1
|
Yang H, Wen H, Si Y, Ding M, Liu Y, Yu Z, Zhang L, Wang J, Pan X, Han S, Wang Y, Wu S, Liang J, Xiao J, Fang R, Peng D. Computer-aided precise hapten design strategy for the monospecific detection of altrenogest: Experimental validation and analysis of the molecular recognition mechanism. Food Chem 2025; 485:144482. [PMID: 40286580 DOI: 10.1016/j.foodchem.2025.144482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/07/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
Altrenogest is one of the most commonly used steroid hormones; however, there are currently no relevant reports on monospecific molecular recognition elements and immunoassay methods for altrenogest. Herein, a computer-aided precise hapten design strategy was proposed for monospecific monoclonal antibodies (mAb) preparation. Based on this strategy, a monospecific and sensitive mAb-D7 was prepared for the first time. The mAb-D7 has the 50 % inhibitory concentration (IC50) of 0.12 ng/mL for altrenogest and does not cross-react with other common steroid hormones. Additionally, a single-chain variable fragment (scFv) for altrenogest was constructed for the first time, which exhibits an IC50 of 1.7 ng/mL for altrenogest. The molecular recognition mechanism studies showed the monospecific mAb-D7 to altrenogest originated from the amino acids PHE-94 and LEU-237, demonstrating the reliability of this strategy. Finally, two monospecific, rapid, and sensitive immunoassays were established for altrenogest in pork and pork liver for the first time.
Collapse
Affiliation(s)
- Hongfei Yang
- National Key Laboratory of Agricultural Microbiology, National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei Province, PR China
| | - Hao Wen
- National Key Laboratory of Agricultural Microbiology, National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei Province, PR China
| | - Yu Si
- National Key Laboratory of Agricultural Microbiology, National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei Province, PR China
| | - Mingyue Ding
- National Key Laboratory of Agricultural Microbiology, National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei Province, PR China
| | - Yiting Liu
- National Key Laboratory of Agricultural Microbiology, National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei Province, PR China
| | - Ziyan Yu
- National Key Laboratory of Agricultural Microbiology, National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei Province, PR China
| | - Linwei Zhang
- National Key Laboratory of Agricultural Microbiology, National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei Province, PR China
| | - Jiacan Wang
- National Key Laboratory of Agricultural Microbiology, National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei Province, PR China
| | - Xiaoming Pan
- National Key Laboratory of Agricultural Microbiology, National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei Province, PR China
| | - Shiyun Han
- National Key Laboratory of Agricultural Microbiology, National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei Province, PR China
| | - Yiting Wang
- National Key Laboratory of Agricultural Microbiology, National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei Province, PR China
| | - Shixiang Wu
- National Key Laboratory of Agricultural Microbiology, National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei Province, PR China
| | - Jixiang Liang
- National Key Laboratory of Agricultural Microbiology, National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei Province, PR China
| | - Jiaxu Xiao
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Rui Fang
- National Key Laboratory of Agricultural Microbiology, National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei Province, PR China..
| | - Dapeng Peng
- National Key Laboratory of Agricultural Microbiology, National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei Province, PR China.; Center for veterinary sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China.
| |
Collapse
|
2
|
Xu R, Wu NN, Liu S, Chen H, Hao QW, Hu YX, Hong B, Yu S, Xu XR. Spatiotemporal distribution and priority assessment of steroids in the estuarine environment: Implications for environmental risk management. MARINE POLLUTION BULLETIN 2025; 216:117980. [PMID: 40252354 DOI: 10.1016/j.marpolbul.2025.117980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 04/21/2025]
Abstract
Steroids, known for their endocrine-disrupting capabilities, have become a subject of considerable concern in the scientific community. This research offers a thorough evaluation of steroid contaminants within the Jiulong River Estuary (JRE), examining their spatiotemporal distribution, multimedia distribution, and mass inventory. Seven steroids were detected in water samples, while ten steroids were identified in sediments, with concentrations ranging from 0.2 to 51 ng/L in water and no-detectable (ND) to 12 ng g-1 in sediments. In both water and sediments, natural steroids were the most prevalent throughout both the dry and wet seasons. The distribution of these compounds within the aquatic-sediment system was governed by their hydrophobicity and a suite of environmental factors, such as temperature, salinity, pH, chlorophyll-a, and total organic carbon content. Mass inventory analysis revealed that over 90 % of the total steroid mass inventory was stored in the sediments, underscoring their pivotal role as a repository for these substances within the JRE. Furthermore, this research represents the first comprehensive screening to identify priority contaminants in this region. Utilizing a multi-metric evaluation approach, progesterone and testosterone were identified as high-priority pollutants during the dry season, with progesterone alone ranking as a high-priority pollutant in the wet season. This study provides crucial insights for the management of steroid-related pollution and the assessment of environmental risks in estuarine ecosystems.
Collapse
Affiliation(s)
- Ru Xu
- Jiangxi Provincial Key Laboratory of Environmental Pollution Control, Jiangxi Academy of Eco-Environmental Sciences and Planning, Nanchang 330039, China
| | - Nian-Nian Wu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shan Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Hui Chen
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Qin-Wei Hao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yong-Xia Hu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Bing Hong
- CAS Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Shen Yu
- CAS Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xiang-Rong Xu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China.
| |
Collapse
|
3
|
Fang Y, Liu B, Wang J, Zhong H, Fan L, Huang Y, Chen C, Lu S, Zheng T. Norgestrel shows androgenic properties and triggers reproductive neuroendocrine toxicity in the testes of Pacific oysters (Crassostrea gigas). JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138467. [PMID: 40319857 DOI: 10.1016/j.jhazmat.2025.138467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 04/15/2025] [Accepted: 05/01/2025] [Indexed: 05/07/2025]
Abstract
Norgestrel (NGT), a prevalent progestin in the aquatic environment, can pose risks to vertebrates even at very low concentrations (<1 ng/L). Nevertheless, the understanding of NGT's effects on invertebrates is limited. Therefore, through histology and multi-omics, we explored the toxic effects of NGT (0, 10, and 1000 ng/L) on Pacific oysters Crassostrea gigas testes over 21 days. NGT accumulated in the testes and exhibited androgenic characteristics. Furthermore, transcriptomic sequencing revealed that differentially expressed genes were significantly enriched in the neurotransmitter ligand-receptor signaling pathway. A significant decrease in G protein-coupled receptors (GPCRs) and Calmodulin/ Calmodulin -dependent protein kinase gene expression was identified as the potential mechanism preventing hyperphosphorylation and G protein overactivation. Notably, the 1000 ng/L group showed clear Cytochrome P450/glutathione-s-transferase detoxification characteristics. Metabolomics analysis indicated that small peptides and organic acids were the most abundant differential metabolites, accounting for 26.96 %. The positive correlation between neuroendocrine related metabolites and several important G protein-coupled receptor genes, as revealed by correlation analysis, might play a major role in regulating NGT toxicity. In conclusion, NGT affects the reproductive neuroendocrine system in the C. gigas testis and triggers detoxification mechanisms. These findings provide new targets and a theoretical basis for environmental progestin toxicity and ecological risk assessment.
Collapse
Affiliation(s)
- Yan Fang
- School of Fisheries, Ludong University, Yantai 264025, PR China
| | - Baojun Liu
- School of Fisheries, Ludong University, Yantai 264025, PR China
| | - Juan Wang
- School of Fisheries, Ludong University, Yantai 264025, PR China
| | - Haoyang Zhong
- School of Fisheries, Ludong University, Yantai 264025, PR China
| | - Linlin Fan
- School of Fisheries, Ludong University, Yantai 264025, PR China
| | - Yuchao Huang
- School of Fisheries, Ludong University, Yantai 264025, PR China
| | - Changkun Chen
- School of Fisheries, Ludong University, Yantai 264025, PR China
| | - Songtao Lu
- School of Ocean, Yantai University, Yantai 264005, PR China
| | - Tao Zheng
- School of Fisheries, Ludong University, Yantai 264025, PR China.
| |
Collapse
|
4
|
Yang W, Lu T, Gong J, Li Q, Han C, Huang J. Morphological, histopathological and brain transcriptomic assessment reveal reproductive toxicity and neurotoxicity in western mosquitofish (Gambusia affinis) exposed to levonorgestrel. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 296:118153. [PMID: 40220358 DOI: 10.1016/j.ecoenv.2025.118153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/28/2025] [Accepted: 04/02/2025] [Indexed: 04/14/2025]
Abstract
In recent years, more and more progestogens have been detected in the environment, especially levonorgestrel (LNG), which is widely used in medicine and veterinary medicine, but its potential effects on the reproductive and nervous systems of fish are not fully understood. The purpose of this study was to investigate the reproductive and neurological effects of LNG on female western mosquitofish (Gambusia affinis). Through a 30-day exposure experiment, we evaluated the morphological data, gonadal and brain histopathology, and brain transcriptome of mosquitofish under different concentrations of LNG (0, 5, 50, 500 ng/L). The results revealed that exposure to LNG led to a significant reduction in the body weight and condition factor of female fish, with the most pronounced decrease observed at a concentration of 500 ng/L. Morphological observations indicated that LNG exposure led to an increase in the 4th/6th anal fin ratio at concentrations of 50 and 500 ng/L. Additionally, histopathological analysis demonstrated pathological alterations, including ovarian degeneration induced by LNG, as well as vasodilation, congestion, and the enlargement of intercellular spaces in brain tissue. Analysis of brain tissue transcriptome data identified numerous differentially expressed genes related to cerebral vascular formation, nerve injury, and neuroendocrine regulation following LNG exposure. In summary, LNG has significant reproductive and neurotoxic effects on female mosquitofish, and these findings provide important data for further research on environmental risk assessment and aquatic toxicology of LNG.
Collapse
Affiliation(s)
- Weicheng Yang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Tongfu Lu
- School of environmental sciences and engineering, Guangzhou University, Guangzhou 510006, China
| | - Jian Gong
- School of environmental sciences and engineering, Guangzhou University, Guangzhou 510006, China
| | - Qiang Li
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China.
| | - Chong Han
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China.
| | - Jianrong Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China.
| |
Collapse
|
5
|
Varela ACC, Siqueira L, Fortuna M, Soares SM, Freddo N, Barletto ÍP, Ariotti MS, Bertuol MZ, Rutikoski GW, Andrade CM, Barcellos LJG. Behavioral and endocrine effects of early-life exposure to etonogestrel in zebrafish. Toxicol Appl Pharmacol 2025; 498:117300. [PMID: 40089191 DOI: 10.1016/j.taap.2025.117300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/06/2025] [Accepted: 03/11/2025] [Indexed: 03/17/2025]
Abstract
Progestin use as a contraceptive has increased exponentially in the last few decades, as has its disposal in the environment. These synthetic hormones can impair the physiology and behavior of non-target organisms, such as fish. In this study, we evaluated the effects of exposure to an environmentally relevant concentration of etonogestrel (ETO, 3.2 ng L-1) on the behavior and endocrine system of zebrafish (Danio rerio) larvae. We found that ETO caused anxiogenic-like behavior in larvae, as demonstrated by the open-field and light-dark tests. The exposed larvae also presented an increase in whole-body cortisol levels. These changes may lead to an ecological imbalance, emphasizing the risk of early exposure to progestins in the environment.
Collapse
Affiliation(s)
- Amanda Carolina Cole Varela
- Graduate Program in Pharmacology, Universidade Federal de Santa Maria, Av. Roraima, 1000, Cidade Universitária, Camobi, Santa Maria, RS 97105-900, Brazil
| | - Lisiane Siqueira
- Graduate Program in Pharmacology, Universidade Federal de Santa Maria, Av. Roraima, 1000, Cidade Universitária, Camobi, Santa Maria, RS 97105-900, Brazil
| | - Milena Fortuna
- Graduate Program in Pharmacology, Universidade Federal de Santa Maria, Av. Roraima, 1000, Cidade Universitária, Camobi, Santa Maria, RS 97105-900, Brazil
| | - Suelen Mendonça Soares
- Graduate Program in Pharmacology, Universidade Federal de Santa Maria, Av. Roraima, 1000, Cidade Universitária, Camobi, Santa Maria, RS 97105-900, Brazil; Undergraduate Course of Veterinary Medicine, University of Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Natália Freddo
- Graduate Program in Bioexperimentation Universidade de Passo Fundo, BR 285, São José, Passo Fundo, RS 99052-900, Brazil
| | - Ísis Piasson Barletto
- Undergraduate Course of Veterinary Medicine, University of Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Maíra Souza Ariotti
- Undergraduate Course of Veterinary Medicine, University of Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Milena Zanoello Bertuol
- Undergraduate Course of Veterinary Medicine, University of Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | | | - Cecília Mazutti Andrade
- Undergraduate Course of Veterinary Medicine, University of Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Leonardo José Gil Barcellos
- Graduate Program in Pharmacology, Universidade Federal de Santa Maria, Av. Roraima, 1000, Cidade Universitária, Camobi, Santa Maria, RS 97105-900, Brazil; Graduate Program in Bioexperimentation Universidade de Passo Fundo, BR 285, São José, Passo Fundo, RS 99052-900, Brazil; Undergraduate Course of Veterinary Medicine, University of Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil.
| |
Collapse
|
6
|
Silva F, Alves RF, Rocha E, Rocha MJ. Progestin Pollution in Surface Waters of a Major Southwestern European Estuary: The Douro River Estuary (Iberian Peninsula). TOXICS 2025; 13:225. [PMID: 40137552 PMCID: PMC11946473 DOI: 10.3390/toxics13030225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
The concentrations and spreading of eight synthetic and two natural progestins (PGs) were investigated in surface waters from ten sites at the Douro River Estuary. Samples were filtrated and subjected to solid-phase extraction (SPE) to isolate and concentrate the target PGs. The extracts were cleaned by silica cartridges and analyzed by LC-MS/MS. The finding of biologically relevant amounts of gonanes (22.3 ± 2.7 ng/L), progesterone derivatives (12.2 ± 0.5 ng/L), drospirenone (4.1 ± 0.8 ng/L), and natural PGs (9.4 ± 0.9 ng/L) support the possibility of these compounds acting as endocrine disruptors. Despite the absence of significant differences amongst sampling sites and seasons, the principal component analysis (PCA) and the linear discriminant analysis (LDA) approaches reveal that spring and summer have different patterns of PG distribution compared to autumn and winter. The assessment of risk coefficients (RQs) and the potential concentrations of synthetic progestins in fish blood sustains that all tested compounds pose a significant risk to local biota (RQs > 1). Additionally, three progestins-norethindrone, norethindrone acetate, and medroxyprogesterone acetate-should reach human-equivalent therapeutic levels in fish plasma. Overall, the current data show PGs' presence and potential impacts in one of the most important estuaries of the Iberian Peninsula.
