1
|
Ni Y, Sullivan A, Szpiro AA, Peng J, Loftus CT, Hazlehurst MF, Sherris A, Wallace ER, Murphy LE, Nguyen RH, Swan SH, Sathyanarayana S, Barrett ES, Mason WA, Bush NR, Karr CJ, LeWinn KZ. Ambient Air Pollution Exposures and Child Executive Function: A US Multicohort Study. Epidemiology 2024; 35:676-688. [PMID: 38871635 PMCID: PMC11305919 DOI: 10.1097/ede.0000000000001754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
BACKGROUND Executive function, which develops rapidly in childhood, enables problem-solving, focused attention, and planning. Animal models describe executive function decrements associated with ambient air pollution exposure, but epidemiologic studies are limited. METHODS We examined associations between early childhood air pollution exposure and school-aged executive function in 1235 children from three US pregnancy cohorts in the ECHO-PATHWAYS Consortium. We derived point-based residential exposures to ambient particulate matter ≤2.5 µm in aerodynamic diameter (PM 2.5 ), nitrogen dioxide (NO 2 ), and ozone (O 3 ) at ages 0-4 years from spatiotemporal models with a 2-week resolution. We assessed executive function across three domains, cognitive flexibility, working memory, and inhibitory control, using performance-based measures and calculated a composite score quantifying overall performance. We fitted linear regressions to assess air pollution and child executive function associations, adjusting for sociodemographic characteristics, maternal mental health, and health behaviors, and examined modification by child sex, maternal education, and neighborhood educational opportunity. RESULTS In the overall sample, we found hypothesized inverse associations in crude but not adjusted models. Modified associations between NO 2 exposure and working memory by neighborhood education opportunity were present ( Pinteraction = 0.05), with inverse associations more pronounced in the "high" and "very high" categories. Associations of interest did not differ by child sex or maternal education. CONCLUSION This work contributes to the evolving science regarding early-life environmental exposures and child development. There remains a need for continued exploration in future research endeavors, to elucidate the complex interplay between natural environment and social determinants influencing child neurodevelopment.
Collapse
Affiliation(s)
- Yu Ni
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, USA
- Division of Epidemiology and Biostatistics, School of Public Health, College of Health and Human Services, San Diego State University, San Diego, California, USA
| | - Alexis Sullivan
- Department of Psychiatry, School of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Adam A. Szpiro
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, Washington, USA
| | - James Peng
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, Washington, USA
| | - Christine T. Loftus
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, USA
| | - Marnie F. Hazlehurst
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, USA
| | - Allison Sherris
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, USA
| | - Erin R. Wallace
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, USA
| | - Laura E. Murphy
- Department of Psychiatry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Ruby H.N. Nguyen
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minnesota, USA
| | - Shanna H. Swan
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Sheela Sathyanarayana
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, USA
- Department of Pediatrics, School of Medicine, University of Washington, Seattle, Washington, USA
- Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Emily S. Barrett
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, USA
| | - W. Alex Mason
- College of Education and Human Sciences, University of Nebraska, Lincoln, Nebraska, USA
| | - Nicole R. Bush
- Department of Psychiatry, School of Medicine, University of California, San Francisco, San Francisco, California, USA
- Department of Pediatrics, School of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Catherine J. Karr
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, USA
- Department of Pediatrics, School of Medicine, University of Washington, Seattle, Washington, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington, USA
| | - Kaja Z. LeWinn
- Department of Psychiatry, School of Medicine, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
2
|
Xu J, Zhao H, Zhang Y, Yang W, Wang X, Geng C, Li Y, Guo Y, Han B, Bai Z, Vedal S, Marshall JD. Reducing Indoor Particulate Air Pollution Improves Student Test Scores: A Randomized Double-Blind Crossover Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8207-8214. [PMID: 38647545 DOI: 10.1021/acs.est.3c10372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Short-term exposure to air pollution is associated with a decline in cognitive function. Standardized test scores have been employed to evaluate the effects of air pollution exposure on cognitive performance. Few studies aimed to prove whether air pollution is responsible for reduced test scores; none have implemented a "gold-standard" method for assessing the association such as a randomized, double-blind intervention. This study used a "gold-standard" method─randomized, double-blind crossover─to assess whether reducing short-term indoor particle concentrations results in improved test scores in college students in Tianjin, China. Participants (n = 162) were randomly assigned to one of two similar classrooms and completed a standardized English test on two consecutive weekends. Air purifiers with active or sham (i.e., filter removed) particle filtration were placed in each classroom. The filtration mode was switched between the two test days. Linear mixed-effect models were used to evaluate the effect of the intervention mode on the test scores. The results show that air purification (i.e., reducing PM) was significantly associated with increases in the z score for combined (0.11 [95%CI: 0.02, 0.21]) and reading (0.11 [95%CI: 0.00, 0.22]) components. In conclusion, a short-term reduction in indoor particle concentration led to improved test scores in students, suggesting an improvement in cognitive function.
Collapse
Affiliation(s)
- Jia Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Hong Zhao
- College of Computer Science, Nankai University, Tianjin 300071, China
| | - Yujuan Zhang
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Wen Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xinhua Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Chunmei Geng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yan Li
- College of Computer Science, Nankai University, Tianjin 300071, China
| | - Yun Guo
- College of Computer Science, Nankai University, Tianjin 300071, China
| | - Bin Han
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhipeng Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington 98105, United States
| | - Sverre Vedal
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington 98105, United States
| | - Julian D Marshall
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
3
|
Khan RN, Saporito AF, Zenon J, Goodman L, Zelikoff JT. Traffic-related air pollution in marginalized neighborhoods: a community perspective. Inhal Toxicol 2024; 36:343-354. [PMID: 38618680 DOI: 10.1080/08958378.2024.2331259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/10/2024] [Indexed: 04/16/2024]
Abstract
OBJECTIVES Marginalized communities are exposed to higher levels of traffic-related air pollution (TRAP) than the general population. TRAP exposure is linked to pulmonary toxicity, neurotoxicity, and cardiovascular toxicity often through mechanisms of inflammation and oxidative stress. Early life exposure to TRAP is also implicated in higher rates of asthma in these same communities. There is a critical need for additional epidemiological, in vivo, and in vitro studies to define the health risks of TRAP exposure affecting the most vulnerable groups to set strict, protective air pollution standards in these communities. MATERIALS AND METHODS A literature review was conducted to summarize recent findings (2010-2024) concerning TRAP exposure and toxic mechanisms that are relevant to the most affected underserved communities. CONCLUSIONS Guided by the perspectives of NYC community scientists, this contemporary review of toxicological and epidemiological studies considers how the exposome could lead to disproportionate exposures and health effects in underserved populations.
Collapse
Affiliation(s)
- Rahanna N Khan
- Division of Environmental Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Antonio F Saporito
- Division of Environmental Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Jania Zenon
- Division of Environmental Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | | | - Judith T Zelikoff
- Division of Environmental Medicine, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
4
|
Yuan A, Halabicky O, Rao H, Liu J. Lifetime air pollution exposure, cognitive deficits, and brain imaging outcomes: A systematic review. Neurotoxicology 2023; 96:69-80. [PMID: 37001821 PMCID: PMC10963081 DOI: 10.1016/j.neuro.2023.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023]
Abstract
As the amount of air pollution and human exposure has increased, the effects on human health have become an important public health issue. A field of growing interest is how air pollution exposure affects brain structure and function underlying cognitive deficits and if structural and connectivity changes mediate the relationship between the two. We conducted a systematic review to examine the literature on air pollution, brain structure and connectivity, and cognition studies. Eleven studies matched our inclusion criteria and were included in the qualitative analysis. Results suggest significant associations between air pollution and decreased volumes of specific brain structures, cortical thickness and surface area such as in the prefrontal cortex and temporal lobe, as well as the weakening of functional connectivity pathways, largely the Default Mode (DMN) and Frontal Parietal (FPN) networks, as detected by fMRI. Associations between air pollution and cognitive outcomes were found in most of the studies (n = 9), though some studies showed stronger associations than others. For children & adolescents, these deficiencies largely involved heavy reasoning, problem solving, and logic. For young and middle-aged adults, the associations were mostly seen for executive function and visuospatial cognitive domains. To our knowledge, this is the first systematic review to consolidate findings on the associations among air pollution, brain structure, and cognitive function. In the future, it will be important to conduct further longitudinal studies that follow children who have been exposed at a young age and examine associations with brain structure and cognition throughout adulthood.
Collapse
Affiliation(s)
- Aurora Yuan
- University of Pennsylvania, College of Arts & Sciences, 249 S 36th St, Philadelphia, PA 19104, United States
| | - Olivia Halabicky
- University of Michigan, School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, United States
| | - Hengyi Rao
- University of Pennsylvania, Perelman School of Medicine, 3400 Civic Center Blvd, Philadelphia, PA 19104, United States
| | - Jianghong Liu
- University of Pennsylvania, School of Nursing, 418 Curie Blvd, Philadelphia, PA 19104, United States.
| |
Collapse
|
5
|
Sukumaran K, Cardenas-Iniguez C, Burnor E, Bottenhorn KL, Hackman DA, McConnell R, Berhane K, Schwartz J, Chen JC, Herting MM. Ambient fine particulate exposure and subcortical gray matter microarchitecture in 9- and 10-year-old children across the United States. iScience 2023; 26:106087. [PMID: 36915692 PMCID: PMC10006642 DOI: 10.1016/j.isci.2023.106087] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/16/2022] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
Neuroimaging studies showing the adverse effects of air pollution on neurodevelopment have largely focused on smaller samples from limited geographical locations and have implemented univariant approaches to assess exposure and brain macrostructure. Herein, we implement restriction spectrum imaging and a multivariate approach to examine how one year of annual exposure to daily fine particulate matter (PM2.5), daily nitrogen dioxide (NO2), and 8-h maximum ozone (O3) at ages 9-10 years relates to subcortical gray matter microarchitecture in a geographically diverse subsample of children from the Adolescent Brain Cognitive Development (ABCD) Study℠. Adjusting for confounders, we identified a latent variable representing 66% of the variance between one year of air pollution and subcortical gray matter microarchitecture. PM2.5 was related to greater isotropic intracellular diffusion in the thalamus, brainstem, and accumbens, which related to cognition and internalizing symptoms. These findings may be indicative of previously identified air pollution-related risk for neuroinflammation and early neurodegenerative pathologies.
Collapse
Affiliation(s)
- Kirthana Sukumaran
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles, CA 90063, USA
| | - Carlos Cardenas-Iniguez
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles, CA 90063, USA
| | - Elisabeth Burnor
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles, CA 90063, USA
| | - Katherine L. Bottenhorn
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles, CA 90063, USA
- Department of Psychology, Florida International University, Miami, FL 33199, USA
| | - Daniel A. Hackman
- Suzanne Dworak-Peck School of Social Work, University of Southern California, Los Angeles, CA 90089, USA
| | - Rob McConnell
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles, CA 90063, USA
| | - Kiros Berhane
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Jiu-Chiuan Chen
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles, CA 90063, USA
- Department of Neurology, Keck School of Medicine of University of Southern California, Los Angeles, CA 90063, USA
| | - Megan M. Herting
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles, CA 90063, USA
- Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
| |
Collapse
|
6
|
Shang M, Tang M, Xue Y. Neurodevelopmental toxicity induced by airborne particulate matter. J Appl Toxicol 2023; 43:167-185. [PMID: 35995895 DOI: 10.1002/jat.4382] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 11/08/2022]
Abstract
Airborne particulate matter (PM), the primary component associated with health risks in air pollution, can negatively impact human health. Studies have shown that PM can enter the brain by inhalation, but data on the exact quantity of particles that reach the brain are unknown. Particulate matter exposure can result in neurotoxicity. Exposure to PM poses a greater health risk to infants and children because their nervous systems are not fully developed. This review paper highlights the association between PM and neurodevelopmental toxicity (NDT). Exposure to PM can induce oxidative stress and inflammation, potentially resulting in blood-brain barrier damage and increased susceptibility to development of neurodevelopmental disorders (NDD), such as autism spectrum disorders and attention deficit disorders. In addition, human and animal exposure to PM can induce microglia activation and epigenetic alterations and alter the neurotransmitter levels, which may increase risks for development of NDD. However, the systematic comparisons of the effects of PM on NDD at different ages of exposure are deficient. The elucidation of PM exposure risks and NDT in children during the early developmental stages are of great importance. The synthesis of current research may help to identify markers and mechanisms of PM-induced neurodevelopmental toxicity, allowing for the development of strategies to prevent permanent damage of developing brain.
Collapse
Affiliation(s)
- Mengting Shang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Yuying Xue
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
7
|
Calderón-Garcidueñas L, Stommel EW, Lachmann I, Waniek K, Chao CK, González-Maciel A, García-Rojas E, Torres-Jardón R, Delgado-Chávez R, Mukherjee PS. TDP-43 CSF Concentrations Increase Exponentially with Age in Metropolitan Mexico City Young Urbanites Highly Exposed to PM 2.5 and Ultrafine Particles and Historically Showing Alzheimer and Parkinson's Hallmarks. Brain TDP-43 Pathology in MMC Residents Is Associated with High Cisternal CSF TDP-43 Concentrations. TOXICS 2022; 10:559. [PMID: 36287840 PMCID: PMC9611594 DOI: 10.3390/toxics10100559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/07/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Environmental exposures to fine particulate matter (PM2.5) and ultrafine particle matter (UFPM) are associated with overlapping Alzheimer’s, Parkinson’s and TAR DNA-binding protein 43 (TDP-43) hallmark protein pathologies in young Metropolitan Mexico City (MMC) urbanites. We measured CSF concentrations of TDP-43 in 194 urban residents, including 92 MMC children aged 10.2 ± 4.7 y exposed to PM2.5 levels above the USEPA annual standard and to high UFPM and 26 low pollution controls (11.5 ± 4.4 y); 43 MMC adults (42.3 ± 15.9 y) and 14 low pollution adult controls (33.1 ± 12.0 y); and 19 amyotrophic lateral sclerosis (ALS) patients (52.4 ± 14.1 y). TDP-43 neuropathology and cisternal CSF data from 20 subjects—15 MMC (41.1 ± 18.9 y) and 5 low pollution controls (46 ± 16.01 y)—were included. CSF TDP-43 exponentially increased with age (p < 0.0001) and it was higher for MMC residents. TDP-43 cisternal CSF levels of 572 ± 208 pg/mL in 6/15 MMC autopsy cases forecasted TDP-43 in the olfactory bulb, medulla and pons, reticular formation and motor nuclei neurons. A 16 y old with TDP-43 cisternal levels of 1030 pg/mL exhibited TDP-43 pathology and all 15 MMC autopsy cases exhibited AD and PD hallmarks. Overlapping TDP-43, AD and PD pathologies start in childhood in urbanites with high exposures to PM2.5 and UFPM. Early, sustained exposures to PM air pollution represent a high risk for developing brains and MMC UFPM emissions sources ought to be clearly identified, regulated, monitored and controlled. Prevention of deadly neurologic diseases associated with air pollution ought to be a public health priority and preventive medicine is key.
