1
|
Ghosh R, Kumar M, Kumar S, Komal K, Sharma R, Kurmi BD. Small molecule therapeutics for receptor-mediated targeting through liposomes in breast cancer treatment: A comprehensive review. Bioorg Chem 2025; 160:108442. [PMID: 40199009 DOI: 10.1016/j.bioorg.2025.108442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/06/2025] [Accepted: 04/03/2025] [Indexed: 04/10/2025]
Abstract
Breast cancer (BC) remains a significant global health challenge, with conventional treatment approaches such as surgery, chemotherapy, and radiation therapy. These approaches face limitations in targeting, toxicity, and efficacy. Liposomal drug delivery systems have emerged as promising tools for targeted breast cancer therapies. Liposomes can encapsulate both hydrophilic and hydrophobic drugs, improve drug distribution, and reduce the side effects. Passive targeting exploits the enhanced permeability and retention effect in tumor tissues, whereas active targeting employs small molecule ligands such as aptamers, folic acid (FA), transferrin, and monoclonal antibodies to specifically bind to overexpressed receptors on cancer cells. Aptamer-functionalized liposomes exhibit high specificity and affinity, folate and transferrin receptor targeting enhances cellular uptake and cytotoxicity, and antibody-conjugated liposomes improve drug delivery and efficacy by targeting specific antigens. Dual-responsive liposomes are sensitive to multiple stimuli and further enhance targeting precision. However, challenges remain, including tumor heterogeneity, limited penetration, and potential immunogenicity. Current research has focused on developing stable and effective formulations and exploring combination-targeting strategies to overcome these limitations. With further advancements, targeted liposomal drug delivery systems hold great promise in improving breast cancer treatment outcomes and reducing adverse effects.
Collapse
Affiliation(s)
- Rashmi Ghosh
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga 142001, Punjab, India
| | - Manish Kumar
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga 142001, Punjab, India.
| | - Sourabh Kumar
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga 142001, Punjab, India
| | - Kumari Komal
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga 142001, Punjab, India
| | - Rohit Sharma
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga 142001, Punjab, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga 142001, Punjab, India
| |
Collapse
|
2
|
Kulkarni AM, Gayam PKR, Baby BT, Aranjani JM. Epithelial-Mesenchymal Transition in Cancer: A Focus on Itraconazole, a Hedgehog Inhibitor. Biochim Biophys Acta Rev Cancer 2025; 1880:189279. [PMID: 39938662 DOI: 10.1016/j.bbcan.2025.189279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 01/24/2025] [Accepted: 02/04/2025] [Indexed: 02/14/2025]
Abstract
Cancer, and the resulting mortality from it, is an ever-increasing concern in global health. Cancer mortality stems from the metastatic progression of the disease, by dissemination of the tumor cells. Epithelial-Mesenchymal Transition, the major hypothesis purported to be the origin of metastasis, confers mesenchymal phenotype to epithelial cells in a variety of contexts, physiological and pathological. EMT in cancer leads to rise of cancer-stem-like cells, drug resistance, relapse, and progression of malignancy. Inhibition of EMT could potentially attenuate the mortality. While novel molecules for inhibiting EMT are underway, repurposing drugs is also being considered as a viable strategy. In this review, Itraconazole is focused upon, as a repurposed molecule to mitigate EMT. Itraconazole is known to inhibit Hedgehog signaling, and light is shed upon the existing evidence, as well as the questions remaining to be answered.
Collapse
Affiliation(s)
- Aniruddha Murahar Kulkarni
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka 576104, India.
| | - Prasanna Kumar Reddy Gayam
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka 576104, India.
| | - Beena Thazhackavayal Baby
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka 576104, India
| | - Jesil Mathew Aranjani
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka 576104, India.
| |
Collapse
|
3
|
Lemos I, Freitas-Dias C, Hipólito A, Ramalho J, Carteni F, Gonçalves LG, Mazzoleni S, Serpa J. Cell-Free DNA (cfDNA) Regulates Metabolic Remodeling, Sustaining Proliferation, Quiescence, and Migration in MDA-MB-231, a Triple-Negative Breast Carcinoma (TNBC) Cell Line. Metabolites 2025; 15:227. [PMID: 40278356 PMCID: PMC12029764 DOI: 10.3390/metabo15040227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/11/2025] [Accepted: 03/24/2025] [Indexed: 04/26/2025] Open
Abstract
Background: The clinical relevance of circulating cell-free DNA (cfDNA) in oncology has gained significant attention, with its potential as a biomarker for cancer diagnosis and monitoring. However, its precise role in cancer biology and progression remains unclear. cfDNA in cancer patients' blood has been shown to activate signaling pathways, such as those mediated by toll-like receptors (TLRs), suggesting its involvement in cancer cell adaptation to the tumor microenvironment. Methods: This impact of cfDNA released from MDA-MB-231, a triple-negative breast cancer (TNBC) cell line was assessed, focusing on glucose availability and culture duration. The impact of cfDNA on the proliferation of MDA-MB-231 cells was investigated using proliferation curves, while cellular migration was evaluated through wound healing assays. The metabolic alterations induced by distinct cfDNA variants in MDA-MB-231 cells were investigated through nuclear magnetic resonance (NMR) spectroscopy, and their effect on cisplatin resistance was evaluated using flow cytometry. Furthermore, the expression levels of DNA-sensitive Toll-like receptor 9 (TLR9) were quantified via immunofluorescence, alongside its colocalization with lysosome-associated membrane protein 1 (LAMP1). Results: This study indicates that cfDNA facilitates metabolic adaptation, particularly under metabolic stress, by modulating glucose and glutamine consumption, key pathways in tumor cell metabolism. Exposure to cfDNA induced distinct metabolic shifts, favoring energy production through oxidative phosphorylation. The anti-cancer activity of cfDNA isolated from conditioned media of cells cultured under stressful conditions is influenced by the culture duration, emphasizing the importance of adaptation and se-lection in releasing cfDNA that can drive pro-tumoral processes. Additionally, cfDNA exposure influenced cell proliferation, quiescence, and migration, processes linked to metastasis and treatment resistance. These findings underscore cfDNA as a key mediator of metabolic reprogramming and adaptive responses in cancer cells, contributing to tumor progression and therapy resistance. Furthermore, the activation of TLR9 signaling suggests a mechanistic basis for cfDNA-induced phenotypic changes. Conclusions: Overall, cfDNA serves as a crucial signaling molecule in the tumor microenvironment, orchestrating adaptive processes that enhance cancer cell survival and progression.
Collapse
Affiliation(s)
- Isabel Lemos
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal; (I.L.); (C.F.-D.); (A.H.); (J.R.)
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisbon, Portugal
| | - Catarina Freitas-Dias
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal; (I.L.); (C.F.-D.); (A.H.); (J.R.)
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisbon, Portugal
| | - Ana Hipólito
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal; (I.L.); (C.F.-D.); (A.H.); (J.R.)
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisbon, Portugal
| | - José Ramalho
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal; (I.L.); (C.F.-D.); (A.H.); (J.R.)
| | - Fabrizio Carteni
- Lab Applied Ecology and System Dynamics, Dipartimento di Agraria, Università di Napoli “Federico II”, Portici, 80055 Naples, Italy; (F.C.); (S.M.)
| | - Luís G. Gonçalves
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Avenida da República (EAN), 2780-157 Oeiras, Portugal;
| | - Stefano Mazzoleni
- Lab Applied Ecology and System Dynamics, Dipartimento di Agraria, Università di Napoli “Federico II”, Portici, 80055 Naples, Italy; (F.C.); (S.M.)
| | - Jacinta Serpa
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal; (I.L.); (C.F.-D.); (A.H.); (J.R.)
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisbon, Portugal
| |
Collapse
|
4
|
Cortellesi E, Savini I, Veneziano M, Gambacurta A, Catani MV, Gasperi V. Decoding the Epigenome of Breast Cancer. Int J Mol Sci 2025; 26:2605. [PMID: 40141248 PMCID: PMC11942310 DOI: 10.3390/ijms26062605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/06/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
Breast cancer (BC) is the most prevalent malignancy among women, characterized by extensive heterogeneity stemming from molecular and genetic alterations. This review explores the intricate epigenetic landscape of BC, highlighting the significant role of epigenetic modifications-particularly DNA methylation, histone modifications, and the influence of non-coding RNAs-in the initiation, progression, and prognosis of the disease. Epigenetic alterations drive crucial processes, including gene expression regulation, cell differentiation, and tumor microenvironment interactions, contributing to tumorigenesis and metastatic potential. Notably, aberrations in DNA methylation patterns, including global hypomethylation and hypermethylation of CpG islands, have been associated with distinct BC subtypes, with implications for early detection and risk assessment. Furthermore, histone modifications, such as acetylation and methylation, affect cancer cell plasticity and aggressiveness by profoundly influencing chromatin dynamics and gene transcription. Finally, non-coding RNAs contribute by modulating epigenetic machinery and gene expression. Despite advances in our knowledge, clinical application of epigenetic therapies in BC is still challenging, often yielding limited efficacy when used alone. However, combining epi-drugs with established treatments shows promise for enhancing therapeutic outcomes. This review underscores the importance of integrating epigenetic insights into personalized BC treatment strategies, emphasizing the potential of epigenetic biomarkers for improving diagnosis, prognosis, and therapeutic response in affected patients.
Collapse
Affiliation(s)
- Elisa Cortellesi
- Department of Experimental Medicine, Tor Vergata University of Rome, 00133 Rome, Italy; (E.C.); (I.S.); (M.V.); (A.G.); (M.V.C.)
| | - Isabella Savini
- Department of Experimental Medicine, Tor Vergata University of Rome, 00133 Rome, Italy; (E.C.); (I.S.); (M.V.); (A.G.); (M.V.C.)
| | - Matteo Veneziano
- Department of Experimental Medicine, Tor Vergata University of Rome, 00133 Rome, Italy; (E.C.); (I.S.); (M.V.); (A.G.); (M.V.C.)
| | - Alessandra Gambacurta
- Department of Experimental Medicine, Tor Vergata University of Rome, 00133 Rome, Italy; (E.C.); (I.S.); (M.V.); (A.G.); (M.V.C.)
- NAST Centre (Nanoscience & Nanotechnology & Innovative Instrumentation), Tor Vergata University of Rome, 00133 Rome, Italy
| | - Maria Valeria Catani
- Department of Experimental Medicine, Tor Vergata University of Rome, 00133 Rome, Italy; (E.C.); (I.S.); (M.V.); (A.G.); (M.V.C.)
| | - Valeria Gasperi
- Department of Experimental Medicine, Tor Vergata University of Rome, 00133 Rome, Italy; (E.C.); (I.S.); (M.V.); (A.G.); (M.V.C.)