Collapse
Affiliation(s)
- Frederico Silva
- Department of Microscopy, School of Medicine and Biomedical Sciences (ICBAS), University of Porto (U. Porto), 4050-313 Porto, Portugal; (F.S.); (R.F.A.); (E.R.)
| | - Rodrigo F. Alves
- Department of Microscopy, School of Medicine and Biomedical Sciences (ICBAS), University of Porto (U. Porto), 4050-313 Porto, Portugal; (F.S.); (R.F.A.); (E.R.)
- Group of Animal Morphology and Toxicology, Interdisciplinary Centre for Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U. Porto), 4450-208 Porto, Portugal
| | - Eduardo Rocha
- Department of Microscopy, School of Medicine and Biomedical Sciences (ICBAS), University of Porto (U. Porto), 4050-313 Porto, Portugal; (F.S.); (R.F.A.); (E.R.)
- Group of Animal Morphology and Toxicology, Interdisciplinary Centre for Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U. Porto), 4450-208 Porto, Portugal
| | - Maria João Rocha
- Department of Microscopy, School of Medicine and Biomedical Sciences (ICBAS), University of Porto (U. Porto), 4050-313 Porto, Portugal; (F.S.); (R.F.A.); (E.R.)
- Group of Animal Morphology and Toxicology, Interdisciplinary Centre for Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U. Porto), 4450-208 Porto, Portugal
| |
Collapse
|
7
|
Jiang YX, Guo JN, Hu LX, Zhang H, Ong CN, Shi WJ, Ying GG. Gender-specific effects of dydrogesterone on zebrafish liver metabolism after long-term exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 279:107236. [PMID: 39764904 DOI: 10.1016/j.aquatox.2025.107236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 02/11/2025]
Abstract
Synthetic progestin dydrogesterone is widely used in gynecology and animal husbandry, leading to high environmental detection rates and concentrations. Dydrogesterone influences sex differentiation, gonad development, and spawning in fish. However, its impact on the liver, a vital organ for hormone production and detoxification, remains largely unknown. In this study, zebrafish embryos were exposed to 2.8, 27.6, and 289.8 ng/L of dydrogesterone until they reached sexual maturity. Metabolomics and Fourier transform infrared spectroscopy (FTIR) were employed to investigate alterations in the zebrafish liver. Long-term exposure to dydrogesterone decreased body weight and length in females but increased them in males. The levels of phospholipids, monoglycerides, lysophospholipids, fatty acids, acylcarnitines, acyltaurines, cholesterol, and bile acids increased in the liver of females but decreased in males due to dydrogesterone, making the metabolic pathways the most affected. FTIR analysis revealed a reduction in lipid and protein absorption coupled with an increase in carbohydrate absorption in the liver of exposed males, whereas exposed females exhibited reductions in both lipid and carbohydrate absorption. These findings suggest that long-term exposure to dydrogesterone enhances basic metabolism and physical growth in male zebrafish. To the best of our knowledge, this is the first report on the effects of progestins on body metabolism. Additionally, we find that gender difference is a notable feature of the effects of dydrogesterone on zebrafish.
Collapse
Affiliation(s)
- Yu-Xia Jiang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Jian-Nan Guo
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China; School of Water Resources and Environment, Hebei GEO University, Shijiazhuang 050031, China
| | - Li-Xin Hu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Hui Zhang
- School of Public Health, National University of Singapore, 117547, Singapore
| | - Choon-Nam Ong
- School of Public Health, National University of Singapore, 117547, Singapore
| | - Wen-Jun Shi
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China.
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
8
|
Klein M, Reibold M, Reinders P, Itzel F, Jaehne M, Gehrmann L, Klaßen MD, Schmidt TC, Türk J. Effect-based analysis of endocrine effects in surface and ground water with focus on progestagenicity using Arxula yeast-based reporter gene assays. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025; 44:220-231. [PMID: 39837804 DOI: 10.1093/etojnl/vgae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 10/20/2024] [Accepted: 10/27/2024] [Indexed: 01/23/2025]
Abstract
The use of effect-based methods in water monitoring for identifying risks to aquatic organisms and human health is important for aiding regulatory decisions. In the past decades, the database on monitoring, especially in surface waters, has grown as this aquatic environment is openly exposed to various contamination sources. With regard to endocrine disruption, estrogenic and androgenic effects have been primarily investigated. Here, yeast-based bioassays emerged as potent tools, offering sensitivity to environmentally relevant concentrations and high robustness. The objectives of this study were to investigate further endocrine endpoints and extend the monitoring to ground waters. The inclusion of progestagenic effects is crucial due to their multifaceted roles in various functions of organisms. Hence, three different Arxula-yeast hormone screens (estrogen, androgen, and progesterone receptors) were applied, revealing simultaneous exposure to diverse endocrine effects in surface and ground water matrices. Although effect profiles in surface waters showed mainly activation of hormone receptors, in-ground water samples inhibitory effects clearly predominate. Although toxicological thresholds are not yet legally binding, they are essential for effective regulatory measures and risk management to ensure the good ecological status of aquatic ecosystems. The results were compared with effect-based trigger values for ecological as well as human risk assessment depending on the sample matrix, none of which were exceeded.
Collapse
Affiliation(s)
- Michelle Klein
- Instrumentelle Analytische Chemie (IAC), Fakultät für Chemie, Universität Duisburg-Essen, Essen, Germany
- Institut für Umwelt & Energie, Technik & Analytik e. V. (IUTA), Duisburg, Germany
- Zentrum für Wasser- und Umweltforschung (ZWU), Universität Duisburg-Essen, Essen, Germany
| | - Melissa Reibold
- Institut für Umwelt & Energie, Technik & Analytik e. V. (IUTA), Duisburg, Germany
| | - Petra Reinders
- Linksniederrheinische Entwässerungs-Genossenschaft (LINEG), Kamp-Lintfort, Germany
| | - Fabian Itzel
- Zentrum für Wasser- und Umweltforschung (ZWU), Universität Duisburg-Essen, Essen, Germany
- Linksniederrheinische Entwässerungs-Genossenschaft (LINEG), Kamp-Lintfort, Germany
| | | | - Linda Gehrmann
- Institut für Umwelt & Energie, Technik & Analytik e. V. (IUTA), Duisburg, Germany
- Zentrum für Wasser- und Umweltforschung (ZWU), Universität Duisburg-Essen, Essen, Germany
| | - Martin Daniel Klaßen
- Institut für Umwelt & Energie, Technik & Analytik e. V. (IUTA), Duisburg, Germany
| | - Torsten Claus Schmidt
- Instrumentelle Analytische Chemie (IAC), Fakultät für Chemie, Universität Duisburg-Essen, Essen, Germany
- Zentrum für Wasser- und Umweltforschung (ZWU), Universität Duisburg-Essen, Essen, Germany
| | - Jochen Türk
- Institut für Umwelt & Energie, Technik & Analytik e. V. (IUTA), Duisburg, Germany
- Zentrum für Wasser- und Umweltforschung (ZWU), Universität Duisburg-Essen, Essen, Germany
| |
Collapse
|
9
|
Mai S, Liang YQ, Zhou S, Lin H, Dong Z, Pan CG, Kong Q, Wang S, Wang S, Lin Z, Hou L. The long-term effects of norgestrel on the reproductive and thyroid systems in adult zebrafish at environmentally relevant concentrations. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107105. [PMID: 39306961 DOI: 10.1016/j.aquatox.2024.107105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/14/2024] [Accepted: 09/18/2024] [Indexed: 11/12/2024]
Abstract
Progestins are crucial steroid hormones that have attracted wide attention due to their endocrine disrupting effects in fish. The aim of this study is to investigate the effects of long-term exposure to low concentrations of norgestrel (NGT) on the reproductive and thyroid endocrine systems of adult zebrafish. Adult zebrafish were exposed to 7 and 39 ng/L NGT for a duration of 90 days. The results revealed that exposure to 39 ng/L NGT led to a significant up-regulation of 3β-hydroxysteroid dehydrogenase (hsd3b) and 20β-hydroxysteroid dehydrogenase (hsd20b) genes in the ovary of female zebrafish. Additionally, there was a significant up-regulation of 11β-hydroxysteroid dehydrogenase 2 (hsd11b2) gene in the testis of male zebrafish. Furthermore, egg production decreased significantly, accompanied by notable alterations in the proportion of ovarian development stages, as well as reductions of sex hormone levels (E2, 11-KT, and T) in both females and males. However, long-term exposure to low concentrations of NGT did not lead to changes in thyroid hormone levels and thyroid histopathology in adult zebrafish. The overall results imply that environmental concentrations of NGT have a strong endocrine disrupting effect on the reproductive system of zebrafish, while the thyroid system is not sensitive to NGT exposure. The present study underscores the reproductive endocrine impacts of NGT and emphasizes the necessity for prolonged exposure at environmental concentrations.
Collapse
Affiliation(s)
- Shuyan Mai
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yan-Qiu Liang
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, South China Normal University, Guangzhou 510006, China.
| | - Shuhui Zhou
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Hongjie Lin
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhongdian Dong
- College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chang-Gui Pan
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China
| | - Qingwei Kong
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Shaoshuai Wang
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Shiqing Wang
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhong Lin
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Liping Hou
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| |
Collapse
|
10
|
Huang DQ, Yang JH, Han NN, Yang JH, Jiang Y, Li ZY, Jin RC, Fan NS. Microbial coadaptation drives the dynamic stability of microecology in mainstream and sidestream anammox systems under exposure of progesterone. WATER RESEARCH 2024; 268:122694. [PMID: 39481331 DOI: 10.1016/j.watres.2024.122694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/05/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024]
Abstract
Microbial cooperation determines the efficacy of wastewater biological treatment, and the adaptability of microorganisms to environmental stresses varies. Recently, extensive use of hormones results in their inevitable discharge into aquatic environment. Therefore, mainstream and sidestream anammox reactors were constructed in this study to evaluate their removal performance of progesterone and nitrogen simultaneously, the adaptability of anammox consortia to progesterone stress and the corresponding regulation mechanism. Both anammox processes had the resilience to progesterone stress, with the average nitrogen removal efficiency exceeding 90 %. At the same time, progesterone removal efficiency also exceeded 70 %. In contrast, microbial community in the mainstream reactors was more susceptible to progesterone interference. The adaptation of anammox consortia mainly depended on microbial cooperation and molecular regulation. Initially, bacteria secreted more extracellular polymeric substances to detain progesterone. Biodegradation also contributed to mitigating the side effect of progesterone, which was demonstrated by the proliferation of potential degrading bacteria such as Bacillus salacetis, Bacillus wiedmannii and Rhodococcus erythropolis. In addition, the enhancement of microbial interaction intensity drove their cooperation to enhance adaptability and maintain stable performance. Combined with metagenomic and metatranscriptomic analyses, such microbial adaptability was enhanced through molecular regulations, including the energy redistribution for amino acid synthesis and alteration of key metabolic pathways. Related functional gene expressions and microbial interactions were, in turn, regulated by quorum sensing. This work verifies the feasibility of anammox process in hormone-containing wastewater treatment and provides a holistic understanding of molecular mechanism of microbial interaction and coadaptation to stress.
Collapse
Affiliation(s)
- Dong-Qi Huang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Jia-Hui Yang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Na-Na Han
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Jun-Hui Yang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Yuan Jiang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Zi-Yue Li
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Ren-Cun Jin
- Laboratory of Water Pollution Remediation, School of Engineering, Hangzhou Normal University, Hangzhou 310018, PR China.
| | - Nian-Si Fan
- Laboratory of Water Pollution Remediation, School of Engineering, Hangzhou Normal University, Hangzhou 310018, PR China.
| |
Collapse
|
11
|
Tian F, Liu S, Xu R, Wu NN, Liu SS, Cheng YY, Xiong Q, Tang ZZ, Zhang LB, Zhang Z, Chen HG. Ubiquity and ecological risks of conjugated steroids cannot be overlooked: First evidence from estuarine sediments. MARINE POLLUTION BULLETIN 2024; 207:116879. [PMID: 39182404 DOI: 10.1016/j.marpolbul.2024.116879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/17/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
Steroids, renowned for endocrine-disrupting capabilities, have garnered significant research interest, predominantly centered on their parent forms. This study was the first to explore the composition, spatiotemporal characteristics, sources, mass inventories, and ecological risks of steroids in free and conjugated forms in estuarine sediments. Seventeen steroids were identified in sediments with the total levels of 1.3-4.3 ng/g. Most natural steroids and metabolites existed in free forms, while synthetic ones predominantly stored in conjugates. Environmental factors exerted limited impacts on steroid distribution. Raw domestic wastewater, drug consumption, and mariculture may be leading steroid sources in estuarine sediments, with total mean mass inventories of 177-219 μg/m2. The predominant contributors to the ecological risk were cortisol, prednisolone, 20α-dihydroprogesterone, 20β-dihydroprogesterone, and progesterone. This research gives the first insight into the understanding of conjugated steroids in the marine environment, and advocates for more studies on the fate and ecotoxicology of conjugated steroids.
