1
|
Auh YH, Neal NN, Arole K, Regis NA, Nguyen T, Ogawa S, Tsuda Y, Yoshigoe A, Radovic M, Green MJ, Yamaguchi H, Lutkenhaus JL. Nacre-like MXene/Polyacrylic Acid Layer-by-Layer Multilayers as Hydrogen Gas Barriers. ACS APPLIED MATERIALS & INTERFACES 2025; 17:31392-31402. [PMID: 40359501 PMCID: PMC12123567 DOI: 10.1021/acsami.5c03632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/28/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025]
Abstract
MXenes are a promising class of 2D nanomaterials and are of particular interest for gas barrier applications due to their high aspect ratio. However, MXene nanosheets naturally bear a negative charge, which prevents assembly with negatively charged polymers, such as polyacrylic acid (PAA), into gas barrier coatings. Here, we present MXene- and PAA-based layer-by-layer (MXene/PAA LbL) multilayers formed by leveraging hydrogen bonding interactions. When assembled in acidic conditions, MXene/PAA LbL multilayers exhibit conformal, pinhole-free, nacre-like structures. The MXene/PAA LbL multilayers yield high blocking capability and low permeability (0.14 ± 0.01 cc·mm·m-2·day-1·MPa-1) for hydrogen gas which is over 9000 times lower than uncoated niobium (Nb) substrate. These nacre-like structures are also electronically conductive (σDC, up to 370 ± 30 S cm-1). Because these multilayers utilize hydrogen bonding, their properties are highly sensitive to the pH of the assembly and its external environment. Specifically, the reversible deconstruction of these multilayers under basic conditions is experimentally verified. This study shows that hydrogen bonding interactions can be leveraged to form MXene LbL multilayers as gas barriers, electronically conductive coatings, and deconstructable thin films via pH control.
Collapse
Affiliation(s)
- Yang Hyun Auh
- Artie McFerrin
Department of Chemical Engineering, Texas
A&M University, College
Station, Texas77843, United States
| | - Natalie N. Neal
- Department
of Materials Science and Engineering, Texas
A&M University, College
Station, Texas77840, United States
| | - Kailash Arole
- Artie McFerrin
Department of Chemical Engineering, Texas
A&M University, College
Station, Texas77843, United States
| | - Nolan A. Regis
- Los Alamos
National Laboratory, Los Alamos, New Mexico87545, United States
| | - Tran Nguyen
- Artie McFerrin
Department of Chemical Engineering, Texas
A&M University, College
Station, Texas77843, United States
| | - Shuichi Ogawa
- College of
Industrial Technology, Nihon University, 1-2-1 Izumi-cho, Narashino, Chiba275-8575, Japan
| | - Yasutaka Tsuda
- Materials
Sciences Research Center, Japan Atomic Energy
Agency, Sayo, Hyogo679-5148, Japan
| | - Akitaka Yoshigoe
- Materials
Sciences Research Center, Japan Atomic Energy
Agency, Sayo, Hyogo679-5148, Japan
| | - Miladin Radovic
- Department
of Materials Science and Engineering, Texas
A&M University, College
Station, Texas77840, United States
| | - Micah J. Green
- Artie McFerrin
Department of Chemical Engineering, Texas
A&M University, College
Station, Texas77843, United States
- Department
of Materials Science and Engineering, Texas
A&M University, College
Station, Texas77840, United States
| | - Hisato Yamaguchi
- Los Alamos
National Laboratory, Los Alamos, New Mexico87545, United States
| | - Jodie L. Lutkenhaus
- Artie McFerrin
Department of Chemical Engineering, Texas
A&M University, College
Station, Texas77843, United States
- Department
of Materials Science and Engineering, Texas
A&M University, College
Station, Texas77840, United States
| |
Collapse
|
2
|
Zhao J, Cai F, Wang B, Ren J, Guo Z, Du Y, Helal MH, El-Bahy ZM, Wang Z, Sha J. Advances and future perspectives on silicon-based anodes for lithium-ion batteries. Adv Colloid Interface Sci 2025; 343:103543. [PMID: 40382850 DOI: 10.1016/j.cis.2025.103543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/17/2025] [Accepted: 05/05/2025] [Indexed: 05/20/2025]
Abstract
Silicon (Si)-based anode has emerged as the most promising anode material for next-generation lithium-ion batteries (LIBs) due to its high specific capacity, suitable operating potential and abundant natural reserves. Nevertheless, the drastic volume effect of Si particles during lithiation/delithiation leads to particle pulverization, electrode structure collapse, and solid electrolyte interfacial (SEI) film instability, which results in a rapid reversible capacity degradation of Si-based anodes. It is essential to deeply analyze the failure mechanism of silicon-based electrodes and explore suitable improvement methods to achieve higher capacity retention. Herein, we systematically summarize the improvement strategies for Si-based anodes, including regulating material particle size, optimizing structure and composition, and exploring new binders, along with their enhancement mechanisms. In addition, the preparation of high-performance Si-based electrodes based on newly developed 3D printing technology in recent years is discussed. Lastly, several possible directions and emerging challenges for Si anode are presented to facilitate further improvement in practical applications. Overall, this review is expected to provide basic understanding and insights into the practical application of Si-based materials in next-generation LIBs negative electrodes.
