPT inhibited tumor cell adhesion to vascular endothelial cells, migration, secretion of pro-angiogenic factors (IL-8 and VEGF-α), expression of β-PIX, belonging to the Rho family activators, and phosphorylation of the Erk1/2 MAPK. Finally, CN-CPT significantly inhibited the growth, the metastatization and the vascularization of orthotopic ATC xenografts in SCID/beige mice without apparent toxic effects in vivo. This work extends the previous insight showing that β-cyclodextrin-nanosponges are a promising tool for the treatment of ATC.
Collapse
Affiliation(s)
- Casimiro Luca Gigliotti
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases, UPO, Novara, Italy
| | - Benedetta Ferrara
- Department of Drug Science and Technology, University of Torino, Torino, Italy
| | - Sergio Occhipinti
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Elena Boggio
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases, UPO, Novara, Italy
| | - Giuseppina Barrera
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Stefania Pizzimenti
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Mirella Giovarelli
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Roberto Fantozzi
- Department of Drug Science and Technology, University of Torino, Torino, Italy
| | - Annalisa Chiocchetti
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases, UPO, Novara, Italy
| | - Monica Argenziano
- Department of Drug Science and Technology, University of Torino, Torino, Italy
| | - Nausicaa Clemente
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases, UPO, Novara, Italy
| | - Francesco Trotta
- Department of Chemistry, University of Torino, Torino, Italy, and
| | - Caterina Marchiò
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - Laura Annaratone
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - Renzo Boldorini
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases, UPO, Novara, Italy
| | - Umberto Dianzani
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases, UPO, Novara, Italy
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Torino, Torino, Italy
| | - Chiara Dianzani
- Department of Drug Science and Technology, University of Torino, Torino, Italy
| |
Collapse
|
34
|
Wang X, Tan C, Wang G, Cai JJ, Wang LP, Imperato-McGinley J, Zhu YS. Dual action of NSC606985 on cell growth and apoptosis mediated through PKCδ in prostatic cancer cells. Int J Oncol 2017; 51:1601-1610. [PMID: 29048618 PMCID: PMC5643069 DOI: 10.3892/ijo.2017.4138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/08/2017] [Indexed: 12/13/2022] Open
Abstract
Chemotherapy is a vital therapeutic strategy for castration-resistant prostate cancer (CRPC). We have previously shown that NSC606985 (NSC), a camptothecin (CPT) analog, induced cell apoptosis via interacting with topoisomerase I (Topo I) in prostate cancer cells. In the present study, the effect and mechanism of CPT analogs in LAPC4 cells were investigated. LAPC-4 cells were treated with NSC, CPT, and topotecan. Cell proliferation, apoptosis, and protein kinase Cδ (PKCδ) subcellular activation were measured at different doses and time-points, with or without PKCδ inhibition or knockdown of PKCδ expression. NSC at doses ranging from 10 to 100 nM induced a dose-dependent increase in viable cell number and DNA biosynthesis with mild cell apoptosis, whereas, at doses ranging from 500 nM to 5 mM, NSC produced a dose-dependent decrease in cell proliferation and DNA biosynthesis with a significant induction of cell apoptosis. Both NSC-induced cell proliferation and apoptosis were blocked by knockdown of PKCδ with a specific RNAi, or by the co-administration of rottlerin, a PKCδ inhibitor. Moreover, NSC produced a dose-dependent subcellular activation of PKCδ. The dose-dependent dual action of NSC is mediated at least in part through the differential subcellular activation of PKCδ in LAPC4 cells. The demonstration of a differential cell response to camptothecin analogs would facilitate the identification of biomarker(s) to CPT sensitivity and promote the personalization of CPT chemotherapy in CRPC.
