1
|
Wang Y, Ortiz R, Chang A, Nasseef T, Rubalcaba N, Munson C, Ghaw A, Balaji S, Kwon Y, Athreya D, Kedharnath S, Kulkarni PP, Ferris CF. Following changes in brain structure and function with multimodal MRI in a year-long prospective study on the development of Type 2 diabetes. FRONTIERS IN RADIOLOGY 2025; 5:1510850. [PMID: 40018732 PMCID: PMC11865244 DOI: 10.3389/fradi.2025.1510850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/27/2025] [Indexed: 03/01/2025]
Abstract
Aims To follow disease progression in a rat model of Type 2 diabetes using multimodal MRI to assess changes in brain structure and function. Material and methods Female rats (n = 20) were fed a high fat/high fructose diet or lab chow starting at 90 days of age. Diet fed rats were given streptozotocin to compromise pancreatic beta cells, while chow fed controls received vehicle. At intervals of 3, 6, 9, and 12 months, rats were tested for changes in behavior and sensitivity to pain. Brain structure and function were assessed using voxel based morphometry, diffusion weighted imaging and functional connectivity. Results Diet fed rats presented with elevated plasma glucose levels as early as 3 months and a significant gain in weight by 6 months as compared to controls. There were no significant changes in cognitive or motor behavior over the yearlong study but there was a significant increase in sensitivity to peripheral pain in diet fed rats. There were region specific decreases in brain volume e.g., basal ganglia, thalamus and brainstem in diet fed rats. These same regions showed elevated measures of water diffusivity evidence of putative vasogenic edema. By 6 months, widespread hyperconnectivity was observed across multiple brain regions. By 12 months, only the cerebellum and hippocampus showed increased connectivity, while the hypothalamus showed decreased connectivity in diet fed rats. Conclusions Noninvasive multimodal MRI identified site specific changes in brain structure and function in a yearlong longitudinal study of Type 2 diabetes in rats. The identified diabetic-induced neuropathological sites may serve as biomarkers for evaluating the efficacy of novel therapeutics.
Collapse
Affiliation(s)
- Yingjie Wang
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States
| | - Richard Ortiz
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, United States
| | - Arnold Chang
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States
| | - Taufiq Nasseef
- Department of Mathematics, College of Science and Humanity Studies, Prince Sattam Bin Abdulaziz University, Riyadh, Saudi
| | - Natalia Rubalcaba
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States
| | - Chandler Munson
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States
| | - Ashley Ghaw
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States
| | - Shreyas Balaji
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States
| | - Yeani Kwon
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States
| | - Deepti Athreya
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States
| | - Shruti Kedharnath
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States
| | - Praveen P. Kulkarni
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States
| | - Craig F. Ferris
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States
- Department of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, MA, United States
| |
Collapse
|
2
|
Mori N, Mugikura S. Ai-based algorithm for measurement of the thoracic aortic diameter in low-dose chest CT: Prospects from cross-sectional to longitudinal assessment. Eur J Radiol 2024; 179:111660. [PMID: 39126915 DOI: 10.1016/j.ejrad.2024.111660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Affiliation(s)
- Naoko Mori
- Department of Radiology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, Akita 0108543, Japan.
| | - Shunji Mugikura
- Division of Image Statistics, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.
| |
Collapse
|
3
|
Li HH, Su YN, Huang X. Aberrant Modular Segregation of Brain Networks in Patients with Diabetic Retinopathy. Diabetes Metab Syndr Obes 2024; 17:3239-3248. [PMID: 39234209 PMCID: PMC11372295 DOI: 10.2147/dmso.s470950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/22/2024] [Indexed: 09/06/2024] Open
Abstract
Background Diabetic retinopathy (DR) is a prevalent ocular manifestation of diabetic microvascular complications and a primary driver of irreversible blindness. Existing studies have illuminated the presence of aberrant brain activity in individuals affected by DR. However, the alterations in the modular segregation of brain networks among DR patients remain inadequately understood. The study aims to explore the modular segregation of brain networks in patients with DR. Methods We examined the blood oxygen levels dependent (BOLD) signals using resting-state functional magnetic resonance imaging (R-fMRI) in a cohort of 46 DRpatients and 43 age-matched healthy controls (HC). Subsequently, Modular analysis utilizing graph theory method was applied to quantify the degree of brain network segregation by computing the participation coefficient (PC). Deviations from typical PC values were further elucidated through intra- and inter-module connectivity analyses. Results The DR group demonstrated significantly lower mean PC in the frontoparietal network (FPN), sensorimotor network (SMN), and visual network (VN) compared to the HCgroup. Moreover, increased inter-module connections were observed between the default-mode network (DMN) and SMN, as well as between FPN and VN within the DR group. In terms of nodal analysis, higher PC values were detected in the left thalamus, right frontal lobe, and right precentral gyrus in the DR group compared to the HC group. Conclusion Patients with DR show impairments in primary sensory networks and higher cognitive networks within their functional brain networks. These changes may provide essential insights into the neurobiological mechanisms of DR by identifying alterations in the brain networks of DR patients and pinpointing sensitive neurobiological markers that could serve as vital imaging references for future treatments of diabetic retinopathy.
Collapse
Affiliation(s)
- Heng-Hui Li
- Department of Ophthalmology, Gaoxin Branch of the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Yan-Ni Su
- The First Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Xin Huang
- Department of Ophthalmology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, People's Republic of China
| |
Collapse
|
4
|
Amin SN, El-Akabawy G, Baker Saleh L, Sulaiman AS, Alsharif AA, Ahmed Qamoum M, Basheer Fahmawi M, Al-Matrouk A, Taha H, Ismail AA. Evaluation of Vicarious Somatosensory Experience in Diabetes Mellitus: Bases for Empathy and Social Cognition. Risk Manag Healthc Policy 2024; 17:1975-1986. [PMID: 39161725 PMCID: PMC11332421 DOI: 10.2147/rmhp.s464113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/17/2024] [Indexed: 08/21/2024] Open
Abstract
Purpose Diabetes Mellitus (DM) is a common metabolic disorder with negative impacts on brain functions. Social cognition and vicarious experience impairments are features of DM. This research aimed to estimate the social cognition and vicarious experience among Jordanian people with diabetes. Patients and Methods Cognitive abilities were assessed using the Vicarious Pain Questionnaire (VPQ) and the Mirror Touch Questionnaire (MTQ). Data on disease history, medications, routine laboratory measurements, and anthropometric indices. Results Patients had lower pain responses and intensity scores, and higher unpleasantness scores than the control group (p < 0.05). Most of the VPQ and MTQ measures were mainly impaired among study participants who had higher education, were not practicing exercises, and were not consuming healthy diets (p < 0.05). The number of responses to the VPQ and average pain intensity were negatively correlated with age and positively correlated with both the serum aminotransferase (AST) concentration and the serum urea concentration (p < 0.05). The average unpleasantness score was positively correlated with the duration of therapy, serum creatinine, and albumin concentrations (p < 0.05). The final regression models for the number of pain responses and localized-generalized included group, practicing exercise, and AST, while the model for the average pain intensity included only the grouping variable. The model for average unpleasantness included grouping, AST, Albumin, consuming a healthy diet, and duration of therapy. Conclusion The Jordanian diabetic patients who participated in the study had impaired social cognition and vicarious experience. A healthy lifestyle had a significant effect on the scores of the vicarious experience in addition to the level of education. Despite being the first study in Jordan to assess vicarious experience in DM, further studies are needed considering imaging and electrophysiological workup. Besides, further prospective studies are needed to determine the significance of the current study.
Collapse
Affiliation(s)
- Shaimaa Nasr Amin
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Gehan El-Akabawy
- Department of Basic Medical Sciences, College of Medicine, Ajman University, Ajman, United Arab Emirates
- Centre of Medical and Bioallied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
- Department of Anatomy and Embryology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Layth Baker Saleh
- House Officer, Medical Graduates Training Program, Jordan Medical Council, Amman, Jordan
| | | | | | - Mohammed Ahmed Qamoum
- House Officer, Medical Graduates Training Program, Jordan Medical Council, Amman, Jordan
| | | | - Alaa Al-Matrouk
- House Officer, Medical Graduates Training Program, Jordan Medical Council, Amman, Jordan
| | - Hana Taha
- Department of Pharmacology, Public Health and Clinical Skills, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
- Department of Family and Community Medicine, School of Medicine, The University of Jordan, Amman, Jordan
- Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
| | - Ahmed A Ismail
- Department of Public Health and Community Medicine, Faculty of Medicine, Menoufia University, Shebin Elkom, Egypt
- Kansas Department of Health and Environment, Topeks, KS, USA
| |
Collapse
|
5
|
Pinto S, Oliveira Santos M, Gromicho M, Swash M, de Carvalho M. Impact of diabetes mellitus on the respiratory function of amyotrophic lateral sclerosis patients. Eur J Neurol 2024; 31:e16129. [PMID: 37955564 PMCID: PMC11235781 DOI: 10.1111/ene.16129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/09/2023] [Accepted: 10/19/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND AND PURPOSE Respiratory insufficiency and its complications are the main cause of death in amyotrophic lateral sclerosis (ALS). The impact of diabetes mellitus (DM) on respiratory function of ALS patients is uncertain. METHODS A retrospective cohort study was carried out. From the 1710 patients with motor neuron disease followed in our unit, ALS and progressive muscular atrophy patients were included. We recorded demographic characteristics, functional ALS rating scale (Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised [ALSFRS-R]) and its subscores at first visit, respiratory function tests, arterial blood gases, phrenic nerve amplitude (PhrenAmpl), and mean nocturnal oxygen saturation (SpO2 mean). We excluded patients with other relevant diseases. Two subgroups were analysed: DIAB (patients with DM) and noDIAB (patients without DM). Independent t-test, χ2 , or Fisher exact test was applied. Binomial logistic regression analyses assessed DM effects. Kaplan-Meier analysis assessed survival. p < 0.05 was considered significant. RESULTS We included 1639 patients (922 men, mean onset age = 62.5 ± 12.6 years, mean disease duration = 18.1 ± 22.0 months). Mean survival was 43.3 ± 40.7 months. More men had DM (p = 0.021). Disease duration was similar between groups (p = 0.063). Time to noninvasive ventilation (NIV) was shorter in DIAB (p = 0.004); total survival was similar. No differences were seen for ALSFRS-R or its decay rate. At entry, DIAB patients were older (p < 0.001), with lower forced vital capacity (p = 0.001), arterial oxygen pressure (p = 0.01), PhrenAmpl (p < 0.001), and SpO2 mean (p = 0.014). CONCLUSIONS ALS patients with DM had increased risk of respiratory impairment and should be closely monitored. Early NIV allowed for similar survival rate between groups.
Collapse
Affiliation(s)
- Susana Pinto
- Institute of Physiology, Instituto de Medicina Molecular João Lobo Antunes, Centro de Estudos Egas Moniz, Faculdade de MedicinaUniversidade de LisboaLisbonPortugal
- Department of Clinical Neuroscience, Institute of Neuroscience and PhysiologySahlgrenska Academy at the University of GothenburgGothenburgSweden
- Neurocare, Sahlgrenska University HospitalGothenburgSweden
| | - Miguel Oliveira Santos
- Institute of Physiology, Instituto de Medicina Molecular João Lobo Antunes, Centro de Estudos Egas Moniz, Faculdade de MedicinaUniversidade de LisboaLisbonPortugal
- Department of Neurosciences and Mental Health, Hospital de Santa MariaCentro Hospitalar Universitário de Lisboa‐NorteLisbonPortugal
| | - Marta Gromicho
- Institute of Physiology, Instituto de Medicina Molecular João Lobo Antunes, Centro de Estudos Egas Moniz, Faculdade de MedicinaUniversidade de LisboaLisbonPortugal
| | - Michael Swash
- Institute of Physiology, Instituto de Medicina Molecular João Lobo Antunes, Centro de Estudos Egas Moniz, Faculdade de MedicinaUniversidade de LisboaLisbonPortugal
- Departments of Neurology and Neuroscience, Barts and London School of MedicineQueen Mary University of LondonLondonUK
| | - Mamede de Carvalho
- Institute of Physiology, Instituto de Medicina Molecular João Lobo Antunes, Centro de Estudos Egas Moniz, Faculdade de MedicinaUniversidade de LisboaLisbonPortugal
- Department of Neurosciences and Mental Health, Hospital de Santa MariaCentro Hospitalar Universitário de Lisboa‐NorteLisbonPortugal
| |
Collapse
|
6
|
Xin H, Fu Y, Wen H, Feng M, Sui C, Gao Y, Guo L, Liang C. Cognition and motion dysfunction-associated brain functional network disruption in diabetic peripheral neuropathy. Hum Brain Mapp 2024; 45:e26563. [PMID: 38224534 PMCID: PMC10785193 DOI: 10.1002/hbm.26563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/31/2023] [Accepted: 11/28/2023] [Indexed: 01/17/2024] Open
Abstract
Neuroimaging studies have demonstrated extensive brain functional alterations in cognitive and motor functional areas in Type 2 diabetes mellitus (T2DM) with diabetic peripheral neuropathy (DPN), suggesting potential alterations in large-scale brain networks related to DPN and associated cognition and motor dysfunction. In this study, using resting-state functional connectivity (FC) and graph theory computational approaches, we investigated the topological disruptions of brain functional networks in 28 DPN, 43 T2DM without DPN (NDPN), and 32 healthy controls (HCs) and examined the correlations between altered network topological metrics and cognitive/motor function parameters in T2DM. For global topology, NDPN exhibited a significantly decreased shortest path length compared with HCs, suggesting increased efficient global integration. For regional topology, DPN and NDPN had separated topological reorganization of functional hubs compared with HCs. In addition, DPN showed significantly decreased nodal efficiency (Enodal ), mainly in the bilateral superior occipital gyrus (SOG), right cuneus, middle temporal gyrus (MTG), and left inferior parietal gyrus (IPL), compared with NDPN, whereas NDPN showed significantly increased Enodal compared with HCs. Intriguingly, in T2DM patients, the Enodal of the right SOG was significantly negatively correlated with Toronto Clinical Scoring System scores, while the Enodal of the right postcentral gyrus (PoCG) and MTG were significantly positively correlated with Montreal Cognitive Assessment scores. Conclusively, DPN and NDPN patients had segregated disruptions in the brain functional network, which were related to cognition and motion dysfunctions. Our findings provide a theoretical basis for understanding the neurophysiological mechanism of DPN and its effective prevention and treatment in T2DM.
