1
|
Hauser-Davis RA, Wosnick N, Hoff RB, Vianna M, Saggioro EM. Cocaine and other illicit drugs in the marine environment: Potential effects and future directions. MARINE POLLUTION BULLETIN 2024; 208:117064. [PMID: 39357371 DOI: 10.1016/j.marpolbul.2024.117064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/21/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
Cocaine and its primary metabolite, benzoylecgonine, have been recently detected in sharks, indicating a growing concern over marine drug pollution. The presence of this drug in marine fauna poses risks such as physiological stress, impaired growth, reproduction, and altered behaviors, potentially leading to biodiversity loss and disrupted ecological interactions. Biomagnification may further affect higher trophic levels, including humans. Addressing this issue requires continuous monitoring, studies on physiological effects, understanding contamination routes, and improving wastewater treatment. Additionally, stricter regulations on pharmaceutical disposal are necessary to mitigate the impacts of such pollutants on marine ecosystems and human health.
Collapse
Affiliation(s)
- Rachel Ann Hauser-Davis
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.
| | | | - Rodrigo Barcellos Hoff
- Setor Laboratorial Avançado em Santa Catarina (SLAV/SC), Ministério da Agricultura, Pecuária e Abastecimento, Santa Catarina, Brazil
| | - Marcelo Vianna
- Laboratório de Biologia e Tecnologia Pesqueira, Departamento de Biologia Marinha, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; IMAM - AquaRio, Rio de Janeiro Aquarium Research Center, Rio de Janeiro, Brazil
| | - Enrico Mendes Saggioro
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Amini P, Okeme JO. Tear Fluid as a Matrix for Biomonitoring Environmental and Chemical Exposures. Curr Environ Health Rep 2024; 11:340-355. [PMID: 38967858 DOI: 10.1007/s40572-024-00454-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2024] [Indexed: 07/06/2024]
Abstract
PURPOSE Exposures to hazardous chemicals have been linked to many detrimental health effects and it is therefore critical to have effective biomonitoring methods to better evaluate key environmental exposures that increase the risk of chronic disease and death. Traditional biomonitoring utilizing blood and urine is limited due to the specialized skills and invasiveness of collecting these fluid samples. This systematic review focuses on tear fluid, which is largely under-researched, as a promising complementary matrix to the traditional fluids used for biomonitoring. The objective is to evaluate the practicability of using human tear fluid for biomonitoring environmental exposures, highlighting potential pitfalls and opportunities. RECENT FINDING Tear fluid biomonitoring represents a promising method for assessing exposures because it can be collected with minimal invasiveness and tears contain exposure markers from both the external and internal environments. Tear fluid uniquely interfaces with the external environment at the air-tear interface, providing a surface for airborne chemicals to diffuse into the ocular environment and interact with biomolecules. Tear fluid also contains molecules from the internal environment that have travelled from the blood to tears by crossing the blood-tear barrier. This review demonstrates that tear fluid can be used to identify hazardous chemicals from the external environment and differentiate exposure groups.
Collapse
Affiliation(s)
- Parshawn Amini
- Department of Chemistry & Chemical Biology, McMaster University, Hamilton, ON, Ontario, L8S 4L8, Canada
| | - Joseph O Okeme
- Department of Chemistry & Chemical Biology, McMaster University, Hamilton, ON, Ontario, L8S 4L8, Canada.
| |
Collapse
|
3
|
Liao X, Huang L, Luo X, Zhang L, Lu L, Luo D, Luo W. Distribution and health risk of chromium in wheat grains at the national scale in China. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134846. [PMID: 38852247 DOI: 10.1016/j.jhazmat.2024.134846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
Chromium (Cr) pollution may threaten food safety in China. In this study, the concentration, pollution level, distribution, and non-cancer risk of Cr in wheat grains grown in 186 areas across 28 provinces in China were investigated. Results indicated that mean concentration of Cr was 0.28 ± 2.5 mg/kg, dry mass (dm). Of the samples, 7.5 % were found to be polluted with Cr. The mean concentrations were in the following order: Northwest > Northeast > South > East > North > Southwest > Central China. Based on deterministic models, mean hazard quotient (HQ) values for adult males, adult females, and children were 0.11 ± 3.4, 0.11 ± 3.4, and 0.13 ± 3.5, respectively with < 6 % of HQ values ≥ 1. Eleven sites in northern China were identified as hotspots, whereas Gansu Province and Northwestern China were labeled as priority provinces and regions for risk control. The mean HQ values estimated by probabilistic risk assessment were two times greater than those estimated using deterministic models. The risk probabilities for adult males, adult females, and children were 4.81 %, 3.78 %, and 6.55 %, respectively. This study provides valuable information on Cr pollution in wheat grains and its risks at a national scale in China.
Collapse
Affiliation(s)
- Xiudong Liao
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Liang Huang
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xugang Luo
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Liyang Zhang
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lin Lu
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dezhao Luo
- Food Science and Engineering College, Beijing University of Agriculture, Beijing 100096, China
| | - Wei Luo
- Laboratory of Solid Waste Treatment and Recycling, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
4
|
Rigaud M, Buekers J, Bessems J, Basagaña X, Mathy S, Nieuwenhuijsen M, Slama R. The methodology of quantitative risk assessment studies. Environ Health 2024; 23:13. [PMID: 38281011 PMCID: PMC10821313 DOI: 10.1186/s12940-023-01039-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 12/05/2023] [Indexed: 01/29/2024]
Abstract
Once an external factor has been deemed likely to influence human health and a dose response function is available, an assessment of its health impact or that of policies aimed at influencing this and possibly other factors in a specific population can be obtained through a quantitative risk assessment, or health impact assessment (HIA) study. The health impact is usually expressed as a number of disease cases or disability-adjusted life-years (DALYs) attributable to or expected from the exposure or policy. We review the methodology of quantitative risk assessment studies based on human data. The main steps of such studies include definition of counterfactual scenarios related to the exposure or policy, exposure(s) assessment, quantification of risks (usually relying on literature-based dose response functions), possibly economic assessment, followed by uncertainty analyses. We discuss issues and make recommendations relative to the accuracy and geographic scale at which factors are assessed, which can strongly influence the study results. If several factors are considered simultaneously, then correlation, mutual influences and possibly synergy between them should be taken into account. Gaps or issues in the methodology of quantitative risk assessment studies include 1) proposing a formal approach to the quantitative handling of the level of evidence regarding each exposure-health pair (essential to consider emerging factors); 2) contrasting risk assessment based on human dose-response functions with that relying on toxicological data; 3) clarification of terminology of health impact assessment and human-based risk assessment studies, which are actually very similar, and 4) other technical issues related to the simultaneous consideration of several factors, in particular when they are causally linked.
Collapse
Affiliation(s)
- Maxime Rigaud
- Inserm, University of Grenoble Alpes, CNRS, IAB, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Grenoble, France
| | - Jurgen Buekers
- VITO, Flemish Institute for Technological Research, Unit Health, Mol, Belgium
| | - Jos Bessems
- VITO, Flemish Institute for Technological Research, Unit Health, Mol, Belgium
| | - Xavier Basagaña
- ISGlobal, Barcelona, 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, 28029, Spain
| | - Sandrine Mathy
- CNRS, University Grenoble Alpes, INRAe, Grenoble INP, GAEL, Grenoble, France
| | - Mark Nieuwenhuijsen
- ISGlobal, Barcelona, 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, 28029, Spain
| | - Rémy Slama
- Inserm, University of Grenoble Alpes, CNRS, IAB, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Grenoble, France.
| |
Collapse
|
5
|
Panizzolo M, Martins VH, Ghelli F, Squillacioti G, Bellisario V, Garzaro G, Bosio D, Colombi N, Bono R, Bergamaschi E. Biomarkers of oxidative stress, inflammation, and genotoxicity to assess exposure to micro- and nanoplastics. A literature review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115645. [PMID: 37922781 DOI: 10.1016/j.ecoenv.2023.115645] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
The increased awareness about possible health effects arising from micro- and nanoplastics (MNPs) pollution is driving a huge amount of studies. Many international efforts are in place to better understand and characterize the hazard of MNPs present in the environment. The literature search was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology in two different databases (PubMed and Embase). The selection of articles was carried out blind, screening titles and abstracts according to inclusion and exclusion criteria. In general, these studies rely on the methodology already in use for assessing hazard from nanomaterials and particles of concern. However, only a limited number of studies have so far directly measured human exposure to MNPs and examined the relationship between such exposure and its impact on human health. This review aims to provide an overview of the current state of research on biomarkers of oxidative stress, inflammation, and genotoxicity that have been explored in relation to MNPs exposure, using human, cellular, animal, and plant models. Both in-vitro and in-vivo models suggest an increased level of oxidative stress and inflammation as the main mechanism of action (MOA) leading to adverse effects such as chronic inflammation, immunotoxicity and genotoxicity. With the identification of such biological endpoints, representing critical key initiating events (KIEs) towards adaptive or adverse outcomes, it is possible to identify a panel of surrogate biomarkers to be applied and validated especially in occupational settings, where higher levels of exposure may occur.
Collapse
Affiliation(s)
- Marco Panizzolo
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy
| | - Vitor Hugo Martins
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy
| | - Federica Ghelli
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy
| | - Giulia Squillacioti
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy
| | - Valeria Bellisario
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy
| | - Giacomo Garzaro
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy
| | - Davide Bosio
- Unit of Occupational Medicine, A.O.U Città della Salute e della Scienza di Torino, Turin, Italy
| | - Nicoletta Colombi
- Federated Library of Medicine "F. Rossi", University of Turin, 10126 Turin, Italy
| | - Roberto Bono
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy.
| | - Enrico Bergamaschi
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy
| |
Collapse
|
6
|
Hesami Arani M, Kermani M, Rezaei Kalantary R, Jaafarzadeh N, Bagheri Arani S. Pesticides residues determination and probabilistic health risk assessment in the soil and cantaloupe by Monte Carlo simulation: A case study in Kashan and Aran-Bidgol, Iran. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115229. [PMID: 37441953 DOI: 10.1016/j.ecoenv.2023.115229] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/11/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023]
Abstract
Cantaloupe is a popular agricultural product in the hot season of Iran. On the other hand, the frequent use of pesticides in cantaloupe fields is the most important threat to the health of farmers and consumers. Therefore, the present study aims to measure the concentration of diazinon (DZN), chlorpyrifos (CPF), and malathion (MLT) in cantaloupe cultivated in Kashan and Aran-Bidgol (Iran) and to estimate the possible oral and dermal risk of these pesticides by Monte Carlo simulation (MCS). 36 cantaloupe samples, 18 samples before, and 18 samples after the latent period were collected from different places of cantaloupe cultivation from April to May 2021. After measuring the pesticides using the QuEChERS approach, oral and dermal risk assessments were calculated.The mean and standard deviation of the concentrations of chlorpyrifos, malathion, and diazinon in 18 cantaloupe samples, after the latent period, were (30.39 ± 13.85), (18.361 ± 1.8), and (21.97 ± 0.86) μg kg-1, respectively. Concentration of Malathion, diazinon, and Chlorpyrifos in the soil were 0.22, 0.25, and 0.3 mg kg-1, respectively, and pesticide cumulative risk assessment in soil was obtained 0.011 for Malathion, 0.05 for diazinon and 0.03 for Chlorpyrifos. Target Hazard Quotient (THQ) according to the cantaloupe consumption and dermal exposure in children and adults, was safe range. Although non-cancerous dermal and oral risk of cantaloupe is low, constant exposure can be harmful. Therefore, the findings of this study play an important role in increasing the understanding of the negative health consequences of pesticide contamination in cantaloupe for consumers, especially local residents, and can help by adopting remedial strategies to reduce environmental concerns.
Collapse
Affiliation(s)
- Mohsen Hesami Arani
- Department of Environmental Health Engineering, School of public Health, Iran University of Medical Sciences, Tehran, Iran; Health System Research, Deputy of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Majid Kermani
- Department of Environmental Health Engineering, School of public Health, Iran University of Medical Sciences, Tehran, Iran; Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
| | - Roshanak Rezaei Kalantary
- Department of Environmental Health Engineering, School of public Health, Iran University of Medical Sciences, Tehran, Iran; Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran.
| | - Neamatollah Jaafarzadeh
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Samaneh Bagheri Arani
- Advanced studies of Art, Faculty of Art and Architecture, University of Kashan, Kashan, Iran
| |
Collapse
|
7
|
Gong X, Liu L, Huang Y, Zou B, Sun Y, Luo L, Lin Y. A pruned feed-forward neural network (pruned-FNN) approach to measure air pollution exposure. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1183. [PMID: 37695355 PMCID: PMC10829730 DOI: 10.1007/s10661-023-11814-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 08/30/2023] [Indexed: 09/12/2023]
Abstract
Environmental epidemiology studies require accurate estimations of exposure intensities to air pollution. The process from air pollutant emission to individual exposure is however complex and nonlinear, which poses significant modeling challenges. This study aims to develop an exposure assessment model that can strike a balance between accuracy, complexity, and usability. In this regard, neural networks offer one possible approach. This study employed a custom-designed pruned feed-forward neural network (pruned-FNN) approach to calculate the air pollution exposure index based on emission time and rates, terrain factors, meteorological conditions, and proximity measurements. The model's performance was evaluated by cross-validating the estimated exposure indexes with ground-based monitoring records. The pruned FNN can predict pollution exposure indexes (PEIs) that are highly and stably correlated with the monitored air pollutant concentrations (Spearman's rank correlation coefficients for tenfold cross-validation (mean ± standard deviation: 0.906 ± 0.028) and for random cross-validation (0.913 ± 0.024)). The predicted values are also close to the ground truth in most cases (95.5% of the predicted PEIs have relative errors smaller than 10%) when the training datasets are sufficiently large and well-covered. The pruned-FNN method can make accurate exposure estimations using a flexible number of variables and less extensive data in a less money/time-consuming manner. Compared to other exposure assessment models, the pruned FNN is an appropriate and effective approach for exposure assessment that covers a large geographic area over a long period of time.