| |
Collapse
|
5
|
Singh T, Rastogi M, Thakur K. Network pharmacology and in silico approach to study the mechanism of quercetin against breast cancer. In Silico Pharmacol 2025; 13:22. [PMID: 39925462 PMCID: PMC11802979 DOI: 10.1007/s40203-025-00306-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 01/14/2025] [Indexed: 02/11/2025] Open
Abstract
Breast cancer is a significant health concern among females with an estimated 2.3 million cases reported worldwide in 2022. Traditional treatment methods have now developed resistance and various adverse effects, highlighting an urgent need for attention. Therefore, it is advisable to substitute these conventional therapies with innovative medications. Quercetin is a flavonoid, commonly found in various vegetables and fruits and have been shown to possess anti-cancer properties. Network pharmacology is a comprehensive approach that has significantly assisted in investigating the potential of quercetin as a therapeutic option for breast cancer. The first step includes target fishing for quercetin-targeted genes in breast cancer through various online available databases. All intersecting genes were analysed for the phenotypic- genotypic correlation via online VarElect analysis tool. Using the result from the result the GO enrichment and pathway enrichment analysis was done on 52 common genes; followed by PPI network construction and based on topological parameters top 8 genes were filtered. Based on theVenny2.1 and then GEPIA and HPA analysis the key target were identifies as ABCC1, ABCC4, AKT1, ABCB1, CYP1B1, CYP19A1, ABCB4 and ABCG2. Further, Molecular docking was done to investigate the possible interaction of the identified gene with quercetin. Our finding shows quercetin is the potential natural drug that can treat breast cancer effectively. Quercetin interacts with ABCC1, ABCC4, AKT1, ABCB1, CYP1B1, CYP19A1, ABCB4, and ABCG2 at cellular as well as molecular level. The ADMET analysis suggests the bioavaibility of quercetin is around 0.55. Suggesting that quercetin satisfies drug-likeness rules but may face challenges like low bioavailability, which can be enhanced through structural modifications or formulations (e.g., nanoparticles). The molecular docking result assures the interaction of quercetin with the ABCC1, ABCC4, AKT1, ABCB1, CYP1B1, CYP19A1, ABCB4, and ABCG2 with the binding affinity of - 7.2, - 10.1, - 10.4, - 8.0, - 8.2, - 8.2, - 9.0 and - 8.9 respectively. These results suggest quercetin has a stable interaction with the ABCC4 gene. Considering this interaction the quercetin molecules can rescue the cellular condition by inducing apoptosis, inhibiting proliferation, and suppressing metastasis. Quercetin, a natural compound found in fruits and vegetables, has been found to have significant therapeutic roles in treating breast cancer. It inhibits cell cycle arrest, promotes apoptosis, and reduces blood vessel formation. It also reverses drug resistance and has antioxidant and anti-inflammatory properties. This study concludes that the therapeutic influence of quercetin plays a significant role in treating breast cancer and aids in the advancement of the clinical application of quercetin in future studies. Graphical Abstract
Collapse
Affiliation(s)
- Tejveer Singh
- Translational Oncology Laboratory, Department of Zoology, Hansraj College, Delhi University, New Delhi, 110007 India
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences (INMAS-DRDO), New Delhi, India
| | - Mahi Rastogi
- Amity Institute of Biotechnology, Amity University Madhya Pradesh, Gwalior, Madhya Pradesh 474011 India
| | - Kulbhushan Thakur
- Translational Oncology Laboratory, Department of Zoology, Hansraj College, Delhi University, New Delhi, 110007 India
| |
Collapse
|
6
|
Parihar A, Gaur K, Sarbadhikary P. Advanced 2D Nanomaterials for Phototheranostics of Breast Cancer: A Paradigm Shift. Adv Biol (Weinh) 2025; 9:e2400441. [PMID: 39543015 DOI: 10.1002/adbi.202400441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/29/2024] [Indexed: 11/17/2024]
Abstract
Breast cancer is the leading cause of women's deaths and associated comorbidities. The advanced and targeted strategies against breast cancer have gained considerable attention due to their potential enhanced therapeutic efficacy over conventional therapies. In this context, phototherapies like photodynamic therapy (PDT) and photothermal therapy (PTT) have shown promise as an effective and alternative strategy due to reduced side effects, noninvasiveness, and spatiotemporal specificity. With the advent of nanotechnology, several types of nanomaterials that have shown excellent prospects in increasing the efficacy of photo therapies have been exploited in cancer treatment. In recent years, 2D nanomaterials have stood out promising because of their unique ultrathin planar structure, chemical, physical, tunable characteristics, and corresponding remarkable physiochemical/biological properties. In this review, the potential and the current status of several types of 2D nanomaterials such as graphene-based nanomaterials, Mxenes, Black phosphorous, and Transition Metal Dichalcogenides for photo/thermo and combination-based imaging and therapy of breast cancer have been discussed. The current challenges and prospects in terms of translational potential in future clinical oncology are highlighted.
Collapse
Affiliation(s)
- Arpana Parihar
- Department of Translational Medicine, All India Institute of Medical Sciences Bhopal, Saket Nagar, Bhopal, Madhya Pradesh, 462020, India
| | - Kritika Gaur
- Central Sheep and wool research institute, ICAR- Indian Council of Agricultural Research, Avikanagr, Malpura, Rajasthan, 304501, India
| | - Paromita Sarbadhikary
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, P.O. Box 17011, Johannesburg, 2028, South Africa
| |
Collapse
|
7
|
Aavani F, Rahimi R, Goleij P, Rezaeizadeh H, Bahramsoltani R. Royal jelly and its hormonal effects in breast cancer: a literature review. Daru 2024; 32:745-760. [PMID: 38717683 PMCID: PMC11555035 DOI: 10.1007/s40199-024-00513-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 04/10/2024] [Indexed: 11/12/2024] Open
Abstract
BACKGROUND Breast cancer is the most common cancer in women which can be cured in most individuals with early-stage non-metastatic disease. Imbalance in estrogen signaling pathways and propagating levels of estrogens has important roles in breast cancer development. Targeting the estrogen receptor signaling pathway is linked to breast cancer treatment. Royal jelly is one of the bee products containing 10-hydroxy-2-decenoic acid, a structure similar to mammalian estrogen, allowing it to attach to estrogen receptors. It is considered as a general tonic and immunomodulator which may be helpful in reducing the side effects of cancer treatments. Currently, there are controversial data regarding the pros and cons of royal jelly in cancer. Here we provide an overview of the effects of royal jelly on sex hormones and its possible role in breast cancer. METHODS Electronic databases including PubMed, Scopus, and Web of Science were searched with the search terms royal jelly, cancer, and sexual hormones. All preclinical and clinical studies regarding the hormonal effects of royal jelly were included. RESULTS According to the collected preclinical data, consumption of royal jelly at daily doses below 200 mg/kg can be useful to decrease the risk of breast cancer since it reduces the serum level of estrogen; whereas increases progesterone, which subsequently decreases the expression of ERs on the ER-positive cells. CONCLUSION Future clinical studies are essential to confirm the safe dose of royal jelly as an adjuvant therapy in breast cancer.
Collapse
Affiliation(s)
- Farzaneh Aavani
- Institute of Experimental and Clinical Pharmacology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Roja Rahimi
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, No. 27, North Sarparast, West Taleqani, Felestin Sq., P.O. Box: 1417653761, Tehran, Iran
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Pouya Goleij
- Department of Genetics, Sana Institute of Higher Education, Sari, Iran
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Sari, Iran
| | - Hossein Rezaeizadeh
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Roodabeh Bahramsoltani
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, No. 27, North Sarparast, West Taleqani, Felestin Sq., P.O. Box: 1417653761, Tehran, Iran.
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
8
|
Ullah MZ, Hussain Z, Shakir SA, Mahmood M, Ejaz SA, Aziz M, Fayyaz A, Iqbal J, Mumtaz A. Exploration of newly synthesized deferasirox derivatives as potential anti-cancer agents via in-vitro and in-silico approaches. Int J Biol Macromol 2024; 283:137971. [PMID: 39581395 DOI: 10.1016/j.ijbiomac.2024.137971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Carbonic anhydrase IX (CA IX), upregulated by hypoxia-inducible factor (HIF), plays a crucial role in regulation of intracellular and extracellular pH, which is essential for the growth and spread of tumors. The overexpression of CA IX in breast cancer is linked to a low post-radiation patient survival rate. Under normoxic conditions, CA IX expression is relatively low, but hypoxia-inducible factors (HIFs) upregulate its expression when oxygen levels drop. This adaptation supports the tumor's acidic microenvironment, aiding processes like metastasis, immune evasion, and resistance to therapies. Due to these functions, CA IX is considered a promising target for cancer therapy, with inhibitors in development aimed at disrupting its activity and thus hindering tumor growth and survival. Thus, various derivatives of already reported anticancer drug i.e., deferasirox were synthesized and their effect on CA IX enzyme were assessed. Additionally, the binding affinities of deferasirox derivatives with three distinct receptor proteins i.e., Tumor Protein P53 (TP53), Nuclear factor kappa B (NF-κB) and caspase 3 (pdb: 3DCY, 1NFI, 3DEI) were also observed. Their anticancer effect was evaluated by using non-invasive human breast cancer cells i.e., MCF-7 and glioblastoma cells (U87). Among all derivatives, the four thioureas derivatives showed more anticancer potential. The 4-(3,5-bis(2-hydroxyphenyl)-1H-1,2,4-triazol-1-yl)-N-((3,4-dimethoxyphenyl)carbamothioyl) benzamide (6) derivative exhibited maximum anticancer potential (0.33 ± 0.02 μM) with greater binding affinity at different protein receptors. The MTT results further confirmed the enzyme inhibition results of deferasirox derivatives. In conclusion, targeting hypoxia-induced CA IX expression in breast cancer through the use of deferasirox-derived thiourea derivatives presents a promising therapeutic approach.
Collapse
Affiliation(s)
- Muhammad Zahid Ullah
- Department of Chemistry, COMSATS University Islamabad, Abbottabad 22060, Pakistan
| | - Zahid Hussain
- Department of Chemistry, COMSATS University Islamabad, Abbottabad 22060, Pakistan; Center for Advance Drug Research, COMSATS University Islamabad, Abbottabad 22060, Pakistan
| | - Syed Ahmad Shakir
- Department of Chemistry, COMSATS University Islamabad, Abbottabad 22060, Pakistan
| | - Mahnoor Mahmood
- Department of Chemistry, COMSATS University Islamabad, Abbottabad 22060, Pakistan
| | - Syeda Abida Ejaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacv, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Mubashir Aziz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacv, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Ammara Fayyaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacv, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Jamshed Iqbal
- Department of Chemistry, COMSATS University Islamabad, Abbottabad 22060, Pakistan; Center for Advance Drug Research, COMSATS University Islamabad, Abbottabad 22060, Pakistan.
| | - Amara Mumtaz
- Department of Chemistry, COMSATS University Islamabad, Abbottabad 22060, Pakistan.
| |
Collapse
|
9
|
Manivannan HP, Veeraraghavan VP, Francis AP. Identification of molecular targets of Trigonelline for treating breast cancer through network pharmacology and bioinformatics-based prediction. Mol Divers 2024; 28:3835-3857. [PMID: 38145425 DOI: 10.1007/s11030-023-10780-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/21/2023] [Indexed: 12/26/2023]
Abstract
Breast cancer, a highly prevalent and fatal cancer that affects the female population worldwide, stands as a significant health challenge. Despite the abundance of chemotherapy drugs, the adverse side effects associated with them have initiated an investigation into natural plant-based compounds. Trigonelline, an alkaloid found in Trigonella foenum-graecum, was previously reported for its anticancer properties by the researchers. In this present study, we have identified the molecular targets of Trigonelline in breast cancer and predicted its drug-like properties and toxicity. By analyzing breast cancer targets from databases including TTD, TCGA, Gene cards, and Trigonelline targets obtained from CTD, we identified 14 specific targets of Trigonelline in the context of breast cancer. The protein-protein interaction (PPI) network of the 14 Trigonelline targets provided insights into the complex relationships between different genes and targets. Heatmap analysis demonstrated the expression patterns of these 14 genes at the protein and RNA levels in breast cancer cells and breast tissues. Notably, four genes, namely EGF, BAX, EGFR, and MTOR, were enriched in the breast cancer pathway. At the same time, PARP1, DDIT3, BAX, and TNF were associated with the apoptosis pathway according to KEGG pathway enrichment analyses. Molecular docking studies between Trigonelline and target proteins from the Protein Data Bank (PDB) revealed favorable binding affinity. Furthermore, mutation analysis of target genes within a dataset of 1918 samples from cBioPortal revealed the absence of mutations. Remarkably, Trigonelline also exhibited binding affinity towards two mutant proteins, and based on these findings, we predicted that Trigonelline could be utilized to target breast cancer genes and their mutants through network pharmacology. Additionally, this was supported by molecular dynamic simulation studies. As our study is preliminary, further validation through in vitro and in vivo studies is essential to confirm the efficacy of Trigonelline in breast cancer treatment.
Collapse
Affiliation(s)
- Hema Priya Manivannan
- Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India
| | - Arul Prakash Francis
- Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India.
| |
Collapse
|
10
|
Rebaudi F, De Franco F, Goda R, Obino V, Vita G, Baronti C, Iannone E, Pitto F, Massa B, Fenoglio D, Jandus C, Poggio F, Fregatti P, Melaiu O, Bozzo M, Candiani S, Papaccio F, Greppi M, Pesce S, Marcenaro E. The landscape of combining immune checkpoint inhibitors with novel Therapies: Secret alliances against breast cancer. Cancer Treat Rev 2024; 130:102831. [PMID: 39342797 DOI: 10.1016/j.ctrv.2024.102831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/04/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024]
Abstract
This review focuses on the immune checkpoint inhibitors (ICIs) in the context of breast cancer (BC) management. These innovative treatments, by targeting proteins expressed on both tumor and immune cells, aim to overcome tumor-induced immune suppression and reactivate the immune system. The potential of this approach is the subject of numerous clinical studies. Here, we explore the key studies and emerging therapies related to ICIs providing a detailed analysis of their specific and combined use in BC treatment.