Collapse
Affiliation(s)
- Haotian Xin
- Department of Radiology, Shandong Provincial HospitalShandong UniversityJinanChina
| | - Yajie Fu
- Department of Radiology, Shandong Provincial HospitalShandong UniversityJinanChina
- Department of Medical UltrasoundThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Abdominal Medical ImagingJinanChina
| | - Hongwei Wen
- Key Laboratory of Cognition and Personality (Ministry of Education), Faculty of PsychologySouthwest UniversityChongqingChina
| | - Mengmeng Feng
- Department of Radiology, Shandong Provincial HospitalShandong UniversityJinanChina
| | - Chaofan Sui
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain AgingMinistry of Education; Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Yian Gao
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain AgingMinistry of Education; Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Lingfei Guo
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain AgingMinistry of Education; Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Changhu Liang
- Department of Radiology, Shandong Provincial HospitalShandong UniversityJinanChina
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain AgingMinistry of Education; Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| |
Collapse
|
7
|
Gao Y, Sui C, Chen B, Xin H, Che Y, Zhang X, Wang N, Wang Y, Liang C. Voxel-based morphometry reveals the correlation between gray matter volume and serum P-tau-181 in type 2 diabetes mellitus patients with different HbA1c levels. Front Neurosci 2023; 17:1202374. [PMID: 37255749 PMCID: PMC10225590 DOI: 10.3389/fnins.2023.1202374] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 04/27/2023] [Indexed: 06/01/2023] Open
Abstract
Introduction Emerging evidence suggested widespread decreased gray matter volume (GMV) and tau hyperphosphorylation were associated with type 2 diabetes mellitus (T2DM). Insulin resistance is one of the mechanisms of neuron degeneration in T2DM; it can decrease the activity of protein kinase B and increase the activity of glycogen synthesis kinase-3β, thus promoting the hyperphosphorylation of tau protein and finally leading to neuronal degeneration. However, the association between GMV and serum tau protein phosphorylated at threonine 181 (P-tau-181) in T2DM patients lacks neuroimaging evidence. We aimed to investigate the difference in brain GMV between T2DM patients with different glycated hemoglobin A1c (HbA1c) levels and healthy control (HC) subjects and the correlation between serum P-tau-181 and GMV in T2DM patients. Methods Clinical parameters, biochemical indicators, and MRI data were collected for 41 T2DM patients with high glycosylated hemoglobin level (HGL), 17 T2DM patients with normal glycosylated hemoglobin level (NGL), and 42 HC subjects. Voxel-based morphometry (VBM) method was applied to investigate GMV differences among groups, and multiple regression analysis was used to examine the correlation between serum P-tau-181 and GMV. Results Compared with HC subjects, the T2DM patients with HGL or NGL all showed significantly decreased GMV. Briefly, the GMV decreased in T2DM patients with HGL was mainly in the bilateral parahippocampal gyrus (PHG), right middle temporal gyrus (MTG), temporal pole (TPOmid), hippocampus (HIP), and left lingual gyrus. The GMV reduction in T2DM patients with NGL was in the right superior temporal gyrus (STG), and there was no significant difference in GMV between the two diabetic groups. The GMV values of bilateral PHG, right MTG, TPOmid, HIP, and STG can significantly (p < 0.0001) distinguish T2DM patients from HC subjects in ROC curve analysis. In addition, we found that serum P-tau-181 levels were positively correlated with GMV in the right superior and middle occipital gyrus and cuneus, and negatively correlated with GMV in the right inferior temporal gyrus in T2DM patients. Conclusion Our study shows that GMV atrophy can be used as a potential biological indicator of T2DM and also emphasizes the important role of P-tau-181 in diabetic brain injury, providing new insights into the neuropathological mechanism of diabetic encephalopathy.
Collapse
Affiliation(s)
- Yian Gao
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Chaofan Sui
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Boyao Chen
- College of Radiology, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai’an, Shandong, China
| | - Haotian Xin
- Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yena Che
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xinyue Zhang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Na Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yuanyuan Wang
- Department of Medical Imaging, Binzhou Medical University, Yantai, Shandong, China
| | - Changhu Liang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
8
|
Ge X, Zheng M, Hu M, Fang X, Geng D, Liu S, Wang L, Zhang J, Guan L, Zheng P, Xie Y, Pan W, Zhou M, Zhou L, Tang R, Zheng K, Yu Y, Huang XF. Butyrate ameliorates quinolinic acid-induced cognitive decline in obesity models. J Clin Invest 2023; 133:154612. [PMID: 36787221 PMCID: PMC9927952 DOI: 10.1172/jci154612] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/20/2022] [Indexed: 02/15/2023] Open
Abstract
Obesity is a risk factor for neurodegenerative disease associated with cognitive dysfunction, including Alzheimer's disease. Low-grade inflammation is common in obesity, but the mechanism between inflammation and cognitive impairment in obesity is unclear. Accumulative evidence shows that quinolinic acid (QA), a neuroinflammatory neurotoxin, is involved in the pathogenesis of neurodegenerative processes. We investigated the role of QA in obesity-induced cognitive impairment and the beneficial effect of butyrate in counteracting impairments of cognition, neural morphology, and signaling. We show that in human obesity, there was a negative relationship between serum QA levels and cognitive function and decreased cortical gray matter. Diet-induced obese mice had increased QA levels in the cortex associated with cognitive impairment. At single-cell resolution, we confirmed that QA impaired neurons, altered the dendritic spine's intracellular signal, and reduced brain-derived neurotrophic factor (BDNF) levels. Using Caenorhabditis elegans models, QA induced dopaminergic and glutamatergic neuron lesions. Importantly, the gut microbiota metabolite butyrate was able to counteract those alterations, including cognitive impairment, neuronal spine loss, and BDNF reduction in both in vivo and in vitro studies. Finally, we show that butyrate prevented QA-induced BDNF reductions by epigenetic enhancement of H3K18ac at BDNF promoters. These findings suggest that increased QA is associated with cognitive decline in obesity and that butyrate alleviates neurodegeneration.
Collapse
Affiliation(s)
- Xing Ge
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Jiangsu, China
| | - Mingxuan Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Jiangsu, China
| | - Minmin Hu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Jiangsu, China
| | - Xiaoli Fang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Jiangsu, China
| | - Deqin Geng
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Jiangsu, China
| | - Sha Liu
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Jiangsu, China
| | - Li Wang
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Jun Zhang
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Li Guan
- The Second Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Peng Zheng
- Illawarra Health and Medical Research Institute (IHMRI) and School of Medical, Indigenous, and Health, University of Wollongong, New South Wales, Australia
| | - Yuanyi Xie
- Illawarra Health and Medical Research Institute (IHMRI) and School of Medical, Indigenous, and Health, University of Wollongong, New South Wales, Australia
| | - Wei Pan
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Jiangsu, China
| | - Menglu Zhou
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Jiangsu, China
| | - Limian Zhou
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Jiangsu, China
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Jiangsu, China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Jiangsu, China
| | - Yinghua Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Jiangsu, China
| | - Xu-Feng Huang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Jiangsu, China.,Illawarra Health and Medical Research Institute (IHMRI) and School of Medical, Indigenous, and Health, University of Wollongong, New South Wales, Australia
| |
Collapse
|
9
|
Zhang T, Shaw M, Cherbuin N. Association between Type 2 Diabetes Mellitus and Brain Atrophy: A Meta-Analysis. Diabetes Metab J 2022; 46:781-802. [PMID: 35255549 PMCID: PMC9532183 DOI: 10.4093/dmj.2021.0189] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/11/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is known to be associated with cognitive decline and brain structural changes. This study systematically reviews and estimates human brain volumetric differences and atrophy associated with T2DM. METHODS PubMed, PsycInfo and Cochrane Library were searched for brain imaging studies reporting on brain volume differences between individuals with T2DM and healthy controls. Data were examined using meta-analysis, and association between age, sex, diabetes characteristics and brain volumes were tested using meta-regression. RESULTS A total of 14,605 entries were identified; after title, abstract and full-text screening applying inclusion and exclusion criteria, 64 studies were included and 42 studies with compatible data contributed to the meta-analysis (n=31,630; mean age 71.0 years; 44.4% male; 26,942 control; 4,688 diabetes). Individuals with T2DM had significantly smaller total brain volume, total grey matter volume, total white matter volume and hippocampal volume (approximately 1% to 4%); meta-analyses of smaller samples focusing on other brain regions and brain atrophy rate in longitudinal investigations also indicated smaller brain volumes and greater brain atrophy associated with T2DM. Meta-regression suggests that diabetes-related brain volume differences start occurring in early adulthood, decreases with age and increases with diabetes duration. CONCLUSION T2DM is associated with smaller total and regional brain volume and greater atrophy over time. These effects are substantial and highlight an urgent need to develop interventions to reduce the risk of T2DM for brain health.
Collapse
Affiliation(s)
- Tianqi Zhang
- Centre for Research on Ageing, Health and Wellbeing, The Australian National University, Canberra, Australia
| | - Marnie Shaw
- Centre for Research on Ageing, Health and Wellbeing, The Australian National University, Canberra, Australia
| | - Nicolas Cherbuin
- Centre for Research on Ageing, Health and Wellbeing, The Australian National University, Canberra, Australia
| |
Collapse
|
10
|
Sasaki-Hamada S, Sanai E, Kanemaru M, Kamanaka G, Oka JI. Long-term exposure to high glucose induces changes in the expression of AMPA receptor subunits and glutamate transmission in primary cultured cortical neurons. Biochem Biophys Res Commun 2022; 589:48-54. [PMID: 34891041 DOI: 10.1016/j.bbrc.2021.11.108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 12/14/2022]
Abstract
Hyperglycemia, which occurs under the diabetic conditions, induces serious diabetic complications. Diabetic encephalopathy has been defined as one of the major complications of diabetes, and is characterized by neurochemical and neurodegenerative changes. However, little is known about the effect of long-term exposure to high glucose on neuronal cells. In the present study, we showed that exposure to glutamate (100 mM) for 7 days induced toxicity in primary cortical neurons using the MTT assay. Additionally, high glucose increased the sensitivity of AMPA- or NMDA-induced neurotoxicity, and decreased extracellular glutamate levels in primary cortical neurons. In Western blot analyses, the protein levels of the GluA1 and GluA2 subunits of the AMPA receptor as well as synaptophysin in neurons treated with high glucose were significantly increased compared with the control (25 mM glucose). Therefore, long-term exposure to high glucose induced neuronal death through the disruption of glutamate homeostasis.
Collapse
Affiliation(s)
- Sachie Sasaki-Hamada
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, 278-8510, Japan; Department of Physiology, School of Allied Health Sciences, Kitasato University, Sagamihara, 252-0373, Japan.
| | - Emi Sanai
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, 278-8510, Japan
| | - Mariko Kanemaru
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, 278-8510, Japan
| | - Gaku Kamanaka
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, 278-8510, Japan
| | - Jun-Ichiro Oka
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, 278-8510, Japan.
| |
Collapse
|
11
|
Wang H, Zhu WF, Xia LX. Brain structural correlates of aggression types from the perspective of disinhibition–control: A voxel-based morphometric study. CURRENT PSYCHOLOGY 2022. [DOI: 10.1007/s12144-022-02712-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
12
|
Toward the Decipherment of Molecular Interactions in the Diabetic Brain. Biomedicines 2022; 10:biomedicines10010115. [PMID: 35052794 PMCID: PMC8773210 DOI: 10.3390/biomedicines10010115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/01/2022] [Accepted: 01/04/2022] [Indexed: 12/14/2022] Open
Abstract
Diabetes mellitus (DM) has been associated with cognitive complications in the brain resulting from acute and chronic metabolic disturbances happening peripherally and centrally. Numerous studies have reported on the morphological, electrophysiological, biochemical, and cognitive changes in the brains of diabetic individuals. The detailed pathophysiological mechanisms implicated in the development of the diabetic cognitive phenotype remain unclear due to intricate molecular changes evolving over time and space. This review provides an insight into recent advances in understanding molecular events in the diabetic brain, focusing on cerebral glucose and insulin uptake, insulin action in the brain, and the role of the brain in the regulation of glucose homeostasis. Fully competent mitochondria are essential for energy metabolism and proper brain function; hence, the potential contribution of mitochondria to the DM-induced impairment of the brain is also discussed.
Collapse
|
13
|
Wan S, Xia WQ, Zhong YL. Aberrant Interhemispheric Functional Connectivity in Diabetic Retinopathy Patients. Front Neurosci 2021; 15:792264. [PMID: 34975389 PMCID: PMC8716762 DOI: 10.3389/fnins.2021.792264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Accumulating lines of evidence demonstrated that diabetic retinopathy (DR) patients trigger abnormalities in brain’s functional connectivity (FC), whereas the alterations of interhemispheric coordination pattern occurring in DR are not well understood. Our study was to investigate alterations of interhemispheric coordination in DR patients. Methods: Thirty-four DR individuals (19 males and 15 females: mean age: 52.97 ± 8.35 years) and 37 healthy controls (HCs) (16 males and 21 females; mean age: 53.78 ± 7.24 years) were enrolled in the study. The voxel-mirrored homotopic connectivity (VMHC) method was conducted to investigate the different interhemispheric FC between two groups. Then, the seed-based FC method was applied to assess the different FCs with region of interest (ROI) in the brain regions of decreased VMHC between two groups. Results: Compared with HC groups, DR groups showed decreased VMHC values in the bilateral middle temporal gyrus (MTG), lingual/calcarine/middle occipital gyrus (LING/CAL/MOG), superior temporal gyrus (STG), angular (ANG), postcentral gyrus (PosCG), inferior parietal lobule (IPL), and precentral gyrus (PreCG). Meanwhile, altered FC includes the regions of auditory network, visual network, default mode network, salience network, and sensorimotor network. Moreover, a significant positive correlation was observed between the visual acuity-oculus dexter (OD) and zVMHC values in the bilateral LING/CAL/MOG (r = 0.551, p = 0.001), STG (r = 0.426, p = 0.012), PosCG (r = 0.494, p = 0.003), and IPL (r = 0.459, p = 0.006) in DR patients. Conclusion: Our results highlighted that DR patients were associated with substantial impairment of interhemispheric coordination in auditory network, visual network, default mode network, and sensorimotor network. The VMHC might be a promising therapeutic target in the intervention of brain functional dysfunction in DR patients.
Collapse
Affiliation(s)
- Song Wan
- Department of Ophthalmology, Jiangxi Provincial People’s Hospital, Nanchang, China
| | - Wen Qing Xia
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yu Lin Zhong
- Department of Ophthalmology, Jiangxi Provincial People’s Hospital, Nanchang, China
- *Correspondence: Yu Lin Zhong,
| |
Collapse
|
14
|
Oh DJ, Jung JJ, Shin SA, Kim H, Park S, Sohn BK, Koo BK, Moon MK, Kim YK, Lee JY. Brain Structural Alterations, Diabetes Biomarkers, and Cognitive Performance in Older Adults With Dysglycemia. Front Neurol 2021; 12:766216. [PMID: 34777234 PMCID: PMC8581483 DOI: 10.3389/fneur.2021.766216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/30/2021] [Indexed: 12/30/2022] Open
Abstract
Despite the high risk of dementia in older adults with type 2 diabetes, the neuroanatomical correlates of cognitive dysfunction that are particularly affected by diabetes are not well characterized. This study is aimed to examine the structural brain alterations in dysglycemic older adults. Using voxel-based morphometric and tract-based spatial statistics, we examined changes in gray matter volume, white matter volume, and microstructural integrity in older adults with prediabetes and diabetes. We also assessed the correlation of these structural changes with diabetes biomarkers and cognitive performance. A total of 74 non-demented older adults (normal, n = 14; prediabetes, n = 37; and diabetes, n = 23) participated in this study and underwent structural and diffusion magnetic resonance imaging (MRI) scans and neuropsychological tests. Subjects with diabetes showed reduced volume of cerebellar gray matter and frontal white matter and diffuse white matter dysintegrity, while those with prediabetes only showed reduced volume of insular gray matter. Atrophic changes in the cerebellum and frontal lobe and frontal white matter dysintegrity were correlated with chronic hyperglycemia and insulin resistance and worse performance in verbal memory recognition and executive function tests. Our findings suggest that chronic hyperglycemia and insulin resistance may alter brain structures forming the fronto-cerebellar network, which may cause cognitive dysfunction in older adults.
