1
|
Zhu Y, Liu Y, Yang K, Wu W, Cheng Y, Ding Y, Gu R, Liu H, Zhang X, Liu Y. Apoptotic vesicles inhibit bone marrow adiposity via wnt/β-catenin signaling. Regen Ther 2025; 29:262-270. [PMID: 40230357 PMCID: PMC11994938 DOI: 10.1016/j.reth.2025.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 02/14/2025] [Accepted: 03/18/2025] [Indexed: 04/16/2025] Open
Abstract
Background There is currently increasing focus on aging-related diseases. Osteoporosis is a common disease the incidence of which increases with age. In older patients with osteoporosis, bone marrow mesenchymal stem cells (BMMSCs) have a decreased capacity for osteogenesis and an increased capacity for adipogenesis, causing excessive accumulation of adipose tissue in the bone marrow. Therefore, means of reducing bone marrow adiposity may have therapeutic potential for osteoporosis. Apoptotic vesicles (apoVs) participate in a wide range of physiological processes and have been shown to have therapeutic effects in a variety of diseases. The principal objective of this study was to examine the special properties and regulatory mechanisms of BMMSC-derived apoVs in the treatment of bone marrow adiposity. Results The results showed that apoVs could decrease bone marrow adiposity in osteoporotic mice and prevent adipogenic differentiation of MSCs by activating the Wnt/β-catenin pathway. Conclusion New apoV-based therapies have potential for the treatment of bone marrow adiposity in patients with aging-related osteoporosis and may be further applicable to the treatment of obesity and aging-related diseases.
Collapse
Affiliation(s)
- Yuan Zhu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing 100081, China
- Department of Stomatology, Peking University Third Hospital, Beijing 100191, China
| | - Yaoshan Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing 100081, China
| | - Kunkun Yang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing 100081, China
| | - Weiliang Wu
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China
| | - Yawen Cheng
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing 100081, China
| | - Yanan Ding
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing 100081, China
| | - Ranli Gu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing 100081, China
| | - Hao Liu
- The Central Laboratory, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing 100081, China
- National Center of Stomatology, National Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Xiao Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing 100081, China
- National Center of Stomatology, National Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing 100081, China
- National Center of Stomatology, National Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, China
| |
Collapse
|
2
|
Chan HY, Wang Q, Howie A, Bucci J, Graham P, Li Y. Extracellular vesicle biomarkers redefine prostate cancer radiotherapy. Cancer Lett 2025; 616:217568. [PMID: 39978570 DOI: 10.1016/j.canlet.2025.217568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/04/2025] [Accepted: 02/16/2025] [Indexed: 02/22/2025]
Abstract
Radiotherapy (RT) remains a cornerstone in the treatment of prostate cancer (PCa). Extracellular vesicles (EVs), nano-sized particles secreted by cells, play important roles in intercellular communication within the tumour microenvironment (TME) and contribute to tumour growth, metastasis, and therapy resistance. Recent advancements demonstrate the potential of EVs as biomarkers for cancer diagnosis, prognosis, and treatment monitoring. Accumulating evidence supports the role of EVs in modulating RT outcomes by shaping the TME, mediating radioresistance, and influencing cancer metastasis. Despite substantial progress, challenges remain, including the heterogeneity of EV biogenesis, variability in cargo composition, and the absence of standardised methods for EV isolation and characterisation. While the therapeutic and diagnostic prospects of EVs in PCa management are promising, further research is needed to clarify the mechanisms through which EVs impact RT and to translate these findings into clinical practice. Incorporating EV research into PCa treatment paradigms could enhance diagnostic accuracy, enable real-time monitoring of RT responses, and support the development of new targeted therapeutic strategies. This review discusses recent progress in understanding EVs in the context of RT for PCa, focuses on their roles in modulating tumour growth, contributing to radioresistance within the TME, and facilitating the monitoring of RT efficacy and recurrence. In addition, the potential of EVs as biomarkers for liquid biopsy and their applications in enhancing radiosensitivity or overcoming radioresistance is also explored.
Collapse
Affiliation(s)
- Hei Yeung Chan
- St George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia; Cancer Care Centre, St George Hospital, Kogarah, NSW, 2217, Australia
| | - Qi Wang
- St George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia; Cancer Care Centre, St George Hospital, Kogarah, NSW, 2217, Australia
| | - Andrew Howie
- Cancer Care Centre, St George Hospital, Kogarah, NSW, 2217, Australia
| | - Joseph Bucci
- St George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia; Cancer Care Centre, St George Hospital, Kogarah, NSW, 2217, Australia
| | - Peter Graham
- St George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia; Cancer Care Centre, St George Hospital, Kogarah, NSW, 2217, Australia
| | - Yong Li
- St George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia; Cancer Care Centre, St George Hospital, Kogarah, NSW, 2217, Australia.
| |
Collapse
|
3
|
Liu H, Wang G, Li Z, Zhang X, Zhang W, Zhang X, Liu F, Gao J. Exosome-based immunotherapy in hepatocellular carcinoma. Clin Exp Med 2025; 25:127. [PMID: 40274634 PMCID: PMC12021721 DOI: 10.1007/s10238-025-01659-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 03/29/2025] [Indexed: 04/26/2025]
Abstract
Hepatocellular carcinoma (HCC) is a significant global health concern and ranks as the third leading cause of cancer-associated mortality. Systemic therapy faces the emergence of resistance, which hinders the clinical benefits. Recent evidence suggests that exosomes, measuring between 30 and 150 nm in size, which impact the antitumor immune responses, making them a promising candidate for cancer immunotherapy. Owing to their unique physical and chemical characteristics, exosomes can be tailored and engineered for a range of therapeutic objectives. In the present review, we outline the immunomodulatory functions of exosomes in the tumor microenvironment (TME) of HCC, aiming to decipher the underlying mechanisms of exosomes in remodeling suppressive TME. Moreover, we provide detailed and intuitive resource for leveraging the potential of exosomes in immunotherapy, presenting valuable strategies to improve and optimize HCC treatment. Despite the huge therapeutic potential of exosomes, significant challenges persist, including the need for standardization in exosome production, optimization of cargo loading techniques, and the assurance of safety and effectiveness in clinical applications. Addressing these challenges may pave the way for exosome-based immunotherapy for HCC patients.
Collapse
Affiliation(s)
- Hong Liu
- Department of Pathology, Xixi Hospital of Hangzhou, Hangzhou, 310023, Zhejiang Province, China
| | - GuoWei Wang
- Department of Radiology, Xixi Hospital of Hangzhou, Hangzhou, 310023, Zhejiang Province, China
| | - ZhaoYi Li
- Department of Scientific Research and Education, Xixi Hospital of Hangzhou, Hangzhou, 310023, Zhejiang Province, China
| | - XianTu Zhang
- Department of Pathology, Xixi Hospital of Hangzhou, Hangzhou, 310023, Zhejiang Province, China
| | - WeiDong Zhang
- Department of General Surgery I, Xixi Hospital of Hangzhou, Hangzhou, 310023, Zhejiang Province, China
| | - Xia Zhang
- Medical Laboratory, Xixi Hospital of Hangzhou, Hangzhou, 310023, Zhejiang Province, China.
| | - Fang Liu
- Xixi Hospital Biobank, Xixi Hospital of Hangzhou, Zhejiang Province, Hangzhou, 310023, China.
| | - Jing Gao
- Department of Pathology, Xixi Hospital of Hangzhou, Hangzhou, 310023, Zhejiang Province, China.
| |
Collapse
|
4
|
Yadav K, Sahu KK, Sucheta, Minz S, Pradhan M. Unlocking exosome therapeutics: The critical role of pharmacokinetics in clinical applications. Tissue Cell 2025; 93:102749. [PMID: 39904192 DOI: 10.1016/j.tice.2025.102749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/10/2025] [Accepted: 01/15/2025] [Indexed: 02/06/2025]
Abstract
Exosomes are microscopic vesicles released by cells that transport various biological materials and play a vital role in intercellular communication. When they are engineered, they serve as efficient delivery systems for therapeutic agents, making it possible to precisely deliver active pharmaceutical ingredients to organs, tissues, and cells. Exosomes' pharmacokinetics, or how they are transported and metabolized inside the body, is affected by several factors, including their source of origination and the proteins in their cell membranes. The pharmacokinetics and mobility of both native and modified exosomes are being observed in living organisms using advanced imaging modalities such as in vitro-in vivo simulation, magnetic resonance imaging, and positron emission tomography. Establishing comprehensive criteria for the investigation of exosomal pharmacokinetic is essential, given its increasing significance in both therapy and diagnostics. To obtain a thorough understanding of exosome intake, distribution, metabolism, and excretion, molecular imaging methods are crucial. The development of industrial processes and therapeutic applications depends on the precise measurement of exosome concentration in biological samples. To ensure a seamless incorporation of exosomes into clinical practice, as their role in therapeutics grows, it is imperative to conduct a complete assessment of their pharmacokinetics. This review provides a brief on how exosome-based research is evolving and the need for pharmacokinetic consideration to realize the full potential of these promising new therapeutic approaches.
Collapse
Affiliation(s)
- Krishna Yadav
- Rungta College of Pharmaceutical Sciences and Research, Kohka Road, Kurud, Bhilai, Chhattisgarh 491024, India
| | - Kantrol Kumar Sahu
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh 281406, India
| | - Sucheta
- School of Medical and Allied Sciences, K. R. Mangalam University, Gurugram, Haryana 11 122103, India
| | - Sunita Minz
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, India
| | | |
Collapse
|
5
|
Liu L, Chen S, Song Y, Cui L, Chen Y, Xia J, Fan Y, Yang L, Yang L. Hydrogels empowered mesenchymal stem cells and the derived exosomes for regenerative medicine in age-related musculoskeletal diseases. Pharmacol Res 2025; 213:107618. [PMID: 39892438 DOI: 10.1016/j.phrs.2025.107618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/09/2025] [Accepted: 01/17/2025] [Indexed: 02/03/2025]
Abstract
As the population ages, musculoskeletal diseases (MSK) have emerged as a significant burden for individuals, healthcare systems, and social care systems. Recently, regenerative medicine has exhibited vast potential in age-related MSK, with mesenchymal stromal cells (MSCs) and their derived exosomes (Exos) therapies showing distinct advantages. However, these therapies face several limitations, including issues related to ensuring stability and effective distribution within the body. Hydrogels, acting as an ideal carrier, can enhance the therapeutic effects and application range of MSCs and Exos derived from MSCs (MSC-Exos). Therefore, this review comprehensively summarizes the application progress of MSCs and MSC-Exos combined with hydrogels in age-related MSK disease research. It aims to provide a detailed perspective, showcasing the functional enhancement of MSCs and MSC-Exos when incorporated into hydrogels. Additionally, this review explores their potential and challenges in treating age-related MSK diseases, offering references for future research directions and potential innovative strategies.
Collapse
Affiliation(s)
- Lixin Liu
- Departments of Geriatrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, PR China
| | - Siwen Chen
- Research Center for Biomedical Materials, Shenyang Key Laboratory of Biomedical Polymers, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, PR China; Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang 110819, PR China
| | - Yantao Song
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110002, PR China
| | - Longwei Cui
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110002, PR China
| | - Yiman Chen
- Departments of Geriatrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, PR China
| | - Jiangli Xia
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, PR China
| | - Yibo Fan
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Liqun Yang
- Research Center for Biomedical Materials, Shenyang Key Laboratory of Biomedical Polymers, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, PR China.
| | - Lina Yang
- Departments of Geriatrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, PR China; Department of International Physical Examination Center, The First Hospital of China Medical University, Shenyang, Liaoning 110001, PR China.
| |
Collapse
|
6
|
Li L, Yao Z, Salimian KJ, Kong J, Zaheer A, Parian A, Gearhart SL, Mao HQ, Selaru FM. Extracellular Vesicles Delivered by a Nanofiber-Hydrogel Composite Enhance Healing In Vivo in a Model of Crohn's Disease Perianal Fistula. Adv Healthc Mater 2025; 14:e2402292. [PMID: 39240055 PMCID: PMC11882933 DOI: 10.1002/adhm.202402292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/24/2024] [Indexed: 09/07/2024]
Abstract
Perianal fistulas represent a common, aggressive, and disabling complication of Crohn's disease (CD). Despite recent drug developments, novel surgical interventions as well as multidisciplinary treatment approaches, the outcome is dismal, with >50% therapy failure rates. Extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) offer potential therapeutic benefits for treating fistulizing CD, due to the pro-regenerative paracrine signals. However, a significant obstacle to clinical translation of EV-based therapy is the rapid clearance and short half-life of EVs in vivo. Here, an injectable, biodegradable nanofiber-hydrogel composite (NHC) microgel matrix that serves as a carrier to deliver MSC-derived EVs to a rat model of CD perianal fistula (PAF) is reported. It is found that EV-loaded NHC (EV-NHC) yields the best fistula healing when compared to other treatment arms. The MRI assessment reveals that the EV-NHC reduces inflammation at the fistula site and promotes tissue healing. The enhanced therapeutic outcomes are contributed by extended local retention and sustained release of EVs by NHC. In addition, the EV-NHC effectively reduces inflammation at the fistula site and promotes tissue healing and regeneration via macrophage polarization and neo-vascularization. This EV-NHC platform provides an off-the-shelf solution that facilitates its clinical translation.