Collapse
Affiliation(s)
- Lilian Calderón-Garcidueñas
- College of Health, The University of Montana, Missoula, MT 59812, USA
- Universidad del Valle de México, Mexico City 14370, Mexico
| | - Elijah W. Stommel
- Department of Neurology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | | | | | - Chih-Kai Chao
- College of Health, The University of Montana, Missoula, MT 59812, USA
| | | | | | - Ricardo Torres-Jardón
- Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | | | - Partha S. Mukherjee
- Interdisciplinary Statistical Research Unit, Indian Statistical Institute, Kolkata 700108, India
| |
Collapse
|
8
|
Ahmad WA, Nirel R, Golan R, Jolles M, Kloog I, Rotem R, Negev M, Koren G, Levine H. Mother-level random effect in the association between PM 2.5 and fetal growth: A population-based pregnancy cohort. ENVIRONMENTAL RESEARCH 2022; 210:112974. [PMID: 35192805 DOI: 10.1016/j.envres.2022.112974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 02/02/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND A growing body of literature reports associations between exposure to particulate matter with diameter ≤2.5 μm (PM2.5) during pregnancy and birth outcomes. However, findings are inconsistent across studies. OBJECTIVES To assess the association between PM2.5 and birth outcomes of fetal growth in a cohort with high prevalence of siblings by multilevel models accounting for geographical- and mother-level correlations. METHODS In Israel, we used Maccabi Healthcare Services data to establish a population-based cohort of 381,265 singleton births reaching 24-42 weeks' gestation and birth weight of 500-5000 g (2004-2015). Daily PM2.5 predictions from a satellite-based spatiotemporal model were linked to the date of birth and maternal residence. We generated mean PM2.5 values for the entire pregnancy and for exposure periods during pregnancy. Associations between exposure and birth outcomes were modeled by using multilevel logistic regression with random effects for maternal locality of residence, administrative census area (ACA) and mother. RESULTS In fully adjusted models with a mother-level random intercept only, a 10-μg/m3 increase in PM2.5 over the entire pregnancy was positively associated with term low birth weight (TLBW) (Odds ratio, OR = 1.25, 95% confidence interval, CI: 1.09,1.43) and small for gestational age (SGA) (OR = 1.15, 95% CI: 1.06,1.26). Locality- and ACA-level effects accounted for <0.4% of the variance while mother-level effects explained ∼50% of the variability. Associations varied by exposure period, infants' sex, birth order, and maternal pre-pregnancy BMI. CONCLUSIONS Consideration of mother-level variability in a region with high fertility rates provides new insights on the strength of associations between PM2.5 and birth outcomes.
Collapse
Affiliation(s)
| | - Ronit Nirel
- Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rachel Golan
- Ben-Gurion University of the Negev, Beer Sheva, Israel
| | | | - Itai Kloog
- Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ran Rotem
- Harvard T.H. Chan School of Public Health, Boston, MA, USA; Institute of Research and Innovation, Maccabitech, Tel-Aviv, Israel
| | | | - Gideon Koren
- Institute of Research and Innovation, Maccabitech, Tel-Aviv, Israel; Tel Aviv University, Tel-Aviv, Israel
| | | |
Collapse
|
9
|
Calderón-Garcidueñas L, Hernández-Luna J, Mukherjee PS, Styner M, Chávez-Franco DA, Luévano-Castro SC, Crespo-Cortés CN, Stommel EW, Torres-Jardón R. Hemispheric Cortical, Cerebellar and Caudate Atrophy Associated to Cognitive Impairment in Metropolitan Mexico City Young Adults Exposed to Fine Particulate Matter Air Pollution. TOXICS 2022; 10:toxics10040156. [PMID: 35448417 PMCID: PMC9028857 DOI: 10.3390/toxics10040156] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/14/2022] [Accepted: 03/22/2022] [Indexed: 12/16/2022]
Abstract
Exposures to fine particulate matter PM2.5 are associated with Alzheimer's, Parkinson's (AD, PD) and TDP-43 pathology in young Metropolitan Mexico City (MMC) residents. High-resolution structural T1-weighted brain MRI and/or Montreal Cognitive Assessment (MoCA) data were examined in 302 volunteers age 32.7 ± 6.0 years old. We used multivariate linear regressions to examine cortical surface area and thickness, subcortical and cerebellar volumes and MoCA in ≤30 vs. ≥31 years old. MMC residents were exposed to PM2.5 ~ 30.9 µg/m3. Robust hemispheric differences in frontal and temporal lobes, caudate and cerebellar gray and white matter and strong associations between MoCA total and index scores and caudate bilateral volumes, frontotemporal and cerebellar volumetric changes were documented. MoCA LIS scores are affected early and low pollution controls ≥ 31 years old have higher MoCA vs. MMC counterparts (p ≤ 0.0001). Residency in MMC is associated with cognitive impairment and overlapping targeted patterns of brain atrophy described for AD, PD and Fronto-Temporal Dementia (FTD). MMC children and young adult longitudinal studies are urgently needed to define brain development impact, cognitive impairment and brain atrophy related to air pollution. Identification of early AD, PD and FTD biomarkers and reductions on PM2.5 emissions, including poorly regulated heavy-duty diesel vehicles, should be prioritized to protect 21.8 million highly exposed MMC urbanites.
Collapse
Affiliation(s)
- Lilian Calderón-Garcidueñas
- College of Health, The University of Montana, Missoula, MT 59812, USA
- Escuela de Ciencias de la Salud, Universidad del Valle de México, Mexico City 14370, Mexico; (D.A.C.-F.); (S.C.L.-C.); (C.N.C.-C.)
- Correspondence: ; Tel.: +1-406-243-4785
| | | | - Partha S. Mukherjee
- Interdisciplinary Statistical Research Unit, Indian Statistical Institute, Kolkata 700108, India;
| | - Martin Styner
- Neuro Image Research and Analysis Lab, University of North Carolina, Chapel Hill, NC 27599, USA;
| | - Diana A. Chávez-Franco
- Escuela de Ciencias de la Salud, Universidad del Valle de México, Mexico City 14370, Mexico; (D.A.C.-F.); (S.C.L.-C.); (C.N.C.-C.)
| | - Samuel C. Luévano-Castro
- Escuela de Ciencias de la Salud, Universidad del Valle de México, Mexico City 14370, Mexico; (D.A.C.-F.); (S.C.L.-C.); (C.N.C.-C.)
| | - Celia Nohemí Crespo-Cortés
- Escuela de Ciencias de la Salud, Universidad del Valle de México, Mexico City 14370, Mexico; (D.A.C.-F.); (S.C.L.-C.); (C.N.C.-C.)
| | - Elijah W. Stommel
- Department of Neurology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA;
| | - Ricardo Torres-Jardón
- Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| |
Collapse
|
10
|
Long E, Carlsten C. Controlled human exposure to diesel exhaust: results illuminate health effects of traffic-related air pollution and inform future directions. Part Fibre Toxicol 2022; 19:11. [PMID: 35139881 PMCID: PMC8827176 DOI: 10.1186/s12989-022-00450-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 01/31/2022] [Indexed: 12/03/2022] Open
Abstract
Air pollution is an issue of increasing interest due to its globally relevant impacts on morbidity and mortality. Controlled human exposure (CHE) studies are often employed to investigate the impacts of pollution on human health, with diesel exhaust (DE) commonly used as a surrogate of traffic related air pollution (TRAP). This paper will review the results derived from 104 publications of CHE to DE (CHE-DE) with respect to health outcomes. CHE-DE studies have provided mechanistic evidence supporting TRAP’s detrimental effects on related to the cardiovascular system (e.g., vasomotor dysfunction, inhibition of fibrinolysis, and impaired cardiac function) and respiratory system (e.g., airway inflammation, increased airway responsiveness, and clinical symptoms of asthma). Oxidative stress is thought to be the primary mechanism of TRAP-induced effects and has been supported by several CHE-DE studies. A historical limitation of some air pollution research is consideration of TRAP (or its components) in isolation, limiting insight into the interactions between TRAP and other environmental factors often encountered in tandem. CHE-DE studies can help to shed light on complex conditions, and several have included co-exposure to common elements such as allergens, ozone, and activity level. The ability of filters to mitigate the adverse effects of DE, by limiting exposure to the particulate fraction of polluted aerosols, has also been examined. While various biomarkers of DE exposure have been evaluated in CHE-DE studies, a definitive such endpoint has yet to be identified. In spite of the above advantages, this paradigm for TRAP is constrained to acute exposures and can only be indirectly applied to chronic exposures, despite the critical real-world impact of living long-term with TRAP. Those with significant medical conditions are often excluded from CHE-DE studies and so results derived from healthy individuals may not apply to more susceptible populations whose further study is needed to avoid potentially misleading conclusions. In spite of limitations, the contributions of CHE-DE studies have greatly advanced current understanding of the health impacts associated with TRAP exposure, especially regarding mechanisms therein, with important implications for regulation and policy.
Collapse
Affiliation(s)
- Erin Long
- Faculty of Medicine, University of British Columbia, 317 - 2194 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Christopher Carlsten
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, 2775 Laurel Street 7th Floor, Vancouver, BC, V5Z 1M9, Canada.
| |
Collapse
|
11
|
Honaker A, Kyntchev A, Foster E, Clough K, Hawk G, Asiedu E, Berling K, DeBurger E, Feltner M, Ferguson V, Forrest PT, Jenkins K, Massie L, Mullaguru J, Niang MD, Perry C, Sene Y, Towell A, Curran CP. The behavioral effects of gestational and lactational benzo[a]pyrene exposure vary by sex and genotype in mice with differences at the Ahr and Cyp1a2 loci. Neurotoxicol Teratol 2022; 89:107056. [PMID: 34890772 PMCID: PMC8763354 DOI: 10.1016/j.ntt.2021.107056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/20/2021] [Accepted: 12/03/2021] [Indexed: 01/03/2023]
Abstract
Benzo[a]pyrene (BaP) is a polycyclic aromatic hydrocarbon (PAH) and known carcinogen in the Top 10 on the United States' list of priority pollutants. Humans are exposed through a variety of sources including tobacco smoke, grilled foods and fossil fuel combustion. Recent studies of children exposed to higher levels of PAHs during pregnancy and early life have identified numerous adverse effects on the brain and behavior that persist into school age and adolescence. Our studies were designed to look for genotype and sex differences in susceptibility to gestational and lactational exposure to BaP using a mouse model with allelic differences in the aryl hydrocarbon receptor and the xenobiotic metabolizing enzyme CYP1A2. Pregnant dams were exposed to 10 mg/kg/day of BaP in corn oil-soaked cereal or the corn oil vehicle alone from gestational day 10 until weaning at postnatal day 25. Neurobehavioral testing began at P60 using one male and one female per litter. We found main effects of sex, genotype and treatment as well as significant gene x treatment and sex x treatment interactions. BaP-treated female mice had shorter latencies to fall in the Rotarod test. BaP-treated high-affinity AhrbCyp1a2(-/-) mice had greater impairments in Morris water maze. Interestingly, poor-affinity AhrdCyp1a2(-/-) mice also had deficits in spatial learning and memory regardless of treatment. We believe our findings provide future directions in identifying human populations at highest risk of early life BaP exposure, because our model mimics known human variation in our genes of interest. Our studies also highlight the value of testing both males and females in all neurobehavioral studies.
Collapse
Affiliation(s)
- Amanda Honaker
- Department of Biological Sciences, Northern Kentucky University, 100 Nunn Drive, Highland Heights, KY 41099, USA
| | - Angela Kyntchev
- Department of Biological Sciences, Northern Kentucky University, 100 Nunn Drive, Highland Heights, KY 41099, USA
| | - Emma Foster
- Department of Biological Sciences, Northern Kentucky University, 100 Nunn Drive, Highland Heights, KY 41099, USA
| | - Katelyn Clough
- Department of Biological Sciences, Northern Kentucky University, 100 Nunn Drive, Highland Heights, KY 41099, USA
| | - Greg Hawk
- University of Kentucky Applied Statistics Laboratory, Department of Statistics, University of Kentucky, 725 Rose Street, Lexington, KY 40536, USA
| | - Emmanuella Asiedu
- Department of Biological Sciences, Northern Kentucky University, 100 Nunn Drive, Highland Heights, KY 41099, USA
| | - Kevin Berling
- Department of Biological Sciences, Northern Kentucky University, 100 Nunn Drive, Highland Heights, KY 41099, USA
| | - Emma DeBurger
- Department of Biological Sciences, Northern Kentucky University, 100 Nunn Drive, Highland Heights, KY 41099, USA
| | - Mackenzie Feltner
- Department of Biological Sciences, Northern Kentucky University, 100 Nunn Drive, Highland Heights, KY 41099, USA
| | - Victoria Ferguson
- Department of Biological Sciences, Northern Kentucky University, 100 Nunn Drive, Highland Heights, KY 41099, USA
| | - Philip Tyler Forrest
- Department of Biological Sciences, Northern Kentucky University, 100 Nunn Drive, Highland Heights, KY 41099, USA
| | - Kayla Jenkins
- Department of Biological Sciences, Northern Kentucky University, 100 Nunn Drive, Highland Heights, KY 41099, USA
| | - Lisa Massie
- Department of Biological Sciences, Northern Kentucky University, 100 Nunn Drive, Highland Heights, KY 41099, USA
| | - Jayasree Mullaguru
- Department of Biological Sciences, Northern Kentucky University, 100 Nunn Drive, Highland Heights, KY 41099, USA
| | - Mame Diarra Niang
- Department of Biological Sciences, Northern Kentucky University, 100 Nunn Drive, Highland Heights, KY 41099, USA
| | - Connor Perry
- Department of Biological Sciences, Northern Kentucky University, 100 Nunn Drive, Highland Heights, KY 41099, USA
| | - Yvonne Sene
- Department of Biological Sciences, Northern Kentucky University, 100 Nunn Drive, Highland Heights, KY 41099, USA
| | - Aria Towell
- Department of Biological Sciences, Northern Kentucky University, 100 Nunn Drive, Highland Heights, KY 41099, USA
| | - Christine Perdan Curran
- Department of Biological Sciences, Northern Kentucky University, 100 Nunn Drive, Highland Heights, KY 41099, USA.