Collapse
Affiliation(s)
- Dae Jong Oh
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea.,Department of Psychiatry, SMG-SNU Boramae Medical Center, Seoul, South Korea
| | - Ji-Jung Jung
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Seong A Shin
- Department of Nuclear Medicine, SMG-SNU Boramae Medical Center, Seoul, South Korea
| | - Hairin Kim
- Department of Psychiatry, SMG-SNU Boramae Medical Center, Seoul, South Korea
| | - Soowon Park
- Division of Teacher Education, College of General Education for Truth, Sincerity and Love, Kyonggi University, Suwon, South Korea
| | - Bo Kyung Sohn
- Department of Psychiatry, Inje University Sanggye Paik Hospital, Seoul, South Korea
| | - Bo Kyung Koo
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea.,Department of Internal Medicine, SMG-SNU Boramae Medical Center, Seoul, South Korea
| | - Min Kyong Moon
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea.,Department of Internal Medicine, SMG-SNU Boramae Medical Center, Seoul, South Korea
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, SMG-SNU Boramae Medical Center, Seoul, South Korea
| | - Jun-Young Lee
- Department of Psychiatry, SMG-SNU Boramae Medical Center, Seoul, South Korea.,Department of Psychiatry and Neuroscience Research Institute, Seoul Nation University College of Medicine, Seoul, South Korea
| |
Collapse
|
15
|
Penlioglou T, Stoian AP, Papanas N. Diabetes, Vascular Aging and Stroke: Old Dogs, New Tricks? J Clin Med 2021; 10:jcm10194620. [PMID: 34640636 PMCID: PMC8509285 DOI: 10.3390/jcm10194620] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Stroke remains a leading cause of death and disability throughout the world. It is well established that Diabetes Mellitus (DM) is a risk factor for stroke, while other risk factors include dyslipidaemia and hypertension. Given that the global prevalence of diabetes steadily increases, the need for adequate glycaemic control and prevention of DM-related cardiovascular events remains a challenge for the medical community. Therefore, a re-examination of the latest data related to this issue is of particular importance. OBJECTIVE This review aims to summarise the latest data on the relationship between DM and stroke, including epidemiology, risk factors, pathogenesis, prevention and biomarkers. METHODS For this purpose, comprehensive research was performed on the platforms PubMed, Google Scholar and EMBASE with a combination of the following keywords: diabetes mellitus, stroke, macrovascular complications, diabetic stroke, cardiovascular disease. CONCLUSIONS Much progress has been made in stroke in people with DM in terms of prevention and early diagnosis. In the field of prevention, the adaptation of the daily habits and the regulation of co-morbidity of individuals play a particularly important role. Simultaneously, the most significant revolution has been brought by the relatively new treatment options that offer protection to the cardiovascular system. Moreover, many prognostic and diagnostic biomarkers have been identified, paving the way for early and accurate diagnoses. However, to date, there are crucial points that remain controversial and need further clarification.
Collapse
Affiliation(s)
- Theano Penlioglou
- Diabetes Centre, Second Department of Internal Medicine, Democritus University of Thrace, 68132 Alexandroupolis, Greece;
| | - Anca Pantea Stoian
- Diabetes, Nutrition and Metabolic Diseases Department, “Carol Davila” University of Medicine, 020021 Bucharest, Romania;
| | - Nikolaos Papanas
- Diabetes Centre, Second Department of Internal Medicine, Democritus University of Thrace, 68132 Alexandroupolis, Greece;
- Correspondence: ; Fax: +30-25513-51723
| |
Collapse
|
16
|
Yao L, Yang C, Zhang W, Li S, Li Q, Chen L, Lui S, Kemp GJ, Biswal BB, Shah NJ, Li F, Gong Q. A multimodal meta-analysis of regional structural and functional brain alterations in type 2 diabetes. Front Neuroendocrinol 2021; 62:100915. [PMID: 33862036 DOI: 10.1016/j.yfrne.2021.100915] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/30/2021] [Accepted: 04/11/2021] [Indexed: 02/04/2023]
Abstract
Neuroimaging studies have identified brain structural and functional alterations of type 2 diabetes mellitus (T2DM) patients; however, there is no systematic information on the relations between abnormalities in these two domains. We conducted a multimodal meta-analysis of voxel-based morphometry and regional resting-state functional MRI studies in T2DM, including fifteen structural datasets (693 patients and 684 controls) and sixteen functional datasets (378 patients and 358 controls). We found, in patients with T2DM compared to controls, conjoint decreased regional gray matter volume (GMV) and altered intrinsic activity mainly in the default mode network including bilateral superior temporal gyrus/Rolandic operculum, left middle and inferior temporal gyrus, and left supramarginal gyrus; decreased GMV alone in the limbic system; and functional abnormalities alone in the cerebellum, insula, and visual cortex. This meta-analysis identified complicated patterns of conjoint and dissociated brain alterations in T2DM patients, which may help provide new insight into the neuropathology of T2DM.
Collapse
Affiliation(s)
- Li Yao
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, NO. 37 Guoxue Xiang, Chengdu 610041, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, NO. 37 Guoxue Xiang, Chengdu 610041, China; Functional and Molecular Imaging Key Laboratory of Sichuan University, NO. 37 Guoxue Xiang, Chengdu 610041, China
| | - Chengmin Yang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, NO. 37 Guoxue Xiang, Chengdu 610041, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, NO. 37 Guoxue Xiang, Chengdu 610041, China; Functional and Molecular Imaging Key Laboratory of Sichuan University, NO. 37 Guoxue Xiang, Chengdu 610041, China
| | - Wenjing Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, NO. 37 Guoxue Xiang, Chengdu 610041, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, NO. 37 Guoxue Xiang, Chengdu 610041, China; Functional and Molecular Imaging Key Laboratory of Sichuan University, NO. 37 Guoxue Xiang, Chengdu 610041, China
| | - Siyi Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, NO. 37 Guoxue Xiang, Chengdu 610041, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, NO. 37 Guoxue Xiang, Chengdu 610041, China; Functional and Molecular Imaging Key Laboratory of Sichuan University, NO. 37 Guoxue Xiang, Chengdu 610041, China
| | - Qian Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, NO. 37 Guoxue Xiang, Chengdu 610041, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, NO. 37 Guoxue Xiang, Chengdu 610041, China; Functional and Molecular Imaging Key Laboratory of Sichuan University, NO. 37 Guoxue Xiang, Chengdu 610041, China
| | - Lizhou Chen
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, NO. 37 Guoxue Xiang, Chengdu 610041, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, NO. 37 Guoxue Xiang, Chengdu 610041, China; Functional and Molecular Imaging Key Laboratory of Sichuan University, NO. 37 Guoxue Xiang, Chengdu 610041, China
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, NO. 37 Guoxue Xiang, Chengdu 610041, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, NO. 37 Guoxue Xiang, Chengdu 610041, China; Functional and Molecular Imaging Key Laboratory of Sichuan University, NO. 37 Guoxue Xiang, Chengdu 610041, China
| | - Graham J Kemp
- Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L69 3BX, L3 5TR, United Kingdom
| | - Bharat B Biswal
- Department of Biomedical Engineering, New Jersey Institute of Technology, 323 Dr Martin Luther King Jr Blvd, Newark, NJ 07102, USA; The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No.4, Section 2, North Jianshe Road, Chengdu 610054, China
| | - Nadim J Shah
- Institute of Neuroscience and Medicine (INM-4), Medical Imaging Physics, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Fei Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, NO. 37 Guoxue Xiang, Chengdu 610041, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, NO. 37 Guoxue Xiang, Chengdu 610041, China; Functional and Molecular Imaging Key Laboratory of Sichuan University, NO. 37 Guoxue Xiang, Chengdu 610041, China; Institute of Neuroscience and Medicine (INM-4), Medical Imaging Physics, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, NO. 37 Guoxue Xiang, Chengdu 610041, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, NO. 37 Guoxue Xiang, Chengdu 610041, China; Functional and Molecular Imaging Key Laboratory of Sichuan University, NO. 37 Guoxue Xiang, Chengdu 610041, China.
| |
Collapse
|
17
|
Yu KKK, Cheing GLY, Cheung C, Kranz GS, Cheung AKK. Gray Matter Abnormalities in Type 1 and Type 2 Diabetes: A Dual Disorder ALE Quantification. Front Neurosci 2021; 15:638861. [PMID: 34163319 PMCID: PMC8215122 DOI: 10.3389/fnins.2021.638861] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 05/07/2021] [Indexed: 12/06/2022] Open
Abstract
Aims/hypothesis: Diabetes mellitus (DM) is associated with comorbid brain disorders. Neuroimaging studies in DM revealed neuronal degeneration in several cortical and subcortical brain regions. Previous studies indicate more pronounced brain alterations in type 2 diabetes mellitus (T2DM) than in type 1 diabetes mellitus (T1DM). However, a comparison of both types of DM in a single analysis has not been done so far. The aim of this meta-analysis was to conduct an unbiased objective investigation of neuroanatomical differences in DM by combining voxel-based morphometry (VBM) studies of T1DM and T2DM using dual disorder anatomical likelihood estimation (ALE) quantification. Methods: PubMed, Web of Science and Medline were systematically searched for publications until June 15, 2020. VBM studies comparing gray matter volume (GMV) differences between DM patients and controls at the whole-brain level were included. Study coordinates were entered into the ALE meta-analysis to investigate the extent to which T1DM, T2DM, or both conditions contribute to gray matter volume differences compared to controls. Results: Twenty studies (comprising of 1,175 patients matched with 1,013 controls) were included, with seven studies on GMV alterations in T1DM and 13 studies on GMV alterations in T2DM. ALE analysis revealed seven clusters of significantly lower GMV in T1DM and T2DM patients relative to controls across studies. Both DM subtypes showed GMV reductions in the left caudate, right superior temporal lobe, and left cuneus. Conversely, GMV reductions associated exclusively with T2DM (>99% contribution) were found in the left cingulate, right posterior lobe, right caudate and left occipital lobe. Meta-regression revealed no significant influence of study size, disease duration, and HbA1c values. Conclusions/interpretation: Our findings suggest a more pronounced gray matter atrophy in T2DM compared to T1DM. The increased risk of microvascular or macrovascular complications, as well as the disease-specific pathology of T2DM may contribute to observed GMV reductions. Systematic Review Registration: [PROSPERO], identifier [CRD42020142525].
Collapse
Affiliation(s)
- Kevin K K Yu
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong.,University Research Facility in Behavioral and Systems Neuroscience (UBSN), The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Gladys L Y Cheing
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong.,University Research Facility in Behavioral and Systems Neuroscience (UBSN), The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Charlton Cheung
- Department of Psychiatry, The University of Hong Kong, Pokfulam, Hong Kong
| | - Georg S Kranz
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong.,The State Key Laboratory for Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong.,Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Alex Kwok-Kuen Cheung
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| |
Collapse
|
18
|
Tsur AM, Hershkovich S, Zucker I, Lutski M, Pinhas-Hamiel O, Vivante A, Fischman M, Amir O, Rotchild J, Gerstein HC, Cukierman-Yaffe T, Friedensohn L, Mosenzon O, Derazne E, Tzur D, Tirosh A, Afek A, Raz I, Twig G. Stuttering and Incident Type 2 Diabetes: A Population-Based Study of 2.2 Million Adolescents. J Clin Endocrinol Metab 2021; 106:978-987. [PMID: 33449080 DOI: 10.1210/clinem/dgaa988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Indexed: 02/08/2023]
Abstract
PURPOSE To investigate the association between stuttering in adolescence and incident type 2 diabetes in young adulthood. METHODS This nationwide population-based study included 2 193 855 adolescents of age 16 to 20 years who were assessed for military service between 1980 and 2013. Diagnoses of stuttering in adolescence were confirmed by a speech-language pathologist. Diabetes status for each individual as of December 31, 2016, was determined by linkage to the Israeli National Diabetes Registry. Relationships were analyzed using regression models adjusted for socioeconomic variables, cognitive performance, coexisting morbidities, and adolescent body mass index. RESULTS Analysis was stratified by sex (Pinteraction = 0.035). Of the 4443 (0.4%) adolescent men with stuttering, 162 (3.7%) developed type 2 diabetes, compared with 25 678 (2.1%) men without stuttering (adjusted odds ratio [OR] 1.3; 95% CI, 1.1-1.6). This relationship persisted when unaffected brothers of men with stuttering were used as the reference group (adjusted OR = 1.5; 95% CI, 1.01-2.2), or when the analysis included only adolescents with unimpaired health at baseline (adjusted OR = 1.4; 95% CI, 1.1-1.7). The association was stronger in later birth cohorts, with an adjusted OR of 2.4 (1.4-4.1) for cases of type 2 diabetes before age 40. Of the 503 (0.1%) adolescent women with stuttering 7 (1.4%) developed type 2 diabetes, compared with 10 139 (1.1%) women without stuttering (OR = 2.03; 95% CI, 0.48-2.20). CONCLUSIONS Adolescent stuttering is associated with an increased risk for early-onset type 2 diabetes among men.
Collapse
Affiliation(s)
- Avishai M Tsur
- The Israel Defense Forces Medical Corps, Ramat Gan, Israel
- Department of Military Medicine, Hebrew University of Jerusalem Faculty of Medicine, Jerusalem, Israel
- Department of Medicine "B," Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Inbar Zucker
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Israel Center for Disease Control, Ministry of Health, Ramat Gan, Israel
| | - Miri Lutski
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Israel Center for Disease Control, Ministry of Health, Ramat Gan, Israel
| | - Orit Pinhas-Hamiel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Pediatric Endocrine and Diabetes Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, 5266202, Israel
| | - Asaf Vivante
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Maya Fischman
- Department of Military Medicine, Hebrew University of Jerusalem Faculty of Medicine, Jerusalem, Israel
| | - Ofer Amir
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jacob Rotchild
- The Israel Defense Forces Medical Corps, Ramat Gan, Israel
| | | | - Tali Cukierman-Yaffe
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Limor Friedensohn
- The Israel Defense Forces Medical Corps, Ramat Gan, Israel
- Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Ofri Mosenzon
- The Diabetes Unit, Department of Internal Medicine, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Estela Derazne
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dorit Tzur
- The Israel Defense Forces Medical Corps, Ramat Gan, Israel
| | - Amir Tirosh
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Arnon Afek
- Central Management, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Itamar Raz
- The Diabetes Unit, Department of Internal Medicine, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Gilad Twig
- The Israel Defense Forces Medical Corps, Ramat Gan, Israel
- Department of Military Medicine, Hebrew University of Jerusalem Faculty of Medicine, Jerusalem, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| |
Collapse
|
19
|
Li C, Zhang J, Qiu M, Liu K, Li Y, Zuo Z, Yin X, Lai Y, Fang J, Tong H, Guo Y, Wang J, Chen X, Xiong K. Alterations of Brain Structural Network Connectivity in Type 2 Diabetes Mellitus Patients With Mild Cognitive Impairment. Front Aging Neurosci 2021; 12:615048. [PMID: 33613263 PMCID: PMC7891182 DOI: 10.3389/fnagi.2020.615048] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/30/2020] [Indexed: 12/31/2022] Open
Abstract
Patients with type 2 diabetes mellitus (T2DM) are highly susceptible to developing dementia, especially for those with mild cognitive impairment (MCI), but its underlying cause is still unclear. This study aims to investigate the early detection of white matter structural network changes in T2DM patients with MCI and assess the relationship between cognitive impairment and structural network alterations in T2DM patients. In this study, we performed a battery of neuropsychological tests and diffusion tensor MRI in 30 T2MD-MCI patients, 30 T2DM patients with normal cognition (T2DM-NC) and 30 age-, sex-, and education-matched healthy control (HC) individuals. Cognitive performance exhibited obvious differences among the three groups. The structural network was significantly disrupted in both global and regional levels in T2DM patients. The T2DM-MCI group showed more severe impairment of global network efficiency, and lower nodal efficiency and fewer connections within multiple regions like the limbic system, basal ganglia, and several cortical structures. Moreover, a subnetwork impaired in T2DM-MCI patients was characterized by cortical-limbic fibers, and commissural fibers and pathways within the frontal, temporal, and occipital lobes. These altered global and nodal parameters were significantly correlated with cognitive function in T2DM-MCI patients. In particular, executive dysfunction and working memory impairment in T2DM-MCI patients correlated with nodal efficiency in the right opercular part and triangular part of the inferior frontal gyrus, which indicated that white matter disruption in these regions may act as potential biomarkers for T2DM-associated MCI detection. Our investigation provides a novel insight into the neuropathological effects of white matter network disruption on cognition impairments induced by T2DM.
