1
|
Ritter NL, Gonzales M, Mays G. Education necessity for veterinary-producer relationship creation and sustainability: a mixed method study. Front Vet Sci 2025; 12:1521440. [PMID: 40313630 PMCID: PMC12045065 DOI: 10.3389/fvets.2025.1521440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 03/03/2025] [Indexed: 05/03/2025] Open
Abstract
Objectives To identify barriers to veterinarian-producer partnerships and suggest collaborative applied education as a means to enhance economic efficiency and sustainability of small and medium livestock operations and rural veterinary practices. Materials and methods A participatory needs assessment, exploring the willingness and barriers to producer-veterinarian partnerships to enhance small/medium livestock operations, was distributed to Texas producers and veterinarians. Quantitative and qualitative data were collected via online, closed-ended survey questions and free response interviews. Responses were analyzed using SPSS and HyperRESEARCH to identify relevant terms, ideas, patterns, or themes. Results Similar responses from 115 veterinarians and 58 producers revealed five major themes regarding relationship barriers: time, financial challenges, communication, competing perspectives, and respect. Overall producers reported greater willingness to partner in all areas, health care (90%), to achieve goals (80%), and to expand business (70%), than veterinarians. Veterinarian interviews revealed a need for increased animal health education among producers, while more than 60% of producers expressed high interest in continuing education on animal health topics. Discussion Veterinarians and producers experience similar barriers to establishing partnerships. Both groups also recognize a need for education and prefer in-person collaborative learning communities Such educational opportunities can encourage formal veterinary-producer partnerships and provide solutions that enhance the economic efficiency and sustainability of small/medium livestock operations.
Collapse
Affiliation(s)
- Nicola L. Ritter
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
- Department of Veterinary Integrative Biosciences, Texas A&M AgriLife Research, College Station, Texas, United States
| | - Molly Gonzales
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
- Department of Veterinary Integrative Biosciences, Texas A&M AgriLife Research, College Station, Texas, United States
| | - Glennon Mays
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
2
|
Liu T, Luo Z, Li P, Cheng S, Zhu J, Casper DP. Growth performance of neonatal Holstein heifers fed acidified waste milk containing essential oil blend and encapsulated butyrate alone or in combination. J Dairy Sci 2025; 108:1509-1526. [PMID: 39662813 DOI: 10.3168/jds.2024-25333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/23/2024] [Indexed: 12/13/2024]
Abstract
Previous research demonstrated the growth-promoting benefits of an essential oil and oligosaccharide blend (Stay Strong, Ralco, Inc.; EO) or an encapsulated sodium butyrate (C4; Ultramix GF, Adisseo, Inc.) fed to neonatal calves. The possibility exists that these technologies may be additive based on their individual mechanisms of action. The study objective was to evaluate EO and C4 alone or in combination when fed to Holstein heifers raised on a commercial Chinese dairy operation. Sixty-four heifers were blocked by calving day and randomly assigned to 1 of 4 treatments (n = 16/treatment) using a randomized complete block design. Treatments were: (1) Control: CON; milk fed 3×/d; (2) EO added to the milk at the rate of 1.50 g/d per head; (3) C4 added to the milk at 1.70 g/d per head; and (4) E4: EO and C4 added to the milk at the rates of 1.50 and 1.70 g/d per head, respectively. Heifers were fed acidified waste milk using an increasing- and decreasing-phase feeding program with weaning on d 56 for a 70-d experiment. Heifer birth weight was a significant covariate with heifers fed EO, C4, and E4, demonstrating greater BW (42.4, 47.0, 46.6, and 48.0 kg for CON, EO, C4, and E4, respectively) gains and ADG (605.0,672.5, 665.7, and 686.7 g/d, respectively) compared with heifers fed CON. Calf starter intake (0.558, 0.584, 0.692, and 0.624 kg/d, respectively) was greater for heifers fed C4 compared with heifers fed CON, with heifers fed EO and E4 being intermediate and similar. Feed conversions (0.439, 0.480, 0.444, and 0.477 kg/kg, respectively) were greater for calves fed EO and E4 compared with calves fed CON. Total days of fecal score = 0 was greater for heifers fed EO and lowest for heifers fed E4, with heifers fed CON and C4 being intermediate. Gains in body length and hip width were greater for heifers fed EO compared with heifers fed CON, C4, and E4. Total-tract apparent fiber (NDF and ADF) digestibility was greater in heifers fed EO and C4, intermediate for heifers fed E4, and lowest for heifers fed CON. Heifers fed EO demonstrated lower fecal Salmonella counts compared with heifers fed CON, C4, and E4. Heifers fed EO and C4 demonstrated greater blood serum total volatile fatty acid concentrations (9.75, 12.91, 11.22, 10.89 µM, respectively, for CON, EO, C4, and E4) compared with heifers fed CON, with heifers fed E4 being intermediate and similar. Heifers fed EO, C4, and E4 demonstrated greater growth performance, but the combination of EO and C4 did not further improve growth performance.
Collapse
Affiliation(s)
- Ting Liu
- College of Animal Science and Technology, Gansu Agricultural University, No. 1 Yingmen Village Anning, Lanzhou 730070, China.
| | - Zhihao Luo
- College of Animal Science and Technology, Gansu Agricultural University, No. 1 Yingmen Village Anning, Lanzhou 730070, China
| | - Peng Li
- College of Animal Science and Technology, Gansu Agricultural University, No. 1 Yingmen Village Anning, Lanzhou 730070, China
| | - Shuru Cheng
- College of Animal Science and Technology, Gansu Agricultural University, No. 1 Yingmen Village Anning, Lanzhou 730070, China; College of Veterinary Medicine, Gansu Agricultural University, No. 1 Yingmen Village Anning, Lanzhou 730070, China
| | - Jianping Zhu
- Shengyuan Rearing Base, Gansu Liaoyuan Dairy Co. Ltd., Shilou Village, Linxia 731100, China
| | - David P Casper
- Casper's Calf Ranch, Freeport, IL 61032; Department of Animal Sciences, North Carolina Agriculture & Technical State University, Greensboro, NC 27411
| |
Collapse
|
3
|
Lehotay SJ, Michlig N, Lightfield AR, Domesle A, Wiggins S, Duverna R, Weyrauch K, Green JE, Zipperer L. Antibiotic Residues in Cattle Reported to Be Raised Without Antibiotics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:847-860. [PMID: 39689215 DOI: 10.1021/acs.jafc.4c07440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
In 2019, the U.S. Department of Agriculture's (USDA) Food Safety and Inspection Service (FSIS) provided revised guidance for labeling claims of "raised without antibiotics" (RWA) and similar terms for meat and poultry produced in the US. In 2022, Price et al. published a study reporting that 15% of RWA-labeled cattle contained antibiotic residues in urine samples. In 2023, the USDA embarked on the project reported herein to independently determine the extent of antibiotic drug residues present in kidney and liver tissues from slaughtered cattle purported to be RWA. In this study, FSIS inspectors randomly collected kidney and liver tissues from 189 RWA animals in 79 slaughter establishments across the US. The samples were monitored for 185 veterinary drugs multiple times by different means, including liquid-chromatography coupled with tandem mass spectrometry (LC-MS/MS) and quadrupole high-resolution MS with an orbital ion trap instrument (LC-Q/orbitrap). Samples from 37 animals (20%) met the analytical identification criteria for at least one antibiotic confirmed in at least two analyses. Multiple antibiotics were determined in 11 RWA animals. Macrolides (tulathromycin, tildipirosin, tilmicosin, and gamithromycin) were confirmed in 20 (11%) of the RWA animals. The ionophore, monensin, was also confirmed in tissues from 11 samples, with unconfirmed/partial identifications in 8 others. Tetracyclines were confirmed in samples from 12 animals, several of which were found to contain multiple antibiotic residues. One animal each was also found to be positive for sulfamethazine (a sulfonamide antibiotic) and metabolites of penicillin G (a β-lactam antibiotic). Although they are not antibiotics, two anthelmintics (fenbendazole and eprinomectin) were confirmed in tissues from 3 RWA animals. FSIS has informed the slaughter establishments with positive results and advised them to conduct a root cause analysis and implement corrective actions.