Collapse
Affiliation(s)
- Ling Li
- Division of Gastroenterology and Hepatology, School of Medicine, Johns Hopkins University; Baltimore, Maryland, USA
| | - Zhicheng Yao
- Institute for NanoBioTechnology, Johns Hopkins University; Baltimore, Maryland, USA
- Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University; Baltimore, Maryland, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine; Baltimore, Maryland, USA
| | - Kevan J. Salimian
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jiayuan Kong
- Institute for NanoBioTechnology, Johns Hopkins University; Baltimore, Maryland, USA
- Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University; Baltimore, Maryland, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine; Baltimore, Maryland, USA
| | - Atif Zaheer
- Department of Radiology & Radiological Sciences, School of Medicine, Johns Hopkins University; Baltimore, Maryland, USA
| | - Alyssa Parian
- Division of Gastroenterology and Hepatology, School of Medicine, Johns Hopkins University; Baltimore, Maryland, USA
| | - Susan L. Gearhart
- Division of Colorectal Surgery, Department of Surgery, Johns Hopkins University School of Medicine; Baltimore, Maryland, USA
| | - Hai-Quan Mao
- Institute for NanoBioTechnology, Johns Hopkins University; Baltimore, Maryland, USA
- Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University; Baltimore, Maryland, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine; Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine; Baltimore, Maryland, USA
| | - Florin M. Selaru
- Division of Gastroenterology and Hepatology, School of Medicine, Johns Hopkins University; Baltimore, Maryland, USA
- Institute for NanoBioTechnology, Johns Hopkins University; Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine; Baltimore, Maryland, USA
- Department of Oncology, Sidney Kimmel Cancer Center, School of Medicine, Johns Hopkins University; Baltimore, Maryland, USA
| |
Collapse
|
7
|
Budayr OM, Miller BC, Nguyen J. Harnessing extracellular vesicle-mediated crosstalk between T cells and cancer cells for therapeutic applications. J Control Release 2025; 378:266-280. [PMID: 39657892 PMCID: PMC11830559 DOI: 10.1016/j.jconrel.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/23/2024] [Accepted: 12/05/2024] [Indexed: 12/12/2024]
Abstract
Small extracellular vesicles (EVs) are a diverse group of lipid-based particles that are ≤200 nm in diameter and contain an aqueous core. EVs have been shown to mediate intercellular communications between a wide array of immune cells; the downstream effects are diverse and have potential implications for the development of novel immunotherapeutic treatments. Despite a high volume of studies addressing the role EVs play in the immune system, our understanding of the crosstalk between T cells and cancer cells remains limited. Here, we discuss how EVs derived from cancer cells modulate T cell functions and conversely, how T cell derived EVs are crucial in modulating adaptive immune functions. In the context of cancer, tumor derived EVs (TD-EVs) halt T cell-mediated immunity by interfering with effector functions and enhancing regulatory T cell (Treg) functions. In contrast, EVs derived from effector T cells can serve to stimulate anticancer immunity, curbing metastasis and tumor growth. These findings highlight important aspects of how EVs can both mediate the therapeutic effects of T cells as well as impair T cell-mediated immunity. This calls for a deeper understanding of EV-mediated effects in order to advance them as next-generation therapeutics and nanocarriers.
Collapse
Affiliation(s)
- Omar M Budayr
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Brian C Miller
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Medicine, Division of Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Juliane Nguyen
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
8
|
Chen BD, Zhao Y, Wu JL, Zhu ZG, Yang XD, Fang RP, Wu CS, Zheng W, Xu CA, Xu K, Ji X. Exosomes in Skin Flap Survival: Unlocking Their Role in Angiogenesis and Tissue Regeneration. Biomedicines 2025; 13:353. [PMID: 40002766 PMCID: PMC11853446 DOI: 10.3390/biomedicines13020353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/22/2025] [Accepted: 02/01/2025] [Indexed: 02/27/2025] Open
Abstract
This review explores the critical role of exosomes in promoting angiogenesis, a key factor in skin flap survival. Skin flaps are widely used in reconstructive surgery, and their survival depends heavily on the formation of new blood vessels. Exosomes, small extracellular vesicles secreted by various cells, have emerged as important mediators of intercellular communication and play a crucial role in biological processes such as angiogenesis. Compared to traditional methods of promoting angiogenesis, exosomes show more selective and targeted therapeutic potential as they naturally carry angiogenic factors and can precisely regulate the angiogenesis process. The review will delve into the molecular mechanisms by which exosomes facilitate angiogenesis, discuss their potential therapeutic applications in enhancing skin flap survival, and explore future research directions, particularly the challenges and prospects of exosomes in clinical translation. By highlighting the unique advantages of exosomes in skin flap survival, this review provides a new perspective in this field and opens up new research directions for future therapeutic strategies.
Collapse
Affiliation(s)
- Bo-da Chen
- Center for Plastic & Reconstructive Surgery, Department of Hand & Reconstructive Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou 310014, China; (B.-d.C.); (J.-l.W.); (Z.-g.Z.); (X.-d.Y.); (R.-p.F.)
| | - Yue Zhao
- School of Public Health, Hangzhou Medical College, Hangzhou 310053, China;
| | - Jian-long Wu
- Center for Plastic & Reconstructive Surgery, Department of Hand & Reconstructive Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou 310014, China; (B.-d.C.); (J.-l.W.); (Z.-g.Z.); (X.-d.Y.); (R.-p.F.)
| | - Zi-guan Zhu
- Center for Plastic & Reconstructive Surgery, Department of Hand & Reconstructive Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou 310014, China; (B.-d.C.); (J.-l.W.); (Z.-g.Z.); (X.-d.Y.); (R.-p.F.)
| | - Xiao-dong Yang
- Center for Plastic & Reconstructive Surgery, Department of Hand & Reconstructive Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou 310014, China; (B.-d.C.); (J.-l.W.); (Z.-g.Z.); (X.-d.Y.); (R.-p.F.)
| | - Ren-peng Fang
- Center for Plastic & Reconstructive Surgery, Department of Hand & Reconstructive Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou 310014, China; (B.-d.C.); (J.-l.W.); (Z.-g.Z.); (X.-d.Y.); (R.-p.F.)
| | - Chen-si Wu
- Center for General Practice Medicine, Department of Infectious Diseases, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou 310014, China; (C.-s.W.); (W.Z.); (C.-a.X.)
| | - Wei Zheng
- Center for General Practice Medicine, Department of Infectious Diseases, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou 310014, China; (C.-s.W.); (W.Z.); (C.-a.X.)
| | - Cheng-an Xu
- Center for General Practice Medicine, Department of Infectious Diseases, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou 310014, China; (C.-s.W.); (W.Z.); (C.-a.X.)
| | - Keyang Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China;
| | - Xin Ji
- Center for General Practice Medicine, Department of Infectious Diseases, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou 310014, China; (C.-s.W.); (W.Z.); (C.-a.X.)
| |
Collapse
|
9
|
Simon L, Constanzo J, Terraza-Aguirre C, Ibn Elfekih Z, Berthelot J, Benkhaled BT, Haute T, Pednekar K, Clark K, Emerson SJ, Atis S, Benedetti C, Langlois S, Marquant A, Prakash J, Wang A, Devoisselle JM, Montier T, Djouad F, Pouget JP, Lapinte V, Morille M. Surface modification of extracellular vesicles with polyoxazolines to enhance their plasma stability and tumor accumulation. Biomaterials 2025; 313:122748. [PMID: 39180918 DOI: 10.1016/j.biomaterials.2024.122748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/23/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024]
Abstract
Extracellular vesicles (EVs) are future promising therapeutics, but their instability in vivo after administration remains an important barrier to their further development. Many groups evaluated EV surface modification strategies to add a targeting group with the aim of controlling EV biodistribution. Conversely, fewer groups focused on their stabilization to obtain "stealth" allogenic EVs. Modulating their stabilization and biodistribution is an essential prerequisite for their development as nano-therapeutics. Here, we explored polyoxazolines with lipid anchors association to the EV membrane (POxylation as an alternative to PEGylation) to stabilize EVs in plasma and control their biodistribution, while preserving their native properties. We found that this modification maintained and seemed to potentiate the immunomodulatory properties of EVs derived from mesenchymal stem/stromal cells (MSC). Using a radiolabeling protocol to track EVs at a therapeutically relevant concentration in vivo, we demonstrated that POxylation is a promising option to stabilize EVs in plasma because it increased EV half-life by 6 fold at 6 h post-injection. Moreover, EV accumulation in tumors was higher after POxylation than after PEGylation.
Collapse
Affiliation(s)
- L Simon
- ICGM, Montpellier University, CNRS, ENSCM, Montpellier, France
| | - J Constanzo
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut Régional Du Cancer de Montpellier (ICM), Montpellier, France
| | | | - Z Ibn Elfekih
- ICGM, Montpellier University, CNRS, ENSCM, Montpellier, France
| | - J Berthelot
- ICGM, Montpellier University, CNRS, ENSCM, Montpellier, France
| | - B T Benkhaled
- ICGM, Montpellier University, CNRS, ENSCM, Montpellier, France
| | - T Haute
- Univ Brest, INSERM, EFS, UMR 1078, GGB, F-29200, Brest, France
| | - K Pednekar
- Department of Advanced Organ Bioengineering and Therapeutics, Engineered Therapeutics Section, Technical Medical Centre, University of Twente, 7500 AE, Enschede, the Netherlands
| | - K Clark
- Center for Surgical Bioengineering, Deparment of Surgery, University of California Davis School of Medicine, Sacramento, CA, USA; Institute for Pediatric Regenerative Medicine, Shriners Children's Northern California, Sacramento, CA, USA
| | - S J Emerson
- Center for Surgical Bioengineering, Deparment of Surgery, University of California Davis School of Medicine, Sacramento, CA, USA; Institute for Pediatric Regenerative Medicine, Shriners Children's Northern California, Sacramento, CA, USA
| | - S Atis
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut Régional Du Cancer de Montpellier (ICM), Montpellier, France
| | - C Benedetti
- Montpellier Ressources Imagerie, BioCampus, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - S Langlois
- Montpellier Ressources Imagerie, BioCampus, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - A Marquant
- ICGM, Montpellier University, CNRS, ENSCM, Montpellier, France
| | - J Prakash
- Department of Advanced Organ Bioengineering and Therapeutics, Engineered Therapeutics Section, Technical Medical Centre, University of Twente, 7500 AE, Enschede, the Netherlands
| | - A Wang
- Center for Surgical Bioengineering, Deparment of Surgery, University of California Davis School of Medicine, Sacramento, CA, USA; Institute for Pediatric Regenerative Medicine, Shriners Children's Northern California, Sacramento, CA, USA
| | - J M Devoisselle
- ICGM, Montpellier University, CNRS, ENSCM, Montpellier, France
| | - T Montier
- Univ Brest, INSERM, EFS, UMR 1078, GGB, F-29200, Brest, France; CHU de Brest, Service de Génétique Médicale et de Biologie de La Reproduction, Centre de Référence des Maladies Rares Maladies Neuromusculaires, 29200, Brest, France
| | - F Djouad
- IRMB, University of Montpellier, INSERM, 34295, Montpellier, France; Clinical Immunology and Osteoarticular Disease Therapeutic Unit, Department of Rheumatology, CHU Montpellier, 34095, Montpellier, France
| | - J P Pouget
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut Régional Du Cancer de Montpellier (ICM), Montpellier, France
| | - V Lapinte
- ICGM, Montpellier University, CNRS, ENSCM, Montpellier, France
| | - Marie Morille
- ICGM, Montpellier University, CNRS, ENSCM, Montpellier, France; Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|
10
|
Hu Y, Zhang W, Ali SR, Takeda K, Vahl TP, Zhu D, Hong Y, Cheng K. Extracellular vesicle therapeutics for cardiac repair. J Mol Cell Cardiol 2025; 199:12-32. [PMID: 39603560 PMCID: PMC11788051 DOI: 10.1016/j.yjmcc.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/30/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024]
Abstract
Extracellular vesicles (EVs) are cell-secreted heterogeneous vesicles that play crucial roles in intercellular communication and disease pathogenesis. Due to their non-tumorigenicity, low immunogenicity, and therapeutic potential, EVs are increasingly used in cardiac repair as cell-free therapy. There exist multiple steps for the design of EV therapies, and each step offers many choices to tune EV properties. Factors such as EV source, cargo, loading methods, routes of administration, surface modification, and biomaterials are comprehensively considered to achieve specific goals. PubMed and Google Scholar were searched in this review, 89 articles related to EV-based cardiac therapy over the past five years (2019 Jan - 2023 Dec) were included, and their key steps in designing EV therapies were counted and analyzed. We aim to provide a comprehensive overview that can serve as a reference guide for researchers to design EV-based cardiac therapies.
Collapse
Affiliation(s)
- Yilan Hu
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Weihang Zhang
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Shah Rukh Ali
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Koji Takeda
- Division of Cardiac Surgery, Department of Surgery, Columbia University, New York, NY 10032, USA
| | - Torsten Peter Vahl
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Donghui Zhu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Ke Cheng
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
11
|
Avalos-de Leon CG, Thomson AW. Regulatory Immune Cell-derived Exosomes: Modes of Action and Therapeutic Potential in Transplantation. Transplantation 2025:00007890-990000000-00994. [PMID: 39865513 DOI: 10.1097/tp.0000000000005309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Reduced dependence on antirejection agents, improved long-term allograft survival, and induction of operational tolerance remain major unmet needs in organ transplantation due to the limitations of current immunosuppressive therapies. To address this challenge, investigators are exploring the therapeutic potential of adoptively transferred host- or donor-derived regulatory immune cells. Extracellular vesicles of endosomal origin (exosomes) secreted by these cells seem to be important contributors to their immunoregulatory properties. Twenty years ago, it was first reported that donor-derived exosomes could extend the survival of transplanted organs in rodents. Recent studies have revealed that regulatory immune cells, such as regulatory myeloid cells (dendritic cells, macrophages, or myeloid-derived suppressor cells), regulatory T cells, or mesenchymal stem/stromal cells can suppress graft rejection via exosomes that express a cargo of immunosuppressive molecules. These include cell surface molecules that interact with adaptive immune cell receptors, immunoregulatory enzymes, and micro- and long noncoding RNAs that can regulate inflammatory gene expression via posttranscriptional changes and promote tolerance through promotion of regulatory T cells. This overview analyzes the diverse molecules and mechanisms that enable regulatory immune cell-derived exosomes to modulate alloimmunity and promote experimental transplant tolerance. We also discuss the potential benefits and limitations of their application as therapeutic entities in organ transplantation.