Collapse
Affiliation(s)
- Chang Li
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, China
- Department of Radiology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Jingna Zhang
- Department of Medical Imaging, College of Biomedical Engineering, Army Medical University, Chongqing, China
| | - Mingguo Qiu
- Department of Medical Imaging, College of Biomedical Engineering, Army Medical University, Chongqing, China
| | - Kaijun Liu
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| | - Yang Li
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Zhiwei Zuo
- Department of Radiology, General Hospital of Western Theater Command, Chengdu, China
| | - Xuntao Yin
- Department of Medical Imaging, Guizhou Provincial People's Hospital, Guiyang, China
| | - Yuqi Lai
- School of Foreign Languages and Cultures, Chongqing University, Chongqing, China
| | - Jingqin Fang
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, China
- Chongqing Clinical Research Center for Imaging and Nuclear Medicine, Chongqing, China
| | - Haipeng Tong
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Yu Guo
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Jian Wang
- Department of Radiology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Xiao Chen
- Chongqing Clinical Research Center for Imaging and Nuclear Medicine, Chongqing, China
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Kunlin Xiong
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, China
- Chongqing Clinical Research Center for Imaging and Nuclear Medicine, Chongqing, China
| |
Collapse
|
20
|
Li C, Jin R, Liu K, Li Y, Zuo Z, Tong H, Zhang J, Zhang J, Guo Y, Lai Y, Sun J, Wang J, Xiong K, Chen X. White Matter Atrophy in Type 2 Diabetes Mellitus Patients With Mild Cognitive Impairment. Front Neurosci 2021; 14:602501. [PMID: 33536867 PMCID: PMC7848149 DOI: 10.3389/fnins.2020.602501] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/21/2020] [Indexed: 01/21/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) patients are highly susceptible to developing dementia, especially for those with mild cognitive impairment (MCI), but its underlying cause is still unclear. In this study, we performed a battery of neuropsychological tests and high-resolution sagittal T1-weighted structural imaging to explore how T2DM affects white matter volume (WMV) and cognition in 30 T2DM-MCI patients, 30 T2DM with normal cognition (T2DM-NC) patients, and 30 age-, sex-, and education-matched healthy control (HC) individuals. The WMV of the whole brain was obtained with automated segmentation methods. Correlations between the WMV of each brain region and neuropsychological tests were analyzed in the T2DM patients. The T2DM-NC patients and HC individuals did not reveal any significant differences in WMV. Compared with the T2DM-NC group, the T2DM-MCI group showed statistically significant reduction in the WMV of seven brain regions, mainly located in the frontotemporal lobe and limbic system, five of which significantly correlated with Montreal Cognitive Assessment (MoCA) scores. Subsequently, we evaluated the discriminative ability of these five regions for MCI in T2DM patients. The WMV of four regions, including left posterior cingulate, precuneus, insula, and right rostral middle frontal gyrus had high diagnostic value for MCI detection in T2DM patients (AUC > 0.7). Among these four regions, left precuneus WMV presented the best diagnostic value (AUC: 0.736; sensitivity: 70.00%; specificity: 73.33%; Youden index: 0.4333), but with no significant difference relative to the minimum AUC. In conclusion, T2DM could give rise to the white matter atrophy of several brain regions. Each WMV of left posterior cingulate, precuneus, insula, and right rostral middle frontal gyrus could be an independent imaging biomarker to detect cognitive impairment at the early stage in T2DM patients and play an important role in its pathophysiological mechanism.
Collapse
Affiliation(s)
- Chang Li
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, China.,Department of Radiology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Rongbing Jin
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, China.,Chongqing Clinical Research Center for Imaging and Nuclear Medicine, Chongqing, China
| | - Kaijun Liu
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| | - Yang Li
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Zhiwei Zuo
- Department of Radiology, General Hospital of Western Theater Command, Chengdu, China
| | - Haipeng Tong
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, China.,Chongqing Clinical Research Center for Imaging and Nuclear Medicine, Chongqing, China
| | - Jingna Zhang
- Department of Medical Imaging, College of Biomedical Engineering, Army Medical University, Chongqing, China
| | - Junfeng Zhang
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, China.,Chongqing Clinical Research Center for Imaging and Nuclear Medicine, Chongqing, China
| | - Yu Guo
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Yuqi Lai
- School of Foreign Languages and Cultures, Chongqing University, Chongqing, China
| | - Jinju Sun
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Jian Wang
- Department of Radiology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Kunlin Xiong
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, China.,Chongqing Clinical Research Center for Imaging and Nuclear Medicine, Chongqing, China
| | - Xiao Chen
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, China.,Chongqing Clinical Research Center for Imaging and Nuclear Medicine, Chongqing, China
| |
Collapse
|
21
|
Xiao A, Ge QM, Zhong HF, Zhang LJ, Shu HY, Liang RB, Shao Y, Zhou Q. White Matter Hyperintensities of Bilateral Lenticular Putamen in Patients with Proliferative Diabetic Retinopathy: A Voxel-based Morphometric Study. Diabetes Metab Syndr Obes 2021; 14:3653-3665. [PMID: 34408460 PMCID: PMC8366956 DOI: 10.2147/dmso.s321270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/23/2021] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE To explore the changes in gray matter volume (GMV) and white matter volume (WMV) in proliferative diabetic retinopathy (PDR) patients using voxel-based morphometry (VBM). PARTICIPANTS AND METHODS In total, 15 patients (10 males, 5 females) with PDR were enrolled to the patient group and 15 healthy controls (10 males, 5 females) to the control group, matched for age, sex, handedness, and education status. All individuals underwent voxel-based morphometry scans. GMV and WMV were compared between the two groups. RESULTS GMV in bilateral superior temporal gyrus, sixth area of left cerebellum, left middle temporal gyrus, left orbital inferior frontal gyrus and left middle cingulum gyrus and WMV in left thalamus and left precuneus were significantly lower in patients than controls (P<0.01). Conversely, WMV was significantly higher in bilateral lenticular putamen of patients than controls (P<0.01). CONCLUSION Abnormal GMV and WMV in many specific areas of the cerebrum provide new insights for exploration of the occurrence and development of DR and its pathophysiology.
Collapse
Affiliation(s)
- Ang Xiao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Qian-Min Ge
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Hui-Feng Zhong
- Department of Intensive Care, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, People’s Republic of China
| | - Li-Juan Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Hui-Ye Shu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Rong-Bin Liang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Yi Shao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, Jiangxi, 330006, People’s Republic of China
- Correspondence: Yi Shao; Qiong Zhou Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, No. 17, YongWaiZheng Street, DongHu District, Nanchang, 330006, Jiangxi, People’s Republic of China Tel/Fax +86 791-88692520; +86 791-88694639 Email ;
| | - Qiong Zhou
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, Jiangxi, 330006, People’s Republic of China
| |
Collapse
|
22
|
Diabetes Mellitus-Related Dysfunction of the Motor System. Int J Mol Sci 2020; 21:ijms21207485. [PMID: 33050583 PMCID: PMC7589125 DOI: 10.3390/ijms21207485] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/08/2020] [Accepted: 10/08/2020] [Indexed: 12/20/2022] Open
Abstract
Although motor deficits in humans with diabetic neuropathy have been extensively researched, its effect on the motor system is thought to be lesser than that on the sensory system. Therefore, motor deficits are considered to be only due to sensory and muscle impairment. However, recent clinical and experimental studies have revealed that the brain and spinal cord, which are involved in the motor control of voluntary movement, are also affected by diabetes. This review focuses on the most important systems for voluntary motor control, mainly the cortico-muscular pathways, such as corticospinal tract and spinal motor neuron abnormalities. Specifically, axonal damage characterized by the proximodistal phenotype occurs in the corticospinal tract and motor neurons with long axons, and the transmission of motor commands from the brain to the muscles is impaired. These findings provide a new perspective to explain motor deficits in humans with diabetes. Finally, pharmacological and non-pharmacological treatment strategies for these disorders are presented.
Collapse
|
23
|
Cao C, Liu W, Zhang Q, Wu JL, Sun Y, Li D, Fan H, Wang F. Irregular structural networks of gray matter in patients with type 2 diabetes mellitus. Brain Imaging Behav 2020; 14:1477-1486. [PMID: 30977031 DOI: 10.1007/s11682-019-00070-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Type 2 diabetes mellitus (T2DM) induces dementia and cognitive decrements indicating the impairment of the central nervous system. While there is evidence showing abnormalities in white-matter structural networks in T2DM, the topological features of gray matter are still unknown. The study enrolled 30 right-handed T2DM patients and 20 healthy control subjects with matched age, gender, handedness, and education. Graph theoretical analysis of magnetic resonance imaging on gray matter volume was conducted to explore large-scale structural networks of brain. Although retaining small-worldness characteristics, the structural networks of grey matter in the T2DM group exhibited an increased clustering coefficient, prolonged characteristic path, decreased global efficiency, and more vulnerability to random failures or targeted attacks compared with controls. Additionally, the degree of structural networks in both T2DM and control groups was distributed exponentially in truncated power law. Our findings suggest that T2DM disturbed the overall topological features of gray matter networks, which provides a novel insight into the neurobiological mechanisms accounting for the cognitive impairment of T2DM patients.
Collapse
Affiliation(s)
- Chuanlong Cao
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, No. 6, Jiefang Street, Zhongshan District, Dalian, 116001, Liaoning, China
| | - Wanqing Liu
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, No. 6, Jiefang Street, Zhongshan District, Dalian, 116001, Liaoning, China
| | - Qing Zhang
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, No. 6, Jiefang Street, Zhongshan District, Dalian, 116001, Liaoning, China.
| | - Jian-Lin Wu
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, No. 6, Jiefang Street, Zhongshan District, Dalian, 116001, Liaoning, China.
| | - Yumei Sun
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, No. 6, Jiefang Street, Zhongshan District, Dalian, 116001, Liaoning, China
| | - Danyang Li
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, No. 6, Jiefang Street, Zhongshan District, Dalian, 116001, Liaoning, China
| | - Hongyu Fan
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, No. 6, Jiefang Street, Zhongshan District, Dalian, 116001, Liaoning, China
| | - Feifei Wang
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
24
|
Li C, Zuo Z, Liu D, Jiang R, Li Y, Li H, Yin X, Lai Y, Wang J, Xiong K. Type 2 Diabetes Mellitus May Exacerbate Gray Matter Atrophy in Patients With Early-Onset Mild Cognitive Impairment. Front Neurosci 2020; 14:856. [PMID: 32848591 PMCID: PMC7432296 DOI: 10.3389/fnins.2020.00856] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/22/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The precise physiopathological association between the courses of neurodegeneration and cognitive decline in type 2 diabetes mellitus (T2DM) remains unclear. This study sought to comprehensively investigate the distribution characteristics of gray matter atrophy in middle-aged T2DM patients with newly diagnosed mild cognitive impairment (MCI). METHODS Four groups, including 28 patients with early-onset MCI, 28 patients with T2DM, 28 T2DM patients with early-onset MCI (T2DM-MCI), and 28 age-, sex-, and education-matched healthy controls underwent three-dimensional high-resolution structural magnetic resonance imaging. Cortical and subcortical gray matter volumes were calculated, and a structural covariance method was used to evaluate the morphological relationships within the default mode network (DMN). RESULTS Overlapped and unique cortical/subcortical gray matter atrophy was found in patients with MCI, T2DM and T2DM-MCI in our study, and patients with T2DM-MCI showed lower volumes in several areas than patients with MCI or T2DM. Volume loss in subcortical areas (including the thalamus, putamen, and hippocampus), but not in cortical areas, was related to cognitive impairment in patients with MCI and T2DM-MCI. No associations between biochemical measurements and volumetric reductions were found. Furthermore, patients with MCI and those with T2DM-MCI showed disrupted structural connectivity within the DMN. CONCLUSION These findings provide further evidence that T2DM may exacerbate atrophy of specific gray matter regions, which may be primarily associated with MCI. Impairments in gray matter volume related to T2DM or MCI are independent of cardiovascular risk factors, and subcortical atrophy may play a more pivotal role in cognitive impairment than cortical alterations in patients with MCI and T2DM-MCI. The enhanced structural connectivity within the DMN in patients with T2DM-MCI may suggest a compensatory mechanism for the chronic neurodegeneration.
Collapse
Affiliation(s)
- Chang Li
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, China
- Department of Radiology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Zhiwei Zuo
- Department of Radiology, General Hospital of Western Theater Command, Chengdu, China
| | - Daihong Liu
- Department of Radiology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Rui Jiang
- Department of Radiology, General Hospital of Western Theater Command, Chengdu, China
| | - Yang Li
- Department of Radiology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Haitao Li
- Department of Radiology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Xuntao Yin
- Department of Medical Imaging, Guizhou Provincial People’s Hospital, Guizhou, China
| | - Yuqi Lai
- School of Foreign Languages and Cultures, Chongqing University, Chongqing, China
| | - Jian Wang
- Department of Radiology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Kunlin Xiong
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
25
|
Ma WX, Tang J, Lei ZW, Li CY, Zhao LQ, Lin C, Sun T, Li ZY, Jiang YH, Jia JT, Liang CZ, Liu JH, Yan LJ. Potential Biochemical Mechanisms of Brain Injury in Diabetes Mellitus. Aging Dis 2020; 11:978-987. [PMID: 32765958 PMCID: PMC7390528 DOI: 10.14336/ad.2019.0910] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/10/2019] [Indexed: 01/07/2023] Open
Abstract
The goal of this review was to summarize current biochemical mechanisms of and risk factors for diabetic brain injury. We mainly summarized mechanisms published in the past three years and focused on diabetes induced cognitive impairment, diabetes-linked Alzheimer's disease, and diabetic stroke. We think there is a need to conduct further studies with increased sample sizes and prolonged period of follow-ups to clarify the effect of DM on brain dysfunction. Additionally, we also think that enhancing experimental reproducibility using animal models in conjunction with application of advanced devices should be considered when new experiments are designed. It is expected that further investigation of the underlying mechanisms of diabetic cognitive impairment will provide novel insights into therapeutic approaches for ameliorating diabetes-associated injury in the brain.