Collapse
Affiliation(s)
- Xi Gong
- Department of Geography & Environmental Studies, UNM Center for the Advancement of Spatial Informatics Research and Education (ASPIRE), University of New Mexico, Albuquerque, NM, 87131, USA.
| | - Lin Liu
- Department of Computer Science, UNM Center for the Advancement of Spatial Informatics Research and Education (ASPIRE), University of New Mexico, Albuquerque, NM, 87131, USA
| | - Yanhong Huang
- Department of Geography & Environmental Studies, UNM Center for the Advancement of Spatial Informatics Research and Education (ASPIRE), University of New Mexico, Albuquerque, NM, 87131, USA
| | - Bin Zou
- School of Geosciences and Info-Physics, Central South University, Changsha, 410083, Hunan, China
| | - Yeran Sun
- Department of Geography, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK
| | - Li Luo
- Division of Epidemiology, Biostatistics, and Preventive Medicine, Department of Internal Medicine, University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Yan Lin
- Department of Geography & Environmental Studies, UNM Center for the Advancement of Spatial Informatics Research and Education (ASPIRE), University of New Mexico, Albuquerque, NM, 87131, USA
| |
Collapse
|
8
|
Plattard N, Gnanasegaran R, Krekesheva A, Carato P, Dupuis A, Migeot V, Albouy M, Haddad S, Venisse N. Quantification of the Conjugated Forms of Dichlorobisphenol A (3,3'-Cl 2 BPA) in Rat and Human Plasma Using HPLC-MS/MS. Ther Drug Monit 2023; 45:554-561. [PMID: 36649713 DOI: 10.1097/ftd.0000000000001074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/28/2022] [Indexed: 01/19/2023]
Abstract
BACKGROUND Bisphenol A (BPA) is a ubiquitous contaminant that has endocrine-disrupting effects. Chlorinated derivatives of BPA are formed during chlorination of drinking water and have higher endocrine-disrupting activity. Dichlorobisphenol A (Cl 2 BPA) is the most abundant chlorinated BPA derivative found in several human biological matrices. Recent in vitro experiments have shown that Cl 2 BPA is metabolized in sulpho- and glucuro-conjugated compounds. To date, no assay has been developed to quantify the sulfo- and glucuro-conjugates of 3,3'-Cl 2 BPA (3,3'-Cl 2 BPA-S and 3,3'-Cl 2 BPA-G, respectively). METHODS A high-performance liquid chromatography-tandem mass spectrometry assay for the determination of 3,3'-Cl 2 BPA conjugated forms in plasma samples was developed and validated according to the European Medicines Agency guidelines. Quantification was performed in the multiple reaction monitoring mode for all target analytes using a SCIEX 6500 + tandem mass spectrometer with an electrospray source operating in the negative ionization mode. Chromatographic separation was achieved using a C18 column maintained at 40°C and a binary mobile phase delivered in the gradient mode at a flow rate of 0.35 mL/min. Sample was prepared via simple precipitation using acetonitrile. The assay was validated and applied to rat and human plasma samples. RESULTS Linearity was demonstrated over the range of 0.006-25 ng/mL for 3,3'-Cl 2 BPA-G and 0.391-100 ng/mL for 3,3'-Cl 2 BPA-S. Intraday and interday bias values were in the 95%-109% range, and the imprecision <9%. Internal standard corrected matrix effects were also investigated. This method enabled quantification of the conjugated forms of 3,3'-Cl 2 BPA in plasma samples. CONCLUSIONS This is the first report on the development and validation of an analytical method for the quantification of 3,3'-Cl 2 BPA-G and 3,3'-Cl 2 BPA-S in the plasma matrix. This study is also the first report on the in vivo occurrence of these metabolites.
Collapse
Affiliation(s)
- Noemie Plattard
- Department of Environmental and Occupational Health, School of Public Health, CresP, Université de Montréal, Montreal, Quebec, Canada
- CHU Poitiers, INSERM CIC1402, Université de Poitiers, CNRS 7267 EBI, Poitiers, France; and
| | - Riciga Gnanasegaran
- CHU Poitiers, INSERM CIC1402, Université de Poitiers, CNRS 7267 EBI, Poitiers, France; and
| | - Aida Krekesheva
- CHU Poitiers, INSERM CIC1402, Université de Poitiers, CNRS 7267 EBI, Poitiers, France; and
| | - Pascal Carato
- CHU Poitiers, INSERM CIC1402, Université de Poitiers, CNRS 7267 EBI, Poitiers, France; and
| | - Antoine Dupuis
- CHU Poitiers, INSERM CIC1402, Université de Poitiers, CNRS 7267 EBI, Poitiers, France; and
- Biology-Pharmacy-Public Health Department, CHU de Poitiers, Poitiers Cedex, France
| | - Virginie Migeot
- CHU Poitiers, INSERM CIC1402, Université de Poitiers, CNRS 7267 EBI, Poitiers, France; and
- Biology-Pharmacy-Public Health Department, CHU de Poitiers, Poitiers Cedex, France
| | - Marion Albouy
- CHU Poitiers, INSERM CIC1402, Université de Poitiers, CNRS 7267 EBI, Poitiers, France; and
- Biology-Pharmacy-Public Health Department, CHU de Poitiers, Poitiers Cedex, France
| | - Sami Haddad
- Department of Environmental and Occupational Health, School of Public Health, CresP, Université de Montréal, Montreal, Quebec, Canada
| | - Nicolas Venisse
- CHU Poitiers, INSERM CIC1402, Université de Poitiers, CNRS 7267 EBI, Poitiers, France; and
- Biology-Pharmacy-Public Health Department, CHU de Poitiers, Poitiers Cedex, France
| |
Collapse
|
9
|
Khoshakhlagh AH, Yazdanirad S, Saberi HR, Liao PC. Health risk assessment of exposure to various vapors and fumes in a factory of automobile manufacturing. Heliyon 2023; 9:e18583. [PMID: 37576203 PMCID: PMC10413063 DOI: 10.1016/j.heliyon.2023.e18583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 07/12/2023] [Accepted: 07/21/2023] [Indexed: 08/15/2023] Open
Abstract
This study aimed to comprehensively evaluate the health risk of exposure to various vapors and fumes in a factory of automobile manufacturing. This study was performed in 2021 on 115 workers. Vapors and fumes were gathered by the adsorbent tubes of activated charcoal and mixed cellulose esters (MCE) membrane filter, respectively. The flow rate for vapors and fumes were between 0.05 and 0.20 L per min and 1 to 4 L per min, respectively. After preparing, samples were analyzed. To assess the non-cancer and cancer risk of the pollutants, the method proposed environmental protection agency (EPA) was applied. The total concentration of copper (1.031 ppm), manganese (0.114), and 2-butoxyethanol (91.767 ppm) were found to be higher than The threshold limit values (TLVs). The values of non-cancer risk (HQ) due to exposure to vapors of benzene (6.583), toluene (1.396), ethyl benzene (1.212), xylene (31.148), 2-butoxyethanol (89.302), 2-propanol (4.695), 1,2,3-trimethylbenzene (1.923), copper (2.336), manganese (715.82), aluminum (3.772), and chromium (107.066) were higher than the acceptable limit. Moreover, the estimated LCR for benzene (2.15 × 10-4), ethyl benzene (3.97 × 10-4), vinyl chloride (1.25 × 10-4), and chromium (2.11 × 10-2) were higher than the threshold risk level set by EPA. It is emphasized that preventive measures are performed.
Collapse
Affiliation(s)
- Amir Hossein Khoshakhlagh
- Department of Occupational Health, School of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Saeid Yazdanirad
- Social Determinants of Health Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
- School of Health, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hamid Reza Saberi
- Occupational Health & Safety Department, Kashan University of Medical Sciences, Kashan, Iran
| | - Pao-Chi Liao
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan, 704, Taiwan
| |
Collapse
|
10
|
Khoshakhlagh AH, Yazdanirad S, Mousavi M, Gruszecka-Kosowska A, Shahriyari M, Rajabi-Vardanjani H. Summer and winter variations of BTEX concentrations in an oil refinery complex and health risk assessment based on Monte-Carlo simulations. Sci Rep 2023; 13:10670. [PMID: 37393319 PMCID: PMC10314937 DOI: 10.1038/s41598-023-37647-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 06/25/2023] [Indexed: 07/03/2023] Open
Abstract
The summer and winter concentrations of BTEX pollutants were investigated in various workplaces of an oil Refinery, Iran. In total 252 air samples from the breathing zones of the following employees were collected: supervisors, safetymen, repairmen, site men, and all workers. Carcinogenic and non-carcinogenic risk values were calculated based on the USEPA methodology using Monte Carlo simulations. BTEX concentrations were higher in the summer than in the winter season for all workstations, especially for toluene and ethylbenzene. The mean values of exposure to benzene for repairmen and site men were higher than threshold limit value of 1.60 mg/m3 for both seasons. Non-carcinogenic risk (HQ) values calculated for summer season for benzene, ethylbenzene, and xylene in all workstations, as well as for toluene for repairmen and site men exceeded acceptable level of 1. In winter season the mean HQ values for benzene and xylene in all workstations, for toluene for repairmen and site men, and for ethylbenzene for supervisors, repairmen, and site men were also > 1. For all workstations definite carcinogenic risk was indicated as calculated LCR values for benzene and ethylbenzene exposure were higher than 1 × 10-4 in both summer and winter seasons.
Collapse
Affiliation(s)
- Amir Hossein Khoshakhlagh
- Department of Occupational Health, School of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Saeid Yazdanirad
- Social Determinants of Health Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran.
- Department of Occupational Health, School of Health, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Mahdi Mousavi
- Student Research Committee, Faculty of Health, Isfahan University of Medical Science, Isfahan, Iran
| | - Agnieszka Gruszecka-Kosowska
- Department of Environmental Protection, Faculty of Geology, Geophysics, and Environmental Protection, AGH University of Krakow, Al. Mickiewicza 30, 30-059, Krakow, Poland
| | | | - Hassan Rajabi-Vardanjani
- Department of Occupational Health, School of Health, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
11
|
Zhang L, Wang B, Li K, Wang Z, Xu D, Su Y, Wu D, Xie B. Non-negligible health risks caused by inhalation exposure to aldehydes and ketones during food waste treatments in megacity Shanghai. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 325:121448. [PMID: 36931489 DOI: 10.1016/j.envpol.2023.121448] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/19/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Aldehydes and ketones in urban air continue to receive regulatory and scientific attention for their environmental prevalence and potential health hazard. However, current knowledge of the health risks and losses caused by these pollutants in food waste (FW) treatment processes is still limited, especially under long-term exposure. Here, we presented the first comprehensive assessment of chronic exposure to 21 aldehydes and ketones in urban FW-air environments (e.g., storage site, mechanical dewatering, and composting) by coupling substantial measured data (383 samples) with Monte Carlo-based probabilistic health risk and impact assessment models. The results showed that acetaldehyde, acetone, 2-butanone and cyclohexanone were consistently the predominant pollutants, although the significant differences in pollution profiles across treatment sites and seasons (Adonis test, P < 0.001). According to the risk assessment results, the estimated cancer risk (CR; mean range: 1.6 × 10-5-1.12 × 10-4) and non-cancer risk (NCR; mean range: 2.98-22.7) triggered by aldehydes and ketones were both unacceptable in most cases (CR: 37.8%-99.3%; NCR: 54.2%-99.8%), and even reached the limit of concern to CR (1 × 10-4) in some exposure scenarios (6.18%-16.9%). Application of DALYs (disability adjusted life years) as a metric for predicting the damage suggested that exposure of workers to aldehydes and ketones over 20 years of working in FW-air environments could result in 0.02-0.14 DALYs per person. Acetaldehyde was the most harmful constituent of all targeted pollutants, which contributed to the vast majority of health risks (>88%) and losses (>90%). This study highlights aldehydes and ketones in FW treatments may be the critical pollutants to pose inhalation risks.