Collapse
Affiliation(s)
- Fei Tian
- Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, Scientific Observing and Experimental Station of South China Sea Fishery Resources and Environment, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Shan Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Ru Xu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nian-Nian Wu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuang-Shuang Liu
- Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, Scientific Observing and Experimental Station of South China Sea Fishery Resources and Environment, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Yuan-Yue Cheng
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Qian Xiong
- Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, Scientific Observing and Experimental Station of South China Sea Fishery Resources and Environment, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Zhen-Zhao Tang
- Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, Scientific Observing and Experimental Station of South China Sea Fishery Resources and Environment, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Lin-Bao Zhang
- Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, Scientific Observing and Experimental Station of South China Sea Fishery Resources and Environment, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Zhe Zhang
- Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, Scientific Observing and Experimental Station of South China Sea Fishery Resources and Environment, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Hai-Gang Chen
- Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, Scientific Observing and Experimental Station of South China Sea Fishery Resources and Environment, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| |
Collapse
|
12
|
Fortuna M, Varella ACC, Siqueira L, Soares SM, Freddo N, Nardi J, Barletto ÍP, Bertuol MZ, Barcellos LJG. Transgenerational effects of the levonorgestrel-based birth control pill in zebrafish offspring. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 110:104540. [PMID: 39173986 DOI: 10.1016/j.etap.2024.104540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024]
Abstract
The consumption of hormone-derived medicines, such as levonorgestrel (LNG), is increasing worldwide, and its discharge into the environment reaches non-target organisms. In our previous study, we exposed the parental generation of zebrafish to environmentally relevant concentrations of LNG during the developmental phase. Subsequently, they had grown in a tank with clean water until adulthood. Now, we allowed this parental generation to reproduce to obtain F1 progeny unexposed to LGN, in order to analyze the transgenerational effects of parental LNG exposure on the survival and hatching of unexposed F1 embryos and the stress and behavior of F1 larvae. Here, we found decreased survival rates with higher LNG concentrations, providing a transgenerational effect. This highlights the environmental impact of exposure to LNG, causing damage at the individual and population level and affecting the next generation at the beginning of development, impacting qualities in the survival of the species.
Collapse
Affiliation(s)
- Milena Fortuna
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | | | - Lisiane Siqueira
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Suelen Mendonça Soares
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Natália Freddo
- Graduate Programa in Bioexperimentation, University of Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Jéssica Nardi
- Graduate Programa in Bioexperimentation, University of Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Ísis Piasson Barletto
- Undergraduate Course of Veterinary Medicine, University of Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Milena Zanoello Bertuol
- Undergraduate Course of Veterinary Medicine, University of Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Leonardo José Gil Barcellos
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil; Graduate Programa in Bioexperimentation, University of Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil; Undergraduate Course of Veterinary Medicine, University of Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil.
| |
Collapse
|
13
|
Zhou S, Lin H, Liu Z, Lian X, Pan CG, Dong Z, Lin Z, Li C, Hou L, Liang YQ. The impact of co-exposure to polystyrene microplastics and norethindrone on gill histology, antioxidant capacity, reproductive system, and gut microbiota in zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 273:107018. [PMID: 38968675 DOI: 10.1016/j.aquatox.2024.107018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/14/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
In recent years, studies have focused on the combined ecological risks posed by microplastics and other organic pollutants. Although both microplastics and progestin residues are frequently detected in the aquatic environments, their ecological implications remain unknown. Adult zebrafish were exposed to polystyrene microplastics (PS, 200 nm, 200 μg/L), norethindrone (NET, 69.6 ng/L), and their mixture (200 μg/L PS + 63.1 ng/L NET) for 30 days. The results demonstrated that exposure to PS and NET resulted in gill damage. Notably, the PS and PS+NET exhibited a significant decrease in glutathione (GSH) and oxidized glutathione (GSSG) content, as well as reduced antioxidase activity in the gills. The oxidative stress in PS+NET primarily originated from PS. The PS, NET, or their mixture resulted in a decrease in testosterone (T) and estradiol (E2) levels in female. Furthermore, compared to NET, the PS+NET showed a significant reduction in E2 levels, thereby augmenting the inhibitory effect on reproductive ability mediated by NET. However, males showed an increase in 11-ketodihydrotestosterone (11-KT) content, accompanied by a significant decrease in spermatogonia (Sg) and increase in spermatocytes (Sc). Consequently, it can be inferred that PS enhances the androgenic effect of NET. In female fish brain, NET alone resulted in transcriptional down-regulation of partial hormone receptors; however, co-administration of PS effectively mitigated the interference effects. Furthermore, transcriptional downregulation of 17-alpha-hydroxylase (cyp17), hydroxysteroid 3-beta dehydrogenase (hsd3b), estrogen receptor 1 (esr1), and estrogen receptor 2a (esr2b) genes in the ovary was found to be associated with the androgenic activity induced by NET. Moreover, in comparison to PS or NET alone, PS+NET resulted in a notable decrease in Cetobacterium abundance and an increase in Aeromonas population, suggesting that the co-exposure of PS+NET may exacerbate intestinal burden. The findings highlight the importance of studying the combined toxicity of PS and NET.
Collapse
Affiliation(s)
- Shuhui Zhou
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Hongjie Lin
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ziyun Liu
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiaoyi Lian
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chang-Gui Pan
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China
| | - Zhongdian Dong
- College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhong Lin
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chengyong Li
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Liping Hou
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China.
| | - Yan-Qiu Liang
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
14
|
Toso A, Garoche C, Balaguer P. Human and fish differences in steroid receptors activation: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174889. [PMID: 39047839 DOI: 10.1016/j.scitotenv.2024.174889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/05/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Steroid receptors (SRs) are transcription factors activated by steroid hormones (SHs) that belong to the nuclear receptors (NRs) superfamily. Several studies have shown that SRs are targets of endocrine disrupting chemicals (EDCs), widespread substances in the environment capable of interfering with the endogenous hormonal pathways and causing adverse health effects in living organisms and/or their progeny. Cell lines with SRs reporter gene are currently used for in vitro screening of large quantities of chemicals with suspected endocrine-disrupting activities. However, most of these cell lines express human SRs and therefore the toxicological data obtained are also extrapolated to non-mammalian species. In parallel, in vivo tests have recently been developed on fish species whose data are also extrapolated to mammalian species. As some species-specific differences in SRs activation by natural and synthetic chemicals have been recently reported, the aim of this review is to summarize those between human and fish SRs, as representatives of mammalian and non-mammalian toxicology, respectively. Overall, this literature study aims to improve inter-species extrapolation of toxicological data on EDCs and to understand which reporter gene cell lines expressing human SRs are relevant for the assessment of effects in fish and whether in vivo tests on fish can be properly used in the assessment of adverse effects on human health.
Collapse
Affiliation(s)
- Anna Toso
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université Montpellier, Institut régional du Cancer de Montpellier (ICM), 34090 Montpellier, France; Department Environmental Toxicology, Swiss Federal Institute of Aquatic Science and Technology, Eawag, 8600 Dübendorf, Switzerland.
| | - Clémentine Garoche
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université Montpellier, Institut régional du Cancer de Montpellier (ICM), 34090 Montpellier, France
| | - Patrick Balaguer
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université Montpellier, Institut régional du Cancer de Montpellier (ICM), 34090 Montpellier, France
| |
Collapse
|
15
|
Noori M, Talebpour Z. Green method for 17-hydroxyprogesterone extraction and determination using PDMS stir bar sorptive extraction coupled with HPLC: optimization by response surface methodology. Sci Rep 2024; 14:16192. [PMID: 39003299 PMCID: PMC11246442 DOI: 10.1038/s41598-024-66355-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/01/2024] [Indexed: 07/15/2024] Open
Abstract
Quantifying small amounts of the 17-hydroxyprogesterone in various matrix is crucial for different purposes. In this study, a commercial polydimethylsiloxane stir bar was used to extract hormone from water and urine samples. Analysis was performed by high-performance liquid chromatography using a UV detector. The response surface methodology was used to optimize the desorption and extraction steps, with predicted optimal point relative errors of 1.25% and 6.40%, respectively. The optimized method was validated with a linear range of 1.21-1000.00 for aqueous and 2.43-2000.00 ng mL-1 for urine samples. The coefficient of determination was 0.9998 and 0.9967, and the detection limit of the proposed method was obtained to be 0.40 and 0.80 ng mL-1 for aqueous and urine samples, respectively. The recovery percentage and relative standard deviation within a day and between three days after the addition of three different concentration levels of the standard to the control sample were 87-103% and 0.4-3.6% for aqueous and 87.5-101% and 0.1-5.2% for urine samples, respectively. The results show that the proposed method can be appropriate and cost-effective for extracting and analyzing this hormone. In addition, using three different tools, the greenness of the proposed method was proven.
Collapse
Affiliation(s)
- Maedeh Noori
- Department of Analytical Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran, Iran
| | - Zahra Talebpour
- Department of Analytical Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran, Iran.
- Analytical and Bioanalytical Research Centre, Alzahra University, Vanak, Tehran, Iran.
| |
Collapse
|
16
|
Wang CS, Fang GZ, Li XP, Huang GY, Xie L, Ying GG. Combined effects of binary mixtures of 17β-estradiol and testosterone in western mosquitofish (Gambusia affinis) after full life-cycle exposure. Comp Biochem Physiol C Toxicol Pharmacol 2024; 280:109887. [PMID: 38460577 DOI: 10.1016/j.cbpc.2024.109887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/04/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
Estrogens and androgens are typical steroid hormones and often occur together in contaminated aquatic environments, but their mixed effects in aquatic organisms have been less well reported. In this study, the endocrine disrupting effects of binary mixtures of 17β-estradiol (E2) and testosterone (T) in western mosquitofish (Gambusia affinis) were assessed by analyzing the sex ratio, secondary sex characteristics, gonadal histology, and transcriptional expression of target genes related to the hypothalamic-pituitary-gonadal (HPG) axis in G. affinis (from embryos) continuously exposed to E2 (50 ng/L), T (T1: 50 ng/L; T2: 200 ng/L), and mixtures of both (E2 + T1: 50 + 50 ng/L; E2 + T2: 50 + 200 ng/L) for 119 d. The results showed that exposure to E2 + T1 and E2 + T2 reduced the length ratio of ray 4/6 ratio in male G. affinis, suggesting feminized phenomenon in male G. affinis. Furthermore, 16.7-38.5 % of female G. affinis showed masculinized anal fins and hemal spines when exposed to T alone and in combination with E2. Importantly, the transcriptional levels of certain target genes related to the HPG axis were significantly altered in G. affinis following exposure to E2 and T alone and in combinations. Moreover, exposure to E2 and T in combinations can lead to combined effects (such as synergistic and antagonistic effects) on the transcriptional levels of some genes. These results collectively suggest that exposure to environmentally relevant concentrations of E2 and T alone and in mixtures can impact the endocrine system of G. affinis, and may pose potential risks in aquatic systems.
Collapse
Affiliation(s)
- Chen-Si Wang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Gui-Zhen Fang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Xiao-Pei Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guo-Yong Huang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| | - Lingtian Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| |
Collapse
|
17
|
Ghanbarzadeh M, Ghaffarinejad A, Shahdost-Fard F. A nitrogen-doped hollow carbon nanospheres-based aptasensor for non-invasive salivary detection of progesterone. Talanta 2024; 273:125927. [PMID: 38521026 DOI: 10.1016/j.talanta.2024.125927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/21/2024] [Accepted: 03/14/2024] [Indexed: 03/25/2024]
Abstract
Developing an easy-to-use and non-invasive sensor for monitoring progesterone (P4) as a multi-functional hormone is highly demanded for point-of-care testing. In this study, an ultrasensitive electrochemical aptasensor is fabricated for monitoring P4 in human biofluids. The sensing interface was designed based on the porous nitrogen-doped hollow carbon spheres (N-HCSs). The N-HCSs covalently immobilized high-dense aptamer (Apt) sequences as the bioreceptor of P4. The electron transfer of the redox probe was hindered by incubating P4 on the aptasensor surface and forming the P4-Apt complexes. Meanwhile, the signaling was decreased under two wide linear dynamic ranges (LDRs) from 10 fM to 5.6 μM with a limit of detection (LOD) value of 3.33 fM. The aptasensor presented satisfactory selectivity in the presence of different off-target species with successful feasibility for P4 detection in some human urine and saliva samples. The aptasensor with high sensitivity, as an advantage for on-site and sensitive measurement of P4, can be considered a non-invasive tool for routine analysis of real-world clinical samples method.
Collapse
Affiliation(s)
- Mahsa Ghanbarzadeh
- Research Laboratory of Real Samples Analysis, Faculty of Chemistry, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
| | - Ali Ghaffarinejad
- Research Laboratory of Real Samples Analysis, Faculty of Chemistry, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran; Electroanalytical Chemistry Research Center, Iran University of Science and Technology (IUST), Tehran, 1684613114, Iran.
| | - Faezeh Shahdost-Fard
- Department of Chemistry Education, Farhangian University, P.O. Box 14665-889, Tehran, Iran.
| |
Collapse
|
18
|
Šauer P, Vojs Staňová A, Bořík A, Valentová O, Grabic R, Kocour Kroupová H. High enrichment factors in chemical analysis of progestins and in bioassays: insights beyond trace levels. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:38500-38511. [PMID: 38806985 DOI: 10.1007/s11356-024-33714-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/14/2024] [Indexed: 05/30/2024]
Abstract
Concerns are growing about adverse effects of progestins on biota, even at ultra-trace concentrations. The enrichment factor (EF) from extraction of analytes in environmental samples that is needed for sample pre-concentration can affect not only performance of the analytical method but also the matrix effect. Therefore, the present study aimed to assess the influence of high sample EF on performance of the high-performance liquid chromatography with atmospheric pressure chemical ionization and photoionization coupled with high-resolution mass spectrometry (HPLC-APCI/APPI-HRMS) method for analysis of progestins in waste water treatment plant (WWTP) effluents and surface waters and analysis of (anti-)progestogenic activities measured by (anti-)PR-CALUX bioassays. The results showed that HPLC-APCI/APPI-HRMS coupled with solid-phase extraction and a high EF (33,333 Lwater/Lextract) enabled the detection of more compounds compared to samples with lower sample EF (10,000 Lwater/Lextract). The matrix effect did not increase proportionally compared to lower EFs (10,000 and 16,666 Lwater/Lextract), and lower limits of quantification were achieved in WWTP effluents and surface waters. The results of bioassays have shown that relative EF of 25 Lwater/Lbioassay appears high enough to detect progestogenic activity in treated waste water. Our study is one of the first to provide insights into sample pre-concentration in analysis of progestins and progestogenicity in aquatic environments.