Collapse
Affiliation(s)
- Wei-Xing Ma
- Department of Pharmaceutical, University of North Texas Health Science Center, Fort Worth, Texas, USA
- Chemical Engineering Institute, Qingdao University of Science and Technology, Qingdao, Shandong, China
- Technological Center, Qingdao Customs, Qingdao, Shandong, China
| | - Jing Tang
- Technological Center, Qingdao Customs, Qingdao, Shandong, China
| | - Zhi-Wen Lei
- Technological Center, Qingdao Customs, Qingdao, Shandong, China
| | - Chun-Yan Li
- Department of Pharmaceutical, University of North Texas Health Science Center, Fort Worth, Texas, USA
- Shantou University Medical College, Shantou, Guangdong, China
| | - Li-Qing Zhao
- Technological Center, Qingdao Customs, Qingdao, Shandong, China
| | - Chao Lin
- Technological Center, Qingdao Customs, Qingdao, Shandong, China
| | - Tao Sun
- Technological Center, Qingdao Customs, Qingdao, Shandong, China
| | - Zheng-Yi Li
- Technological Center, Qingdao Customs, Qingdao, Shandong, China
| | - Ying-Hui Jiang
- Technological Center, Qingdao Customs, Qingdao, Shandong, China
| | - Jun-Tao Jia
- Technological Center, Qingdao Customs, Qingdao, Shandong, China
| | - Cheng-Zhu Liang
- Technological Center, Qingdao Customs, Qingdao, Shandong, China
| | - Jun-Hong Liu
- Chemical Engineering Institute, Qingdao University of Science and Technology, Qingdao, Shandong, China
| | - Liang-Jun Yan
- Department of Pharmaceutical, University of North Texas Health Science Center, Fort Worth, Texas, USA
| |
Collapse
|
26
|
Liu T, Bai Y, Ma L, Ma X, Wei W, Zhang J, Roberts N, Wang M. Altered Effective Connectivity of Bilateral Hippocampus in Type 2 Diabetes Mellitus. Front Neurosci 2020; 14:657. [PMID: 32655364 PMCID: PMC7325692 DOI: 10.3389/fnins.2020.00657] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/27/2020] [Indexed: 02/05/2023] Open
Abstract
Patients with type 2 diabetes mellitus (T2DM) experience cognitive deficits but the underlying pathophysiologic mechanisms are not known. We therefore applied Granger causality analysis of resting-state functional magnetic resonance imaging to study the effective connectivity (EC) of the hippocampus in patients with T2DM. Eighty six patients with T2DM and 84 matched healthy controls (HC) were recruited. The directional EC between anatomically defined seeds in left hippocampus (LHIP) and right hippocampus (RHIP) and other brain regions was compared between T2DM and HC and Pearson correlation analysis was performed to determine whether alterations in EC were related to clinical characteristics of diabetes. Compared with HC, patients with T2DM had altered EC between LHIP and RHIP and the default mode network (DMN), occipital cortex and cerebellum. In addition, for LHIP only duration of diabetes positively correlated with decreased inflow from right postcentral gyrus and right parietal lobe, glycosylated hemoglobin (HbA1c) negatively correlated with decreased inflow from right thalamus (r = -0.255, p = 0.018) and Montreal Cognitive Assessment (MoCA) negatively correlated with decreased inflow from left inferior parietal lobe (r = -0.206, p = 0.05). The altered EC between hippocampus and DMN is interpreted to be related to cognitive deficits in patients with T2DM particularly affecting memory and learning.
Collapse
Affiliation(s)
- Taiyuan Liu
- Henan Key Laboratory of Neurological Imaging, Department of Medical Imaging, Zhengzhou University People's Hospital & Henan Provincial People's Hospital, Zhengzhou, China
| | - Yan Bai
- Henan Key Laboratory of Neurological Imaging, Department of Medical Imaging, Zhengzhou University People's Hospital & Henan Provincial People's Hospital, Zhengzhou, China
| | - Lun Ma
- Henan Key Laboratory of Neurological Imaging, Department of Medical Imaging, Zhengzhou University People's Hospital & Henan Provincial People's Hospital, Zhengzhou, China
| | - Xiaoyue Ma
- Henan Key Laboratory of Neurological Imaging, Department of Medical Imaging, Zhengzhou University People's Hospital & Henan Provincial People's Hospital, Zhengzhou, China
| | - Wei Wei
- Henan Key Laboratory of Neurological Imaging, Department of Medical Imaging, Zhengzhou University People's Hospital & Henan Provincial People's Hospital, Zhengzhou, China
| | - Junran Zhang
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Neil Roberts
- The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Meiyun Wang
- Henan Key Laboratory of Neurological Imaging, Department of Medical Imaging, Zhengzhou University People's Hospital & Henan Provincial People's Hospital, Zhengzhou, China
| |
Collapse
|
27
|
Roy B, Ehlert L, Mullur R, Freeby MJ, Woo MA, Kumar R, Choi S. Regional Brain Gray Matter Changes in Patients with Type 2 Diabetes Mellitus. Sci Rep 2020; 10:9925. [PMID: 32555374 PMCID: PMC7303156 DOI: 10.1038/s41598-020-67022-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
Patients with Type 2 diabetes mellitus (T2DM) show cognitive and mood impairment, indicating potential for brain injury in regions that control these functions. However, brain tissue integrity in cognition, anxiety, and depression regulatory sites, and their associations with these functional deficits in T2DM subjects remain unclear. We examined gray matter (GM) changes in 34 T2DM and 88 control subjects using high-resolution T1-weighted images, collected from a 3.0-Tesla magnetic resonance imaging scanner, and assessed anxiety [Beck Anxiety Inventory], depressive symptoms [Beck Depression Inventory-II], and cognition [Montreal Cognitive Assessment]. We also investigated relationships between GM status of cognitive and mood control sites and these scores in T2DM. Significantly increased anxiety (p = 0.003) and depression (p = 0.001), and reduced cognition (p = 0.002) appeared in T2DM over controls. Decreased GM volumes appeared in several regions in T2DM patients, including the prefrontal, hippocampus, amygdala, insular, cingulate, cerebellum, caudate, basal-forebrain, and thalamus areas (p < 0.01). GM volumes were significantly associated with anxiety (r = -0.456,p = 0.009), depression (r = -0.465,p = 0.01), and cognition (r = 0.455,p = 0.009) scores in regions associated with those regulations (prefrontal cortices, hippocampus, para hippocampus, amygdala, insula, cingulate, caudate, thalamus, and cerebellum) in T2DM patients. Patients with T2DM show brain damage in regions that are involved in cognition, anxiety, and depression control, and these tissue alterations are associated with functional deficits. The findings indicate that mood and cognitive deficits in T2DM patients has brain structural basis in the condition.
Collapse
Affiliation(s)
- Bhaswati Roy
- Department of Anesthesiology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Luke Ehlert
- Department of Anesthesiology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Rashmi Mullur
- Department of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Matthew J Freeby
- Department of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Mary A Woo
- UCLA School of Nursing, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Rajesh Kumar
- Department of Anesthesiology, University of California Los Angeles, Los Angeles, CA, 90095, USA. .,Department of Radiology, University of California Los Angeles, Los Angeles, CA, 90095, USA. .,Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA. .,Brain Research Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| | - Sarah Choi
- UCLA School of Nursing, University of California Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
28
|
Large-Scale Neuronal Network Dysfunction in Diabetic Retinopathy. Neural Plast 2020; 2020:6872508. [PMID: 32399026 PMCID: PMC7204201 DOI: 10.1155/2020/6872508] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/26/2019] [Indexed: 12/19/2022] Open
Abstract
Diabetic retinopathy (DR) patients are at an increased risk of cognitive decline and dementia. There is accumulating evidence that specific functional and structural architecture changes in the brain are related to cognitive impairment in DR patients. However, little is known regarding whether the functional architecture of resting-state networks (RSNs) changes in DR patients. The purpose of this study was to investigate the intranetwork functional connectivity (FC) and functional network connectivity (FNC) of RSN changes in DR patients using independent component analysis (ICA). Thirty-four DR patients (18 men and 16 women; mean age, 53.53 ± 8.67 years) and 38 nondiabetic healthy controls (HCs) (15 men and 23 women; mean age, 48.63 ± 11.83 years), closely matched for age, sex, and education, underwent resting-state magnetic resonance imaging scans. ICA was applied to extract the nine RSNs. Then, two-sample t-tests were conducted to investigate different intranetwork FCs within nine RSNs between the two groups. The FNC toolbox was used to assess interactions among RSNs. Pearson correlation analysis was conducted to explore the relationship between intranetwork FCs and clinical variables in the DR group. A receiver operating characteristic (ROC) curve was conducted to assess the ability of the intranetwork FCs of RSNs in discriminating between the two groups. Compared to the HC group, DR patients showed significant decreased intranetwork FCs within the basal ganglia network (BGN), visual network (VN), ventral default mode network (vDMN), right executive control network (rECN), salience network (SN), left executive control network (lECN), auditory network (AN), and dorsal default mode network (dDMN). In addition, FNC analysis showed increased VN-BGN, VN-vDMN, VN-dDMN, vDMN-lECN, SN-BGN, lECN-dDMN, and AN-BGN FNCs in the DR group, relative to the HC group. Furthermore, altered intranetwork FCs of RSNs were significantly correlated with the glycosylated hemoglobin (HbA1c) level in DR patients. A ROC curve showed that these specific intranetwork FCs of RSNs discriminated between the two groups with a high degree of sensitivity and specificity. Our study highlighted that DR patients had widespread deficits in both low-level perceptual and higher-order cognitive networks. Our results offer important insights into the neural mechanisms of visual loss and cognitive decline in DR patients.
Collapse
|
29
|
Ferris JK, Inglis JT, Madden KM, Boyd LA. Brain and Body: A Review of Central Nervous System Contributions to Movement Impairments in Diabetes. Diabetes 2020; 69:3-11. [PMID: 31862690 DOI: 10.2337/db19-0321] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 10/20/2019] [Indexed: 11/13/2022]
Abstract
Diabetes is associated with a loss of somatosensory and motor function, leading to impairments in gait, balance, and manual dexterity. Data-driven neuroimaging studies frequently report a negative impact of diabetes on sensorimotor regions in the brain; however, relationships with sensorimotor behavior are rarely considered. The goal of this review is to consider existing diabetes neuroimaging evidence through the lens of sensorimotor neuroscience. We review evidence for diabetes-related disruptions to three critical circuits for movement control: the cerebral cortex, the cerebellum, and the basal ganglia. In addition, we discuss how central nervous system (CNS) degeneration might interact with the loss of sensory feedback from the limbs due to peripheral neuropathy to result in motor impairments in individuals with diabetes. We argue that our understanding of movement impairments in individuals with diabetes is incomplete without the consideration of disease complications in both the central and peripheral nervous systems. Neuroimaging evidence for disrupted central sensorimotor circuitry suggests that there may be unrecognized behavioral impairments in individuals with diabetes. Applying knowledge from the existing literature on CNS contributions to motor control and motor learning in healthy individuals provides a framework for hypothesis generation for future research on this topic.
Collapse
Affiliation(s)
- Jennifer K Ferris
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - J Timothy Inglis
- Department of Kinesiology, Faculty of Education, University of British Columbia, Vancouver, Canada
| | - Kenneth M Madden
- Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Lara A Boyd
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
30
|
Ganmore I, Livny A, Ravona-Springer R, Cooper I, Alkelai A, Shelly S, Tsarfaty G, Heymann A, Schnaider Beeri M, Greenbaum L. TCF7L2 polymorphisms are associated with amygdalar volume in elderly individuals with Type 2 Diabetes. Sci Rep 2019; 9:15818. [PMID: 31676834 PMCID: PMC6825182 DOI: 10.1038/s41598-019-48899-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 08/08/2019] [Indexed: 02/06/2023] Open
Abstract
The association between several Single Nucleotide Polymorphisms (SNPs) within the transcription factor 7-like 2 (TCF7L2) gene and Type 2 Diabetes (T2D) as well as additional T2D-related traits is well established. Since alteration in total and regional brain volumes are consistent findings among T2D individuals, we studied the association of four T2D susceptibility SNPS within TCF7L2 (rs7901695, rs7903146, rs11196205, and rs12255372) with volumes of white matter hyperintensities (WMH), gray matter, and regional volumes of amygdala and hippocampus obtained from structural MRI among 191 T2D elderly Jewish individuals. Under recessive genetic model (controlling for age, sex and intracranial volume), we found that for all four SNPs, carriers of two copies of the T2D risk allele (homozygous genotype) had significantly smaller amygdalar volume: rs7901695- CC genotype vs. CT + TT genotypes, p = 0.002; rs7903146-TT vs. TC + CC, p = 0.003; rs11196205- CC vs. CG + GG, p = 0.0003; and rs12255372- TT vs. TG + GG, p = 0.003. Adjusting also for T2D-related covariates, body mass index (BMI), and ancestry did not change the results substantively (rs7901695, p = 0.003; rs7903146, p = 0.005; rs11196205, p = 0.001; and rs12255372, p = 0.005). Conditional analysis demonstrated that only rs11196205 was independently associated with amygdalar volume at a significant level. Separate analysis of left and right amygdala revealed stronger results for left amygdalar volume. Taken together, we report association of TCF7L2 SNPs with amygdalar volume among T2D elderly Jewish patients. Further studies in other populations are required to support these findings and reach more definitive conclusions.
Collapse
Affiliation(s)
- Ithamar Ganmore
- Department of Neurology, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel. .,The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel. .,Memory clinic, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel. .,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Abigail Livny
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Department of Diagnostic Imaging, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ramit Ravona-Springer
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Memory clinic, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Itzik Cooper
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Anna Alkelai
- Institute for Genomic Medicine, Columbia University, New York, NY, USA
| | - Shahar Shelly
- Department of Neurology, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Galia Tsarfaty
- Department of Diagnostic Imaging, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anthony Heymann
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Maccabi Healthcare Services, Tel Aviv, Israel
| | - Michal Schnaider Beeri
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lior Greenbaum
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| |
Collapse
|
31
|
Cheng H, Sun G, Li M, Yin M, Chen H. Neuron loss and dysfunctionality in hippocampus explain aircraft noise induced working memory impairment: a resting-state fMRI study on military pilots. Biosci Trends 2019; 13:430-440. [PMID: 31611544 DOI: 10.5582/bst.2019.01190] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Huijuan Cheng
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
- The Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou, Gansu, China
| | - Guodong Sun
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
- The Regiment Medical Company, 96875 Army of PLA, Baoji, Shaanxi, China
| | - Mei Li
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Minhong Yin
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Hao Chen
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
- The Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou, Gansu, China
| |
Collapse
|
32
|
Sanjari Moghaddam H, Ghazi Sherbaf F, Aarabi MH. Brain microstructural abnormalities in type 2 diabetes mellitus: A systematic review of diffusion tensor imaging studies. Front Neuroendocrinol 2019; 55:100782. [PMID: 31401292 DOI: 10.1016/j.yfrne.2019.100782] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 07/27/2019] [Accepted: 08/07/2019] [Indexed: 12/13/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is associated with deficits in the structure and function of the brain. Diffusion tensor imaging (DTI) is a highly sensitive method for characterizing cerebral tissue microstructure. Using PRISMA guidelines, we identified 29 studies which have demonstrated widespread brain microstructural impairment and topological network disorganization in patients with T2DM. Most consistently reported structures with microstructural abnormalities were frontal, temporal, and parietal lobes in the lobar cluster; corpus callosum, cingulum, uncinate fasciculus, corona radiata, and internal and external capsules in the white matter cluster; thalamus in the subcortical cluster; and cerebellum. Microstructural abnormalities were correlated with pathological derangements in the endocrine profile as well as deficits in cognitive performance in the domains of memory, information-processing speed, executive function, and attention. Altogether, the findings suggest that the detrimental effects of T2DM on cognitive functions might be due to microstructural disruptions in the central neural structures.
Collapse
Affiliation(s)
| | - Farzaneh Ghazi Sherbaf
- Neuroradiology Division, Tehran University of Medical Sciences, School of Medicine, Tehran, Iran
| | - Mohammad Hadi Aarabi
- Neuroradiology Division, Tehran University of Medical Sciences, School of Medicine, Tehran, Iran.
| |
Collapse
|
33
|
Chen Z, Chen X, Liu M, Ma L, Yu S. Volume of Hypothalamus as a Diagnostic Biomarker of Chronic Migraine. Front Neurol 2019; 10:606. [PMID: 31244765 PMCID: PMC6563769 DOI: 10.3389/fneur.2019.00606] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/22/2019] [Indexed: 12/04/2022] Open
Abstract
It is believed than hypothalamus (HTH) might be involved in generation of migraine, and evidence from high resolution fMRI reported that the more anterior part of HTH seemed to play an important role in migraine chronification. The current study was aimed to identify the alteration of morphology and resting-state functional connectivity (FC) of the hypothalamus (HTH) in interictal episodic migraine (EM) and chronic migraine (CM). High-resolution structural and resting-state functional magnetic resonance images were acquired in 18 EM patients, 16 CM patients, and 21 normal controls (NC). The volume of HTH was calculated and voxel-based morphometry (VBM) was performed over the whole HTH. Receiver operating characteristics (ROC) curve analysis was applied to evaluate the diagnostic efficacy of HTH volume. Correlation analyses with clinical variables were performed and FC maps were generated for positive HTH regions according to VBM comparison. The volume of the HTH significantly decreased in both EM and CM patients compared with NC. The cut-off volume of HTH as 1.429 ml had a good diagnostic accuracy for CM with sensitivity of 81.25% and specificity of 100%. VBM analyses identified volume reduction of posterior HTH in EM vs. NC which was negatively correlated with headache frequency. The posterior HTH presented decreased FC with the left inferior temporal gyrus (Brodmann area 20) in EM. Decreased volume of anterior HTH was identified in CM vs. NC and CM vs. EM which was positively correlated with headache frequency in CM. The anterior HTH presented increased FC with the right anterior orbital gyrus (AOrG) (Brodmann area 11) in CM compared with NC and increased FC with the right medial orbital gyrus (MOrG) (Brodmann area 11) in CM compared with EM. Our study provided evidence of structural plasticity and FC changes of HTH in the pathogensis of migraine generation and chronification, supporting potential therapeutic target toward the HTH and its peptide.