Collapse
Affiliation(s)
- Federico Rebaudi
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Fabiana De Franco
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Rayan Goda
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Valentina Obino
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Giorgio Vita
- Department of Internal Medicine (DIMI), University of Genoa, Genoa, Italy
| | - Camilla Baronti
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Eleonora Iannone
- Breast Surgery Clinic, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Francesca Pitto
- Department of Pathology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Barbara Massa
- Department of Pathology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Daniela Fenoglio
- Department of Internal Medicine (DIMI), University of Genoa, Genoa, Italy; Biotherapy Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Camilla Jandus
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland; Geneva Center for Inflammation Research, Geneva, Switzerland
| | - Francesca Poggio
- Department of Medical Oncology, Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Piero Fregatti
- Breast Surgery Clinic, IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Department of Integrated Surgical and Diagnostic Sciences (DISC), University of Genoa, Genoa, Italy
| | - Ombretta Melaiu
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Matteo Bozzo
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - Simona Candiani
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Federica Papaccio
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
| | - Marco Greppi
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy.
| | - Silvia Pesce
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| | - Emanuela Marcenaro
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| |
Collapse
|
11
|
Yin QH, Hu JB, Zhou Q, Weng J, Shen ED, Wen F, Liu SL, Yin LL, Tong YJ, Long L, Tang KW, Bai ST, Ou LD. Unveiling miRNA30b's Role in Suppressing ADAM12 to Combat Triple-Negative Breast Cancer. Breast J 2024; 2024:5202941. [PMID: 39742357 PMCID: PMC11540880 DOI: 10.1155/2024/5202941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/25/2024] [Accepted: 10/15/2024] [Indexed: 01/03/2025]
Abstract
Background: Triple-negative breast cancer, a subtype of breast cancer, is characterized by a poor prognosis. Recent studies have shown that miRNA30b acts as an oncogene and is vital for the proliferation of malignancies across various systems. This study aimed to elucidate the impact of miRNA30b on the proliferation, migration, and invasion capabilities of breast cancer cells in vitro. Methods: Triple-negative breast cancer cell lines MDA-MB-231 were transiently transfected with miRNA30b inhibitor, mimic, or the negative control by Lipofectamine 2000. Successful transfection was confirmed by quantitative real-time polymerase chain reaction (qRT-PCR). Functional assays, including CCK8, clone formation, scratch, and transwell assays, were conducted to evaluate the proliferation, invasion, and migration ability of MDA-MB-231 cells in each group. The target protein of miRNA30b was determined using an online prediction data website, and the dual-luciferase assay confirmed whether there was a binding site between miRNA30b and ADAM12. The effect was further verified by Western blot analysis. Results: MDA-MB-231 cells were transfected with miRNA30b inhibitor, mimic, and negative control. miRNA30b expression was downregulated in the cells. Relative to the negative control group, miRNA30b expression significantly increased in the mimic group and decreased in the miRNA30b inhibitor group, with the differences being statistically significant. The miRNA30b mimic group exhibited a significant increase in miRNA30b expression and a corresponding promotion of cell proliferation, colony formation, and migration. Conversely, the miRNA30b inhibitor group displayed significantly reduced miRNA30b expression and suppressed cell proliferation, colony formation, and migration abilities compared to the negative control cells. Bioinformatics software predicted ADAM12 as a potential target of miRNA30b. Dual-luciferase assays confirmed the presence of a binding site between miRNA30b and ADAM12. Western blot analysis revealed that overexpression of miRNA30b downregulated ADAM12 expression in MDA-MB-231 cells. Conclusions: miRNA30b could promote proliferation, migration, and invasion of TNBC cell lines MDA-MB-231. The effect of miRNA30b on triple-negative breast cancer would be achieved partly at least through inhibiting the expression of ADAM12.
Collapse
Affiliation(s)
- Qing-hua Yin
- Department of Oncology, Yueyang Central Hospital, Yueyang 414000, Hunan, China
| | - Jian-bing Hu
- Department of Oncology, Yueyang Central Hospital, Yueyang 414000, Hunan, China
| | - Qiang Zhou
- Department of Oncology, Yueyang Central Hospital, Yueyang 414000, Hunan, China
| | - Jie Weng
- Department of Oncology, Yueyang Central Hospital, Yueyang 414000, Hunan, China
| | - Er-dong Shen
- Department of Oncology, Yueyang Central Hospital, Yueyang 414000, Hunan, China
| | - Fang Wen
- Department of Oncology, Yueyang Central Hospital, Yueyang 414000, Hunan, China
| | - Song-lian Liu
- Department of Oncology, Yueyang Central Hospital, Yueyang 414000, Hunan, China
| | - Lei-lan Yin
- Department of Oncology, Yueyang Central Hospital, Yueyang 414000, Hunan, China
| | - Ya-jun Tong
- Department of Oncology, Yueyang Central Hospital, Yueyang 414000, Hunan, China
| | - Ling Long
- Department of Oncology, Yueyang Central Hospital, Yueyang 414000, Hunan, China
| | - Ke-wei Tang
- Department of Oncology, Yueyang Central Hospital, Yueyang 414000, Hunan, China
| | - Si-te Bai
- Department of Oncology, Yueyang Central Hospital, Yueyang 414000, Hunan, China
| | - Lu-di Ou
- Department of Oncology, Yueyang Central Hospital, Yueyang 414000, Hunan, China
| |
Collapse
|
12
|
Akram MT, Khan MA, Ahmad I, Ullah F, Khan MR, Yasmeen Z, Ahmad K, Breena B. In silico studies, synthesis, characterization and in vitro studies of levosulpiride derivatives. Future Med Chem 2024; 16:2459-2473. [PMID: 39404461 PMCID: PMC11622800 DOI: 10.1080/17568919.2024.2408213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 09/12/2024] [Indexed: 12/06/2024] Open
Abstract
Aim: Breast cancer is the most recurring cancer among females and is being diagnosed as a major cause of death among women.Materials & methods: Levosulpiride Schiff base derivatives were synthesized and analyzed by physical and spectral (FTIR, 1H-NMR, 13C-NMR) analysis. MTT assay against MCF-7 (human breast cancer cell line), scavenging activity and Molecular docking against receptors 1M17, 3PP0, 3IOK and 4KIK along ADME pharmacokinetic studies were performed.Results & conclusion: L1 and L3 synthesized derivatives have revealed better percent cell viability and inhibitory concentration (IC50) with scavenging activity as of the parent compound. L1, L3 and L9 revealed significant docking scores compared with standard drugs. Most of the derivatives showed strong pharmacokinetic profiles while no drug crossed blood-brain barrier. The newly synthesized L1 and L3 levosulpiride-derived compounds have demonstrated promising anticancer properties against breast cancer cells.
Collapse
Affiliation(s)
- Muhammad Toseef Akram
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Mohsin Abbas Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Irshad Ahmad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Farhat Ullah
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Muhammad Rizwan Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Zarmeena Yasmeen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Khalil Ahmad
- University College of Conventional Medicine, Faculty of Medicine and Allied Health Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Breena Breena
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100, Pakistan
| |
Collapse
|
13
|
Hosseini M, Ezzeddini R, Hashemi SM, Soudi S, Salek Farrokhi A. Enhanced anti-tumor efficacy of S3I-201 in breast cancer mouse model through Wharton jelly- exosome. Cancer Cell Int 2024; 24:318. [PMID: 39294673 PMCID: PMC11409531 DOI: 10.1186/s12935-024-03501-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/05/2024] [Indexed: 09/21/2024] Open
Abstract
OBJECTIVE Exosomes, membrane-enveloped vesicles found in various cell types, including Wharton's jelly mesenchymal stem cells, play a crucial role in intercellular communication and regulation. Their use as a cell-free nanotechnology and drug delivery system has attracted attention. Triple-negative breast cancer (TNBC) is a major global health problem and is characterized by a high mortality rate. This study investigates the potential of Wharton's Jelly mesenchymal stem cell-derived exosomes (WJ-Exo) as carriers of S3I-201 and their effects on STAT3 expression in breast cancer cell lines, and evaluates whether these exosomes can enhance the anti-tumor effect of S3I-201. METHODS The filtered WJ-Exos were analyzed by Transmission Electron Microscopy (TEM), Scanning electron microscopy (SEM), Dynamic Light Scattering (DLS), flow cytometry, and Western blotting. These exosomes were then used for loading with S3I-201, resulting in the nano-formulation WJ-Exo(S3I-201). The effect of WJ-Exo(S3I-201) on 4T1 cancer cells was investigated in vitro using MTT assay, flow cytometry, wound healing assay, Western blotting and Quantitative Real-Time Polymerase chain reaction (qPCR) analysis. Finally, the therapeutic efficacy of the nano-formulation was investigated in vivo using a tumor-bearing mouse model. RESULTS In vitro experiments showed that co-incubation of 4T1 cells with the nano-formulation resulted in a significant reduction in p-STAT3 levels, induction of apoptosis, modulation of Bcl-2, Bax and caspase-3 protein and gene expression, and inhibition of migration. In vivo, treatment of tumor-bearing mice with WJ-Exo(S3I-201) showed a strong antitumor effect that exceeded the efficacy observed in the S3I-201 group. CONCLUSION Our results demonstrate that WJ-Exo is an effective carrier for targeting S3I-201 to tumor cells and enhances the therapeutic efficacy of S3I-201 in tumor-bearing mice.
Collapse
Affiliation(s)
- Masoomeh Hosseini
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Rana Ezzeddini
- Department of Clinical Biochemistry, Tarbiat Modares University, P.O. Box: 156352698, Tehran, Iran.
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Soudi
- Department of Immunology, Tarbiat Modares University, Tehran, Iran
| | - Amir Salek Farrokhi
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran.
- Department of Immunology, Pasteur Institute of Iran, P.O. Box: 1316943551, Tehran, Iran.
| |
Collapse
|
14
|
Jayaswal N, Srivastava S, Kumar S, Belagodu Sridhar S, Khalid A, Najmi A, Zoghebi K, Alhazmi HA, Mohan S, Tambuwala MM. Precision arrows: Navigating breast cancer with nanotechnology siRNA. Int J Pharm 2024; 662:124403. [PMID: 38944167 DOI: 10.1016/j.ijpharm.2024.124403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Nanotechnology-based drug delivery systems, including siRNA, present an innovative approach to treating breast cancer, which disproportionately affects women. These systems enable personalized and targeted therapies, adept at managing drug resistance and minimizing off-target effects. This review delves into the current landscape of nanotechnology-derived siRNA transport systems for breast cancer treatment, discussing their mechanisms of action, preclinical and clinical research, therapeutic applications, challenges, and future prospects. Emphasis is placed on the importance of targeted delivery and precise gene silencing in improving therapeutic efficacy and patient outcomes. The review addresses specific hurdles such as specificity, biodistribution, immunological reactions, and regulatory approval, offering potential solutions and avenues for future research. SiRNA drug delivery systems hold promise in revolutionizing cancer care and improving patient outcomes, but realizing their full potential necessitates ongoing research, innovation, and collaboration. Understanding the intricacies of siRNA delivery mechanisms is pivotal for designing effective cancer treatments, overcoming challenges, and advancing siRNA-based therapies for various diseases, including cancer. The article provides a comprehensive review of the methods involved in siRNA transport for therapeutic applications, particularly in cancer treatment, elucidating the complex journey of siRNA molecules from extracellular space to intracellular targets. Key mechanisms such as endocytosis, receptor-mediated uptake, and membrane fusion are explored, alongside innovative delivery vehicles and technologies that enhance siRNA delivery efficiency. Moreover, the article discusses challenges and opportunities in the field, including issues related to specificity, biodistribution, immune response, and clinical translation. By comprehending the mechanisms of siRNA delivery, researchers can design and develop more effective siRNA-based therapies for various diseases, including cancer.