Collapse
Affiliation(s)
- Steven J Lehotay
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center; 600 East Mermaid Lane; Wyndmoor, Pennsylvania 19038, United States
| | - Nicolás Michlig
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center; 600 East Mermaid Lane; Wyndmoor, Pennsylvania 19038, United States
| | - Alan R Lightfield
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center; 600 East Mermaid Lane; Wyndmoor, Pennsylvania 19038, United States
| | - Alexander Domesle
- U.S. Department of Agriculture, Food Safety and Inspection Service, 1400 Independence Avenue SW, Washington, D.C. 20250, United States
| | - Sabrina Wiggins
- U.S. Department of Agriculture, Food Safety and Inspection Service, 1400 Independence Avenue SW, Washington, D.C. 20250, United States
| | - Randolph Duverna
- U.S. Department of Agriculture, Food Safety and Inspection Service, 1400 Independence Avenue SW, Washington, D.C. 20250, United States
| | - Katie Weyrauch
- U.S. Department of Agriculture, Food Safety and Inspection Service, 1400 Independence Avenue SW, Washington, D.C. 20250, United States
| | - Jennifer E Green
- U.S. Department of Agriculture, Food Safety and Inspection Service, 1400 Independence Avenue SW, Washington, D.C. 20250, United States
| | - Laine Zipperer
- U.S. Department of Agriculture, Food Safety and Inspection Service, 1400 Independence Avenue SW, Washington, D.C. 20250, United States
| |
Collapse
|
4
|
Stege PB, Schokker D, Harders F, Kar SK, Stockhofe N, Perricone V, Rebel JMJ, de Jong IC, Bossers A. Diet-induced changes in the jejunal microbiota of developing broilers reduce the abundance of Enterococcus hirae and Enterococcus faecium. BMC Genomics 2024; 25:627. [PMID: 38910254 PMCID: PMC11193906 DOI: 10.1186/s12864-024-10496-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/05/2024] [Indexed: 06/25/2024] Open
Abstract
Modern broiler breeds allow for high feed efficiency and rapid growth, which come at a cost of increased susceptibility to pathogens and disease. Broiler growth rate, feed efficiency, and health are affected by the composition of the gut microbiota, which in turn is influenced by diet. In this study, we therefore assessed how diet composition can affect the broiler jejunal gut microbiota. A total of 96 broiler chickens were divided into four diet groups: control, coated butyrate supplementation, medium-chain fatty acid supplementation, or a high-fibre low-protein content. Diet groups were sub-divided into age groups (4, 12 and 33 days of age) resulting in groups of 8 broilers per diet per age. The jejunum content was used for metagenomic shotgun sequencing to determine the microbiota taxonomic composition at species level. The composed diets resulted in a total of 104 differentially abundant bacterial species. Most notably were the butyrate-induced changes in the jejunal microbiota of broilers 4 days post-hatch, resulting in the reduced relative abundance of mainly Enterococcus faecium (-1.8 l2fc, Padj = 9.9E-05) and the opportunistic pathogen Enterococcus hirae (-2.9 l2fc, Padj = 2.7E-08), when compared to the control diet. This effect takes place during early broiler development, which is critical for broiler health, thus exemplifying the importance of how diet can influence the microbiota composition in relation to broiler health. Future studies should therefore elucidate how diet can be used to promote a beneficial microbiota in the early stages of broiler development.
Collapse
Affiliation(s)
- Paul B Stege
- Wageningen Bioveterinary Research, Wageningen University and Research, Lelystad, Netherlands.
| | - Dirkjan Schokker
- Wageningen Bioveterinary Research, Wageningen University and Research, Lelystad, Netherlands
| | - Frank Harders
- Wageningen Bioveterinary Research, Wageningen University and Research, Lelystad, Netherlands
| | - Soumya K Kar
- Wageningen Livestock Research, Wageningen University and Research, Wageningen, Netherlands
| | - Norbert Stockhofe
- Wageningen Bioveterinary Research, Wageningen University and Research, Lelystad, Netherlands
| | - Vera Perricone
- Department of Veterinary Medicine and Animal Science, University of Milan, Milan, Italy
| | - Johanna M J Rebel
- Wageningen Bioveterinary Research, Wageningen University and Research, Lelystad, Netherlands
| | - Ingrid C de Jong
- Wageningen Livestock Research, Wageningen University and Research, Wageningen, Netherlands
| | - Alex Bossers
- Wageningen Bioveterinary Research, Wageningen University and Research, Lelystad, Netherlands
| |
Collapse
|
5
|
Joo S, Park H, Chun MS. Attitudes of South Korean consumers toward the prudent use of antimicrobials in livestock animals. One Health 2024; 18:100754. [PMID: 38770401 PMCID: PMC11103933 DOI: 10.1016/j.onehlt.2024.100754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 05/07/2024] [Indexed: 05/22/2024] Open
Abstract
Antimicrobial resistance (AMR) in livestock is a complicated and multi-sectoral risk that threatens public health in the interactions between humans, animals, and environment. Through their increased awareness of AMR issues, consumers can make a significant impact on regulations and strategies to reduce or eliminate the use of antimicrobials use. This study aims to provide evidence-based data for promoting the prudent use of antimicrobials (PUA) in the livestock industry to reduce the risk of AMR and increase animal welfare by identifying consumers' intentions to support PUA practices in livestock farming. An online survey was conducted on 1000 respondents in South Korea to examine their intention to pay more for PUA practices in livestock farming at state and individual levels against their pro-animal attitude, risk perception of antimicrobial overuse, trust in antimicrobial overuse control, and perceived value of PUA practices. The survey data was analyzed using multiple linear regression to identify the determinants of Korean consumers' support for PUA practices. Approximately 86.3% of the respondents supported government-level spending for PUA in livestock farming, and the same portion of respondents intended to pay more for livestock products that complied with the PUA principle. The four attitudinal variables-pro-animal attitude, consumers' risk perception, trust in antimicrobial resistance control, and perceived value of PUA-positively affected both state- and individual-level support. Overall, our findings highlight the Korean consumers' demand for reducing the risk of AMR and their perceived universal value of PUA for humans and animals.
Collapse
Affiliation(s)
- Seola Joo
- Center for Animal Welfare Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Hyomin Park
- Department of Urban Sociology, College of Urban Science, University of Seoul, Seoul, South Korea
| | - Myung-Sun Chun
- Center for Animal Welfare Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| |
Collapse
|
6
|
Zalewska M, Błażejewska A, Szadziul M, Ciuchciński K, Popowska M. Effect of composting and storage on the microbiome and resistome of cattle manure from a commercial dairy farm in Poland. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:30819-30835. [PMID: 38616224 PMCID: PMC11096248 DOI: 10.1007/s11356-024-33276-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/06/2024] [Indexed: 04/16/2024]
Abstract
Manure from food-producing animals, rich in antibiotic-resistant bacteria and antibiotic resistance genes (ARGs), poses significant environmental and healthcare risks. Despite global efforts, most manure is not adequately processed before use on fields, escalating the spread of antimicrobial resistance. This study examined how different cattle manure treatments, including composting and storage, affect its microbiome and resistome. The changes occurring in the microbiome and resistome of the treated manure samples were compared with those of raw samples by high-throughput qPCR for ARGs tracking and sequencing of the V3-V4 variable region of the 16S rRNA gene to indicate bacterial community composition. We identified 203 ARGs and mobile genetic elements (MGEs) in raw manure. Post-treatment reduced these to 76 in composted and 51 in stored samples. Notably, beta-lactam, cross-resistance to macrolides, lincosamides and streptogramin B (MLSB), and vancomycin resistance genes decreased, while genes linked to MGEs, integrons, and sulfonamide resistance increased after composting. Overall, total resistance gene abundance significantly dropped with both treatments. During composting, the relative abundance of genes was lower midway than at the end. Moreover, higher biodiversity was observed in samples after composting than storage. Our current research shows that both composting and storage effectively reduce ARGs in cattle manure. However, it is challenging to determine which method is superior, as different groups of resistance genes react differently to each treatment, even though a notable overall reduction in ARGs is observed.