Collapse
Affiliation(s)
- Cindy G Avalos-de Leon
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh PA
| | - Angus W Thomson
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh PA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh PA
| |
Collapse
|
12
|
Ghoshal B, Jhunjhunwala S. A game of hide-and-seek: how extracellular vesicles evade the immune system. Drug Deliv Transl Res 2025:10.1007/s13346-025-01789-w. [PMID: 39843837 DOI: 10.1007/s13346-025-01789-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2024] [Indexed: 01/24/2025]
Abstract
Extracellular vesicles (EVs) are heterogeneously sized, cell-derived nanoparticles operating as proficient mediators of intercellular communication. They are produced by normal as well as diseased cells and carry a variety of cargo. While the molecular details of EV biology have been worked out over the past two decades, one question that continues to intrigue many is how are EVs able to evade the phagocytic immune cells while also being effectively internalized by the target cell or tissue. While some of the components that facilitate this process have started to be identified, many mechanisms are yet to be dissected. This review summarises some of the key mechanisms that cancer cell-derived and viral infected cell-derived EVs utilize to evade the immune system. It will discuss the diverse cloaking mechanisms, in the form of membrane proteins and cargo content that these EVs utilize to enhance pathogenesis. Further, it will highlight the different strategies that have been used to design EVs to escape the immune system, thereby increasing their circulation time with no major toxic effects in vivo. An understanding of the potential EV components that allow better immune evasion can be used to bioengineer EVs with better circulation times for therapeutic purposes.
Collapse
Affiliation(s)
- Bartika Ghoshal
- Department of Bioengineering, Indian Institute of Science, Bengaluru, 560012, India.
| | | |
Collapse
|
13
|
Lou S, Hu W, Wei P, He D, Fu P, Ding K, Chen Z, Dong Z, Zheng J, Wang K. Artificial Nanovesicles Derived from Cells: A Promising Alternative to Extracellular Vesicles. ACS APPLIED MATERIALS & INTERFACES 2025; 17:22-41. [PMID: 39692623 DOI: 10.1021/acsami.4c12567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
As naturally secreted vesicles by cells, extracellular vesicles (EVs) play essential roles in modulating cell-cell communication and have significant potential in tissue regeneration, immune regulation, and drug delivery. However, the low yield and uncontrollable heterogeneity of EVs have been obstacles to their widespread translation into clinical practice. Recently, it has been discovered that artificial nanovesicles (NVs) produced by cell processing can inherit the components and functions of the parent cells and possess similar structures and functions to EVs, with significantly higher yields and more flexible functionalization, making them a powerful complement to natural EVs. This review focuses on recent advances in the research of artificial NVs as replacements for natural EVs. We provide an overview comparing natural EVs and artificial NVs and summarize the top-down preparation strategies of NVs. The applications of NVs prepared from stem cells, differentiated cells, and engineered cells are presented, as well as the latest advances in NV engineering. Finally, the main challenges of artificial NVs are discussed.
Collapse
Affiliation(s)
- Saiyun Lou
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Department of Respiratory and Critical Care Medicine, Ningbo No. 2 Hospital, Ningbo 315010, China
| | - Wei Hu
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Department of Respiratory and Critical Care Medicine, Ningbo No. 2 Hospital, Ningbo 315010, China
| | - Pengyao Wei
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering of Chinese Academy of Sciences, Ningbo 315300, China
| | - Dongdong He
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering of Chinese Academy of Sciences, Ningbo 315300, China
| | - Pan Fu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering of Chinese Academy of Sciences, Ningbo 315300, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kejian Ding
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo,Zhejiang 315211, China
| | - Zhenyi Chen
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo,Zhejiang 315211, China
| | - Zhaoxing Dong
- Department of Respiratory and Critical Care Medicine, Ningbo No. 2 Hospital, Ningbo 315010, China
| | - Jianping Zheng
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering of Chinese Academy of Sciences, Ningbo 315300, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaizhe Wang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering of Chinese Academy of Sciences, Ningbo 315300, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Saleem M, Shahzad KA, Marryum M, Singh S, Zhou Q, Du S, Wang S, Shao C, Shaikh II. Exosome-based therapies for inflammatory disorders: a review of recent advances. Stem Cell Res Ther 2024; 15:477. [PMID: 39695750 DOI: 10.1186/s13287-024-04107-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024] Open
Abstract
Exosomes, small extracellular vesicles secreted by cells, have emerged as focal mediators in intercellular communication and therapeutic interventions across diverse biomedical fields. Inflammatory disorders, including inflammatory bowel disease, acute liver injury, lung injury, neuroinflammation, and myocardial infarction, are complex conditions that require innovative therapeutic approaches. This review summarizes recent advances in exosome-based therapies for inflammatory disorders, highlighting their potential as diagnostic biomarkers and therapeutic agents. Exosomes have shown promise in reducing inflammation, promoting tissue repair, and improving functional outcomes in preclinical models of inflammatory disorders. However, further research is needed to overcome the challenges associated with exosome isolation, characterization, and delivery, as well as to fully understand their mechanisms of action. Current limitations and future directions in exosome research underscore the need for enhanced isolation techniques and deeper mechanistic insights to harness exosomes' full therapeutic potential in clinical applications. Despite these challenges, exosome-based therapies hold great potential for the treatment of inflammatory disorders and may offer a new paradigm for personalized medication.
Collapse
Affiliation(s)
- Mavra Saleem
- Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Khawar Ali Shahzad
- Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Munazzah Marryum
- Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Shekhar Singh
- Lishui People's Hospital, Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui, 323000, Zhejiang, China
| | - Quan Zhou
- Lishui People's Hospital, Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui, 323000, Zhejiang, China
| | - Siting Du
- Lishui People's Hospital, Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui, 323000, Zhejiang, China
| | - Shuanghu Wang
- Lishui People's Hospital, Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui, 323000, Zhejiang, China
| | - Chuxiao Shao
- Lishui People's Hospital, Central Laboratory of The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China
| | - Imran Ibrahim Shaikh
- Lishui People's Hospital, Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui, 323000, Zhejiang, China.
| |
Collapse
|
15
|
Wu Y, Song P, Wang M, Liu H, Jing Y, Su J. Extracellular derivatives for bone metabolism. J Adv Res 2024; 66:329-347. [PMID: 38218580 PMCID: PMC11674789 DOI: 10.1016/j.jare.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/13/2023] [Accepted: 01/09/2024] [Indexed: 01/15/2024] Open
Abstract
BACKGROUND Bone metabolism can maintain the normal homeostasis and function of bone tissue. Once the bone metabolism balance is broken, it will cause osteoporosis, osteoarthritis, bone defects, bone tumors, or other bone diseases. However, such orthopedic diseases still have many limitations in clinical treatment, such as drug restrictions, drug tolerance, drug side effects, and implant rejection. AIM OF REVIEW In complex bone therapy and bone regeneration, extracellular derivatives have become a promising research focus to solve the problems of bone metabolic diseases. These derivatives, which include components such as extracellular matrix, growth factors, and extracellular vesicles, have significant therapeutic potential. It has the advantages of good biocompatibility, low immune response, and dynamic demand for bone tissue. The purpose of this review is to provide a comprehensive perspective on extracellular derivatives for bone metabolism and elucidate the intrinsic properties and versatility of extracellular derivatives. Further discussion of them as innovative advanced orthopedic materials for improving the effectiveness of bone therapy and regeneration processes. KEY SCIENTIFIC CONCEPTS OF REVIEW In this review, we first listed the types and functions of three extracellular derivatives. Then, we discussed the effects of extracellular derivatives of different cell sources on bone metabolism. Subsequently, we collected applications of extracellular derivatives in the treatment of bone metabolic diseases and summarized the advantages and challenges of extracellular derivatives in clinical applications. Finally, we prospected the extracellular derivatives in novel orthopedic materials and clinical applications. We hope that the comprehensive understanding of extracellular derivatives in bone metabolism will provide new solutions to bone diseases.
Collapse
Affiliation(s)
- Yan Wu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China
| | - Peiran Song
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China
| | - Miaomiao Wang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Department of Rehabilitation Medicine, Shanghai Zhongye Hospital, Shanghai 200941, China
| | - Han Liu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China.
| | - Yingying Jing
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China.
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China; Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
16
|
Bader J, Brigger F, Leroux JC. Extracellular vesicles versus lipid nanoparticles for the delivery of nucleic acids. Adv Drug Deliv Rev 2024; 215:115461. [PMID: 39490384 DOI: 10.1016/j.addr.2024.115461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Extracellular vesicles (EVs) are increasingly investigated for delivering nucleic acid (NA) therapeutics, leveraging their natural role in transporting NA and protein-based cargo in cell-to-cell signaling. Their synthetic counterparts, lipid nanoparticles (LNPs), have been developed over the past decades as NA carriers, culminating in the approval of several marketed formulations such as patisiran/Onpattro® and the mRNA-1273/BNT162 COVID-19 vaccines. The success of LNPs has sparked efforts to develop innovative technologies to target extrahepatic organs, and to deliver novel therapeutic modalities, such as tools for in vivo gene editing. Fueled by the recent advancements in both fields, this review aims to provide a comprehensive overview of the basic characteristics of EV and LNP-based NA delivery systems, from EV biogenesis to structural properties of LNPs. It addresses the primary challenges encountered in utilizing these nanocarriers from a drug formulation and delivery perspective. Additionally, biodistribution profiles, in vitro and in vivo transfection outcomes, as well as their status in clinical trials are compared. Overall, this review provides insights into promising research avenues and potential dead ends for EV and LNP-based NA delivery systems.
Collapse
Affiliation(s)
- Johannes Bader
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Finn Brigger
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Jean-Christophe Leroux
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
17
|
Ding K, Kong J, Li L, Selaru FM, Parian A, Mao HQ. Current and emerging therapeutic strategies for perianal fistula in Crohn's disease patients. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 101:159-182. [PMID: 39521599 PMCID: PMC11753511 DOI: 10.1016/bs.apha.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The long-term remission rates achieved with current treatment options for Crohn's disease with perianal fistula (CD-PAF)-including antibiotics, biologics, immunomodulators, and Janus kinase inhibitors, often combined with advanced surgical interventions-remain unsatisfactory. This chapter explores several innovative biomaterials-based solutions, such as plugs, adhesives, fillers, and stem cell-based therapies. The key approaches and treatment outcomes of these advanced therapies are examined, focusing on their ability to modulate the immune response, promote tissue healing, and improve patient outcomes. Additionally, the chapter discusses future directions, including the optimization of biomaterial designs, enhancement of delivery and retention of regenerative therapies, and a deeper understanding of the underlying mechanisms of healing.
Collapse
Affiliation(s)
- Kailei Ding
- Institute for NanoBioTechnology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Materials Science and Engineering, Whiting School of Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; Translational Tissue Engineering Center, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jiayuan Kong
- Institute for NanoBioTechnology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Materials Science and Engineering, Whiting School of Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; Translational Tissue Engineering Center, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ling Li
- Division of Gastroenterology and Hepatology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Florin M Selaru
- Institute for NanoBioTechnology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; Division of Gastroenterology and Hepatology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Alyssa Parian
- Division of Gastroenterology and Hepatology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| | - Hai-Quan Mao
- Institute for NanoBioTechnology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Materials Science and Engineering, Whiting School of Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; Translational Tissue Engineering Center, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
18
|
Alharbi M, Lai A, Godbole N, Guanzon D, Nair S, Zuñiga F, Quinn A, Yang M, Wu SY, Salomon C. Enhancing precision targeting of ovarian cancer tumor cells in vivo through extracellular vesicle engineering. Int J Cancer 2024; 155:1510-1523. [PMID: 38848494 DOI: 10.1002/ijc.35055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/29/2024] [Accepted: 05/15/2024] [Indexed: 06/09/2024]
Abstract
Extracellular vesicles (EVs) function as natural mediators of intercellular communication, secreted by cells to facilitate cell-cell signaling. Due to their low toxicity, immunogenicity, biodegradability, and potential to encapsulate therapeutic drugs, EVs hold significant therapeutic promise. Nevertheless, their limited targeting ability often diminishes their therapeutic impact. Therefore, enhancing EVs by incorporating targeting units onto their membranes could bolster their targeting capabilities, enabling them to accumulate in specific cells and tissues. In this study, we engineered EVs to fuse ephrin-B2 with the EV membrane protein LAMP2b. This modification aimed to direct the engineered EVs toward the ephrin-B4 receptor expressed on the surface of ovarian cancer cells. The engineered EVs retained their inherent properties, including size, expression of EV membrane proteins, and morphology, upon isolation. In vitro experiments using real-time imaging revealed that EVs engineered with the ephrin-B2 ligand exhibited substantial internalization and uptake by ovarian cancer cells, in stark contrast to native EVs. In vivo, the engineered EVs carrying the ephrin-B2 ligand effectively targeted ovarian cancer cells, surpassing the targeting efficiency of control EVs. This innovative approach establishes a novel targeting system, enhancing the uptake of EVs by ovarian cancer cells. Our findings underscore the potential of using EVs to target cancer cells, thereby enhancing the effectiveness of anti-cancer therapies while minimizing off-target effects and toxicity in normal cells and organs.