Collapse
Affiliation(s)
- Nandani Jayaswal
- Faculty of Pharmaceutical Sciences, Mahayogi Gorakhnath University, Gorakhpur, 273007, India
| | - Shriyansh Srivastava
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 273007, India; Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, India.
| | - Sachin Kumar
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 273007, India
| | | | - Asaad Khalid
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia.
| | - Asim Najmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Khalid Zoghebi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Hassan A Alhazmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Syam Mohan
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia; School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India; Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK; RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah, UAE.
| |
Collapse
|
15
|
Pradel LS, Ho YL, Gohlke H, Kassack MU. The Antioxidant and HDAC-Inhibitor α-Lipoic Acid Is Synergistic with Exemestane in Estrogen Receptor-Positive Breast Cancer Cells. Int J Mol Sci 2024; 25:8455. [PMID: 39126024 PMCID: PMC11313180 DOI: 10.3390/ijms25158455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Anti-estrogenic therapy is established in the management of estrogen receptor (ER)-positive breast cancer. However, to overcome resistance and improve therapeutic outcome, novel strategies are needed such as targeting widely recognized aberrant epigenetics. The study aims to investigate the combination of the aromatase inhibitor exemestane and the histone deacetylase (HDAC) inhibitor and antioxidant α-lipoic acid in ER-positive breast cancer cells. First, the enantiomers and the racemic mixture of α-lipoic acid, and rac-dihydro-lipoic acid were investigated for HDAC inhibition. We found HDAC inhibitory activity in the 1-3-digit micromolar range with a preference for HDAC6. Rac-dihydro-lipoic acid is slightly more potent than rac-α-lipoic acid. The antiproliferative IC50 value of α-lipoic acid is in the 3-digit micromolar range. Notably, the combination of exemestane and α-lipoic acid resulted in synergistic behavior under various incubation times (24 h to 10 d) and readouts (MTT, live-cell fluorescence microscopy, caspase activation) analyzed by the Chou-Talalay method. α-lipoic acid increases mitochondrial fusion and the expression of apoptosis-related proteins p21, APAF-1, BIM, FOXO1, and decreases expression of anti-apoptotic proteins survivin, BCL-2, and c-myc. In conclusion, combining exemestane with α-lipoic acid is a promising novel treatment option for ER-positive breast cancer.
Collapse
Affiliation(s)
- Laura S. Pradel
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (L.S.P.); (Y.-L.H.); (H.G.)
| | - Yu-Lin Ho
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (L.S.P.); (Y.-L.H.); (H.G.)
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (L.S.P.); (Y.-L.H.); (H.G.)
- Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Matthias U. Kassack
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (L.S.P.); (Y.-L.H.); (H.G.)
| |
Collapse
|
16
|
Wehbe N, Badran A, Baydoun S, Al-Sawalmih A, Maresca M, Baydoun E, Mesmar JE. The Antioxidant Potential and Anticancer Activity of Halodule uninervis Ethanolic Extract against Triple-Negative Breast Cancer Cells. Antioxidants (Basel) 2024; 13:726. [PMID: 38929164 PMCID: PMC11200955 DOI: 10.3390/antiox13060726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
Natural remedies have been indispensable to traditional medicine practices for generations, offering therapeutic solutions for various ailments. In modern times, these natural products continue to play a pivotal role in the discovery of new drugs, especially for cancer treatment. The marine ecosystem offers a wide range of plants with potential anticancer activities due to their distinct biochemical diversity and adaptation to extreme situations. The seagrass Halodule uninervis is rich in diverse bioactive metabolites that bestow the plant with various pharmacological properties. However, its anticancer activity against invasive triple-negative breast cancer (TNBC) is still poorly investigated. In the present study, the phytochemical composition of an ethanolic extract of H. uninervis (HUE) was screened, and its antioxidant potential was evaluated. Moreover, the anticancer potential of HUE against MDA-MB-231 cells was investigated along with the possible underlying mechanisms of action. Our results showed that HUE is rich in diverse phytochemicals that are known for their antioxidant and anticancer effects. In MDA-MB-231 cells, HUE targeted the hallmarks of cancer, including cell proliferation, adhesion, migration, invasion, and angiogenesis. The HUE-mediated anti-proliferative and anti-metastatic effects were associated with the downregulation of the proto-oncogenic STAT3 signaling pathway. Taken together, H. uninervis could serve as a valuable source for developing novel drugs targeting TNBC.
Collapse
Affiliation(s)
- Nadine Wehbe
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Riad El Solh, Beirut 1107 2020, Lebanon; (N.W.); (E.B.)
| | - Adnan Badran
- Department of Nutrition, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 11196, Jordan;
| | - Serine Baydoun
- Breast Imaging Section, Imaging Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA;
| | - Ali Al-Sawalmih
- Marine Science Station, University of Jordan, Aqaba 11942, Jordan;
| | - Marc Maresca
- Aix-Marseille Univ, CNRS, Centrale Marseille, iSM2, 13013 Marseille, France
| | - Elias Baydoun
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Riad El Solh, Beirut 1107 2020, Lebanon; (N.W.); (E.B.)
| | - Joelle Edward Mesmar
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Riad El Solh, Beirut 1107 2020, Lebanon; (N.W.); (E.B.)
| |
Collapse
|
17
|
Abu-Hdaib B, Nsairat H, El-Tanani M, Al-Deeb I, Hasasna N. In vivo evaluation of mebendazole and Ran GTPase inhibition in breast cancer model system. Nanomedicine (Lond) 2024; 19:1087-1101. [PMID: 38661720 PMCID: PMC11225501 DOI: 10.2217/nnm-2023-0351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/19/2024] [Indexed: 04/26/2024] Open
Abstract
Aim: To investigate the therapeutic potential of mebendazole (MBZ)-loaded nanostructured lipid carriers (NLCs). Methodology: NLC-MBZ was prepared and characterized to evaluate the in vitro and in vivo anticancer effects and the inhibitory effect on RanGTP and its potential as an antimetastatic treatment in vivo. Results: NLC-MBZ exhibited a size and charge of 155 ± 20 nm and -27 ± 0.5 mV, respectively, with 90.7% encapsulation. Free MBZ and NLC-MBZ had a 50% inhibitory concentration of 610 and 305 nM, respectively, against MDA-MB-231 cell lines. NLC-MBZ decreased tumor size, suppressed tumor lung metastases, and lowered the expression of CDC25A, SKP2, RbX1 and Cullin1 while boosting the Rb proteins. Conclusion: NLC-MBZ displayed antiangiogenic potential and resulted in a reduced rate of lung metastasis in vivo.
Collapse
Affiliation(s)
- Balqis Abu-Hdaib
- Pharmacological & Diagnostic Research Center, Faculty
of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Hamdi Nsairat
- Pharmacological & Diagnostic Research Center, Faculty
of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Mohamed El-Tanani
- Pharmacological & Diagnostic Research Center, Faculty
of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
- College of Pharmacy, Ras Al Khaimah Medical & Health
Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Ibrahim Al-Deeb
- Pharmacological & Diagnostic Research Center, Faculty
of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Nabil Hasasna
- Department of Cell Therapy & Applied Genomics, King
Hussein Cancer Center (KHCC), P.O. Box: 1269, Amman, 11941, Jordan
| |
Collapse
|
18
|
Sarani M, Darroudi M, Naderifar M, Akbarizadeh MR, Nobre MAL, Kruppke B, Khonakdar HA, Jazi ME. Biosynthesis of ZnO, Bi 2O 3 and ZnO-Bi 2O 3 bimetallic nanoparticles and their cytotoxic and antibacterial effects. ChemistryOpen 2024; 13:e202300176. [PMID: 38230849 PMCID: PMC11004456 DOI: 10.1002/open.202300176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/29/2023] [Indexed: 01/18/2024] Open
Abstract
This work introduces an easy method for producing Bi2O3, ZnO, ZnO-Bi2O3 nanoparticles (NPs) by Biebersteinia Multifida extract. Our products have been characterized through the outcomes which recorded with using powder X-ray diffractometry (PXRD), Raman, energy dispersive X-ray (EDX), field emission-scanning electron microscopy (FE-SEM), and Fourier-transform infrared (FT-IR) techniques. The finding of SEM presented porous structure and spherical morphology for Bi2O3 and ZnO NPs, respectively. While FE-SEM image of bimetallic nanoparticles showed both porous and spherical morphologies for them; so that spherical particles of ZnO have sat on the porous structure of Bi2O3 NPs. According to the PXRD results, the crystallite sizes of Bi2O3, ZnO and ZnO-Bi2O3 NPs have been obtained 57.69, 21.93, and 43.42 nm, respectively. Antibacterial performance of NPs has been studied on Staphylococcus epidermidis and Pseudomonas aeruginosa bacteria, to distinguish the minimum microbial inhibitory concentration (MIC). Antimicrobial outcomes have showed a better effect for ZnO-Bi2O3 NPs. Besides, wondering about the cytotoxic action against cancer cell lines, the MTT results have verified the intense cytotoxic function versus breast cancer cells (MCF-7). According to these observations, obtained products can prosper medical and biological applications.
Collapse
Affiliation(s)
- Mina Sarani
- Department of Polymer ProcessingIran Polymer and Petrochemical InstituteTehranIran
| | - Majid Darroudi
- Department of Medical Biotechnology and NanotechnologyFaculty of MedicineMashhad University of Medical SciencesMashhadIran
- Department of Basic Medical SciencesNeyshabur University of Medical SciencesNeyshaburIran
| | - Mahin Naderifar
- Faculty of Nursing and MidwiferyZabol University of Medical SciencesZabolIran
| | - Majid Reza Akbarizadeh
- Department of pediatricAmir Al Momenin HospitalZabol University of Medical SciencesZabolIran
| | - Marcos A. L. Nobre
- São Paulo State University (Unesp)School of Technology and SciencesPresidente PrudenteSP-19060-900Brazil
| | - Benjamin Kruppke
- Max Bergmann Center of BiomaterialsInstitute of Materials ScienceTechnische Universität Dresden01069DresdenGermany
| | - Hossein Ali Khonakdar
- Department of Polymer ProcessingIran Polymer and Petrochemical InstituteTehranIran
- Max Bergmann Center of BiomaterialsInstitute of Materials ScienceTechnische Universität Dresden01069DresdenGermany
| | - Mehdi Erfani Jazi
- Department of Chemistry and Center for Photochemical SciencesBowling Green State UniversityBowling GreenOH-43403USA
| |
Collapse
|
19
|
Ghalehkhondabi V, Soleymani M, Fazlali A. Synthesis of quercetin-loaded hyaluronic acid-conjugated pH/redox dual-stimuli responsive poly(methacrylic acid)/mesoporous organosilica nanoparticles for breast cancer targeted therapy. Int J Biol Macromol 2024; 263:130168. [PMID: 38365162 DOI: 10.1016/j.ijbiomac.2024.130168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/06/2024] [Accepted: 02/12/2024] [Indexed: 02/18/2024]
Abstract
In the current study, a combination of precipitation polymerization and modified sol-gel methods were developed to prepare the novel hyaluronic acid-decorated pH and redox dual-stimuli responsive poly(methacrylic acid)/mesoporous organosilica nanoparticles with a core-shell structure for controlled drug release. The nanocarriers have a proper particle size of <200 nm, high negative zeta potential greater than -30 mV, controllable diameter, and tunable shell thickness. The prepared nanoparticles were able to entrap over 70 % of quercetin with a drug loading of >10 %, due to the mesoporous shell. In vitro drug release profiles indicated that the systems had good stability under normal physiological media, while the cumulative release was significantly accelerated at the simulated tumor tissue condition, which shows pH and redox-dependent drug release. In vitro cell viability and apoptosis assay proved that the obtained nanomaterials possess relatively good biocompatibility, and drug-loaded targeted nanoparticles exhibited greater cytotoxicity on MCF-7 human breast cancer cells than free drug and non-targeted nanocarriers due to the enhanced cellular uptake of nanoparticles via CD44 receptors overexpressed. All these findings demonstrated that proposed nanocarriers might be promising as a smart drug delivery system to improve the antitumor efficacy of chemotherapeutic drugs.