Collapse
Affiliation(s)
- Magdalena Zalewska
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Aleksandra Błażejewska
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Mateusz Szadziul
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Karol Ciuchciński
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Magdalena Popowska
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
7
|
Ma L, Zhu Y, Zhu La ALT, Lourenco JM, Callaway TR, Bu D. Schizochytrium sp. and lactoferrin supplementation alleviates Escherichia coli K99-induced diarrhea in preweaning dairy calves. J Dairy Sci 2024; 107:1603-1619. [PMID: 37769949 DOI: 10.3168/jds.2023-23466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023]
Abstract
Calf diarrhea, a common disease mainly induced by Escherichia coli infection, is one of the main reasons for nonpredator losses. Hence, an effective nonantibacterial approach to prevent calf diarrhea has become an emerging requirement. This study evaluated the microalgae Schizochytrium sp. (SZ) and lactoferrin (LF) as a nutrient intervention approach against E. coli O101:K99-induced preweaning calve diarrhea. Fifty 1-d-old male Holstein calves were randomly divided into 5 groups (n = 10): (1) control, (2) blank (no supplement or challenge), (3) 1 g/d LF, (4) 20 g/d SZ, or (5) 1 g/d LF plus 20 g/d SZ (LFSZ). The experimental period lasted 14 d. On the morning of d 7, calves were challenged with 1 × 1011 cfu of E. coli O101:K99, and rectum feces were collected on 3, 12, 24, and 168 h postchallenge for the control, LF, SZ, and LFSZ groups. The rectal feces of the blank group were collected on d 14. Data were analyzed using the mixed procedure of SAS (version 9.4; SAS Institute Inc.). The E. coli K99 challenge decreased the average daily gain (ADG) and increased feed-to-gain ratio (F:G) and diarrhea frequency (control vs. blank). Compared with the control group, the LFSZ group had a higher ADG and lower F:G, and the LFSZ and SZ groups had lower diarrhea frequency compared with the control group. In addition, the LFSZ and SZ groups have no differences in diarrhea frequency compared with the blank group. Compared with the control group, the blank group had lower serum nitric oxide (NO), endothelin-1, d-lactic acid (D-LA), and lipopolysaccharide (LPS) concentrations, as well as serum IgG, IL-1β, IL-6, IL-10, and TNF-α levels on d 7 and 14. On d 7, compared with the control group, all treatment groups had lower serum NO level, the SZ group had a lower serum D-LA concentration, and the LF and LFSZ groups had lower serum LPS concentration. On d 14, compared with the control group, the fecal microbiota of the blank group had lower Shannon, Simpson, Chao1, and ACE indexes, the LFSZ group had lower Shannon and Simpson indexes, the SZ and LFSZ groups had a higher Chao1 index, and all treatment groups had a higher ACE index. In fecal microbiota, Bifidobacterium and Actinobacteria were negatively associated with IL-10 and d-lactate, while Akkermansia was negatively associated with endothelin-1 and positively correlated with LPS, fecal scores, and d-lactate levels. Our results indicated that LF and SZ supplements could alleviate E. coli O101:K99-induced calf diarrhea individually or in combination. Supplementing 1 g/d LF and 20 g/d SZ could be a potential nutrient intervention approach to prevent bacterial diarrhea in calves.
Collapse
Affiliation(s)
- Lu Ma
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yingkun Zhu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; School of Agriculture & Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - A La Teng Zhu La
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - J M Lourenco
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - T R Callaway
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - Dengpan Bu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; CAAS-ICRAF Joint Lab on Agroforestry and Sustainable Animal Husbandry, World Agroforestry Centre, East and Central Asia, Beijing 100193, China.
| |
Collapse
|
8
|
Goluch Z, Rybarczyk A, Poławska E, Haraf G. Fatty Acid Profile and Lipid Quality Indexes of the Meat and Backfat from Porkers Supplemented with EM Bokashi Probiotic. Animals (Basel) 2023; 13:3298. [PMID: 37894022 PMCID: PMC10604290 DOI: 10.3390/ani13203298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
The study aimed to assess the effect of supplementation of pig diet with the Bokashi probiotic on the fatty acid profile of longissimus lumborum (LL) muscles and backfat. The research involved 120 hybrid pigs deriving from Naïma sows and P-76 boars. The experimental group's pigs received probiotics in their feed (containing Saccharomyces cerevisiae, Lactobacillus casei, and Lactobacillus plantarum). To analyze the fatty acid profile in intramuscular fat (IMF) of LL and backfat, 24 pig carcasses from the control group and 26 from the probiotic-supplemented group were randomly selected. Probiotic supplementation increased the Atherogenic Index, reduced the proportion of C20:4, and increased C12:0 and C18:2 n-6 in IMF LL, without affecting ΣSFA, ΣMUFA, and ΣPUFA. In backfat, probiotic supplementation decreased C18:1 and C18:2 n-6 proportion and increased C18:3 n-3, C20:3 n-6, and C20:4 n-6. These changes resulted in significantly higher ΣMUFA, ΣPUFA, PUFA Σn-3/Σn-6, and lower Saturation Index (SI). From a consumer health and technological point of view, probiotic supplementation improved the lipid profile of backfat to a greater extent than LL muscle. Bokashi, at a dose of 3 g/kg of feed in the last stage of pig production, had no significant effect on the fatty acid profile of the meat.
Collapse
Affiliation(s)
- Zuzanna Goluch
- Department of Food Technology and Nutrition, Wrocław University of Economics & Business, ul. Komandorska 118-120, 53-345 Wrocław, Poland; (Z.G.); (G.H.)
| | - Artur Rybarczyk
- Department of Animal Nutrition and Feed Science, Wrocław University of Environmental and Life Science, Chełmońskiego 38C, 51-630 Wrocław, Poland
| | - Ewa Poławska
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Postępu 36A, 05-552 Magdalenka, Poland;
| | - Gabriela Haraf
- Department of Food Technology and Nutrition, Wrocław University of Economics & Business, ul. Komandorska 118-120, 53-345 Wrocław, Poland; (Z.G.); (G.H.)
| |
Collapse
|
9
|
Shen M, Yu B, Hu Y, Liu Z, Zhao K, Li C, Li M, Lyu C, Lu H, Zhong S, Cheng J. Occurrence and Health Risk Assessment of Sulfonamide Antibiotics in Different Freshwater Fish in Northeast China. TOXICS 2023; 11:835. [PMID: 37888687 PMCID: PMC10610842 DOI: 10.3390/toxics11100835] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/24/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023]
Abstract
This study aimed to investigate the levels of 12 sulfonamide antibiotics in freshwater fish species obtained from three cities in northeastern China (Harbin, Changchun, and Shenyang). The analysis was conducted using HPLC-MS/MS to accurately quantify the antibiotic concentrations in the fish samples. The results showed that the average levels of sulfonamide antibiotics in fish samples from Harbin, Changchun, and Shenyang were 1.83 ng/g ww, 0.98 ng/g ww, and 1.60 ng/g ww, respectively. Sulfamethoxazole displayed the highest levels and detection rates in all three cities, whereas sulphapyridine exhibited the lowest concentrations in all the fish samples. The levels of sulfonamide antibiotic residues in the different fish species varied widely among the cities, and the highest level of antibiotic residues was found in the muscle of carnivorous fish. The results from a health risk evaluation on the consumption of these fish indicated that the risk from long-term antibiotic exposure to local residents from the intake of the sampled fish was small and not sufficient to pose a significant health risk to consumers.