Collapse
Affiliation(s)
- Junkai Zhao
- Key Laboratory of Inorganic Chemistry in Universities of Shandong, Department of Chemistry and Chemical Engineering, Jining University, Qufu 273155, China
| | - Feipeng Cai
- Energy Research Institute of Shandong Academy of Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Bo Wang
- Energy Research Institute of Shandong Academy of Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Juanna Ren
- College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China; Department of Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| | - Zhanhu Guo
- Department of Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| | - Yien Du
- Department of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong 030619, China
| | - Mohamed H Helal
- Center for Scientific Research and Entrepreneurship, Northern Border University, Arar 73213, Saudi Arabia
| | - Zeinhom M El-Bahy
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo, Egypt
| | - Zhaolong Wang
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Jingquan Sha
- Key Laboratory of Inorganic Chemistry in Universities of Shandong, Department of Chemistry and Chemical Engineering, Jining University, Qufu 273155, China.
| |
Collapse
|
3
|
Park A, Kim S, Jung JY, Kim W, Seo MY, Kim S, Nam C, Lee WB, Kim Y. Characterization of interactions in battery slurry via MD simulation: Influence on miscibility, morphology, and dispersion with varying ACN content in HNBR. J Chem Phys 2024; 161:234905. [PMID: 39679525 DOI: 10.1063/5.0244629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/27/2024] [Indexed: 12/17/2024] Open
Abstract
This paper investigates the phase behaviors, morphology changes, and degree of dispersion of a multi-component cathode battery slurry system. The slurry comprises polyvinylidene fluoride (PVDF) as the binder, hydrogenated nitrile butadiene rubber (HNBR) as the dispersant with varying acrylonitrile (ACN) content, N-methyl-2-pyrrolidone (NMP) as the solvent, and carbon nanotubes/graphene (CNTs/GRA) as the conductive agent. Several analytical methods, including visualized imaging, solubility parameters, radial distribution function (RDF) analysis, β phase PVDF analysis, near-atom analysis, and potential of mean force (PMF) analysis, were employed to compare the slurry's characteristics. The results indicate that an increase in ACN content in HNBR improves the miscibility between HNBR and PVDF, while HNBR with low ACN content results in a crystalline structure and phase separation of HNBR and PVDF. Conversely, increasing the ACN content in HNBR has a negative impact, making it a poorer dispersant itself. These findings provide essential insights into effectively regulating the phase behavior, miscibility, and dispersion ability of multi-component slurry systems, thereby enhancing the performance of lithium-ion batteries.