Collapse
Affiliation(s)
- Vahab Ghalehkhondabi
- Department of Chemical Engineering, Faculty of Engineering, Arak University, 3848177584 Arak, Iran; Research Institute of Advanced Technologies, Arak University, Arak 3848177584, Iran
| | - Meysam Soleymani
- Department of Chemical Engineering, Faculty of Engineering, Arak University, 3848177584 Arak, Iran; Research Institute of Advanced Technologies, Arak University, Arak 3848177584, Iran
| | - Alireza Fazlali
- Department of Chemical Engineering, Faculty of Engineering, Arak University, 3848177584 Arak, Iran; Research Institute of Advanced Technologies, Arak University, Arak 3848177584, Iran.
| |
Collapse
|
20
|
Bouali W, Erk N, Genc AA. A low-cost voltammetric sensor based on multi-walled carbon nanotubes for highly sensitive and accurate determination of nanomolar levels of the anticancer drug Ribociclib in bulk and biological fluids. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1623-1630. [PMID: 38406987 DOI: 10.1039/d3ay02194g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
In this study, we present the development and comprehensive characterization of the first electrochemical sensor utilizing multi-walled carbon nanotubes (MWCNTs) for the sensitive and precise detection of Ribociclib (RIBO), an important anticancer drug. The sensor underwent systematic optimization, focusing on critical parameters such as pH, deposition potential, and cumulative time to enhance its electrocatalytic activity and expand the linear range for RIBO determination. The MWCNTs/GCE sensor exhibited excellent reproducibility and repeatability, ensuring reliable and consistent results. The applicability and feasibility of the sensor for real sample analysis were extensively evaluated by analyzing human serum, urine, and tablet samples using the standard addition method. The obtained percent recovery values demonstrated the sensor's exceptional accuracy and precision. Furthermore, interference studies revealed the sensor's remarkable selectivity, with minimal impact from common interfering substances. The developed sensor displayed a wide linear range of 0.01 μM to 5.0 μM, with a limit of detection (LOD) and limit of quantification (LOQ) calculated to be 0.69 nM and 2.31 nM, respectively, affirming its high sensitivity for detecting low RIBO concentrations. The MWCNTs/GCE sensor demonstrates substantial promise for diverse practical applications with its simplicity, cost-effectiveness, and excellent analytical performance.
Collapse
Affiliation(s)
- Wiem Bouali
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560 Ankara, Turkey.
- The Graduate School of the Health Sciences, Ankara University, 06110 Ankara, Turkey
| | - Nevin Erk
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560 Ankara, Turkey.
| | - Asena Ayse Genc
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560 Ankara, Turkey.
- The Graduate School of the Health Sciences, Ankara University, 06110 Ankara, Turkey
| |
Collapse
|
21
|
Lin J, Ma Z, Zuo W, Zhu M. Enhancing Targeted Photodynamic Therapy: Star-Shaped Glycopolymeric Photosensitizers for Improved Selectivity and Efficacy. Biomacromolecules 2024; 25:1950-1958. [PMID: 38334281 DOI: 10.1021/acs.biomac.3c01378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Targeted photodynamic therapy (PDT) offers advantages over nontargeted approaches, including improved selectivity, efficacy, and reduced side effects. This study developed star-shaped glycopolymeric photosensitizers using porphyrin-based initiators via ATRP. Incorporating a porphyrin core gave the polymers fluorescence and ROS generation, while adding fructose improved solubility and targeting capabilities. The photosensitizers had high light absorption, singlet oxygen production, specificity, low dark toxicity, and biocompatibility. The glycopolymers with longer sugar arms and higher density showed better uptake on MCF-7 and MDA-MB-468 cells compared to HeLa cells, indicating enhanced targeting capabilities. Inhibition of endocytosis confirmed the importance of the GLUT5 receptor. The resulting polymers exhibited good cytocompatibility under dark conditions and satisfactory PDT under light irradiation. Interestingly, the polymers containing fructose have a GLUT5-dependent elimination effect on the MCF-7 and MDA-MB-468 cells. The intracellular ROS production followed a similar pattern, indicating that the fructose polymer exhibits specific targeting toward cells with GLUT5 receptors.
Collapse
Affiliation(s)
- Jiahui Lin
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Zhiyuan Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Weiwei Zuo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| |
Collapse
|
22
|
Lan HR, Chen M, Yao SY, Chen JX, Jin KT. Novel immunotherapies for breast cancer: Focus on 2023 findings. Int Immunopharmacol 2024; 128:111549. [PMID: 38266449 DOI: 10.1016/j.intimp.2024.111549] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/26/2024]
Abstract
Immunotherapy has emerged as a revolutionary approach in cancer therapy, and recent advancements hold significant promise for breast cancer (BCa) management. Employing the patient's immune system to combat BCa has become a focal point in immunotherapeutic investigations. Strategies such as immune checkpoint inhibitors (ICIs), adoptive cell transfer (ACT), and targeting the tumor microenvironment (TME) have disclosed encouraging clinical outcomes. ICIs, particularly programmed cell death protein 1 (PD-1)/PD-L1 inhibitors, exhibit efficacy in specific BCa subtypes, including triple-negative BCa (TNBC) and human epidermal growth factor receptor 2 (HER2)-positive cancers. ACT approaches, including tumor-infiltrating lymphocytes (TILs) and chimeric antigen receptor (CAR) T-cell therapy, showed promising clinical outcomes in enhancing tumor recognition and elimination. Targeting the TME through immune agonists and oncolytic viruses signifies a burgeoning field of research. While challenges persist in patient selection, resistance mechanisms, and combination therapy optimization, these novel immunotherapies hold transformative potential for BCa treatment. Continued research and clinical trials are imperative to refine and implement these innovative approaches, paving the way for improved outcomes and revolutionizing the management of BCa. This review provides a concise overview of the latest immunotherapies (2023 studies) in BCa, highlighting their potential and current status.
Collapse
Affiliation(s)
- Huan-Rong Lan
- Department of Surgical Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang 310002, China
| | - Min Chen
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Shi-Ya Yao
- Department of Gastrointestinal, Colorectal and Anal Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang 310006, China
| | - Jun-Xia Chen
- Department of Gynecology, Shaoxing People's Hospital, Shaoxing, Zhejiang 312000, China.
| | - Ke-Tao Jin
- Department of Gastrointestinal, Colorectal and Anal Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang 310006, China.
| |
Collapse
|
23
|
Kashefi S, Mohammadi-Yeganeh S, Ghorbani-Bidkorpeh F, Shabani M, Koochaki A, Safarzadeh M, Hoseini MHM. Anti-cancer Effects of a Chitosan Based Nanoformulation Expressing miR-340 on 4T1 Breast Cancer Cells. J Pharm Sci 2024; 113:445-454. [PMID: 37806438 DOI: 10.1016/j.xphs.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
MicroRNAs (miRNAs) have a crucial role in the regulation of gene expression in tumor development, invasion, and metastasis. Herein, miRNA-340 (miR-340) has been shown to play tumor suppressor activity in breast cancer (BC). However, the clinical applications of miRNAs request the development of safe and effective delivery systems capable of protecting nucleic acids from degradation. In this study, biodegradable chitosan nanoparticles incorporating miR-340 plasmid DNA (pDNA) (miR-340 CNPs) were synthesized and characterized. Then, the anti-tumor effects of miR-340 CNPs were investigated using 4T1 BCE cells. The spherical nanoparticles (NPs) with an appropriate mean diameter of around 266 ± 9.3 nm and zeta potential of +17 ± 1.8 mV were successfully prepared. The NPs showed good stability, high entrapment efficiency and a reasonable release behavior, meanwhile their high resistance against enzymatic degradation was verified. Furthermore, NPs demonstrated appropriate transfection efficiency and could induce apoptosis, so had toxicity in 4T1 BCE cells. Also, CD47 expression on the surface of cancer cells was significantly reduced after treatment with miR-340 CNPs. The results showed that miR-340 CNPs augmented the expression of P-27 in BC cells. Furthermore, miR-340 CNPs caused down-regulation of BRP-39 (breast regression protein-39) increasingly suggested as a prognostic biomarker for neoplastic diseases like BC. In conclusion, our data show that miR-340 CNPs can be considered as a promising new platform for BC gene therapy.
Collapse
Affiliation(s)
- Sarvenaz Kashefi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Mohammadi-Yeganeh
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ghorbani-Bidkorpeh
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Shabani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ameneh Koochaki
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mostafa Haji Molla Hoseini
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Jan N, Sofi S, Qayoom H, Haq BU, Shabir A, Mir MA. Targeting breast cancer stem cells through retinoids: A new hope for treatment. Crit Rev Oncol Hematol 2023; 192:104156. [PMID: 37827439 DOI: 10.1016/j.critrevonc.2023.104156] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/09/2023] [Accepted: 10/06/2023] [Indexed: 10/14/2023] Open
Abstract
Breast cancer is a complex and diverse disease accounting for nearly 30% of all cancers diagnosed in females. But unfortunately, patients develop resistance to the existing chemotherapeutic regimen, resulting in approximately 90% treatment failure. With over half a million deaths annually, it is imperative to explore new therapeutic approaches to combat the disease. Within a breast tumor, a small sub-population of heterogeneous cells, with a unique ability of self-renew and differentiation and responsible for tumor formation, initiation, and recurrence are referred to as breast cancer stem cells (BCSCs). These BCSCs have been identified as one of the main contributors to chemoresistance in breast cancer, making them an attractive target for developing novel therapeutic strategies. These cells exhibit surface biomarkers such as CD44+, CD24-/LOW, ALDH, CD133, and CD49f phenotypes. Higher expression of CD44+ and ALDH activity has been associated with the formation of tumors in various cancers. Moreover, the abnormal regulation of signaling pathways, including Hedgehog, Notch, β-catenin, JAK/STAT, and P13K/AKT/mTOR, leads to the formation of cancer stem cells, resulting in the development of tumors. The growing drug resistance in BC is a significant challenge, highlighting the need for new therapeutic strategies to combat this dreadful disease. Retinoids, a large group of synthetic derivatives of vitamin A, have been studied as chemopreventive agents in clinical trials and have been shown to regulate various crucial biological functions including vision, development, inflammation, and metabolism. On a cellular level, the retinoid activity has been well characterized and translated and is known to induce differentiation and apoptosis, which play important roles in the outcome of the transformation of tissues into malignant. Retinoids have been investigated extensively for their use in the treatment and prevention of cancer due to their high receptor-binding affinity to directly modulate gene expression programs. Therefore, in this study, we aim to summarize the current understanding of BCSCs, their biomarkers, and the associated signaling pathways. Retinoids, such as Adapalene, a third-generation retinoid, have shown promising anti-cancer potential and may serve as therapeutic agents to target BCSCs.
Collapse
Affiliation(s)
- Nusrat Jan
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, India
| | - Shazia Sofi
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, India
| | - Hina Qayoom
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, India
| | - Burhan Ul Haq
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, India
| | - Aisha Shabir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, India
| | - Manzoor Ahmad Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, India.
| |
Collapse
|
25
|
Ahmed A, Saleem MA, Saeed F, Afzaal M, Imran A, Akram S, Hussain M, Khan A, Al Jbawi E. A comprehensive review on the impact of calcium and vitamin D insufficiency and allied metabolic disorders in females. Food Sci Nutr 2023; 11:5004-5027. [PMID: 37701195 PMCID: PMC10494632 DOI: 10.1002/fsn3.3519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 09/14/2023] Open
Abstract
Calcium is imperative in maintaining a quality life, particularly during later ages. Its deficiency results in a wide range of metabolic disorders such as dental changes, cataracts, alterations in brain function, and osteoporosis. These deficiencies are more pronounced in females due to increased calcium turnover throughout their life cycle, especially during pregnancy and lactation. Vitamin D perform a central role in the metabolism of calcium. Recent scientific interventions have linked calcium with an array of metabolic disorders in females including hypertension, obesity, premenstrual dysphoric disorder, polycystic ovary syndrome (PCOS), multiple sclerosis, and breast cancer. This review encompasses these female metabolic disorders with special reference to calcium and vitamin D deficiency. This review article aims to present and elaborate on available data regarding the worldwide occurrence of insufficient calcium consumption in females and allied health risks, to provide a basis for formulating strategies and population-level scientific studies to adequately boost calcium intake and position where required.