Collapse
Affiliation(s)
- Mengnan Shen
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China; (M.S.); (B.Y.); (Y.H.); (Z.L.); (K.Z.); (C.L.); (M.L.)
| | - Bowen Yu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China; (M.S.); (B.Y.); (Y.H.); (Z.L.); (K.Z.); (C.L.); (M.L.)
| | - Yi Hu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China; (M.S.); (B.Y.); (Y.H.); (Z.L.); (K.Z.); (C.L.); (M.L.)
| | - Zhi Liu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China; (M.S.); (B.Y.); (Y.H.); (Z.L.); (K.Z.); (C.L.); (M.L.)
| | - Ke Zhao
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China; (M.S.); (B.Y.); (Y.H.); (Z.L.); (K.Z.); (C.L.); (M.L.)
| | - Chenyang Li
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China; (M.S.); (B.Y.); (Y.H.); (Z.L.); (K.Z.); (C.L.); (M.L.)
| | - Ming Li
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China; (M.S.); (B.Y.); (Y.H.); (Z.L.); (K.Z.); (C.L.); (M.L.)
| | - Chen Lyu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China; (M.S.); (B.Y.); (Y.H.); (Z.L.); (K.Z.); (C.L.); (M.L.)
| | - Hai Lu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China; (M.S.); (B.Y.); (Y.H.); (Z.L.); (K.Z.); (C.L.); (M.L.)
| | - Shuang Zhong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China;
| | - Jie Cheng
- Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China;
| |
Collapse
|
10
|
Zalewska M, Błażejewska A, Czapko A, Popowska M. Pig manure treatment strategies for mitigating the spread of antibiotic resistance. Sci Rep 2023; 13:11999. [PMID: 37491438 PMCID: PMC10368742 DOI: 10.1038/s41598-023-39204-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/21/2023] [Indexed: 07/27/2023] Open
Abstract
Due to the risk of pathogenic antibiotic-resistant bacteria and their antibiotic-resistance genes transfer from livestock feces to the soil and cultivated crops, it is imperative to find effective on-farm manure treatments to minimize that hazardous potential. An introduced worldwide policy of sustainable development, focus on ecological agricultural production, and the circular economy aimed at reducing the use of artificial fertilizers; therefore, such treatment methods should also maximize the fertilization value of animal manure. The two strategies for processing pig manure are proposed in this study-storage and composting. The present study examines the changes in the physicochemical properties of treated manure, in the microbiome, and in the resistome, compared to raw manure. This is the first such comprehensive analysis performed on the same batch of manure. Our results suggest that while none of the processes eliminates the environmental risk, composting results in a faster and more pronounced reduction of mobile genetic elements harboring antibiotic resistance genes, including those responsible for multi-drug resistance. Overall, the composting process can be an efficient strategy for mitigating the spread of antibiotic resistance in the environment and reducing the risk of its transfer to crops and the food chain while providing essential fertilizer ingredients.
Collapse
Affiliation(s)
- Magdalena Zalewska
- Department of Bacterial Physiology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | - Aleksandra Błażejewska
- Department of Bacterial Physiology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | - Agnieszka Czapko
- Department of Bacterial Physiology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | - Magdalena Popowska
- Department of Bacterial Physiology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
11
|
Goryluk-Salmonowicz A, Popowska M. Factors promoting and limiting antimicrobial resistance in the environment - Existing knowledge gaps. Front Microbiol 2022; 13:992268. [PMID: 36204635 PMCID: PMC9530184 DOI: 10.3389/fmicb.2022.992268] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
The dissemination of multidrug-resistant bacteria strains and genes carrying antibiotic resistance is currently considered to be one of the most important global problem. The WHO calls for the need to contain the spread of Antimicrobial Resistance (AMR) from all possible sources. There have been many international actions grouping scientists studying this phenomenon, and quite a lot of scientific projects devoted to this problem have already been carried out. As well, so far several strategies have been developed that can inhibit the AMR spread. In this mini-review, we highlight overlooked aspects that seem to be crucial for creating a comprehensive picture of AMR, especially in the context of One Health approach.
Collapse
Affiliation(s)
- Agata Goryluk-Salmonowicz
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Magdalena Popowska
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
12
|
Assessing the role of internet in reducing overuse of livestock antibiotics by utilizing combination of novel damage control and 2-SLS approaches: Risk, responsibility, and action. Prev Vet Med 2022; 208:105754. [PMID: 36099702 DOI: 10.1016/j.prevetmed.2022.105754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/22/2022]
Abstract
Reducing farmers' overuse of livestock antibiotics is very essential to ensure food, environment, and public health safety. Currently, the "internet + " has emerged as a new initiative to stimulate the development of rural industries by alleviating farmers' information constraints, lack of skills, and knowledge deficiencies. However, very few studies have focused on this issue, and studies specifically focused on the role of the Internet in reducing the overuse of livestock antibiotics are still very limited. To fill this existing research gap, this study aims to investigate the role of the Internet in reducing the overuse of livestock antibiotics using data of 426 farmers based in three provinces, including the Hebei, Henan, and Hubei provinces of China. To analyze the collected data, we first employ a damage control model to estimate the marginal productivity of farmer use of livestock antibiotics and then use a two-stage least squares (2SLS) approach to assess the role of the Internet in reducing antibiotic overuse. The findings of our study show that the marginal productivity of farmers' use of livestock antibiotics by farmers is 0.0079 (approaching 0), indicating that the overuse of antibiotics has become the realistic response of farmers. Our results further reveal that the Internet has a significant inhibitory effect on the overuse of livestock antibiotics by farmers. The Internet can reduce the use of antibiotics by 1.3147 yuan/head by improving your knowledge and skills about antibiotics. The further findings of our study reveal that the educational level and organizational participation of farmers are also important driving factors to reduce the overuse of livestock antibiotics. Furthermore, the findings of this study validate the role of gender, age, and educational level in the non-linear effect of the Internet on farmers' overuse of antibiotics. In conclusion, the findings of this study provide insight for policy makers in motivating farmers to reduce antibiotic overuse by strengthening rural internet infrastructure, implementing skill training, improving supervision, and establishing an incentive mechanism for the standard use of antibiotics.
Collapse
|
13
|
Muurinen J, Cairns J, Ekakoro JE, Wickware CL, Ruple A, Johnson TA. Biological units of antimicrobial resistance and strategies for their containment in animal production. FEMS Microbiol Ecol 2022; 98:6589402. [PMID: 35587376 DOI: 10.1093/femsec/fiac060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 05/27/2022] [Indexed: 11/14/2022] Open
Abstract
The increasing prevalence of antimicrobial resistant bacterial infections has ushered in a major global public health crisis. Judicious or restricted antimicrobial use in animal agriculture, aiming to confine the use for the treatment of infections, is the most commonly proposed solution to reduce selection pressure for resistant bacterial strains and resistance genes. However, a multifaceted solution will likely be required to make acceptable progress in reducing antimicrobial resistance, due to other common environmental conditions maintaining antimicrobial resistance and limited executionary potential as human healthcare and agriculture will continue to rely heavily on antimicrobials in the foreseeable future. Drawing parallels from systematic approaches to the management of infectious disease agents and biodiversity loss, we provide examples that a more comprehensive approach is required, targeting antimicrobial resistance in agroecosystems on multiple fronts simultaneously. We present one such framework, based on nested biological units of antimicrobial resistance, and describe established or innovative strategies targeting units. Some of the proposed strategies are already in use or ready to be implemented, while some require further research and discussion among scientists and policymakers. We envision that antimicrobial resistance mitigation strategies for animal agriculture combining multiple tools would constitute powerful ecosystem-level interventions necessary to mitigate antimicrobial resistance.