Collapse
Affiliation(s)
- Liangmao Zhang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Binghan Wang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Kaiyi Li
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Zijiang Wang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Dan Xu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Yinglong Su
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Dong Wu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China; Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
12
|
Gould CF, Mujtaba MN, Yang Q, Boamah-Kaali E, Quinn AK, Manu G, Lee AG, Ae-Ngibise KA, Carrión D, Kaali S, Kinney PL, Jack DW, Chillrud SN, Asante KP. Using time-resolved monitor wearing data to study the effect of clean cooking interventions on personal air pollution exposures. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:386-395. [PMID: 36274187 PMCID: PMC11815893 DOI: 10.1038/s41370-022-00483-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 06/03/2023]
Abstract
BACKGROUND Personal monitoring can estimate individuals' exposures to environmental pollutants; however, accuracy depends on consistent monitor wearing, which is under evaluated. OBJECTIVE To study the association between device wearing and personal air pollution exposure. METHODS Using personal device accelerometry data collected in the context of a randomized cooking intervention in Ghana with three study arms (control, improved biomass, and liquified petroleum gas (LPG) arms; N = 1414), we account for device wearing to infer parameters of PM2.5 and CO exposure. RESULTS Device wearing was positively associated with exposure in the control and improved biomass arms, but weakly in the LPG arm. Inferred community-level air pollution was similar across study arms (~45 μg/m3). The estimated direct contribution of individuals' cooking to PM2.5 exposure was 64 μg/m3 for the control arm, 74 μg/m3 for improved biomass, and 6 μg/m3 for LPG. Arm-specific average PM2.5 exposure at near-maximum wearing was significantly lower in the LPG arm as compared to the improved biomass and control arms. Analysis of personal CO exposure mirrored PM2.5 results. CONCLUSIONS Personal monitor wearing was positively associated with average air pollution exposure, emphasizing the importance of high device wearing during monitoring periods and directly assessing device wearing for each deployment. SIGNIFICANCE We demonstrate that personal monitor wearing data can be used to refine exposure estimates and infer unobserved parameters related to the timing and source of environmental exposures. IMPACT STATEMENTS In a cookstove trial among pregnant women, time-resolved personal air pollution device wearing data were used to refine exposure estimates and infer unobserved exposure parameters, including community-level air pollution, the direct contribution of cooking to personal exposure, and the effect of clean cooking interventions on personal exposure. For example, in the control arm, while average 48 h personal PM2.5 exposure was 77 μg/m3, average predicted exposure at near-maximum daytime device wearing was 108 μg/m3 and 48 μg/m3 at zero daytime device wearing. Wearing-corrected average 48 h personal PM2.5 exposures were 50% lower in the LPG arm than the control and improved biomass and inferred direct cooking contributions to personal PM2.5 from LPG were 90% lower than the other arms. Our recommendation is that studies assessing personal exposures should examine the direct association between device wearing and estimated mean personal exposure.
Collapse
Affiliation(s)
- Carlos F Gould
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
- Department of Earth System Science, Stanford University, Stanford, CA, USA
| | - Mohammed Nuhu Mujtaba
- Kintampo Health Research Centre, Research and Development Division, Ghana Health Service, Kintampo North Municipality, Bono East Region, Ghana
| | - Qiang Yang
- Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA
- Now at Elsevier Global STM Journals, New York, USA
| | - Ellen Boamah-Kaali
- Kintampo Health Research Centre, Research and Development Division, Ghana Health Service, Kintampo North Municipality, Bono East Region, Ghana
| | | | - Grace Manu
- Kintampo Health Research Centre, Research and Development Division, Ghana Health Service, Kintampo North Municipality, Bono East Region, Ghana
| | - Alison G Lee
- Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kenneth Ayuurebobi Ae-Ngibise
- Kintampo Health Research Centre, Research and Development Division, Ghana Health Service, Kintampo North Municipality, Bono East Region, Ghana
| | - Daniel Carrión
- Department of Environmental Health Sciences, Yale University School of Public Health, New Haven, CT, USA
| | - Seyram Kaali
- Kintampo Health Research Centre, Research and Development Division, Ghana Health Service, Kintampo North Municipality, Bono East Region, Ghana
| | | | - Darby W Jack
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Steven N Chillrud
- Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA.
| | - Kwaku Poku Asante
- Kintampo Health Research Centre, Research and Development Division, Ghana Health Service, Kintampo North Municipality, Bono East Region, Ghana
| |
Collapse
|
13
|
Khalili M, Nasrabadi T. Assessment of occupational health risk due to inhalation of chemical compounds in an aircraft maintenance, repair, and overhaul company. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:57558-57570. [PMID: 36964811 DOI: 10.1007/s11356-023-26572-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 03/16/2023] [Indexed: 05/10/2023]
Abstract
This study was conducted in an aircraft maintenance, repair, and overhaul (MRO) company in 2021 to identify the extent of occupational exposures and quantitative assessment of the health risk due to inhalation of chemical compounds. According to the inspection of different parts of this company, heavy metals including Co, Cd, Ni, Pb, Cr(VI), and Mn and organic compounds including benzene, toluene, ethylbenzene, xylene (BTEX), and methyl ethyl ketone (MEK) were selected for health risk assessment. In total, the air in the inhalation area of active workers was sampled in 51 workstations. Measurement of the above pollutants showed that the average occupational exposure to Cd, Pb, and all organic compounds fell within the acceptable range of occupational exposure standard, while the measured values for Co, Ni, Mn, and Cr(VI) exceeded the standard limit. According to calculations, the highest carcinogenic risk (CR) was seen in the plating (airplane) workshop for exposure to Cr(VI) (7.58E-01), and the lowest CR was observed in the electronic workshop for exposure to Pb (7.75E-08). The highest non-carcinogenic hazard (HQ) was found in the welding workshop for exposure to Co (1.00E + 04), while the lowest HQ was related to toluene in the fabrication workshop (9.10E-03). Considering the high rate of exposure indicators, CR and HQ exceeded the standards set by the American Environmental Protection Agency (EPA) in most workshops. Accordingly, company managers should take the necessary measures to reduce the vulnerability of individuals working in areas with unacceptable CR and HQ.
Collapse
Affiliation(s)
| | - Touraj Nasrabadi
- Graduate Faculty of Environment, University of Tehran, Tehran, Iran
| |
Collapse
|
14
|
Guseva Canu I, Plys E, Velarde Crézé C, Fito C, Hopf NB, Progiou A, Riganti C, Sauvain JJ, Squillacioti G, Suarez G, Wild P, Bergamaschi E. A harmonized protocol for an international multicenter prospective study of nanotechnology workers: the NanoExplore cohort. Nanotoxicology 2023; 17:1-19. [PMID: 36927342 DOI: 10.1080/17435390.2023.2180220] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Nanotechnology applications are fast-growing in many industrial fields. Consequently, health effects of engineered nanomaterials (ENMs) should be investigated. Within the EU-Life project NanoExplore, we developed a harmonized protocol of an international multicenter prospective cohort study of workers in ENM-producing companies. This article describes the development of the protocol, sample size calculation, data collection and management procedures and discusses its relevance with respect to research needs. Within this protocol, workers' ENM exposure will be assessed over four consecutive working days during the initial recruitment campaign and the subsequent follow-up campaigns. Biomonitoring using noninvasive sampling of exhaled breath condensate (EBC), exhaled air, and urine will be collected before and after 4-day exposure monitoring. Both exposure and effect biomarkers, will be quantified along with pulmonary function tests and diagnosed diseases reported using a standardized epidemiological questionnaire available in four languages. Until now, this protocol was implemented at seven companies in Switzerland, Spain and Italy. The protocol is well standardized, though sufficiently flexible to include company-specific conditions and occupational hygiene measures. The recruitment, to date, of 140 participants and collection of all data and samples, enabled us launching the first international cohort of nanotechnology workers. All companies dealing with ENMs could join the NanoExplore Consortium, apply this harmonized protocol and enter in the cohort, concieved as an open cohort. Its protocol meets all requirements of a hypotheses-driven prospective study, which will assess and reassess effects of ENM exposure on workers' health by updating the follow-up of the cohort. New hypothesis could be also considered.
Collapse
Affiliation(s)
- Irina Guseva Canu
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Ekaterina Plys
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Camille Velarde Crézé
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Carlos Fito
- Institutotecnológico del embalaje, transporte y logística (ITENE), Paterna, Spain
| | - Nancy B Hopf
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | | | - Chiara Riganti
- Department of Oncology, University of Torino, Torino, Italy
| | - Jean-Jacques Sauvain
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Giulia Squillacioti
- Department of Public Health and Pediatrics, University of Torino, Torino, Italy
| | - Guillaume Suarez
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Pascal Wild
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Enrico Bergamaschi
- Department of Public Health and Pediatrics, University of Torino, Torino, Italy
| |
Collapse
|
15
|
Ghobakhloo S, Khoshakhlagh AH, Morais S, Mazaheri Tehrani A. Exposure to Volatile Organic Compounds in Paint Production Plants: Levels and Potential Human Health Risks. TOXICS 2023; 11:111. [PMID: 36850986 PMCID: PMC9961358 DOI: 10.3390/toxics11020111] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
A wide range of volatile organic solvents, including aliphatic and aromatic hydrocarbons, alcohols, and ketones, are used in the production of paints, and they comprise more than 30% of the ingredients of paints. The present study was designed to evaluate the occupational exposure to 15 volatile organic compounds (VOCs, including benzene, toluene, ethylbenzene, xylene, styrene, n-hexane, n-heptane, n-nonane, trichloroethylene, tetrachloroethylene, n-butyl acetate, n-octane, n-decane, dichlorofluoromethane, and acetone) in Iranian paint production factories and subsequently, the associated health risks. The samples were collected from the respiratory zone of workers using the NIOSH 1501 method, and their qualitative and quantitative characterization was performed using gas chromatography-mass spectrometry and gas chromatography-flame ionization detector, respectively. The individual concentrations of VOCs ranged from 23.76 ± 0.57 µg m-3 (acetone) to 92489.91 ± 0.65 µg m-3 (m,p-xylene). The predominant compounds were m,p-xylene (up to 92489.91 ± 0.65 µg m-3), ethylbenzene (up to 91188.95 ± 0.34 µg m-3), and toluene (up to 46088.84 ± 0.14 µg m-3). The non-cancer risks of benzene, n-nonane, trichloroethylene, tetrachloroethylene, xylene, and ethylbenzene surpassed the reference value in most of the sectors. In addition, total lifetime risks of cancer were in the range of 1.8 × 10-5-3.85 × 10-3, suggesting that there was a risk of carcinogenesis in all studied sections, mainly due to ethylbenzene and benzene. Considering their high exposure concentrations and their associated non-carcinogenic and carcinogenic risks, biological monitoring of workers and the use of technical and modern engineering control measures are recommended.
Collapse
Affiliation(s)
- Safiye Ghobakhloo
- Department of Environmental Health Engineering, School of Health, Kashan University of Medical Sciences, Kashan 8715988141, Iran
| | - Amir Hossein Khoshakhlagh
- Department of Occupational Health Engineering, School of Health, Kashan University of Medical Sciences, Kashan 8715988141, Iran
| | - Simone Morais
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal
| | - Ashraf Mazaheri Tehrani
- Department of Environmental Health Engineering, School of Health, Kashan University of Medical Sciences, Kashan 8715988141, Iran
| |
Collapse
|
16
|
Mazaheri Tehrani A, Bahrami A, Leili M, Poorolajal J, Zafari D, Samadi M, Mahvi AH. Investigation of seasonal variation and probabilistic risk assessment of BTEX emission in municipal solid waste transfer station. INTERNATIONAL JOURNAL OF ENVIRONMENTAL ANALYTICAL CHEMISTRY 2022; 102:6626-6639. [DOI: 10.1080/03067319.2020.1814269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/15/2020] [Indexed: 01/18/2023]
Affiliation(s)
- Ashraf Mazaheri Tehrani
- Department of Environment Health Engineering, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abdulrahman Bahrami
- Center of Excellence for Occupational Health, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mostafa Leili
- Department of Environment Health Engineering, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Jalal Poorolajal
- Department of Epidemiology, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
- Modeling of Noncommunicable Diseases Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Mohammadtaghi Samadi
- Department of Environment Health Engineering, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amir Hossein Mahvi
- Center for Air Pollution Research (CAPR), Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
- Center for Solid Waste Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Wambaugh JF, Rager JE. Exposure forecasting - ExpoCast - for data-poor chemicals in commerce and the environment. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2022; 32:783-793. [PMID: 36347934 PMCID: PMC9742338 DOI: 10.1038/s41370-022-00492-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 05/10/2023]
Abstract
Estimates of exposure are critical to prioritize and assess chemicals based on risk posed to public health and the environment. The U.S. Environmental Protection Agency (EPA) is responsible for regulating thousands of chemicals in commerce and the environment for which exposure data are limited. Since 2009 the EPA's ExpoCast ("Exposure Forecasting") project has sought to develop the data, tools, and evaluation approaches required to generate rapid and scientifically defensible exposure predictions for the full universe of existing and proposed commercial chemicals. This review article aims to summarize issues in exposure science that have been addressed through initiatives affiliated with ExpoCast. ExpoCast research has generally focused on chemical exposure as a statistical systems problem intended to inform thousands of chemicals. The project exists as a companion to EPA's ToxCast ("Toxicity Forecasting") project which has used in vitro high-throughput screening technologies to characterize potential hazard posed by thousands of chemicals for which there are limited toxicity data. Rapid prediction of chemical exposures and in vitro-in vivo extrapolation (IVIVE) of ToxCast data allow for prioritization based upon risk of adverse outcomes due to environmental chemical exposure. ExpoCast has developed (1) integrated modeling approaches to reliably predict exposure and IVIVE dose, (2) highly efficient screening tools for chemical prioritization, (3) efficient and affordable tools for generating new exposure and dose data, and (4) easily accessible exposure databases. The development of new exposure models and databases along with the application of technologies like non-targeted analysis and machine learning have transformed exposure science for data-poor chemicals. By developing high-throughput tools for chemical exposure analytics and translating those tools into public health decisions ExpoCast research has served as a crucible for identifying and addressing exposure science knowledge gaps.
Collapse
Affiliation(s)
- John F Wambaugh
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. EPA, Research Triangle Park, NC, USA.