Collapse
Affiliation(s)
- Xin Wang
- Department of Medicine/Endocrinology, Weill Cornell Medicine, New York, NY 10065, USA
- Xiangya Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410008
| | - Chen Tan
- Department of Medicine/Endocrinology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Guo Wang
- Department of Medicine/Endocrinology, Weill Cornell Medicine, New York, NY 10065, USA
- Xiangya Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410008
| | - Jing-Jing Cai
- Department of Medicine/Endocrinology, Weill Cornell Medicine, New York, NY 10065, USA
- Xiangya Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410008
| | - Li-Ping Wang
- Department of Medicine/Endocrinology, Weill Cornell Medicine, New York, NY 10065, USA
- The First People's Hospital of Chenzhou City, University of South China, Chenzhou, Hunan 423000, P.R. China
| | | | - Yuan-Shan Zhu
- Department of Medicine/Endocrinology, Weill Cornell Medicine, New York, NY 10065, USA
- Xiangya Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410008
| |
Collapse
|
35
|
Sherje AP, Dravyakar BR, Kadam D, Jadhav M. Cyclodextrin-based nanosponges: A critical review. Carbohydr Polym 2017; 173:37-49. [PMID: 28732878 DOI: 10.1016/j.carbpol.2017.05.086] [Citation(s) in RCA: 189] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/25/2017] [Accepted: 05/25/2017] [Indexed: 11/29/2022]
|
36
|
Krishnan P, Rajan M, Kumari S, Sakinah S, Priya SP, Amira F, Danjuma L, Pooi Ling M, Fakurazi S, Arulselvan P, Higuchi A, Arumugam R, Alarfaj AA, Munusamy MA, Hamat RA, Benelli G, Murugan K, Kumar SS. Efficiency of newly formulated camptothecin with β-cyclodextrin-EDTA-Fe 3O 4 nanoparticle-conjugated nanocarriers as an anti-colon cancer (HT29) drug. Sci Rep 2017; 7:10962. [PMID: 28887536 PMCID: PMC5591276 DOI: 10.1038/s41598-017-09140-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 07/24/2017] [Indexed: 11/25/2022] Open
Abstract
Camptothecin (CPT) is an anti-cancer drug that effectively treats various cancers, including colon cancer. However, poor solubility and other drawbacks have restricted its chemotherapeutic potential. To overcome these restrictions, CPT was encapsulated in CEF (cyclodextrin-EDTA-FE3O4), a composite nanoparticle of magnetic iron oxide (Fe3O4), and β-cyclodextrin was cross-linked with ethylenediaminetetraacetic acid (EDTA). This formulation improved CPT’s solubility and bioavailability for cancer cells. The use of magnetically responsive anti-cancer formulation is highly advantageous in cancer chemotherapy. The chemical characterisation of CPT-CEF was studied here. The ability of this nano-compound to induce apoptosis in HT29 colon cancer cells and A549 lung cancer cells was evaluated. The dose-dependent cytotoxicity of CPT-CEF was shown using MTT. Propidium iodide and Annexin V staining, mitochondrial membrane depolarisation (JC-1 dye), and caspase-3 activity were assayed to detect apoptosis in CPT-CEF-treated cancer cells. Cell cycle analysis also showed G1 phase arrest, which indicated possible synergistic effects of the nano-carrier. These study results show that CPT-CEF causes a dose-dependent cell viability reduction in HT29 and A549 cells and induces apoptosis in colon cancer cells via caspase-3 activation. These data strongly suggest that CPT could be used as a major nanocarrier for CPT to effectively treat colon cancer.
Collapse
Affiliation(s)
- Poorani Krishnan
- Department of Medical Microbiology and Parasitology, Universiti Putra Malaysia, 43400 UPM, Serdang Selangor, Malaysia
| | - Mariappan Rajan
- Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, 625 021, Tamil Nadu, India.
| | - Sharmilah Kumari
- Department of Medical Microbiology and Parasitology, Universiti Putra Malaysia, 43400 UPM, Serdang Selangor, Malaysia
| | - S Sakinah
- Department of Medical Microbiology and Parasitology, Universiti Putra Malaysia, 43400 UPM, Serdang Selangor, Malaysia
| | - Sivan Padma Priya
- Department of Medical Microbiology and Parasitology, Universiti Putra Malaysia, 43400 UPM, Serdang Selangor, Malaysia
| | - Fatin Amira
- Department of Medical Microbiology and Parasitology, Universiti Putra Malaysia, 43400 UPM, Serdang Selangor, Malaysia
| | - Lawal Danjuma
- Department of Medical Microbiology and Parasitology, Universiti Putra Malaysia, 43400 UPM, Serdang Selangor, Malaysia
| | - Mok Pooi Ling
- Department of Biomedical Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Genetics and Regenerative Medicine Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Sharida Fakurazi
- Laboratory of Vaccines and Immunotherapeutic, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang Selangor, Malaysia
| | - Palanisamy Arulselvan
- Laboratory of Vaccines and Immunotherapeutic, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang Selangor, Malaysia.,Muthayammal Centre for Advanced Research, Muthayammal College of Arts and Science, Rasipuram, Namakkal, Tamilnadu, 637408, India
| | - Akon Higuchi
- Department of Chemical and Materials Engineering, National Central University, Jhong-li, Taoyuan, 32001, Taiwan.,Department of Reproduction, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan.,Department of Botany and Microbiology, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ramitha Arumugam
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Abdullah A Alarfaj
- Department of Botany and Microbiology, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Murugan A Munusamy