Collapse
Affiliation(s)
- Mona Alharbi
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland Centre for Clinical Research, Faculty of Medicine, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, Australia
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Andrew Lai
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland Centre for Clinical Research, Faculty of Medicine, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, Australia
- UQ Centre for Extracellular Vesicle Nanomedicine, The University of Queensland, Brisbane, QLD, Australia
| | - Nihar Godbole
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland Centre for Clinical Research, Faculty of Medicine, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, Australia
- UQ Centre for Extracellular Vesicle Nanomedicine, The University of Queensland, Brisbane, QLD, Australia
| | - Dominic Guanzon
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland Centre for Clinical Research, Faculty of Medicine, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, Australia
- UQ Centre for Extracellular Vesicle Nanomedicine, The University of Queensland, Brisbane, QLD, Australia
| | - Soumyalekshmi Nair
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland Centre for Clinical Research, Faculty of Medicine, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, Australia
- UQ Centre for Extracellular Vesicle Nanomedicine, The University of Queensland, Brisbane, QLD, Australia
| | - Felipe Zuñiga
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Concepción, Chile
| | - Alexander Quinn
- Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, Australia
| | - Mengliu Yang
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Sherry Y Wu
- UQ Centre for Extracellular Vesicle Nanomedicine, The University of Queensland, Brisbane, QLD, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Carlos Salomon
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland Centre for Clinical Research, Faculty of Medicine, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, Australia
- UQ Centre for Extracellular Vesicle Nanomedicine, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
19
|
Mizuta R, Kanao E, Ukyo K, Kuwada S, Sawada SI, Ishihama Y, Akiyoshi K, Sasaki Y. A Direct Approach for Living Biomembrane Printing on a Nanoparticle. NANO LETTERS 2024. [PMID: 39377259 DOI: 10.1021/acs.nanolett.4c03293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Biomembrane coating technologies have been developed to equip synthetic nanomaterials with natural biointerfaces. We report a one-step method for nondestructively coating the biomembranes of "living" cells onto nanoparticle surfaces. By using simple centrifugation, nanoparticles pass through a concentrated layer of living cells. This process mimics exosome release via endocytosis and exocytosis, preserving the membrane integrity of the source cells. The resulting silica nanoparticles were efficiently coated with membrane components from Raw264.7 cells. Nanoflow-liquid chromatography-tandem mass spectrometry confirmed that the proteins composing the membrane originated from the source cells. Additionally, the biomembrane coating suppressed the phagocytosis of silica nanoparticles by Raw264.7 cells while enhancing their uptake by HeLa cells. Our simple and efficient method for living biomembrane coating holds promise for the development of nanoparticles for medical and pharmaceutical applications.
Collapse
Affiliation(s)
- Ryosuke Mizuta
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Eisuke Kanao
- Laboratory of Proteomics and Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
- Laboratory of Clinical and Analytical Chemistry, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan
| | - Keigo Ukyo
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shusuke Kuwada
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shin-Ichi Sawada
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yasushi Ishihama
- Laboratory of Proteomics and Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
- Laboratory of Clinical and Analytical Chemistry, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yoshihiro Sasaki
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
20
|
Zhang F, Lu X, Zhu X, Yu Z, Xia W, Wei X. Real-time monitoring of small extracellular vesicles (sEVs) by in vivo flow cytometry. J Extracell Vesicles 2024; 13:e70003. [PMID: 39441010 PMCID: PMC11497658 DOI: 10.1002/jev2.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 07/29/2024] [Accepted: 09/20/2024] [Indexed: 10/25/2024] Open
Abstract
Extracellular vesicles (EVs) are vesicular structures comprised of a bilayer lipid membrane, released by living cells. There is a growing body of evidence for their functionality, indicating that small EVs (sEVs) can mediate specific forms of intercellular communication. The future applications of sEVs hold great promise, not only as diagnostic markers but also as therapeutic agents. However, the greatest difficulty in the clinical translation of sEVs is that they are currently poorly understood, especially concerning their in vivo behaviour. In this study, we provide a novel method for monitoring sEVs in blood circulation based on in vivo flow cytometry (IVFC). We have demonstrated that the height of the IVFC signal baseline is proportional to the concentration of sEVs. Moreover, we have found out that the peaks in the IVFC signal are generated by the aggregation or cellular uptake of sEVs. In vivo monitoring of sEVs clearance from the blood indicates that PEGylated sEVs have a longer residence time and exhibit less aggregation in circulation compared to non-PEGylated sEVs. These studies reveal that IVFC enables real-time in vivo monitoring of circulating sEVs, which can provide valuable insights into the pharmacokinetics and cellular targeting capabilities of sEVs.
Collapse
Affiliation(s)
- Fuli Zhang
- School of Biomedical Engineering and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghaiChina
| | - Xin Lu
- School of Biomedical Engineering and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghaiChina
| | - Xi Zhu
- Institute of Biomedical EngineeringKunming Medical UniversityKunmingYunnanChina
| | - Ziwen Yu
- School of Biomedical Engineering and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghaiChina
| | - Weiliang Xia
- School of Biomedical Engineering and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghaiChina
- State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Xunbin Wei
- School of Biomedical Engineering and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghaiChina
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Peking University Cancer Hospital & InstituteBeijingChina
- The Department of Biomedical Engineering, Institute of Advanced Clinical MedicinePeking UniversityBeijingChina
- Institute of Medical TechnologyPeking University Health Science CenterBeijingChina
- International Cancer InstitutePeking UniversityBeijingChina
| |
Collapse
|
21
|
Di Bella MA, Taverna S. Extracellular Vesicles: Diagnostic and Therapeutic Applications in Cancer. BIOLOGY 2024; 13:716. [PMID: 39336143 PMCID: PMC11446462 DOI: 10.3390/biology13090716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024]
Abstract
In recent years, knowledge of cell-released extracellular vesicle (EV) functions has undergone rapid growth. EVs are membrane vesicles loaded with proteins, nucleic acids, lipids, and bioactive molecules. Once released into the extracellular space, EVs are delivered to target cells that may go through modifications in physiological or pathological conditions. EVs are nano shuttles with a crucial role in promoting short- and long-distance cell-cell communication. Comprehension of the mechanism that regulates this process is a benefit for both medicine and basic science. Currently, EVs attract immense interest in precision and nanomedicine for their potential use in diagnosis, prognosis, and therapies. This review reports the latest advances in EV studies, focusing on the nature and features of EVs and on conventional and emerging methodologies used for their separation, characterization, and visualization. By searching an extended portion of the relevant literature, this work aims to give a summary of advances in nanomedical applications of EVs. Moreover, concerns that require further studies before translation to clinical applications are discussed.
Collapse
Affiliation(s)
- Maria Antonietta Di Bella
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy
| | - Simona Taverna
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), 90146 Palermo, Italy
| |
Collapse
|
22
|
Gangadaran P, Khan F, Rajendran RL, Onkar A, Goenka A, Ahn B. Unveiling Invisible Extracellular Vesicles: Cutting-Edge Technologies for Their in Vivo Visualization. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e2009. [PMID: 39439198 PMCID: PMC11670046 DOI: 10.1002/wnan.2009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 09/11/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024]
Abstract
Extracellular vesicles (EVs), nanosized lipid bilayer vesicles released by nearly all types of cells, play pivotal roles as intercellular signaling mediators with diverse biological activities. Their adaptability has attracted interest in exploring their role as disease biomarker theranostics. However, the in vivo biodistribution and pharmacokinetic profiles of EVs, particularly following administration into living subjects, remain unclear. Thus, in vivo imaging is vital to enhance our understanding of the homing and retention patterns, blood and tissue half-life, and excretion pathways of exogenous EVs, thereby advancing real-time monitoring within biological systems and their therapeutic applications. This review examines state-of-the-art methods including EV labeling with various agents, including optical imaging, magnetic resonance imaging, and nuclear imaging. The strengths and weaknesses of each technique are comprehensively explored, emphasizing their clinical translation. Despite the potential of EVs as cancer theranostics, achieving a thorough understanding of their in vivo behavior is challenging. This review highlights the urgency of addressing current questions in the biology and therapeutic applications of EVs. It underscores the need for continued research to unravel the complexities surrounding EVs and their potential clinical implications. By identifying these challenges, this review contributes to ongoing efforts to optimize EV imaging techniques for clinical use. Ultimately, bridging the gap between research advancements and clinical applications will facilitate the integration of EV-based theranostics, marking a crucial step toward harnessing the full potential of EVs in medical practice.
Collapse
Affiliation(s)
- Prakash Gangadaran
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical ScienceSchool of Medicine, Kyungpook National UniversityDaeguRepublic of Korea
- Department of Nuclear MedicineSchool of Medicine, Kyungpook National UniversityDaeguRepublic of Korea
- Cardiovascular Research Institute, Kyungpook National UniversityDaeguRepublic of Korea
| | - Fatima Khan
- Department of Cancer BiologyLerner Research Institute, Cleveland ClinicClevelandOhioUSA
| | - Ramya Lakshmi Rajendran
- Department of Nuclear MedicineSchool of Medicine, Kyungpook National UniversityDaeguRepublic of Korea
- Cardiovascular Research Institute, Kyungpook National UniversityDaeguRepublic of Korea
| | - Akanksha Onkar
- Department of Laboratory MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Anshika Goenka
- Department of Hematology and Medical OncologyWinship Cancer Institute, Emory UniversityAtlantaGeorgiaUSA
| | - Byeong‐Cheol Ahn
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical ScienceSchool of Medicine, Kyungpook National UniversityDaeguRepublic of Korea
- Department of Nuclear MedicineSchool of Medicine, Kyungpook National UniversityDaeguRepublic of Korea
- Cardiovascular Research Institute, Kyungpook National UniversityDaeguRepublic of Korea
- Department of Nuclear MedicineKyungpook National University HospitalDaeguRepublic of Korea
| |
Collapse
|
23
|
Rahimian S, Najafi H, Webber CA, Jalali H. Advances in Exosome-Based Therapies for the Repair of Peripheral Nerve Injuries. Neurochem Res 2024; 49:1905-1925. [PMID: 38807021 DOI: 10.1007/s11064-024-04157-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/07/2024] [Accepted: 05/17/2024] [Indexed: 05/30/2024]
Abstract
Peripheral nerve injuries (PNIs) are the term used to describe injuries that occur to the nerve fibers of the peripheral nervous system (PNS). Such injuries may be caused by trauma, infection, or aberrant immunological response. Although the peripheral nervous system has a limited capacity for self-repair, in cases of severe damage, this process is either interrupted entirely or is only partially completed. The evaluation of variables that promote the repair of peripheral nerves has consistently been a focal point. Exosomes are a subtype of extracellular vesicles that originate from cellular sources and possess abundant proteins, lipids, and nucleic acids, play a critical role in facilitating intercellular communication. Due to their modifiable composition, they possess exceptional capabilities as carriers for therapeutic compounds, including but not limited to mRNAs or microRNAs. Exosome-based therapies have gained significant attention in the treatment of several nervous system diseases due to their advantageous properties, such as low toxicity, high stability, and limited immune system activation. The objective of this review article is to provide an overview of exosome-based treatments that have been developed in recent years for a range of PNIs, including nerve trauma, diabetic neuropathy, amyotrophic lateral sclerosis (ALS), glaucoma, and Guillain-Barre syndrome (GBS). It was concluded that exosomes could provide favorable results in the improvement of peripheral PNIs by facilitating the transfer of regenerative factors. The development of bioengineered exosome therapy for PNIs should be given more attention to enhance the efficacy of exosome treatment for PNIs.
Collapse
Affiliation(s)
- Sana Rahimian
- Division of Nanobiotehnology, Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Hossein Najafi
- Division of Nanobiotehnology, Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Christine A Webber
- Division of Anatomy, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Hanieh Jalali
- Division of Cell and Developmental Biology, Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, No. 43, South Moffateh Ave, Tehran, 15719-14911, Iran.
| |
Collapse
|
24
|
Xin GD, Liu XY, Fan XD, Zhao GJ. Exosomes repairment for sciatic nerve injury: a cell-free therapy. Stem Cell Res Ther 2024; 15:214. [PMID: 39020385 PMCID: PMC11256477 DOI: 10.1186/s13287-024-03837-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/05/2024] [Indexed: 07/19/2024] Open
Abstract
Sciatic nerve injury (SNI) is a common type of peripheral nerve injury typically resulting from trauma, such as contusion, sharp force injuries, drug injections, pelvic fractures, or hip dislocations. It leads to both sensory and motor dysfunctions, characterized by pain, numbness, loss of sensation, muscle atrophy, reduced muscle tone, and limb paralysis. These symptoms can significantly diminish a patient's quality of life. Following SNI, Wallerian degeneration occurs, which activates various signaling pathways, inflammatory factors, and epigenetic regulators. Despite the availability of several surgical and nonsurgical treatments, their effectiveness remains suboptimal. Exosomes are extracellular vesicles with diameters ranging from 30 to 150 nm, originating from the endoplasmic reticulum. They play a crucial role in facilitating intercellular communication and have emerged as highly promising vehicles for drug delivery. Increasing evidence supports the significant potential of exosomes in repairing SNI. This review delves into the pathological progression of SNI, techniques for generating exosomes, the molecular mechanisms behind SNI recovery with exosomes, the effectiveness of combining exosomes with other approaches for SNI repair, and the changes and future outlook for utilizing exosomes in SNI recovery.
Collapse
Affiliation(s)
- Guang-Da Xin
- Nephrology Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130000, China
| | - Xue-Yan Liu
- Cardiology Department, China-Japan Union Hospital of Jilin Universit, Changchun, Jilin Province, 130000, China
| | - Xiao-Di Fan
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130000, China
| | - Guan-Jie Zhao
- Nephrology Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130000, China.
| |
Collapse
|
25
|
Wang Y, Shi X. The potential mechanisms and treatment effects of stem cell-derived exosomes in cardiac reengineering. NANOTECHNOLOGY 2024; 35:362005. [PMID: 38834043 DOI: 10.1088/1361-6528/ad53d1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/04/2024] [Indexed: 06/06/2024]
Abstract
Exosomes are extracellular vesicles of diverse compositions that are secreted by numerous cell types. Exosomes contain significant bioactive components, including lipids, proteins, mRNA, and miRNA. Exosomes play an important role in regulating cellular signaling and trafficking under both normal physiological and pathological circumstances. A multitude of factors, including thermal stress, ribosomal stress, endoplasmic reticulum stress, and oxidative stress influence the concentrations of exosomal mRNA, miRNA, proteins, and lipids. It has been stated that exosomes derived from stem cells (SCs) modulate a range of stresses by preventing or fostering cell balance. Exosomes derived from SCs facilitate recovery by facilitating cross-cellular communication via the transmission of information in the form of proteins, lipids, and other components. For this reason, exosomes are used as biomarkers to diagnose a wide variety of diseases. The focus of this review is the bioengineering of artificial exosomal cargoes. This process encompasses the control and transportation of particular exosomal cargoes, including but not limited to small molecules, recombinant proteins, immune modulators, and therapeutic medications. Therapeutic approaches of this nature have the potential to deliver therapeutic medications precisely to the intended site for the cure of a variety of disorders. Notably, our attention has been directed towards the therapeutic implementations of exosomes derived from SCs in the cure of cardiovascular ailments, including but not limited to ischemic heart disease, myocardial infarction, sepsis, heart failure, cardiomyopathy, and cardiac fibrosis. In general, researchers employ two methodologies when it comes to exosomal bioengineering. This review aims to explain the function of exosomes derived from SCs in the regulation of stress and present a novel therapeutic approach for cardiovascular disorders.