Collapse
Affiliation(s)
- Aftab Ahmed
- Department of Nutritional SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Muhammad Awais Saleem
- Department of Nutritional SciencesGovernment College University FaisalabadFaisalabadPakistan
- Department of Human Nutrition and DieteticsMirpur University of Science and TechnologyMirpurPakistan
| | - Farhan Saeed
- Department of Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Muhammad Afzaal
- Department of Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Ali Imran
- Department of Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Sidra Akram
- Department of Nutritional SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Muzzamal Hussain
- Department of Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Aqsa Khan
- Department of Nutritional SciencesGovernment College University FaisalabadFaisalabadPakistan
| | | |
Collapse
|
26
|
Foudah AI, Alam A, Salkini MA, Ross SA, Kumar P, Aldawsari MF, Alqarni MH, Sweilam SH. Synergistic Combination of Letrozole and Berberine in Ascorbic Acid-Stabilized AuNPs: A Promising Solution for Breast Cancer. Pharmaceuticals (Basel) 2023; 16:1099. [PMID: 37631014 PMCID: PMC10459502 DOI: 10.3390/ph16081099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Breast cancer is a deadly disease that affects countless women worldwide. The most conventional treatments for breast cancer, such as the administration of anticancer medications such as letrozole (LTZ), pose significant barriers due to the non-selective delivery and low bioavailability of cytotoxic drugs leading to serious adverse effects and multidrug resistance (MDR). Addressing these obstacles requires an innovative approach, and we propose a combined strategy that synergistically incorporates LTZ with berberine (BBR) into stabilised AuNPs coated with ascorbic acid (AA), known as LTZ-BBR@AA-AuNPs. The LTZ-BBR@AA-AuNPs, a novel combined drug delivery system, were carefully designed to maximise the entrapment of both LTZ and BBR. The resulting spherical nanoparticles exhibited remarkable efficiency in trapping these two compounds, with rates of 58% and 54%, respectively. In particular, the average hydrodynamic diameter of these nanoparticles was determined to be 81.23 ± 4.0 nm with a PDI value of only 0.286, indicating excellent uniformity between them. Furthermore, their zeta potential was observed to be -14.5 mV, suggesting high stability even under physiological conditions. The release profiles showed that after being incubated for about 24 h at pH levels ranging from acidic (pH = 5) to basic (pH = 7), the percentage released for both drugs ranged from 56-72%. This sustained and controlled drug release can reduce any negative side effects while improving therapeutic efficacy when administered directly to cancer. MDA-MB-231 cells treated with LTZ-BBR@AA-AuNPs for 48 h exhibited IC50 values of 2.04 ± 0.011 μg/mL, indicating potent cytotoxicity against cells. Furthermore, the nanoparticles demonstrated excellent stability throughout the duration of the treatment.
Collapse
Affiliation(s)
- Ahmed I. Foudah
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia; (A.A.); (M.A.S.); (M.H.A.); (S.H.S.)
| | - Aftab Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia; (A.A.); (M.A.S.); (M.H.A.); (S.H.S.)
| | - Mohammad Ayman Salkini
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia; (A.A.); (M.A.S.); (M.H.A.); (S.H.S.)
| | - Samir A. Ross
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA;
- Department of Biomolecular Sciences, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA
| | - Piyush Kumar
- Department of Chemistry, Indian Institute of Technology, NH-44, PO Nagrota, Jagti, Jammu 181221, India;
| | - Mohammed F. Aldawsari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia;
| | - Mohammed H. Alqarni
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia; (A.A.); (M.A.S.); (M.H.A.); (S.H.S.)
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia; (A.A.); (M.A.S.); (M.H.A.); (S.H.S.)
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, Cairo 11829, Egypt
| |
Collapse
|
27
|
Olayoku FR, Verhoog NJD, Louw A. Cyclopia extracts act as selective estrogen receptor subtype downregulators in estrogen receptor positive breast cancer cell lines: Comparison to standard of care breast cancer endocrine therapies and a selective estrogen receptor agonist and antagonist. Front Pharmacol 2023; 14:1122031. [PMID: 36992834 PMCID: PMC10040842 DOI: 10.3389/fphar.2023.1122031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/28/2023] [Indexed: 03/14/2023] Open
Abstract
Breast cancer is the most diagnosed type of cancer amongst women in economically developing countries and globally. Most breast cancers express estrogen receptor alpha (ERα) and are categorized as positive (ER+) breast cancer. Endocrine therapies such as, selective estrogen receptor modulators (SERMs), aromatase inhibitors (AIs), and selective estrogen receptor downregulators (SERDs) are used to treat ER+ breast cancer. However, despite their effectiveness, severe side-effects and resistance are associated with these endocrine therapies. Thus, it would be highly beneficial to develop breast cancer drugs that are as effective as current therapies, but less toxic with fewer side effects, and less likely to induce resistance. Extracts of Cyclopia species, an indigenous South African fynbos plant, have been shown to possess phenolic compounds that exhibit phytoestrogenic and chemopreventive activities against breast cancer development and progression. In the current study, three well characterized Cyclopia extracts, SM6Met, cup of tea (CoT) and P104, were examined for their abilities to modulate the levels of the estrogen receptor subtypes, estrogen receptor alpha and estrogen receptor beta (ERβ), which have been recognized as crucial to breast cancer prognosis and treatment. We showed that the Cyclopia subternata Vogel (C. subternata Vogel) extracts, SM6Met and cup of tea, but not the C. genistoides extract, P104, reduced estrogen receptor alpha protein levels while elevating estrogen receptor beta protein levels, thereby reducing the ERα:ERβ ratio in a similar manner as standard of care breast cancer endocrine therapies such as fulvestrant (selective estrogen receptor downregulator) and 4-hydroxytamoxifen (elective estrogen receptor modulator). Estrogen receptor alpha expression enhances the proliferation of breast cancer cells while estrogen receptor beta inhibits the proliferative activities of estrogen receptor alpha. We also showed that in terms of the molecular mechanisms involved all the Cyclopia extracts regulated estrogen receptor alpha and estrogen receptor beta protein levels through both transcriptional and translational, and proteasomal degradation mechanisms. Therefore, from our findings, we proffer that the C. subternata Vogel extracts, SM6Met and cup of tea, but not the C. genistoides extract, P104, selectively modulate estrogen receptor subtypes levels in a manner that generally supports inhibition of breast cancer proliferation, thereby demonstrating attributes that could be explored as potential therapeutic agents for breast cancer.
Collapse
|
28
|
Organotropism of breast cancer metastasis: A comprehensive approach to the shared gene network. GENE REPORTS 2023. [DOI: 10.1016/j.genrep.2023.101749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
29
|
Awan UA, Naeem M, Saeed RF, Mumtaz S, Akhtar N. Smart Nanocarrier-Based Cancer Therapeutics. Cancer Treat Res 2023; 185:207-235. [PMID: 37306911 DOI: 10.1007/978-3-031-27156-4_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Considerable advances in the field of cancer have been made; however, these have not been translated into similar clinical progress which results in the high prevalence and increased cancer-related mortality rate worldwide. Available treatments have several challenges such as off-target side effects, non-specific long-term potential biodisruption, drug resistance, and overall inadequate response rates and high probability of recurrence. The limitations associated with independent cancer diagnosis and therapy can be minimized by an emerging interdisciplinary research field of nanotheranostics which include successful integration of diagnosis and therapy on a single agent using nanoparticles. This may offer a powerful tool in developing innovative strategies to enable "personalized medicine" for diagnosis and treatment of cancer. Nanoparticles have been proven to be powerful imaging tools or potent agents for cancer diagnosis, treatment, and prevention. The nanotheranostic provides minimally invasive in vivo visualization of drug biodistribution and accumulation at the target site with real-time monitoring of therapeutic outcome. This chapter intends to cover several important aspects and the advances in the field of nanoparticles-mediated cancer therapeutics including nanocarrier development, drug/gene delivery, intrinsically active nanoparticles, tumor microenvironment, and nanotoxicity. The chapter represents an overview of challenges associated with cancer treatment, rational for nanotechnology in cancer therapeutics, novel concepts of multifunctional nanomaterials for cancer therapy along with their classification and their clinical prospective in different cancers. A special focus is on the nanotechnology: regulatory perspective for drug development in cancer therapeutics. Obstacles hindering further development of nanomaterials-mediated cancer therapy are also discussed. In general, the objective of this chapter is to improve our perceptive in the design and development of nanotechnology for cancer therapeutics.
Collapse
Affiliation(s)
- Uzma Azeem Awan
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan.
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Muhammad Naeem
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Rida Fatima Saeed
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Sara Mumtaz
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Nosheen Akhtar
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| |
Collapse
|
30
|
Nunes M, Duarte D, Vale N, Ricardo S. The Antineoplastic Effect of Carboplatin Is Potentiated by Combination with Pitavastatin or Metformin in a Chemoresistant High-Grade Serous Carcinoma Cell Line. Int J Mol Sci 2022; 24:ijms24010097. [PMID: 36613537 PMCID: PMC9820586 DOI: 10.3390/ijms24010097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
The combination of Carboplatin with Paclitaxel is the mainstay treatment for high-grade serous carcinoma; however, many patients with advanced disease undergo relapse due to chemoresistance. Drug repurposing coupled with a combination of two or more compounds with independent mechanisms of action has the potential to increase the success rate of the antineoplastic treatment. The purpose of this study was to explore whether the combination of Carboplatin with repurposed drugs led to a therapeutic benefit. Hence, we assessed the cytotoxic effects of Carboplatin alone and in combination with several repurposed drugs (Pitavastatin, Metformin, Ivermectin, Itraconazole and Alendronate) in two tumoral models, i.e., Carboplatin (OVCAR8) and Carboplatin-Paclitaxel (OVCAR8 PTX R P) chemoresistant cell lines and in a non-tumoral (HOSE6.3) cell line. Cellular viability was measured using the Presto Blue assay, and the synergistic interactions were evaluated using the Chou-Talalay, Bliss Independence and Highest Single Agent reference models. Combining Carboplatin with Pitavastatin or Metformin displayed the highest cytotoxic effect and the strongest synergism among all combinations for OVCAR8 PTX R P cells, resulting in a chemotherapeutic effect superior to Carboplatin as a single agent. Concerning HOSE6.3 cells, combining Carboplatin with almost all the repurposed drugs demonstrated a safe pharmacological profile. Overall, we propose that Pitavastatin or Metformin could act synergistically in combination with Carboplatin for the management of high-grade serous carcinoma patients with a Carboplatin plus Paclitaxel resistance profile.
Collapse
Affiliation(s)
- Mariana Nunes
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S) of the University of Porto, 4200-135 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Diana Duarte
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), 4200-450 Porto, Portugal
- Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, 4200-450 Porto, Portugal
| | - Sara Ricardo
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S) of the University of Porto, 4200-135 Porto, Portugal
- Toxicology Research Unit (TOXRUN), University Institute of Health Sciences, Polytechnic and University Cooperative (CESPU), 4585-116 Gandra, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto (FMUP), 4200-319 Porto, Portugal
- Correspondence:
| |
Collapse
|
31
|
van Dyk L, Verhoog NJD, Louw A. Combinatorial treatments of tamoxifen and SM6Met, an extract from Cyclopia subternata Vogel, are superior to either treatment alone in MCF-7 cells. Front Pharmacol 2022; 13:1017690. [PMID: 36210845 PMCID: PMC9535530 DOI: 10.3389/fphar.2022.1017690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Synergistic drug combinations are not only popular in antibiotic, anti-microbial, immune disease (i.e., AIDS) and viral infection studies, but has also gained traction in the field of cancer research as a multi-targeted approach. It has the potential to lower the doses needed of standard of care (SOC) therapeutic agents, whilst maintaining an effective therapeutic level. Lower dosages could ameliorate the fundamental problems such as drug resistance and metastasis associated with current SOC therapies. In the current study, we show that the combination of SM6Met with (2)-4-hydroxytamoxifen (4-OH-Tam, the active metabolite of tamoxifen) produces a strong synergistic effect in terms of inhibiting MCF7 ER-positive (ER+) breast cancer cell proliferation and that a 20 times lower dose of 4-OH-Tam in combination with SM6Met is required to produce the same inhibitory effect on cell proliferation as 4-OH-Tam on its own. Cell cycle analyses of the best combination ratios of SM6Met and 4-OH-Tam also suggests that the combination results in increased accumulation of cells in the S-phase and in the apoptotic phase. Moreover, the best combination ratio (20:1) of SM6Met with 4-OH-Tam displayed greater anti-metastatic potential in terms of inhibiting ER+ breast cancer cell migration, invasion, and colony formation than the SOC therapy alone, suggesting that SM6Met together with 4-OH-Tam could be a viable drug combination for not only delaying resistance and ameliorating the negative side-effects associated with current SOC therapies, like tamoxifen, but could also provide a novel, more affordable therapeutic alternative for treating or preventing ER+ breast cancer metastasis.