- Department of Botany and Microbiology, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Rukman Awang Hamat
- Department of Medical Microbiology and Parasitology, Universiti Putra Malaysia, 43400 UPM, Serdang Selangor, Malaysia
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124, Pisa, Italy.,The BioRobotics Institute, Scuola Superiore Sant'Anna, viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy
| | - Kadarkarai Murugan
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - S Suresh Kumar
- Department of Medical Microbiology and Parasitology, Universiti Putra Malaysia, 43400 UPM, Serdang Selangor, Malaysia. .,Department of Biomedical Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| |
Collapse
|
37
|
Rajan M, Krishnan P, Pradeepkumar P, Jeyanthinath M, Jeyaraj M, Ling MP, Arulselvan P, Higuchi A, Munusamy MA, Arumugam R, Benelli G, Murugan K, Kumar SS. Magneto-chemotherapy for cervical cancer treatment with camptothecin loaded Fe3O4 functionalized β-cyclodextrin nanovehicle. RSC Adv 2017. [DOI: 10.1039/c7ra06615e] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We portray a novel way to synthesis of iron oxide magnetic nanoparticle incorporated β-cyclodextrin (β-CD) nanocarrier stabilized by ethylenediamine tetra acetic acid (EDTA) obtaining remarkable biocompatibility and biodegradability.
Collapse
|
38
|
Botella P, Rivero-Buceta E. Safe approaches for camptothecin delivery: Structural analogues and nanomedicines. J Control Release 2016; 247:28-54. [PMID: 28027948 DOI: 10.1016/j.jconrel.2016.12.023] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/20/2016] [Indexed: 12/19/2022]
Abstract
Twenty-(S)-camptothecin is a strongly cytotoxic molecule with excellent antitumor activity over a wide spectrum of human cancers. However, the direct formulation is limited by its poor water solubility, low plasmatic stability and severe toxicity, which currently limits its clinical use. As a consequence, two strategies have been developed in order to achieve safe and efficient delivery of camptothecin to target cells: structural analogues and nanomedicines. In this review, we summarize recent advances in the design, synthesis and development of camptothecin molecular derivatives and supramolecular vehicles, following a systematic classification according to structure-activity relationships (structural analogues) or chemical nature (nanomedicines). A series of organic, inorganic and hybrid materials are presented as nanoplatforms to overcome camptothecin restrictions in administration, biodistribution, pharmacokinetics and toxicity. Nanocarriers which respond to a variety of stimuli endogenously (e.g., pH, redox potential, enzyme activity) or exogenously (e.g., magnetic field, light, temperature, ultrasound) seem the best positioned therapeutic materials for optimal spatial and temporal control over drug release. The main goal of this review is to be used as a source of relevant literature for others interested in the field of camptothecin-based therapeutics. To this end, final remarks on the most important formulations currently under clinical trial are provided.
Collapse
Affiliation(s)
- Pablo Botella
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain.
| | - Eva Rivero-Buceta
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain
| |
Collapse
|
39
|
Zerkoune L, Lesieur S, Putaux JL, Choisnard L, Gèze A, Wouessidjewe D, Angelov B, Vebert-Nardin C, Doutch J, Angelova A. Mesoporous self-assembled nanoparticles of biotransesterified cyclodextrins and nonlamellar lipids as carriers of water-insoluble substances. SOFT MATTER 2016; 12:7539-7550. [PMID: 27714323 DOI: 10.1039/c6sm00661b] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Soft mesoporous hierarchically structured particles were created by the self-assembly of an amphiphilic deep cavitand cyclodextrin βCD-nC10 (degree of substitution n = 7.3), with a nanocavity grafted by multiple alkyl (C10) chains on the secondary face of the βCD macrocycle through enzymatic biotransesterification, and the nonlamellar lipid monoolein (MO). The effect of the non-ionic dispersing agent polysorbate 80 (P80) on the liquid crystalline organization of the nanocarriers and their stability was studied in the context of vesicle-to-cubosome transition. The coexistence of small vesicular and nanosponge membrane objects with bigger nanoparticles with inner multicompartment cubic lattice structures was established as a typical feature of the employed dispersion process. The cryogenic transmission electron microscopy (cryo-TEM) images and small-angle X-ray scattering (SAXS) structural analyses revealed the dependence of the internal organization of the self-assembled nanoparticles on the presence of embedded βCD-nC10 deep cavitands in the lipid bilayers. The obtained results indicated that the incorporated amphiphilic βCD-nC10 building blocks stabilize the cubic lattice packing in the lipid membrane particles, which displayed structural features beyond the traditional CD nanosponges. UV-Vis spectroscopy was employed to characterize the nanoencapsulation of a model hydrophobic dimethylphenylazo-naphthol guest compound (Oil red) in the created nanocarriers. In perspective, these dual porosity carriers should be suitable for co-encapsulation and sustained delivery of peptide, protein or siRNA biopharmaceuticals together with small molecular weight drug compounds or imaging agents.