Collapse
Affiliation(s)
- Yibin Wang
- Department of Cardiology, Hangzhou Ninth People's Hospital, Hangzhou 311225, People's Republic of China
| | - Xiulian Shi
- Emergency Department, Chun'an First People's Hospital, Hangzhou 311700, People's Republic of China
| |
Collapse
|
26
|
Shi Y, Wang S, Wang K, Yang R, Liu D, Liao H, Qi Y, Qiu K, Hu Y, Wen H, Xu K. Relieving Macrophage Dysfunction by Inhibiting SREBP2 Activity: A Hypoxic Mesenchymal Stem Cells-Derived Exosomes Loaded Multifunctional Hydrogel for Accelerated Diabetic Wound Healing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309276. [PMID: 38247194 DOI: 10.1002/smll.202309276] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/18/2023] [Indexed: 01/23/2024]
Abstract
Macrophage dysfunction is one of the primary factors leading to the delayed healing of diabetic wounds. Hypoxic bone marrow mesenchymal stem cells-derived exosomes (hyBMSC-Exos) have been shown to play an active role in regulating cellular function through the carried microRNAs. However, the administration of hyBMSC-Exos alone in diabetic wounds usually brings little effect, because the exosomes are inherently unstable and have a short retention time at the wounds. In this study, a multifunctional hydrogel based on gallic acid (GA) conjugated chitosan (Chi-GA) and partially oxidized hyaluronic acid (OHA) is prepared for sustained release of hyBMSC-Exos. The hydrogel not only exhibits needs-satisfying physicochemical properties, but also displays outstanding biological performances such as low hemolysis rate, strong antibacterial capacity, great antioxidant ability, and excellent biocompatibility. It has the ability to boost the stability of hyBMSC-Exos, leading to a continuous and gradual release of the exosomes at wound locations, ultimately enhancing the exosomes' uptake efficiency by target cells. Most importantly, hyBMSC-Exos loaded hydrogel shows an excellent ability to promote diabetic wound healing by regulating macrophage polarization toward M2 phenotype. This may be because exosomal miR-4645-5p and antioxidant property of the hydrogel synergistically inhibit SREBP2 activity in macrophages. This study presents a productive approach for managing diabetic wounds.
Collapse
Affiliation(s)
- Yan Shi
- Department of Plastic, Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
| | - Shang Wang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Kai Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, P. R. China
| | - Ronghua Yang
- Department of Burn and Plastic Surgery, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, 510650, P. R. China
| | - Dewu Liu
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
| | - Huaiwei Liao
- Department of Plastic, Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
| | - Yuhan Qi
- Department of Plastic, Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
| | - Keqing Qiu
- Dermatological Department, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
| | - Yanghong Hu
- Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330006, P. R. China
| | - Huicai Wen
- Department of Plastic, Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
| | - Kui Xu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, P. R. China
| |
Collapse
|
27
|
Zheng J, Park K, Jang J, Son D, Park J, Kim J, Yoo JE, You S, Kim IY. Utilizing stem cell-secreted molecules as a versatile toolbox for skin regenerative medicine. J Control Release 2024; 370:583-599. [PMID: 38729435 DOI: 10.1016/j.jconrel.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/14/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
Stem cells are recognized as an important target and tool in regenerative engineering. In this study, we explored the feasibility of engineering amniotic fluid-derived mesenchymal stem cell-secreted molecules (afMSC-SMs) as a versatile bioactive material for skin regenerative medicine applications in a time- and cost-efficient and straightforward manner. afMSC-SMs, obtained in powder form through ethanol precipitation, effectively contributed to preserving the self-renewal capacity and differentiation potential of primary human keratinocytes (pKCs) in a xeno-free environment, offering a potential alternative to traditional culture methods for their long-term in vitro expansion, and allowed them to reconstitute a fully stratified epithelium sheet on human dermal fibroblasts. Furthermore, we demonstrated the flexibility of afMSC-SMs in wound healing and hair regrowth through injectable hydrogel and nanogel-mediated transdermal delivery systems, respectively, expanding the pool of regenerative applications. This cell-free approach may offer several potential advantages, including streamlined manufacturing processes, scalability, controlled formulation, longer shelf lives, and mitigation of risks associated with living cell transplantation. Accordingly, afMSC-SMs could serve as a promising therapeutic toolbox for advancing cell-free regenerative medicine, simplifying their broad applicability in various clinical settings.
Collapse
Affiliation(s)
- Jie Zheng
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Kyoungmin Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jihoon Jang
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Daryeon Son
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; Institute of Animal Molecular Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Junghyun Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jonggun Kim
- Institute of Regenerative Medicine, SL, Therapeutics Inc., Seoul 02841, Republic of Korea
| | - Jeong-Eun Yoo
- Institute of Regenerative Medicine, SL, Therapeutics Inc., Seoul 02841, Republic of Korea
| | - Seungkwon You
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; Institute of Animal Molecular Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - In-Yong Kim
- Catholic High-Performance Cell Therapy Center & Department of Medical Life Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.
| |
Collapse
|
28
|
Bhavsar D, Raguraman R, Kim D, Ren X, Munshi A, Moore K, Sikavitsas V, Ramesh R. Exosomes in diagnostic and therapeutic applications of ovarian cancer. J Ovarian Res 2024; 17:113. [PMID: 38796525 PMCID: PMC11127348 DOI: 10.1186/s13048-024-01417-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 04/16/2024] [Indexed: 05/28/2024] Open
Abstract
Ovarian cancer accounts for more deaths than any other female reproductive tract cancer. The major reasons for the high mortality rates include delayed diagnoses and drug resistance. Hence, improved diagnostic and therapeutic options for ovarian cancer are a pressing need. Extracellular vesicles (EVs), that include exosomes provide hope in both diagnostic and therapeutic aspects. They are natural lipid nanovesicles secreted by all cell types and carry molecules that reflect the status of the parent cell. This facilitates their potential use as biomarkers for an early diagnosis. Additionally, EVs can be loaded with exogenous cargo, and have features such as high stability and favorable pharmacokinetic properties. This makes them ideal for tumor-targeted delivery of biological moieties. The International Society of Extracellular Vesicles (ISEV) based on the Minimal Information for Studies on Extracellular Vesicles (MISEV) recommends the usage of the term "small extracellular vesicles (sEVs)" that includes exosomes for particles that are 30-200 nm in size. However, majority of the studies reported in the literature and relevant to this review have used the term "exosomes". Therefore, this review will use the term "exosomes" interchangeably with sEVs for consistency with the literature and avoid confusion to the readers. This review, initially summarizes the different isolation and detection techniques developed to study ovarian cancer-derived exosomes and the potential use of these exosomes as biomarkers for the early diagnosis of this devastating disease. It addresses the role of exosome contents in the pathogenesis of ovarian cancer, discusses strategies to limit exosome-mediated ovarian cancer progression, and provides options to use exosomes for tumor-targeted therapy in ovarian cancer. Finally, it states future research directions and recommends essential research needed to successfully transition exosomes from the laboratory to the gynecologic-oncology clinic.
Collapse
Affiliation(s)
- Dhaval Bhavsar
- Department of Pathology, University of Oklahoma Health Sciences Center, 975 NE, 10th Street, Oklahoma City, OK, 73104, USA
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA
| | - Rajeswari Raguraman
- Department of Pathology, University of Oklahoma Health Sciences Center, 975 NE, 10th Street, Oklahoma City, OK, 73104, USA
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA
| | - Dongin Kim
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, 1110 N, Stonewall Ave, Oklahoma City, OK, 73104, USA
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA
| | - Xiaoyu Ren
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, 1110 N, Stonewall Ave, Oklahoma City, OK, 73104, USA
| | - Anupama Munshi
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, 975 NE, 10th Street, Oklahoma City, OK, 73104, USA
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA
| | - Kathleen Moore
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA
| | - Vassilios Sikavitsas
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA
- Department of Chemical, Biological and Materials Engineering, Oklahoma University, Norman, OK, 73019, USA
| | - Rajagopal Ramesh
- Department of Pathology, University of Oklahoma Health Sciences Center, 975 NE, 10th Street, Oklahoma City, OK, 73104, USA.
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
29
|
Chen X, Yang N, Li B, Gao X, Wang Y, Wang Q, Liu X, Zhang Z, Zhang R. Visualization Analysis of Small Extracellular Vesicles in the Application of Bone-Related Diseases. Cells 2024; 13:904. [PMID: 38891036 PMCID: PMC11171653 DOI: 10.3390/cells13110904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/20/2024] Open
Abstract
Small extracellular vesicles were shown to have similar functional roles to their parent cells without the defect of potential tumorigenicity, which made them a great candidate for regenerative medicine. The last twenty years have witnessed the rapid development of research on small extracellular vesicles. In this paper, we employed a scientometric synthesis method to conduct a retrospective analysis of small extracellular vesicles in the field of bone-related diseases. The overall background analysis consisted the visualization of the countries, institutions, journals, and authors involved in research. The current status of the research direction and future trends were presented through the analysis of references and keywords, which showed that engineering strategies, mesenchymal stem cell derived exosomes, and cartilage damage were the most concerning topics, and scaffold, osteoarthritis, platelet-rich plasma, and senescence were the future trends. We also discussed the current problems and challenges in practical applications, including the in-sight mechanisms, the building of relevant animal models, and the problems in clinical trials. By using CiteSpace, VOSviewer, and Bibliometrix, the presented data avoided subjective selectivity and tendency well, which made the conclusion more reliable and comprehensive. We hope that the findings can provide new perspectives for researchers to understand the evolution of this field over time and to search for novel research directions.
Collapse
Affiliation(s)
- Xinjiani Chen
- Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China; (X.C.); (N.Y.); (B.L.); (X.G.); (Y.W.); (Q.W.); (X.L.)
- Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ning Yang
- Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China; (X.C.); (N.Y.); (B.L.); (X.G.); (Y.W.); (Q.W.); (X.L.)
| | - Bailei Li
- Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China; (X.C.); (N.Y.); (B.L.); (X.G.); (Y.W.); (Q.W.); (X.L.)
- Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xinyu Gao
- Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China; (X.C.); (N.Y.); (B.L.); (X.G.); (Y.W.); (Q.W.); (X.L.)
| | - Yayu Wang
- Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China; (X.C.); (N.Y.); (B.L.); (X.G.); (Y.W.); (Q.W.); (X.L.)
- Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qin Wang
- Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China; (X.C.); (N.Y.); (B.L.); (X.G.); (Y.W.); (Q.W.); (X.L.)
- Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaojun Liu
- Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China; (X.C.); (N.Y.); (B.L.); (X.G.); (Y.W.); (Q.W.); (X.L.)
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, 705 Yatai Road, Jiaxing 314006, China
- Taizhou Innovation Center, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 318000, China
| | - Zhen Zhang
- Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China; (X.C.); (N.Y.); (B.L.); (X.G.); (Y.W.); (Q.W.); (X.L.)
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, 705 Yatai Road, Jiaxing 314006, China
| | - Rongqing Zhang
- Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China; (X.C.); (N.Y.); (B.L.); (X.G.); (Y.W.); (Q.W.); (X.L.)
- Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, 705 Yatai Road, Jiaxing 314006, China
- Taizhou Innovation Center, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 318000, China
| |
Collapse
|
30
|
Chen X, Song X, Li J, Wang J, Yan Y, Yang F. Integrated proteomic, phosphoproteomic, and N-glycoproteomic analyses of small extracellular vesicles from C2C12 myoblasts identify specific PTM patterns in ligand-receptor interactions. Cell Commun Signal 2024; 22:273. [PMID: 38755675 PMCID: PMC11097525 DOI: 10.1186/s12964-024-01640-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/28/2024] [Indexed: 05/18/2024] Open
Abstract
Small extracellular vesicles (sEVs) are important mediators of intercellular communication by transferring of functional components (proteins, RNAs, and lipids) to recipient cells. Some PTMs, including phosphorylation and N-glycosylation, have been reported to play important role in EV biology, such as biogenesis, protein sorting and uptake of sEVs. MS-based proteomic technology has been applied to identify proteins and PTM modifications in sEVs. Previous proteomic studies of sEVs from C2C12 myoblasts, an important skeletal muscle cell line, focused on identification of proteins, but no PTM information on sEVs proteins is available.In this study, we systematically analyzed the proteome, phosphoproteome, and N-glycoproteome of sEVs from C2C12 myoblasts with LC-MS/MS. In-depth analyses of the three proteomic datasets revealed that the three proteomes identified different catalogues of proteins, and PTMomic analysis could expand the identification of cargos in sEVs. At the proteomic level, a high percentage of membrane proteins, especially tetraspanins, was identified. The sEVs-derived phosphoproteome had a remarkably high level of tyrosine-phosphorylated sites. The tyrosine-phosphorylated proteins might be involved with EPH-Ephrin signaling pathway. At the level of N-glycoproteomics, several glycoforms, such as complex N-linked glycans and sialic acids on glycans, were enriched in sEVs. Retrieving of the ligand-receptor interaction in sEVs revealed that extracellular matrix (ECM) and cell adhesion molecule (CAM) represented the most abundant ligand-receptor pairs in sEVs. Mapping the PTM information on the ligands and receptors revealed that N-glycosylation mainly occurred on ECM and CAM proteins, while phosphorylation occurred on different categories of receptors and ligands. A comprehensive PTM map of ECM-receptor interaction and their components is also provided.In summary, we conducted a comprehensive proteomic and PTMomic analysis of sEVs of C2C12 myoblasts. Integrated proteomic, phosphoproteomic, and N-glycoproteomic analysis of sEVs might provide some insights about their specific uptake mechanism.