Collapse
|
32
|
Pitavastatin and Ivermectin Enhance the Efficacy of Paclitaxel in Chemoresistant High-Grade Serous Carcinoma. Cancers (Basel) 2022; 14:cancers14184357. [PMID: 36139522 PMCID: PMC9496819 DOI: 10.3390/cancers14184357] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary The main challenge in high-grade serous carcinoma management is to unveil therapeutic approaches to overcome chemoresistance. Drug combinations and repurposing of non-oncological agents are attractive strategies that allow for higher efficacy, decreased toxicity, and the overcoming of chemoresistance. Several non-oncological drugs display an effective anti-cancer activity and have been studied to be repurposed in multi-drug resistant neoplasms. The purpose of our study was to explore whether combining Paclitaxel with repurposed drugs (Pitavastatin, Metformin, Ivermectin, Itraconazole and Alendronate) led to a therapeutic benefit. Our results showed that the combination of Paclitaxel with Pitavastatin or Ivermectin demonstrates the highest cytotoxic effect and the strongest synergism among all combinations for two chemoresistant cell lines. Thus, the combination of these repurposed drugs with Paclitaxel could be a particularly valuable strategy to treat ovarian cancer patients with intrinsic or acquired chemoresistance. Abstract Chemotherapy is a hallmark in high-grade serous carcinoma management; however, chemoresistance and side effects lead to therapeutic interruption. Combining repurposed drugs with chemotherapy has the potential to improve antineoplastic efficacy, since drugs can have independent mechanisms of action and suppress different pathways simultaneously. This study aimed to explore whether the combination of Paclitaxel with repurposed drugs led to a therapeutic benefit. Thus, we evaluated the cytotoxic effects of Paclitaxel alone and in combination with several repurposed drugs (Pitavastatin, Metformin, Ivermectin, Itraconazole and Alendronate) in two tumor chemoresistant (OVCAR8 and OVCAR8 PTX R P) and a non-tumoral (HOSE6.3) cell lines. Cellular viability was assessed using Presto Blue assay, and the synergistic interactions were evaluated using Chou–Talalay, Bliss Independence and Highest Single Agent reference models. The combination of Paclitaxel with Pitavastatin or Ivermectin showed the highest cytotoxic effect and the strongest synergism among all combinations for both chemoresistant cell lines, resulting in a chemotherapeutic effect superior to both drugs alone. Almost all the repurposed drugs in combination with Paclitaxel presented a safe pharmacological profile in non-tumoral cells. Overall, we suggest that Pitavastatin and Ivermectin could act synergistically in combination with Paclitaxel, being promising two-drug combinations for high-grade serous carcinoma management.
Collapse
|
33
|
Alhalmi A, Amin S, Khan Z, Beg S, Al kamaly O, Saleh A, Kohli K. Nanostructured Lipid Carrier-Based Codelivery of Raloxifene and Naringin: Formulation, Optimization, In Vitro, Ex Vivo, In Vivo Assessment, and Acute Toxicity Studies. Pharmaceutics 2022; 14:1771. [PMID: 36145519 PMCID: PMC9500671 DOI: 10.3390/pharmaceutics14091771] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 11/19/2022] Open
Abstract
This work aimed to develop dual drug-loaded nanostructured lipid carriers of raloxifene and naringin (RLX/NRG NLCs) for breast cancer. RLX/NRG NLCs were prepared using Compritol 888 ATO and oleic acid using a hot homogenization-sonication method and optimized using central composite design (CCD). The optimized RLX/NRG NLCs were characterized and evaluated using multiple technological means. The optimized RLX/NRG NLCs exhibited a particle size of 137.12 nm, polydispersity index (PDI) of 0.266, zeta potential (ZP) of 25.9 mV, and entrapment efficiency (EE) of 91.05% (raloxifene) and 85.07% (naringin), respectively. In vitro release (81 ± 2.2% from RLX/NRG NLCs and 31 ± 1.9% from the RLX/NRG suspension for RLX and 93 ± 1.5% from RLX/NRG NLCs and 38 ± 2.01% from the RLX/NRG suspension for NRG within 24 h). Concurrently, an ex vivo permeation study exhibited nearly 2.3 and 2.1-fold improvement in the permeability profiles of RLX and NRG from RLX/NRG NLCs vis-à-vis the RLX/NRG suspension. The depth of permeation was proved with CLSM images which revealed significant permeation of the drug from the RLX/NRG NLCs formulation, 3.5-fold across the intestine, as compared with the RLX/NRG suspension. An in vitro DPPH antioxidant study displayed a better antioxidant potential of RLX/NRG in comparison to RLX and NRG alone due to the synergistic antioxidant effect of RLX and NRG. An acute toxicity study in Wistar rats showed the safety profile of the prepared nanoformulations and their excipients. Our findings shed new light on how poorly soluble and poorly permeable medicines can be codelivered using NLCs in an oral nanoformulation to improve their medicinal performance.
Collapse
Affiliation(s)
- Abdulsalam Alhalmi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Saima Amin
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Zafar Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Sarwar Beg
- School of Pharmacy & Biomedical Sciences, University of Central Lancashire, Flyde Road, Preston PR1 2HE, UK
| | - Omkulthom Al kamaly
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Asmaa Saleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Kanchan Kohli
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
- Lloyd Institute of Management and Technology (Pharm.), Plot No 11, Knowledge Park-II, Greater Noida 201308, India
| |
Collapse
|
34
|
Sarhangi N, Hajjari S, Heydari SF, Ganjizadeh M, Rouhollah F, Hasanzad M. Breast cancer in the era of precision medicine. Mol Biol Rep 2022; 49:10023-10037. [PMID: 35733061 DOI: 10.1007/s11033-022-07571-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/01/2022] [Accepted: 05/05/2022] [Indexed: 01/02/2023]
Abstract
Breast cancer is a heterogeneous disorder with different molecular subtypes and biological characteristics for which there are diverse therapeutic approaches and clinical outcomes specific to any molecular subtype. It is a global health concern due to a lack of efficient therapy regimens that might be used for all disease subtypes. Therefore, treatment customization for each patient depending on molecular characteristics should be considered. Precision medicine for breast cancer is an approach to diagnosis, treatment, and prevention of the disease that takes into consideration the patient's genetic makeup. Precision medicine provides the promise of highly individualized treatment, in which each individual breast cancer patient receives the most appropriate diagnostics and targeted therapies based on the genetic profile of cancer. The knowledge about the molecular features and development of breast cancer treatment approaches has increased, which led to the development of new targeted therapeutics. Tumor genomic profiling is the standard of care for breast cancer that could contribute to taking steps to better management of malignancies. It holds great promise for accurate prognostication, prediction of response to common systemic therapies, and individualized monitoring of the disease. The emergence of targeted treatment has significantly enhanced the survival of patients with breast cancer and contributed to reducing the economic costs of the health system. In this review, we summarized the therapeutic approaches associated with the molecular classification of breast cancer to help the best treatment selection specific to the target patient.
Collapse
Affiliation(s)
- Negar Sarhangi
- Personalized Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahrzad Hajjari
- Medical Genomics Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Seyede Fatemeh Heydari
- Medical Genomics Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Ganjizadeh
- Medical Genomics Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Rouhollah
- Medical Genomics Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mandana Hasanzad
- Personalized Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran. .,Medical Genomics Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
35
|
Zewail M, E Gaafar PM, Ali MM, Abbas H. Lipidic cubic-phase leflunomide nanoparticles (cubosomes) as a potential tool for breast cancer management. Drug Deliv 2022; 29:1663-1674. [PMID: 35616281 PMCID: PMC9154769 DOI: 10.1080/10717544.2022.2079770] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Despite the fact of availability of several treatments for breast cancer, most of them fail to attain the desired therapeutic response due to their poor bioavailability, high doses, non-selectivity and as a result systemic toxicity. Here in an attempt made to study the transdermal effect of leflunomide (LEF) against breast cancer. In order to improve the poor physicochemical properties of LEF, it was loaded into cubosomes. Cubosomes were prepared by the emulsification method. Colloidal characteristics of cubosomes including particle size, ζ-potential, entrapment efficiency, in-vitro release profile and ex-vivo permeation were studied. In addition, morphology, stability, cytotoxicity and cell uptake in MDA-MB-231 cell line were carried out for the selected cubosomal formulation. The selected LEF loaded cubosomal formulation showed a small particle size (168 ± 1.08) with narrow size distribution (PI 0.186 ± 0.125) and negative ζ potential (–25.5 ± 0.98). Its Entrapment efficiency (EE%) was 93.2% and showed sustained release profile that extended for 24 h. The selected formulation showed stability when stored at 25 °C for three months in terms of size and EE%. TEM images illustrated the cubic structure of the cubosome. Cell culture results revealed the superiority of LEF cubosomes compared to LEF suspension in their cytotoxic effects with an IC50 close to that of doxorubicin. Furthermore, LEF cell uptake was significantly higher for LEF cubosomes. This may be attributed to the effect of nano-encapsulation on enhancing drug pharmacological effects and uptake indicating the potential usefulness of LEF cubosomes for breast cancer management.
Collapse
Affiliation(s)
- Mariam Zewail
- Pharmaceutics Department, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Passent M E Gaafar
- Department of Pharmaceutics, Division of Pharmaceutical Sciences, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt
| | - Mai M Ali
- Department of Pharmaceutics, Division of Pharmaceutical Sciences, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt
| | - Haidy Abbas
- Pharmaceutics Department, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| |
Collapse
|
36
|
Özcan Bülbül E, Üstündağ Okur N, Mısırlı D, Cevher E, Tsanaktsis V, Bingöl Özakpınar Ö, Siafaka PI. Applying quality by design approach for the determination of potent paclitaxel loaded poly(lactic acid) based implants for localized tumor drug delivery. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2067538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Ece Özcan Bülbül
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istinye University, Istanbul, Turkey
| | - Neslihan Üstündağ Okur
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey
| | - Duygu Mısırlı
- Department of Biochemistry, Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey
| | - Erdal Cevher
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Vasilios Tsanaktsis
- Faculty of Sciences, School of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Panoraia I. Siafaka
- School of Health Studies, KES College, Nicosia, Cyprus
- Faculty of Pharmacy, European University Cyprus, Nicosia, Cyprus
| |
Collapse
|
37
|
New 1,3,4-Thiadiazole Derivatives with Anticancer Activity. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061814. [PMID: 35335177 PMCID: PMC8955053 DOI: 10.3390/molecules27061814] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 11/17/2022]
Abstract
We designed and synthesized the 1,3,4-thiadiazole derivatives differing in the structure of the substituents in C2 and C5 positions. The cytotoxic activity of the obtained compounds was then determined in biological studies using MCF-7 and MDA-MB-231 breast cancer cells and normal cell line (fibroblasts). The results showed that in both breast cancer cell lines, the strongest anti-proliferative activity was exerted by 2-(2-trifluorometylophenylamino)-5-(3-methoxyphenyl)-1,3,4-thiadiazole. The IC50 values of this compound against MCF-7 and MDA-MB-231 breast cancer cells were 49.6 µM and 53.4 µM, respectively. Importantly, all new compounds had weaker cytotoxic activity on normal cell line than on breast cancer cell lines. In silico studies demonstrated a possible multitarget mode of action for the synthesized compounds. The most likely mechanism of action for the new compounds is connected with the activities of Caspase 3 and Caspase 8 and activation of BAX proteins.