| |
Collapse
|
12
|
Verheyen VJ, Remy S, Bijnens EM, Colles A, Govarts E, Martin LR, Koppen G, Bruckers L, Nielsen F, Vos S, Morrens B, Coertjens D, De Decker A, Franken C, Den Hond E, Nelen V, Covaci A, Loots I, De Henauw S, van Larebeke N, Teughels C, Nawrot TS, Schoeters G. Long-term residential exposure to air pollution is associated with hair cortisol concentration and differential leucocyte count in Flemish adolescent boys. ENVIRONMENTAL RESEARCH 2021; 201:111595. [PMID: 34186082 DOI: 10.1016/j.envres.2021.111595] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Exposure to air pollution and traffic noise are associated with adverse health outcomes in adolescents. Chronic endocrine stress and systemic inflammation have been hypothesized to underlie the adverse health effects. Simultaneous assessment of inflammation and chronic endocrine stress in epidemiological studies is lacking. The aim of the study was to investigate biomarkers of chronic endocrine stress and inflammation in relation to long-term residential exposure to air pollution and traffic noise in adolescents. METHODS In Flemish adolescents (14-15 years), we determined hair cortisol concentration (HCC) as a chronic stress biomarker in 3-cm scalp-near hair sections (n = 395), and leucocyte and leucocyte subtype counts (neutrophils, monocytes, lymphocytes) as inflammatory biomarkers in peripheral blood (n = 385). Daily particulate matter (PM2.5, PM10), nitrogen dioxide (NO2) and black carbon (BC) concentrations were modelled at the residential address and averaged over 3-month and 1-year periods prior to sampling. Residential traffic noise level was estimated and classified in 5 dB intervals. Sex-specific associations between residential exposures and effect biomarkers were studied using linear regression models, adjusted for a priori selected covariates. RESULTS In boys, HCC increased with a factor 1.30 (95% CI: 1.10, 1.54) for an increase in 1-year mean NO2 from the 25th to 75th percentile (p75/p25), after adjustment for age, BMI, personal and neighborhood socioeconomic status. The corresponding estimate for PM10 was 1.24 (95% CI: 1.02, 1.51). Total leucocyte count in boys, adjusted for the aforementioned covariates and recent health complaints, was positively associated with PM2.5, PM10, NO2 and BC. In particular, the neutrophil count increased with a factor 1.11 (95% CI: 1.03, 1.19) for a (p75/p25)-factor increase in 1-year mean BC, corresponding estimates for PM2.5, PM10 and NO2 were 1.10 (95% CI: 1.01, 1.19), 1.10 (95% CI: 1.01, 1.20) and 1.08 (95% CI: 1.00, 1.16). Lymphocyte count increased with a factor 1.05 (95% CI: 1.01, 1.10) for a (p75/p25)-factor increase in 1-year mean NO2. Similar results were observed for 3-month mean exposures. Results were robust to adjustment for recent air pollution exposure. In girls, air pollutants were not associated with HCC or differential leucocyte count. Residential traffic noise level was not associated with HCC or leucocyte counts in boys nor girls. CONCLUSIONS Long-term residential exposure to air pollutants was positively associated with chronic endocrine stress and inflammation in adolescent boys, not in girls. This study may contribute to a better understanding of the early pathophysiological changes that may underlie adverse health effects of air pollution exposure in adolescents.
Collapse
Affiliation(s)
- Veerle J Verheyen
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium; Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium.
| | - Sylvie Remy
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - Esmée M Bijnens
- Centre for Environmental Sciences, Hasselt University, Agoralaan building D, 3590, Diepenbeek, Belgium
| | - Ann Colles
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - Laura Rodriguez Martin
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - Gudrun Koppen
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - Liesbeth Bruckers
- I-BioStat, Data Science Institute, Hasselt University, Martelarenlaan 42, 3500, Hasselt, Belgium
| | - Flemming Nielsen
- Institute of Public Health, Department of Environmental Medicine, University of Southern Denmark, J.B. Winsløws Vej 17A, 5000, Odense, Denmark
| | - Stijn Vos
- Centre for Environmental Sciences, Hasselt University, Agoralaan building D, 3590, Diepenbeek, Belgium
| | - Bert Morrens
- Department of Sociology, Faculty of Social Sciences, University of Antwerp, Sint-Jacobstraat 2, 2000, Antwerp, Belgium
| | - Dries Coertjens
- Department of Sociology, Faculty of Social Sciences, University of Antwerp, Sint-Jacobstraat 2, 2000, Antwerp, Belgium
| | - Annelies De Decker
- Provincial Institute of Hygiene, Kronenburgstraat 45, 2000, Antwerp, Belgium
| | - Carmen Franken
- Provincial Institute of Hygiene, Kronenburgstraat 45, 2000, Antwerp, Belgium
| | - Elly Den Hond
- Provincial Institute of Hygiene, Kronenburgstraat 45, 2000, Antwerp, Belgium
| | - Vera Nelen
- Provincial Institute of Hygiene, Kronenburgstraat 45, 2000, Antwerp, Belgium
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Ilse Loots
- Department of Sociology, Faculty of Social Sciences, University of Antwerp, Sint-Jacobstraat 2, 2000, Antwerp, Belgium
| | - Stefaan De Henauw
- Department of Public Health, Faculty of Medicine and Health Sciences, Ghent University, De Pintelaan 185, 9000, Ghent, Belgium
| | - Nicolas van Larebeke
- Analytical, Environmental and Geo- Chemistry, Vrije Universiteit Brussel, Brussels, Belgium; Department of Radiotherapy and Experimental Cancerology, Ghent University, Ghent, Belgium
| | - Caroline Teughels
- Flemish Planning Bureau for the Environment and Spatial Development, Koning Albert II laan 20, bus 8, 1000, Brussels, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Agoralaan building D, 3590, Diepenbeek, Belgium
| | - Greet Schoeters
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium; Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| |
Collapse
|
13
|
Delgado-Saborit JM, Guercio V, Gowers AM, Shaddick G, Fox NC, Love S. A critical review of the epidemiological evidence of effects of air pollution on dementia, cognitive function and cognitive decline in adult population. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143734. [PMID: 33340865 DOI: 10.1016/j.scitotenv.2020.143734] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/26/2020] [Accepted: 11/01/2020] [Indexed: 05/24/2023]
Abstract
Dementia is arguably the most pressing public health challenge of our age. Since dementia does not have a cure, identifying risk factors that can be controlled has become paramount to reduce the personal, societal and economic burden of dementia. The relationship between exposure to air pollution and effects on cognitive function, cognitive decline and dementia has stimulated increasing scientific interest in the past few years. This review of the literature critically examines the available epidemiological evidence of associations between exposure to ambient air pollutants, cognitive performance, acceleration of cognitive decline, risk of developing dementia, neuroimaging and neurological biomarker studies, following Bradford Hill guidelines for causality. The evidence reviewed has been consistent in reporting associations between chronic exposure to air pollution and reduced global cognition, as well as impairment in specific cognitive domains including visuo-spatial abilities. Cognitive decline and dementia incidence have also been consistently associated with exposure to air pollution. The neuro-imaging studies reviewed report associations between exposure to air pollution and white matter volume reduction. Other reported effects include reduction in gray matter, larger ventricular volume, and smaller corpus callosum. Findings relating to ischemic (white matter hyperintensities/silent cerebral infarcts) and hemorrhagic (cerebral microbleeds) markers of cerebral small vessel disease have been heterogeneous, as have observations on hippocampal volume and air pollution. The few studies available on neuro-inflammation tend to report associations with exposure to air pollution. Several effect modifiers have been suggested in the literature, but more replication studies are required. Traditional confounding factors have been controlled or adjusted for in most of the reviewed studies. Additional confounding factors have also been considered, but the inclusion of these has varied among the different studies. Despite all the efforts to adjust for confounding factors, residual confounding cannot be completely ruled out, especially since the factors affecting cognition and dementia are not yet fully understood. The available evidence meets many of the Bradford Hill guidelines for causality. The reported associations between a range of air pollutants and effects on cognitive function in older people, including the acceleration of cognitive decline and the induction of dementia, are likely to be causal in nature. However, the diversity of study designs, air pollutants and endpoints examined precludes the attribution of these adverse effects to a single class of pollutant and makes meta-analysis inappropriate.
Collapse
Affiliation(s)
- Juana Maria Delgado-Saborit
- Universitat Jaume I, Perinatal Epidemiology, Environmental Health and Clinical Research, School of Medicine, Castellon, Spain; Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, UK; ISGlobal Barcelona Institute for Global Health, Barcelona Biomedical Research Park, Barcelona, Spain; Division of Environmental Health & Risk Management, School of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham, UK.
| | - Valentina Guercio
- Air Quality and Public Health Group, Environmental Hazards and Emergencies Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Didcot, UK
| | - Alison M Gowers
- Air Quality and Public Health Group, Environmental Hazards and Emergencies Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Didcot, UK
| | | | - Nick C Fox
- Department of Neurodegenerative Disease, Dementia Research Centre, University College London, Institute of Neurology, London, UK
| | - Seth Love
- Institute of Clinical Neurosciences, University of Bristol, School of Medicine, Level 2 Learning and Research, Southmead Hospital, Bristol, UK
| |
Collapse
|
14
|
Neven KY, Wang C, Janssen BG, Roels HA, Vanpoucke C, Ruttens A, Nawrot TS. Ambient air pollution exposure during the late gestational period is linked with lower placental iodine load in a Belgian birth cohort. ENVIRONMENT INTERNATIONAL 2021; 147:106334. [PMID: 33360673 PMCID: PMC7816215 DOI: 10.1016/j.envint.2020.106334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 05/19/2023]
Abstract
BACKGROUND Adequate intake of iodine is required for the production of thyroid hormones and contributes in pregnant women to a healthy brain development and growth in their offspring. To date, some evidence exists that fine particulate air pollution is linked with the fetal thyroid hormone homeostasis. However, possible effects of air pollutants on the placental iodine storage have not been investigated so far. OBJECTIVES We investigated the association between air pollution exposure to particulate matter with a diameter less than 2.5 µm (PM2.5), NO2, and black carbon and the placental iodine load. METHODS The current study is part of the ENVIRONAGE birth cohort and included 470 mother-newborn pairs. Iodine concentrations were measured in placental tissue. A high-resolution air pollution model was used to estimate the daily exposure to PM2.5, NO2, and black carbon over the entire pregnancy based on the maternal residential addresses. Distributed lag nonlinear models (DLNMs) were used to estimate gestational week-specific associations between placental iodine concentrations and the air pollutants to understand the impact of specific exposure windows. RESULTS PM2.5 showed a positive association with placental iodine concentration between the 16th and 22nd week of gestation. In contrast, a significant inverse association between PM2.5 and placental iodine concentration was observed in gestational weeks 29-35. The effect estimate, for a 5 µg/m3 increment in PM2.5 concentration, was the strongest at week 32 (β -0.11 µg/kg; 95%CI: -0.18 to -0.03). No associations were observed between placental iodine concentrations and NO2 or black carbon. Assuming causality, we estimated that placental iodine mediated 26% (-0.33 pmol/L; 95%CI: -0.70 to 0.04 pmol/L) of the estimated effect of a 5 µg/m3 increment in PM2.5 exposure on cord blood free thyroxine (FT4) concentrations. CONCLUSION In utero exposure to particulate matter during the third trimester of pregnancy is linked with a lower placental iodine load. Furthermore, the effect of air pollution on cord blood FT4 levels was partially mediated by the placental iodine load.
Collapse
Affiliation(s)
- Kristof Y Neven
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Congrong Wang
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Bram G Janssen
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Harry A Roels
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium; Louvain Centre for Toxicology and Applied Pharmacology, Université catholique de Louvain, Brussels, Belgium
| | | | - Ann Ruttens
- SD, Chemical, and Physical Health Risks, Sciensano, Tervuren, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium; Department of Public Health and Primary Care, Leuven University, Leuven, Belgium.
| |
Collapse
|
15
|
The Relationship Between Air Pollution and Cognitive Functions in Children and Adolescents: A Systematic Review. Cogn Behav Neurol 2020; 33:157-178. [PMID: 32889949 DOI: 10.1097/wnn.0000000000000235] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Air pollution has a negative impact on one's health and on the central nervous system. We decided to assess studies that evaluated the relationship between air pollution and cognitive functions in children and adolescents by reviewing studies that had been published between January 2009 and May 2019. We searched three major databases for original works (26 studies) and for studies using brain imaging methods based on MRI (six studies). Adverse effects of air pollutants on selected cognitive or psychomotor functions were found in all of the studies. Exposure to nitrogen dioxide, for example, was linked to impaired working memory, general cognitive functions, and psychomotor functions; particulate matter 2.5 was linked to difficulties in working memory, short-term memory, attention, processing speed, and fine motor function; black carbon was linked to poor verbal intelligence, nonverbal intelligence, and working memory; airborne copper was linked to impaired attentiveness and fine motor skills; isophorone was linked to lower mathematical skills; and polycyclic aromatic hydrocarbons in fetal life were linked to lower intelligence scores. The studies using MRI showed that high concentrations of air pollutants were linked to changes in the brain's white matter or lower functional integration and segregation in children's brain networks. In view of the global increase in air pollution, there is a need for further research to elucidate the relationship between air pollution and cognitive and motor development in children. According to some studies, neuroinflammation, the e4 allele of the apolipoprotein E gene, and gutathione-S-transferase gene polymorphism processes may play a role.