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Julia E Rager
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
18
|
Paustenbach DJ, Gibbons RD. Radiological risk assessment of the Hunters Point Naval Shipyard (HPNS). Crit Rev Toxicol 2022; 52:499-545. [PMID: 36281736 DOI: 10.1080/10408444.2022.2118107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hunters Point Naval Shipyard in San Francisco, California was deemed a Superfund site by the USEPA in 1989 due to chemical and radiological contamination resulting from U.S. Navy operations from 1939 to 1974. During characterization and remediation efforts, over 50,000 radiological soil samples and 19,000 air samples were collected. This risk assessment, conducted in accordance with federal guidelines, represents the first comprehensive evaluation of past, present, and future health risks associated with radionuclides present at the site. The assessment indicated that before site remediation, most radionuclide soil concentrations were at or near local background concentrations. Had such low remedial goals not been established, significant remediation of surface soils would not have been necessary to protect human health. The pre-remediation lifetime incremental cancer morbidity risks for on-site workers and theoretical on-site residents due to radionuclide contamination were found to be 1.3 × 10-6 and 3.2 × 10-6, respectively. The post-remediation risks to future on-site residents were found to be 6.3 × 10-8 (without durable cover) and 3.7 × 10-8 (with durable cover), while post-remediation risks to on-site workers were found to be 2.6 × 10-8 (without durable cover) and 1.6 × 10-8 (with durable cover). Risk estimates for all scenarios were found to be significantly below the acceptable risk of 3 × 10-4 approved by regulatory agencies. Upwind and downwind air samples collected during remediation indicate that remediation activities never posed a measurable risk to off-site residents. This risk assessment emphasizes the importance of establishing clear and scientifically rigorous soil remedial goals at sites as well as understanding local radionuclide background concentrations.
Collapse
Affiliation(s)
| | - Robert D Gibbons
- Center for Health Statistics, University of Chicago, Chicago, IL, USA
| |
Collapse
|
19
|
Pérez-Vázquez FJ, González-Martell AD, Fernández-Macias JC, Rocha-Amador DO, González-Palomo AK, Ilizaliturri-Hernández CA, González-Mille DJ, Cilia-Lopez VG. Health risk assessment in children living in an urban area with hydrofluorosis: San Luis Potosí Mexico case study. J Trace Elem Med Biol 2021; 68:126863. [PMID: 34601282 DOI: 10.1016/j.jtemb.2021.126863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/23/2021] [Accepted: 09/13/2021] [Indexed: 12/07/2022]
Abstract
BACKGROUND Fluoride is an inorganic element, which can be found in high concentrations in groundwater. Its consumption and exposure have consequences on human health. The objective of this study was to evaluate fluoride exposure and develop a health risk assessment in children from an urban area with hydrofluorosis in Mexico. METHODS Water fluoride levels in active wells were provided by the Water State Agency and divided into three zones: agriculture zone (Zone A), metallurgical zone (Zone B), and industrial zone (Zone C). Urinary fluoride levels were determined by potentiometric method using an ion-selective electrode. Health risk assessment was performed through Monte Carlo model analysis and hazard quotient was calculated. RESULTS According to fluoride well concentration, all zones have high concentration especially Zone B (2.55 ± 0.98 mg/L). Urinary fluoride concentrations were highest in children in Zone B (1.42 ± 0.8 mg/L). The estimated median daily intake dose of fluoride was 0.084 mg/Kg-day for the children living in zone B. The highest mean HQ value was to Zone B (1.400 ± 0.980), followed by Zone C (0.626 ± 0.443). CONCLUSION The levels of fluoride exposure registered are a potential risk to generate adverse health effects in children in the San Luis Potosi metropolitan area.
Collapse
Affiliation(s)
- F J Pérez-Vázquez
- Coordinación para la Innovación y la Aplicación de la Ciencia y la Tecnología (CIACyT), Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona No 550, Colonia Lomas Segunda Sección, C.P. 78210, San Luis Potosí, S.L.P., Mexico; CONACYT Research Fellow, Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, C.P. 78210, San Luis Potosí, S.L.P., Mexico
| | - A D González-Martell
- Coordinación para la Innovación y la Aplicación de la Ciencia y la Tecnología (CIACyT), Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona No 550, Colonia Lomas Segunda Sección, C.P. 78210, San Luis Potosí, S.L.P., Mexico
| | - J C Fernández-Macias
- Coordinación para la Innovación y la Aplicación de la Ciencia y la Tecnología (CIACyT), Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona No 550, Colonia Lomas Segunda Sección, C.P. 78210, San Luis Potosí, S.L.P., Mexico
| | - D O Rocha-Amador
- Departamento de Farmacia, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Mexico
| | - A K González-Palomo
- Coordinación para la Innovación y la Aplicación de la Ciencia y la Tecnología (CIACyT), Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona No 550, Colonia Lomas Segunda Sección, C.P. 78210, San Luis Potosí, S.L.P., Mexico
| | | | - D J González-Mille
- CONACYT Research Fellow, Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, C.P. 78210, San Luis Potosí, S.L.P., Mexico
| | - V G Cilia-Lopez
- Facultad de Medicina-CIACYT, Universidad Autónoma de San Luis Potosí, Mexico.
| |
Collapse
|
20
|
Neitzel RL, Andersson M, Lohman S, Sällsten G, Torén K, Andersson E. Dust Exposures in Swedish Soft Tissue Paper Mills. Ann Work Expo Health 2021; 66:14-26. [PMID: 34409426 DOI: 10.1093/annweh/wxab063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 05/20/2021] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Paper dust has previously been linked to adverse health effects. However, a comprehensive dataset of paper dust exposures does not appear to have been published previously. Our study was intended to address this need by describing a large dataset of measurements made in Swedish soft tissue paper mills. METHODS We compiled personal and area total dust exposure measurements collected from a range of operations by our research staff at four soft tissue paper mills in Sweden. We also compiled measurements made by the occupational health staff at each mill and the Swedish Work Environment Authority. We analyzed these measurements to describe patterns and trends in exposures and used mixed-effects regression models to identify measurement characteristics that predicted exposure levels. RESULTS We compiled 1578 measurements from 1971 to 2009, of which 1026 (65%) were personal samples. Statistically significant differences were found between measurements made by research, mill, and Swedish Work Environment Authority staff, as well as between personal and area measurements. The measurement data suggest that, beginning in the 1980s, exposures declined at three of the four mills, but that overexposures were still common at the end of the period. Papermaking and converting operations had the highest observed dust exposures. One mill had significantly lower exposures than the others. Type of measurement (personal versus area) and source of measurement (research staff, company, or regulatory agency) were not significant predictors of measured total dust exposure after controlling for mill, operation, and time. CONCLUSIONS Our analysis of measured paper dust exposures may be useful for historical and contemporary exposure assessment in our own and other epidemiological studies. We have identified specific characteristics (i.e. papermaking operations and mill) and time trends that are important data features to consider, and documented continuing overexposure situations. Our results highlight the ongoing need for application of exposure controls to reduce paper dust exposures in the soft tissue paper industry.
Collapse
Affiliation(s)
- Richard L Neitzel
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Marianne Andersson
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Susanna Lohman
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Gerd Sällsten
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kjell Torén
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Eva Andersson
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
21
|
Eslami Z, Mahdavi V, Tajdar-Oranj B. Probabilistic health risk assessment based on Monte Carlo simulation for pesticide residues in date fruits of Iran. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:42037-42050. [PMID: 33797041 DOI: 10.1007/s11356-021-13542-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
The validation of an analytical procedure based on the quick, easy, cheap, effective, rugged, and safe (QuEChERS) approach is presented for multiresidue analysis of pesticides in dates by liquid chromatography-tandem mass spectrometry (UHPLC-MS2). The proposed methodology was applied for simultaneous quantification of 16 pesticides in 50 different date fruits. Method validation was performed regarding accuracy, precision, LDR, LOD, and LOQ, as well as matrix effects. Results of validation were satisfactory, with recoveries higher than 80% for 75% of the samples for 100- and 500- μg L-1 spike levels. Evaluation of the matrix effect revealed that for 81% of the samples, a slight matrix effect was observed. Residues in 92% of the real samples were found below national MRLs. Afterward, hazard quotient (HQ) and total hazard quotient (THQ) of human health risk assessment of pesticides was estimated using a probabilistic approach based on the Monte Carlo (MC) algorithm. Total hazard quotient (THQ) in adults based on the consumption of dates in total samples was estimated to be 7.8% and 36.7% for adults and children, respectively. Since the studied pesticides are registered in the country and are the most widely used pesticides on dates, the occurrence of other pesticide residues seems to be unlikely. Consequently, the applied health risk assessment on Iranian date fruit samples showed that the HQ for adults and children populations indicates no risk to human health.
Collapse
Affiliation(s)
- Zahra Eslami
- Mycobacteriology Research Centre (MRC), National Research Institute of Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahideh Mahdavi
- Agricultural Research, Education and Extension Organization (AREEO), Iranian Research Institute of Plant Protection, P.O. Box 1475744741, Tehran, Iran.
| | - Behrouz Tajdar-Oranj
- Student Research Committee, Department of Food Technology, Faculty of Nutrition Sciences and Food Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Mahdavi V, Eslami Z, Golmohammadi G, Tajdar-oranj B, Keikavousi Behbahan A, Mousavi Khaneghah A. Simultaneous determination of multiple pesticide residues in Iranian saffron: A probabilistic health risk assessment. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103915] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Dehghani F, Omidi F, Fallahzadeh RA, Pourhassan B. Health risk assessment of occupational exposure to heavy metals in a steel casting unit of a steelmaking plant using Monte-Carlo simulation technique. Toxicol Ind Health 2021; 37:431-440. [PMID: 34096392 DOI: 10.1177/07482337211019593] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The present work aimed to evaluate the health risks of occupational exposure to heavy metals in a steel casting unit of a steel plant. To determine occupational exposure to heavy metals, personal air samples were taken from the workers' breathing zones using the National Institute for Occupational Safety and Health method. Noncancer and cancer risks due to the measured metals were calculated according to the United States Environmental Protection Agency procedures. The results indicated that the noncancer risks owing to occupational exposure to lead (Pb) and manganese were higher than the recommended value in most of the workstations. The estimated cancer risk of Pb was also higher than the allowable value. Moreover, the results of sensitivity analysis indicated that the concentration, inhalation rate, and exposure duration were the most influencing variables contributing to the calculated risks. It was thus concluded that the present control measures were not adequate and further improvements were required for reducing the exposure levels.
Collapse
Affiliation(s)
- Fatemeh Dehghani
- Department of Occupational Health Engineering, School of Public Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fariborz Omidi
- Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Ali Fallahzadeh
- Genetic and Environmental Adventures Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Bahman Pourhassan
- Department of Occupational Health, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Liu J, Liu R, Zhang Z, Zhang H, Cai Y, Yang Z, Kuikka S. Copula-based exposure risk dynamic simulation of dual heavy metal mixed pollution accidents at the watershed scale. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 277:111481. [PMID: 33039701 DOI: 10.1016/j.jenvman.2020.111481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 09/12/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
Most heavy metal exposure and pollution results from multiple industrial activities, including metal processing in refineries, and microelectronics. These issues pose a great threat to human health, ecological balance, and even societal stability. During 2012-2017, China, in particular, faced the challenge of 23 heavy metals accidents, six of which were extraordinarily serious accidents. Accidental environmental pollution is rarely caused by a single heavy metal, but rather by heavy metal mixtures. To address the need for a joint exposure risk assessment for heavy metal mixed pollution accidents at the watershed scale, a Copula-based exposure risk dynamic simulation model was proposed. A coupled hydrodynamic and accidental heavy metal exposure model is constructed for an hourly simulation of the exposure fate of heavy metals from each risk source once accidental leakage has occurred. The Copula analysis was introduced to calculate the dual heavy metal joint exposure probability in real time. This method was applied to an acute Cr6+-Hg2+ joint exposure risk assessment for 43 electroplating plants in nine sub-watersheds within the Dongjiang River downstream basin. The results indicated seven risk sources (i.e., S1, S4, H18, H23, H27-H28, and H34) that presented relatively high exposure risk to their surrounding sub-watersheds. Spatially, the acute exposure risk level was highest in the tributary basin (sub-watershed XW) than in the mainstream (sub-watershed DW2) and the river network (sub-watershed RW) of the lower reaches of the Dongjiang River. This research highlights an effective probabilistic approach for performing a joint exposure risk analysis of heavy metal mixed pollution accidents at the watershed scale.
Collapse
Affiliation(s)
- Jing Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, Beijing, 100875, China.
| | - Renzhi Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, Beijing, 100875, China.
| | - Zhijiao Zhang
- Institute of Environmental Risk & Damages Assessment, Guangdong Provincial Academy of Environmental Science, Guangzhou, 510045, China.
| | - Hanwen Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, Beijing, 100875, China.
| | - Yanpeng Cai
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, Beijing, 100875, China; Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Zhifeng Yang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, Beijing, 100875, China.
| | - Sakari Kuikka
- University of Helsinki, Finland, Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, P.O Box 65, Viikinkaari 1, FI-00014, Helsinki, Finland.
| |
Collapse
|
25
|
Fernández-Macias JC, Ochoa-Martínez ÁC, Orta-García ST, Varela-Silva JA, Pérez-Maldonado IN. Probabilistic human health risk assessment associated with fluoride and arsenic co-occurrence in drinking water from the metropolitan area of San Luis Potosí, Mexico. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:712. [PMID: 33070268 DOI: 10.1007/s10661-020-08675-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
A major public health concern in Mexico is the natural contamination of groundwater with fluoride and arsenic. Therefore, this work aimed to evaluate the magnitude of human health risk after determining fluoride and arsenic concentrations in groundwater samples (n = 50) from the Metropolitan area of the city of San Luis Potosi, Mexico. Fluoride levels in water were determined via a potentiometric method using an ion-selective electrode. Arsenic concentrations in water samples were determined with an Atomic Absorption technique. Subsequently, a probabilistic health risk assessment was developed (Monte Carlo Analysis). Fluoride levels in water ranged from 0.20 to 3.50 mg/L. For arsenic, the mean level found in the assessed water samples was 15.5 ± 5.50 μg/L (range: 2.50-30.0 μg/L). In addition, when the probabilistic health risk assessment was completed, a mean HI (cumulative hazardous index) of higher than 1 was detected, indicating a high NCR (non-carcinogenic risk) for children and adults. According to the results found in this study, exposure protection campaigns are imperative in the Metropolitan area of the city of San Luis Potosí, Mexico, to successfully diminish exposure to arsenic and fluoride and, as a consequence, decrease the NCR in the population living in that region of Mexico.