Collapse
Affiliation(s)
- Johanna Muurinen
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA.,Department of Microbiology, Viikinkaari 9, 00014 University of Helsinki, Helsinki, Finland
| | - Johannes Cairns
- Organismal and Evolutionary Biology Research Programme (OEB), Department of Computer Science, 00014 University of Helsinki, Helsinki, Finland
| | - John Eddie Ekakoro
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Carmen L Wickware
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Audrey Ruple
- Department of Population Health Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Timothy A Johnson
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
14
|
Albernaz-Gonçalves R, Olmos Antillón G, Hötzel MJ. Linking Animal Welfare and Antibiotic Use in Pig Farming-A Review. Animals (Basel) 2022; 12:216. [PMID: 35049838 PMCID: PMC8773261 DOI: 10.3390/ani12020216] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/09/2022] [Accepted: 01/12/2022] [Indexed: 12/16/2022] Open
Abstract
Preventative measures, such as biosecurity and vaccinations, are essential but not sufficient to ensure high standards of health in pig production systems. Restrictive, barren housing and many widely used management practices that cause pain and stress predispose high-performance pigs reared in intensive systems to disease. In this context, antibiotics are used as part of the infrastructure that sustains health and high levels of production in pig farms. Antimicrobial resistance (AMR) is a global emergency affecting human and animal health, and the use of antibiotics (AMU) in intensive livestock farming is considered an important risk factor for the emergence and spread of resistant bacteria from animals to humans. Tackling the issue of AMR demands profound changes in AMU, e.g., reducing their use for prophylaxis and ending it for growth promotion. In support of such recommendations, we revise the link between animal welfare and AMU and argue that it is crucial to sustainably reduce AMU while ensuring that pigs can live happy lives. In support of such recommendations, we aimed to revise the link between animal welfare and AMU in pigs by analysing stress factors related to housing and management and their impact on pig welfare. In particular, we reviewed critical management practices that increase stress and, therefore, pigs' susceptibility to disease and reduce the quality of life of pigs. We also reviewed some alternatives that can be adopted in pig farms to improve animal welfare and that go beyond the reduction in stress. By minimising environmental and management stressors, pigs can become more immunocompetent and prepared to overcome pathogenic challenges. This outcome can contribute to reducing AMU and the risk of AMR while simultaneously improving the quality of life of pigs and, ultimately, maintaining the pig industry's social license.
Collapse
Affiliation(s)
- Rita Albernaz-Gonçalves
- Campus Santa Rosa do Sul, Instituto Federal Catarinense, Santa Rosa do Sul 88965-000, SC, Brazil;
- Laboratório de Etologia Aplicada e Bem-Estar Animal, Universidade Federal de Santa Catarina, Rod. Admar Gonzaga 1346, Itacorubi, Florianópolis 88034-001, SC, Brazil
| | - Gabriela Olmos Antillón
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden;
| | - Maria José Hötzel
- Laboratório de Etologia Aplicada e Bem-Estar Animal, Universidade Federal de Santa Catarina, Rod. Admar Gonzaga 1346, Itacorubi, Florianópolis 88034-001, SC, Brazil
| |
Collapse
|
15
|
Barrett JR, Innes GK, Johnson KA, Lhermie G, Ivanek R, Greiner Safi A, Lansing D. Consumer perceptions of antimicrobial use in animal husbandry: A scoping review. PLoS One 2021; 16:e0261010. [PMID: 34879112 PMCID: PMC8654221 DOI: 10.1371/journal.pone.0261010] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/23/2021] [Indexed: 11/19/2022] Open
Abstract
Antimicrobial use in animal agriculture is often perceived to play a role in the emerging threat of antimicrobial resistance. Increased consumer awareness of this issue places pressure on animal husbandry to adopt policies to reduce or eliminate antimicrobial use. We use a scoping review methodology to assess research on consumer perceptions of antimicrobial drugs in meat products in the United States, Canada, or the European Union. Evaluating peer-reviewed and grey literature, we included studies for assessment if they met these topical and geographic requirements, involved primary data collection, and were originally published in English. Our screening process identified 124 relevant studies. Three reviewers jointly developed a data charting form and independently charted the contents of the studies. Of the 105 studies that measured consumer concern, 77.1% found that consumers were concerned about antimicrobial use in meat production. A minority of studies (29.8% of all studies) queried why consumers hold these views. These studies found human health and animal welfare were the main reasons for concern. Antimicrobial resistance rarely registered as an explicit reason for concern. A smaller group of studies (23.3%) measured the personal characteristics of consumers that expressed concern about antimicrobials. Among these studies, the most common and consistent features of these consumers were gender, age, income, and education. Regarding the methodology used, studies tended to be dominated by either willingness-to-pay studies or Likert scale questionnaires (73.64% of all studies). We recommend consideration of qualitative research into consumer views on this topic, which may provide new perspectives that explain consumer decision-making and mentality that are lacking in the literature. In addition, more research into the difference between what consumers claim is of concern and their ultimate purchasing decisions would be especially valuable.
Collapse
Affiliation(s)
- Jaime R. Barrett
- Department of Geography and Environmental Systems, University of Maryland Baltimore County, Baltimore, MD, United States of America
| | - Gabriel K. Innes
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, United States of America
| | - Kelly A. Johnson
- Flower-Sprecher Veterinary Library, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Guillaume Lhermie
- Department of Production Animal Health, University of Calgary, Calgary, Canada
- CIRAD, UMR ASTRE, Montpellier, France
- ASTRE, CIRAD, INRAE, Univ Montpellier, Montpellier, Université de Toulouse, Toulouse, France
| | - Renata Ivanek
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Amelia Greiner Safi
- Department of Public and Planetary Health, College of Veterinary Medicine & Department of Communication, College of Agriculture and Life Sciences Cornell University, Ithaca, NY, United States of America
| | - David Lansing
- Department of Geography and Environmental Systems, University of Maryland Baltimore County, Baltimore, MD, United States of America
| |
Collapse
|
16
|
Sosa-Hernández JE, Rodas-Zuluaga LI, López-Pacheco IY, Melchor-Martínez EM, Aghalari Z, Limón DS, Iqbal HMN, Parra-Saldívar R. Sources of antibiotics pollutants in the aquatic environment under SARS-CoV-2 pandemic situation. CASE STUDIES IN CHEMICAL AND ENVIRONMENTAL ENGINEERING 2021; 4:100127. [PMID: 38620862 PMCID: PMC8423433 DOI: 10.1016/j.cscee.2021.100127] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 02/08/2023]
Abstract
During the last decades, the growth of concern towards different pollutants has been increasing due to population activities in large cities and the great need for food production by the agri-food industry. The effects observed in specific locations have shown the impact over the environment in air, soil and water. Specifically, the current pandemic of COVID-19 has brought into the picture the intensive use of different medical substances to treat the disease and population intensive misuse. In particular, the use of antibiotics has increased during the last 20 years with few regulations regarding their excessive use and the disposal of their residues from different sources. Within this review, an overview of sources of antibiotics to aquatic environments was done along with its impact to the environment and trophic chain, and negative effects of human health due prolonged exposure which endanger the environment, population health, water, and food sustainability. The revision indicates the differences between sources and its potential danger due toxicity, and accumulation that prevents water sustainability in the long run.