Collapse
Affiliation(s)
- Pavel Šauer
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic.
| | - Andrea Vojs Staňová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
- Comenius University in Bratislava, Faculty of Natural Sciences, Department of Analytical Chemistry, Ilkovičova 6, SK-842 15, Bratislava, Slovak Republic
| | - Adam Bořík
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Olga Valentová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Roman Grabic
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Hana Kocour Kroupová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| |
Collapse
|
19
|
Lin H, Zhou L, Lu S, Yang H, Li Y, Yang X. Occurrence and spatiotemporal distribution of natural and synthetic steroid hormones in soil, water, and sediment systems in suburban agricultural area of Guangzhou City, China. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134288. [PMID: 38626685 DOI: 10.1016/j.jhazmat.2024.134288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/28/2024] [Accepted: 04/10/2024] [Indexed: 04/18/2024]
Abstract
Steroid hormones are highly potent compounds that can disrupt the endocrine systems of aquatic organisms. This study explored the spatiotemporal distribution of 49 steroid hormones in agricultural soils, ditch water, and sediment from suburban areas of Guangzhou City, China. The average concentrations of Σsteroid hormones in the water, soils, and sediment were 97.7 ng/L, 4460 ng/kg, and 9140 ng/kg, respectively. Elevated hormone concentrations were notable in water during the flood season compared to the dry season, whereas an inverse trend was observed in soils and sediment. These observations were attributed to illegal wastewater discharge during the flood season, and sediment partitioning of hormones and manure fertilization during the dry season. Correlation analysis further showed that population, precipitation, and number of slaughtered animals significantly influenced the spatial distribution of steroid hormones across various districts. Moreover, there was substantial mass transfer among the three media, with steroid hormones predominantly distributed in the sediment (60.8 %) and soils (34.4 %). Risk quotients, calculated as the measured concentration and predicted no-effect concentration, exceeded 1 at certain sites for some hormones, indicating high risks. This study reveals that the risk assessment of steroid hormones requires consideration of their spatiotemporal variability and inter-media mass transfer dynamics in agroecosystems.
Collapse
Affiliation(s)
- Hang Lin
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Liangzhuo Zhou
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Shudong Lu
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Han Yang
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Yongtao Li
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China; Key Laboratory of Arable Land Conservation (South China), MOA, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Province Key Laboratory for Land Use and Consolidation, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Xingjian Yang
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China; Key Laboratory of Arable Land Conservation (South China), MOA, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Province Key Laboratory for Land Use and Consolidation, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
20
|
Zou H, Yu H, Huang Y, Guo Y, Ye M, Hou L. Chronic exposure to gestodene impairs reproductive system in adult female zebrafish (Daniarerio). CHEMOSPHERE 2024; 355:141876. [PMID: 38570043 DOI: 10.1016/j.chemosphere.2024.141876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/11/2024] [Accepted: 03/30/2024] [Indexed: 04/05/2024]
Abstract
Gestodene (GES) is widely used in human therapy and animal husbandry and is frequently detected in aquatic environments. Although GES adversely affects aquatic organisms at trace levels, its effects on the reproductive biology of fish remain inconclusive. In this study, female zebrafish (Danio rerio) were exposed to environmentally relevant levels of GES for the evaluation of the effects of GES on the reproductive system by using endpoints including gene expression, plasma steroid concentrations, histological and morphological analyses, copulatory behavior, and reproductive output. Adult female zebrafish exposed to environmentally relevant concentrations of GES (4.0, 40.2, and 372.7 ng/L) for 60 d demonstrated stagnant ovarian oocyte development, evidenced by an increase in the percentage of perinuclear and atretic oocytes and a decrease in the percentage of late vitellogenic oocytes. GES-exposed females were less attractive to males and had lower copulatory intimacy than females in control. Consequently, spawning (44.3-49.2 %) and egg fertilization rates (27.9-32.0 %) were decreased. The decreased survival of fertilized eggs and hatching rates were accompanied by increased malformations. These negative effects were associated with abnormal transcriptional levels of gonadal steroid hormones, which were regulated by genes (Hsd17β3, Hsd11β2, Hsd20β, Cyp19a1a, and Cyp11b). Overall, our findings suggest that GES impairs the reproductive system of zebrafish, which may threaten population stability.
Collapse
Affiliation(s)
- Hong Zou
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - HongJun Yu
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - YunYi Huang
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - YanFang Guo
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - MeiXin Ye
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - LiPing Hou
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China; Key Laboratory of Conservation and Application in Biodiversity of South China, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong, 510006, China.
| |
Collapse
|
21
|
Zhao L, Wang C, Sun F, Liao H, Chang H, Jia X. Assessment of occurrence, partitioning and ecological risk for 144 steroid hormones in Taihu Lake using UPLC-MS/MS with machine learning model. CHEMOSPHERE 2024; 354:141598. [PMID: 38432464 DOI: 10.1016/j.chemosphere.2024.141598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/25/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Steroid hormones (SHs) have attracted mounting attention due to their endocrine-disrupting effects on humans and aquatic organisms. However, the lack of analytical methods and toxicity data for a large number of SHs has limited the effective management of SH contamination in the water-sediment systems. In this study, we developed a highly sensitive analytical method for the simultaneous quantification of 144 SHs to investigate their occurrence, spatial distribution and partitioning in the water and sediment in Taihu Lake. The results showed that the total concentrations of SHs in water and sediment were 366.88-998.23 ng/L (mean: 612.84 ng/L) and 17.46-150.20 ng/g (mean: 63.41 ng/g), respectively. The spatial distribution of SHs in Taihu Lake might be simultaneously influenced by the pollution sources, lake hydrodynamics, and sediment properties. The sediment-water partitioning result implied that 28 SHs were in dynamic equilibrium at the water-water interface. In addition, 22 and 12 SHs tended to spread to water and settle into sediment, respectively. To assess the ecological risk of all SHs, a robust random forest model (R2 = 0.801) was developed to predict the acute toxicity of SHs for which toxicity data were not available from publications. Risk assessment showed that SHs posed a high ecological risk throughout Taihu Lake, with the highest risk in the northwestern areas. Estrone, 17β-estradiol and 17α-ethynylestradiol were the dominant risk contributors and were therefore recommended as the priority SHs in Taihu Lake. This work provided a valuable dataset for Taihu Lake, which would help to provide guidance and suggestions for future studies and be useful for the government to develop the mitigation and management measures.
Collapse
Affiliation(s)
- Li Zhao
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Sciences & Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Chao Wang
- China CDC Key Laboratory of Environment and Human Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Fuhong Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Haiqing Liao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Hong Chang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Sciences & Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Xudong Jia
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, 100021, China.
| |
Collapse
|
22
|
Stavreva DA, Varticovski L, Raziuddin R, Pegoraro G, Schiltz RL, Hager GL. Novel biosensor for high-throughput detection of progesterone receptor-interacting endocrine disruptors. Sci Rep 2024; 14:5567. [PMID: 38448539 PMCID: PMC10917811 DOI: 10.1038/s41598-024-55254-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 02/20/2024] [Indexed: 03/08/2024] Open
Abstract
Progesterone receptor (PR)-interacting compounds in the environment are associated with serious health hazards. However, methods for their detection in environmental samples are cumbersome. We report a sensitive activity-based biosensor for rapid and reliable screening of progesterone receptor (PR)-interacting endocrine disrupting chemicals (EDCs). The biosensor is a cell line which expresses nuclear mCherry-NF1 and a green fluorescent protein (GFP)-tagged chimera of glucocorticoid receptor (GR) N terminus fused to the ligand binding domain (LBD) of PR (GFP-GR-PR). As this LBD is shared by the PRA and PRB, the biosensor reports on the activation of both PR isoforms. This GFP-GR-PR chimera is cytoplasmic in the absence of hormone and translocates rapidly to the nucleus in response to PR agonists or antagonists in concentration- and time-dependent manner. In live cells, presence of nuclear NF1 label eliminates cell fixation and nuclear staining resulting in efficient screening. The assay can be used in screens for novel PR ligands and PR-interacting contaminants in environmental samples. A limited screen of river water samples indicated a widespread, low-level contamination with PR-interacting contaminants in all tested samples.
Collapse
Affiliation(s)
- Diana A Stavreva
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, 41 Medlars Dr., Bethesda, MD, 20892-5055, USA.
| | - Lyuba Varticovski
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, 41 Medlars Dr., Bethesda, MD, 20892-5055, USA
| | - Razi Raziuddin
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, 41 Medlars Dr., Bethesda, MD, 20892-5055, USA
| | - Gianluca Pegoraro
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, 41 Medlars Dr., Bethesda, MD, 20892-5055, USA
| | - R Louis Schiltz
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, 41 Medlars Dr., Bethesda, MD, 20892-5055, USA
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, 41 Medlars Dr., Bethesda, MD, 20892-5055, USA.
| |
Collapse
|
23
|
Amorim VE, Morais H, Ferreira ACS, Pardal MA, Cruzeiro C, Cardoso PG. Application of a robust analytical method for quantifying progestins in environmental samples from three Portuguese Estuaries. MARINE POLLUTION BULLETIN 2024; 199:115967. [PMID: 38159385 DOI: 10.1016/j.marpolbul.2023.115967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
In the last years, progestins have raised special concerns for their documented negative effects on aquatic species, yet little is known about their environmental levels in surface waters and bioaccumulation in the trophic web. This study aimed to 1) adapt an extraction method for quantifying progestins in freeze-dried matrices, 2) validate the analytical procedure for three matrices: bivalve, polychaete, and crustacean, and 3) characterize levels of the four most prescribed synthetic progestins in key species across three Portuguese estuaries. Through the validated method, progestins were only quantifiable for the crustacean. Values were generally low, peaking with drospirenone values in Ria de Aveiro (1.33 ± 0.26 ng/g ww) and Tagus estuary (1.42 ± 0.55 ng/g ww), while Ria Formosa exhibited the lowest progestin concentrations (< 1 ng/g ww). This study enabled the development of a precise extraction and analytical method for quantifying steroid hormones in three distinct biological matrices.
Collapse
Affiliation(s)
- V E Amorim
- Interdisciplinary Centre for Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Matosinhos, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - H Morais
- Interdisciplinary Centre for Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Matosinhos, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - A C Silva Ferreira
- Centro de Biotecnologia e Química Fina (CBQF), Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; Institute for Wine Biotechnology (IWBT), Department of Viticulture and Oenology (DVO), University of Stellenbosch, Private Bag XI, Matieland 7602, South Africa; Cork Supply Portugal, S.A., Rua Nova do Fial 102, 4535 São Paio de Oleiros, Portugal
| | - M A Pardal
- Centre for Functional Ecology (CFE), Department of Life Sciences, University of Coimbra, Portugal
| | - C Cruzeiro
- Unit Environmental Simulation (EUS), Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Neuherberg, Germany
| | - P G Cardoso
- Interdisciplinary Centre for Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Matosinhos, Portugal.
| |
Collapse
|
24
|
Xu R, Liu S, Pan YF, Wu NN, Huang QY, Li HX, Lin L, Hou R, Xu XR, Cheng YY. Steroid metabolites as overlooked emerging contaminants: Insights from multimedia partitioning and source-sink simulation in an estuarine environment. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132673. [PMID: 37793261 DOI: 10.1016/j.jhazmat.2023.132673] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/06/2023]
Abstract
Steroids have been attracting global attention given potential carcinogenic and endocrine-disrupting effects, yet the environmental status of steroids, especially their metabolites, in estuarine environment remain largely unexplored. This study investigated 31 steroids and metabolites in suspended particulate matter (SPM), water phase and sediments of the Pearl River Estuary (PRE) during the dry and wet seasons to elucidate their spatiotemporal patterning, partitioning behavior, and environmental fate. The results showed that natural steroids predominated in SPM and sediments while the metabolites predominated in water. The spatial distribution of steroids and metabolites varied seasonally, with hydrophobicity and environmental factors influencing phase partitioning in the estuary. Furthermore, a natural steroid, progesterone (P) could serve as a trustworthy chemical indicator to estimate the concentrations of steroids and metabolites in the PRE. Importantly, the mass budget of P was estimated using an improved multi-box mass balance model, revealing that outflow to the South China Sea was the primary sink of P in water (∼87%) and degradation was the primary sink of P in sediments (∼68%) of the PRE. Overall, this study offers insightful information about the distribution and environmental fate of steroids and metabolites in estuarine environment, with implications for future management strategies.
Collapse
Affiliation(s)
- Ru Xu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shan Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Yun-Feng Pan
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nian-Nian Wu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian-Yi Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heng-Xiang Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Lang Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Rui Hou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Xiang-Rong Xu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Yuan-Yue Cheng
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| |
Collapse
|
25
|
Puhlmann N, Vidaurre R, Kümmerer K. Designing greener active pharmaceutical ingredients: Insights from pharmaceutical industry into drug discovery and development. Eur J Pharm Sci 2024; 192:106614. [PMID: 37858896 DOI: 10.1016/j.ejps.2023.106614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 09/15/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
Active pharmaceutical ingredients (APIs), their metabolites and transformation products (TPs) are found as pollutants in the environment. They can impact human and environmental health. To address this issue, an efficient, long-term prevention strategy could be the design of APIs that have less impact on the natural environment, i.e. the design of greener APIs, by the implementation of environmental parameters into the drug discovery and development process (also abbreviated R&D for 'research and development'). Our study aimed to evaluate the feasibility of the design of greener APIs based on insights from drug design experts working in large, research-based pharmaceutical companies. The feasibility evaluation also identified needs and incentives for process modification. For this purpose, 30 R&D and environmental experts from seven globally active pharmaceutical companies were interviewed along a structured questionnaire. Main findings are that the interviewed experts saw manifold opportunities to include properties rendering APIs greener in different stages along the R&D process. This implementation would be favoured by the fact that the pharmaceutical R&D process is very flexible and relies on balancing multiple parameters. Furthermore, some API properties that reduce environmental risks were considered compatible with common desirable properties for application. Environmental properties should be considered early during R&D, i.e. when molecules are screened and optimized. It has been found that availability of suitable in silico models and in vitro assays is crucial for this environmental consideration. Their attributes, e.g. throughput and costs, determine at which process stage they can be successfully applied. An intensified exchange between R&D and environmental experts within and outside companies would push the industrial application of the benign by design approach for APIs forward. Collaboration across pharmaceutical companies, authorities, and academia is seen as highly promising in this respect. Financial, social, and regulatory incentives would support future design of greener APIs.