Collapse
Affiliation(s)
- Leïla Zerkoune
- Institut Galien Paris-Sud, CNRS UMR 8612, Univ. Paris-Sud, Université Paris-Saclay, LabEx LERMIT, 5 rue J.-B. Clément, 92296 Châtenay-Malabry cedex, France.
| | - Sylviane Lesieur
- Institut Galien Paris-Sud, CNRS UMR 8612, Univ. Paris-Sud, Université Paris-Saclay, LabEx LERMIT, 5 rue J.-B. Clément, 92296 Châtenay-Malabry cedex, France.
| | - Jean-Luc Putaux
- Université Grenoble Alpes, Centre de Recherches sur les Macromolécules Végétales (CERMAV), F-38000 Grenoble, France and CNRS, CERMAV, F-38000 Grenoble, France
| | - Luc Choisnard
- Université Grenoble Alpes, Département de Pharmacologie Moléculaire (DPM), F-38000 Grenoble, France and CNRS UMR 5063, DPM, F-38000 Grenoble, France
| | - Annabelle Gèze
- Université Grenoble Alpes, Département de Pharmacologie Moléculaire (DPM), F-38000 Grenoble, France and CNRS UMR 5063, DPM, F-38000 Grenoble, France
| | - Denis Wouessidjewe
- Université Grenoble Alpes, Département de Pharmacologie Moléculaire (DPM), F-38000 Grenoble, France and CNRS UMR 5063, DPM, F-38000 Grenoble, France
| | - Borislav Angelov
- Institute of Physics, ELI Beamlines, Academy of Sciences of the Czech Republic, Na Slovance 2, CZ-18221 Prague, Czech Republic
| | | | - James Doutch
- Diamond Light Source Ltd., Didcot, Oxfordshire OX11 0DE, UK
| | - Angelina Angelova
- Institut Galien Paris-Sud, CNRS UMR 8612, Univ. Paris-Sud, Université Paris-Saclay, LabEx LERMIT, 5 rue J.-B. Clément, 92296 Châtenay-Malabry cedex, France.
| |
Collapse
|
40
|
Daga M, Ullio C, Argenziano M, Dianzani C, Cavalli R, Trotta F, Ferretti C, Zara GP, Gigliotti CL, Ciamporcero ES, Pettazzoni P, Corti D, Pizzimenti S, Barrera G. GSH-targeted nanosponges increase doxorubicin-induced toxicity "in vitro" and "in vivo" in cancer cells with high antioxidant defenses. Free Radic Biol Med 2016; 97:24-37. [PMID: 27184956 DOI: 10.1016/j.freeradbiomed.2016.05.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 05/09/2016] [Accepted: 05/10/2016] [Indexed: 11/19/2022]
Abstract
Several reports indicate that chemo-resistant cancer cells become highly adapted to intrinsic oxidative stress by up-regulating their antioxidant systems, which causes an increase of intracellular GSH content. Doxorubicin is one of the most widely used drugs for tumor treatment, able to kill cancer cells through several mechanisms. However, doxorubicin use is limited by its toxicity and cancer resistance. Therefore, new therapeutic strategies able to reduce doses and to overcome chemo-resistance are needed. A new class of glutathione-responsive cyclodextrin nanosponges (GSH-NS), is able to release anticancer drugs preferentially in cells having high GSH content. Doxorubicin-loaded GSH-NS, in the cancer cells with high GSH content, inhibited clonogenic growth, cell viability, topoisomerase II activity and induced DNA damage with higher effectiveness than free drug. Moreover, GSH-NS reduced the development of human tumor in xenograft models more than free drug. These characteristics indicate that GSH-NS can be a suitable drug delivery carrier for future applications in cancer therapy.