Collapse
Affiliation(s)
- Zhiye Chen
- Department of Radiology, Chinese PLA General Hospital, Beijing, China.,Department of Neurology, Chinese PLA General Hospital, Beijing, China.,Department of Radiology, Hainan Hospital of Chinese PLA General Hospital, Sanya, China
| | - Xiaoyan Chen
- Department of Neurology, Chinese PLA General Hospital, Beijing, China
| | - Mengqi Liu
- Department of Radiology, Chinese PLA General Hospital, Beijing, China.,Department of Radiology, Hainan Hospital of Chinese PLA General Hospital, Sanya, China
| | - Lin Ma
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Shengyuan Yu
- Department of Neurology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
34
|
Zhang D, Shi L, Song X, Shi C, Sun P, Lou W, Wang D, Luo L. Neuroimaging endophenotypes of type 2 diabetes mellitus: a discordant sibling pair study. Quant Imaging Med Surg 2019; 9:1000-1013. [PMID: 31367554 DOI: 10.21037/qims.2019.05.18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background Type 2 diabetes mellitus (T2DM) is characterized by notable familial aggregation involving common variants of many genes, and its heritability leads to a high prevalence in the siblings of affected individuals compared with the general population. Endophenotypes are objective, heritable, quantitative traits that appear to reflect the genetic risk for polygenic disorders at more biologically tractable levels. Based on a sibling pair design, we aimed to find the neuroimaging endophenotypes of T2DM and investigate the role of inherent neurological disorders in the pathogenesis and deterioration of T2DM. Methods Twenty-six pairs of diagnosed T2DM patients with unaffected siblings and 26 unrelated controls were included in this study. Both high-resolution structural MRI and three-dimensional pseudo-continuous arterial spin labelling (3D-pCASL) MRI data were acquired with a 3.0 T MRI system. Voxel-based morphometry (VBM) analysis was performed on the structural T1W images, and cerebral blood flow (CBF) maps were obtained. All data were processed with the SPM8 package under the MATLAB 7.6 operation environment. Results The T2DM patients and their unaffected siblings shared significant atrophy in the right inferior/middle temporal gyrus, and left insula, in addition to elevated CBF in the right prefrontal lobe. Several regions with abnormal CBF in siblings, including the right inferior/middle temporal gyrus, left insula, left operculum, right supramarginal gyrus, right prefrontal lobe, and bilateral anterior cingulate cortex, also presented significant atrophy in T2DM patients. Conclusions The shared brain regions with grey matter (GM) loss and CBF increases may serve as neuroimaging endophenotypes of T2DM, and the regions with abnormal CBF in siblings indicate an increased risk for T2DM.
Collapse
Affiliation(s)
- Dong Zhang
- Department of Medical Imaging Centre, the First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Lin Shi
- Research Centre for Medical Image Computing, Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong, China.,Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiubao Song
- Department of Rehabilitation, the First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Changzheng Shi
- Department of Medical Imaging Centre, the First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Pan Sun
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Wutao Lou
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Defeng Wang
- Research Centre for Medical Image Computing, Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100091, China.,School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing 100091, China.,Shenzhen SmartView MedTech Limited, Shenzhen 518000, China
| | - Liangping Luo
- Department of Medical Imaging Centre, the First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| |
Collapse
|
35
|
Yusuke S, Norio H, Tomoko M, Shunichi M, Koichi U, Takayuki S, Haruyuki W, Toshihiro O, Akio O, Yoshito T. Voxel-based morphometry analysis of double inversion-recovery magnetic resonance imaging for detecting microscopic lesions: a simulation study. Radiol Phys Technol 2019; 12:149-155. [PMID: 30796738 DOI: 10.1007/s12194-019-00501-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 02/06/2019] [Accepted: 02/11/2019] [Indexed: 11/26/2022]
Abstract
Double inversion-recovery (DIR) imaging has the potential to improve the detection of subcortical lesions through the use of voxel-based morphometry (VBM) analysis. The aim of this study was to clarify the characteristics of detectable lesions by performing a VBM analysis on DIR images of simulated lesions. Twenty healthy volunteers underwent magnetic resonance imaging using a head three-dimensional DIR sequence. The images were processed using SPM12; then, the selected images with simulated lesions were analyzed via VBM. The VBM results were evaluated using free-response receiver-operating characteristic curves and a receiver-operating characteristic analysis. The sensitivity was 100% (5/5), with 5.6 false-positive objects per case, in simulated lesions with a contrast of 0.6 and a size of 2.4 mm. The sensitivity was 80% (4/5), with 5.4 false-positive objects per case, in simulated lesions with a contrast of 0.5 and a size of 2.4 mm. The mean area under the curve value was increased from 0.783 to 0.883 using VBM, with a statistically significant difference (p < 0.01). The VBM analysis of the DIR images using SPM alone showed the potential to detect subcortical microscopic lesions. Early detection of Alzheimer's disease may be possible by adapting VBM in the clinical setting.
Collapse
Affiliation(s)
- Sato Yusuke
- Department of Radiological Technology, Graduate School of Radiological Technology, Gunma Prefectural College of Health Sciences, 323-1 Kamioki, Maebashi, Gunma, 371-0052, Japan.
| | - Hayashi Norio
- Department of Radiological Technology, Gunma Prefectural College of Health Sciences, Maebashi, Japan
| | - Maruyama Tomoko
- Department of Radiological Technology, Graduate School of Radiological Technology, Gunma Prefectural College of Health Sciences, 323-1 Kamioki, Maebashi, Gunma, 371-0052, Japan
| | | | - Ujita Koichi
- Department of Radiology, Gunma University Hospital, Maebashi, Japan
| | - Suto Takayuki
- Department of Radiology, Gunma University Hospital, Maebashi, Japan
| | - Watanabe Haruyuki
- Department of Radiological Technology, Gunma Prefectural College of Health Sciences, Maebashi, Japan
| | - Ogura Toshihiro
- Department of Radiological Technology, Gunma Prefectural College of Health Sciences, Maebashi, Japan
| | - Ogura Akio
- Department of Radiological Technology, Gunma Prefectural College of Health Sciences, Maebashi, Japan
| | - Tsushima Yoshito
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
36
|
Rosenberg J, Lechea N, Pentang GN, Shah NJ. What magnetic resonance imaging reveals - A systematic review of the relationship between type II diabetes and associated brain distortions of structure and cognitive functioning. Front Neuroendocrinol 2019; 52:79-112. [PMID: 30392901 DOI: 10.1016/j.yfrne.2018.10.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 10/11/2018] [Accepted: 10/22/2018] [Indexed: 12/19/2022]
Abstract
Due to its increasing prevalence, Type 2 diabetes mellitus (T2DM) represents a major health challenge for modern society. Despite it being of fundamental interest, only a few MRI studies have conducted statistical analyses to draw scientifically valid conclusions about the complex interplay of T2DM and its associated clinical, structural, functional, metabolite, as well as cognitive distortions. Therefore, a systematic review of 68 manuscripts, following the PRISMA guidelines, was conducted. Notably, although the associations between imaging, clinical, and cognitive variables are not fully homogeneous, findings show a clear trend towards a link between altered brain structure and a decline in cognitive processing ability. The results of the review highlight the heterogeneity of the methods used across manuscripts in terms of assessed clinical variables, imaging, and data analysis methods. This is particularly significant as, if the subjects' criteria are not carefully considered, results are easily prone to confounding factors.
Collapse
Affiliation(s)
- Jessica Rosenberg
- Institute of Neuroscience and Medicine (INM-4), Medical Imaging Physics, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; JARA - Translational Brain Medicine & INM-11, RWTH Aachen University, 52074 Aachen, Germany; Department of Neurology, University Clinic Aachen, 52074 Aachen, Germany.
| | - Nazim Lechea
- Institute of Neuroscience and Medicine (INM-4), Medical Imaging Physics, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Gael N Pentang
- Institute of Neuroscience and Medicine (INM-4), Medical Imaging Physics, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Nadim J Shah
- Institute of Neuroscience and Medicine (INM-4), Medical Imaging Physics, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; JARA - Translational Brain Medicine & INM-11, RWTH Aachen University, 52074 Aachen, Germany; Department of Neurology, University Clinic Aachen, 52074 Aachen, Germany; Department of Electrical and Computer Systems Engineering, and Monash Biomedical Imaging, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
37
|
van Agtmaal MJM, Houben AJHM, de Wit V, Henry RMA, Schaper NC, Dagnelie PC, van der Kallen CJ, Koster A, Sep SJ, Kroon AA, Jansen JFA, Hofman PA, Backes WH, Schram MT, Stehouwer CDA. Prediabetes Is Associated With Structural Brain Abnormalities: The Maastricht Study. Diabetes Care 2018; 41:2535-2543. [PMID: 30327356 DOI: 10.2337/dc18-1132] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/15/2018] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Structural brain abnormalities are key risk factors for brain diseases, such as dementia, stroke, and depression, in type 2 diabetes. It is unknown whether structural brain abnormalities already occur in prediabetes. Therefore, we investigated whether both prediabetes and type 2 diabetes are associated with lacunar infarcts (LIs), white matter hyperintensities (WMHs), cerebral microbleeds (CMBs), and brain atrophy. RESEARCH DESIGN AND METHODS We used data from 2,228 participants (1,373 with normal glucose metabolism [NGM], 347 with prediabetes, and 508 with type 2 diabetes (oversampled); mean age 59.2 ± 8.2 years; 48.3% women) of the Maastricht Study, a population-based cohort study. Diabetes status was determined with an oral glucose tolerance test. Brain imaging was performed with 3 Tesla MRI. Results were analyzed with multivariable logistic and linear regression analyses. RESULTS Prediabetes and type 2 diabetes were associated with the presence of LIs (odds ratio 1.61 [95% CI 0.98-2.63] and 1.67 [1.04-2.68], respectively; P trend = 0.027), larger WMH (β 0.07 log10-transformed mL [log-mL] [95% CI 0.00-0.15] and 0.21 log-mL [0.14-0.28], respectively; P trend <0.001), and smaller white matter volumes (β -4.0 mL [-7.3 to -0.6] and -7.2 mL [-10.4 to -4.0], respectively; P trend <0.001) compared with NGM. Prediabetes was not associated with gray matter volumes or the presence of CMBs. CONCLUSIONS Prediabetes is associated with structural brain abnormalities, with further deterioration in type 2 diabetes. These results indicate that, in middle-aged populations, structural brain abnormalities already occur in prediabetes, which may suggest that the treatment of early dysglycemia may contribute to the prevention of brain diseases.
Collapse
Affiliation(s)
- Marnix J M van Agtmaal
- Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands .,School for Cardiovascular Diseases (CARIM), Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Alfons J H M Houben
- Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands.,School for Cardiovascular Diseases (CARIM), Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Vera de Wit
- Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Ronald M A Henry
- Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands.,School for Cardiovascular Diseases (CARIM), Maastricht University Medical Center+, Maastricht, the Netherlands.,Heart and Vascular Center, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Nicolaas C Schaper
- Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands.,School for Cardiovascular Diseases (CARIM), Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Pieter C Dagnelie
- Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands.,Care and Public Health Research Institute, Maastricht University Medical Center+, Maastricht, the Netherlands.,Department of Epidemiology, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Carla J van der Kallen
- Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands.,School for Cardiovascular Diseases (CARIM), Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Annemarie Koster
- Care and Public Health Research Institute, Maastricht University Medical Center+, Maastricht, the Netherlands.,Department of Social Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Simone J Sep
- Care and Public Health Research Institute, Maastricht University Medical Center+, Maastricht, the Netherlands.,Department of Rehabilitation Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Abraham A Kroon
- Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands.,School for Cardiovascular Diseases (CARIM), Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Jacobus F A Jansen
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Paul A Hofman
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Walter H Backes
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands.,School for Mental Health and Neuroscience, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Miranda T Schram
- Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands.,School for Cardiovascular Diseases (CARIM), Maastricht University Medical Center+, Maastricht, the Netherlands.,Heart and Vascular Center, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Coen D A Stehouwer
- Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands.,School for Cardiovascular Diseases (CARIM), Maastricht University Medical Center+, Maastricht, the Netherlands
| |
Collapse
|
38
|
Zhang Q, Hu G, Tian L, Ristaniemi T, Wang H, Chen H, Wu J, Cong F. Examining stability of independent component analysis based on coefficient and component matrices for voxel-based morphometry of structural magnetic resonance imaging. Cogn Neurodyn 2018; 12:461-470. [PMID: 30250625 PMCID: PMC6139102 DOI: 10.1007/s11571-018-9484-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 01/18/2018] [Accepted: 03/12/2018] [Indexed: 10/17/2022] Open
Abstract
Independent component analysis (ICA) on group-level voxel-based morphometry (VBM) produces the coefficient matrix and the component matrix. The former contains variability among multiple subjects for further statistical analysis, and the latter reveals spatial maps common for all subjects. ICA algorithms converge to local optimization points in practice and the mostly applied stability investigation approach examines the stability of the extracted components. We found that the practically stable components do not guarantee to produce the practically stable coefficients of ICA decomposition for the further statistical analysis. Consequently, we proposed a novel approach including two steps: (1), the stability index for the coefficient matrix and the stability index for the component matrix were examined, respectively; (2) the two indices were multiplied to analyze the stability of ICA decomposition. The proposed approach was used to study the sMRI data of Type II diabetes mellitus group and the healthy control group (HC). Group differences in VBM were found in the superior temporal gyrus. Besides, it was revealed that the VBMs of the region of the HC group were significantly correlated with Montreal Cognitive Assessment (MoCA) describing the level of cognitive disorder. In contrast to the widely applied approach to investigating the stability of the extracted components for ICA decomposition, we proposed to examine the stability of ICA decomposition by fusion the stability of both coefficient matrix and the component matrix. Therefore, the proposed approach can examine the stability of ICA decomposition sufficiently.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- Department of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, China
| | - Guoqiang Hu
- Department of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, China
| | - Lili Tian
- Department of Psychology, University of Jyvaskyla, Jyvaskyla, Finland
| | - Tapani Ristaniemi
- Faculty of Information Technology, University of Jyvaskyla, Jyvaskyla, Finland
| | - Huili Wang
- School of Foreign Languages, Dalian University of Technology, Dalian, China
| | - Hongjun Chen
- School of Foreign Languages, Dalian University of Technology, Dalian, China
| | - Jianlin Wu
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Fengyu Cong
- Department of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, China
- Faculty of Information Technology, University of Jyvaskyla, Jyvaskyla, Finland
| |
Collapse
|
39
|
Ferris JK, Peters S, Brown KE, Tourigny K, Boyd LA. Type-2 diabetes mellitus reduces cortical thickness and decreases oxidative metabolism in sensorimotor regions after stroke. J Cereb Blood Flow Metab 2018; 38:823-834. [PMID: 28401788 PMCID: PMC5987933 DOI: 10.1177/0271678x17703887] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Individuals with type-2 diabetes mellitus experience poor motor outcomes after ischemic stroke. Recent research suggests that type-2 diabetes adversely impacts neuronal integrity and function, yet little work has considered how these neuronal changes affect sensorimotor outcomes after stroke. Here, we considered how type-2 diabetes impacted the structural and metabolic function of the sensorimotor cortex after stroke using volumetric magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS). We hypothesized that the combination of chronic stroke and type-2 diabetes would negatively impact the integrity of sensorimotor cortex as compared to individuals with chronic stroke alone. Compared to stroke alone, individuals with stroke and diabetes had lower cortical thickness bilaterally in the primary somatosensory cortex, and primary and secondary motor cortices. Individuals with stroke and diabetes also showed reduced creatine levels bilaterally in the sensorimotor cortex. Contralesional primary and secondary motor cortex thicknesses were negatively related to sensorimotor outcomes in the paretic upper-limb in the stroke and diabetes group such that those with thinner primary and secondary motor cortices had better motor function. These data suggest that type-2 diabetes alters cerebral energy metabolism, and is associated with thinning of sensorimotor cortex after stroke. These factors may influence motor outcomes after stroke.