Collapse
Affiliation(s)
- Xiulan Chen
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xi Song
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiaran Li
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jifeng Wang
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yumeng Yan
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fuquan Yang
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
31
|
Bhat A, Malik A, Yadav P, Ware WJ, Kakalij P, Chand S. Mesenchymal stem cell‐derived extracellular vesicles: Recent therapeutics and targeted drug delivery advances. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3. [DOI: 10.1002/jex2.156] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/25/2024] [Indexed: 01/03/2025]
Abstract
AbstractThe targeted drug delivery field is rapidly advancing, focusing on developing biocompatible nanoparticles that meet rigorous criteria of non‐toxicity, biocompatibility, and efficient release of encapsulated molecules. Conventional synthetic nanoparticles (SNPs) face complications such as elevated immune responses, complex synthesis methods, and toxicity, which restrict their utility in therapeutics and drug delivery. Extracellular vesicles (EVs) have emerged as promising substitutes for SNPs, leveraging their ability to cross biological barriers, biocompatibility, reduced toxicity, and natural origin. Notably, mesenchymal stem cell‐derived EVs (MSC‐EVs) have garnered much curiosity due to their potential in therapeutics and drug delivery. Studies suggest that MSC‐EVs, the central paracrine contributors of MSCs, replicate the therapeutic effects of MSCs. This review explores the characteristics of MSC‐EVs, emphasizing their potential in therapeutics and drug delivery for various diseases, including CRISPR/Cas9 delivery for gene editing. It also delves into the obstacles and challenges of MSC‐EVs in clinical applications and provides insights into strategies to overcome the limitations of biodistribution and target delivery.
Collapse
Affiliation(s)
- Anjali Bhat
- Department of Anesthesiology University of Nebraska Medical Center Omaha Nebraska USA
| | - Anshu Malik
- Institute for Quantitative Health Science and Engineering (IQ) Michigan State University East Lansing Michigan USA
- Department of Biomedical Engineering Michigan State University East Lansing Michigan USA
| | - Poonam Yadav
- Medical Science Interdepartmental Area University of Nebraska Medical Center Omaha Omaha Nebraska USA
| | | | - Pratiksha Kakalij
- Department of Pharmaceutical Sciences University of Nebraska Medical Center Omaha Omaha Nebraska USA
| | - Subhash Chand
- Department of Anesthesiology University of Nebraska Medical Center Omaha Nebraska USA
| |
Collapse
|
32
|
Choi W, Park DJ, Eliceiri BP. Defining tropism and activity of natural and engineered extracellular vesicles. Front Immunol 2024; 15:1363185. [PMID: 38660297 PMCID: PMC11039936 DOI: 10.3389/fimmu.2024.1363185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Extracellular vesicles (EVs) have important roles as mediators of cell-to-cell communication, with physiological functions demonstrated in various in vivo models. Despite advances in our understanding of the biological function of EVs and their potential for use as therapeutics, there are limitations to the clinical approaches for which EVs would be effective. A primary determinant of the biodistribution of EVs is the profile of proteins and other factors on the surface of EVs that define the tropism of EVs in vivo. For example, proteins displayed on the surface of EVs can vary in composition by cell source of the EVs and the microenvironment into which EVs are delivered. In addition, interactions between EVs and recipient cells that determine uptake and endosomal escape in recipient cells affect overall systemic biodistribution. In this review, we discuss the contribution of the EV donor cell and the role of the microenvironment in determining EV tropism and thereby determining the uptake and biological activity of EVs.
Collapse
Affiliation(s)
- Wooil Choi
- Department of Surgery, University of California San Diego, La Jolla, CA, United States
| | - Dong Jun Park
- Department of Surgery, University of California San Diego, La Jolla, CA, United States
| | - Brian P. Eliceiri
- Department of Surgery, University of California San Diego, La Jolla, CA, United States
- Department of Dermatology, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
33
|
Poinsot V, Pizzinat N, Ong-Meang V. Engineered and Mimicked Extracellular Nanovesicles for Therapeutic Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:639. [PMID: 38607173 PMCID: PMC11013861 DOI: 10.3390/nano14070639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
Exosomes are spherical extracellular nanovesicles with an endosomal origin and unilamellar lipid-bilayer structure with sizes ranging from 30 to 100 nm. They contain a large range of proteins, lipids, and nucleic acid species, depending on the state and origin of the extracellular vesicle (EV)-secreting cell. EVs' function is to encapsulate part of the EV-producing cell content, to transport it through biological fluids to a targeted recipient, and to deliver their cargos specifically within the aimed recipient cells. Therefore, exosomes are considered to be potential biological drug-delivery systems that can stably deliver their cargo into targeted cells. Various cell-derived exosomes are produced for medical issues, but their use for therapeutic purposes still faces several problems. Some of these difficulties can be avoided by resorting to hemisynthetic approaches. We highlight here the uses of alternative exosome-mimes involving cell-membrane coatings on artificial nanocarriers or the hybridization between exosomes and liposomes. We also detail the drug-loading strategies deployed to make them drug-carrier systems and summarize the ongoing clinical trials involving exosomes or exosome-like structures. Finally, we summarize the open questions before considering exosome-like disposals for confident therapeutic delivery.
Collapse
Affiliation(s)
- Verena Poinsot
- Inserm, CNRS, Faculté de Santé, Université Toulouse III—Paul Sabatier, I2MC U1297, 31432 Toulouse, France; (N.P.); (V.O.-M.)
| | | | | |
Collapse
|
34
|
Wang Y, Liu X, Wang B, Sun H, Ren Y, Zhang H. Compounding engineered mesenchymal stem cell-derived exosomes: A potential rescue strategy for retinal degeneration. Biomed Pharmacother 2024; 173:116424. [PMID: 38471273 DOI: 10.1016/j.biopha.2024.116424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/28/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024] Open
Abstract
The prevalence of retinal degenerative diseases, including age-related macular degeneration and retinitis pigmentosa, has been increasing globally and is linked to the aging population and improved life expectancy. These diseases are characterized by chronic, progressive neuronal damage or depletion of the photoreceptor cells in the retina, and limited effective treatment options are currently available. Mesenchymal stem cell-derived exosomes (MSC-EXOs) containing cytokines, growth factors, lipids, mRNA, and miRNA, which act as mediators of intercellular communication transferring bioactive molecules to recipient cells, offer an appealing, non-cellular nanotherapeutic approach for retinal degenerative diseases. However, treatment specificity is compromised due to their high heterogeneity in size, content, functional effects, and parental cellular source. To improve this, engineered MSC-EXOs with increased drug-loading capacity, targeting ability, and resistance to bodily degradation and elimination have been developed. This review summarizes the recent advances in miRNAs of MSC-EXOs as a treatment for retinal degeneration, discussing the strategies and methods for engineering therapeutic MSC-EXOs. Notably, to address the single functional role of engineered MSC-EXOs, we propose a novel concept called "Compound Engineered MSC-EXOs (Co-E-MSC-EXOs)" along with its derived potential therapeutic approaches. The advantages and challenges of employing Co-E-MSC-EXOs for retinal degeneration in clinical applications, as well as the strategies and issues related to them, are also highlighted.
Collapse
Affiliation(s)
- Yao Wang
- Shaanxi Provincial Clinical Research Center for Ophthalmology Diseases, the First Affiliated Hospital of Northwest University, Xi'an No.1 hospital, Xi'an, Shaanxi, China; Shaanxi Key Laboratory of Ophthalmology, Shaanxi Institute of Ophthalmology, Xi'an, Shaanxi 710002, China.
| | - Xianning Liu
- Shaanxi Provincial Clinical Research Center for Ophthalmology Diseases, the First Affiliated Hospital of Northwest University, Xi'an No.1 hospital, Xi'an, Shaanxi, China; Shaanxi Key Laboratory of Ophthalmology, Shaanxi Institute of Ophthalmology, Xi'an, Shaanxi 710002, China
| | - Bei Wang
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Hanhan Sun
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Yiqian Ren
- Shaanxi Provincial Clinical Research Center for Ophthalmology Diseases, the First Affiliated Hospital of Northwest University, Xi'an No.1 hospital, Xi'an, Shaanxi, China; Shaanxi Key Laboratory of Ophthalmology, Shaanxi Institute of Ophthalmology, Xi'an, Shaanxi 710002, China
| | - Hongbing Zhang
- Shaanxi Provincial Clinical Research Center for Ophthalmology Diseases, the First Affiliated Hospital of Northwest University, Xi'an No.1 hospital, Xi'an, Shaanxi, China; Shaanxi Key Laboratory of Ophthalmology, Shaanxi Institute of Ophthalmology, Xi'an, Shaanxi 710002, China.
| |
Collapse
|
35
|
Gupta R, Gupta J, Roy S. Exosomes: Key Players for Treatment of Cancer and Their Future Perspectives. Assay Drug Dev Technol 2024; 22:118-147. [PMID: 38407852 DOI: 10.1089/adt.2023.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Affiliation(s)
- Reena Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Suchismita Roy
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| |
Collapse
|
36
|
Pang JL, Shao H, Xu XG, Lin ZW, Chen XY, Chen JY, Mou XZ, Hu PY. Targeted drug delivery of engineered mesenchymal stem/stromal-cell-derived exosomes in cardiovascular disease: recent trends and future perspectives. Front Bioeng Biotechnol 2024; 12:1363742. [PMID: 38558788 PMCID: PMC10978787 DOI: 10.3389/fbioe.2024.1363742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/20/2024] [Indexed: 04/04/2024] Open
Abstract
In recent years, stem cells and their secretomes, notably exosomes, have received considerable attention in biomedical applications. Exosomes are cellular secretomes used for intercellular communication. They perform the function of intercellular messengers by facilitating the transport of proteins, lipids, nucleic acids, and therapeutic substances. Their biocompatibility, minimal immunogenicity, targetability, stability, and engineerable characteristics have additionally led to their application as drug delivery vehicles. The therapeutic efficacy of exosomes can be improved through surface modification employing functional molecules, including aptamers, antibodies, and peptides. Given their potential as targeted delivery vehicles to enhance the efficiency of treatment while minimizing adverse effects, exosomes exhibit considerable promise. Stem cells are considered advantageous sources of exosomes due to their distinctive characteristics, including regenerative and self-renewal capabilities, which make them well-suited for transplantation into injured tissues, hence promoting tissue regeneration. However, there are notable obstacles that need to be addressed, including immune rejection and ethical problems. Exosomes produced from stem cells have been thoroughly studied as a cell-free strategy that avoids many of the difficulties involved with cell-based therapy for tissue regeneration and cancer treatment. This review provides an in-depth summary and analysis of the existing knowledge regarding exosomes, including their engineering and cardiovascular disease (CVD) treatment applications.
Collapse
Affiliation(s)
- Jian-Liang Pang
- Department of Vascular Surgery, Tiantai People’s Hospital of Zhejiang Province (Tiantai Branch of Zhejiang People’s Hospital), Taizhou, Zhejiang, China
| | - Hong Shao
- Department of Vascular Surgery, Tiantai People’s Hospital of Zhejiang Province (Tiantai Branch of Zhejiang People’s Hospital), Taizhou, Zhejiang, China
- Department of Cardiovascular Medicine, Heart Center, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, China
| | - Xiao-Gang Xu
- Clinical Research Institute, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, China
| | - Zhi-Wei Lin
- Zhejiang Healthfuture Biomedicine Co., Ltd., Hangzhou, China
| | - Xiao-Yi Chen
- Clinical Research Institute, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, China
| | - Jin-Yang Chen
- Zhejiang Healthfuture Biomedicine Co., Ltd., Hangzhou, China
| | - Xiao-Zhou Mou
- Clinical Research Institute, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, China
| | - Pei-Yang Hu
- Department of Traumatology, Tiantai People’s Hospital of Zhejiang Province (Tiantai Branch of Zhejiang People’s Hospital), Taizhou, China
| |
Collapse
|
37
|
Rizzo SA, Bagwell MS, Schiebel P, Rolland TJ, Mahlberg RC, Witt TA, Nagel ME, Stalboerger PG, Behfar A. Pulmonary Biodistribution of Platelet-Derived Regenerative Exosomes in a Porcine Model. Int J Mol Sci 2024; 25:2642. [PMID: 38473889 PMCID: PMC10932369 DOI: 10.3390/ijms25052642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/15/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
The purpose of this study was to evaluate the biodistribution of a platelet-derived exosome product (PEP), previously shown to promote regeneration in the setting of wound healing, in a porcine model delivered through various approaches. Exosomes were labeled with DiR far-red lipophilic dye to track and quantify exosomes in tissue, following delivery via intravenous, pulmonary artery balloon catheter, or nebulization in sus scrofa domestic pigs. Following euthanasia, far-red dye was detected by Xenogen IVUS imaging, while exosomal protein CD63 was detected by Western blot and immunohistochemistry. Nebulization and intravenous delivery both resulted in global uptake of exosomes within the lung parenchyma. However, nebulization resulted in the greatest degree of exosome uptake. Pulmonary artery balloon catheter-guided delivery provided the further ability to localize pulmonary delivery. No off-target absorption was noted in the heart, spleen, or kidney. However, the liver demonstrated uptake primarily in nebulization-treated animals. Nebulization also resulted in uptake in the trachea, without significant absorption in the esophagus. Overall, this study demonstrated the feasibility of pulmonary delivery of exosomes using nebulization or intravenous infusion to accomplish global delivery or pulmonary artery balloon catheter-guided delivery for localized delivery.