Collapse
Affiliation(s)
- Juan C Fernández-Macias
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, 78210, San Luis Potosí, Mexico
| | - Ángeles C Ochoa-Martínez
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, 78210, San Luis Potosí, Mexico
| | - Sandra T Orta-García
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, 78210, San Luis Potosí, Mexico
| | - José A Varela-Silva
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, 78210, San Luis Potosí, Mexico
- Facultad de Enfermería, Universidad Autónoma de Zacatecas, Zacatecas, Zacatecas, Mexico
| | - Iván N Pérez-Maldonado
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico.
- Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, 78210, San Luis Potosí, Mexico.
| |
Collapse
|
26
|
Giri S, Singh AK, Mahato MK. Monte Carlo simulation-based probabilistic health risk assessment of metals in groundwater via ingestion pathway in the mining areas of Singhbhum copper belt, India. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2020; 30:447-460. [PMID: 30950638 DOI: 10.1080/09603123.2019.1599101] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 03/19/2019] [Indexed: 05/27/2023]
Abstract
Probabilistic health risk assessment was conducted for metal exposure through groundwater in mining areas of Singhbhum Copper Belt, India. The concentrations of metals showed notable spatial variation exceeding drinking water standards at some of the locations. Hazard Quotient revealed that chronic risks to the local population were largely contributed by Mn, Co and As. The 95th percentiles of Hazard Index (HI) calculated using Monte Carlo simulations showed that the HI for male, female and child populations was 2.87, 2.54 and 4.57 for pre-monsoon, 2.16, 1.88 and 3.49 for monsoon and 2.28, 2.02 and 3.75 for post-monsoon seasons, respectively. The Hazard Indices indicated that amongst the populations, risk was greater for child population and considering the seasons the risk was higher during the pre-monsoon season. The sensitivity analysis suggested that concentration of metals in groundwater and exposure duration were 2 most influential input variables that contributed to the total risk.
Collapse
Affiliation(s)
- Soma Giri
- CSIR-Central Institute of Mining and Fuel Research, Natural Resources and Environmental Management Group , Dhanbad, India
| | - Abhay Kumar Singh
- CSIR-Central Institute of Mining and Fuel Research, Natural Resources and Environmental Management Group , Dhanbad, India
| | - Mukesh Kumar Mahato
- CSIR-Central Institute of Mining and Fuel Research, Natural Resources and Environmental Management Group , Dhanbad, India
| |
Collapse
|
27
|
Omidi F, Dehghani F, Fallahzadeh RA, Miri M, Taghavi M, Eynipour A. Probabilistic risk assessment of occupational exposure to volatile organic compounds in the rendering plant of a poultry slaughterhouse. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 176:132-136. [PMID: 30925329 DOI: 10.1016/j.ecoenv.2019.03.079] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 01/21/2019] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Abstract
In this study, occupational exposure to volatile organic compounds (VOCs) in the rendering plant of poultry slaughterhouse was determined and subsequently, carcinogen and non-carcinogenic risks were assessed using the US Environmental Protection Agency (USEPA). National Institute for Occupational Safety and Health (NIOSH) methods of 1501 and 1600 were used to measure VOCs in the breathing zone of the workers. Samples were analyzed by GC/MS. Carcinogenic and non-carcinogenic risks and sensitivity analysis were carried out using Monte Carlo simulations technique. The concentration of benzene and CS2 was higher than the occupational exposure limits (OEL). The hazard quotient (HQ) values for all measured compounds was more than 1, which indicating the high potential for non-carcinogenic risks. Furthermore, the calculated Lifetime Cancer Risks (LCR) for carcinogenic compounds revealed that cancer risk due to benzene is higher than the maximum acceptable level provided by USEPA (10-6). Based on the sensitivity analysis, the concentration and exposure frequency are the most important variable influencing both carcinogen and non-carcinogenic risks. Therefore, the concentration levels of the VOCs and exposure frequency should be controlled using engineering control measures.
Collapse
Affiliation(s)
- Fariborz Omidi
- Department of Occupational Health Engineering, School of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fateme Dehghani
- Department of Occupational Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Ali Fallahzadeh
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, Member of Student Research Committee, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Mohammad Miri
- Cellular and Molecular Research Center, Department of Environmental Health, School of Public Health, Sabzevar University of Medical Sciences, Sabzevar, Iran.
| | - Mahmoud Taghavi
- Department of Environmental Health, School of Public Health, Social Development & Promotion Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Abouzar Eynipour
- Department of Ergonomics, School of Health, Hamedan University of Medical Sciences, Hamedan, Iran
| |
Collapse
|
28
|
Venisse N, Cambien G, Robin J, Rouillon S, Nadeau C, Charles T, Rabouan S, Migeot V, Dupuis A. Development and validation of an LC-MS/MS method for the simultaneous determination of bisphenol A and its chlorinated derivatives in adipose tissue. Talanta 2019; 204:145-152. [PMID: 31357276 DOI: 10.1016/j.talanta.2019.05.103] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/22/2019] [Accepted: 05/27/2019] [Indexed: 11/24/2022]
Abstract
Bisphenol A (BPA) and its chlorinated derivatives (Clx-BPA) are environmental pollutants exhibiting endocrine-disrupting (ED) properties suspected to be involved in the pathogenesis of hormone-dependent cancers, such as breast and prostate cancers. Due to their lipophilic properties, they may accumulate in adipose tissue which could therefore be a suitable matrix to assess long-term exposure to these compounds and relationships with the tumorigenesis of these cancers. An LC-MS/MS assay for the determination of BPA and Clx-BPA in adipose tissue samples was developed and fully validated according to current bioanalytical validation guidelines. Ionization was achieved using an electrospray source operating in the negative mode and quantification of target analytes was obtained in the multiple reaction monitoring mode. Both standard and quality control (QC) samples were prepared in blank adipose tissue samples. Linearity was demonstrated over the ranges 0.125 to 8.000 and 0.0125-0.8000 ng/mL for BPA and Clx-BPA, respectively. Accuracy and precision were demonstrated over the whole concentration range: intra and inter-day bias values were in the 85-114% range and imprecision of the method did not exceed 14%. Lower limits of quantification were validated using QCs at 0.1250 and 0.0125 ng/mL for BPA and Clx-BPA, respectively. Internal standard-corrected matrix effects were comparable in breast and prostate adipose tissues, demonstrating that this method could be used to reliably assay BPA and Clx-BPA in both tissues. The method was sensitive enough to determine BPA and Clx-BPA in breast adipose tissue obtained from women undergoing breast surgery, enabling identification of different patterns of exposure to these ED chemicals. The method enables the reliable quantification of BPA and Clx-BPA in adipose tissue and could be used to assess long-term exposure to these compounds and potential associations with hormone-dependent cancers.
Collapse
Affiliation(s)
- Nicolas Venisse
- INSERM, University Hospital of Poitiers, University of Poitiers, CIC1402, HEDEX Research Group, 86021, Poitiers Cedex, France; Biology-Pharmacy-Public Health Department, University Hospital of Poitiers, 2 Rue de la Milétrie, 86021, Poitiers Cedex, France.
| | - Guillaume Cambien
- INSERM, University Hospital of Poitiers, University of Poitiers, CIC1402, HEDEX Research Group, 86021, Poitiers Cedex, France; Biology-Pharmacy-Public Health Department, University Hospital of Poitiers, 2 Rue de la Milétrie, 86021, Poitiers Cedex, France
| | - Julien Robin
- Biology-Pharmacy-Public Health Department, University Hospital of Poitiers, 2 Rue de la Milétrie, 86021, Poitiers Cedex, France
| | - Steeve Rouillon
- INSERM, University Hospital of Poitiers, University of Poitiers, CIC1402, HEDEX Research Group, 86021, Poitiers Cedex, France; Biology-Pharmacy-Public Health Department, University Hospital of Poitiers, 2 Rue de la Milétrie, 86021, Poitiers Cedex, France
| | - Cédric Nadeau
- Department of Gynecology and Obstetrics, University Hospital of Poitiers, 2 Rue de la Milétrie, 86021, Poitiers Cedex, France
| | - Thomas Charles
- Department of Urology, University Hospital of Poitiers, 2 Rue de la Milétrie, 86021, Poitiers Cedex, France
| | - Sylvie Rabouan
- INSERM, University Hospital of Poitiers, University of Poitiers, CIC1402, HEDEX Research Group, 86021, Poitiers Cedex, France; Biology-Pharmacy-Public Health Department, University Hospital of Poitiers, 2 Rue de la Milétrie, 86021, Poitiers Cedex, France; Faculty of Medicine and Pharmacy, University of Poitiers, TSA 51115, 86073, Poitiers Cedex, France
| | - Virginie Migeot
- INSERM, University Hospital of Poitiers, University of Poitiers, CIC1402, HEDEX Research Group, 86021, Poitiers Cedex, France; Biology-Pharmacy-Public Health Department, University Hospital of Poitiers, 2 Rue de la Milétrie, 86021, Poitiers Cedex, France; Faculty of Medicine and Pharmacy, University of Poitiers, TSA 51115, 86073, Poitiers Cedex, France
| | - Antoine Dupuis
- INSERM, University Hospital of Poitiers, University of Poitiers, CIC1402, HEDEX Research Group, 86021, Poitiers Cedex, France; Biology-Pharmacy-Public Health Department, University Hospital of Poitiers, 2 Rue de la Milétrie, 86021, Poitiers Cedex, France; Faculty of Medicine and Pharmacy, University of Poitiers, TSA 51115, 86073, Poitiers Cedex, France
| |
Collapse
|
29
|
Dėdelė A, Miškinytė A, Gražulevičienė R. The impact of particulate matter on allergy risk among adults: integrated exposure assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:10070-10082. [PMID: 30756350 DOI: 10.1007/s11356-019-04442-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 01/30/2019] [Indexed: 06/09/2023]
Abstract
Exposure assessment is an important part in environmental epidemiology for determining the associations of environmental factors with health effects. One of the greatest challenges for personal exposure assessment is associated with peoples' mobility during the day and spatial and temporal dynamics of air pollution. In this study, the impact of PM10 (particulate matter less than 10 μm) on allergy risk among adults was assessed using objective methods of exposure assessment. The primary objective of the present study was to estimate personal exposure to PM10 based on individual daily movement patterns. Significant differences between the concentration of PM10 in different microenvironments (MEs) and personal exposure to PM10 were determined. Home exposure accounted for the largest part of PM10 exposure. Thirty-five percent of PM10 exposure was received in other non-home MEs. Allergy risk increased significantly with increasing exposure to PM10. Adults exposed to the highest levels of PM10 exposure had a twice-higher risk of allergies than adults exposed to the lowest levels of PM10 exposure. The study results have practical relevance for exposure assessment to environmental factors and its impact on health effects.
Collapse
Affiliation(s)
- Audrius Dėdelė
- Department of Environmental Sciences, Faculty of Natural Sciences, Vytautas Magnus University, Vileikos Street 8, 44404, Kaunas, Lithuania.
| | - Auksė Miškinytė
- Department of Environmental Sciences, Faculty of Natural Sciences, Vytautas Magnus University, Vileikos Street 8, 44404, Kaunas, Lithuania
| | - Regina Gražulevičienė
- Department of Environmental Sciences, Faculty of Natural Sciences, Vytautas Magnus University, Vileikos Street 8, 44404, Kaunas, Lithuania
| |
Collapse
|
30
|
Effects of Individual and Environmental Factors on GPS-Based Time Allocation in Urban Microenvironments Using GIS. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8102007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Time-activity patterns are an essential part of personal exposure assessment to various environmental factors. People move through different environments during the day and they have different daily activity patterns which are significantly influenced by individual characteristics and the residential environment. In this study, time spent in different microenvironments (MEs) were assessed for 125 participants for 7 consecutive days to evaluate the impact of individual characteristics on time-activity patterns in Kaunas, Lithuania. The data were collected with personal questionnaires and diaries. The global positioning system (GPS) sensor integrated into a smartphone was used to track daily movements and to assess time-activity patterns. The study results showed that behavioral and residential greenness have a statistically significant impact on time spent indoors. These results underline the high influence of the individual characteristics and environmental factors on time spent indoors, which is an important determinant for exposure assessment and health impact assessment studies.