Collapse
Affiliation(s)
- Anseong Park
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Seungtae Kim
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Je-Yeon Jung
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - WooJin Kim
- Department of Materials Science and Engineering, Kookmin University, Seoul, Republic of Korea
| | - Min Young Seo
- Department of Materials Science and Engineering, Korea University, Seoul, Republic of Korea
| | - Sangdeok Kim
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Chongyong Nam
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Won Bo Lee
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - YongJoo Kim
- Department of Materials Science and Engineering, Korea University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Jia Y, Zhang S, Li J, Han Z, Zhang D, Qu X, Wu Z, Wang H, Chen S. Wearable Device with High Thermoelectric Performance and Long-Lasting Usability Based on Gel-Thermocells for Body Heat Harvesting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401427. [PMID: 39285822 DOI: 10.1002/smll.202401427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/28/2024] [Indexed: 12/06/2024]
Abstract
Utilizing the thermogalvanic effect, flexible thermoelectric materials present a compelling avenue for converting heat into electricity, especially in the context of wearable electronics. However, prolonged usage is hampered by the limitation imposed on the thermoelectric device's operational time due to the evaporation of moisture. Deep eutectic solvents (DESs) offer a promising solution for low-moisture gel fabrication. In this study, a bacterial cellulose (BC)/polyacrylic acid (PAA)/guanidinium chloride (GdmCl) gel is synthesized by incorporating BC into the DES. High-performance n-type and p-type thermocells (TECs) are developed by introducing Fe(ClO4)2/3 and K3/4Fe(CN)6, respectively. BC enhances the mechanical properties through the construction of an interpenetrating network structure. The coordination of carboxyl groups on PAA with Fe3+ and the crystallization induced by Gdm+ with [Fe(CN)6]4- remarkably improve the thermoelectric performance, achieving a Seebeck coefficient (S) of 2.4 mV K-1 and ion conductivity (σ) of 1.4 S m-1 for the n-type TEC, and ‒2.8 mV K-1 and 1.9 S m-1 for the p-type TEC. A flexible wearable thermoelectric device is fabricated with a S of 82 mV K-1 and it maintains a stable output over one month. This research broadens the application scope of DESs in the thermoelectric field and offers promising strategies for long-lasting wearable energy solutions.
Collapse
Affiliation(s)
- Yuhang Jia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Shengming Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Jing Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Zhiliang Han
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Dong Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Xiangyang Qu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Zhuotong Wu
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, 350002, P. R. China
| | - Huaping Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Shiyan Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
5
|
Zhong L, Sun Y, Shen K, Li F, Liu H, Sun L, Xie D. Poly(Acrylic Acid)-Based Polymer Binders for High-Performance Lithium-Ion Batteries: From Structure to Properties. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407297. [PMID: 39468909 DOI: 10.1002/smll.202407297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/21/2024] [Indexed: 10/30/2024]
Abstract
Poly(acrylic acid) (PAA) and its derivatives have emerged as promising candidates for enhancing the electrochemical performance of lithium-ion batteries (LIBs) as binder materials. Recent research has focused on evaluating their ability to improve adhesion with silicon (Si) particles and facilitate ion transport while maintaining electrode integrity. Various strategies, including mixing modifications and copolymerization methods, are highlighted and the structural and physicochemical properties of these binders are examined. Additionally, the interaction mechanisms between PAA-based binders and active materials and their impact on key electrochemical properties such as initial Coulombic efficiency (ICE) and cycle stability are discussed. The findings underscore the efficacy of tailored PAA-based binders in enhancing the electrochemical properties of LIBs, offering insights into the design principles and practical implications for advanced battery materials. These advancements hold promise for developing high-performance lithium batteries capable of meeting future energy storage demands.
Collapse
Affiliation(s)
- Liu Zhong
- Guang Dong Engineering Technology Research Center of Biomaterials, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, 510316, China
| | - Yongrong Sun
- Guang Dong Engineering Technology Research Center of Biomaterials, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, 510316, China
| | - Kuangyu Shen
- Polymer Program, Institute of Materials Science and Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Fayong Li
- Guang Dong Engineering Technology Research Center of Biomaterials, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, 510316, China
| | - Hailu Liu
- Guang Dong Engineering Technology Research Center of Biomaterials, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, 510316, China
| | - Luyi Sun
- Polymer Program, Institute of Materials Science and Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Dong Xie
- Guang Dong Engineering Technology Research Center of Biomaterials, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, 510316, China
| |
Collapse
|
6
|
He Y, Zhou F, Zhang Y, Lv T, Chu PK, Huo K. A Triple Crosslinked Binder with Hierarchical Stress Dissipation and High Ionic Conductivity for Advanced Silicon Anodes in Lithium-ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404556. [PMID: 39032001 DOI: 10.1002/smll.202404556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Indexed: 07/22/2024]
Abstract
Silicon (Si) is a promising anode material for high-energy-density lithium-ion batteries, but the significant volume change of Si particles during alloying/dealloying with lithium (Li) undermines the mechanical integrity of Si anode, causing electrode fracture, delamination and rapid capacity decay. Herein, a robust triple crosslinked network (TCN) binder with high ionic conductivity and hierarchical stress dissipation is reported for Si anodes, which is prepared by in situ chemical crosslinking polyacrylic acid (PAA) and melamine (MA). The triple interactions of hydrogen bonds, electrostatic interactions, and covalent amide bonds enhance the adhesion of binder to Si and synergistically promote stress dissipation within Si anodes, thus strengthening the dynamic structural stability of Si anodes during cycling. Moreover, the rapid coupling/decoupling of Li+ with the TCN binder enables an impressive Li+ transference number of 0.63 and high ionic conductivity of 1.2 × 10-4 S cm-1. Consequently, the Si-TCN anode delivers specific capacity of 2268 mAh g-1 with a high mass loading of 2 mg cm-2, high-rate performance of 1673 mAh g-1 at 5 A g-1, and stable cycling for 250 cycles at 1 A g-1, thus showing great prospects for high-energy-density Si-based batteries.