Collapse
Affiliation(s)
- Skylar A. Rizzo
- Van Cleve Cardiac Regenerative Medicine Program, Mayo Clinic Center for Regenerative Medicine, Rochester, MN 55905, USA
- Mayo Clinic Medical Scientist Training Program, Rochester, MN 55905, USA
- Mayo Clinic Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Monique S. Bagwell
- Van Cleve Cardiac Regenerative Medicine Program, Mayo Clinic Center for Regenerative Medicine, Rochester, MN 55905, USA
- Mayo Clinic Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Paige Schiebel
- Van Cleve Cardiac Regenerative Medicine Program, Mayo Clinic Center for Regenerative Medicine, Rochester, MN 55905, USA
| | - Tyler J. Rolland
- Van Cleve Cardiac Regenerative Medicine Program, Mayo Clinic Center for Regenerative Medicine, Rochester, MN 55905, USA
| | - Ryan C. Mahlberg
- Van Cleve Cardiac Regenerative Medicine Program, Mayo Clinic Center for Regenerative Medicine, Rochester, MN 55905, USA
| | - Tyra A. Witt
- Van Cleve Cardiac Regenerative Medicine Program, Mayo Clinic Center for Regenerative Medicine, Rochester, MN 55905, USA
| | - Mary E. Nagel
- Van Cleve Cardiac Regenerative Medicine Program, Mayo Clinic Center for Regenerative Medicine, Rochester, MN 55905, USA
| | - Paul G. Stalboerger
- Van Cleve Cardiac Regenerative Medicine Program, Mayo Clinic Center for Regenerative Medicine, Rochester, MN 55905, USA
- Mayo Clinic Department of Cardiovascular Medicine, Rochester, MN 55905, USA
| | - Atta Behfar
- Van Cleve Cardiac Regenerative Medicine Program, Mayo Clinic Center for Regenerative Medicine, Rochester, MN 55905, USA
- Mayo Clinic Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
- Mayo Clinic Department of Cardiovascular Medicine, Rochester, MN 55905, USA
- Marriott Heart Disease Research Program, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
38
|
Miron RJ, Zhang Y. Understanding exosomes: Part 1-Characterization, quantification and isolation techniques. Periodontol 2000 2024; 94:231-256. [PMID: 37740431 DOI: 10.1111/prd.12520] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 09/24/2023]
Abstract
Exosomes are the smallest subset of extracellular signaling vesicles secreted by most cells with a diameter in the range of 30-150 nm. Their use has gained great momentum recently due to their ability to be utilized as diagnostic tools with a vast array of therapeutic applications. Over 5000 publications are currently being published yearly on this topic, and this number is only expected to dramatically increase as novel therapeutic strategies continue to be investigated. This review article first focuses on understanding exosomes, including their cellular origin, biogenesis, function, and characterization. Thereafter, overviews of the quantification methods and isolation techniques are given with discussion over their potential use as novel therapeutics in regenerative medicine.
Collapse
Affiliation(s)
- Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Yufeng Zhang
- Department of Oral Implantology, University of Wuhan, Wuhan, China
| |
Collapse
|
39
|
Basak M, Narisepalli S, Salunkhe SA, Tiwari S, Chitkara D, Mittal A. Macrophage derived Exosomal Docetaxel (Exo-DTX) for pro-metastasis suppression: QbD driven formulation development, validation, in-vitro and pharmacokinetic investigation. Eur J Pharm Biopharm 2024; 195:114175. [PMID: 38185191 DOI: 10.1016/j.ejpb.2024.114175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
Exosomes, biogenic nano-vesicles, are renowned for their ability to encapsulate diverse payloads, however the systematic development and validation of exosomal formulation with significant biological implications have been overlooked. Herein, we developed and validated Exo-DTX, a QbD-driven optimized RAW 264.7 cell derived exosomal anti-cancer formulation of docetaxel (DTX) and evaluate its anti-metastatic and apoptotic efficacy in TNBC 4T1 cells. RAW264.7-derived exosomes were having particle size (112.5 ± 21.48 nm) and zeta-potential (-10.268 ± 3.66 mV) with polydispersity (PDI:0.256 ± 0.03). The statistical optimization of exosomes (200 μg) with Exo: DTX ratio 4:1 confirmed encapsulation of 23.60 ± 1.54 ng DTX/ µg exosomes. Exo-DTX (∼189 nm, -11.03 mV) with 100 ng/ml DTX as payload exhibited ∼5 folds' improvement in IC50 of DTX and distinct cytoskeletal deformation in TNBC 4T1 cells. It also has shown enormous Filamentous actin (F-actin) degradation and triggered apoptosis explained Exo-DTX's effective anti-migratory impact with just 2.6 ± 6.33 % wound closure and 4.56 ± 1.38 % invasion. The western blot confirmed that Exo-DTX downregulated migratory protein EGFR and β1-integrin but raised cleaved caspase 3/caspase 3 (CC3/C3) ratio and BAX/BCL-2 ratio by about 2.70 and 4.04 folds respectively. The naive RAW 264.7 exosomes also contributed positively towards the effect of Exo-DTX formulation by suppressing β1-integrin expression and increasing the CC3/C3 ratio in TNBC 4T1 cells as well. Additionally, significant improvement in PK parameters of Exo-DTX was observed in comparison to Taxotere, 6-folds and 3.04-folds improved t1/2 and Vd, proving the translational value of Exo-DTX formulation. Thus, the Exo-DTX so formulated proved beneficial in controlling the aggressiveness of TNBC wherein, naive exosomes also demonstrated beneficial synergistic anti-proliferative effect in 4T1.
Collapse
Affiliation(s)
- Moumita Basak
- Department of Pharmacy, Birla Institute of Technology and Science (BITS PILANI), Pilani, Rajasthan 333031, India
| | - Saibhargav Narisepalli
- Department of Pharmacy, Birla Institute of Technology and Science (BITS PILANI), Pilani, Rajasthan 333031, India
| | - Shubham A Salunkhe
- Department of Pharmacy, Birla Institute of Technology and Science (BITS PILANI), Pilani, Rajasthan 333031, India
| | - Swasti Tiwari
- Molecular Medicine and Biotechnology Division, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh 226014, India
| | - Deepak Chitkara
- Department of Pharmacy, Birla Institute of Technology and Science (BITS PILANI), Pilani, Rajasthan 333031, India
| | - Anupama Mittal
- Department of Pharmacy, Birla Institute of Technology and Science (BITS PILANI), Pilani, Rajasthan 333031, India.
| |
Collapse
|
40
|
Luo D, Zhu H, Li S, Wang Z, Xiao J. Mesenchymal stem cell-derived exosomes as a promising cell-free therapy for knee osteoarthritis. Front Bioeng Biotechnol 2024; 12:1309946. [PMID: 38292826 PMCID: PMC10824863 DOI: 10.3389/fbioe.2024.1309946] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/05/2024] [Indexed: 02/01/2024] Open
Abstract
Osteoarthritis (OA), as a degenerative disease, leads to high socioeconomic burdens and disability rates. The knee joint is typically the most affected and is characterized by progressive destruction of articular cartilage, subchondral bone remodeling, osteophyte formation and synovial inflammation. The current management of OA mainly focuses on symptomatic relief and does not help to slow down the advancement of disease. Recently, mesenchymal stem cells (MSCs) and their exosomes have garnered significant attention in regenerative therapy and tissue engineering areas. Preclinical studies have demonstrated that MSC-derived exosomes (MSC-Exos), as bioactive factor carriers, have promising results in cell-free therapy of OA. This study reviewed the application of various MSC-Exos for the OA treatment, along with exploring the potential underlying mechanisms. Moreover, current strategies and future perspectives for the utilization of engineered MSC-Exos, alongside their associated challenges, were also discussed.
Collapse
Affiliation(s)
| | | | | | - Zhenggang Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Xiao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
41
|
Yu T, Yang LL, Zhou Y, Wu MF, Jiao JH. Exosome-mediated repair of spinal cord injury: a promising therapeutic strategy. Stem Cell Res Ther 2024; 15:6. [PMID: 38167108 PMCID: PMC10763489 DOI: 10.1186/s13287-023-03614-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
Spinal cord injury (SCI) is a catastrophic injury to the central nervous system (CNS) that can lead to sensory and motor dysfunction, which seriously affects patients' quality of life and imposes a major economic burden on society. The pathological process of SCI is divided into primary and secondary injury, and secondary injury is a cascade of amplified responses triggered by the primary injury. Due to the complexity of the pathological mechanisms of SCI, there is no clear and effective treatment strategy in clinical practice. Exosomes, which are extracellular vesicles of endoplasmic origin with a diameter of 30-150 nm, play a critical role in intercellular communication and have become an ideal vehicle for drug delivery. A growing body of evidence suggests that exosomes have great potential for repairing SCI. In this review, we introduce exosome preparation, functions, and administration routes. In addition, we summarize the effect and mechanism by which various exosomes repair SCI and review the efficacy of exosomes in combination with other strategies to repair SCI. Finally, the challenges and prospects of the use of exosomes to repair SCI are described.
Collapse
Affiliation(s)
- Tong Yu
- Department of Orthopedic, The Second Norman Bethune Hospital of Jilin University, Changchun, 130000, Jilin Province, China
| | - Li-Li Yang
- Department of Orthopedic, The Second Norman Bethune Hospital of Jilin University, Changchun, 130000, Jilin Province, China
| | - Ying Zhou
- Department of Operating Room, The Third Hospital of Qinhuangdao, Qinhuangdao, 066000, Hebei Province, China
| | - Min-Fei Wu
- Department of Orthopedic, The Second Norman Bethune Hospital of Jilin University, Changchun, 130000, Jilin Province, China
| | - Jian-Hang Jiao
- Department of Orthopedic, The Second Norman Bethune Hospital of Jilin University, Changchun, 130000, Jilin Province, China.
| |
Collapse
|
42
|
Abdullaev B, Rasyid SA, Ali E, Al-Dhalimy AMB, Mustafa YF, Fenjan MN, Misra N, Al-Musawi SG, Alawadi A, Alsalamy A. Effective exosomes in breast cancer: focusing on diagnosis and treatment of cancer progression. Pathol Res Pract 2024; 253:154995. [PMID: 38113765 DOI: 10.1016/j.prp.2023.154995] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 12/21/2023]
Abstract
Breast cancer (BC) is the most prevalent aggressive malignant tumor in women worldwide and develops from breast tissue. Although cutting-edge treatment methods have been used and current mortality rates have decreased, BC control is still not satisfactory. Clarifying the underlying molecular mechanisms will help clinical options. Extracellular vesicles known as exosomes mediate cellular communication by delivering a variety of biomolecules, including proteins, oncogenes, oncomiRs, and even pharmacological substances. These transferable bioactive molecules can alter the transcriptome of target cells and affect signaling pathways that are related to tumors. Numerous studies have linked exosomes to BC biology, including therapeutic resistance and the local microenvironment. Exosomes' roles in tumor treatment resistance, invasion, and BC metastasis are the main topics of discussion in this review.
Collapse
Affiliation(s)
- Bekhzod Abdullaev
- Research Department of Biotechnology, New Uzbekistan University, Tashkent, Uzbekistan; Department of Oncology, School of Medicine, Central Asian University, Tashkent, Uzbekistan.
| | - Sri Anggarini Rasyid
- Faculty of Science and Technology, Mandala Waluya University, Kendari, South East Sulawesi, Indonesia.
| | - Eyhab Ali
- college of chemistry, Al-Zahraa University for Women, Karbala, Iraq
| | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Iraq
| | - Mohammed N Fenjan
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Iraq
| | - Neeti Misra
- Department of Management, Uttaranchal Institute of Management, Uttaranchal University, India
| | | | - Ahmed Alawadi
- College of technical engineering, the Islamic University, Najaf, Iraq; College of technical engineering, the Islamic University of Al Diwaniyah, Iraq; College of technical engineering, the Islamic University of Babylon, Iraq
| | - Ali Alsalamy
- College of technical engineering, Imam Ja'afar Al-Sadiq University, Iraq
| |
Collapse
|
43
|
Li J, Lin A, Jiang R, Chen P, Xu C, Hou Y. Exosomes-mediated drug delivery for the treatment of myocardial injury. Ann Med Surg (Lond) 2024; 86:292-299. [PMID: 38222684 PMCID: PMC10783224 DOI: 10.1097/ms9.0000000000001473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/25/2023] [Indexed: 01/16/2024] Open
Abstract
Cardiovascular disease has become a major cause of death worldwide. Myocardial injury (MI) caused by myocardial infarction, myocarditis, and drug overdose can lead to impaired cardiac function, culminating in serious consequences such as angina pectoris, arrhythmias, and heart failure. Exosomes exhibit high biocompatibility and target specificity, rendering them an important non-cellular therapy for improving MI. Exosomes are diminutive vesicles that encapsulate nucleic acids and proteins. Exosomes derived from cardiac stem cells themselves have therapeutic effects, and they can also serve as carriers to deliver therapeutic drugs to recipient cells, thereby exerting a therapeutic effect. The molecules within exosomes are encapsulated in a lipid bilayer, allowing them to stably exist in body fluids without being affected by nucleases. Therefore, the utilization of exosomes as drug delivery systems (DDS) for disease treatment has been extensively investigated and is currently undergoing clinical trials. This review summarizes the therapeutic effects of exosomes on MI and provides an overview of current research progress on their use as DDS in MI.
Collapse
Affiliation(s)
- Jiang Li
- Zhengzhou Railway Vocational and Technical College
| | - Aiqin Lin
- Zhengzhou Railway Vocational and Technical College
| | - Rui Jiang
- Zhengzhou Railway Vocational and Technical College
| | | | - Chengyang Xu
- Henan Provincial People's Hospital, Zhengzhou, P.R. China
| | - Yuanyuan Hou
- Zhengzhou Railway Vocational and Technical College
| |
Collapse
|
44
|
Qin B, Hu XM, Huang YX, Yang RH, Xiong K. A New Paradigm in Spinal Cord Injury Therapy: from Cell-free Treatment to Engineering Modifications. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:656-673. [PMID: 37076458 DOI: 10.2174/1871527322666230418090857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 01/20/2023] [Accepted: 02/06/2023] [Indexed: 04/21/2023]
Abstract
Spinal cord injury (SCI) is an intractable and poorly prognostic neurological disease, and current treatments are still unable to cure it completely and avoid sequelae. Extracellular vesicles (EVs), as important carriers of intercellular communication and pharmacological effects, are considered to be the most promising candidates for SCI therapy because of their low toxicity and immunogenicity, their ability to encapsulate endogenous bioactive molecules (e.g., proteins, lipids, and nucleic acids), and their ability to cross the blood-brain/cerebrospinal barriers. However, poor targeting, low retention rate, and limited therapeutic efficacy of natural EVs have bottlenecked EVs-based SCI therapy. A new paradigm for SCI treatment will be provided by engineering modified EVs. Furthermore, our limited understanding of the role of EVs in SCI pathology hinders the rational design of novel EVbased therapeutic approaches. In this study, we review the pathophysiology after SCI, especially the multicellular EVs-mediated crosstalk; briefly describe the shift from cellular to cell-free therapies for SCI treatment; discuss and analyze the issues related to the route and dose of EVs administration; summarize and present the common strategies for EVs drug loading in the treatment of SCI and point out the shortcomings of these drug loading methods; finally, we analyze and highlight the feasibility and advantages of bio-scaffold-encapsulated EVs for SCI treatment, providing scalable insights into cell-free therapy for SCI.