Collapse
Affiliation(s)
- Neele Puhlmann
- Institute of Sustainable Chemistry, Leuphana University of Lüneburg, Universitätsallee 1, 21335 Lüneburg, Germany
| | - Rodrigo Vidaurre
- Ecologic Institute, Pfalzburger Strasse 43/44, 10717 Berlin, Germany
| | - Klaus Kümmerer
- Institute of Sustainable Chemistry, Leuphana University of Lüneburg, Universitätsallee 1, 21335 Lüneburg, Germany; Research and Education Hub, International Sustainable Chemistry Collaborative Center ISC3, Niedersachsen, Germany.
| |
Collapse
|
26
|
Xu M, Zhang G, Qiu Y, Li Y, Liu C, Yang X. Biotransformation of cyproterone acetate, drospirenone, and megestrol acetate in agricultural soils: Kinetics, microbial community dynamics, transformation products, and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166847. [PMID: 37690749 DOI: 10.1016/j.scitotenv.2023.166847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/09/2023] [Accepted: 09/03/2023] [Indexed: 09/12/2023]
Abstract
The occurrence of biologically active synthetic progestins in agricultural soils is of growing concern due to their potential to disrupt the endocrine function of aquatic fish in nearby surface waters. This study investigated the biotransformation outcomes of cyproterone acetate (CPA), drospirenone (DRO), and megestrol acetate (MGA) in four agricultural soils. The biotransformation data were fitted to a first-order decay model (R2 = 0.93-0.99), with half-lives and first-order decay coefficients ranging from 76.2-217 h and 9.10 × 10-3-3.20 × 10-3 (h-1), respectively. Abundant biotransformation products (TPs) were generated during incubation, with the number and yields varying across the four soils. 1,2-Dehydrogenation was the main transformation pathway of DRO in the four soils (yields of 32.3-214 %). Similarly, 1,2-dehydrogenation was the most relevant transformation pathway of MGA in the four soils (yields of 21.8-417 %). C3 reduction was the major transformation pathway of CPA in soils B, C, and D (yields of 114-245 %). Hydrogenation (yield of 133 %) and hydroxylation (yield of 21.0 %) were the second major transformation pathway of CPA in soil B and C, respectively. In particular, several TPs exhibited progestogenic and antimineralocorticoid activity, as well as genotoxicity. The high-throughput sequencing indicated that interactions between microorganisms and soil properties may affect biotransformation. Spearman correlation and bidirectional network correlation analysis further revealed that soil properties can directly interfere with the soil sorption capacity for the progestins, thus affecting biotransformation. In particular, soil properties can also limit or promote biotransformation and the formation of TPs (i.e., biotransformation pathways) by affecting the relative abundances of relevant microorganisms. The results of this study indicate that the ecotoxicity of synthetic progestins and related TPs can vary across soils and that the assessment of environmental risks associated with these compounds requires special consideration of both soil properties and microbial communities.
Collapse
Affiliation(s)
- Manxin Xu
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Ge Zhang
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Yang Qiu
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Yongtao Li
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Province Key Laboratory for Land Use and Consolidation, Guangzhou 510642, PR China
| | - Churong Liu
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Xingjian Yang
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Province Key Laboratory for Land Use and Consolidation, Guangzhou 510642, PR China.
| |
Collapse
|
27
|
Guo Y, Liang X, Li H, Ye M, Zou H, Yu H, Qi T, Hou L, Liang YQ. Effects of norethindrone on the growth, behavior, and thyroid endocrine system of adult female western mosquitofish (Gambusia affinis). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115630. [PMID: 37890255 DOI: 10.1016/j.ecoenv.2023.115630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 10/29/2023]
Abstract
Progestins are mainly used in pharmacotherapy and animal husbandry and have received increasing attention as they are widely detected in various aquatic ecosystems. In this study, adult female western mosquitofish (Gambusia affinis) were exposed to different concentrations of norethindrone (NET) (solvent control, 5.0 (L), 50.0 (M), and 500.0 (H) ng/L) for 42 days. Behaviors, morphological parameters, histology of the thyroid, thyroid hormone levels (TSH, T3, and T4), and transcriptional levels of nine genes in the hypothalamic-pituitary-thyroid (HPT) axis were examined. The results showed that NET decreased sociality but increased the anxiety of G. affinis. Sociality makes fish tend to cluster, and anxiety may cause G. affinis to reduce exploration of new environments. Female fish showed hyperplasia, hypertrophy, and glial depletion in their thyroid follicular epithelial cells after NET treatment. The plasma levels of TSH and T4 were significantly reduced, but T3 concentrations were significantly increased in the fish from the H group. In addition, the transcripts of genes (tshb, tshr, tg, dio1, dio2, thrb) in the brains of fish in the M and H treatments were significantly stimulated, while those of trh and pax2a were suppressed. Our results suggest that NET may impact key social behaviors in G. affinis and interfere with the entire thyroid endocrine system, probably via affecting the transcriptional expression of upstream regulators in the HPT axis.
Collapse
Affiliation(s)
- Yanfang Guo
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Xiaorou Liang
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Haisheng Li
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Meixin Ye
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Hong Zou
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Hongjun Yu
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Tang Qi
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Liping Hou
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China; Key Laboratory of Conservation and Application in Biodiversity of South China, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong 510006, China.
| | - Yan-Qiu Liang
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
28
|
Jenila JS, Issac PK, Lam SS, Oviya JC, Jones S, Munusamy-Ramanujam G, Chang SW, Ravindran B, Mannacharaju M, Ghotekar S, Khoo KS. Deleterious effect of gestagens from wastewater effluent on fish reproduction in aquatic environment: A review. ENVIRONMENTAL RESEARCH 2023; 236:116810. [PMID: 37532209 DOI: 10.1016/j.envres.2023.116810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/12/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
Gestagens are common pollutants accumulated in the aquatic ecosystem. Gestagens are comprised of natural gestagens (i.e. progesterone) and synthetic gestagens (i.e. progestins). The major contributors of gestagens in the environment are paper plant mill effluent, wastewater treatment plants, discharge from pharmaceutical manufacturing, and livestock farming. Gestagens present in the aquatic environment interact with progesterone receptors and other steroid hormone receptors, negatively influencing fish reproduction, development, and behavior. In fish, the gonadotropin induces 17α, 20β-dihydroxy-4-pregnen-3-one (DHP) production, an important steroid hormone involved in gametogenesis. DHP interacts with the membrane progestin receptor (mPR), which regulates sperm motility and oocyte maturation. Gestagens also interfere with the hypothalamic-pituitary-gonadal (HPG) axis, which results in altered hormone levels in fish. Moreover, recent studies showed that even at low concentrations exposure to gestagens can have detrimental effects on fish reproduction, including reduced egg production, masculinization, feminization in males, and altered sex ratio, raising concerns about their impact on the fish population. This review highlights the hormonal regulation of sperm motility, oocyte maturation, the concentration of environmental gestagens in the aquatic environment, and their detrimental effects on fish reproduction. However, the long-term and combined impacts of multiple gestagens, including their interactions with other pollutants on fish populations and ecosystems are not well understood. The lack of standardized regulations and monitoring protocols for gestagens pollution in wastewater effluent hampers effective control and management. Nonetheless, advancements in analytical techniques and biomonitoring methods provide potential solutions by enabling better detection and quantification of gestagens in aquatic ecosystems.
Collapse
Affiliation(s)
- J S Jenila
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - Praveen Kumar Issac
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602 105, Tamil Nadu, India.
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; University Centre for Research and Development, Department of Chemistry, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - J Christina Oviya
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai, India; Department of Bioengineering, University of California, Riverside, CA, 92521, USA
| | - Sumathi Jones
- Department of Pharmacology and Therapeutics, Sree Balaji Dental College and Hospital, BIHER, Chennai, India
| | - Ganesh Munusamy-Ramanujam
- Molecular Biology and Immunobiology Division, Interdisciplinary Institute of Indian System of Medicine, SRM-IST, Kattankulathur, Tamil Nadu, 603203, India.
| | - Soon Woong Chang
- Department of Environmental Energy & Engineering, Kyonggi University, Suwon-si, Gyeonggi-do, 16227, South Korea
| | - Balasubramani Ravindran
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602 105, Tamil Nadu, India; Department of Environmental Energy & Engineering, Kyonggi University, Suwon-si, Gyeonggi-do, 16227, South Korea
| | - Mahesh Mannacharaju
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul, 05029, Republic of Korea
| | - Suresh Ghotekar
- Department of Chemistry, Smt. Devkiba Mohansinhji Chauhan College of Commerce and Science (University of Mumbai), Silvassa, 396 230, Dadra and Nagar Haveli (UT), India
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| |
Collapse
|
29
|
Morais H, Cruzeiro C, Pardal MA, Cardoso PG. Baseline progestins characterization in surface waters of three main Portuguese estuaries. MARINE POLLUTION BULLETIN 2023; 194:115352. [PMID: 37573672 DOI: 10.1016/j.marpolbul.2023.115352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/24/2023] [Accepted: 07/29/2023] [Indexed: 08/15/2023]
Abstract
Synthetic progestins are micropollutants of special concern, due to their growing use in human and veterinary therapies and their risks to aquatic life. Currently, there is a lack of environmental information on these compounds, worldwide. The main objective of this work was to characterize the levels of the most consumed progestins in Portugal. For that, Ria de Aveiro, Tagus estuary and Ria Formosa were sampled in a temporal perspective to evaluate levels of drospirenone (DRO), desogestrel (DSG), gestodene (GST) and levonorgestrel (LNG). Drospirenone and desogestrel were the most abundant progestins. In the North of Portugal, DSG was the most abundant (Aveiro: 193.9 ng L-1 in summer), while DRO was more representative in the South (Tagus: 178.9 ng L-1; Formosa: 125.7 ng L-1) and also in summer. These spatial differences can be associated with the hydrodynamics of each estuarine system as well as the distinct population and tourist levels associated with each site.
Collapse
Affiliation(s)
- H Morais
- CIIMAR - Interdisciplinary Centre for Marine and Environmental Research, University of Porto, Matosinhos, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - C Cruzeiro
- Research Unit Environmental Simulation, Helmholtz Zentrum München, German Research Center for Environmental Health, Germany
| | - M A Pardal
- CFE - Centre Functional Ecology, Department of Life Sciences, University of Coimbra, Portugal
| | - P G Cardoso
- CIIMAR - Interdisciplinary Centre for Marine and Environmental Research, University of Porto, Matosinhos, Portugal.
| |
Collapse
|
30
|
Tisler S, Savvidou P, Jørgensen MB, Castro M, Christensen JH. Supercritical Fluid Chromatography Coupled to High-Resolution Mass Spectrometry Reveals Persistent Mobile Organic Compounds with Unknown Toxicity in Wastewater Effluents. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37307429 DOI: 10.1021/acs.est.3c00120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Broad screening approaches for monitoring wastewater are normally based on reversed-phase liquid chromatography (LC) coupled to high-resolution mass spectrometry (HRMS). This method is not sufficient for the very polar micropollutants, neglected in the past due to a lack of suitable analytical methods. In this study, we used supercritical fluid chromatography (SFC) to detect very polar and yet-undetected micropollutants in wastewater effluents. We tentatively identified 85 compounds, whereas 18 have only rarely been detected and 11 have not previously been detected in wastewater effluents such as 17α-hydroxypregnenolone, a likely transformation product (TP) of steroids, and 1H-indole-3-carboxamide, a likely TP from new synthetic cannabinoids. Suspect screening of 25 effluent wastewater samples from 8 wastewater treatment plants revealed several distinct potential pollution sources such as a pharmaceutical company and a golf court. The analysis of the same samples with LC-HRMS showed clearly how SFC increases the ionization efficiency for low-molecular-weight micropollutants (m/z < 300 Da) by a factor 2 to 87 times, which significantly improved the mass spectra for identifying very polar compounds. In order to assess which micropollutants might be of environmental concern, literature and toxicological databases were screened. There was a lack of available hazard and bio-activity data for regulatory-relevant in vitro and in vivo assays for >50% of the micropollutants. Especially, 70% of the data were lacking for the whole organism (in vivo) tests.
Collapse
Affiliation(s)
- Selina Tisler
- Analytical Chemistry Group, Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Pinelopi Savvidou
- Analytical Chemistry Group, Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | | | - Mafalda Castro
- Analytical Chemistry Group, Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Jan H Christensen
- Analytical Chemistry Group, Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| |
Collapse
|
31
|
Watanabe A, Myosho T, Ishibashi A, Yamamoto J, Toda M, Onishi Y, Kobayashi T. Levonorgestrel causes feminization and dose-dependent masculinization in medaka fish (Oryzias latipes): Endocrine-disruption activity and its correlation with sex reversal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162740. [PMID: 36921849 DOI: 10.1016/j.scitotenv.2023.162740] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/02/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
The effect of a synthetic progestin, levonorgestrel (LNG), on the sex of exposed embryos was examined in medaka fish (Oryzias latipes). The aims of this study are to clarify the dual effect of LNG on sex and the correlation with its androgenic/estrogenic potential in medaka. LNG exposure causes significant dose-dependent masculinization (0.1-100 μg/L), whereas a decrease in the masculinization ratio is observed at 100 μg/L. LNG also causes significant feminization at 1-100 μg/L, but not in a dose-dependent manner. Exposure of estrogen-responsive gene (choriogeninH-EGFP) transgenic embryos to 100 μg/L LNG produced significant fluorescent signals in hatched fry. In vitro transcriptional assays indicated that LNG at 10-7-10-5 M induced significant activity for estrogen receptor (ESR)2a and ESR2b, but not for ESR1. In pre-self-feeding fry at 5 days post hatching (dph), 1-100 μg/L LNG caused a significant increase in the mRNA of choriogeninH, irrespective of genetic sex. Moreover, LNG (10-10-10-5 M) also caused a significant increase in the transcriptional activity of androgen receptor (AR) α and ARβ in vitro, and 0.1 μg/L LNG significantly increased the mRNA levels of a testis-differentiation initiation factor, gonadal soma-derived factor (gsdf), as an androgen-upregulated and estrogen-downregulated gene, in 5 dph XX fry to levels similar to those in the control XY fry. However, 100 and 10 μg/L LNG suppressed or did not induce gsdf mRNA expression in XY and XX fry, respectively. Together, these findings show that LNG exerts estrogenic and androgenic activities in different concentration ranges, which correlate with the ratio of LNG-induced sex reversal. These results suggest for the first time, that medaka exposure to LNG can induce masculinization and feminization, based on the balance between androgenic and estrogenic activities, and the protocol applied in this study represents an alternative to the traditional animal model used to screen for endocrine-disrupting potential.