Collapse
|
16
|
Zhao Q, Zhao Y, Dou H, Lu Y, Chen Y, Tao L. Adolescent Haze-Related Knowledge Level Study: A Cross-Sectional Survey With Sensitivity Analysis. Front Public Health 2020; 8:229. [PMID: 32733831 PMCID: PMC7363765 DOI: 10.3389/fpubh.2020.00229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/15/2020] [Indexed: 11/13/2022] Open
Abstract
Objective: This study aimed to investigate the level of haze-related knowledge adolescents have and to explore relevant influencing factors. Methods: From June 2015 to January 2016, researchers randomly selected 2 districts from the 20 districts of Baoding, China. Then, researchers randomly selected two middle schools from two districts. By conducting a stratified cluster sampling and considering one class as a unit, researchers randomly selected, from the other middle school, five first-grade classes, five second-grade classes, five third-grade classes from the one middle school, and three first-grade classes, two second-grade classes, and two third-grade classes. Finally, 1,100 adolescents were investigated by using the demographic questionnaire and the Adolescent Haze-Related Knowledge Awareness Assessment Scale (AHRKAAS). Multiple linear regressions were conducted to explore factors affecting the adolescent haze-related knowledge. Sensitivity analysis was used to confirm associations between influencing factors and AHRKAAS scores. Results: The AHRKAAS score rate was 69.9%. The dimension of human factors of haze formation was the highest (score rate = 85.6%). The dimension of haze harms on the human body was the lowest (score rate = 57.1%). Compared with the group (monthly expenses <300 yuan), the group (monthly expenses ≥ 600 yuan) had a higher AHRKAAS score (β = 4.882, 95% CI: 0.979, 8.784). Compared with the group (Do not live with parents), the group (Live with parents) had a higher AHRKAAS score (β = 14.675, 95% CI: 9.494, 19.855). Compared with the group (Never undergo a physical examination), the group (Once a year) (β = 7.444, 95% CI: 2.922, 11.966) and the group (A few times a year) (β = 7.643, 95% CI: 2.367, 12.919) had a higher AHRKAAS score. Compared with the group (Know nothing), the group (Know most) (β = 9.623, 95% CI: 2.929, 16.316) and the group (Know very well) (β = 15.367, 95% CI: 7.220, 23.515) had a higher AHRKAAS score. These associations were still reliable and consistent in different sensitivity analysis models. Conclusion: The level of adolescent haze-related knowledge is low and is affected by monthly expenses, living condition, physical examination frequency, and knowledge of respiratory system diseases. Government bodies, schools, and research institutions should strengthen cooperation of health publicity and health education to improve adolescent haze-related knowledge.
Collapse
Affiliation(s)
- Qingchun Zhao
- Affiliated Hospital of Hebei University, Baoding, China
| | - Yuejia Zhao
- Affiliated Hospital of Hebei University, Baoding, China
| | - Hongzhe Dou
- Affiliated Hospital of Hebei University, Baoding, China
| | - Yanrong Lu
- United Front Department, Hebei University, Baoding, China
| | - Yanhong Chen
- Affiliated Hospital of Hebei University, Baoding, China
| | - Lingwei Tao
- School of Public Health, Peking University, Beijing, China
| |
Collapse
|
17
|
Costa LG, Cole TB, Dao K, Chang YC, Coburn J, Garrick JM. Effects of air pollution on the nervous system and its possible role in neurodevelopmental and neurodegenerative disorders. Pharmacol Ther 2020; 210:107523. [PMID: 32165138 PMCID: PMC7245732 DOI: 10.1016/j.pharmthera.2020.107523] [Citation(s) in RCA: 244] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/25/2020] [Indexed: 02/06/2023]
Abstract
Recent extensive evidence indicates that air pollution, in addition to causing respiratory and cardiovascular diseases, may also negatively affect the brain and contribute to central nervous system diseases. Air pollution is comprised of ambient particulate matter (PM) of different sizes, gases, organic compounds, and metals. An important contributor to PM is represented by traffic-related air pollution, mostly ascribed to diesel exhaust (DE). Epidemiological and animal studies have shown that exposure to air pollution may be associated with multiple adverse effects on the central nervous system. In addition to a variety of behavioral abnormalities, the most prominent effects caused by air pollution are oxidative stress and neuro-inflammation, which are seen in both humans and animals, and are supported by in vitro studies. Among factors which can affect neurotoxic outcomes, age is considered most relevant. Human and animal studies suggest that air pollution may cause developmental neurotoxicity, and may contribute to the etiology of neurodevelopmental disorders, including autism spectrum disorder. In addition, air pollution exposure has been associated with increased expression of markers of neurodegenerative disease pathologies, such as alpha-synuclein or beta-amyloid, and may thus contribute to the etiopathogenesis of neurodegenerative diseases, particularly Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Lucio G Costa
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA; Dept. of Medicine & Surgery, University of Parma, Italy.
| | - Toby B Cole
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA; Center on Human Development and Disability, University of Washington, Seattle, WA, USA
| | - Khoi Dao
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Yu-Chi Chang
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Jacki Coburn
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Jacqueline M Garrick
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
18
|
Air pollution: A systematic review of its psychological, economic, and social effects. Curr Opin Psychol 2020; 32:52-65. [DOI: 10.1016/j.copsyc.2019.06.024] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 12/31/2022]
|
19
|
Calderón-Garcidueñas L, Torres-Jardón R, Kulesza RJ, Mansour Y, González-González LO, Gónzalez-Maciel A, Reynoso-Robles R, Mukherjee PS. Alzheimer disease starts in childhood in polluted Metropolitan Mexico City. A major health crisis in progress. ENVIRONMENTAL RESEARCH 2020; 183:109137. [PMID: 32006765 DOI: 10.1016/j.envres.2020.109137] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 05/20/2023]
Abstract
Exposures to fine particulate matter (PM2.5) and ozone (O3) above USEPA standards are associated with Alzheimer's disease (AD) risk. Metropolitan Mexico City (MMC) youth have life time exposures to PM2.5 and O3 above standards. We focused on MMC residents ≤30 years and reviewed 134 consecutive autopsies of subjects age 20.03 ± 6.38 y (range 11 months to 30 y), the staging of Htau and ß amyloid, the lifetime cumulative PM2.5 (CPM 2.5) and the impact of the Apolipoprotein E (APOE) 4 allele, the most prevalent genetic risk for AD. We also reviewed the results of the Montreal Cognitive Assessment (MoCA) and the brainstem auditory evoked potentials (BAEPs) in clinically healthy young cohorts. Mobile sources, particularly from non-regulated diesel vehicles dominate the MMC pollutant emissions exposing the population to PM2.5 concentrations above WHO and EPA standards. Iron-rich,magnetic, highly oxidative, combustion and friction-derived nanoparticles (CFDNPs) are measured in the brain of every MMC resident. Progressive development of Alzheimer starts in childhood and in 99.25% of 134 consecutive autopsies ≤30 years we can stage the disease and its progression; 66% of ≤30 years urbanites have cognitive impairment and involvement of the brainstem is reflected by auditory central dysfunction in every subject studied. The average age for dementia using MoCA is 20.6 ± 3.4 y. APOE4 vs 3 carriers have 1.26 higher odds of committing suicide. PM2.5 and CFDNPs play a key role in the development of neuroinflammation and neurodegeneration in young urbanites. A serious health crisis is in progress with social, educational, judicial, economic and overall negative health impact for 25 million residents. Understanding the neural circuitry associated with the earliest cognitive and behavioral manifestations of AD is needed. Air pollution control should be prioritised-including the regulation of diesel vehicles- and the first two decades of life ought to be targeted for neuroprotective interventions. Defining paediatric environmental, nutritional, metabolic and genetic risk factor interactions is a multidisciplinary task of paramount importance to prevent Alzheimer's disease. Current and future generations are at risk.
Collapse
Affiliation(s)
| | - Ricardo Torres-Jardón
- Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, 04310, Ciudad de México, Mexico
| | - Randy J Kulesza
- Auditory Research Center, Lake Erie College of Osteopathic Medicine, Erie, PA, 16509, USA
| | - Yusra Mansour
- Auditory Research Center, Lake Erie College of Osteopathic Medicine, Erie, PA, 16509, USA
| | | | | | | | - Partha S Mukherjee
- Interdisciplinary Statistical Research Unit, Indian Statistical Institute, 700108, Kolkata, India
| |
Collapse
|
20
|
Rafiee A, Delgado-Saborit JM, Sly PD, Quémerais B, Hashemi F, Akbari S, Hoseini M. Environmental chronic exposure to metals and effects on attention and executive function in the general population. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135911. [PMID: 31838411 DOI: 10.1016/j.scitotenv.2019.135911] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 10/16/2019] [Accepted: 12/01/2019] [Indexed: 05/19/2023]
Abstract
Heavy metals are neurotoxic, associated with brain dysfunction, and have been linked with cognitive decline in adults. This study was aimed to characterize chronic exposure to metals (Cd, Be, Co, Hg, Sn, V, Al, Ba, Cr, Cu, Fe, Li, Mn, Ni, Pb, and Zn) and metalloids (As, B, Sb) and assess its impact on cognitive performance of Tehran's residents, capital of Iran. Scalp hair samples gathered from 200 volunteered participants (110 men and 90 women), aged 14-70 years and quantified by inductively coupled plasma atomic emission spectroscopy (ICP-OES). Attention and executive function, two measures of cognitive performance, were characterized using the trail making test (TMT) part A and B, respectively. Mental flexibility was characterized as the Delta TMT B-A scores and cognitive efficiency or dissimulation as the ration between TMT B and A scores. A comprehensive questionnaire was used to gather information on demographic and socioeconomic as well as lifestyle and health status. The highest and lowest mean concentrations were observed for B (325 μg/g) and As (0.29 μg/g), respectively. Results indicated that chronic metal exposure measured in hair changed significantly based on gender and age (p < 0.05). The levels of Cr, Fe, Ni, Si, Hg, Pb and B were significantly higher in males' hair, whereas those of Ag and Ba were greater in females' hair (p < 0.05). The results of the cognitive TMT test were significantly different between gender and age groups (p < 0.05). Moreover, results revealed that As, Hg, Mn, and Pb levels in hair were significantly associated with poorer participants' performance scores in the TMT test (p < 0.05). Age, gender, cigarette smoking, water-pipe smoking, traffic density in the area of residence, and dental amalgam filling were significant factors affecting the TMT test scores. The results suggest that chronic exposure to metals has detrimental effects on attention, executive function, mental flexibility and cognitive efficiency.
Collapse
Affiliation(s)
- Ata Rafiee
- Department of Medicine, University of Alberta, Edmonton, AB, Canada.
| | - Juana Maria Delgado-Saborit
- ISGlobal Barcelona Institute for Global Health, Barcelona Biomedical Research Park, Barcelona, Spain; Population Health and Environmental Sciences, Analytical Environmental and Forensic Sciences, King's College London, United Kingdom; Division of Environmental Health & Risk Management, School of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Peter D Sly
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, South Brisbane, Australia
| | | | - Fallah Hashemi
- Department of Environmental Health, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sadaf Akbari
- Trauma and Injury Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hoseini
- Research Center for Health Sciences, Institute of Health, Department of Environmental Health, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
21
|
Quist AJL, Rohlman DS, Kwok RK, Stewart PA, Stenzel MR, Blair A, Miller AK, Curry MD, Sandler DP, Engel LS. Deepwater Horizon oil spill exposures and neurobehavioral function in GuLF study participants. ENVIRONMENTAL RESEARCH 2019; 179:108834. [PMID: 31703974 PMCID: PMC6878206 DOI: 10.1016/j.envres.2019.108834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/26/2019] [Accepted: 10/16/2019] [Indexed: 05/04/2023]
Abstract
INTRODUCTION The 2010 Deepwater Horizon (DWH) disaster exposed tens of thousands of oil spill response and cleanup (OSRC) workers to hydrocarbons and other hazardous chemicals. Some hydrocarbons, such as toluene and hexane, have been found to have acute adverse effects on the central nervous system in occupational settings. However, no studies have examined the association between oil spill exposures and neurobehavioral function. METHODS We used data from the Gulf Long-term Follow-up Study, a cohort of adults who worked on the DWH response and cleanup. Total hydrocarbon (THC) exposure attributed to oil spill cleanup work was estimated from a job-exposure matrix linking air measurement data to detailed cleanup work histories. Participants were also categorized into 6 job categories, or OSRC classes, based on their activity with the highest exposure. Neurobehavioral performance was assessed at a clinical exam 4-6 years after the spill. We used multivariable linear regression to evaluate relationships of ordinal THC levels and OSRC classes with 16 neurobehavioral outcomes. RESULTS We found limited evidence of associations between THC levels or OSRC classes and decreased neurobehavioral function, including attention, memory, and executive function. Workers exposed to ≥3 ppm THC scored significantly worse (difference1.0-2.9ppm = -0.39, 95% confidence interval (CI) = -0.74, -0.04) than workers exposed to <0.30 ppm THC for the digit span forward count test. There was also a possible threshold effect above 1 ppm THC for symbol digit test total errors (difference1.0-2.9ppm = -0.56 (95% CI = -1.13, -0.003), difference≥3.0ppm = -0.55 (95% CI = -1.20, 0.10)). Associations appeared to be stronger in men than in women. A summary latency measure suggested an association between more highly exposed jobs (especially support of operations workers) and decreased neurobehavioral function. CONCLUSION OSRC-related exposures were associated with modest decreases in neurobehavioral function, especially attention, memory, and executive function.
Collapse
Affiliation(s)
- Arbor J L Quist
- Department of Epidemiology, UNC Gillings School of Global Public Health, Chapel Hill, NC, USA.
| | - Diane S Rohlman
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Richard K Kwok
- National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | | | - Mark R Stenzel
- Exposure Assessment Applications LLC, Arlington, VA, USA
| | - Aaron Blair
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Aubrey K Miller
- National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | | | - Dale P Sandler
- National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Lawrence S Engel
- Department of Epidemiology, UNC Gillings School of Global Public Health, Chapel Hill, NC, USA; National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| |
Collapse
|
22
|
Costa LG, Cole TB, Dao K, Chang YC, Garrick JM. Developmental impact of air pollution on brain function. Neurochem Int 2019; 131:104580. [PMID: 31626830 PMCID: PMC6892600 DOI: 10.1016/j.neuint.2019.104580] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/25/2019] [Accepted: 10/15/2019] [Indexed: 12/15/2022]
Abstract
Air pollution is an important contributor to the global burden of disease, particularly to respiratory and cardiovascular diseases. In recent years, evidence is accumulating that air pollution may adversely affect the nervous system as shown by human epidemiological studies and by animal models. Age appears to play a relevant role in air pollution-induced neurotoxicity, with growing evidence suggesting that air pollution may contribute to neurodevelopmental and neurodegenerative diseases. Traffic-related air pollution (e.g. diesel exhaust) is an important contributor to urban air pollution, and fine and ultrafine particulate matter (PM) may possibly be its more relevant component. Air pollution is associated with increased oxidative stress and inflammation both in the periphery and in the nervous system, and fine and ultrafine PM can directly access the central nervous system. This short review focuses on the adverse effects of air pollution on the developing brain; it discusses some characteristics that make the developing brain more susceptible to toxic effects, and summarizes the animal and human evidence suggesting that exposure to elevated air pollution is associated with a number of behavioral and biochemical adverse effects. It also discusses more in detail the emerging evidence of an association between perinatal exposure to air pollution and increased risk of autism spectrum disorder. Some of the common mechanisms that may underlie the neurotoxicity and developmental neurotoxicity of air pollution are also discussed. Considering the evidence presented in this review, any policy and legislative effort aimed at reducing air pollution would be protective of children's well-being.