Collapse
|
38
|
Barrón-Gallardo CA, Garcia-Chagollán M, Morán-Mendoza AJ, Delgadillo-Cristerna R, Martínez-Silva MG, Aguilar-Lemarroy A, Jave-Suárez LF. Transcriptomic Analysis of Breast Cancer Patients Sensitive and Resistant to Chemotherapy: Looking for Overall Survival and Drug Resistance Biomarkers. Technol Cancer Res Treat 2022; 21:15330338211068965. [PMID: 34981997 PMCID: PMC8733364 DOI: 10.1177/15330338211068965] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Worldwide breast cancer ranks first in mortality and incidence rates in women over 20 years old. Rather than one disease, breast cancer is a heterogeneous group of diseases that express distinct molecular profiles. Neoadjuvant chemotherapy is an important therapeutic strategy for breast cancer patients independently of their molecular subtype, with the drawback of resistance development. In addition, chemotherapy has adverse effects that combined with resistance could contribute to lower overall survival. Although great efforts have been made to find diagnostic and prognostic biomarkers for breast cancer and for response to targeted and immune therapy for this pathology, little has been explored regarding biomarkers of response to anthracyclines and taxanes based neoadjuvant chemotherapy. This work aimed to evaluate the molecular profile of patients who received neoadjuvant chemotherapy to identify differentially expressed genes (DEGs) that could be used as biomarkers of chemotherapy response and overall survival. Breast cancer patients who were candidates for neoadjuvant chemotherapy were enrolled in this study. After treatment and according to their pathological response, they were assigned as sensitive or resistant. To evaluate DEGs, Gene Ontology, Kyoto Encyclopedia Gene and Genome (KEGG), and protein–protein interactions, RNA-seq information from all patients was obtained by next-generation sequencing. A total of 1985 DEGs were found, and KEGG analysis indicated a great number of DEGs in metabolic pathways, pathways in cancer, cytokine–cytokine receptor interactions, and neuroactive ligand-receptor interactions. A selection of 73 DEGs was used further for an analysis of overall survival using the METABRIC study and the ductal carcinoma dataset of The Cancer Genome Atlas (TCGA) database. Nine DEGs correlated with overall survival, of which the subexpression of C1QTNF3, CTF1, OLFML3, PLA2R1, PODN, KRT15, HLA-A, and the overexpression of TUBB and TCP1 were found in resistant patients and related to patients with lower overall survival.
Collapse
Affiliation(s)
- Carlos A Barrón-Gallardo
- Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Mariel Garcia-Chagollán
- Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | | | | | | | | | - Luis F Jave-Suárez
- 37767Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, Mexico
| |
Collapse
|
39
|
Malik JA, Ahmed S, Jan B, Bender O, Al Hagbani T, Alqarni A, Anwar S. Drugs repurposed: An advanced step towards the treatment of breast cancer and associated challenges. Biomed Pharmacother 2021; 145:112375. [PMID: 34863612 DOI: 10.1016/j.biopha.2021.112375] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/15/2021] [Accepted: 10/25/2021] [Indexed: 02/09/2023] Open
Abstract
Breast cancer (BC) is mostly observed in women and is responsible for huge mortality in women subjects globally. Due to the continued development of drug resistance and other contributing factors, the scientific community needs to look for new alternatives, and drug repurposing is one of the best opportunities. Here we light upon the drug repurposing with a major focus on breast cancer. BC is a division of cancer known as the leading cause of death of 2.3 million women globally, with 685,000 fatalities. This number is steadily rising, necessitating the development of a treatment that can extend survival time. All available treatments for BC are very costly as well as show side effects. This unfulfilled requirement of the anti-cancer drugs ignited an enthusiasm for drug repositioning, which means finding out the anti-cancer use of already marketed drugs for other complications. With the advancement in proteomics, genomics, and computational approaches, the drug repurposing process hastens. So many drugs are repurposed for the BC, including alkylating agents, antimetabolite, anthracyclines, an aromatase inhibitor, mTOR, and many more. The drug resistance in breast cancer is rising, so reviewing how the challenges in breast cancer can be combated with drug repurposing. This paper provides the updated information on all the repurposed drugs candidates for breast cancer with the molecular mechanism responsible for their anti-tumor activity. Additionally, all the challenges that occur during the repurposing of the drugs are discussed.
Collapse
Affiliation(s)
- Jonaid Ahmad Malik
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Guwahati, India; Department of Biomedical engineering, Indian Institute of Technology (IIT), Ropar, Punjab, India
| | - Sakeel Ahmed
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Mohali, India
| | - Bisma Jan
- Department of Pharmaceutical Sciences, University of Kashmir, Srinagar, India
| | - Onur Bender
- Biotechnology Institute, Ankara University, Ankara, Turkey
| | - Turki Al Hagbani
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - Aali Alqarni
- Pharmaceutical Chemistry Department, Pharmacology unit, College of Clinical Pharmacy, Al Baha University, Saudi Arabia
| | - Sirajudheen Anwar
- Pharmacology and Toxicology Department, College of Pharmacy, University of Hail, Hail, Saudi Arabia.
| |
Collapse
|
40
|
Camalexin, an indole phytoalexin, inhibits cell proliferation, migration, and mammosphere formation in breast cancer cells via the aryl hydrocarbon receptor. J Nat Med 2021; 76:110-118. [PMID: 34463909 DOI: 10.1007/s11418-021-01560-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/19/2021] [Indexed: 12/24/2022]
Abstract
Breast cancer is the most commonly diagnosed cancer among women worldwide. Despite a variety of drugs available for the treatment of patients with breast cancer, drug resistance remains a significant clinical problem. Therefore, there is an urgent need to develop drugs with new mechanisms of action. Camalexin is the main indole phytoalexin in Arabidopsis thaliana and other crucifers. Camalexin inhibits the proliferation of various cancer cells. However, the mechanism by which camalexin inhibits cell proliferation remains unclear. In this study, we found that camalexin inhibited cell proliferation and migration of breast cancer cell lines. Furthermore, camalexin also suppressed breast cancer stem cell-derived mammosphere formation. We previously reported that the ligand-activated transcription factor aryl hydrocarbon receptor (AhR) agonist suppresses mammosphere formation. Several compounds with indole structures are known to act as AhR agonists. Therefore, we hypothesized that the inhibition of mammosphere formation by camalexin may involve AhR activation. We found that camalexin increased the nuclear translocation of AhR, AhR-mediated transcriptional activation, and expression of AhR target genes. In addition, camalexin suppressed mammosphere formation in AhR-expressing breast cancer cells more than in the breast cancer cells that lacked AhR expression. Taken together, the data demonstrate that camalexin is a novel AhR agonist and that the inhibition of cell proliferation, migration, and mammosphere formation by camalexin involves the activation of AhR. Our findings suggest that camalexin, an AhR agonist, may be a novel therapeutic agent for breast cancer.
Collapse
|
41
|
Yamashita N, Yoshizuka A, Kase A, Ozawa M, Taga C, Sanada N, Kanno Y, Nemoto K, Kizu R. Activation of the aryl hydrocarbon receptor by 3-methylcholanthrene, but not by indirubin, suppresses mammosphere formation via downregulation of CDC20 expression in breast cancer cells. Biochem Biophys Res Commun 2021; 570:131-136. [PMID: 34280616 DOI: 10.1016/j.bbrc.2021.07.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 02/08/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that regulates various toxicological and biological functions. We reported previously that 3-methylcholanthrene (3MC), an exogenous AhR agonist, inhibited tumorsphere (mammosphere) formation from breast cancer cell lines, while the endogenous AhR agonist, indirubin, very weakly inhibited this process. However, the difference in inhibition mechanism of mammosphere formation by 3MC or indirubin is still unknown. In this study, we established AhR-re-expressing (KOTR-AhR) cells from AhR knockout MCF-7 cells using the tetracycline (Tet)-inducible gene expression systems. To identify any difference in inhibition of mammosphere formation by 3MC or indirubin, RNA-sequencing (RNA-seq) experiments were performed using KOTR-AhR cells. RNA-seq experiments revealed that cell division cycle 20 (CDC20), which regulates the cell cycle and mitosis, was decreased by 3MC, but not by indirubin, in the presence of AhR expression. Furthermore, the mRNA and protein levels of CDC20 were decreased by 3MC in MCF-7 cells via the AhR. In addition, mammosphere formation was suppressed by small interfering RNA-mediated CDC20 knockdown compared to the negative control in MCF-7 cells. These results suggest that AhR activation by 3MC suppresses mammosphere formation via downregulation of CDC20 expression in breast cancer cells. This study provides useful information for the development of AhR-targeted anti-cancer drugs.
Collapse
Affiliation(s)
- Naoya Yamashita
- Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kodo, Kyotanabe, Kyoto, 610-0395, Japan.
| | - Arika Yoshizuka
- Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kodo, Kyotanabe, Kyoto, 610-0395, Japan
| | - Arisa Kase
- Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kodo, Kyotanabe, Kyoto, 610-0395, Japan
| | - Moeno Ozawa
- Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kodo, Kyotanabe, Kyoto, 610-0395, Japan
| | - Chiharu Taga
- Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kodo, Kyotanabe, Kyoto, 610-0395, Japan
| | - Noriko Sanada
- Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kodo, Kyotanabe, Kyoto, 610-0395, Japan
| | - Yuichiro Kanno
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Kiyomitsu Nemoto
- Department of Molecular Toxicology, Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba, 274-8510, Japan
| | - Ryoichi Kizu
- Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kodo, Kyotanabe, Kyoto, 610-0395, Japan
| |
Collapse
|
42
|
Grimaldi AM, Salvatore M, Incoronato M. miRNA-Based Therapeutics in Breast Cancer: A Systematic Review. Front Oncol 2021; 11:668464. [PMID: 34026646 PMCID: PMC8131824 DOI: 10.3389/fonc.2021.668464] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/09/2021] [Indexed: 12/11/2022] Open
Abstract
Background Breast cancer (BC) is the most common cancer in females and despite advances in treatment, it represents the leading cause of cancer mortality in women worldwide. Conventional therapeutic modalities have significantly improved the management of BC patients, but subtype heterogeneity, drug resistance, and tumor relapse remain the major factors to hamper the effectiveness of therapy for BC. In this scenario, miRNA(miR)-based therapeutics offer a very attractive area of study. However, the use of miR-based therapeutics for BC treatment still represents an underdeveloped topic. Therefore, this systematic review aims at summarizing current knowledge on promising miR-based therapeutics for BC exploring original articles focusing on in vivo experiments. Methods The current systematic review was performed according to PRISMA guidelines. PubMed and EMBASE databases were comprehensively explored to perform the article search. Results Twenty-one eligible studies were included and analyzed: twelve focused on antitumor miR-based therapeutics and nine on metastatic miR-based therapeutics. We found 18 different miRs tested as potential therapeutic molecules in animal model experiments. About 90% of the selected studies evaluate the efficiency and the safety of miRs as therapeutic agents in triple-negative (TN)-BC mouse models. Among all founded miR-based therapeutics, miR-21 emerged to be the most investigated and proposed as a potential antitumoral molecule for TNBC treatment. Besides, miR-34a and miR-205a appeared to be successful antitumoral and antimetastatic molecules. Conclusions Our analysis provides a snapshot of the current scenario regarding the miRs as therapeutic molecules in BC. Nevertheless, despite many efforts, none of the selected studies goes beyond preclinical studies, and their translatability in the clinical practice seems quite premature.
Collapse
|
43
|
Zhang Q, Liu S, Zhang J, Ma X, Dong M, Sun B, Xin Y. Roles and regulatory mechanisms of miR-30b in cancer, cardiovascular disease, and metabolic disorders (Review). Exp Ther Med 2021; 21:44. [PMID: 33273973 PMCID: PMC7706387 DOI: 10.3892/etm.2020.9475] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding RNAs 21-23 nucleotides in length that regulate gene expression, and thereby modulate signaling pathways and protein synthesis in both physiological and pathogenic processes. miR-30b inhibits cell proliferation, migration, invasion and epithelial-mesenchymal transformation in multiple types of cancer. In addition to its role in several types of neoplasias, miR-30b has been shown to exhibit essential roles in cardiovascular and metabolic diseases. In the present review, an overview of the biological functions of miR-30b and its role in the pathogenesis of neoplastic, cardiovascular and metabolic diseases is provided. miR-30b is a potential candidate for clinical development as a diagnostic and prognostic biomarker, therapeutic agent and drug target. However, further research is required to elucidate its role in health and disease and to harness its potential clinical utility.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Infectious Disease, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong 266011, P.R. China
| | - Shousheng Liu
- Clinical Research Center, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong 266011, P.R. China
- Digestive Disease Key Laboratory of Qingdao, Qingdao, Shandong 266071, P.R. China
| | - Jie Zhang
- Department of Infectious Disease, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong 266011, P.R. China
| | - Xuefeng Ma
- Department of Infectious Disease, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong 266011, P.R. China
| | - Mengzhen Dong
- Department of Infectious Disease, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong 266011, P.R. China
| | - Baokai Sun
- Department of Infectious Disease, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong 266011, P.R. China
| | - Yongning Xin
- Department of Infectious Disease, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong 266011, P.R. China
- Digestive Disease Key Laboratory of Qingdao, Qingdao, Shandong 266071, P.R. China
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong 266011, P.R. China
| |
Collapse
|