Collapse
Affiliation(s)
- Akiho Watanabe
- Graduate School of Integrated Pharmaceutical and Nutrition Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Taijun Myosho
- Graduate School of Integrated Pharmaceutical and Nutrition Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; Laboratory of Molecular Reproductive Biology, Institute for Environmental Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Ayaka Ishibashi
- Graduate School of Integrated Pharmaceutical and Nutrition Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Jun Yamamoto
- Institute of Environmental Ecology, IDEA Consultants Inc., 1334-5, Riemon, Yaizu, Shizuoka 421-0212, Japan
| | - Misa Toda
- Institute of Environmental Ecology, IDEA Consultants Inc., 1334-5, Riemon, Yaizu, Shizuoka 421-0212, Japan
| | - Yuta Onishi
- Institute of Environmental Ecology, IDEA Consultants Inc., 1334-5, Riemon, Yaizu, Shizuoka 421-0212, Japan
| | - Tohru Kobayashi
- Graduate School of Integrated Pharmaceutical and Nutrition Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; Laboratory of Molecular Reproductive Biology, Institute for Environmental Sciences, University of Shizuoka, Shizuoka 422-8526, Japan.
| |
Collapse
|
32
|
Long XB, Shi WJ, Yao CR, Li SY, Zhang JG, Lu ZJ, Ma DD, Jiang YX, Ying GG. Norethindrone suppress the germ cell development via androgen receptor resulting in male bias. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106604. [PMID: 37311377 DOI: 10.1016/j.aquatox.2023.106604] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/15/2023] [Accepted: 06/07/2023] [Indexed: 06/15/2023]
Abstract
Progestins are widely used and detected in surface waters, and can affect gonad development and sexual differentiation in fish. However, the toxicological mechanisms of sexual differentiation induced by progestins are not well understood. Here, we investigated the effects of norethindrone (NET) and androgen receptor (AR) antagonist flutamide (FLU) on gonadal differentiation in zebrafish from 21 dpf (days post-fertilization) to 49 dpf. The results showed that NET caused male bias, while FLU resulted in female bias at 49 dpf. The NET and FLU mixtures significantly decreased the percentage of males compared to the NET single exposure. Molecular docking analysis showed that FLU and NET had similar docking pocket and docking posture with AR resulting in competitively forming the hydrogen bond with Thr334 of AR. These results suggested that binding to AR was the molecular initiating event of sex differentiation induced by NET. Moreover, NET strongly decreased transcription of biomarker genes (dnd1, ddx4, dazl, piwil1 and nanos1) involved in germ cell development, while FLU significantly increased transcription of these target genes. There was an increase in the number of juvenile oocytes, which was consistent with the female bias in the combined groups. The bliss independence model analysis further showed that NET and FLU had antagonistic effect on transcription and histology during gonadal differentiation. Thus, NET suppressed the germ cell development via AR, resulting in male bias. Understanding the molecular initiation of sex differentiation in progestins is essential to provide a comprehensive biological basis for ecological risk assessment.
Collapse
Affiliation(s)
- Xiao-Bing Long
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Wen-Jun Shi
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| | - Chong-Rui Yao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Si-Ying Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Jin-Ge Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Zhi-Jie Lu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Dong-Dong Ma
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Yu-Xia Jiang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| |
Collapse
|
33
|
Morais H, Arenas F, Cruzeiro C, Galante-Oliveira S, Cardoso PG. Combined effects of climate change and environmentally relevant mixtures of endocrine disrupting compounds on the fitness and gonads' maturation dynamics of Nucella lapillus (Gastropoda). MARINE POLLUTION BULLETIN 2023; 190:114841. [PMID: 36965267 DOI: 10.1016/j.marpolbul.2023.114841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Coastal areas are affected by multiple stressors like climate change and endocrine disruptors (EDCs). In the laboratory, we investigated the combined effects of increased temperature and EDCs (drospirenone and mercury) on the fitness and gonads' maturation dynamics of the marine gastropod Nucella lapillus for 21 days. Survival was negatively affected by all the stressors alone, while, in combination, a synergistic negative effect was observed. Both chemicals, as single factors, did not cause any effect on the maturation stage of ovaries and testis. However, in the presence of a higher temperature, it was clear a delay in the maturation stage of the ovaries, but not in the testis, suggesting a higher negative impact of the stressors in females than in males. In summary, drospirenone caused a low negative impact in aquatic species, like gastropods, but in combination with other EDCs and/or increased temperature can be a matter of concern.
Collapse
Affiliation(s)
- H Morais
- CIIMAR - Interdisciplinary Centre for Marine and Environmental Research, University of Porto, Matosinhos, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - F Arenas
- CIIMAR - Interdisciplinary Centre for Marine and Environmental Research, University of Porto, Matosinhos, Portugal
| | - C Cruzeiro
- Helmholtz Zentrum München, German Research Center for Environmental Health, Germany
| | - S Galante-Oliveira
- CESAM & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - P G Cardoso
- CIIMAR - Interdisciplinary Centre for Marine and Environmental Research, University of Porto, Matosinhos, Portugal.
| |
Collapse
|
34
|
Zhao X, Wang Q, Li X, Xu H, Ren C, Yang Y, Xu S, Wei G, Duan Y, Tan Z, Fang Y. Norgestrel causes digestive gland injury in the clam Mactra veneriformis: An integrated histological, transcriptomics, and metabolomics study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162110. [PMID: 36764532 DOI: 10.1016/j.scitotenv.2023.162110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/13/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
The potential adverse effects of progestins on aquatic organisms, especially non-target species, are of increasing concern worldwide. However, the effect and mechanism of progestin toxicity on aquatic invertebrates remain largely unexplored. In the present study, clams Mactra veneriformis were exposed to norgestrel (NGT, 0, 10, and 1000 ng/L), the dominant progestin detected in the aquatic environment, for 21 days. NGT accumulation, histology, transcriptome, and metabolome were assessed in the digestive gland. The bioconcentration factor (BCF) was 386 and 268 in the 10 ng/L NGT group and 1000 ng/L NGT group, respectively, indicating efficient accumulation of NGT in the clams. Histological analysis showed that NGT led to the swelling of epithelial cells and blurring of the basement membrane in the digestive gland. Differentially-expressed genes and KEGG pathway enrichment analysis using a transcriptomic approach suggested that NGT primarily disturbed the detoxification system, antioxidant defense, carbohydrate and amino acid metabolism, and steroid hormone metabolism, which was consistent with the metabolites analyzed using a metabolomic approach. Furthermore, we speculated that the oxidative stress caused by NGT resulted in histological damage to the digestive gland. This study showed that NGT caused adverse effects in the clams and sheds light on the mechanisms of progestin interference in aquatic invertebrates.
Collapse
Affiliation(s)
- Xiaoran Zhao
- School of Agriculture, Ludong University, Yantai 264025, PR China
| | - Qing Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Xiangfei Li
- School of Agriculture, Ludong University, Yantai 264025, PR China
| | - Hua Xu
- Yantai Ecological Environment Monitoring Center, Shandong Province, Yantai 264010, PR China
| | - Chuanbo Ren
- Shandong Provincial Key Laboratory of Restoration for Marine Ecology, Shandong Marine Resource and Environment Research Institute, Yantai 264006, PR China
| | - Yanyan Yang
- Shandong Provincial Key Laboratory of Restoration for Marine Ecology, Shandong Marine Resource and Environment Research Institute, Yantai 264006, PR China
| | - Shuhao Xu
- School of Agriculture, Ludong University, Yantai 264025, PR China
| | - Guoxing Wei
- School of Agriculture, Ludong University, Yantai 264025, PR China
| | - Yujun Duan
- School of Agriculture, Ludong University, Yantai 264025, PR China
| | - Zhitao Tan
- School of Agriculture, Ludong University, Yantai 264025, PR China
| | - Yan Fang
- School of Agriculture, Ludong University, Yantai 264025, PR China.
| |
Collapse
|
35
|
Feng H, Xu X, Peng P, Yang C, Zou H, Chen C, Zhang Y. Sorption and desorption of epiandrosterone and cortisol on sewage sludge: Comparison to aquatic sediment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121663. [PMID: 37085099 DOI: 10.1016/j.envpol.2023.121663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/28/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Steroids have aroused global concern due to their potent endocrine-disrupting effects. Androgens and glucocorticoids are the most abundant species in sewage; however, our understanding of their fate and risks from the source to environmental sinks remains elusive. This study compared the sorption-desorption characteristics of epiandrosterone (EADR) and cortisol (CRL) in sewage sludge and aquatic sediment, and the surface and molecular interactions were tentatively investigated through infrared spectroscopy and the fluorescence excitation-emission matrix. The results showed that the sorption capacities of EADR and CRL in the sludge were 4015 L/kg and 81.17 L/kg, respectively, which are much larger than those in the sediment (EADR: 78.77 L/kg, CRL: 6.39 L/kg); 0.02%-1.2% of EADR and 0.2%-14.5% of CRL could be desorbed from sludge, while the desorption ratios were even lower in the sediment. The high organic content in the sludge might contribute to the larger sorption capacities, while the weak interaction between steroids and organic matter could lead to larger desorption potential. The sediment contained more mineral content and featured a larger specific surface area, which could be responsible for the greater desorption hysteresis for EADR and CRL. These results will help to better understand the potential risk of sewage sludge-associated steroids and their distribution in sediment-water systems.
Collapse
Affiliation(s)
- Hui Feng
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Xin Xu
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Peng Peng
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Chenghao Yang
- Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, 85281, Arizona, USA
| | - Hua Zou
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Chen Chen
- State Environmental Protection Key Laboratory of Urban Ecological Environment Simulation and Protection, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Guangzhou, 510535, China
| | - Yun Zhang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
36
|
Jiang X, Xue Z, Chen W, Xu M, Liu H, Liang J, Zhang L, Sun Y, Liu C, Yang X. Biotransformation kinetics and pathways of typical synthetic progestins in soil microcosms. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130684. [PMID: 36586332 DOI: 10.1016/j.jhazmat.2022.130684] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/28/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Gestodene (GES), altrenogest (ALT), and medroxyprogesterone acetate (MPA) are three potent synthetic progestins detected in agricultural soils; however, their biotransformation outcomes in soils remain unclear. This study explored the biotransformation of these progestins in five agricultural soils with different physicochemical properties. The biotransformation data were well-described by a first-order decay model (R2 = 0.83-0.99), with estimated half-lives ranging between 12.1 and 188 h. Amplicon sequencing indicated that the presence of progestins changed the bacterial richness and community structure in the soils. Linear correlation, canonical correlation, and two-way correlation network analysis revealed that soil properties can affect biotransformation rates by interfering with progestin-soil interactions or with keystone taxa in soils. The clustermap demonstrated the formation of abundant transformation products (TPs). Isomerization and C4(5) hydrogenation were the major transformation pathways for GES (yields of ∼ 13.7 % and ∼ 10.6 %, respectively). Aromatic dehydrogenation was the major transformation pathway for ALT (yield of ∼ 17.4 %). The C17 hydrolysis with subsequent dehydration and hydrogenation was the major transformation pathway for MPA (yield of ∼ 196 %). In particular, some TPs exhibited progestagenic, androgenic, or estrogenic activity. This study highlights the importance of evaluating the ecotoxicity of progestin and TP mixtures for better understanding their risks in the environment.
Collapse
Affiliation(s)
- Xiuping Jiang
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Zhongye Xue
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Weisong Chen
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Manxin Xu
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - He Liu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Science, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Jiahao Liang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Science, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Lu Zhang
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Yan Sun
- Guangdong Institute of Eco-environmental Science & Technology, Guangzhou, Guangdong 510650, PR China
| | - Churong Liu
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China.
| | - Xingjian Yang
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China.
| |
Collapse
|
37
|
Tan J, Liang C, Guo Y, Zou H, Guo Y, Ye J, Hou L, Wang X. Thyroid endocrine disruption and neurotoxicity of gestodene in adult female mosquitofish (Gambusia affinis). CHEMOSPHERE 2023; 313:137594. [PMID: 36538954 DOI: 10.1016/j.chemosphere.2022.137594] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
The frequent detection of progestins in various aquatic environments and their potential endocrine disruptive effects in fish have attracted increasing attention worldwide. However, data on their effects on thyroid function and neurotoxicity in fish are limited, and the underlying mechanisms remain unclear. Here, the effects of gestodene (GES, a common progestin) on the thyroid endocrine and nervous systems of mosquitofish (Gambusia affinis) were studied. Adult female fish were exposed to GES at environmentally relevant concentrations (4.4-378.7 ng/L) for 60 days. The results showed that exposure to 378.7 ng/L GES caused a significant decrease in fish growth compared with the control and a marked reduction in the total distance traveled (50.6%) and swimming velocity (40.1-61.9%). The triiodothyronine (T3) levels were significantly increased by GES in a dose-dependent manner, whereas those of tetraiodothyronine (T4) were significantly decreased only at the G500 concentration. The acetylcholinesterase (AChE) activity was decreased significantly in the 4.42 ng/L GES treatments, but increased significantly at 378.67 ng/L. In the brain, a strong increase in the transcriptional levels of bdnf, trh, and dio2 was observed in fish after the 378.7 ng/L treatment. In addition, chronic exposure to GES caused colloid depletion with a concentration-dependent manner in the thyroid, and angiectasis, congestion, and vacuolar necrosis in the brain. These findings provide a better understanding of the effects of GES and associated underlying mechanisms in G. affinis.