Collapse
Affiliation(s)
- Lucio G Costa
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA; Dept. of Medicine & Surgery, University of Parma, Italy.
| | - Toby B Cole
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA; Center on Human Development and Disability, University of Washington, Seattle, WA, USA
| | - Khoi Dao
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Yu-Chi Chang
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Jacqueline M Garrick
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
23
|
Aghaei M, Janjani H, Yousefian F, Jamal A, Yunesian M. Association between ambient gaseous and particulate air pollutants and attention deficit hyperactivity disorder (ADHD) in children; a systematic review. ENVIRONMENTAL RESEARCH 2019; 173:135-156. [PMID: 30909100 DOI: 10.1016/j.envres.2019.03.030] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/10/2019] [Accepted: 03/12/2019] [Indexed: 05/28/2023]
Abstract
ADHD is a common neurodevelopmental disorder highly attributed to genetics, but the combination of other social and environmental determinants, as well as potential gene-environment interactions, can also be responsible. This paper aims to review relevant literature published up to April 2018 for determining whether air pollution caused by ambient gaseous (NO2, SO2, PCDD/Fs, Benzene) and particulate matters (PM10, PM2.5, PM7, PAH, BC/EC) as an environmental risk factor is associated with increased risk of ADHD in children. Relevant literature was identified through electronic searches of PubMed, Embase, Web of Science, Scopus database and gray literature. A total of 872 articles were initially identified 28 of which meeting the defined inclusion criteria were included. The methodological quality of the included articles was evaluated using the modified Critical Appraisal Skills Programs (CASP) and confounding variables, exposure and outcome measurement were assessed. The results of this systematic review revealed that there is more evidence on the detrimental effects of EC, BC, and PM on ADHD compared to PAH. Among gaseous air pollutants, association was found between SO2 and urinary level of t,t-MA (trans, trans-muconic acid) as a proxy-biomarker of NO2 exposure, not merely benzene. However few studies related to NO2 (0.46%) found detrimental effects. Overall, the number of studies reporting an association between air pollution and increased risk of ADHD is relatively higher compared to the number of studies reporting no association. However, the findings of the studies provided limited evidence to support the idea that exposure to air pollution may be linked to increased risk of ADHD. Well-designed and harmonized studies considering standard methods for individual exposure assessment, critical windows of susceptibility, and appropriate tools for outcome measurement, can improve the quality of epidemiological studies and strengthen the evidence. Since ADHD with its long-term consequences can impose large costs to communities and impact the children performance, determination of the risk factors in children and particularly the role of the environment as priorities for research should be considered.
Collapse
Affiliation(s)
- Mina Aghaei
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hosna Janjani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Yousefian
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Jamal
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Masud Yunesian
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Department of Research Methodology and Data Analysis, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Khan KM, Weigel MM, Yonts S, Rohlman D, Armijos R. Residential exposure to urban traffic is associated with the poorer neurobehavioral health of Ecuadorian schoolchildren. Neurotoxicology 2019; 73:31-39. [PMID: 30826345 DOI: 10.1016/j.neuro.2019.02.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/12/2018] [Accepted: 02/26/2019] [Indexed: 12/18/2022]
Abstract
PURPOSE We investigated whether chronic traffic-generated air pollution containing fine and ultrafine particulate matter is associated with reduced neurobehavioral performance and behavioral dysfunction in urban Ecuadorian schoolchildren. Also, we examined the effect of child hemoglobin and sociodemographic risk factors on these neurocognitive outcomes. METHODS A convenience sample of healthy children aged 8-14 years attending public schools were recruited in Quito, Ecuador. Child residential proximity to the nearest heavily trafficked road was used as a proxy for traffic-related pollutant exposure. These included high exposure (<100 m), medium exposure (100-199 m) and low exposure (≥ 200 m) from the nearest heavily trafficked road. The Behavioral Assessment and Research System (BARS), a computerized test battery assessing attention, memory, learning and motor function was used to evaluate child neurobehavioral performance. The Child Behavior Checklist (CBCL/6-18) was used to assess child behavioral dysfunction as reported by mothers. The data were analyzed using multiple linear regression. RESULTS Children with the highest residential exposure to traffic pollutants (< 100 m) had significantly longer latencies as measured by match to sample (b = 410.27; p = 0.01) and continuous performance (b = 37.90; p = 0.02) compared to those living ≥ 200 m away. A similar but non-significant association was observed for reaction time latency. Children living within 100 m of heavy traffic also demonstrated higher scores across all CBCL subscales although only the relationship with thought problems (p = 0.05) was statistically significant in the adjusted model. CONCLUSION The study findings suggest that children living within 100 m of heavy traffic appear to experience subtle neurobehavioral deficits that may result from fine and ultrafine particulate matter exposure.
Collapse
Affiliation(s)
- Khalid M Khan
- Department of Environmental and Occupational Health, School of Public Health, Indiana University-Bloomington, USA.
| | - M Margaret Weigel
- Department of Environmental and Occupational Health, School of Public Health, Indiana University-Bloomington, USA; Global Environmental Health Research Laboratory, School of Public Health, Indiana University-Bloomington, USA
| | - Sarah Yonts
- Department of Environmental and Occupational Health, School of Public Health, Indiana University-Bloomington, USA
| | - Diane Rohlman
- Department of Occupational and Environmental Health, College of Public Health, The University of Iowa, USA
| | - Rodrigo Armijos
- Department of Environmental and Occupational Health, School of Public Health, Indiana University-Bloomington, USA; Global Environmental Health Research Laboratory, School of Public Health, Indiana University-Bloomington, USA
| |
Collapse
|
25
|
Cipriani G, Danti S, Carlesi C, Borin G. Danger in the Air: Air Pollution and Cognitive Dysfunction. Am J Alzheimers Dis Other Demen 2018; 33:333-341. [PMID: 29874918 PMCID: PMC10852418 DOI: 10.1177/1533317518777859] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2024]
Abstract
BACKGROUND Clean air is considered to be a basic requirement for human health and well-being. OBJECTIVE To examine the relationship between cognitive performance and ambient pollution exposure. METHODS Studies were identified through a systematic search of online scientific databases, in addition to a manual search of the reference lists from the identified papers. RESULTS Air pollution is a multifaceted toxic chemical mixture capable of assaulting the central nervous system. Despite being a relatively new area of investigation, overall, there is mounting evidence implicating adverse effects of air pollution on cognitive function in both adults and children. CONCLUSIONS Consistent evidence showed that exposure to air pollution, specifically exposure to particulate matter, caused poor age-related cognitive performance. Living in areas with high levels of air pollution has been linked to markers of neuroinflammation and neuropathology that are associated with neurodegenerative conditions such as Alzheimer's disease-like brain pathologies.
Collapse
Affiliation(s)
- Gabriele Cipriani
- Department of Neurology, Hospital of Viareggio, Lido di Camaiore, Lucca, Italy
| | - Sabrina Danti
- Department of Neurology, Hospital of Viareggio, Lido di Camaiore, Lucca, Italy
| | - Cecilia Carlesi
- Department of Neurology, Hospital of Viareggio, Lido di Camaiore, Lucca, Italy
| | - Gemma Borin
- Department of Sociology, Universita degli Studi di Pisa, Pisa, Toscana, Italy
| |
Collapse
|
26
|
Kilian J, Kitazawa M. The emerging risk of exposure to air pollution on cognitive decline and Alzheimer's disease - Evidence from epidemiological and animal studies. Biomed J 2018; 41:141-162. [PMID: 30080655 PMCID: PMC6138768 DOI: 10.1016/j.bj.2018.06.001] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/31/2018] [Accepted: 06/04/2018] [Indexed: 12/31/2022] Open
Abstract
As incidence of Alzheimer's disease (AD) and other neurodegenerative diseases rise, there is increasing interest in environmental factors which may contribute to disease onset and progression. Air pollution has been known as a major health hazard for decades. While its effects on cardiopulmonary morbidity and mortality have been extensively studied, growing evidence has emerged that exposure to polluted air is associated with impaired cognitive functions at all ages and increased risk of AD and other dementias in later life; this association is particularly notable with traffic related pollutants such as nitrogen dioxide, nitrous oxide, black carbon, and small diameter airborne solids and liquids known as particulate matter. The exact mechanisms by which air pollutants mediate neurotoxicity in the central nervous system (CNS) and lead to cognitive decline and AD remain largely unknown. Studies using animal and cell culture models indicate that amyloid-beta processing, anti-oxidant defense, and inflammation are altered following the exposure to constituents of polluted air. In this review, we summarize recent evidence supporting exposure to air pollution as a risk for cognitive decline at all ages and AD at later lifetime. Additionally, we review the current body of work investigating the molecular mechanisms by which air pollutants mediate damage in the CNS. Understanding of the neurotoxic effects of air pollution and its constituents is still limited, and further studies will be essential to better understand the cellular and molecular mechanisms linking air pollution and cognitive decline.
Collapse
Affiliation(s)
- Jason Kilian
- Center for Occupational and Environmental Health, Department of Medicine, University of California, Irvine, CA, USA
| | - Masashi Kitazawa
- Center for Occupational and Environmental Health, Department of Medicine, University of California, Irvine, CA, USA.
| |
Collapse
|
27
|
Calderón-Garcidueñas L, Gónzalez-Maciel A, Reynoso-Robles R, Delgado-Chávez R, Mukherjee PS, Kulesza RJ, Torres-Jardón R, Ávila-Ramírez J, Villarreal-Ríos R. Hallmarks of Alzheimer disease are evolving relentlessly in Metropolitan Mexico City infants, children and young adults. APOE4 carriers have higher suicide risk and higher odds of reaching NFT stage V at ≤ 40 years of age. ENVIRONMENTAL RESEARCH 2018; 164:475-487. [PMID: 29587223 DOI: 10.1016/j.envres.2018.03.023] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 03/13/2018] [Accepted: 03/13/2018] [Indexed: 06/08/2023]
Abstract
Exposures to fine particulate matter (PM2.5) and ozone (O3) above USEPA standards are associated with Alzheimer's disease (AD) risk. Metropolitan Mexico City (MMC) residents have life time exposures to PM2.5 and O3 above USEPA standards. We investigated AD intra and extracellular protein aggregates and ultrastructural neurovascular pathology in 203 MMC residents age 25.36 ± 9.23 y. Immunohistochemical methods were used to identify AT8 hyperphosphorilated tau (Htau) and 4G8 (amyloid β 17-24). Primary outcomes: staging of Htau and amyloid, per decade and cumulative PM2.5 (CPM2.5) above standard. Apolipoprotein E allele 4 (APOE4), age and cause of death were secondary outcomes. Subcortical pretangle stage b was identified in an 11month old baby. Cortical tau pre-tangles, neurofibrillary tangles (NFT) Stages I-II, amyloid phases 1-2, Htau in substantia nigrae, auditory, oculomotor, trigeminal and autonomic systems were identified by the 2nd decade. Progression to NFT stages III-V was present in 24.8% of 30-40 y old subjects. APOE4 carriers have 4.92 times higher suicide odds (p = 0.0006), and 23.6 times higher odds of NFT V (p < 0.0001) v APOE4 non-carriers having similar CPM2.5 exposure and age. Age (p = 0.0062) and CPM2.5 (p = 0.0178) were significant for developing NFT V. Combustion-derived nanoparticles were associated with early and progressive damage to the neurovascular unit. Alzheimer's disease starting in the brainstem of young children and affecting 99.5% of young urbanites is a serious health crisis. Air pollution control should be prioritised. Childhood relentless Htau makes a fundamental target for neuroprotective interventions and the first two decades are critical. We recommend the concept of preclinical AD be revised and emphasize the need to define paediatric environmental, nutritional, metabolic and genetic risk factor interactions of paramount importance to prevent AD. AD evolving from childhood is threating the wellbeing of our children and future generations.
Collapse
Affiliation(s)
| | | | | | | | | | - Randy J Kulesza
- Auditory Research Center, Lake Erie College of Osteopathic Medicine, Erie, PA 16509, USA
| | - Ricardo Torres-Jardón
- Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, 04310, Mexico
| | | | | |
Collapse
|
28
|
Myhre O, Låg M, Villanger GD, Oftedal B, Øvrevik J, Holme JA, Aase H, Paulsen RE, Bal-Price A, Dirven H. Early life exposure to air pollution particulate matter (PM) as risk factor for attention deficit/hyperactivity disorder (ADHD): Need for novel strategies for mechanisms and causalities. Toxicol Appl Pharmacol 2018; 354:196-214. [PMID: 29550511 DOI: 10.1016/j.taap.2018.03.015] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/14/2018] [Accepted: 03/12/2018] [Indexed: 12/11/2022]
Abstract
Epidemiological studies have demonstrated that air pollution particulate matter (PM) and adsorbed toxicants (organic compounds and trace metals) may affect child development already in utero. Recent studies have also indicated that PM may be a risk factor for neurodevelopmental disorders (NDDs). A pattern of increasing prevalence of attention deficit/hyperactivity disorder (ADHD) has been suggested to partly be linked to environmental pollutants exposure, including PM. Epidemiological studies suggest associations between pre- or postnatal exposure to air pollution components and ADHD symptoms. However, many studies are cross-sectional without possibility to reveal causality. Cohort studies are often small with poor exposure characterization, and confounded by traffic noise and socioeconomic factors, possibly overestimating the study associations. Furthermore, the mechanistic knowledge how exposure to PM during early brain development may contribute to increased risk of ADHD symptoms or cognitive deficits is limited. The closure of this knowledge gap requires the combined use of well-designed longitudinal cohort studies, supported by mechanistic in vitro studies. As ADHD has profound consequences for the children affected and their families, the identification of preventable risk factors such as air pollution exposure should be of high priority.