Collapse
Affiliation(s)
- Martina Daga
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Italy
| | - Chiara Ullio
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Italy
| | - Monica Argenziano
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy
| | - Chiara Dianzani
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy
| | - Francesco Trotta
- Department of Chemistry - University of Turin, Via Pietro Giuria 7, 10125 Turin, Italy
| | - Carlo Ferretti
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy
| | - Gian Paolo Zara
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy
| | - Casimiro L Gigliotti
- Department of Health Sciences, University of Eastern Piedmont'A Avogadro', Via Solaroli 17, 28100 Novara, Italy
| | - Eric S Ciamporcero
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Italy
| | - Piergiorgio Pettazzoni
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Italy
| | - Denise Corti
- Department of Experimental and Clinical Biomedical Sciences, Biochemistry, Human Health Medical School University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Stefania Pizzimenti
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Italy.
| | - Giuseppina Barrera
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Italy
| |
Collapse
|
41
|
Huang Y, Tan H, Guo Z, Wu X, Zhang Q, Zhang L, Diao Y. The biosynthesis and genetic engineering of bioactive indole alkaloids in plants. JOURNAL OF PLANT BIOLOGY 2016. [PMID: 0 DOI: 10.1007/s12374-016-0032-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
|
42
|
Swaminathan S, Cavalli R, Trotta F. Cyclodextrin-based nanosponges: a versatile platform for cancer nanotherapeutics development. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 8:579-601. [PMID: 26800431 DOI: 10.1002/wnan.1384] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/19/2015] [Indexed: 01/09/2023]
Abstract
Nanosponges (NSs) are a new age branched cyclodextrin (CD) polymeric systems exhibiting tremendous potential in pharmaceutical, agro science, and biomedical applications. Over the past decade, different varieties of NS based on the type of CD and the crosslinker have been developed tailored for specific applications. NS technology has been instrumental in achieving solubilization, stabilization, sustained release, enhancement of activity, permeability enhancement, protein delivery, ocular delivery, stimuli sensitive drug release, enhancement of bioavailability, etc. There is a major explosion of research in the area of NS-aided cancer therapeutics. A wide of anticancer molecules both from a pharmacological and physicochemical perspective have been developed as NS formulations by several groups including ours. Our objective in this review is to capture a systematic and comprehensive snapshot of the state-of-the-art of NS-aided cancer therapeutics reported so far. This review will provide an ideal platform for both the formulation scientists working on new polymeric/drug development and cancer biologists/scientists to understand the current nanotechnologies in CD-based NS-aided cancer therapeutics. The scope of the review is limited to small molecules and CD-based NS. The review covers in detail the problems associated with anticancer small molecules, and the solution provided by CD-based NS specifically for camptothecin, curcumin, paclitaxel, tamoxifen, resveratrol, quercetin, oxygen-NS, temozolomide, doxorubicin, and 5-Fluorouracil. WIREs Nanomed Nanobiotechnol 2016, 8:579-601. doi: 10.1002/wnan.1384 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Shankar Swaminathan
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Torino, Turin, Italy
| | | |
Collapse
|
43
|
Trotta F, Caldera F, Dianzani C, Argenziano M, Barrera G, Cavalli R. Glutathione Bioresponsive Cyclodextrin Nanosponges. Chempluschem 2015; 81:439-443. [DOI: 10.1002/cplu.201500531] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Francesco Trotta
- Dipartimento di Chimica; University of Torino; Via Pietro Giuria 7 10125 Torino Italy
| | - Fabrizio Caldera
- Dipartimento di Chimica; University of Torino; Via Pietro Giuria 7 10125 Torino Italy
| | - Chiara Dianzani
- Dipartimento di Scienza e Tecnologia del Farmaco; University of Torino; Via Verdi, 8 10124 Torino Italy
| | - Monica Argenziano
- Dipartimento di Chimica; University of Torino; Via Pietro Giuria 7 10125 Torino Italy
| | - Giuseppina Barrera
- Dipartimento di Scienze Cliniche e Biologiche; University of Torino; C.so Raffaello, 30 10125 Torino Italy
| | - Roberta Cavalli
- Dipartimento di Scienza e Tecnologia del Farmaco; University of Torino; Via Verdi, 8 10124 Torino Italy
| |
Collapse
|
44
|