Collapse
Affiliation(s)
| | | | - Itzel Y López-Pacheco
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | | | - Zahra Aghalari
- Faculty of Public Health, Babol University of Medical Sciences, Babol, Iran
| | - Daniel Salas Limón
- Servicios de Agua y Drenaje de Monterrey, Coordinador Interinstitucional del Agua, Matamoros 1717 Poniente, Monterrey, Nuevo Leon, Mexico
- Universidad Autónoma de Nuevo León, UANL. Facultad de Ingeniería Civil. Av. Universidad s/n. CD. Universitaria, 66455, San Nicolás de los Garza, NL, Mexico
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | | |
Collapse
|
17
|
Shao Y, Wang Y, Yuan Y, Xie Y. A systematic review on antibiotics misuse in livestock and aquaculture and regulation implications in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149205. [PMID: 34375247 DOI: 10.1016/j.scitotenv.2021.149205] [Citation(s) in RCA: 203] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 07/14/2021] [Accepted: 07/18/2021] [Indexed: 06/13/2023]
Abstract
China is one of the largest producers and consumers of antibiotics, and China is a larger producer of livestock farming and aquaculture in the world. The livestock farming and aquaculture industry is a major area of antibiotic misuse, which has caused serious antibiotic residues and environment pollution. The antibiotic residues exceeding the standard may lead to antibiotic resistances in animals or human bodies, which poses a threat to human health. In this context, this study tries to systematically review the current situation of antibiotic misuse in livestock and aquaculture in China, and put forward corresponding regulatiory measures for the central government. Based on the status quo of livestock farming and aquaculture in China, this study reviewed antibiotic misuse in livestock farming and aquaculture and antibiotic resistance in China, introduced China's current policies on antibiotic regulation and the gap between China and developed countries, and analyzed the implications of current regulatory policies on animal health and productivity. At last, we put forward suggestions for the future antibiotic regulation, including strictly implementing the relevant laws and regulations, formulating specific supporting measures, encouraging the research and development of antibiotic substitutes, introducing advanced technologies for supervision and regulation, strengthening the publicity of science popularization and enhancing the public's awareness of the rational use of antibiotics. If these policy recommendations can be implemented, they will significantly promote the regulation of antibiotic abuse.
Collapse
Affiliation(s)
- Yitian Shao
- The New Types Key Think Tank of Zhejiang Province "China Research Institute of Regulation and Public Policy", Zhejiang University of Finance & Economics, Hangzhou 310018, China; China Institute of Regulation Research, Zhejiang University of Finance & Economics, Hangzhou 310018, China
| | - Yiping Wang
- Hangzhou City Health Bureau, Hangzhou, 310005, China
| | - Yiwen Yuan
- China Institute of Regulation Research, Zhejiang University of Finance & Economics, Hangzhou 310018, China
| | - Yujing Xie
- The New Types Key Think Tank of Zhejiang Province "China Research Institute of Regulation and Public Policy", Zhejiang University of Finance & Economics, Hangzhou 310018, China; China Institute of Regulation Research, Zhejiang University of Finance & Economics, Hangzhou 310018, China.
| |
Collapse
|
18
|
Araujo-Rocha M, Piro B, Noël V, Barbault F. Computational Studies of a DNA-Based Aptasensor: toward Theory-Driven Transduction Improvement. J Phys Chem B 2021; 125:9499-9506. [PMID: 34403245 DOI: 10.1021/acs.jpcb.1c05341] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aptamers are a class of bioreceptors intensively used in current analytical tools dedicated to molecular diagnostics due to their ability to perform large structural reorganization upon target binding. However, there is a lack of methodologies allowing us to rationalize their structure in order to improve the transduction efficiency in aptamer sensors. We choose here, as a model system, a three-strand DNA structure as the probe, composed of two DNA strands anchored on a gold surface and partially hybridized with an aptamer sequence sensitive to ampicillin (AMP). The DNA structure has been designed to show strong structural change upon AMP binding to its aptamer. Using a set of computational techniques including molecular dynamics simulations, we deeply investigated the structure change upon analyte binding, taking into account the grafting on the surface. Original analyses of ion distributions along the trajectories unveil a distinct pattern between both states which can be related to changes in capacitance of the interface between these states. To our knowledge, this work demonstrates the ability of computational investigations for the first time to drive, in silico, the design of aptasensors.
Collapse
Affiliation(s)
| | - Benoît Piro
- Université de Paris, ITODYS, CNRS, F-75006 Paris, France
| | - Vincent Noël
- Université de Paris, ITODYS, CNRS, F-75006 Paris, France
| | | |
Collapse
|
19
|
Harlow BE, Flythe MD, Klotz JL, Harmon DL, Aiken GE. Effect of biochanin A on the rumen microbial community of Holstein steers consuming a high fiber diet and subjected to a subacute acidosis challenge. PLoS One 2021; 16:e0253754. [PMID: 34288928 PMCID: PMC8294529 DOI: 10.1371/journal.pone.0253754] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 06/11/2021] [Indexed: 11/21/2022] Open
Abstract
Subacute rumen acidosis (SARA) occurs when highly fermentable carbohydrates are introduced into the diet, decreasing pH and disturbing the microbial ecology of the rumen. Rumen amylolytic bacteria rapidly catabolize starch, fermentation acids accumulate in the rumen and reduce environmental pH. Historically, antibiotics (e.g., monensin, MON) have been used in the prevention and treatment of SARA. Biochanin A (BCA), an isoflavone produced by red clover (Trifolium pratense), mitigates changes associated with starch fermentation ex vivo. The objective of the study was to determine the effect of BCA on amylolytic bacteria and rumen pH during a SARA challenge. Twelve rumen fistulated steers were assigned to 1 of 4 treatments: HF CON (high fiber control), SARA CON, MON (200 mg d-1), or BCA (6 g d-1). The basal diet consisted of corn silage and dried distiller’s grains ad libitum. The study consisted of a 2-wk adaptation, a 1-wk HF period, and an 8-d SARA challenge (d 1–4: 40% corn; d 5–8: 70% cracked corn). Samples for pH and enumeration were taken on the last day of each period (4 h). Amylolytic, cellulolytic, and amino acid/peptide-fermenting bacteria (APB) were enumerated. Enumeration data were normalized by log transformation and data were analyzed by repeated measures ANOVA using the MIXED procedure of SAS. The SARA challenge increased total amylolytics and APB, but decreased pH, cellulolytics, and in situ DMD of hay (P < 0.05). BCA treatment counteracted the pH, microbiological, and fermentative changes associated with SARA challenge (P < 0.05). Similar results were also observed with MON (P < 0.05). These results indicate that BCA may be an effective alternative to antibiotics for mitigating SARA in cattle production systems.
Collapse
Affiliation(s)
- Brittany E. Harlow
- United States Department of Agriculture, Forage Animal Production Research Unit, Agricultural Research Service, Lexington, KY, United States of America
- * E-mail:
| | - Michael D. Flythe
- United States Department of Agriculture, Forage Animal Production Research Unit, Agricultural Research Service, Lexington, KY, United States of America
| | - James L. Klotz
- United States Department of Agriculture, Forage Animal Production Research Unit, Agricultural Research Service, Lexington, KY, United States of America
| | - David L. Harmon
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, United States of America
| | - Glen E. Aiken
- North Florida Research and Education Center, University of Florida, Quincy, FL, United States of America
| |
Collapse
|
20
|
Han Z, Sun T, Xu Z, Fan L, Yun H, Ge X, Liu X, Liu Y, Ning B. Detection of 4 quinolone antibiotics by chemiluminescence based on a novel Nor-Biotin bifunctional ligand and SA-ALP technology. Biosci Biotechnol Biochem 2021; 85:1720-1728. [PMID: 33960377 DOI: 10.1093/bbb/zbab081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/22/2021] [Indexed: 11/13/2022]
Abstract
A simple and effective direct competitive chemiluminescence immunoassay for the detection of 4 kinds of quinolone antibiotics in milk was established using Nor-Biotin (biotin-modified norfloxacin [NOR]) bifunctional ligand and alkaline phosphatase-conjugated streptavidin signal amplification technology. The polyclonal antibody was obtained after the immunization of New Zealand White rabbits using norfloxacin-derived antigen. "Click chemistry" was used for the rapid and facile synthesis of the Nor-Biotin bifunctional ligand. After the optimization of the incubation time and reaction buffer, the direct competitive chemiluminescence assay method was developed and used for sensitive detection of 4 kinds of quinolone drugs (NOR, pefloxacin, ciprofloxacin, and danofloxacin). The IC50 of the 4 kinds of quinolone drugs ranged from 7.35 to 24.27 ng/mL, and the lowest detection limits ranged from 0.05 to 0.16 ng/mL, which were below their maximum residue levels, approved by the EU for treatment of food-producing animals. To demonstrate the applicability of the assay, artificially contaminated milk samples with the 4 quinolone drugs were analyzed. The mean recovery rates of the drugs ranged from 86.31% to 112.11%.