Collapse
|
31
|
Aquilina NJ, Delgado-Saborit JM, Bugelli S, Ginies JP, Harrison RM. Comparison of Machine Learning Approaches with a General Linear Model To Predict Personal Exposure to Benzene. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:11215-11222. [PMID: 30169027 DOI: 10.1021/acs.est.8b03328] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Machine learning techniques (MLTs) offer great power in analyzing complex data sets and have not previously been applied to non-occupational pollutant exposure. MLT models that can predict personal exposure to benzene have been developed and compared with a standard model using a linear regression approach (GLM). The models were tested against independent data sets obtained from three personal exposure measurement campaigns. A correlation-based feature subset (CFS) selection algorithm identified a reduced attribute set, with common attributes grouped under the use of paints in homes, upholstery materials, space heating, and environmental tobacco smoke as the attributes suitable to predict the personal exposure to benzene. Personal exposure was categorized as low, medium, and high, and for big data sets, both the GLM and MLTs show high variability in performance to correctly classify greater than 90 percentile concentrations, but the MLT models have a higher score when accounting for divergence of incorrectly classified cases. Overall, the MLTs perform at least as well as the GLM and avoid the need to input microenvironment concentrations.
Collapse
Affiliation(s)
- Noel J Aquilina
- Division of Environmental Health and Risk Management School of Geography, Earth and Environmental Sciences , University of Birmingham , Edgbaston, Birmingham , B15 2TT , United Kingdom
- Department of Geosciences Faculty of Science , University of Malta , Msida , MSD 2080 , Malta
| | - Juana Maria Delgado-Saborit
- Division of Environmental Health and Risk Management School of Geography, Earth and Environmental Sciences , University of Birmingham , Edgbaston, Birmingham , B15 2TT , United Kingdom
| | - Stefano Bugelli
- Department of Physics Faculty of Science , University of Malta , Msida , MSD 2080 , Malta
| | - Jason Padovani Ginies
- Department of Physics Faculty of Science , University of Malta , Msida , MSD 2080 , Malta
| | - Roy M Harrison
- Division of Environmental Health and Risk Management School of Geography, Earth and Environmental Sciences , University of Birmingham , Edgbaston, Birmingham , B15 2TT , United Kingdom
| |
Collapse
|
32
|
Dehghani F, Omidi F, Heravizadeh O, Barati Chamgordani S, Gharibi V, Sotoudeh Manesh A. Occupational health risk assessment of volatile organic compounds emitted from the coke production unit of a steel plant. INTERNATIONAL JOURNAL OF OCCUPATIONAL SAFETY AND ERGONOMICS 2018; 26:227-232. [DOI: 10.1080/10803548.2018.1443593] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Fateme Dehghani
- Department of Occupational Health Engineering, Tehran University of Medical Sciences, Iran
| | - Fariborz Omidi
- Department of Occupational Health Engineering, Tehran University of Medical Sciences, Iran
| | - Omidreza Heravizadeh
- Department of Occupational Health Engineering, Tehran University of Medical Sciences, Iran
| | | | - Vahid Gharibi
- Environmental and Occupational Health Research Center, Shahroud University of Medical Sciences, Iran
| | | |
Collapse
|
33
|
|
34
|
Fernández-Navarro P, García-Pérez J, Ramis R, Boldo E, López-Abente G. Industrial pollution and cancer in Spain: An important public health issue. ENVIRONMENTAL RESEARCH 2017; 159:555-563. [PMID: 28889025 DOI: 10.1016/j.envres.2017.08.049] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 07/18/2017] [Accepted: 08/24/2017] [Indexed: 06/07/2023]
Abstract
Cancer can be caused by exposure to air pollution released by industrial facilities. The European Pollutant Release and Transfer Register (E-PRTR) has made it possible to study exposure to industrial pollution. This study seeks to describe the industrial emissions in the vicinity of Spanish towns and their temporal changes, and review our experience studying industrial pollution and cancer. Data on industrial pollutant sources (2007-2010) were obtained from the E-PRTR registries. Population exposure was estimated by the distance from towns to industrial facilities. We calculated the amount of carcinogens emitted into the air in the proximity (<5km) of towns and show them in municipal maps. We summarized the most relevant results and conclusions reported by ecological E-PRTR-based on studies of cancer mortality and industrial pollution in Spain and the limitations and result interpretations of these types of studies. There are high amounts of carcinogen emissions in the proximity of towns in the southwest, east and north of the country and the total amount of emitted carcinogens is considerable (e.g. 20Mt of arsenic, 63Mt of chromium and 9Mt of cadmium). Although the emissions of some carcinogens in the proximity of certain towns were reduced during the study period, emissions of benzene, dioxins+furans and polychlorinated biphenyls rose. Moreover, the average population of towns lying within a 5km radius from emission sources of carcinogens included in the International Agency for Research on Cancer list of carcinogens was 9 million persons. On the other hand, the results of the reviewed studies suggest that those Spanish regions exposed to the pollution released by certain types of industrial facilities have around 17% cancer excess mortality when compared with those unexposed. Moreover, excess mortality is focused on digestive and respiratory tract cancers, leukemias, prostate, breast and ovarian cancers. Despite their limitations, ecological studies are a useful tool in environmental epidemiology, not only for proposing etiological hypotheses about the risk of living close to industrial pollutant sources, but also for providing data to account for situations of higher mortality in specific areas. Nevertheless, the reduction of emissions should be a goal, with special relevance given to establishing limits for known carcinogens and other toxic substances in the environs of population centers, as well as industry-specific emission limits.
Collapse
Affiliation(s)
- Pablo Fernández-Navarro
- Cancer and Environmental Epidemiology Unit, National Center for Epidemiology, Carlos III Institute of Health, Avda. Monforte de Lemos, 5, 28029 Madrid, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain.
| | - Javier García-Pérez
- Cancer and Environmental Epidemiology Unit, National Center for Epidemiology, Carlos III Institute of Health, Avda. Monforte de Lemos, 5, 28029 Madrid, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain
| | - Rebeca Ramis
- Cancer and Environmental Epidemiology Unit, National Center for Epidemiology, Carlos III Institute of Health, Avda. Monforte de Lemos, 5, 28029 Madrid, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain
| | - Elena Boldo
- Cancer and Environmental Epidemiology Unit, National Center for Epidemiology, Carlos III Institute of Health, Avda. Monforte de Lemos, 5, 28029 Madrid, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain
| | - Gonzalo López-Abente
- Cancer and Environmental Epidemiology Unit, National Center for Epidemiology, Carlos III Institute of Health, Avda. Monforte de Lemos, 5, 28029 Madrid, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain
| |
Collapse
|
35
|
Yin W, Hou J, Xu T, Cheng J, Wang X, Jiao S, Wang L, Huang C, Zhang Y, Yuan J. Association of individual-level concentrations and human respiratory tract deposited doses of fine particulate matter with alternation in blood pressure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 230:621-631. [PMID: 28710980 DOI: 10.1016/j.envpol.2017.07.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 06/13/2017] [Accepted: 07/03/2017] [Indexed: 06/07/2023]
Abstract
Fine particulate matter (PM2.5) contributes to the risk of cardiovascular events, partially owing to its deposition in the human respiratory tract. To investigate short-term effects of ambient PM2.5 exposure on alternation of blood pressure (BP), this study was conducted during the winter-summer period between 2014 and 2015. The study included 106 community residents in Wuhan city, China. We repeatedly monitored the household and outdoor PM2.5 concentrations as well as individual-level PM2.5 in each season, and then assessed personal PM2.5 exposure (including deposited doses of PM2.5 in the human respiratory tract) by using different methodology (such as using a dosimetry model). All participants took part in the physical examination, including the inflammatory indicators, BP and lung function parameters measurements. Subsequently, we assessed the health damage of exposure to PM2.5 using generalized additive models. We observed increased BP at 2-day lag for an interquartile range increase in ambient fixed-site, households, individual-level PM2.5 exposure and the corresponding lung deposited doses of each exposure concentration (p < 0.05), decreased BP at 3-day lag for an interquartile range increase in ambient fixed-site, households PM2.5 and the corresponding lung deposited doses of each exposure concentration (p < 0.05). The estimated deposited doses of PM2.5 by the deposition fractions in this study and the referenced deposition fractions by previous reported method were equivalent associated with alternation in BP. In conclusion, lung deposited dose of PM2.5 as a quantitative indicator may be used to assess adverse cardiovascular effects following the systemic inflammation. However, we require careful assessment of acute adverse cardiovascular effects using ambient fixed-site PM2.5 after short-term PM2.5 exposure.
Collapse
Affiliation(s)
- Wenjun Yin
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China
| | - Jian Hou
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China
| | - Tian Xu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China
| | - Juan Cheng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China
| | - Xiaoying Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China
| | - Shilin Jiao
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China
| | - Lin Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China
| | - Cheng Huang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China
| | - Youjian Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China
| | - Jing Yuan
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China.
| |
Collapse
|
36
|
Cely-García MF, Curriero FC, Sánchez-Silva M, Breysse PN, Giraldo M, Méndez L, Torres-Duque C, Durán M, González-García M, Parada P, Ramos-Bonilla JP. Estimation of personal exposure to asbestos of brake repair workers. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2017; 27:417-426. [PMID: 27966665 DOI: 10.1038/jes.2016.76] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 09/30/2016] [Accepted: 10/15/2016] [Indexed: 06/06/2023]
Abstract
Exposure assessments are key tools to conduct epidemiological studies. Since 2010, 28 riveters from 18 brake repair shops with different characteristics and workloads were sampled for asbestos exposure in Bogotá, Colombia. Short-term personal samples collected during manipulation activities of brake products, and personal samples collected during non-manipulation activities were used to calculate 103 8-h TWA PCM-equivalent personal asbestos concentrations. The aims of this study are to identify exposure determinant variables associated with the 8-h TWA personal asbestos concentrations among brake mechanics, and propose different models to estimate potential asbestos exposure of brake mechanics in an 8-h work-shift. Longitudinal-based multivariate linear regression models were used to determine the association between personal asbestos concentrations in a work-shift with different variables related to work tasks and workload of the mechanics, and some characteristics of the shops. Monte Carlo simulations were used to estimate the 8-h TWA PCM-Eq personal asbestos concentration in work-shifts that had manipulations of brake products or cleaning activities of the manipulation area, using the results of the sampling campaigns. The simulations proposed could be applied for both current and retrospective studies to determine personal asbestos exposures of brake mechanics, without the need of sampling campaigns or historical data of air asbestos concentrations.
Collapse
Affiliation(s)
| | - Frank C Curriero
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Mauricio Sánchez-Silva
- Department of Civil and Environmental Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - Patrick N Breysse
- Department of Environmental Health Sciences, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD, USA
| | - Margarita Giraldo
- Department of Civil and Environmental Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - Lorena Méndez
- Department of Civil and Environmental Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - Carlos Torres-Duque
- Research Department, Fundación Neumológica Colombiana, Bogotá, Colombia
- Medical Department, Fundación Neumológica Colombiana, Bogotá, Colombia
| | - Mauricio Durán
- Medical Department, Fundación Neumológica Colombiana, Bogotá, Colombia
| | | | - Patricia Parada
- Research Department, Fundación Neumológica Colombiana, Bogotá, Colombia
| | | |
Collapse
|
37
|
Yin H, Pizzol M, Xu L. External costs of PM2.5 pollution in Beijing, China: Uncertainty analysis of multiple health impacts and costs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 226:356-369. [PMID: 28410806 DOI: 10.1016/j.envpol.2017.02.029] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 02/02/2017] [Accepted: 02/14/2017] [Indexed: 05/18/2023]
Abstract
Some cities in China are facing serious air pollution problems including high concentrations of particles, SO2 and NOx. Exposure to PM2.5, one of the primary air pollutants in many cities in China, is highly correlated with various adverse health impacts and ultimately represents a cost for society. The aim of this study is to assess health impacts and external costs related to PM2.5 pollution in Beijing, China with different baseline concentrations and valuation methods. The idea is to provide a reasonable estimate of the total health impacts and external cost due to PM2.5 pollution, as well as a quantification of the relevant uncertainty. PM2.5 concentrations were retrieved for the entire 2012 period in 16 districts of Beijing. The various PM2.5 related health impacts were identified and classified to avoid double counting. Exposure-response coefficients were then obtained from literature. Both the value of statistical life (VSL) and the amended human capital (AHC) approach were applied for external costs estimation, which could provide the upper and lower bound of the external costs due to PM2.5. To fully understand the uncertainty levels, the external cost distribution was determined via Monte Carlo simulation based on the uncertainty of the parameters such as PM2.5 concentration, exposure-response coefficients, and economic cost per case. The results showed that the external costs were equivalent to around 0.3% (AHC, China's guideline: C0 = 35 μg/m3) to 0.9% (VSL, WHO guideline: C0 = 10 μg/m3) of regional GDP depending on the valuation method and on the assumed baseline PM2.5 concentration (C0). Among all the health impacts, the economic loss due to premature deaths accounted for more than 80% of the overall external costs. The results of this study could help policymakers prioritizing the PM2.5 pollution control interventions and internalize the external costs through the application of economic policy instruments.