Collapse
Affiliation(s)
- Jennifer K Ferris
- 1 Faculty of Medicine, Graduate program of Rehabilitation Sciences, University of British Columbia, Vancouver, Canada
| | - Sue Peters
- 1 Faculty of Medicine, Graduate program of Rehabilitation Sciences, University of British Columbia, Vancouver, Canada
| | - Katlyn E Brown
- 1 Faculty of Medicine, Graduate program of Rehabilitation Sciences, University of British Columbia, Vancouver, Canada
| | - Katherine Tourigny
- 2 Department of Psychology, University of British Columbia, Vancouver, Canada
| | - Lara A Boyd
- 1 Faculty of Medicine, Graduate program of Rehabilitation Sciences, University of British Columbia, Vancouver, Canada.,3 Department of Physical Therapy, University of British Columbia, Vancouver, Canada.,4 Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| |
Collapse
|
40
|
Li C, Li C, Yang Q, Wang B, Yin X, Zuo Z, Hu X, Lai Y, Wang J. Cortical thickness contributes to cognitive heterogeneity in patients with type 2 diabetes mellitus. Medicine (Baltimore) 2018; 97:e10858. [PMID: 29794784 PMCID: PMC6392513 DOI: 10.1097/md.0000000000010858] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 05/02/2018] [Indexed: 12/19/2022] Open
Abstract
The aim of this study was to investigate cerebral cortical thickness alterations in patients with type 2 diabetes mellitus (T2DM) and their association with mild cognitive impairment (MCI).Thirty T2DM patients without MCI, 30 T2DM patients with MCI, and 30 healthy controls were recruited. All subjects underwent high-resolution sagittal T1-weighted structural imaging using a 3-dimensional magnetization prepared rapid acquisition gradient echo (MPRAGE) sequence. The cortical thicknesses of the whole brain of the 3 groups were analyzed and compared using analysis of variance (ANOVA) test. Partial correlations between the cortical thicknesses of each brain region and standard laboratory testing data were analyzed for the T2DM without MCI group. The associations between cortical thicknesses and neuropsychological scale scores were also analyzed in the T2DM with MCI group.Compared with the healthy controls, the T2DM without MCI group showed statistically significant reduction in the cortical thickness of the left posterior cingulate gyrus, right isthmus cingulate gyrus, middle temporal gyrus, paracentral lobule, and transverse temporal gyrus. No significant correlation was found between the standard laboratory testing data and the cortical thicknesses of these cerebral regions. Compared with the T2DM without MCI group, the cortical thickness alterations in the T2DM with MCI group were bidirectional. Increased cortical thickness was found in the left parahippocampal gyrus and the right isthmus cingulate gyrus. Decreased cortical thickness was observed in the left pars triangularis and the right pars opercularis. Significant correlations were found between the cortical thickness of the right pars opercularis and the Complex Figure Test-delayed recall scores (r = 0.464, ρ = 0.015), Trail Making Test A consuming time (r = -0.454, ρ = 0.017), and Montreal Cognitive Assessment scores (r = 0.51, ρ = 0.007).T2DM could influence the gray matter of several brain regions. The cortical thickness reduction of the right pars opercularis may be a biomarker of cognitive impairment and play an important role in its pathophysiological mechanism.
Collapse
Affiliation(s)
- Chang Li
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing
| | - Chuanming Li
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing
| | - Qifang Yang
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing
| | - Bin Wang
- Department of Internal Medicine, The Second Outpatient Department of Chengdu Army Region Authority, Chengdu
| | - Xuntao Yin
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing
| | - Zhiwei Zuo
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing
| | - Xiaofei Hu
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing
| | - Yuqi Lai
- School of Foreign Languages and Cultures, Chongqing University, Chongqing, China
| | - Jian Wang
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing
| |
Collapse
|
41
|
Liu D, Duan S, Zhou C, Wei P, Chen L, Yin X, Zhang J, Wang J. Altered Brain Functional Hubs and Connectivity in Type 2 Diabetes Mellitus Patients: A Resting-State fMRI Study. Front Aging Neurosci 2018; 10:55. [PMID: 29563869 PMCID: PMC5845755 DOI: 10.3389/fnagi.2018.00055] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 02/19/2018] [Indexed: 01/23/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) affects a vast population and is closely associated with cognitive impairment. However, the mechanisms of cognitive impairment in T2DM patients have not been unraveled. Research on the basic units (nodes or hubs and edges) of the brain functional network on the basis of neuroimaging may advance our understanding of the network change pattern in T2DM patients. This study investigated the change patterns of brain functional hubs using degree centrality (DC) analysis and the connectivity among these hubs using functional connectivity and Granger causality analysis. Compared to healthy controls, the DC values were higher in the left anterior cingulate gyrus (ACG) and lower in the bilateral lateral occipital cortices (LOC) and right precentral gyrus (PreCG) in T2DM patients. The functional connectivity between the left ACG and the right PreCG was stronger in T2DM patients, whereas the functional connectivity among the right PreCG and bilateral LOC was weaker. A negative causal effect from the left ACG to left LOC and a positive effect from the left ACG to right LOC were observed in T2DM patients, while in healthy controls, the opposite occurred. Additionally, the reserve of normal brain function in T2DM patients was negatively associated with the elevated glycemic parameters. This study demonstrates that there are brain functional hubs and connectivity alterations that may reflect the aberrant information communication in the brain of T2DM patients. The findings may advance our understanding of the mechanisms of T2DM-related cognitive impairment.
Collapse
Affiliation(s)
- Daihong Liu
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Shanshan Duan
- Department of Endocrinology, The Third Affiliation Hospital of Chongqing Medical University, Chongqing, China
| | - Chaoyang Zhou
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ping Wei
- Department of Endocrinology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lihua Chen
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xuntao Yin
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jiuquan Zhang
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jian Wang
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
42
|
Zhang J, Liu Z, Li Z, Wang Y, Chen Y, Li X, Chen K, Shu N, Zhang Z. Disrupted White Matter Network and Cognitive Decline in Type 2 Diabetes Patients. J Alzheimers Dis 2018; 53:185-95. [PMID: 27163818 DOI: 10.3233/jad-160111] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Type 2 diabetes mellitus is accompanied by cognitive impairment and is associated with an increased risk of dementia. Damage to brain structures such as white matter network disruption may underlie this cognitive disturbance. In the present study, 886 non-diabetic and 163 type 2 diabetic participants completed a battery of neuropsychological tests. Among them, 38 diabetic patients and 34 non-diabetic participants that matched the patients for age/sex/education received a magnetic resonance imaging-based diffusion tensor imaging. Then we calculated the topological properties of the white matter network using a graph theoretical method to investigate network efficiency differences between groups. We found that type 2 diabetic patients had inferior performances compared to the non-diabetic controls, in several cognitive domains involving executive function, spatial processing, memory, and attention. We also found that diabetic patients exhibited a disrupted topological organization of the white matter network (including the global network properties, i.e., network strength, global efficiency, local efficiency and shortest path length, and the nodal efficiency of the right rolandic operculum) in the brain. Moreover, those global network properties and the nodal efficiency of the right rolandic operculum both had positive correlations with executive function in the patient group. The results suggest that type 2 diabetes mellitus leads to an alteration in the topological organization of the cortical white matter network and this alteration may account for the observed cognitive decline.
Collapse
Affiliation(s)
- Junying Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, P. R. China.,BABRI Centre, Beijing Normal University, Beijing, P. R. China
| | - Zhen Liu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, P. R. China.,BABRI Centre, Beijing Normal University, Beijing, P. R. China
| | - Zixiao Li
- Tiantan Clinical Trial and Research Center for Stroke, Department of Neurology, Beijing TianTan Hospital, Capital Medical University, Beijing, P. R. China
| | - Yunxia Wang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, P. R. China.,BABRI Centre, Beijing Normal University, Beijing, P. R. China
| | - Yaojing Chen
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, P. R. China.,BABRI Centre, Beijing Normal University, Beijing, P. R. China
| | - Xin Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, P. R. China.,BABRI Centre, Beijing Normal University, Beijing, P. R. China
| | - Kewei Chen
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, P. R. China.,Banner Alzheimer's Institute, Phoenix, AZ, USA
| | - Ni Shu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, P. R. China.,BABRI Centre, Beijing Normal University, Beijing, P. R. China
| | - Zhanjun Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, P. R. China.,BABRI Centre, Beijing Normal University, Beijing, P. R. China
| |
Collapse
|
43
|
Milne NT, Bucks RS, Davis WA, Davis TME, Pierson R, Starkstein SE, Bruce DG. Hippocampal atrophy, asymmetry, and cognition in type 2 diabetes mellitus. Brain Behav 2018; 8:e00741. [PMID: 29568674 PMCID: PMC5853633 DOI: 10.1002/brb3.741] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 04/13/2017] [Accepted: 04/20/2017] [Indexed: 11/05/2022] Open
Abstract
INTRODUCTION Type 2 diabetes mellitus is associated with global and hippocampal atrophy and cognitive deficits, and some studies suggest that the right hippocampus may display greater vulnerability than the left. METHODS Hippocampal volumes, the hippocampal asymmetry index, and cognitive functioning were assessed in 120 nondemented adults with long duration type 2 diabetes. RESULTS The majority of the sample displayed left greater than right hippocampal asymmetry (which is the reverse of the expected direction seen with normal aging). After adjustment for age, sex, and IQ, right (but not left) hippocampal volumes were negatively associated with memory, executive function, and semantic fluency. These associations were stronger with the hippocampal asymmetry index and remained significant for memory and executive function after additional adjustment for global brain atrophy. CONCLUSIONS We conclude that asymmetric hippocampal atrophy may occur in type 2 diabetes, with greater atrophy occurring in the right than the left hippocampus, and that this may contribute to cognitive impairment in this disorder. These cross-sectional associations require further verification but may provide clues into the pathogenesis of cognitive disorders in type 2 diabetes.
Collapse
Affiliation(s)
- Nicole T Milne
- School of Psychology University of Western Australia Western Australia Australia
| | - Romola S Bucks
- School of Psychology University of Western Australia Western Australia Australia
| | - Wendy A Davis
- School of Medicine & Pharmacology University of Western Australia Western Australia Australia
| | - Timothy M E Davis
- School of Medicine & Pharmacology University of Western Australia Western Australia Australia
| | - Ronald Pierson
- Brain Image Analysis Technology Innovation Center Coralville IA USA
| | - Sergio E Starkstein
- School of Psychiatry & Clinical Neuroscience University of Western Australia Western Australia Australia
| | - David G Bruce
- School of Medicine & Pharmacology University of Western Australia Western Australia Australia
| |
Collapse
|
44
|
Shen Y, Zhao B, Yan L, Jann K, Wang G, Wang J, Wang B, Pfeuffer J, Qian T, Wang DJJ. Cerebral Hemodynamic and White Matter Changes of Type 2 Diabetes Revealed by Multi-TI Arterial Spin Labeling and Double Inversion Recovery Sequence. Front Neurol 2017; 8:717. [PMID: 29312135 PMCID: PMC5743674 DOI: 10.3389/fneur.2017.00717] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 12/12/2017] [Indexed: 01/07/2023] Open
Abstract
Diabetes has been reported to affect the microvasculature and lead to cerebral small vessel disease (SVD). Past studies using arterial spin labeling (ASL) at single post-labeling delay reported reduced cerebral blood flow (CBF) in patients with type 2 diabetes. The purpose of this study was to characterize cerebral hemodynamic changes of type 2 diabetes using a multi-inversion-time 3D GRASE pulsed ASL (PASL) sequence to simultaneously measure CBF and bolus arrival time (BAT). Thirty-six patients with type 2 diabetes (43-71 years, 17 male) and 36 gender- and age-matched control subjects underwent MRI scans at 3 T. Mean CBF/BAT values were computed for gray and white matter (GM and WM) of each subject, while a voxel-wise analysis was performed for comparison of regional CBF and BAT between the two groups. In addition, white matter hyperintensities (WMHs) were detected by a double inversion recovery (DIR) sequence with relatively high sensitivity and spatial resolution. Mean CBF of the WM, but not GM, of the diabetes group was significantly lower than that of the control group (p < 0.0001). Regional CBF decreases were detected in the left middle occipital gyrus (p = 0.0075), but failed to reach significance after correction of partial volume effects. BAT increases were observed in the right calcarine fissure (p < 0.0001), left middle occipital gyrus (p < 0.0001), and right middle occipital gyrus (p = 0.0011). Within the group of diabetic patients, BAT in the right middle occipital gyrus was positively correlated with the disease duration (r = 0.501, p = 0.002), BAT in the left middle occipital gyrus was negatively correlated with the binocular visual acuity (r = -0.408, p = 0.014). Diabetic patients also had more WMHs than the control group (p = 0.0039). Significant differences in CBF, BAT, and more WMHs were observed in patients with diabetes, which may be related to impaired vision and risk of SVD of type 2 diabetes.
Collapse
Affiliation(s)
- Yelong Shen
- School of Medicine, Shandong Medical Imaging Research Institute, Shandong University, Jinan, China.,Laboratory of FMRI Technology (LOFT), Keck School of Medicine, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California (USC), Los Angeles, CA, United States
| | - Bin Zhao
- School of Medicine, Shandong Medical Imaging Research Institute, Shandong University, Jinan, China
| | - Lirong Yan
- Laboratory of FMRI Technology (LOFT), Keck School of Medicine, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California (USC), Los Angeles, CA, United States
| | - Kay Jann
- Laboratory of FMRI Technology (LOFT), Keck School of Medicine, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California (USC), Los Angeles, CA, United States
| | - Guangbin Wang
- School of Medicine, Shandong Medical Imaging Research Institute, Shandong University, Jinan, China
| | - Junli Wang
- School of Medicine, Shandong Medical Imaging Research Institute, Shandong University, Jinan, China
| | - Bao Wang
- School of Medicine, Shandong Medical Imaging Research Institute, Shandong University, Jinan, China
| | | | - Tianyi Qian
- Siemens Healthcare, MR Collaborations NE Asia, Beijing, China
| | - Danny J J Wang
- Laboratory of FMRI Technology (LOFT), Keck School of Medicine, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California (USC), Los Angeles, CA, United States
| |
Collapse
|
45
|
Zhao X, Han Q, Lv Y, Sun L, Gang X, Wang G. Biomarkers for cognitive decline in patients with diabetes mellitus: evidence from clinical studies. Oncotarget 2017; 9:7710-7726. [PMID: 29484146 PMCID: PMC5800938 DOI: 10.18632/oncotarget.23284] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/30/2017] [Indexed: 12/26/2022] Open
Abstract
Diabetes mellitus is considered as an important factor for cognitive decline and dementia in recent years. However, cognitive impairment in diabetic patients is often underestimated and kept undiagnosed, leading to thousands of diabetic patients suffering from worsening memory. Available reviews in this field were limited and not comprehensive enough. Thus, the present review aimed to summarize all available clinical studies on diabetic patients with cognitive decline, and to find valuable biomarkers that might be applied as diagnostic and therapeutic targets of cognitive impairment in diabetes. The biomarkers or risk factors of cognitive decline in diabetic patients could be classified into the following three aspects: serum molecules or relevant complications, functional or metabolic changes by neuroimaging tools, and genetic variants. Specifically, factors related to poor glucose metabolism, insulin resistance, inflammation, comorbid depression, micro-/macrovascular complications, adipokines, neurotrophic molecules and Tau protein presented significant changes in diabetic patients with cognitive decline. Besides, neuroimaging platform could provide more clues on the structural, functional and metabolic changes during the cognitive decline progression of diabetic patients. Genetic factors related to cognitive decline showed inconsistency based on the limited studies. Future studies might apply above biomarkers as diagnostic and treatment targets in a large population, and regulation of these parameters might shed light on a more valuable, sensitive and specific strategy for the diagnosis and treatment of cognitive decline in diabetic patients.