Collapse
Affiliation(s)
- Zhenyu Han
- School of Public Health, Inner Mongolia Medical University, Hohhot, China.,Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Tieqiang Sun
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Zehua Xu
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Longxing Fan
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China.,Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, China
| | - Hanxuan Yun
- School of Public Health, Inner Mongolia Medical University, Hohhot, China.,Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xuejiao Ge
- School of Public Health, Inner Mongolia Medical University, Hohhot, China.,Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xiao Liu
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Ying Liu
- School of Public Health, Inner Mongolia Medical University, Hohhot, China
| | - Bao'an Ning
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| |
Collapse
|
21
|
Gamboa-Cruz C, Barros S, Vila Pouca AS, Barbosa J, Freitas A, Ramos F. Assessing antibiotic residues in piglet liver and kidney samples: How to manage the results obtained. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
22
|
Muurinen J, Richert J, Wickware CL, Richert B, Johnson TA. Swine growth promotion with antibiotics or alternatives can increase antibiotic resistance gene mobility potential. Sci Rep 2021; 11:5485. [PMID: 33750827 PMCID: PMC7970892 DOI: 10.1038/s41598-021-84759-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/08/2021] [Indexed: 02/07/2023] Open
Abstract
Even though the use of antibiotics for food-producing animals may contribute to the emergence of antimicrobial resistance, antibiotics are still used as growth promoters. Due to consumer and regulatory pressures, the use of alternatives to antibiotics as growth promoters is increasing, thus more information is needed on their capability to disseminate antimicrobial resistance compared to antibiotics. We investigated the impacts of carbadox (antibiotic), copper sulfate and zinc oxide (metals) and mushroom powder (natural product) on the pig fecal resistome and microbiome. Antibiotic resistance gene (ARG) and mobile genetic element (MGE) abundances were measured using a high-throughput qPCR array with 382 primer pairs. Bacterial community composition was determined by 16S rRNA gene sequencing. More ARGs co-occurred with MGEs in the growth promoter group samples than in the control group samples. Community composition could not be linked to resistome in the growth promoter group samples, indicating a potential decoupling of ARGs and phylogeny. Additionally, machine-learning methods aided in defining the community and resistome differences in response to treatments. Since increased ARG mobility potential was the primary response to the dietary additives used in this study, we suggest that ARG mobility should be considered when designing antimicrobial use policies and antimicrobial resistance surveillances.
Collapse
Affiliation(s)
- Johanna Muurinen
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA.
| | - Jacob Richert
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS, USA
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Carmen L Wickware
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Brian Richert
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Timothy A Johnson
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
23
|
Groves PJ, Underwood G. Impact of antibiotic use and disease risks on Australian laying hen welfare. ANIMAL PRODUCTION SCIENCE 2021. [DOI: 10.1071/an19698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Antibiotic stewardship is an important concern for government, communities and producers. Shifts towards more extensive production systems in egg layers (i.e. free range) has increased the incidence of many diseases and parasites, requiring a return to the use of medications. Limitations on the number of antimicrobial drugs available for use in Australian egg layers under these increased usage situations can lead to the loss of effectiveness of the medications, antibiotic resistance development and continued declines in bird health and welfare. The small size of the Australian layer flock makes the likelihood of more antimicrobials becoming available very low due to the high cost of obtaining additional registration for use in layers and the significant challenge in assuring nil residues in eggs.
Collapse
|
24
|
Development and Validation of a Multi-detection Confirmatory Method for Antibiotics Determination in Piglet Kidneys by UHPLC-TOF-MS According Commission Decision 2002/657/EC. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01916-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
25
|
French CE, Sales MA, Rochell SJ, Rodriguez A, Erf GF. Local and systemic inflammatory responses to lipopolysaccharide in broilers: new insights using a two-window approach. Poult Sci 2020; 99:6593-6605. [PMID: 33248575 PMCID: PMC7705052 DOI: 10.1016/j.psj.2020.09.078] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 11/30/2022] Open
Abstract
The inflammatory response involves a complex interplay of local tissue activities designed to recruit leukocytes and proteins from the blood to the infected tissue. For egg-type chickens, we established the growing feather (GF) as an accessible tissue test site to monitor tissue responses to injected test-material. For commercial broilers, whose health depends to a large extent on innate immune system functions, the GF test system offers an important novel window to directly assess their natural defenses. This study was conducted to adapt the GF test system for use in broilers, and use it to simultaneously examine local (GF) and systemic (blood) inflammatory responses initiated by GF pulp injection of lipopolysaccharide (LPS). Specifically, GF of 12 male and 12 female, 5-week-old broilers were injected with LPS (16 GF/chicken; 1 μg LPS/GF). Blood and GF were collected at 0 (before), 6, and 24 h after GF injection. GF pulp was used to determine leukocyte-infiltration and gene-expression profiles, reactive-oxygen-species generation, and superoxide dismutase (SOD) activity. Blood was used to determine blood cell profiles and SOD activity. A time effect (P ≤ 0.05) was observed for most aspects examined. In GF, LPS injection resulted in heterophil and monocyte infiltration reaching maximal levels at 6 and 24 h, respectively. Reactive-oxygen-species generation, SOD activity, and mRNA levels of IL-1β, IL-8, IL-6, IL-10, and cathelicidin B1 were elevated, whereas those of TNF-α, LITAF, SOD1, and SOD2 decreased after LPS injection. In blood, levels of heterophils and monocytes were elevated at 6 h, lymphocytes and RBC decreased at 6 h, and thrombocytes and SOD activity increased at 24 h. Assessment of LPS-induced activities at the site of inflammation (GF) provided novel and more relevant insights into temporal, qualitative, and quantitative aspects of inflammatory responses than blood. Knowledge generated from this dual-window approach may find direct application in identification of individuals with robust, balanced innate defenses and provide a platform for studying the effects of exogenous treatments (e.g., nutrients, probiotics, immunomodulators, etc.) on inflammatory responses taking place in a complex tissue.
Collapse
Affiliation(s)
- Chelsea E French
- Division of Agriculture, Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - Marites A Sales
- Division of Agriculture, Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - Samuel J Rochell
- Division of Agriculture, Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - Angeline Rodriguez
- Division of Agriculture, Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - Gisela F Erf
- Division of Agriculture, Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA.
| |
Collapse
|
26
|
MinION sequencing of Streptococcus suis allows for functional characterization of bacteria by multilocus sequence typing and antimicrobial resistance profiling. J Microbiol Methods 2019; 169:105817. [PMID: 31881288 DOI: 10.1016/j.mimet.2019.105817] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 01/31/2023]
Abstract
In recent years, high-throughput sequencing has revolutionized disease diagnosis by its powerful ability to provide high resolution genomic information. The Oxford Nanopore MinION sequencer has unparalleled potential as a rapid disease diagnostic tool due to its high mobility, accessibility, and short turnaround time. However, there is a lack of rigorous quality assessment and control processes standardizing the testing on the MinION, which is necessary for incorporation into a diagnostic workflow. Thus, our study examined the use of the MinION sequencer for bacterial whole genome generation and characterization. Using Streptococcus suis as a model, we optimized DNA isolation and treatments to be used for MinION sequencing and standardized de novo assembly to quickly generate a full-length consensus sequence achieving a 99.4% average accuracy. The consensus genomes from MinION sequencing were able to accurately predict the multilocus sequence type in 8 out of 10 samples and identified antimicrobial resistance profiles for 100% of the samples, despite the concern of a high error rate. The inability to unequivocally predict sequence types was due to difficulty in differentiating high identity alleles, which was overcome by applying additional error correction methods to increase consensus accuracy. This manuscript provides methods for the use of MinION sequencing for identification of S. suis genome sequence, sequence type, and antibiotic resistance profile that can be used as a framework for identification and classification of other pathogens.