Dora CP, Trotta F, Kushwah V, Devasari N, Singh C, Suresh S, Jain S. Potential of erlotinib cyclodextrin nanosponge complex to enhance solubility, dissolution rate, in vitro cytotoxicity and oral bioavailability. Carbohydr Polym 2015; 137:339-349. [PMID: 26686138 DOI: 10.1016/j.carbpol.2015.10.080] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/21/2015] [Accepted: 10/25/2015] [Indexed: 10/22/2022]
Abstract
The present study was envisaged to evaluate the effect of erlotinib β-cyclodextrin nanosponge (ERL-NS) on the solubility, dissolution, in vitro cytotoxicity and oral bioavailability of erlotinib (ERL). Preliminary studies were conducted to select the optimized stoichiometry concentration of ERL and NS. The drug nanosponge complex comprising of 1:4 proportions of ERL and NS was prepared by freeze drying. ERL-NS formed nanoparticles of 372 ± 31 nm size with narrow size distribution (0.21 ± 0.07 PDI) and high zeta potential (-32.07 ± 4.58 mV). The complexation phenomenon was confirmed by DSC, SEM, PXRD, FTIR, and TEM studies. In vitro dissolution studies revealed an increased dissolution rate (2-folds) with an enhanced dissolution efficiency of the nanosponge complex in comparison to pure drug. In vitro cytotoxicity study and apoptosis assay in pancreatic cell lines (MIA PaCa-2 and PANC-1) indicates the increased toxicity of ERL-NS. Both, quantitative and qualitative cell uptake studies unveiled the higher uptake efficiency of ERL-NS than free drug. ERL-NS showed enhanced oral bioavailability with 1.8-fold higher Cmax (78.98 ± 6.2 vs. 42.36 ± 1.75 μg/ml), and ∼ 2-fold AUC0-∞ (1079.95 ± 41.38 vs. 580.43 ± 71.91), in comparison to pure ERL. Therefore, we conclude that the formation of a complex of nanosponge with ERL is a successful approach to increase its solubility, dissolution and oral bioavailability which may ultimately result in reduction in dose and dose related side-effects.
Collapse
Affiliation(s)
- Chander Parkash Dora
- Department of Pharmaceutical Tech. (Formulations), National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab 160062, India; Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab 160062, India
| | - Francesco Trotta
- Dipartimento di Chimica, Università degli Studi di Torino, Via P. Giuria, 7-10125, Torino, Italy
| | - Varun Kushwah
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab 160062, India
| | - Naresh Devasari
- Department of Pharmaceutical Tech. (Formulations), National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab 160062, India
| | - Charan Singh
- Department of Pharmaceutical Tech. (Formulations), National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab 160062, India
| | - Sarasija Suresh
- Department of Pharmaceutical Tech. (Formulations), National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab 160062, India; Drug Design and Development Centre, Faculty of Pharmacy, MSR University of Applied Sciences, Bangalore, Karnataka 560054, India.
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab 160062, India.
| |
Collapse
|
45
|
Mahalingam M, Krishnamoorthy K. Fabrication and optimization of camptothecin loaded Eudragit S 100 nanoparticles by Taguchi L4 orthogonal array design. Int J Pharm Investig 2015; 5:147-54. [PMID: 26258056 PMCID: PMC4522864 DOI: 10.4103/2230-973x.160852] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Introduction: The objective of this investigation was to design and optimize the experimental conditions for the fabrication of camptothecin (CPT) loaded Eudragit S 100. Nanoparticles, and to understand the effect of various process parameters on the average particles size, particle size uniformity and surface area of the prepared polymeric nanoparticles using Taguchi design. Materials and Methods: CPT loaded Eudragit S 100 nanoparticles were prepared by nanoprecipitation method and characterized by particles size analyzer. Taguchi orthogonal array design was implemented to study the influence of seven independent variables on three dependent variables. Eight experimental trials involving seven independent variables at higher and lower levels were generated by design expert. Results: Factorial design result has shown that (a) except, β-cyclodextrin concentration all other parameters do not significantly influenced the average particle size (R1); (b) except, sonication duration and aqueous phase volume, all other process parameters significantly influence the particle size uniformity; (c) all the process parameters does not significantly influence the surface area. Conclusion: The R1, particle size uniformity and surface area of the prepared drug-loaded polymeric nanoparticles were found to be 120 nm, 0.237 and 55.7 m2 /g and the results were good correlated with the data generated by the Taguchi design method.