Collapse
Affiliation(s)
- Xue Zhao
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - Qing Han
- Hospital of Orthopedics, The Second Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - You Lv
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - Lin Sun
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - Xiaokun Gang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| |
Collapse
|
46
|
Wu G, Lin L, Zhang Q, Wu J. Brain gray matter changes in type 2 diabetes mellitus: A meta-analysis of whole-brain voxel-based morphometry study. J Diabetes Complications 2017; 31:1698-1703. [PMID: 29033311 DOI: 10.1016/j.jdiacomp.2017.09.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 08/14/2017] [Accepted: 09/01/2017] [Indexed: 02/05/2023]
Abstract
AIMS We aimed to identify alterations in global gray matter volumes (GMV) and consistent regional abnormalities in T2DM patients via meta-analysis. METHODS A systematic search for relevant studies indexed in the PubMed and Embase databases was conducted. A quantitative meta-analysis of volumetric and whole-brain VBM data was conducted using STATA v.12.0 and AES-SDM software packages, respectively. RESULTS A total of 15 volumetric studies and five VBM studies of GM in T2DM patients vs. healthy controls (HCs) were identified. The volumetric meta-analysis showed that the GMV of patients with T2DM is lower than in HCs (SMD = -0.56, 95% CI = -0.81 to -0.31, P 0.01). The whole-brain VBM meta-analysis revealed GM reductions in the left superior temporal gyrus, the right middle temporal gyrus, the right rolandic operculum, and the left fusiform gyrus in T2DM patients compared with HCs. Meta-regression analysis showed that Mini-Mental State Examination (MMSE) scores have a positive relationship with GMV in the right insula. CONCLUSIONS The results showed a reduced volume of whole and regional GM in T2DM patients, which may indicate a risk for dementia. Further longitudinal research is needed to confirm GM changes, cognitive dysfunction, and their relationship in T2DM.
Collapse
Affiliation(s)
- Guangyao Wu
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Lin Lin
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Qing Zhang
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Jianlin Wu
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China.
| |
Collapse
|
47
|
Chen Z, Chen X, Chen Z, Liu M, He H, Ma L, Yu S. Alteration of gray matter texture features over the whole brain in medication-overuse headache using a 3-dimentional texture analysis. J Headache Pain 2017; 18:112. [PMID: 29285575 PMCID: PMC5745370 DOI: 10.1186/s10194-017-0820-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 11/13/2017] [Indexed: 02/07/2023] Open
Abstract
Background Imaging studies have provided valuable information in understanding the headache neuromechanism for medication-overuse headache (MOH), and the aim of this study is to investigate altered texture features of MR structural images over the whole brain in MOH using a 3-dimentional texture analysis. Methods Brain three-dimensional T1-weighted structural images were obtained from 44 MOH patients and 32 normal controls (NC). The imaging processing included two steps: gray matter (gray images) segment and a 3-dimensional texture features mapping. Voxel-based gray-level co-occurrence matrix (VGLCM) was performed to measure the texture parameters mapping including Contrast, Correlation, Energy, Entropy and inverse difference moment (IDM). Results The texture parameters of increased Contrast and Entropy, decreased Energy and IDM were identified in cerebellar vermis of MOH patients compared to NCs. Increased Contrast and decreased Energy were found in left cerebellum. Increased Correlation located in left dorsolateral periaqueductal gray (L-dlPAG), right parahippocampal gyrus (R-PHG), and left middle frontal gyrus (L-MFG) and decreased Correlation located in right superior parietal lobule(R-SPL). Disease duration was positively correlated with Contrast of vermis and negatively correlated with Correlation of R-SPL.HAMD score was negatively correlated with Correlation of R-PHG. MoCA score was positively correlated with Correlation of R-SPL. Conclusion The altered textures in gray matter related to pain discrimination and modulation, affective and cognitive processing were helpful in understanding the pathogenesis of MOH. Texture analysis using VGLCM is a sensitive and efficient method to detect subtle gray matter changes in MOH. Electronic supplementary material The online version of this article (10.1186/s10194-017-0820-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhiye Chen
- Department of Radiology, Chinese PLA General Hospital, Beijing, 100853, China.,Department of Radiology, Hainan Branch of Chinese PLA General Hospital, Beijing, 100853, China.,Department of Neurology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Xiaoyan Chen
- Department of Neurology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Zhiqiang Chen
- Research Center for Brain Inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Mengqi Liu
- Department of Radiology, Chinese PLA General Hospital, Beijing, 100853, China.,Department of Radiology, Hainan Branch of Chinese PLA General Hospital, Beijing, 100853, China
| | - Huiguang He
- Research Center for Brain Inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China. .,University of Chinese Academy of Sciences, Beijing, 100190, China. .,Center for Excellence in Brain Science and Intelligence Technology, Beijing, 100190, China.
| | - Lin Ma
- Department of Radiology, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Shengyuan Yu
- Department of Neurology, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
48
|
Livny A, Ravona-Springer R, Heymann A, Priess R, Kushnir T, Tsarfaty G, Rabinov L, Moran R, Tik N, Moshier E, Cooper I, Greenbaum L, Silverman J, Levy A, Sano M, Bendlin BB, Buchman AS, Schnaider-Beeri M. Haptoglobin 1-1 Genotype Modulates the Association of Glycemic Control With Hippocampal Volume in Elderly Individuals With Type 2 Diabetes. Diabetes 2017; 66:2927-2932. [PMID: 28860127 PMCID: PMC5652603 DOI: 10.2337/db16-0987] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 08/23/2017] [Indexed: 01/28/2023]
Abstract
Recent evidence suggests that glycemic control is associated with cognitive function in older patients with type 2 diabetes who are carriers of the haptoglobin (Hp) 1-1 genotype compared with noncarriers. We assessed whether poor glycemic control in Hp 1-1 carriers is more strongly associated with smaller hippocampal volume than in noncarriers. Hippocampal volume was generated from high-resolution structural T1 MRI obtained for 224 participants (28 Hp 1-1 carriers [12.5%] and 196 noncarriers [87.5%]) from the Israel Diabetes and Cognitive Decline (IDCD) study, who had a mean (SD) number of years in the Maccabi Healthcare Services (MHS) registry of 8.35 (2.63) and a mean (SD) HbA1c level of 6.66 (0.73)% [49 mmol/mol]. A stronger negative association between right hippocampal volume and HbA1c was found in patients with the Hp 1-1 genotype, with a 0.032-mL decrease in right hippocampal volume per 14% increase in HbA1c (P = 0.0007) versus a 0.009-mL decrease in Hp 1-1 noncarriers (P = 0.047), after adjusting for total intracranial volume, age, sex, follow-up years in the registry, and cardiovascular factor (interaction, P = 0.025). This indicates that 29.66% of the total variance in right hippocampal volume is explained by HbA1c levels among Hp 1-1 carriers and that 3.22% is explained by HbA1c levels among Hp 1-1 noncarriers. Our results suggest that the hippocampus of Hp 1-1 carriers may be more vulnerable to the insults of poor glycemic control.
Collapse
Affiliation(s)
- Abigail Livny
- Department of Diagnostic Imaging, Sheba Medical Center, Tel HaShomer, Israel
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel HaShomer, Israel
| | - Ramit Ravona-Springer
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel HaShomer, Israel
- Memory Clinic, Sheba Medical Center, Tel HaShomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anthony Heymann
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Maccabi Healthcare Services, Tel Aviv, Israel
| | | | - Tammar Kushnir
- Department of Diagnostic Imaging, Sheba Medical Center, Tel HaShomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Galia Tsarfaty
- Department of Diagnostic Imaging, Sheba Medical Center, Tel HaShomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Leeron Rabinov
- Department of Diagnostic Imaging, Sheba Medical Center, Tel HaShomer, Israel
| | - Reut Moran
- Department of Diagnostic Imaging, Sheba Medical Center, Tel HaShomer, Israel
| | - Niv Tik
- Department of Diagnostic Imaging, Sheba Medical Center, Tel HaShomer, Israel
| | - Erin Moshier
- Icahn School of Medicine at Mount Sinai, New York, NY
| | - Itzik Cooper
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel HaShomer, Israel
- Interdisciplinary Center Herzliya, Baruch Ivcher School of Psychology, Herzliya, Israel
| | - Lior Greenbaum
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel HaShomer, Israel
- The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel HaShomer, Israel
| | - Jeremy Silverman
- Icahn School of Medicine at Mount Sinai, New York, NY
- James J. Peters VA Medical Center, Bronx, NY
| | - Andrew Levy
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Mary Sano
- Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Aron S Buchman
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL
| | - Michal Schnaider-Beeri
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel HaShomer, Israel
- Icahn School of Medicine at Mount Sinai, New York, NY
- Interdisciplinary Center Herzliya, Baruch Ivcher School of Psychology, Herzliya, Israel
| |
Collapse
|
49
|
Dai H, Zhang Y, Lai L, Hu S, Wang X, Li Y, Hu C, Shen H. Brain functional networks: correlation analysis with clinical indexes in patients with diabetic retinopathy. Neuroradiology 2017; 59:1121-1131. [PMID: 28831531 DOI: 10.1007/s00234-017-1900-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 07/31/2017] [Indexed: 12/17/2022]
Abstract
PURPOSE The relationship between parameters of brain functional networks and clinical indexes is unclear so far in patients with diabetic retinopathy (DR). This paper is to investigate this. METHODS Twenty-one patients with different grades of DR and 21 age- and sex-matched healthy controls were enrolled from August 2012 to September 2014. The clinical indexes recorded included DR grade, duration of diabetes, HbA1c, diabetic foot screen, fasting plasma glucose, insulin, Homa-β, Homa-IR, insulin sensitive index (ISI), Mini-Mental State Examination (MMSE), and patient sex and age. Subjects were scanned using 3-T MR with blood-oxygen-level-dependent and 3D-FSPGR sequences. MR data was analyzed via preprocessing and functional network construction, and quantified indexes of network (clustering coefficient, characteristic path length, global efficiency, degree distribution, and small worldness) were evaluated. Statistics consisted of ANOVA and correlation. RESULTS There were significant differences between patients and controls among clustering coefficient, characteristic path length, degree distribution, and small worldness parameters (P < 0.05). MMSE scores negatively correlated with characteristic path length, and Hb1Ac negatively correlated with small worldness. MMSE, duration of diabetes, diabetic foot screen, fasting plasma glucose, insulin, Homa-β, Homa-IR, ISI, DR grade, and patient age, except from Hb1Ac, correlated with degree distribution in certain brain areas. CONCLUSION Brain functional networks are altered, specifically in the areas of visual function and cognition, and these alterations may reflect the severity of visual weakness and cognitive decline in DR patients. Moreover, the brain networks may be affected both by long-standing and instant clinical factors.
Collapse
Affiliation(s)
- Hui Dai
- Department of Radiology, The First Affiliated Hospital of Soochow University, Shizi Street 188, Suzhou, Jiangsu, People's Republic of China, 215006
| | - Yu Zhang
- Department of Radiology, The First Affiliated Hospital of Soochow University, Shizi Street 188, Suzhou, Jiangsu, People's Republic of China, 215006
| | - Lillian Lai
- Department of Neuroradiology, LAC+USC Medical Center, 1200 North State Street, D&T 3D321, Los Angeles, CA, 90033, USA
| | - Su Hu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Shizi Street 188, Suzhou, Jiangsu, People's Republic of China, 215006
| | - Ximing Wang
- Department of Radiology, The First Affiliated Hospital of Soochow University, Shizi Street 188, Suzhou, Jiangsu, People's Republic of China, 215006
| | - Yonggang Li
- Department of Radiology, The First Affiliated Hospital of Soochow University, Shizi Street 188, Suzhou, Jiangsu, People's Republic of China, 215006
| | - Chunhong Hu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Shizi Street 188, Suzhou, Jiangsu, People's Republic of China, 215006.
| | - Hailin Shen
- Department of Radiology, Suzhou Kowloon Hospital, Shanghai Jiao Tong University Medical School, Wansheng Street 118, Suzhou, Jiangsu, People's Republic of China, 215028.
| |
Collapse
|
50
|
Nouwen A, Chambers A, Chechlacz M, Higgs S, Blissett J, Barrett TG, Allen HA. Microstructural abnormalities in white and gray matter in obese adolescents with and without type 2 diabetes. NEUROIMAGE-CLINICAL 2017; 16:43-51. [PMID: 28752059 PMCID: PMC5514690 DOI: 10.1016/j.nicl.2017.07.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 06/24/2017] [Accepted: 07/03/2017] [Indexed: 01/15/2023]
Abstract
Aims/hypotheses In adults, type 2 diabetes and obesity have been associated with structural brain changes, even in the absence of dementia. Some evidence suggested similar changes in adolescents with type 2 diabetes but comparisons with a non-obese control group have been lacking. The aim of the current study was to examine differences in microstructure of gray and white matter between adolescents with type 2 diabetes, obese adolescents and healthy weight adolescents. Methods Magnetic resonance imaging data were collected from 15 adolescents with type 2 diabetes, 21 obese adolescents and 22 healthy weight controls. Volumetric differences in the gray matter between the three groups were examined using voxel based morphology, while tract based spatial statistics was used to examine differences in the microstructure of the white matter. Results Adolescents with type 2 diabetes and obese adolescents had reduced gray matter volume in the right hippocampus, left putamen and caudate, bilateral amygdala and left thalamus compared to healthy weight controls. Type 2 diabetes was also associated with significant regional changes in fractional anisotropy within the corpus callosum, fornix, left inferior fronto-occipital fasciculus, left uncinate, left internal and external capsule. Fractional anisotropy reductions within these tracts were explained by increased radial diffusivity, which may suggest demyelination of white matter tracts. Mean diffusivity and axial diffusivity did not differ between the groups. Conclusion/interpretation Our data shows that adolescent obesity alone results in reduced gray matter volume and that adolescent type 2 diabetes is associated with both white and gray matter abnormalities. Type 2 diabetes and obesity in adolescents is associated with reduced gray matter volume. Type 2 diabetes was associated with significant regional changes in FA. FA reductions within these tracts were explained by increased RD. Mean diffusivity and axial diffusivity did not differ between the groups.
Collapse
Affiliation(s)
- Arie Nouwen
- School of Psychology, University of Birmingham, Birmingham, UK
| | - Alison Chambers
- School of Psychology, University of Birmingham, Birmingham, UK
| | | | - Suzanne Higgs
- School of Psychology, University of Birmingham, Birmingham, UK
| | | | | | - Harriet A Allen
- School of Psychology, University of Birmingham, Birmingham, UK
| |
Collapse
|