Collapse
Affiliation(s)
- Bo Qin
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University School of Medicine, Huangshi, 435003, China
| | - Xi-Min Hu
- Clinical Medicine Eight-year Program, 02 Class, 17 Grade, Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Yan-Xia Huang
- Health Management Center, the Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Rong-Hua Yang
- Department of Burn and Plastic Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China
- Hunan Key Laboratory of Ophthalmology, Changsha, 410008, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou, 571199, China
| |
Collapse
|
45
|
Singh S, Dansby C, Agarwal D, Bhat PD, Dubey PK, Krishnamurthy P. Exosomes: Methods for Isolation and Characterization in Biological Samples. Methods Mol Biol 2024; 2835:181-213. [PMID: 39105917 DOI: 10.1007/978-1-0716-3995-5_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Exosomes are small lipid bilayer-encapsulated nanosized extracellular vesicles of endosomal origin. Exosomes are secreted by almost all cell types and are a crucial player in intercellular communication. Exosomes transmit cellular information from donor to recipient cells in the form of proteins, lipids, and nucleic acids and influence several physiological and pathological responses. Due to their capacity to carry a variety of cellular cargo, low immunogenicity and cytotoxicity, biocompatibility, and ability to cross the blood-brain barrier, these nanosized vesicles are considered excellent diagnostic tools and drug-delivery vehicles. Despite their tremendous potential, the progress in therapeutic applications of exosomes is hindered by inadequate isolation techniques, poor characterization, and scarcity of specific biomarkers. The current research in the field is focused on overcoming these limitations. In this chapter, we have reviewed conventional exosome isolation and characterization methods and recent advancements, their advantages and limitations, persistent challenges in exosome research, and future directions.
Collapse
Affiliation(s)
- Sarojini Singh
- Department of Biomedical Engineering, Heersink School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Cassidy Dansby
- Department of Biomedical Engineering, Heersink School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Divyanshi Agarwal
- Department of Biomedical Engineering, Heersink School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Purnima Devaki Bhat
- Department of Biomedical Engineering, Heersink School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Praveen Kumar Dubey
- Department of Biomedical Engineering, Heersink School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, Heersink School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
46
|
Feng W, Teng Y, Zhong Q, Zhang Y, Zhang J, Zhao P, Chen G, Wang C, Liang XJ, Ou C. Biomimetic Grapefruit-Derived Extracellular Vesicles for Safe and Targeted Delivery of Sodium Thiosulfate against Vascular Calcification. ACS NANO 2023; 17:24773-24789. [PMID: 38055864 PMCID: PMC10753875 DOI: 10.1021/acsnano.3c05261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
As the prevalence of vascular calcification (VC), a strong contributor to cardiovascular morbidity and mortality, continues to increase, the need for pharmacologic therapies becomes urgent. Sodium thiosulfate (STS) is a clinically approved drug for therapy against VC; however, its efficacy is hampered by poor bioavailability and severe adverse effects. Plant-derived extracellular vesicles have provided options for VC treatment since they can be used as biomimetic drug carriers with higher biosafety and targeting abilities than artificial carriers. Inspired by natural grapefruit-derived extracellular vesicles (EVs), we fabricated a biomimetic nanocarrier comprising EVs loaded with STS and further modified with hydroxyapatite crystal binding peptide (ESTP) for VC-targeted delivery of STS. In vitro, the ESTP nanodrug exhibited excellent cellular uptake capacity by calcified vascular smooth muscle cells (VSMCs) and subsequently inhibited VSMCs calcification. In the VC mice model, the ESTP nanodrug showed preferentially the highest accumulation in the calcified arteries compared to other treatment groups. Mechanistically, the ESTP nanodrug significantly prevented VC via driving M2 macrophage polarization, reducing inflammation, and suppressing bone-vascular axis as demonstrated by inhibiting osteogenic phenotype trans-differentiation of VSMCs while enhancing bone quality. In addition, the ESTP nanodrug did not induce hemolysis or cause any damage to other organs. These results suggest that the ESTP nanodrug can prove to be a promising agent against VC without the concern of systemic toxicity.
Collapse
Affiliation(s)
- Weijing Feng
- The
Tenth Affiliated Hospital of Southern Medical University (Dongguan
People’s Hospital), Southern Medical University or The First
School of Clinical Medicine, Southern Medical
University, Dongguan 523018, China
- Department
of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong
Provincial Key Laboratory of Cardiac Function and Microcirculation,
Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yintong Teng
- The
Tenth Affiliated Hospital of Southern Medical University (Dongguan
People’s Hospital), Southern Medical University or The First
School of Clinical Medicine, Southern Medical
University, Dongguan 523018, China
| | - Qingping Zhong
- The
Tenth Affiliated Hospital of Southern Medical University (Dongguan
People’s Hospital), Southern Medical University or The First
School of Clinical Medicine, Southern Medical
University, Dongguan 523018, China
| | - Yangmei Zhang
- The
Tenth Affiliated Hospital of Southern Medical University (Dongguan
People’s Hospital), Southern Medical University or The First
School of Clinical Medicine, Southern Medical
University, Dongguan 523018, China
| | - Jianwu Zhang
- Department
of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong
Provincial Key Laboratory of Cardiac Function and Microcirculation,
Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Peng Zhao
- NMPA
Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong
Provincial Key Laboratory of New Drug Screening, Guangdong Provincial
Key Laboratory of Cardiac Function and Microcirculation, School of
Pharmaceutical Sciences, Southern Medical
University, Guangzhou 510515, China
| | - Guoqing Chen
- Cardiology
Department of Panyu Central Hospital and Cardiovascular Disease Institute
of Panyu District, Guangzhou 511400, China
| | - Chunming Wang
- Institute
of Chinese Medical Sciences & State Key Laboratory of Quality
Research in Chinese Medicine, University
of Macau, Macau 00000, SAR, China
| | - Xing-Jie Liang
- Chinese Academy
of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key
Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Caiwen Ou
- The
Tenth Affiliated Hospital of Southern Medical University (Dongguan
People’s Hospital), Southern Medical University or The First
School of Clinical Medicine, Southern Medical
University, Dongguan 523018, China
| |
Collapse
|
47
|
Federico M. The Limitations of Current T Cell-Driven Anticancer Immunotherapies Can Be Overcome with an Original Extracellular-Vesicle-Based Vaccine Strategy. Vaccines (Basel) 2023; 11:1847. [PMID: 38140250 PMCID: PMC10747787 DOI: 10.3390/vaccines11121847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
The emergence of tumors associated with defects in immune surveillance often involve the impairment of key functions of T lymphocytes. Therefore, several anticancer immunotherapies have focused on the induction/strengthening of the tumor-specific activity of T cells. In particular, strategies based on immune checkpoint inhibitors, CAR-T cells, and mRNA vaccines share a common goal of inducing/recovering an effective antitumor cytotoxic activity, often resulting in either exhausted or absent in patients' lymphocytes. In many instances, these approaches have been met with success, becoming part of current clinic protocols. However, the most practiced strategies sometimes also pay significant tolls in terms of adverse events, a lack of target specificity, tumor escape, and unsustainable costs. Hence, new antitumor immunotherapies facing at least some of these issues need to be explored. In this perspective article, the characteristics of a novel CD8+ T cell-specific anticancer vaccine strategy based on in vivo-engineered extracellular vesicles are described. How this approach can be exploited to overcome at least some of the limitations of current antitumor immunotherapies is also discussed.
Collapse
Affiliation(s)
- Maurizio Federico
- National Center for Global Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| |
Collapse
|
48
|
Wu P, Wu W, Zhang S, Han J, Liu C, Yu H, Chen X, Chen X. Therapeutic potential and pharmacological significance of extracellular vesicles derived from traditional medicinal plants. Front Pharmacol 2023; 14:1272241. [PMID: 38108066 PMCID: PMC10725203 DOI: 10.3389/fphar.2023.1272241] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/20/2023] [Indexed: 12/19/2023] Open
Abstract
Medicinal plants are the primary sources for the discovery of novel medicines and the basis of ethnopharmacological research. While existing studies mainly focus on the chemical compounds, there is little research about the functions of other contents in medicinal plants. Extracellular vesicles (EVs) are functionally active, nanoscale, membrane-bound vesicles secreted by almost all eukaryotic cells. Intriguingly, plant-derived extracellular vesicles (PDEVs) also have been implicated to play an important role in therapeutic application. PDEVs were reported to have physical and chemical properties similar to mammalian EVs, which are rich in lipids, proteins, nucleic acids, and pharmacologically active compounds. Besides these properties, PDEVs also exhibit unique advantages, especially intrinsic bioactivity, high stability, and easy absorption. PDEVs were found to be transferred into recipient cells and significantly affect their biological process involved in many diseases, such as inflammation and tumors. PDEVs also could offer unique morphological and compositional characteristics as natural nanocarriers by innately shuttling bioactive lipids, RNA, proteins, and other pharmacologically active substances. In addition, PDEVs could effectively encapsulate hydrophobic and hydrophilic chemicals, remain stable, and cross stringent biological barriers. Thus, this study focuses on the pharmacological action and mechanisms of PDEVs in therapeutic applications. We also systemically deal with facets of PDEVs, ranging from their isolation to composition, biological functions, and biotherapeutic roles. Efforts are also made to elucidate recent advances in re-engineering PDEVs applied as stable, effective, and non-immunogenic therapeutic applications to meet the ever-stringent demands. Considering its unique advantages, these studies not only provide relevant scientific evidence on therapeutic applications but could also replenish and inherit precious cultural heritage.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiping Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofeng Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
49
|
Jang H, Kim H, Kim EH, Han G, Jang Y, Kim Y, Lee JW, Shin SC, Kim EE, Kim SH, Yang Y. Post-insertion technique to introduce targeting moieties in milk exosomes for targeted drug delivery. Biomater Res 2023; 27:124. [PMID: 38031117 PMCID: PMC10688116 DOI: 10.1186/s40824-023-00456-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Recently, increased attention has been given on exosomes as ideal nanocarriers of drugs owing to their intrinsic properties that facilitate the transport of biomolecular cargos. However, large-scale exosome production remains a major challenge in the clinical application of exosome-based drug delivery systems. Considering its biocompatibility and stability, bovine milk is a suitable natural source for large-scale and stable exosome production. Because the active-targeting ability of drug carriers is essential to maximize therapeutic efficacy and minimize side effects, precise membrane functionalization strategies are required to enable tissue-specific delivery of milk exosomes with difficulty in post-isolation modification. METHODS In this study, the membrane functionalization of a milk exosome platform modified using a simple post-insertion method was examined comprehensively. Exosomes were engineered from bovine milk (mExo) with surface-tunable modifications for the delivery of tumor-targeting doxorubicin (Dox). The surface modification of mExo was achieved through the hydrophobic insertion of folate (FA)-conjugated lipids. RESULTS We have confirmed the stable integration of functionalized PE-lipid chains into the mExo membrane through an optimized post-insertion technique, thereby effectively enhancing the surface functionality of mExo. Indeed, the results revealed that FA-modified mExo (mExo-FA) improved cellular uptake in cancer cells via FA receptor (FR)-mediated endocytosis. The designed mExo-FA selectively delivered Dox to FR-positive tumor cells and triggered notable tumor cell death, as confirmed by in vitro and in vivo analyses. CONCLUSIONS This simple and easy method for post-isolation modification of the exosomal surface may be used to develop milk-exosome-based drug delivery systems.
Collapse
Affiliation(s)
- Hochung Jang
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Hyosuk Kim
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Eun Hye Kim
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Geonhee Han
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Yeongji Jang
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Yelee Kim
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Jong Won Lee
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Sang Chul Shin
- Technological Convergence Center, Research Resources Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Eunice EunKyeong Kim
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Sun Hwa Kim
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea.
| | - Yoosoo Yang
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul, 02792, Republic of Korea.
| |
Collapse
|
50
|
Lv S, Wang G, Dai L, Wang T, Wang F. Cellular and Molecular Connections Between Bone Fracture Healing and Exosomes. Physiol Res 2023; 72:565-574. [PMID: 38015756 PMCID: PMC10751053 DOI: 10.33549/physiolres.935143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/25/2023] [Indexed: 01/05/2024] Open
Abstract
Fracture healing is a multifaceted process that requires various phases and intercellular interactions. In recent years, investigations have been conducted to assess the feasibility of utilizing exosomes, small extracellular vesicles (EVs), to enhance and accelerate the healing process. Exosomes serve as a cargo transport platform, facilitating intercellular communication, promoting the presentation of antigens to dendritic cells, and stimulating angiogenesis. Exosomes have a special structure that gives them a special function, especially in the healing process of bone injuries. This article provides an overview of cellular and molecular processes associated with bone fracture healing, as well as a survey of existing exosome research in this context. We also discuss the potential use of exosomes in fracture healing, as well as the obstacles that must be overcome to make this a viable clinical practice.
Collapse
Affiliation(s)
- S Lv
- Department of Orthopedics, Sinopharm China Railway Engineering Corporation Central Hospital, Hefei, China.
| | | | | | | | | |
Collapse
|