Collapse
|
46
|
Rossi B, Venuti V, Paciaroni A, Mele A, Longeville S, Natali F, Crupi V, Majolino D, Trotta F. Thermal fluctuations in chemically cross-linked polymers of cyclodextrins. SOFT MATTER 2015; 11:2183-2192. [PMID: 25639345 DOI: 10.1039/c4sm02000f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The extent and nature of thermal fluctuations in the innovative class of cross-linked polymers called cyclodextrin nanosponges (CDNS) are investigated, on the picosecond time scale, through elastic and quasielastic neutron scattering experiments. Nanosponges are complex 3D polymer networks where covalent bonds connecting different cyclodextrin (CD) units and intra- and inter-molecular hydrogen-bond interactions cooperate to define the molecular architecture and fast dynamics of the polymer. The study presented here aims to clarify the nature of the conformational rearrangements activated by increasing temperature in the nanosponge polymer, and the constraints imposed by intra- and inter-molecular hydrogen-bond patterns on the internal dynamics of the macromolecule. The results suggest a picture, in which conformational rearrangements involving the torsion of the OH groups around the C-O bonds dominate the internal dynamics of the polymer over the picosecond time scale. Moreover, the estimated values of mean square displacements reveal that the motions of the hydrogen atoms in the nanosponges are progressively hampered as the cross-linking degree of the polymer is increased. Finally, the study of the molecular relaxations suggests a dynamical rearrangement of the hydrogen-bond networks, which is characterized by a jump diffusion motion of the more mobile hydrogen atoms belonging to the OH groups of the CD units. All these findings add further contribution to the rational comprehensive view of the dynamics of these macromolecules, which may be particularly beneficial in designing new drug-delivery systems with tuneable inclusion/release properties.
Collapse
Affiliation(s)
- Barbara Rossi
- Elettra - Sincrotrone Trieste, Strada Statale 14 km 163.5, Area Science Park, 34149 Trieste, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Ünal H, Öztürk N, Bilensoy E. Formulation development, stability and anticancer efficacy of core-shell cyclodextrin nanocapsules for oral chemotherapy with camptothecin. Beilstein J Org Chem 2015; 11:204-12. [PMID: 25815071 PMCID: PMC4362320 DOI: 10.3762/bjoc.11.22] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 01/13/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The aim of this study was to design and evaluate hybrid cyclodextrin (CD) nanocapsules intended for the oral delivery of the anticancer agent camptothecin (CPT) in order to maintain drug stability in the body and to improve its eventual bioavailability. For this reason, an amphiphilic cyclodextrin (CD) derivative per-modified on the primary face 6OCAPRO was used as core molecule to form nanocapsules with the nanoprecipitation technique. Nanocapsules were further coated with the cationic polymer chitosan to improve the cellular uptake and interaction with biological membranes through positive surface charge. Nanocapsules were evaluated for their in vitro characteristics such as particle size, zeta potential, drug loading and release profiles followed by cell culture studies with the MCF-7 and Caco-2 cell line evaluating their anticancer efficacy and permeability. The CD nanocapsules were imaged by scanning electron microscopy (SEM). The concentration of CPT entrapped in nanocapsules was determined by reversed phase HPLC. The in vitro release study of CPT was performed with a dialysis bag method under sink conditions mimicking the gastric and intestinal pH. The hydrolytic stability of CPT in nanocapsules was investigated in simulated gastric and intestinal fluids (SGF, SIF). RESULTS The mean particle sizes of both anionic and cationic CPT-loaded nanocapsules were in the range of 180-200 nm with polydispersity indices lower than 0.400 indicating monodisperse size distribution of nanocapsules with favourable potential for intracellular drug delivery to tumour cells. Surface charges of anionic and cationic nanocapsules were demonstrated as -21 mV and +18 mV, respectively. The stability of CPT in simulated release media, SGF and SIF were maintained suggesting the improved protection of the drug molecule from rapid hydrolysis degradation or gastrointestinal pH in nanocapsule oily core. Furthermore CD nanocapsules showed higher anticancer efficacy than CPT solution against the MCF-7 cell line. Permeation of CPT across Caco-2 cells was found to be 3 fold higher when incorporated in hybrid CD nanocapsules compared with a DMSO solution. CONCLUSION Oral CD nanocapsules indicating increased oral bioavailability might be a promising strategy to maintain the physiological stability and to improve the oral bioavailability of problematic anticancer drugs such as CPT which may contribute to patient quality of life and drug efficacy in cancer therapy.