Collapse
Affiliation(s)
- Hao Yin
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, Beijing 100875, China; Department of Development and Planning, Danish Centre for Environmental Assessment, Aalborg University, Rendsburggade 14, 9000 Aalborg, Denmark
| | - Massimo Pizzol
- Department of Development and Planning, Danish Centre for Environmental Assessment, Aalborg University, Rendsburggade 14, 9000 Aalborg, Denmark
| | - Linyu Xu
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, Beijing 100875, China.
| |
Collapse
|
38
|
Smith JN, Carver ZA, Weber TJ, Timchalk C. Predicting Transport of 3,5,6-Trichloro-2-Pyridinol Into Saliva Using a Combination Experimental and Computational Approach. Toxicol Sci 2017; 157:438-450. [PMID: 28402492 DOI: 10.1093/toxsci/kfx055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A combination experimental and computational approach was developed to predict chemical transport into saliva. A serous-acinar chemical transport assay was established to measure chemical transport with nonphysiological (standard cell culture medium) and physiological (using surrogate plasma and saliva medium) conditions using 3,5,6-trichloro-2-pyridinol (TCPy) a metabolite of the pesticide chlorpyrifos. High levels of TCPy protein binding were observed in cell culture medium and rat plasma resulting in different TCPy transport behaviors in the 2 experimental conditions. In the nonphysiological transport experiment, TCPy reached equilibrium at equivalent concentrations in apical and basolateral chambers. At higher TCPy doses, increased unbound TCPy was observed, and TCPy concentrations in apical and basolateral chambers reached equilibrium faster than lower doses, suggesting only unbound TCPy is able to cross the cellular monolayer. In the physiological experiment, TCPy transport was slower than nonphysiological conditions, and equilibrium was achieved at different concentrations in apical and basolateral chambers at a comparable ratio (0.034) to what was previously measured in rats dosed with TCPy (saliva:blood ratio: 0.049). A cellular transport computational model was developed based on TCPy protein binding kinetics and simulated all transport experiments reasonably well using different permeability coefficients for the 2 experimental conditions (1.14 vs 0.4 cm/h for nonphysiological and physiological experiments, respectively). The computational model was integrated into a physiologically based pharmacokinetic model and accurately predicted TCPy concentrations in saliva of rats dosed with TCPy. Overall, this study demonstrates an approach to predict chemical transport in saliva, potentially increasing the utility of salivary biomonitoring in the future.
Collapse
Affiliation(s)
- Jordan Ned Smith
- Health Impacts and Exposure Science, Pacific Northwest National Laboratory (PNNL), Richland, Washington, USA
| | - Zana A Carver
- Health Impacts and Exposure Science, Pacific Northwest National Laboratory (PNNL), Richland, Washington, USA
| | - Thomas J Weber
- Health Impacts and Exposure Science, Pacific Northwest National Laboratory (PNNL), Richland, Washington, USA
| | - Charles Timchalk
- Health Impacts and Exposure Science, Pacific Northwest National Laboratory (PNNL), Richland, Washington, USA
| |
Collapse
|
39
|
Bevan R, Brown T, Matthies F, Sams C, Jones K, Hanlon J, La Vedrine M. Human biomonitoring data collection from occupational exposure to pesticides. ACTA ACUST UNITED AC 2017. [DOI: 10.2903/sp.efsa.2017.en-1185] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
40
|
Weber TJ, Smith JN, Carver ZA, Timchalk C. Non-invasive saliva human biomonitoring: development of an in vitro platform. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2017; 27:72-77. [PMID: 26555474 DOI: 10.1038/jes.2015.74] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/30/2015] [Accepted: 10/01/2015] [Indexed: 06/05/2023]
Abstract
Direct measurements of exposure represent the most accurate assessment of a subject's true exposure. The clearance of many drugs and chemicals, including pesticides such as chlorpyrifos (CPF), can be detected non-invasively in saliva. Here we have developed a serous-acinar transwell model system as an in vitro screening platform to prioritize chemicals for non-invasive biomonitoring through salivary clearance mechanisms. Rat primary serous-acinar cells express both α-amylase and aquaporin-5 proteins and develop significant tight junctions at postconfluence - a feature necessary for chemical transport studies in vitro. CPF exhibited bidirectional passage across the serous-acinar barrier that was disproportional to the passage of a cell impermeable chemical (lucifer yellow), consistent with a hypothesized passive diffusion process. CPF was metabolized to trichlorpyridinol (TCPy) by serous-acinar cells, and TCPy also displayed bidirectional diffusion in the transwell assay. This model system should prove useful as an in vitro screening platform to support the non-invasive monitoring of toxicons and pharmacons in human saliva and provide guidance for development of advanced in vitro screening platforms utilizing primary human salivary gland epithelial cells.
Collapse
Affiliation(s)
- Thomas J Weber
- Pacific Northwest National Laboratory, Health Impacts and Exposure Science Group, Richland, WA, USA
| | - Jordan N Smith
- Pacific Northwest National Laboratory, Health Impacts and Exposure Science Group, Richland, WA, USA
| | - Zana A Carver
- Pacific Northwest National Laboratory, Health Impacts and Exposure Science Group, Richland, WA, USA
| | - Charles Timchalk
- Pacific Northwest National Laboratory, Health Impacts and Exposure Science Group, Richland, WA, USA
| |
Collapse
|
41
|
Han B, Hu LW, Bai Z. Human Exposure Assessment for Air Pollution. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1017:27-57. [PMID: 29177958 DOI: 10.1007/978-981-10-5657-4_3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Assessment of human exposure to air pollution is a fundamental part of the more general process of health risk assessment. The measurement methods for exposure assessment now include personal exposure monitoring, indoor-outdoor sampling, mobile monitoring, and exposure assessment modeling (such as proximity models, interpolation model, air dispersion models, and land-use regression (LUR) models). Among these methods, personal exposure measurement is considered to be the most accurate method of pollutant exposure assessment until now, since it can better quantify observed differences and better reflect exposure among smaller groups of people at ground level. And since the great differences of geographical environment, source distribution, pollution characteristics, economic conditions, and living habits, there is a wide range of differences between indoor, outdoor, and individual air pollution exposure in different regions of China. In general, the indoor particles in most Chinese families comprise infiltrated outdoor particles, particles generated indoors, and a few secondary organic aerosol particles, and in most cases, outdoor particle pollution concentrations are a major contributor to indoor concentrations in China. Furthermore, since the time, energy, and expense are limited, it is difficult to measure the concentration of pollutants for each individual. In recent years, obtaining the concentration of air pollutants by using a variety of exposure assessment models is becoming a main method which could solve the problem of the increasing number of individuals in epidemiology studies.
Collapse
Affiliation(s)
- Bin Han
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.,Atmospheric Chemistry & Aerosol Division, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Li-Wen Hu
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, 74 Zhongshan 2nd Road, Yuexiu District,, Guangzhou, 510080, Guangdong, China
| | - Zhipeng Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China. .,Atmospheric Chemistry & Aerosol Division, Chinese Research Academy of Environmental Sciences, Beijing, China.
| |
Collapse
|
42
|
Grelat N, Houot H, Pujol S, Levain JP, Defrance J, Mariet AS, Mauny F. Noise Annoyance in Urban Children: A Cross-Sectional Population-Based Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:E1056. [PMID: 27801858 PMCID: PMC5129266 DOI: 10.3390/ijerph13111056] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 09/29/2016] [Accepted: 10/19/2016] [Indexed: 11/17/2022]
Abstract
Acoustical and non-acoustical factors influencing noise annoyance in adults have been well-documented in recent years; however, similar knowledge is lacking in children. The aim of this study was to quantify the annoyance caused by chronic ambient noise at home in children and to assess the relationship between these children's noise annoyance level and individual and contextual factors in the surrounding urban area. A cross sectional population-based study was conducted including 517 children attending primary school in a European city. Noise annoyance was measured using a self-report questionnaire adapted for children. Six noise exposure level indicators were built at different locations at increasing distances from the child's bedroom window using a validated strategic noise map. Multilevel logistic models were constructed to investigate factors associated with noise annoyance in children. Noise indicators in front of the child's bedroom (p ≤ 0.01), family residential satisfaction (p ≤ 0.03) and socioeconomic characteristics of the individuals and their neighbourhood (p ≤ 0.05) remained associated with child annoyance. These findings illustrate the complex relationships between our environment, how we may perceive it, social factors and health. Better understanding of these relationships will undoubtedly allow us to more effectively quantify the actual effect of noise on human health.
Collapse
Affiliation(s)
- Natacha Grelat
- Centre Hospitalier Régional Universitaire de Besançon, Centre de Méthodologie Clinique, 2 place Saint Jacques, 25030 Besançon Cedex, France.
- Laboratoire Chrono-Environnement, UMR 6249 Centre National de la Recherche Scientifique/Université de Bourgogne Franche-Comté, 2 place Saint Jacques, 25030 Besançon Cedex, France.
| | - Hélène Houot
- Laboratoire ThéMA, UMR 6049 Centre National de la Recherche Scientifique/Université de Bourgogne Franche-Comté, UFR Lettres SHS, 32 rue Mégevand, 25030 Besançon Cedex, France.
| | - Sophie Pujol
- Centre Hospitalier Régional Universitaire de Besançon, Centre de Méthodologie Clinique, 2 place Saint Jacques, 25030 Besançon Cedex, France.
- Laboratoire Chrono-Environnement, UMR 6249 Centre National de la Recherche Scientifique/Université de Bourgogne Franche-Comté, 2 place Saint Jacques, 25030 Besançon Cedex, France.
| | - Jean-Pierre Levain
- Laboratoire de Psychologie EA 3188, 3 rue Mégevand, 25032 Besançon Cedex, France.
| | - Jérôme Defrance
- Division Acoustique Environnementale et Urbaine, Centre Scientifique et Technique du Bâtiment (CSTB), 24, rue Joseph Fourier, 38400 Saint-Martin-d'Hères, France.
| | - Anne-Sophie Mariet
- CHRU Dijon, Service de Biostatistique et d'Informatique Médicale (DIM), Université de Bourgogne, F-21000 Dijon, France.
- INSERM, CIC 1432, Dijon University Hospital, Clinical Investigation Center, Clinical Epidemiology/Clinical Trials Unit, F-21000 Dijon, France.
- INSERM UMR 1181, Biostatistics, Biomathematics, Pharmacoepidemiology and Infectious Diseases (B2PHI), Université de Bourgogne, F-21000 Dijon, France.
| | - Frédéric Mauny
- Centre Hospitalier Régional Universitaire de Besançon, Centre de Méthodologie Clinique, 2 place Saint Jacques, 25030 Besançon Cedex, France.
- Laboratoire Chrono-Environnement, UMR 6249 Centre National de la Recherche Scientifique/Université de Bourgogne Franche-Comté, 2 place Saint Jacques, 25030 Besançon Cedex, France.
| |
Collapse
|
43
|
Gong X, Zhan FB, Brender JD, Langlois PH, Lin Y. Validity of the Emission Weighted Proximity Model in estimating air pollution exposure intensities in large geographic areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 563-564:478-485. [PMID: 27152989 DOI: 10.1016/j.scitotenv.2016.04.088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/12/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Accurate estimates of air pollution exposure intensities are important to support environmental epidemiology analyses that require data covering large geographic areas over multiple years. The Emission Weighted Proximity Model (EWPM) and the National-Scale Air Toxics Assessment (NATA) are two viable approaches for obtaining estimate exposure intensities. The advantages of the EWPM include its simplicity and significantly lower costs of implementation. However, very limited data are available regarding the validity of the results from the EWPM and how these results would fare when compared with those from the NATA. METHODS This study evaluates the validity of the estimated exposure intensities from the EWPM through a correlation analysis with ground monitoring data obtained by the Texas Commission on Environmental Quality (TCEQ). The monitoring data used in the comparison included 27 non-criteria air pollutants at 48 monitoring sites in Texas in 2005. In addition, this study compares the results from the EWPM with those from NATA using the TCEQ data as a gold standard. RESULTS Analysis results suggest that estimated exposure intensities from the EWPM and the NATA were comparable when the intensities from both approaches are used to categorize environmental exposure intensities into different levels in relative terms. CONCLUSION These findings suggest that the EWPM is a valid alternative approach to the NATA in situations where epidemiological analysis requires both environmental data and health outcome data that cover a large geographic area over multiple years.