Collapse
Affiliation(s)
- Oddvar Myhre
- Department of Toxicology and Risk Assessment, Norwegian Institute of Public Health, Oslo, Norway.
| | - Marit Låg
- Department of Air pollution and Noise, Norwegian Institute of Public Health, Oslo, Norway
| | - Gro D Villanger
- Department of Child Health and Development, Norwegian Institute of Public Health, Oslo, Norway
| | - Bente Oftedal
- Department of Air pollution and Noise, Norwegian Institute of Public Health, Oslo, Norway
| | - Johan Øvrevik
- Department of Air pollution and Noise, Norwegian Institute of Public Health, Oslo, Norway
| | - Jørn A Holme
- Department of Air pollution and Noise, Norwegian Institute of Public Health, Oslo, Norway
| | - Heidi Aase
- Department of Child Health and Development, Norwegian Institute of Public Health, Oslo, Norway
| | - Ragnhild E Paulsen
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Norway
| | - Anna Bal-Price
- European Commission, Joint Research Centre, Ispra, Italy
| | - Hubert Dirven
- Department of Toxicology and Risk Assessment, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
29
|
Vorhees CV, Sprowles JN, Regan SL, Williams MT. A better approach to in vivo developmental neurotoxicity assessment: Alignment of rodent testing with effects seen in children after neurotoxic exposures. Toxicol Appl Pharmacol 2018; 354:176-190. [PMID: 29544898 DOI: 10.1016/j.taap.2018.03.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/27/2018] [Accepted: 03/11/2018] [Indexed: 10/17/2022]
Abstract
High throughput screens for developmental neurotoxicity (DN) will facilitate evaluation of chemicals and can be used to prioritize those designated for follow-up. DN is evaluated under different guidelines. Those for drugs generally include peri- and postnatal studies and juvenile toxicity studies. For pesticides and commercial chemicals, when triggered, include developmental neurotoxicity studies (DNT) and extended one-generation reproductive toxicity studies. Raffaele et al. (2010) reviewed 69 pesticide DNT studies and found two of the four behavioral tests underperformed. There are now many epidemiological studies on children showing adverse neurocognitive effects, yet guideline DN studies fail to assess most of the functions affected in children; nor do DN guidelines reflect the advances in brain structure-function relationships from neuroscience. By reducing the number of test ages, removing underperforming tests and replacing them with tests that assess cognitive abilities relevant to children, the value of DN protocols can be improved. Testing for the brain networks that mediate higher cognitive functions need to include assessments of working memory, attention, long-term memory (explicit, implicit, and emotional), and executive functions such as cognitive flexibility. The current DNT focus on what can be measured should be replaced with what should be measured. With the wealth of data available from human studies and neuroscience, the recommendation is made for changes to make DN studies better focused on human-relevant functions using tests of proven validity that assess comparable functions to tests used in children. Such changes will provide regulatory authorities with more relevant data.
Collapse
Affiliation(s)
- Charles V Vorhees
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, USA.
| | - Jenna N Sprowles
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, USA
| | - Samantha L Regan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, USA
| | - Michael T Williams
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, USA
| |
Collapse
|
30
|
Midouhas E, Kokosi T, Flouri E. Outdoor and indoor air quality and cognitive ability in young children. ENVIRONMENTAL RESEARCH 2018; 161:321-328. [PMID: 29182908 DOI: 10.1016/j.envres.2017.11.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/13/2017] [Accepted: 11/17/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND This study examined outdoor and indoor air quality at ages 9 months and 3 years and their association with cognitive ability at age 3 in England and Wales. METHOD Data from 8198 Millennium Cohort Study children were analysed using multilevel regression. Outdoor air quality was assessed with mean annual estimates of nitrogen dioxide (NO2) levels within a standard small area (ward). Indoor air quality was measured with parent-reports of damp or condensation in the home and exposure to secondhand smoke in the home. Cognitive ability was assessed with the British Ability Scales Naming Vocabulary subscale and the Bracken School Readiness Assessment. RESULTS In adjusted models, consistent exposure to high levels of NO2 at age 9 months and age 3 years was associated with lower verbal ability at age 3 years. Damp/condensation and secondhand smoke in the home at either age or at both ages were correlated with lower school readiness at age 3 years. Exposures to damp/condensation at age 3 years or at both ages and secondhand smoke at either age or at both ages were associated with lower verbal ability at age 3 years. CONCLUSION Young children's exposures to indoor damp or condensation and secondhand smoke are likely to be detrimental for their cognitive outcomes. However, there do not appear to be any short-term effects of NO2.
Collapse
Affiliation(s)
- Emily Midouhas
- Department of Psychology and Human Development, UCL Institute of Education, University College London, UK.
| | - Theodora Kokosi
- Department of Psychology and Human Development, UCL Institute of Education, University College London, UK
| | - Eirini Flouri
- Department of Psychology and Human Development, UCL Institute of Education, University College London, UK
| |
Collapse
|
31
|
Cognitive Effects of Air Pollution Exposures and Potential Mechanistic Underpinnings. Curr Environ Health Rep 2017; 4:180-191. [PMID: 28435996 DOI: 10.1007/s40572-017-0134-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW This review sought to address the potential for air pollutants to impair cognition and mechanisms by which that might occur. RECENT FINDINGS Air pollution has been associated with deficits in cognitive functions across a wide range of epidemiological studies, both with developmental and adult exposures. Studies in animal models are significantly more limited in number, with somewhat inconsistent findings to date for measures of learning, but show more consistent impairments for short-term memory. Potential contributory mechanisms include oxidative stress/inflammation, altered levels of dopamine and/or glutamate, and changes in synaptic plasticity/structure. Epidemiological studies are consistent with adverse effects of air pollutants on cognition, but additional studies and better phenotypic characterization are needed for animal models, including more precise delineation of specific components of cognition that are affected, as well as definitions of critical exposure periods for such effects and the components of air pollution responsible. This would permit development of more circumscribed hypotheses as to potential behavioral and neurobiological mechanisms.
Collapse
|
32
|
Saenen ND, Bové H, Steuwe C, Roeffaers MBJ, Provost EB, Lefebvre W, Vanpoucke C, Ameloot M, Nawrot TS. Children’s Urinary Environmental Carbon Load. A Novel Marker Reflecting Residential Ambient Air Pollution Exposure? Am J Respir Crit Care Med 2017; 196:873-881. [DOI: 10.1164/rccm.201704-0797oc] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
| | - Hannelore Bové
- Biomedical Research Institute, Hasselt University, Hasselt, Belgium
- Centre for Surface Chemistry and Catalysis and
| | | | | | | | - Wouter Lefebvre
- Flemish Institute for Technological Research, Mol, Belgium; and
| | | | - Marcel Ameloot
- Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Tim S. Nawrot
- Centre for Environmental Sciences and
- Department of Public Health and Primary Care, Leuven University, Leuven, Belgium
| |
Collapse
|
33
|
Sentís A, Sunyer J, Dalmau-Bueno A, Andiarena A, Ballester F, Cirach M, Estarlich M, Fernández-Somoano A, Ibarluzea J, Íñiguez C, Lertxundi A, Tardón A, Nieuwenhuijsen M, Vrijheid M, Guxens M. Prenatal and postnatal exposure to NO 2 and child attentional function at 4-5years of age. ENVIRONMENT INTERNATIONAL 2017; 106:170-177. [PMID: 28689118 DOI: 10.1016/j.envint.2017.05.021] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 05/30/2017] [Accepted: 05/30/2017] [Indexed: 05/23/2023]
Abstract
BACKGROUND Prenatal and postnatal exposure to air pollution has been linked to cognitive impairment in children, but very few studies have assessed its association with attentional function. OBJECTIVES To evaluate the association between prenatal and postnatal exposure to nitrogen dioxide (NO2) and attentional function in children at 4-5years of age. METHODS We used data from four regions of the Spanish INMA-Environment and Childhood-Project, a population-based birth cohort. Using land-use regression models (LUR), we estimated prenatal and postnatal NO2 levels in all of these regions at the participants' residential addresses. We assessed attentional function using the Kiddie-Conners Continuous Performance Test (K-CPT). We combined the region-specific adjusted effect estimates using random-effects meta-analysis. RESULTS We included 1298 children with complete data. Prenatal exposure to NO2 was associated with an impaired standard error of the hit reaction time (HRT(SE)) (increase of 1.12ms [95% CI; 0.22 a 2.02] per 10μg/m3 increase in prenatal NO2) and increased omission errors (6% [95% CI; 1.01 to 1.11] per 10μg/m3 increase in prenatal NO2). Postnatal exposure to NO2 resulted in a similar but borderline significant increase of omission errors (5% [95% CI; =0.99 to 1.11] per 10μg/m3 increase in postnatal NO2). These associations did not vary markedly between regions, and were mainly observed in girls. Commission errors and lower detectability were associated with prenatal and postnatal exposure to NO2 only in some regions. CONCLUSIONS This study indicates that higher exposure to ambient NO2, mainly during pregnancy and to a lesser extent postnatally, is associated with impaired attentional function in children at 4-5years of age.
Collapse
Affiliation(s)
- Alexis Sentís
- ISGlobal, Center for Research in Environmental Epidemiology (CREAL), Barcelona, Catalonia 08003, Spain; Pompeu Fabra University, Barcelona, Catalonia 08003, Spain; Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid 28029, Spain; Preventive Medicine and Public Health Training Unit, Parc de Salut Mar - Pompeu Fabra University - Public Health Agency of Barcelona, Spain
| | - Jordi Sunyer
- ISGlobal, Center for Research in Environmental Epidemiology (CREAL), Barcelona, Catalonia 08003, Spain; Pompeu Fabra University, Barcelona, Catalonia 08003, Spain; Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid 28029, Spain; Hospital del Mar Research Institute (IMIM), Barcelona, Catalonia 08003, Spain
| | - Albert Dalmau-Bueno
- ISGlobal, Center for Research in Environmental Epidemiology (CREAL), Barcelona, Catalonia 08003, Spain; Pompeu Fabra University, Barcelona, Catalonia 08003, Spain; Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Ainara Andiarena
- Faculty of Psychology, University of the Basque Country UPV/EHU, San Sebastian 20080, Spain; Instituto de Investigación Sanitaria Biodonostia, San Sebastián, Basque Country 20014, Spain
| | - Ferran Ballester
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia 46020, Spain; Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Marta Cirach
- ISGlobal, Center for Research in Environmental Epidemiology (CREAL), Barcelona, Catalonia 08003, Spain; Pompeu Fabra University, Barcelona, Catalonia 08003, Spain; Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Marisa Estarlich
- Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid 28029, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia 46020, Spain
| | - Ana Fernández-Somoano
- IUOPA-Preventive Medicine and Public Health, Department of Medicine, University of Oviedo, Asturias 33006, Spain; Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Jesús Ibarluzea
- Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid 28029, Spain; Faculty of Psychology, University of the Basque Country UPV/EHU, San Sebastian 20080, Spain; Instituto de Investigación Sanitaria Biodonostia, San Sebastián, Basque Country 20014, Spain; Subdirección de Salud Pública y Adicciones de Guipúzkoa, San Sebastián 20013, Spain
| | - Carmen Íñiguez
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia 46020, Spain; Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Aitana Lertxundi
- Departamento de Medicina Preventiva y Salud Pública, University of the Basque Country UPV/EHU, San Sebastian 20014, Spain; Instituto de Investigación Sanitaria Biodonostia, San Sebastián, Basque Country 20014, Spain; Instituto de Investigación Sanitaria Biodonostia, San Sebastián, Basque Country 20014, Spain
| | - Adonina Tardón
- IUOPA-Preventive Medicine and Public Health, Department of Medicine, University of Oviedo, Asturias 33006, Spain; Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Mark Nieuwenhuijsen
- ISGlobal, Center for Research in Environmental Epidemiology (CREAL), Barcelona, Catalonia 08003, Spain; Pompeu Fabra University, Barcelona, Catalonia 08003, Spain; Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Martine Vrijheid
- ISGlobal, Center for Research in Environmental Epidemiology (CREAL), Barcelona, Catalonia 08003, Spain; Pompeu Fabra University, Barcelona, Catalonia 08003, Spain; Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Mònica Guxens
- ISGlobal, Center for Research in Environmental Epidemiology (CREAL), Barcelona, Catalonia 08003, Spain; Pompeu Fabra University, Barcelona, Catalonia 08003, Spain; Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid 28029, Spain; Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Centre-Sophia Children's Hospital, Rotterdam 3015CN, The Netherlands.
| |
Collapse
|
34
|
González-Maciel A, Reynoso-Robles R, Torres-Jardón R, Mukherjee PS, Calderón-Garcidueñas L. Combustion-Derived Nanoparticles in Key Brain Target Cells and Organelles in Young Urbanites: Culprit Hidden in Plain Sight in Alzheimer’s Disease Development. J Alzheimers Dis 2017; 59:189-208. [DOI: 10.3233/jad-170012] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
35
|
Costa LG, Chang YC, Cole TB. Developmental Neurotoxicity of Traffic-Related Air Pollution: Focus on Autism. Curr Environ Health Rep 2017; 4:156-165. [PMID: 28417440 PMCID: PMC5952375 DOI: 10.1007/s40572-017-0135-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW Epidemiological and animal studies suggest that air pollution may negatively affect the central nervous system (CNS) and contribute to CNS diseases. Traffic-related air pollution is a major contributor to global air pollution, and diesel exhaust (DE) is its most important component. RECENT FINDINGS Several studies suggest that young individuals may be particularly susceptible to air pollution-induced neurotoxicity and that perinatal exposure may cause or contribute to developmental disabilities and behavioral abnormalities. In particular, a number of recent studies have found associations between exposures to traffic-related air pollution and autism spectrum disorders (ASD), which are characterized by impairment in socialization and in communication and by the presence of repetitive and unusual behaviors. The cause(s) of ASD are unknown, and while it may have a hereditary component, environmental factors are increasingly suspected as playing a pivotal role in its etiology, particularly in genetically susceptible individuals. Autistic children present higher levels of neuroinflammation and systemic inflammation, which are also hallmarks of exposure to traffic-related air pollution. Gene-environment interactions may play a relevant role in determining individual susceptibility to air pollution developmental neurotoxicity. Given the worldwide presence of elevated air pollution, studies on its effects and mechanisms on the developing brain, genetic susceptibility, role in neurodevelopmental disorders, and possible therapeutic interventions are certainly warranted.
Collapse
Affiliation(s)
- Lucio G Costa
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, 4225 Roosevelt, Suite No. 100, Seattle, WA, 98105, USA.
- Department of Neuroscience, University of Parma, Parma, Italy.
| | - Yu-Chi Chang
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, 4225 Roosevelt, Suite No. 100, Seattle, WA, 98105, USA
| | - Toby B Cole
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, 4225 Roosevelt, Suite No. 100, Seattle, WA, 98105, USA
- Center on Human Development and Disability, University of Washington, Seattle, WA, USA
| |
Collapse
|
36
|
Costa LG, Cole TB, Coburn J, Chang YC, Dao K, Roqué PJ. Neurotoxicity of traffic-related air pollution. Neurotoxicology 2017; 59:133-139. [PMID: 26610921 PMCID: PMC4875879 DOI: 10.1016/j.neuro.2015.11.008] [Citation(s) in RCA: 263] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/10/2015] [Accepted: 11/15/2015] [Indexed: 12/31/2022]
Abstract
The central nervous system is emerging as an important target for adverse health effects of air pollution, where it may contribute to neurodevelopmental and neurodegenerative disorders. Air pollution comprises several components, including particulate matter (PM) and ultrafine particulate matter (UFPM), gases, organic compounds, and metals. An important source of ambient PM and UFPM is represented by traffic-related air pollution, primarily diesel exhaust (DE). Human epidemiological studies and controlled animal studies have shown that exposure to air pollution, and to traffic-related air pollution or DE in particular, may lead to neurotoxicity. In particular, air pollution is emerging as a possible etiological factor in neurodevelopmental (e.g. autism spectrum disorders) and neurodegenerative (e.g. Alzheimer's disease) disorders. The most prominent effects caused by air pollution in both humans and animals are oxidative stress and neuro-inflammation. Studies in mice acutely exposed to DE (250-300μg/m3 for 6h) have shown microglia activation, increased lipid peroxidation, and neuro-inflammation in various brain regions, particularly the hippocampus and the olfactory bulb. An impairment of adult neurogenesis was also found. In most cases, the effects of DE were more pronounced in male mice, possibly because of lower antioxidant abilities due to lower expression of paraoxonase 2.