Collapse
Affiliation(s)
- Jiefeng Tan
- School of Life Sciences, Guangzhou University, Guangzhou, 510655, China; School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Chuyan Liang
- School of Life Sciences, Guangzhou University, Guangzhou, 510655, China
| | - Yanfang Guo
- School of Life Sciences, Guangzhou University, Guangzhou, 510655, China
| | - Hong Zou
- School of Life Sciences, Guangzhou University, Guangzhou, 510655, China
| | - Yuqi Guo
- School of Life Sciences, Guangzhou University, Guangzhou, 510655, China
| | - Jiahui Ye
- School of Life Sciences, Guangzhou University, Guangzhou, 510655, China
| | - Liping Hou
- School of Life Sciences, Guangzhou University, Guangzhou, 510655, China.
| | - Xiaolan Wang
- School of Life Sciences, Guangzhou University, Guangzhou, 510655, China.
| |
Collapse
|
38
|
Jiang YX, Shi WJ, Hu LX, Ma DD, Zhang H, Ong CN, Ying GG. Dydrogesterone disrupts lipid metabolism in zebrafish brain: A study based on metabolomics and Fourier transform infrared spectroscopy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120811. [PMID: 36470458 DOI: 10.1016/j.envpol.2022.120811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/26/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Brain is a potential target for neuroprogestogens and/or peripheral progestogens. Previous studies reported that expression of genes about steroidogenesis, reproduction, cell cycle, and circadian rhythm in zebrafish brain could be affected by progestogens. However, there are limited information from metabolites or biomacromolecules aspects, leaving an enormous gap in understanding toxic effects of progestogens on fish brain. In this study, we exposed zebrafish embryos to 2.8, 27.6, and 289.8 ng/L dydrogesterone (DDG, a synthetic progestogen) until sexual maturity (140 days). LC-MS and GC-MS based untargeted metabolomics and Fourier-transform infrared (FTIR) spectroscopy were then performed to investigate the metabolic profiles and macromolecular changes of brain of these zebrafish. The results from multivariate statistical analysis of metabolite features showed a clear separation between different treatment groups of both female and male zebrafish brains. DDG exposure increased the levels of cholesterol, saturated fatty acids, and nucleoside monophosphates, but decreased the contents of polyunsaturated fatty acids (PUFAs), lysophosphatides, and nucleosides in dose-dependent manner. FTIR results indicated that DDG exposure led to accumulation of saturated lipids, reduction of nucleic acids and carbohydrates, and alteration of protein secondary structures. The findings from this study demonstrated that DDG could affect contents of metabolites and biomacromolecules of zebrafish brain, which may finally lead to brain dysfunctions.
Collapse
Affiliation(s)
- Yu-Xia Jiang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Wen-Jun Shi
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China.
| | - Li-Xin Hu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Dong-Dong Ma
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Hui Zhang
- NUS Environmental Research Institute, National University of Singapore, Singapore, 117411
| | - Choon Nam Ong
- School of Public Health, National University of Singapore, Singapore, 117547
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
39
|
Wu X, Ren J, Xu Q, Xiao Y, Li X, Peng Y. Priority screening of contaminant of emerging concern (CECs) in surface water from drinking water sources in the lower reaches of the Yangtze River based on exposure-activity ratios (EARs). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159016. [PMID: 36162578 DOI: 10.1016/j.scitotenv.2022.159016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Surface water provides ecological services such as drinking water supply. However, contaminants of emerging concern (CECs) are rising concerns because they are ubiquitously detected in surface water and pose potential risks to the aquatic environment and human health. This study investigated the occurrence of 165 CECs in surface water from drinking water source areas along the lower reaches of the Yangtze River to prioritize the CECs and to estimate potential biological activity based on exposure-activity ratio (EAR). A total of 70 CECs were detected in the surface water at least once at the selected 17 sampling sites, and their concentrations ranged from 0.592 to 4650 ng/L. Twenty-four CECs were detected at each site, and these were mostly pharmaceutical and personal care products and pesticides. Sucralose, 1H-benzotriazole and carbendazim were the most common CECs with high median concentrations in the study area. Specifically, sucralose, an artificial sweetener, was presented at each site with the highest median concentration (3010 ng/L), which indicated that anthropogenic inputs are an important source of contaminants. Medroxyprogesterone and trenbolone were identified as the priority contaminants of interest, with maximum EARchemical values of 0.389 and 0.183, respectively. Among all the sites, the higher cumulative EARmixture value was found from Nantong City (0.765), which indicated that this site could have a relatively greater potential for biological effects, and these effects were mainly due to medroxyprogesterone and trenbolone. In regard to the bioactivity of all detected CECs, nuclear receptors showed the greatest potential bioactivity in this region, particularly androgen receptor-mediated bioactivity, which is most likely affected organisms residing in the source water area. These results suggest that the drinking water sources from the studied region are contaminated with CECs, and highlight the prioritization of future monitoring and research to protect source waters.
Collapse
Affiliation(s)
- Xinyi Wu
- Research and Development Center for Watershed Environmental Eco-Engineering, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Jinzhi Ren
- College of Life Science, Jinan University, Guangzhou 510000, China
| | - Qiang Xu
- School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yao Xiao
- Research and Development Center for Watershed Environmental Eco-Engineering, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Xia Li
- Research and Development Center for Watershed Environmental Eco-Engineering, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China; School of Environment, Beijing Normal University, Beijing 100875, China
| | - Ying Peng
- Research and Development Center for Watershed Environmental Eco-Engineering, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China; School of Environment, Beijing Normal University, Beijing 100875, China; School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
40
|
Dong Z, Li X, Chen Y, Zhang N, Wang Z, Liang YQ, Guo Y. Short-term exposure to norethisterone affected swimming behavior and antioxidant enzyme activity of medaka larvae, and led to masculinization in the adult population. CHEMOSPHERE 2023; 310:136844. [PMID: 36252902 DOI: 10.1016/j.chemosphere.2022.136844] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/27/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Norethisterone (NET), one of the synthetic progestins, is detected with increasing frequency in the water environment and distributed in the ocean, with a potential toxicity risk to marine organisms. However, current studies on the adverse effects of progestins (including NET) in aquatic environments have focused on freshwater organisms, mainly fish. In the present, marine medaka (Oryzias melastigma) larvae were exposed to 91.31 ng/L NET for 10 days, and then the swimming behavior, oxidation-antioxidant-related enzyme activities, sex and thyroid hormone levels, and the gene transcription patterns of the larvae were measured. After NET treatment, medaka larvae were raised in artificial seawater until 5 months of age, and the sex ratio was counted. Ten-day exposure to 91.31 ng/L NET inhibited swimming behavior, of marine medaka larvae, which showed that the time in the resting state was significantly prolonged, while the time in the large motor state was significantly reduced; disrupted oxidative-antioxidant system, significantly up-regulated the enzymatic activities of reactive oxygen species (ROS), malondialdehyde (MDA), and glutathione peroxidase (GSH-Px); affected the hormone levels of larvae, lowered 11- keto testosterone (11-KT) and triiodothyronine (T3) concentrations. RNA-seq results showed that 91.31 ng/L NET exposure for 10 days changed the transcript levels of 275 genes, of which 28 were up-regulated and 247 were down-regulated. Differentially expressed genes (DEGs) were mainly significantly enriched in piwi interacting RNA (piRNA), gonadal development, gametogenesis, and steroidogenesis biological processes, etc. After removing NET exposure and returning to breeding for 140 days, a significant increase in male proportions (69.67%) was observed in sexually mature medaka populations in the NET-treated group. These results show that exposure to 91.31 ng/L NET for 10 days can lead to various adverse effects on marine medaka larvae. These findings shed light on the potential ecological risks of synthetic progestins to marine organisms.
Collapse
Affiliation(s)
- Zhongdian Dong
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, PR China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, PR China.
| | - Xueyou Li
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, PR China.
| | - Yuebi Chen
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, PR China.
| | - Ning Zhang
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, PR China.
| | - Zhongduo Wang
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, PR China; State Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University School, Changsha, 410081, PR China.
| | - Yan-Qiu Liang
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, PR China.
| | - Yusong Guo
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, PR China.
| |
Collapse
|
41
|
Steinbach C, Lutz I, Šandová M, Pech M, Šálková E, Bořík A, Valentová O, Kroupová HK. Effects of the synthetic progestin levonorgestrel on some aspects of thyroid physiology in common carp (Cyprinus carpio). CHEMOSPHERE 2023; 310:136860. [PMID: 36244424 DOI: 10.1016/j.chemosphere.2022.136860] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/07/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
The objective of the present study was to assess the effects of levonorgestrel (LNG), a synthetic progestin, on early development and the thyroid system of carp using morphological, histological, immunohistochemical, and gene expression analysis. Fish were exposed to LNG at three levels (3, 31, and 310 ng L-1) from eggs to the onset of juvenile stage (47 days). LNG had no significant effect on early development in common carp or on the occurrence of morphological anomalies. No pathological alterations of the thyroid follicles were found. Immunohistochemical examination of the thyroid follicles using antibodies against thyroxin did not show any differences in fish exposed to 310 ng L-1 LNG compared to the controls. mRNA expression of iodothyronine deiodinases (dio1, 2, 3) was differentially affected by LNG treatment during carp development. Most importantly, dio3 was markedly downregulated in fish exposed to all three LNG levels compared to the controls at the conclusion of the experiment (47 days post-fertilization). A decrease in dio1 or dio3 or an increase in dio2 transcription observed at different time points of the study may be a sign of hypothyroidism. mRNA expression of genes npr, esr1, and esr2b in the body and npr and esr2b in the head of fish exposed to 310 ng L-1 LNG was significantly upregulated compared to the solvent control group at the end of the test. Together, these results show that levonorgestrel caused parallel changes in the hypothalamus-pituitary-thyroid and hypothalamus-pituitary-gonad axes.
Collapse
Affiliation(s)
- Christoph Steinbach
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic.
| | - Ilka Lutz
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, 12587, Berlin, Germany.
| | - Marie Šandová
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Michal Pech
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Eva Šálková
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Adam Bořík
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Olga Valentová
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Hana Kocour Kroupová
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| |
Collapse
|
42
|
Mannai A, Hmida L, Bouraoui Z, Guerbej H, Gharred T, Jebali J. Does thermal stress modulate the biochemical and physiological responses of Ruditapes decussatus exposed to the progestin levonorgestrel? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:85211-85228. [PMID: 35794321 DOI: 10.1007/s11356-022-21786-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
In this study, we investigated the effects of 1000 ng/l levonorgestrel (LNG) alone or combined with increased temperature of 20, 24, and 28 °C on the biochemical and physiological responses of the clam (Ruditapes decussatus) for 28 days. Our results revealed that female clams treated with levonorgestrel (LNG) alone showed enhancement of the antioxidant defense against oxidative stress related to the inductions of catalase (CAT), gluthatione -S -transferase (GST), and protein sulfhydryl (PSH), while the elevated temperatures of 20, 24, and 28 °C diminished most of the specific responses to LNG and was the main factor in the determining the responses to combine exposures. The responses of lysosomal membrane stability, alkaline phosphatase, and NADP+-dependent isocitrate dehydrogenase detected were the most common signs of an adverse effect in all exposures. Female clams' testosterone and estradiol responses to LNG were the most particular manifestations depending on the exposure. Overall, these findings showed clearly that chronic warming stress caused disruption in physiological, biochemical parameters of the female clam R. decussatus, and this may have implications for the whole organism and populations.
Collapse
Affiliation(s)
- Asma Mannai
- Laboratory of Genetics Biodiversity and Valorization of Bio-resources (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, Tunisia.
| | - Leila Hmida
- Research Unit Ecosystems & Aquatic Resources (UR13AGRO1), National Agronomic Institute of Tunisia (INAT), University of Carthage, Charles Nicolle Avenue 43, Mahrajene City, 1082, Tunis, Tunisia
| | - Zied Bouraoui
- National Institute of Marine Sciences and Technology, Laboratory of Blue Biotechnology and Aquatic Bioproducts (LR16INSTM05), Monastir, Tunisia
| | - Hamadi Guerbej
- National Institute of Marine Sciences and Technology, Laboratory of Blue Biotechnology and Aquatic Bioproducts (LR16INSTM05), Monastir, Tunisia
| | - Tahar Gharred
- Laboratory of Bioresources: Integrative Biology & Valorization (LR 14ES06), Higher Institute of Biotechnology of Monastir, Monastir, Tunisia
| | - Jamel Jebali
- Laboratory of Genetics Biodiversity and Valorization of Bio-resources (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, Tunisia
| |
Collapse
|
43
|
Ács A, Liang X, Bock I, Griffitts J, Ivánovics B, Vásárhelyi E, Ferincz Á, Pirger Z, Urbányi B, Csenki Z. Chronic Effects of Carbamazepine, Progesterone and Their Mixtures at Environmentally Relevant Concentrations on Biochemical Markers of Zebrafish (Danio rerio). Antioxidants (Basel) 2022; 11:antiox11091776. [PMID: 36139850 PMCID: PMC9495832 DOI: 10.3390/antiox11091776] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 11/25/2022] Open
Abstract
The impact of pharmaceuticals on non-target organisms in the environment is of increasing concern and study. Pharmaceuticals and other pollutants are often present as mixtures in an environmental compartment. Studies on the toxicological implications of these drugs on fish, particularly as mixtures at environmentally relevant concentrations, are very limited. Thus, this study aimed to evaluate the chronic effects of the anticonvulsant drug carbamazepine (CBZ) and progesterone (P4) at environmentally relevant concentrations, individually and in binary mixtures, applying a suite of biomarkers at the molecular level in zebrafish (Danio rerio). The effects on biotransformation enzymes 7-ethoxyresorufin O-deethylase (EROD) and glutathione-S-transferase (GST), antioxidant enzymes catalase (CAT), superoxide dismutase (SOD), glutathione peroxidases (GPxSe and GPxTOT), and glutathione reductase (GR), and markers of damage, such as DNA strand breaks (DNAsb), lactate dehydrogenase (LDH), lipid peroxidation (LPO), and vitellogenin-like proteins (VTG), were evaluated. Analyses of the biochemical markers indicated that a synergistic dose-ratio-dependent effect of CBZ and P4 in zebrafish occurs after chronic exposure regarding VTG, biotransformation enzymes (EROD, GST), and oxidative stress marker (DNAsb). The results suggest a synergistic effect regarding VTG, thus indicating a high risk to the reproductive success of fish if these pharmaceuticals co-occur.