Collapse
Affiliation(s)
- Xi Gong
- Texas State University, Texas Center for Geographic Information Science, Department of Geography, San Marcos, TX 78666, USA.
| | - F Benjamin Zhan
- Texas State University, Texas Center for Geographic Information Science, Department of Geography, San Marcos, TX 78666, USA.
| | - Jean D Brender
- Texas A&M Health Science Center School of Public Health, Department of Epidemiology & Biostatistics, College Station, TX 77843-1266, USA.
| | - Peter H Langlois
- Birth Defects Epidemiology and Surveillance Branch, Texas Department of State Health Services, PO Box 149347, MC 1964, Austin, TX 78714-9347, USA.
| | - Yan Lin
- South Dakota State University, Department of Geography, Brookings, SD 57007, USA.
| |
Collapse
|
44
|
Ogunbanjo O, Onawumi O, Gbadamosi M, Ogunlana A, Anselm O. Chemical speciation of some heavy metals and human health risk assessment in soil around two municipal dumpsites in Sagamu, Ogun state, Nigeria. CHEMICAL SPECIATION & BIOAVAILABILITY 2016. [DOI: 10.1080/09542299.2016.1203267] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Oriyomi Ogunbanjo
- Department of Chemical Sciences, Tai Solarin University of Education, Ijebu-ode, Nigeria
| | - Oluwayemi Onawumi
- Pure and Applied Chemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Muideen Gbadamosi
- Chemical Sciences, Tai Solarin University of Education, Ijebu-ode, Nigeria
| | - Adejoke Ogunlana
- Chemical Sciences, Tai Solarin University of Education, Ijebu-ode, Nigeria
| | - Oluwaseun Anselm
- Chemical Sciences, Tai Solarin University of Education, Ijebu-ode, Nigeria
| |
Collapse
|
45
|
Pruneda-Álvarez LG, Pérez-Vázquez FJ, Ruíz-Vera T, Ochoa-Martínez ÁC, Orta-García ST, Jiménez-Avalos JA, Pérez-Maldonado IN. Urinary 1-hydroxypyrene concentration as an exposure biomarker to polycyclic aromatic hydrocarbons (PAHs) in Mexican women from different hot spot scenarios and health risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:6816-6825. [PMID: 26662953 DOI: 10.1007/s11356-015-5918-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 12/02/2015] [Indexed: 06/05/2023]
Abstract
Recently, in developing countries, polycyclic aromatic hydrocarbons (PAHs) have been considered contaminants of grave concern for women and children. Therefore, the aim of this study was twofold: (1) evaluate exposure assessment to PAHs using urinary 1-hydroxypyrene (1-OHP) as an exposure biomarker and (2) perform a health risk assessment in women from four different high risk scenarios in Mexico. From 2012 to 2013, in a cross-sectional study, we evaluated a total of 184 healthy women from the following scenarios: (A) indoor biomass combustion site (n = 50); (B) brick manufacturing site using different materials such as fuel sources (n = 70); (C) industrial site (n = 44); and (D) high vehicular traffic site (n = 20). 1-hydroxypyrene (1-OHP) was quantified using a high-performance liquid chromatography (HPLC) technique. Afterward, a probabilistic health risk assessment was performed (Monte Carlo analysis). Mean urinary 1-OHP levels found were 0.92 ± 0.92; 0.91 ± 0.83; 0.22 ± 0.19; and 0.14 ± 0.17 μg/L for scenario A, B, C, and D, respectively. Then, based on the measured urinary 1-OHP levels, the estimated median daily intake doses of pyrene were calculated: 659, 623, 162, and 77.4 ng/kg/day for the women participating in the study living in areas A, B, C, and D, respectively, and finally, the hazard quotient (HQ) was calculated (22 ± 21, 21 ± 20, 5.5 ± 5.5, and 2.6 ± 3.5; for areas A, B, C, and D, respectively), high health risk was noted for the women living in the studied communities. The data shown in this study (exposure levels to PAHs and health risk assessment) made it reasonable to conclude that the exposure levels found have a significant potential for generating adverse effects on human health in the studied scenarios.
Collapse
Affiliation(s)
- Lucia G Pruneda-Álvarez
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Francisco J Pérez-Vázquez
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Tania Ruíz-Vera
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Ángeles C Ochoa-Martínez
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Sandra T Orta-García
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Jorge A Jiménez-Avalos
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Iván N Pérez-Maldonado
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico.
- Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico.
- Unidad Académica Multidisciplinaria Zona Media, Universidad Autónoma de San Luis Potosí. Rioverde, Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, San Luis Potosí, 78210, SLP, Mexico.
| |
Collapse
|
46
|
Han L, Qian L, Yan J, Liu R, Du Y, Chen M. A comparison of risk modeling tools and a case study for human health risk assessment of volatile organic compounds in contaminated groundwater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:1234-1245. [PMID: 26354114 DOI: 10.1007/s11356-015-5335-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/27/2015] [Indexed: 06/05/2023]
Abstract
In order to promote the risk-based strategy in the investigation, assessment, and remediation of Chinese brownfield sites, the Health and Environmental Risk Assessment (HERA) software was developed. It is vital to validate the HERA model and compare the inter-model differences of HERA model against other available risk assessment tools. This paper discusses the similarities and differences between the Risk-Based Corrective Action (RBCA) Tool Kit and the HERA model by evaluating the health risk of organic contaminated groundwater sources for a chemical works in China for the first time. Consequently, the HERA and RBCA models yielded the identical results for Site-Specific Assessment Criteria (SSAC) under the commercial redevelopment. However, the HERA estimated more conservative and stringent SSACs under the residential scenario based on the different exposure calculations. The inhalation of indoor vapors was the most predominated exposure pathway for all the volatile organic compounds (VOCs) determined using the RBCA and HERA models. According to the HERA model, inhalation of chloroform may cause the highest unacceptable carcinogenic risk at 2.31 × 10(-3) under the residential scenario. Therefore, it is recommended that a risk-based remedial strategy be developed to ensure the safe and sustainable redevelopment of the site.
Collapse
Affiliation(s)
- Lu Han
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Linbo Qian
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Jingchun Yan
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Rongqin Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Yihua Du
- Computer Network Information Center, Chinese Academy of Sciences, Beijing, 100190, China
| | - Mengfang Chen
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| |
Collapse
|
47
|
Tenailleau QM, Mauny F, Joly D, François S, Bernard N. Air pollution in moderately polluted urban areas: How does the definition of "neighborhood" impact exposure assessment? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 206:437-448. [PMID: 26275728 DOI: 10.1016/j.envpol.2015.07.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 07/16/2015] [Indexed: 06/04/2023]
Abstract
Environmental health studies commonly quantify subjects' pollution exposure in their neighborhood. How this neighborhood is defined can vary, however, leading to different approaches to quantification whose impacts on exposure levels remain unclear. We explore the relationship between neighborhood definition and exposure assessment. NO2, benzene, PM10 and PM2.5 exposure estimates were computed in the vicinity of 10,825 buildings using twelve exposure assessment techniques reflecting different definitions of "neighborhood". At the city scale, its definition does not significantly influence exposure estimates. It does impact levels at the building scale, however: at least a quarter of the buildings' exposure estimates for a 400 m buffer differ from the estimated 50 m buffer value (±1.0 μg/m(3) for NO2, PM10 and PM2.5; and ±0.05 μg/m(3) for benzene). This variation is significantly related to the definition of neighborhood. It is vitally important for investigators to understand the impact of chosen assessment techniques on exposure estimates.
Collapse
Affiliation(s)
- Quentin M Tenailleau
- Laboratoire Chrono-environnement, UMR6249, Centre National de la Recherche Scientifique, Université de Bourgogne/Franche-Comté, France.
| | - Frédéric Mauny
- Laboratoire Chrono-environnement, UMR6249, Centre National de la Recherche Scientifique, Université de Bourgogne/Franche-Comté, France; Centre Hospitalier Régional Universitaire de Besançon, France
| | - Daniel Joly
- Laboratoire ThéMA, UMR6049, Centre National de la Recherche Scientifique, Université de Bourgogne/Franche-Comté, France
| | | | - Nadine Bernard
- Laboratoire Chrono-environnement, UMR6249, Centre National de la Recherche Scientifique, Université de Bourgogne/Franche-Comté, France; Laboratoire ThéMA, UMR6049, Centre National de la Recherche Scientifique, Université de Bourgogne/Franche-Comté, France
| |
Collapse
|
48
|
Kim DH, Kwack SJ, Yoon KS, Choi JS, Lee BM. 4-Hydroxynonenal: A Superior Oxidative Biomarker Compared to Malondialdehyde and Carbonyl Content Induced by Carbon Tetrachloride in Rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2015; 78:1051-1062. [PMID: 26252470 DOI: 10.1080/15287394.2015.1067505] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Carbon tetrachloride (CCl4), a halogenated substance that generates free radical species during metabolism in vivo, induces hepatotoxicity, produces oxidative DNA damage, and increased levels of protein carbonyl, malondialdehyde (MDA), and 4-hydroxynonenal (4-HNE). In this study, Sprague-Dawley rats received single or repeated ip injections of carbon tetrachloride (CCl4), and formation and persistence of carbonyls, MDA, and 4-HNE in plasma were measured using gas chromatography-mass spectrometry. After a single injection of 500 mg/kg CCl4 the in vivo half-lives of MDA and carbonyl content were 1.5 d and 2 d, respectively, while that of 4-HNE was approximately 10 d. Treatment with CCl4 (50, 100, 500, or 1000 mg/kg) dose-dependently increased these oxidative biomarkers in blood. However, formation of protein carbonyls and MDA was less sensitive than 4-HNE to CCl4. Levels of serum glutamic oxaloacetic transaminase (SGOT) and glutamic pyruvic transaminase (SGPT) (hepatotoxicity markers) rose with CCl4 doses. After a single injection (500 mg/kg), the peak level of SGOT was observed after 8 h but SGPT after 24 h. Overall, 4-HNE was more dose-sensitive and showed greater formation subchronically than other biomarkers. Multiple ip treatments with 300 mg CCl4 /kg (d 1, 3, 6, 10, 14, and 21) demonstrated that 4-HNE formation was highest (18-fold, peak/control) and subchronic up to d 21 (last treatment day), unlike other biomarkers. Data suggest that 4-HNE, MDA, and carbonyl content may be useful oxidative biomarkers for exposure to free radical generating halogenated compounds. However, 4-HNE appears to be a more sensitive and sustainable biomarker for toxicological and risk assessments.
Collapse
Affiliation(s)
- Dong Hyun Kim
- a Department of Pharmacology and Pharmacogenomics Research Center , College of Medicine, Inje University, 75 Bokgi-ro , Busanjin-gu, Busan 614-735 , South Korea
| | - Seung Jun Kwack
- b Department of Biochemistry and Health Science , College of Natural Sciences, Changwon National University , Changwon , Gyeongnam 641-773 , South Korea
| | - Kyung Sik Yoon
- b Department of Biochemistry and Health Science , College of Natural Sciences, Changwon National University , Changwon , Gyeongnam 641-773 , South Korea
| | - Jin Shil Choi
- b Department of Biochemistry and Health Science , College of Natural Sciences, Changwon National University , Changwon , Gyeongnam 641-773 , South Korea
| | - Byung-Mu Lee
- c Division of Toxicology , College of Pharmacy, Sungkyunkwan University , Suwon , Gyeonggi-Do 440-746 , South Korea
| |
Collapse
|
49
|
Branco PTBS, Alvim-Ferraz MCM, Martins FG, Sousa SIV. Children's exposure to indoor air in urban nurseries-part I: CO₂ and comfort assessment. ENVIRONMENTAL RESEARCH 2015; 140:1-9. [PMID: 25800634 DOI: 10.1016/j.envres.2015.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/10/2015] [Accepted: 03/11/2015] [Indexed: 06/04/2023]
Abstract
Indoor air quality (IAQ) in nurseries is an emerging case-study. Thus, this study, as the Part I of the larger study "Children's exposure to indoor air in urban nurseries", aimed to: i) evaluate nurseries' indoor concentrations of carbon dioxide (CO2), a global IAQ indicator, in class and lunch rooms; ii) assess indoor comfort parameters-temperature (T) and relative humidity (RH); and iii) analyse them according to guidelines and references for IAQ, comfort and children's health. Indoor continuous measurements were performed. Non-compliances with guidelines were found in comfort parameters, which could cause discomfort situations and also microbial proliferation. Exceedances in CO2 concentrations were also found and they were caused by poor ventilation and high classroom occupation. More efficient ventilation and control of comfort parameters, as well as to reduce occupation by reviewing Portuguese legislation on that matter, would certainly improve IAQ and comfort in nurseries and consequently safeguard children's health.
Collapse
Affiliation(s)
- P T B S Branco
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, E215, Porto, Portugal
| | - M C M Alvim-Ferraz
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, E215, Porto, Portugal
| | - F G Martins
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, E215, Porto, Portugal
| | - S I V Sousa
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, E215, Porto, Portugal.
| |
Collapse
|
50
|
Timchalk C, Weber TJ, Smith JN. Computational strategy for quantifying human pesticide exposure based upon a saliva measurement. Front Pharmacol 2015; 6:115. [PMID: 26074822 PMCID: PMC4444746 DOI: 10.3389/fphar.2015.00115] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 05/14/2015] [Indexed: 01/19/2023] Open
Abstract
Quantitative exposure data is important for evaluating toxicity risk and biomonitoring is a critical tool for evaluating human exposure. Direct personal monitoring provides the most accurate estimation of a subject's true dose, and non-invasive methods are advocated for quantifying exposure to xenobiotics. In this regard, there is a need to identify chemicals that are cleared in saliva at concentrations that can be quantified to support the implementation of this approach. This manuscript reviews the computational modeling approaches that are coupled to in vivo and in vitro experiments to predict salivary uptake and clearance of xenobiotics and provides additional insight on species-dependent differences in partitioning that are of key importance for extrapolation. The primary mechanism by which xenobiotics leave the blood and enter saliva involves paracellular transport, passive transcellular diffusion, or transcellular active transport with the majority of xenobiotics transferred by passive diffusion. The transcellular or paracellular diffusion of unbound chemicals in plasma to saliva has been computationally modeled using compartmental and physiologically based approaches. Of key importance for determining the plasma:saliva partitioning was the utilization of the Schmitt algorithm that calculates partitioning based upon the tissue composition, pH, chemical pKa, and plasma protein-binding. Sensitivity analysis identified that both protein-binding and pKa (for weak acids and bases) have significant impact on determining partitioning and species dependent differences based upon physiological variance. Future strategies are focused on an in vitro salivary acinar cell based system to experimentally determine and computationally predict salivary gland uptake and clearance for xenobiotics. It is envisioned that a combination of salivary biomonitoring and computational modeling will enable the non-invasive measurement of chemical exposures in human populations.
Collapse
Affiliation(s)
- Charles Timchalk
- Health Impacts and Exposure Science, Pacific Northwest National Laboratory Richland, WA, USA
| | - Thomas J Weber
- Health Impacts and Exposure Science, Pacific Northwest National Laboratory Richland, WA, USA
| | - Jordan N Smith
- Health Impacts and Exposure Science, Pacific Northwest National Laboratory Richland, WA, USA
| |
Collapse
|