Collapse
Affiliation(s)
- Yang He
- Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Feng Zhou
- Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yingxi Zhang
- Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Tuan Lv
- Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Kaifu Huo
- Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
7
|
Lee S, Cho S, Choi H, Kim S, Jeong I, Lee Y, Choi T, Bae H, Kim JH, Park S. Bottom Deposition Enables Stable All-Solid-State Batteries with Ultrathin Lithium Metal Anode. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311652. [PMID: 38361217 DOI: 10.1002/smll.202311652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Indexed: 02/17/2024]
Abstract
Modern strides in energy storage underscore the significance of all-solid-state batteries (ASSBs) predicated on solid electrolytes and lithium (Li) metal anodes in response to the demand for safer batteries. Nonetheless, ASSBs are often beleaguered by non-uniform Li deposition during cycling, leading to compromised cell performance from internal short circuits and hindered charge transfer. In this study, the concept of "bottom deposition" is introduced to stabilize metal deposition based on the lithiophilic current collector and a protective layer composed of a polymeric binder and carbon black. The bottom deposition, wherein Li plating ensues between the protective layer and the current collector, circumvents internal short circuits and facilitates uniform volumetric changes of Li. The prepared functional binder for the protective layer presents outstanding mechanical robustness and adhesive properties, which can withstand the volume expansion caused by metal growth. Furthermore, its excellent ion transfer properties promote uniform Li bottom deposition even under a current density of 6 mA·cm-2. Also, scanning electron microscopy analysis reveals a consistent plating/stripping morphology of Li after cycling. Consequently, the proposed system exhibits enhanced electrochemical performance when assessed within the ASSB framework, operating under a configuration marked by a high Li utilization rate reliant on an ultrathin Li.
Collapse
Affiliation(s)
- Sangyeop Lee
- Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Sungjin Cho
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Hyunbeen Choi
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Sungho Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Insu Jeong
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Yubin Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Taesun Choi
- Graduate Institute of Ferrous and Energy Materials Technology, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Hongyeul Bae
- Secondary Battery Materials Research Laboratory, Research Institute of Industrial Science and Technology (RIST), 67 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Jin Hong Kim
- Secondary Battery Materials Research Laboratory, Research Institute of Industrial Science and Technology (RIST), 67 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Soojin Park
- Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
- Graduate Institute of Ferrous and Energy Materials Technology, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| |
Collapse
|
8
|
Lim NK, Kim EK, Park JJ, Bae SJ, Woo S, Choi JH, Song WJ. Design of a Bioinspired Robust Three-Dimensional Cross-Linked Polymer Binder for High-Performance Li-Ion Battery Applications. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54409-54418. [PMID: 37967374 DOI: 10.1021/acsami.3c11360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Si has the highest theoretical capacity (4200 mA h g-1) among conventional anode materials, such as graphite (372 mA h g-1), but its large volume expansion leads to deterioration of the battery performance. To overcome this problem (issue), we investigated the use of polysaccharide-based 3D cross-linked network binders for Si anodes, in which the polysaccharide formed an effective 3D cross-linked network around Si particles via cross-linking of polysaccharide with citric acid (CA). Sodium alginate (SA), a natural polysaccharide extracted from brown algae, is a suitable binder material for Si anodes because its abundant hydroxyl (-OH) and carboxyl (-COOH) groups form hydrogen and covalent bonds with the -OH groups present on the Si surface. We found that CA-cross-linked (CA-SA) could effectively prevent the volume expansion of Si anodes through the formation of 3D cross-linked network structures. In addition, the CA-SA binders provide enhanced adhesion strength, enabling the fabrication of more robust electrodes than those prepared using binders with linear structures ("linear binders"). In particular, the fabricated Si-based electrode (high mass loading of 1.5 mg cm-2) with CA-SA binder exhibited outstanding areal capacity (∼2.7 mA h cm-2) and excellent cycle retention (∼100% after 100 cycles).