Collapse
Affiliation(s)
- Lucio G Costa
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA; Dept. of Neuroscience, University of Parma, Italy.
| | - Toby B Cole
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA; Center on Human Development and Disability, University of Washington, Seattle, WA, USA
| | - Jacki Coburn
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Yu-Chi Chang
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Khoi Dao
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Pamela J Roqué
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
37
|
Impact of Particulate Matter Exposure and Surrounding "Greenness" on Chronic Absenteeism in Massachusetts Public Schools. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14020207. [PMID: 28230752 PMCID: PMC5334761 DOI: 10.3390/ijerph14020207] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 02/08/2017] [Accepted: 02/13/2017] [Indexed: 12/02/2022]
Abstract
Chronic absenteeism is associated with poorer academic performance and higher attrition in kindergarten to 12th grade (K-12) schools. In prior research, students who were chronically absent generally had fewer employment opportunities and worse health after graduation. We examined the impact that environmental factors surrounding schools have on chronic absenteeism. We estimated the greenness (Normalized Difference Vegetation Index (NDVI)) and fine particulate matter air pollution (PM2.5) within 250 m and 1000 m respectively of each public school in Massachusetts during the 2012–2013 academic year using satellite-based data. We modeled chronic absenteeism rates in the same year as a function of PM2.5 and NDVI, controlling for race and household income. Among the 1772 public schools in Massachusetts, a 0.15 increase in NDVI during the academic year was associated with a 2.6% (p value < 0.0001) reduction in chronic absenteeism rates, and a 1 μg/m3 increase in PM2.5 during the academic year was associated with a 1.58% (p value < 0.0001) increase in chronic absenteeism rates. Based on these percentage changes in chronic absenteeism, a 0.15 increase in NDVI and 1 μg/m3 increase in PM2.5 correspond to 25,837 fewer students and 15,852 more students chronically absent each year in Massachusetts respectively. These environmental impacts on absenteeism reinforce the need to protect green spaces and reduce air pollution around schools.
Collapse
|
38
|
Calderón-Garcidueñas L, Villarreal-Ríos R. Living close to heavy traffic roads, air pollution, and dementia. Lancet 2017; 389:675-677. [PMID: 28063596 DOI: 10.1016/s0140-6736(16)32596-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 10/04/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Lilian Calderón-Garcidueñas
- College of Health Professions and Biomedical Sciences, The University of Montana, Missoula, MT 59812, USA; Escuela de Ciencias de la Salud, Universidad del Valle de México, 04850 México.
| | | |
Collapse
|
39
|
Calderón-Garcidueñas L, de la Monte SM. Apolipoprotein E4, Gender, Body Mass Index, Inflammation, Insulin Resistance, and Air Pollution Interactions: Recipe for Alzheimer's Disease Development in Mexico City Young Females. J Alzheimers Dis 2017; 58:613-630. [PMID: 28527212 PMCID: PMC9996388 DOI: 10.3233/jad-161299] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Given the epidemiological trends of increasing Alzheimer's disease (AD) and growing evidence that exposure and lifestyle factors contribute to AD risk and pathogenesis, attention should be paid to variables such as air pollution, in order to reduce rates of cognitive decline and dementia. Exposure to fine particulate matter (PM2.5) and ozone (O3) above the US EPA standards is associated with AD risk. Mexico City children experienced pre- and postnatal high exposures to PM2.5, O3, combustion-derived iron-rich nanoparticles, metals, polycyclic aromatic hydrocarbons, and endotoxins. Exposures are associated with early brain gene imbalance in oxidative stress, inflammation, innate and adaptive immune responses, along with epigenetic changes, accumulation of misfolded proteins, cognitive deficits, and brain structural and metabolic changes. The Apolipoprotein E (APOE) 4 allele, the most prevalent genetic risk for AD, plays a key role in the response to air pollution in young girls. APOE 4 heterozygous females with >75% to <94% BMI percentiles are at the highest risk of severe cognitive deficits (1.5-2 SD from average IQ). This review focused on the relationships between gender, BMI, systemic and neural inflammation, insulin resistance, hyperleptinemia, dyslipidemia, vascular risk factors, and central nervous system involvement in APOE4 urbanites exposed to PM2.5 and magnetite combustion-derived iron-rich nanoparticles that can reach the brain. APOE4 young female heterozygous carriers constitute a high-risk group for a fatal disease: AD. Multidisciplinary intervention strategies could be critical for prevention or amelioration of cognitive deficits and long-term AD progression in young individuals at high risk.
Collapse
|
40
|
Kicinski M, Saenen ND, Viaene MK, Den Hond E, Schoeters G, Plusquin M, Nelen V, Bruckers L, Sioen I, Loots I, Baeyens W, Roels HA, Nawrot TS. Urinary t,t-muconic acid as a proxy-biomarker of car exhaust and neurobehavioral performance in 15-year olds. ENVIRONMENTAL RESEARCH 2016; 151:521-527. [PMID: 27569194 DOI: 10.1016/j.envres.2016.06.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 06/15/2016] [Accepted: 06/21/2016] [Indexed: 06/06/2023]
Abstract
INTRODUCTION Traffic-related air pollution has been shown to induce neurotoxicity in rodents. Several recent epidemiological studies reported negative associations between residential outdoor air pollution and neurobehavioral performance. We investigated in a population of non-smoker adolescents the associations between the urinary concentration of trans, trans-muconic acid (t,t-MA-U), a metabolite of benzene and used as proxy-biomarker of traffic exposure, and two neurobehavioral domains, i.e. sustained attention and short-term memory. METHODS In the framework of an environmental health surveillance study in Flanders (Belgium), we examined between 2008 and 2014 grade nine high school students (n=895). We used reaction time, number of omission errors, and number of commission errors in the Continuous Performance Test to evaluate sustained attention, and for the evaluation of short-term memory we used maximum digit span forward and backward of the Digit Span Test. We measured blood lead (PbB) to assess the independent effect of t,t-MA-U on neurobehavioral outcomes. RESULTS This neurobehavioral examination study showed that a ten-fold increase in t,t-MA-U was associated with a 0.14 SD lower sustained attention (95% Confidence Interval: -0.26 to -0.019; p=0.02) and a 0.17 SD diminished short-term memory (95% CI: -0.31 to -0.030; p=0.02). For the same increment in t,t-MA-U, the Continuous Performance Test showed a 12.2ms higher mean reaction time (95% CI: 4.86-19.5; p=0.001) and 0.51 more numbers of errors of omission (95% CI: 0.057-0.97; p=0.028), while no significant association was found with errors of commission. For the Digit Span Tests, the maximum digit span forward was associated with a 0.20 lower number of digits (95% CI: -0.38 to -0.026; p=0.025) and maximum digit span backward with -0.15 digits (95% CI: -0.32 to 0.022; p=0.088). These associations were independent of PbB, parental education and other important covariates including gender, age, passive smoking, ethnicity, urinary creatinine, time of the day, and examination day of the week. For PbB, an independent association was only found with mean reaction time of the Continuous Performance Test (19.1ms, 95% CI: 2.43-35.8; p=0.025). CONCLUSIONS In adolescents, a ten-fold increase in the concentration of t,t-MA-U, used as a proxy-biomarker for traffic-related exposure, was associated with a significant deficit in sustained attention and short-term memory. The public health implications of this finding cannot be overlooked as the effect-size for these neurobehavioral domains was about 40% of the effect-size of parental education.
Collapse
Affiliation(s)
- Michal Kicinski
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Nelly D Saenen
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Mineke K Viaene
- Department of Neurology, Sint Dimphna Hospital, Geel, Belgium
| | - Elly Den Hond
- Department of Health, Provincial Institute for Hygiene, Antwerp, Belgium
| | - Greet Schoeters
- Flemish Institute for Technological Research, Environmental Risk and Health, Mol, Belgium
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Vera Nelen
- Department of Health, Provincial Institute for Hygiene, Antwerp, Belgium
| | - Liesbeth Bruckers
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Diepenbeek, Belgium
| | - Isabelle Sioen
- Department of Public Health, Ghent University, Ghent, Belgium
| | - Ilse Loots
- Department of Sociology, University of Antwerp, Antwerp, Belgium
| | - Willy Baeyens
- Department of Analytical and Environmental Chemistry, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Harry A Roels
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium; Louvain Centre for Toxicology and Applied Pharmacology, Université catholique de Louvain, Brussels, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium; Department of Public Health and Primary Care, Environment & Health Unit, Leuven University, Leuven, Belgium.
| |
Collapse
|
41
|
Flores-Pajot MC, Ofner M, Do MT, Lavigne E, Villeneuve PJ. Childhood autism spectrum disorders and exposure to nitrogen dioxide, and particulate matter air pollution: A review and meta-analysis. ENVIRONMENTAL RESEARCH 2016; 151:763-776. [PMID: 27609410 DOI: 10.1016/j.envres.2016.07.030] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 07/18/2016] [Accepted: 07/19/2016] [Indexed: 05/23/2023]
Abstract
BACKGROUND AND OBJECTIVE Genetic and environmental factors have been recognized to play an important role in autism. The possibility that exposure to outdoor air pollution increases the risk of autism spectrum disorder (ASD) has been an emerging area of research. Herein, we present a systematic review, and meta-analysis of published epidemiological studies that have investigated these associations. METHODS We undertook a comprehensive search strategy to identify studies that investigated outdoor air pollution and autism in children. Overall, seven cohorts and five case-control studies met our inclusion criteria for the meta-analysis. We summarized the associations between exposure to air pollution and ASD based on the following critical exposure windows: (i) first, second and third trimester of pregnancy, (ii) entire pregnancy, and (iii) postnatal period. Random effects meta-analysis modeling was undertaken to derive pooled risk estimates for these exposures across the studies. RESULTS The meta-estimates for the change in ASD associated with a 10μg/m3 increase in exposure in PM2.5 and 10 ppb increase in NO2 during pregnancy were 1.34 (95% CI:0.83, 2.17) and 1.05 (95% CI:0.99, 1.11), respectively. Stronger associations were observed for exposures received after birth, but these estimates were unstable as they were based on only two studies. O3 exposure was weakly associated with ASD during the third trimester of pregnancy and during the entire pregnancy, however, these estimates were also based on only two studies. CONCLUSION Our meta-analysis support the hypothesis that exposure to ambient air pollution is associated with an increased risk of autism. Our findings should be interpreted cautiously due to relatively small number of studies, and several studies were unable to control for other key risk factors.
Collapse
Affiliation(s)
- Marie-Claire Flores-Pajot
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada; Epistream Consulting Inc, Ottawa, Ontario, Canada
| | - Marianna Ofner
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Minh T Do
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Eric Lavigne
- Air Health Science Division, Health Canada, Ottawa, Ontario, Canada; School of Epidemiology, Public Health and Preventive Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Paul J Villeneuve
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada; Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada; Epistream Consulting Inc, Ottawa, Ontario, Canada.
| |
Collapse
|
42
|
Saenen ND, Provost EB, Viaene MK, Vanpoucke C, Lefebvre W, Vrijens K, Roels HA, Nawrot TS. Recent versus chronic exposure to particulate matter air pollution in association with neurobehavioral performance in a panel study of primary schoolchildren. ENVIRONMENT INTERNATIONAL 2016; 95:112-9. [PMID: 27575366 DOI: 10.1016/j.envint.2016.07.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/19/2016] [Accepted: 07/24/2016] [Indexed: 05/23/2023]
Abstract
Children's neuropsychological abilities are in a developmental stage. Recent air pollution exposure and neurobehavioral performance are scarcely studied. In a panel study, we repeatedly administered to each child the following neurobehavioral tests: Stroop Test (selective attention) and Continuous Performance Test (sustained attention), Digit Span Forward and Backward Tests (short-term memory), and Digit-Symbol and Pattern Comparison Tests (visual information processing speed). At school, recent inside classroom particulate matter ≤2.5 or 10μm exposure (PM2.5, PM10) was monitored on each examination day. At the child's residence, recent (same day up to 2days before) and chronic (365days before examination) exposures to PM2.5, PM10 and black carbon (BC) were modeled. Repeated neurobehavioral test performances (n=894) of the children (n=310) reflected slower Stroop Test (p=0.05) and Digit-Symbol Test (p=0.01) performances with increasing recent inside classroom PM2.5 exposure. An interquartile range (IQR) increment in recent residential outdoor PM2.5 exposure was associated with an increase in average latency of 0.087s (SE: ±0.034; p=0.01) in the Pattern Comparison Test. Regarding chronic exposure at residence, an IQR increment of PM2.5 exposure was associated with slower performances in the Continuous Performance (9.45±3.47msec; p=0.007) and Stroop Tests (59.9±26.5msec; p=0.02). Similar results were obtained for PM10 exposure. In essence, we showed differential neurobehavioral changes robustly and adversely associated with recent or chronic ambient exposure to PM air pollution at residence, i.e., with recent exposure for visual information processing speed (Pattern Comparison Test) and with chronic exposure for sustained and selective attention.
Collapse
Affiliation(s)
- Nelly D Saenen
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Eline B Provost
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium; Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Mineke K Viaene
- Department of Neurology, Sint Dimphna Hospital, Geel, Belgium
| | | | - Wouter Lefebvre
- Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Karen Vrijens
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Harry A Roels
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium; Louvain Centre for Toxicology and Applied Pharmacology, Université catholique de Louvain, Brussels, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium; Department of Public Health & Primary Care, Leuven University, Leuven, Belgium.
| |
Collapse
|
43
|
Estrogen receptor beta polymorphisms and cognitive performance in women: associations and modifications by genetic and environmental influences. J Neural Transm (Vienna) 2016; 123:1369-1379. [DOI: 10.1007/s00702-016-1620-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 09/05/2016] [Indexed: 01/18/2023]
|
44
|
Xu X, Ha SU, Basnet R. A Review of Epidemiological Research on Adverse Neurological Effects of Exposure to Ambient Air Pollution. Front Public Health 2016; 4:157. [PMID: 27547751 PMCID: PMC4974252 DOI: 10.3389/fpubh.2016.00157] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 07/19/2016] [Indexed: 12/28/2022] Open
Abstract
There is a growing body of epidemiological research reporting the neurological effects of ambient air pollution. We examined current evidence, identified the strengths and weaknesses of published epidemiological studies, and suggest future directions for research in this area. Studies were identified through a systematic search of online scientific databases, in addition to a manual search of the reference lists from the identified papers. Despite being a relatively new area of investigation, overall, there is mounting evidence implicating adverse effects of air pollution on neurobehavioral function in both adults and children. Further research is needed to expand our understanding of these relationships, including improvement in the accuracy of exposure assessments; focusing on specific toxicants and their relationships to specific health endpoints, such as neurodevelopmental disorders and neurodegenerative diseases; investigating the combined neurological effects of multiple air pollutants; and further exploration of genetic susceptibility for neurotoxicity of air pollution. In order to achieve these goals collaborative efforts are needed from multidisciplinary teams, including experts in toxicology, biostatistics, geographical science, epidemiology, and neurology.