Collapse
Affiliation(s)
- Hale Ünal
- Division of Nanotechnology and Nanomedicine, Graduate School of Science and Engineering, Hacettepe University, Beytepe, Ankara, 06800, Turkey
| | - Naile Öztürk
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Sıhhıye, Ankara, 06100, Turkey
| | - Erem Bilensoy
- Division of Nanotechnology and Nanomedicine, Graduate School of Science and Engineering, Hacettepe University, Beytepe, Ankara, 06800, Turkey
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Sıhhıye, Ankara, 06100, Turkey
| |
Collapse
|
48
|
Aldawsari HM, Badr-Eldin SM, Labib GS, El-Kamel AH. Design and formulation of a topical hydrogel integrating lemongrass-loaded nanosponges with an enhanced antifungal effect: in vitro/in vivo evaluation. Int J Nanomedicine 2015; 10:893-902. [PMID: 25673986 PMCID: PMC4321607 DOI: 10.2147/ijn.s74771] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Lemongrass oil (LGO) is a volatile oil extracted from the leaves of Cymbopogon citratus that has become one of the most important natural oils in the pharmaceutical industry because of its diverse pharmacologic and clinical effects. However, LGO suffers from low aqueous solubility, which could lead to a reduced effect. Moreover, the instability of its major active constituent, citral, could lead to volatilization, reaction with other formulation ingredients, and consequently, skin irritation. To surmount these problems, this research aims to formulate lemongrass-loaded ethyl cellulose nanosponges with a topical hydrogel with an enhanced antifungal effect and decreased irritation. The minimal inhibitory concentration and minimal fungicidal concentration of LGO against Candida albicans strain ATC 100231, determined using the broth macrodilution method, were found to be 2 and 8 μL/mL, respectively. The emulsion solvent evaporation technique was used for the preparation of the nanosponges. The nanosponge dispersions were then integrated into carbopol hydrogels (0.4%). Nine formulations were prepared based on a 32 full factorial design employing the ethyl cellulose:polyvinyl alcohol ratio and stirring rate as independent variables. The prepared formulations were evaluated for particle size, citral content, and in vitro release. Results revealed that all the nanosponge dispersions were nanosized, with satisfactory citral content and sustained release profiles. Statistical analysis revealed that both ethyl cellulose:polyvinyl alcohol ratio and stirring rate have significant effects on particle size and percentage released after 6 hours; however, the effect of the stirring rate was more prominent on both responses. The selected hydrogel formulation, F9, was subjected to surface morphological investigations, using scanning and transmission electron microscopy, where results showed that the nanosponges possess a spherical uniform shape with a spongy structure, the integrity of which was not affected by integration into the hydrogel. Furthermore, the selected formulation, F9, was tested for skin irritation and antifungal activity against C. albicans, where results confirmed the nonirritancy and the effective antifungal activity of the prepared hydrogel.
Collapse
Affiliation(s)
- Hibah M Aldawsari
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shaimaa M Badr-Eldin
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia ; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Gihan S Labib
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia ; Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Amal H El-Kamel
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
49
|
Ruijun W, Shi W, Yijun X, Mengwuliji T, Lijuan Z, Yumin W. Antitumor effects and immune regulation activities of a purified polysaccharide extracted from Juglan regia. Int J Biol Macromol 2015; 72:771-5. [DOI: 10.1016/j.ijbiomac.2014.09.026] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 09/06/2014] [Accepted: 09/22/2014] [Indexed: 10/24/2022]
|
50
|
Effects of platycodin D on proliferation, apoptosis and PI3K/Akt signal pathway of human glioma U251 cells. Molecules 2014; 19:21411-23. [PMID: 25532840 PMCID: PMC6270900 DOI: 10.3390/molecules191221411] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/05/2014] [Accepted: 12/15/2014] [Indexed: 01/08/2023] Open
Abstract
Effects of platycodin D (PD) on the proliferation, apoptosis and PI3K/Akt signaling pathway of human glioma U251 cells were investigated. Glioma U251 cells were treated with PD at final concentrations of 0, 16.3, 40.8, 81.6, 163.2 μM, and inhibition rate, early and late apoptotic rate, apoptotic index, expression of apoptosis-related proteins and phosphorylation of the PI3K/Akt signaling pathway were evaluated. The results showed that compared with the control group, PD could increase the proliferation inhibition rate of U251 cells in a dose- and time -dependent manner; PD could also elevate the early and late apoptotic rate, apoptotic index and the level of pro-apoptotic proteins of glioma U251 cells, such as Bax and cleaved caspase-3, but lower the level of apoptosis inhibitory protein, such as Bcl-2; PD could increase the ratio of G0/G1 phase U251 cells, and lower the proportion of Sphase U251 cells and the ratio of G2/M phase U251 cells; PD could reduce the ratio of p-Akt/Akt. The results indicate that PD can inhibit the proliferation, induce the apoptosis and cause the cell cycle arrest in human glioma U251 cells, which may be related to the inhibition of PD on the activation of PI3K/Akt signaling pathway.
Collapse
|