Collapse
Affiliation(s)
- Nam-Kyu Lim
- Department of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Eun-Kyung Kim
- Department of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Jin-Ju Park
- Department of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Su-Jong Bae
- Department of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Sanghyeon Woo
- Department of Organic Materials Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Jae-Hak Choi
- Department of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
- Department of Organic Materials Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Woo-Jin Song
- Department of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
- Department of Organic Materials Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| |
Collapse
|
9
|
Lou X, Zhang Y, Zhao L, Zhang T, Zhang H. Cross-linked multifunctional binder in situ tuning solid electrolyte interface for silicon anodes in lithium ion batteries. Sci Rep 2023; 13:18560. [PMID: 37899372 PMCID: PMC10613629 DOI: 10.1038/s41598-023-45763-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/23/2023] [Indexed: 10/31/2023] Open
Abstract
Silicon is considered as the most promising anode material for high performance lithium-ion batteries due to its high theoretical specific capacity and low working potential. However, severe volume expansion problems existing during the process of (de)intercalation which seriously hinders its commercial progress. Binder can firmly adhere silicon and conductive agent to the current collector to maintain the integrity of the electrode structure, thereby effectively alleviating the silicon volume expansion and realizing lithium-ion batteries with high electrochemical performance. In this paper, citric acid (CA) and carboxymethyl cellulose (CMC) are adopted to construct a covalently crosslinked CA@CMC binder by an easy-to-scale-up esterification treatment. The Si@CA@CMC-1 electrode material shows an impressive initial coulombic efficiency (ICE) at 82.1% and after 510 cycles at 0.5 A/g, its specific capacity is still higher than commercial graphite. The excellent electrochemical performance of Si@CA@CMC-1 can be attributed to the ester bonds formed among CA@CMC binder and silicon particles. Importantly, by decoupling in situ EIS combining XPS at different cycles, it can be further proved that the CA@CMC binder can tune the component of SEI which provide a new-route to optimize the performance of silicon.
Collapse
Affiliation(s)
- Xiaofei Lou
- College of Mechatronic Engineering, North Minzu University, Yinchuan, 750021, Ningxia, China.
| | - Yuanyuan Zhang
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China.
| | - Li Zhao
- College of Mechatronic Engineering, North Minzu University, Yinchuan, 750021, Ningxia, China
| | - Teng Zhang
- College of Mechatronic Engineering, North Minzu University, Yinchuan, 750021, Ningxia, China
| | - Hui Zhang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, Ningxia, China
| |
Collapse
|
10
|
Dong Y, Zhang B, Zhao F, Gao F, Liu D. Dendrimer Based Binders Enable Stable Operation of Silicon Microparticle Anodes in Lithium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206858. [PMID: 36929041 DOI: 10.1002/smll.202206858] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/13/2023] [Indexed: 06/15/2023]
Abstract
High-capacity anode materials (e.g., Si) are highly needed for high energy density battery systems, but they usually suffer from low initial coulombic efficiency (CE), short cycle life, and low-rate capability caused by large volume changes during the charge and discharge process. Here, a novel dendrimer-based binder for boosting the electrochemical performance of Si anodes is developed. The polyamidoamine (PMM) dendrimer not only can be used as binder, but also can be utilized as a crosslinker to construct 3D polyacrylic acid (PAA)-PMM composite binder for high-performance Si microparticles anodes. Benefiting from maximum interface interaction, strong average peeling force, and high elastic recovery rate of PAA-PMM composite, the Si electrode based on PAA-PMM achieves a high specific capacity of 3590 mAh g-1 with an initial CE of 91.12%, long-term cycle stability with 69.80% retention over 200 cycles, and outstanding rate capability (1534.8 mAh g-1 at 3000 mA g-1 ). This work opens a new avenue to use dendrimer chemistry for the development of high-performance binders for high-capacity anode materials.
Collapse
Affiliation(s)
- Yanling Dong
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Biao Zhang
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Fugui Zhao
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Feng Gao
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Dong Liu
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| |
Collapse
|