Collapse
Affiliation(s)
- Xiaohui Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M Health Science Center , College Station, TX , USA
| | - Sandie Uyen Ha
- College of Public Health and Health Professions, University of Florida , Gainesville, FL , USA
| | - Rakshya Basnet
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M Health Science Center , College Station, TX , USA
| |
Collapse
|
45
|
Calderón-Garcidueñas L, Mora-Tiscareño A, Melo-Sánchez G, Rodríguez-Díaz J, Torres-Jardón R, Styner M, Mukherjee PS, Lin W, Jewells V. A Critical Proton MR Spectroscopy Marker of Alzheimer's Disease Early Neurodegenerative Change: Low Hippocampal NAA/Cr Ratio Impacts APOE ɛ4 Mexico City Children and Their Parents. J Alzheimers Dis 2016; 48:1065-75. [PMID: 26402110 DOI: 10.3233/jad-150415] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Severe air pollution exposures produce systemic, respiratory, myocardial, and brain inflammation and Alzheimer's disease (AD) hallmarks in clinically healthy children. We tested whether hippocampal metabolite ratios are associated with contrasting levels of air pollution, APOE, and body mass index (BMI) in paired healthy children and one parent sharing the same APOE alleles. We used 1H-MRS to interrogate bilateral hippocampal single-voxel in 57 children (12.45 ± 3.4 years) and their 48 parents (37.5 ± 6.78 years) from a low pollution city versus Mexico City (MC). NAA/Cr, Cho/Cr, and mI/Cr metabolite ratios were analyzed. The right hippocampus NAA/Cr ratio was significantly different between cohorts (p = 0.007). The NAA/Cr ratio in right hippocampus in controls versus APOE ɛ4 MC children and in left hippocampus in MC APOE ɛ4 parents versus their children was significantly different after adjusting for age, gender, and BMI (p = 0.027 and 0.01, respectively). The NAA/Cr ratio is considered reflective of neuronal density/functional integrity/loss of synapses/higher pTau burden, thus a significant decrease in hippocampal NAA/Cr ratios may constitute a spectral marker of early neurodegeneration in young urbanites. Decreases in NAA/Cr correlate well with cognitive function, behavioral symptoms, and dementia severity; thus, since the progression of AD starts decades before clinical diagnosis, our findings support the hypothesis that under chronic exposures to fine particulate matter and ozone above the standards, neurodegenerative processes start in childhood and APOE ɛ4 carriers are at higher risk. Gene and environmental factors are critical in the development of AD and the identification and neuroprotection of young urbanites at high risk must become a public health priority.
Collapse
Affiliation(s)
- Lilian Calderón-Garcidueñas
- The Center for Structural and Functional Neurosciences, The University of Montana, Missoula, MT, USA.,Escuela de Ciencias de la Salud, Universidad del Valle de México, Campus Saltillo, Saltillo, Coahuila, México
| | | | - Gastón Melo-Sánchez
- Escuela de Ciencias de la Salud, Universidad del Valle de México, Campus Saltillo, Saltillo, Coahuila, México
| | | | - Ricardo Torres-Jardón
- Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Martin Styner
- Department of Psychiatry and Computer Science, University of North Carolina, Chapel Hill, NC, USA
| | | | - Weili Lin
- Neuroradiology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Valerie Jewells
- Neuroradiology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
46
|
Clifford A, Lang L, Chen R, Anstey KJ, Seaton A. Exposure to air pollution and cognitive functioning across the life course--A systematic literature review. ENVIRONMENTAL RESEARCH 2016; 147:383-98. [PMID: 26945620 DOI: 10.1016/j.envres.2016.01.018] [Citation(s) in RCA: 295] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 01/12/2016] [Accepted: 01/13/2016] [Indexed: 05/20/2023]
Abstract
OBJECTIVES Air pollution is associated with increased risk of respiratory, cardiovascular and cerebrovascular disease, but its association with cognitive functioning and impairment is unclear. The aim of this systematic review was to examine whether a relationship exists between these variables across the life course. METHODS We searched Web of Knowledge, Pubmed, SciVerse Scopus, CINAHL, PsychInfo and Science Direct up to October 2015 to identify studies that investigated the association between air pollution and performance on neurocognitive tests. RESULTS Variations in exposure assessment and outcome measures make meta-analysis impossible. Thirty one studies published between 2006 and 2015, from the Americas (n=15), Asia (n=5) and Europe (n=11), met the criteria for inclusion. Many showed weak but quantified relationships between various air pollutants and cognitive function. Pollution exposure in utero has been associated with increased risk of neuro-developmental delay. Exposure in childhood has been inversely associated with neuro-developmental outcomes in younger children and with academic achievement and neurocognitive performance in older children. In older adults, air pollution has been associated with accelerated cognitive decline. CONCLUSIONS The evidence to date is coherent in that exposure to a range of largely traffic-related pollutants has been associated with quantifiable impairment of brain development in the young and cognitive decline in the elderly. There is insufficient evidence at present to comment on consistency, in view of the different indices of pollution and end-points measured, the limited number of studies, and the probability at this stage of publication bias. However, plausible toxicological mechanisms have been demonstrated and the evidence as a whole suggests that vehicular pollution, at least, contributes to cognitive impairment, adding to pressure on governments and individuals to continue to reduce air pollution.
Collapse
Affiliation(s)
- Angela Clifford
- Faculty of Education, Health and Wellbeing, University of Wolverhampton, Wolverhampton, UK
| | - Linda Lang
- Faculty of Education, Health and Wellbeing, University of Wolverhampton, Wolverhampton, UK; Post Graduate Academic Institute of Medicine, University of Wolverhampton, Wolverhampton, UK
| | - Ruoling Chen
- Faculty of Education, Health and Wellbeing, University of Wolverhampton, Wolverhampton, UK; Post Graduate Academic Institute of Medicine, University of Wolverhampton, Wolverhampton, UK.
| | - Kaarin J Anstey
- Centre for Research on Ageing, Health and Wellbeing, The Australian National University, Australia
| | - Anthony Seaton
- School of Applied Health Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
47
|
Calderón-Garcidueñas L, Leray E, Heydarpour P, Torres-Jardón R, Reis J. Air pollution, a rising environmental risk factor for cognition, neuroinflammation and neurodegeneration: The clinical impact on children and beyond. Rev Neurol (Paris) 2015; 172:69-80. [PMID: 26718591 DOI: 10.1016/j.neurol.2015.10.008] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 10/27/2015] [Accepted: 10/27/2015] [Indexed: 12/12/2022]
Abstract
Air pollution (indoors and outdoors) is a major issue in public health as epidemiological studies have highlighted its numerous detrimental health consequences (notably, respiratory and cardiovascular pathological conditions). Over the past 15 years, air pollution has also been considered a potent environmental risk factor for neurological diseases and neuropathology. This review examines the impact of air pollution on children's brain development and the clinical, cognitive, brain structural and metabolic consequences. Long-term potential consequences for adults' brains and the effects on multiple sclerosis (MS) are also discussed. One challenge is to assess the effects of lifetime exposures to outdoor and indoor environmental pollutants, including occupational exposures: how much, for how long and what type. Diffuse neuroinflammation, damage to the neurovascular unit, and the production of autoantibodies to neural and tight-junction proteins are worrisome findings in children chronically exposed to concentrations above the current standards for ozone and fine particulate matter (PM2.5), and may constitute significant risk factors for the development of Alzheimer's disease later in life. Finally, data supporting the role of air pollution as a risk factor for MS are reviewed, focusing on the effects of PM10 and nitrogen oxides.
Collapse
Affiliation(s)
- L Calderón-Garcidueñas
- The University of Montana, Missoula, MT, 59812, USA; Universidad del Valle de México, Mexico City 04850, Mexico
| | - E Leray
- EHESP Sorbonne Paris Cité, Rennes, France
| | - P Heydarpour
- MS Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - R Torres-Jardón
- Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - J Reis
- Service de Neurologie, Centre Hospitalier Universitaire, Hôpital de Hautepierre, 1, avenue Molière, 67200 Strasbourg, France.
| |
Collapse
|
48
|
Suades-González E, Gascon M, Guxens M, Sunyer J. Air Pollution and Neuropsychological Development: A Review of the Latest Evidence. Endocrinology 2015; 156:3473-82. [PMID: 26241071 PMCID: PMC4588818 DOI: 10.1210/en.2015-1403] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
For the last decade, literature on the detrimental impacts of air pollution on brain, cognition and behavior has exponentially increased. Our aim is to review the latest epidemiologic literature on the association between outdoor air pollution and neuropsychological developmental in children. Two independent researchers searched for published studies between January 1, 2012 and June 12, 2015 in MEDLINE, Web of Science, and Science direct using defined keywords on outdoor air pollution and neuropsychological development. Selection of articles was based on study eligibility criteria. We encountered sufficient evidence of detrimental effects of pre- or postnatal exposure to polycyclic aromatic hydrocarbons on global intelligence quotient. The evidence was also sufficient for the association between pre- or postnatal exposure to fine particulate matter (PM2.5) and autism spectrum disorder, and limited evidence was encountered between nitrogen oxides and autism spectrum disorder. For other exposure-outcome associations reviewed, the evidence was inadequate or insufficient. Although evidence is not yet conclusive and further research is needed, the latest epidemiological studies support the hypothesis that pre- or postnatal exposure to ambient pollution, particularly polycyclic aromatic hydrocarbons, PM2.5, and nitrogen oxides has a negative impact on the neuropsychological development of children. The public health impact of air pollutants cannot be ignored and the precautionary principle should be applied to protect children.
Collapse
Affiliation(s)
- Elisabet Suades-González
- Centre for Research in Environmental Epidemiology (CREAL) (E.S.-G., M.Ga., M.Gu., J.S.), Barcelona, 08003 Spain; Department of Experimental and Health Sciences (E.S.-G., M.Ga., M.Gu., J.S.), Universitat Pompeu Fabra, Barcelona, 08003 Spain; Learning Disabilities Unit (UTAE) (E.S.-G.), Neuropediatrics Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain; Centro Investigación en red (CIBER) Epidemiología y Salud Pública (E.S.-G., M.Ga., M.Gu., J.S.), Barcelona, Spain; ISGlobal (M.Ga., J.S.), Barcelona Centre for International Health Research, Hospital Clínic- Universitat de Barcelona, Barcelona, 08950 Spain; Department of Child and Adolescent Psychiatry/Psychology (M.Gu.), Erasmus University Medical Centre-Sophia Children's Hospital, Rotterdam, 3015 The Netherlands; and Hospital del Mar Medical Research Institute (J.S.), Barcelona, 08003 Spain
| | - Mireia Gascon
- Centre for Research in Environmental Epidemiology (CREAL) (E.S.-G., M.Ga., M.Gu., J.S.), Barcelona, 08003 Spain; Department of Experimental and Health Sciences (E.S.-G., M.Ga., M.Gu., J.S.), Universitat Pompeu Fabra, Barcelona, 08003 Spain; Learning Disabilities Unit (UTAE) (E.S.-G.), Neuropediatrics Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain; Centro Investigación en red (CIBER) Epidemiología y Salud Pública (E.S.-G., M.Ga., M.Gu., J.S.), Barcelona, Spain; ISGlobal (M.Ga., J.S.), Barcelona Centre for International Health Research, Hospital Clínic- Universitat de Barcelona, Barcelona, 08950 Spain; Department of Child and Adolescent Psychiatry/Psychology (M.Gu.), Erasmus University Medical Centre-Sophia Children's Hospital, Rotterdam, 3015 The Netherlands; and Hospital del Mar Medical Research Institute (J.S.), Barcelona, 08003 Spain
| | - Mònica Guxens
- Centre for Research in Environmental Epidemiology (CREAL) (E.S.-G., M.Ga., M.Gu., J.S.), Barcelona, 08003 Spain; Department of Experimental and Health Sciences (E.S.-G., M.Ga., M.Gu., J.S.), Universitat Pompeu Fabra, Barcelona, 08003 Spain; Learning Disabilities Unit (UTAE) (E.S.-G.), Neuropediatrics Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain; Centro Investigación en red (CIBER) Epidemiología y Salud Pública (E.S.-G., M.Ga., M.Gu., J.S.), Barcelona, Spain; ISGlobal (M.Ga., J.S.), Barcelona Centre for International Health Research, Hospital Clínic- Universitat de Barcelona, Barcelona, 08950 Spain; Department of Child and Adolescent Psychiatry/Psychology (M.Gu.), Erasmus University Medical Centre-Sophia Children's Hospital, Rotterdam, 3015 The Netherlands; and Hospital del Mar Medical Research Institute (J.S.), Barcelona, 08003 Spain
| | - Jordi Sunyer
- Centre for Research in Environmental Epidemiology (CREAL) (E.S.-G., M.Ga., M.Gu., J.S.), Barcelona, 08003 Spain; Department of Experimental and Health Sciences (E.S.-G., M.Ga., M.Gu., J.S.), Universitat Pompeu Fabra, Barcelona, 08003 Spain; Learning Disabilities Unit (UTAE) (E.S.-G.), Neuropediatrics Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain; Centro Investigación en red (CIBER) Epidemiología y Salud Pública (E.S.-G., M.Ga., M.Gu., J.S.), Barcelona, Spain; ISGlobal (M.Ga., J.S.), Barcelona Centre for International Health Research, Hospital Clínic- Universitat de Barcelona, Barcelona, 08950 Spain; Department of Child and Adolescent Psychiatry/Psychology (M.Gu.), Erasmus University Medical Centre-Sophia Children's Hospital, Rotterdam, 3015 The Netherlands; and Hospital del Mar Medical Research Institute (J.S.), Barcelona, 08003 Spain
| |
Collapse
|