Collapse
Affiliation(s)
- András Ács
- Department of Freshwater Fish Ecology, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1., H-2100 Gödöllő, Hungary
- Balaton Limnological Research Institute, Eötvös Loránd Research Network, Klebelsberg Kuno u. 3, H-8237 Tihany, Hungary
| | - Xinyue Liang
- Department of Freshwater Fish Ecology, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1., H-2100 Gödöllő, Hungary
| | - Illés Bock
- Department of Environmental Toxicology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1., H-2100 Gödöllő, Hungary
| | - Jeffrey Griffitts
- Department of Environmental Toxicology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1., H-2100 Gödöllő, Hungary
| | - Bence Ivánovics
- Department of Environmental Toxicology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1., H-2100 Gödöllő, Hungary
| | - Erna Vásárhelyi
- Department of Environmental Toxicology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1., H-2100 Gödöllő, Hungary
| | - Árpád Ferincz
- Department of Freshwater Fish Ecology, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1., H-2100 Gödöllő, Hungary
| | - Zsolt Pirger
- Balaton Limnological Research Institute, Eötvös Loránd Research Network, Klebelsberg Kuno u. 3, H-8237 Tihany, Hungary
| | - Béla Urbányi
- Department of Aquaculture, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1., H-2100 Gödöllő, Hungary
- Correspondence:
| | - Zsolt Csenki
- Department of Environmental Toxicology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1., H-2100 Gödöllő, Hungary
| |
Collapse
|
44
|
Kolatorova L, Vitku J, Suchopar J, Hill M, Parizek A. Progesterone: A Steroid with Wide Range of Effects in Physiology as Well as Human Medicine. Int J Mol Sci 2022; 23:7989. [PMID: 35887338 PMCID: PMC9322133 DOI: 10.3390/ijms23147989] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 11/16/2022] Open
Abstract
Progesterone is a steroid hormone traditionally linked with female fertility and pregnancy. In current reproductive medicine, progesterone and its analogues play crucial roles. While the discovery of its effects has a long history, over recent decades, various novel actions of this interesting steroid have been documented, of which its neuro- and immunoprotective activities are the most widely discussed. Discoveries of the novel biological activities of progesterone have also driven research and development in the field of progesterone analogues used in human medicine. Progestogen treatment has traditionally and predominately been used in maintaining pregnancy, the prevention of preterm labor, various gynecological pathologies, and in lowering the negative effects of menopause. However, there are also various other medical fields where progesterone and its analogues could find application in the future. The aim of this work is to show the mechanisms of action of progesterone and its metabolites, the physiological and pharmacological actions of progesterone and its synthetic analogues in human medicine, as well as the impacts of its production and use on the environment.
Collapse
Affiliation(s)
- Lucie Kolatorova
- Department of Steroids and Proteofactors, Institute of Endocrinology, Narodni 8, 116 94 Prague, Czech Republic; (J.V.); (M.H.)
| | - Jana Vitku
- Department of Steroids and Proteofactors, Institute of Endocrinology, Narodni 8, 116 94 Prague, Czech Republic; (J.V.); (M.H.)
| | - Josef Suchopar
- DrugAgency, a.s., Klokotska 833/1a, 142 00 Prague, Czech Republic;
| | - Martin Hill
- Department of Steroids and Proteofactors, Institute of Endocrinology, Narodni 8, 116 94 Prague, Czech Republic; (J.V.); (M.H.)
| | - Antonin Parizek
- Department of Obstetrics and Gynecology, First Faculty of Medicine, Charles University and General Teaching Hospital, Apolinarska 18, 128 51 Prague, Czech Republic;
| |
Collapse
|
45
|
Shi WJ, Long XB, Li SY, Ma DD, Liu F, Zhang JG, Lu ZJ, Ying GG. Dydrogesterone and levonorgestrel at environmentally relevant concentrations have antagonist effects with rhythmic oscillation in brain and eyes of zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 248:106177. [PMID: 35512552 DOI: 10.1016/j.aquatox.2022.106177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Synthetic progestins levonorgestrel (LNG) and dydrogesterone (DDG) are frequency detected in surface water. Combined effects of LNG and DDG on gonad differentiation are similar to LNG single exposure in juvenile zebrafish. However, LNG and DDG mixtures have stronger effects on spermatogenesis in testes of adult zebrafish, which show variable at different life stage. Effects of LNG and DDG mixtures on eyes and brain remain unknown. Here we investigated effects of LNG, DDG and their mixtures on eyes and brain. Zebrafish were exposed to LNG, DDG and their mixtures from 2 hpf to 144 dpf. Rhythm and vision related biological processes were enriched in eyes and brain in LNG and DDG treatments, which indicated rhythmic oscillation in eyes and brain. The qPCR data revealed that both LNG and DDG decreased transcription of arntl2 and clocka, while increased transcription of per1a, per1b, rpe65a and tefa in eyes and brain. However, DDG and LNG mixtures had slight effect on transcription of genes related to rhythm and vision. In addition, LNG and DDG reduced the thickness of inner nuclear layer in the eyes. Bliss independent model revealed that LNG and DDG had antagonist effects on transcription and histology in eyes and brain. Moreover, LNG and DDG formed the same hydrogen bonds with green-sensitive opsin-4 and rhodopsin kinase GRK7a. Taken together, LNG and DDG competed with each other for the same binding residues resulting in antagonist effect in their mixtures treatments, and have significant ecological implications to assess combined effects of progestins mixtures on fish in different organs.
Collapse
Affiliation(s)
- Wen-Jun Shi
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Xiao-Bing Long
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Si-Ying Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Dong-Dong Ma
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Fang Liu
- School of Geography, South China Normal University, Guangzhou 510631, China.
| | - Jin-Ge Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Zhi-Jie Lu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| |
Collapse
|
46
|
Hua J, Zhu B, Guo W, Wang X, Guo Y, Yang L, Han J, Zhou B. Endocrine disrupting effects induced by levonorgestrel linked to altered DNA methylation in rare minnow (Gobiocypris rarus). Comp Biochem Physiol C Toxicol Pharmacol 2022; 257:109332. [PMID: 35351618 DOI: 10.1016/j.cbpc.2022.109332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/20/2022] [Accepted: 03/20/2022] [Indexed: 11/19/2022]
Abstract
Progestins are worldwide environmental contaminants, however, their ecotoxicological risks and underlying molecular mechanisms of effects are not fully understood. In this study, newly hatched rare minnow (Gobiocypris rarus) larvae were exposed to environmentally realistic concentrations (1 and 10 ng/L) of levonorgestrel (LNG) for 6 months. The sex ratios were not affected by LNG at both concentrations, but the growth was significantly inhibited at 10 ng/L while promoted at 1 ng/L. Histological analysis revealed impaired gonadal development. Plasma concentrations of estradiol in females and testosterone in both sexes were significantly induced after exposure to 1 ng/L LNG; plasma concentrations of 11-ketotestosterone were markedly increased in females exposed to 10 ng/L LNG and in males exposed to both concentrations of LNG. The transcription of cyp19a1a was significantly up-regulated in ovaries exposed to LNG at both concentrations, while cyp17a1 was down-regulated in testes exposed to 10 ng/L LNG. The global DNA methylation level was significantly decreased in testes exposed to 10 ng/L LNG, which might be associated with inhibited spermatogenesis. Gender-specific changes in CpG methylation patterns were induced by LNG in the 5' flanking region of cyp19a1a, with hypomethylation in ovaries but hypermethylation in testes, which was linked to the regulation of cyp19a1a transcription. The results suggest that LNG could induce endocrine disrupting effects in fish at environmentally realistic concentrations, which may be linked to altered DNA methylation. This study indicates potentially high ecological risk of LNG to fish populations, and warrants researches on regulatory mechanisms of epigenetic modifications in progestin-induced effects.
Collapse
Affiliation(s)
- Jianghuan Hua
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Biran Zhu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wei Guo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xianfeng Wang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Yongyong Guo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lihua Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jian Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
47
|
Chafi S, Ballesteros E. A sensitive, robust method for determining natural and synthetic hormones in surface and wastewaters by continuous solid-phase extraction-gas chromatography-mass spectrometry. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:53619-53632. [PMID: 35290579 PMCID: PMC9343308 DOI: 10.1007/s11356-022-19577-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 03/02/2022] [Indexed: 05/29/2023]
Abstract
Over recent decades, steroidal estrogens have become an emerging and very serious issue as they pose a serious threat to living organisms, soil, plants, and water resources in general. Estrogens have therefore been the subject of considerable scientific attention in order to develop new methodologies for its determination, being able of detecting them at very low concentrations. Those procedures minimize or eliminate the consumption of organic solvents and reagents that may be incompatible with the environment. In this respect, we developed a sensitive, selective method for the simultaneous determination of thirteen natural and synthetic hormones present at the nanogram-per-liter level in various types of water by using continuous solid-phase extraction in combination with gas chromatography and mass spectrometry (GC-MS). The target analytes were preferentially sorbed on an Oasis HLB sorbent column (80 mg) and eluted with acetone (600 µL) for derivatization with a mixture of 70 µL of N,O-bis(trimethylsilyl) trifluoroacetamide and trimethylchlorosilane and 35 µL of petroleum ether in a household microwave oven at 200 W for 4 min. Under optimum conditions, the ensuing method exhibited good linearity (r ≥ 0.998), good precision (RSD ≤ 7%), high recoveries (92-103%), and low detection limits (0.01-0.3 ng L-1). The method outperforms existing alternatives in robustness, sensitivity, throughput, flexibility-it allows both estrogens, progestogens, and androgens to be determined simultaneously-and compliance with the principles of Green Chemistry. It was successfully used to analyze various types of water samples (mineral, tap, well, pond, swimming pool, river, and waste) that were found to contain four estrogens (estrone, 17β-estradiol, 17α-ethinylestradiol, and hexestrol), two progestogens (testosterone, dihydrotestosterone), and one progestogen (progesterone) at concentrations ranging from 3.0 to 110 ng L-1.
Collapse
Affiliation(s)
- Safae Chafi
- Department of Physical and Analytical Chemistry, E.P.S of Linares, University of Jaén, Avenida de La Universidad, 23700, Linares, Jaén, Spain
| | - Evaristo Ballesteros
- Department of Physical and Analytical Chemistry, E.P.S of Linares, University of Jaén, Avenida de La Universidad, 23700, Linares, Jaén, Spain.
| |
Collapse
|
48
|
Dong Z, Chen Y, Li X, Zhang N, Guo Y, Liang YQ, Wang Z. Norethindrone alters growth, sex differentiation and gene expression in marine medaka (Oryzias melastigma). ENVIRONMENTAL TOXICOLOGY 2022; 37:1211-1221. [PMID: 35098644 DOI: 10.1002/tox.23477] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/27/2021] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
Norethindrone (NET) is a widely used synthetic progestin, which appears in water environments and threatens aquatic organisms. In this study, marine medaka (Oryzias melastigma) larvae were exposed to 7.6 and 80.1 ng/L NET for 190 days. The effects of NET on growth, sex differentiation, gonad histology and transcriptional expression profiles of hypothalamic-pituitary-gonadal (HPG) axis-related genes were determined. The results showed that exposure to 80.1 ng/L NET caused an all-male marine medaka population and significantly decreased the growth of males. Exposure to 7.6 ng/L NET increased the ratio of males/females in the marine medaka population, decreased the growth of males and delayed the ovary maturation in females. However, the sperm maturation was accelerated by 7.6 or 80.1 ng/L NET. In females, the transcription levels of cytochrome P450 aromatase (cyp19a1a) and progesterone receptor (pgr) in ovaries, glucocorticoid receptor (gr) and vitellogenin (vtg) in livers were suppressed after exposure to 7.6 ng/L NET, which may cause delayed ovary maturation. In males, NET significantly decreased the transcription levels of follicle stimulating hormone β (fshβ) and Luteinizing hormone β (lhβ)in the brain, Estrogen receptor β (erβ),gr and pgr in the liver, and vitellogenin receptor (vtgr) in the testes, while NET of 80.1 ng/L led to a significant up-regulation of steroidogenic acute regulatory protein (star) in the testes of males. These results showed that NET could influence growth, sex differentiation and gonadal maturation and significantly alter the transcriptional expression levels of HPG axis-related genes.
Collapse
Affiliation(s)
- Zhongdian Dong
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Yuebi Chen
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Xueyou Li
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Ning Zhang
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Yusong Guo
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Yan-Qiu Liang
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, China
| | - Zhongduo Wang
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China
- State Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University School, Changsha, China
| |
Collapse
|
49
|
Chattopadhyay P, Magdanz V, Hernández-Meliá M, Borchert KBL, Schwarz D, Simmchen J. Size‐Dependent Inhibition of Sperm Motility by Copper Particles as a Path toward Male Contraception. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202100152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
| | - Veronika Magdanz
- Institute for Bioengineering of Catalonia (IBEC) Barcelona Institute for Science and Technology 08028 Barcelona Spain
| | - María Hernández-Meliá
- Institute for Bioengineering of Catalonia (IBEC) Barcelona Institute for Science and Technology 08028 Barcelona Spain
| | - Konstantin B. L. Borchert
- Nanostructured Materials Leibniz-Institut für Polymerforschung Dresden e.V. Hohe Str. 6 01069 Dresden Germany
| | - Dana Schwarz
- Nanostructured Materials Leibniz-Institut für Polymerforschung Dresden e.V. Hohe Str. 6 01069 Dresden Germany
| | | |
Collapse
|
50
|
Sources, Pollution Characteristics, and Ecological Risk Assessment of Steroids in Beihai Bay, Guangxi. WATER 2022. [DOI: 10.3390/w14091399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Steroids are environmental endocrine disruptors that are discharged from vertebrates and are also byproducts of aquaculture. They have strong endocrine disrupting effects and are extremely harmful to the environment. The pollution of steroids in Beihai Bay was assessed through analyzing sources from rivers entering the bay. Six different types of steroids were detected in seagoing rivers, seagoing discharge outlets, and marine aquaculture farms, ranging from 0.12 (methyltestosterone) to 2.88 ng/L (estrone), from 0.11 (cortisol) to 5.41 ng/L (6a-methylprednisone (Dragon)), and from 0.13 (estradiol) to 2.51 ng/L (nandrolone), respectively. Moreover, 5 steroids were detected in 13 of the 19 seawater monitoring stations, accounting for 68.4% of the samples, and their concentrations ranged from 0.18 (methyltestosterone) to 4.04 ng/L (estrone). Furthermore, 7 steroids were detected in 15 of the 19 sediment monitoring stations, accounting for 78.9% of the samples, with concentrations ranging from 26 (estrone) to 776 ng/kg(androsterone). Thus, the main source of marine steroids were the discharging rivers and pollution sources entering the sea. An ecological risk assessment indicated that estrone and methyltestosterone were at high risk in this region; 17β estradiol (E2β) was medium risk, and other steroids were of low or no risk. This study provides a scientific basis for ecological risk assessment and control.
Collapse
|