Collapse
|
27
|
Antibiotics and Host-Tailored Probiotics Similarly Modulate Effects on the Developing Avian Microbiome, Mycobiome, and Host Gene Expression. mBio 2019; 10:mBio.02171-19. [PMID: 31615957 PMCID: PMC6794479 DOI: 10.1128/mbio.02171-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Alternative approaches are greatly needed to reduce the need for antibiotic use in food animal production. This study utilized a pipeline for the development of a host-tailored probiotic to enhance performance in commercial turkeys and modulate their microbiota, similar to the effects of low-dose antibiotic administration. We determined that a host-tailored probiotic, developed in the context of the commercial turkey gut microbiome, was more effective at modulating these parameters than a nontailored probiotic cocktail. Furthermore, the host-tailored probiotic mimicked many of the effects of a low-dose antibiotic growth promoter. Surprisingly, the effects of the antibiotic growth promoter and host-tailored probiotic were observed across kingdoms, illustrating the coordinated interkingdom effects of these approaches. This work suggests that tailored approaches to probiotic development hold promise for modulating the avian host and its microbiota. The microbiome is important to all animals, including poultry, playing a critical role in health and performance. Low-dose antibiotics have historically been used to modulate food production animals and their microbiome. Identifying alternatives to antibiotics conferring similar modulatory properties has been elusive. The purpose of this study was to determine if a host-tailored probiotic could recapitulate effects of a low-dose antibiotic on host response and the developing microbiome. Over 13 days of life, turkey poults were supplemented continuously with a low-dose antibiotic or oral supplementation of a prebiotic with or without two different probiotics (8 cage units, n = 80 per group). Gastrointestinal bacterial and fungal communities of poults were characterized by 16S rRNA gene and ITS2 amplicon sequencing. Localized and systemic host gene expression was assessed using transcriptome sequencing (RNA-Seq), kinase activity was assessed by avian-specific kinome peptide arrays, and performance parameters were assessed. We found that development of the early-life microbiome of turkey poults was tightly ordered in a tissue- and time-specific manner. Low-dose antibiotic and turkey-tailored probiotic supplementation, but not nontailored probiotic supplementation, elicited similar shifts in overall microbiome composition during development compared to controls. Treatment-induced bacterial changes were accompanied by parallel shifts in the fungal community and host gene expression and enhanced performance metrics. These results were validated in pen trials that identified further additive effects of the turkey-tailored probiotic combined with different prebiotics. Alternative approaches to low-dose antibiotic use in poultry are feasible and can be optimized utilizing the indigenous poultry microbiome. Similar approaches may also be beneficial for humans.
Collapse
|
28
|
Li Z, Lin Z, Lu Z, Feng Z, Chen Q, Deng S, Li Z, Yan Y, Ying Z. Coix seed improves growth performance and productivity in post-weaning pigs by reducing gut pH and modulating gut microbiota. AMB Express 2019; 9:115. [PMID: 31338616 PMCID: PMC6650524 DOI: 10.1186/s13568-019-0828-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 07/01/2019] [Indexed: 02/08/2023] Open
Abstract
Coix seed has traditionally been used in traditional Chinese medicine to fortify the spleen and inhibit dampness, and has shown anticancer effects in humans. However, it is not known whether coix seed improves post-weaning growth performance and productivity, and the mechanism of interaction between coix seed and gut microbiota remains unknown. In this study, we established four groups: (i) control, (ii) antibiotic-fed, (iii) coix seed powder-fed, and (iv) coix seed extract-fed. The feeding experiment was conducted for 4 weeks. Coix seed extract significantly increased average weight gain and reduced the feed/meat ratio in weaned pigs, in addition to reducing the pH of their gastric juice. Further assays demonstrated that coix seed promotes an increase in the density and length of the gastrointestinal villi. Next, 16s sequencing of gut microbiota showed that coix seed significantly increased the abundance of phylum Bacteroidetes and genus Lactobacillus (p < 0.05) and reduced the abundance of phylum Prevotella (p < 0.05) in the gut microbiota. In contrast, the abundance of phylum Bacteroidetes and genus Lactobacillus decreased in the control group and antibiotic group, whereas the abundance of phylum Prevotella increased. Our findings indicate that coix seed improves growth performance and productivity in post-weaning pigs by reducing the pH value of gastric juice, increasing the density and length of gastrointestinal villi, and modulating gut microbiota. Thus, coix seed has good potential for use as a feed supplement in swine production.
Collapse
|
29
|
Singh RR, Angeles LF, Butryn DM, Metch JW, Garner E, Vikesland PJ, Aga DS. Towards a harmonized method for the global reconnaissance of multi-class antimicrobials and other pharmaceuticals in wastewater and receiving surface waters. ENVIRONMENT INTERNATIONAL 2019; 124:361-369. [PMID: 30660849 DOI: 10.1016/j.envint.2019.01.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/04/2019] [Accepted: 01/10/2019] [Indexed: 05/10/2023]
Abstract
Antimicrobial resistance is a worldwide problem that is both pressing and challenging due to the rate at which it is spreading, and the lack of understanding of the mechanisms that link human, animal and environmental sources contributing to its proliferation. One knowledge gap that requires immediate attention is the significance of antimicrobial residues and other pharmaceuticals that are being discharged from wastewater treatment plants (WWTPs) on the dissemination of antimicrobial resistance in the environment. In this work we provide an approach to develop a harmonized analytical method for 8 classes of antimicrobials and other pharmaceuticals that can be used for global monitoring in wastewater and receiving waters. Analysis of these trace organic chemicals in the influent and effluent wastewater, and in the respective upstream and downstream receiving waters from different countries across the globe is not trivial. Here, we demonstrated that sample preparation using solid-phase extraction (SPE) not only provides a convenient and cost-effective shipping of samples, but also adds stability to the analytes during international shipping. It is important that SPE cartridges are maintained at cold temperature during shipment if the duration is longer than 7 days because a significant decrease in recoveries were observed after 7 days in the cartridges stored at room temperature, especially for sulfonamides and tetracyclines. To compensate for sample degradation during shipment, and matrix effects in liquid chromatography/mass spectrometry, the use of stable isotope labeled compounds should be employed when available and affordable. The importance of applying a defined tolerance for the ion ratios (Q/q) that have been optimized for wastewater and surface water is discussed. The tolerance range was set to be the mean Q/q of the analyte standard at various concentrations ±40% for the influent, and ±30% for the effluent, upstream, and downstream samples; for tetracyclines and quinolones, however, the tolerance range was ±80% in order to minimize false negative and false positive detection. The optimized procedures were employed to reveal differences in antimicrobial and pharmaceutical concentrations in influent, effluent, and surface water samples from Hong Kong, India, Philippines, Sweden, Switzerland, and United States. The antimicrobials with the highest concentrations in influent and effluent samples were ciprofloxacin (48,103 ng/L, Hong Kong WWTP 1) and clarithromycin (5178 ng/L, India WWTP 2), respectively. On the other hand, diclofenac (108,000 ng/L, Sweden WWTP 2), caffeine (67,000 ng/L, India WWTP 1), and acetaminophen (28,000 ng/L, India WWTP 1) were the highest detected pharmaceuticals in the receiving surface water samples. Hong Kong showed the highest total antimicrobial concentrations that included macrolides, quinolones, and sulfonamides with concentrations reaching 60,000 ng/L levels in the influent. Antidepressants were predominant in Sweden, Switzerland, and the United States.
Collapse
Affiliation(s)
- Randolph R Singh
- Department of Chemistry, The State University of New York at Buffalo, Buffalo, NY 14260, United States; Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Luisa F Angeles
- Department of Chemistry, The State University of New York at Buffalo, Buffalo, NY 14260, United States
| | - Deena M Butryn
- Department of Chemistry, The State University of New York at Buffalo, Buffalo, NY 14260, United States
| | - Jacob W Metch
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, United States
| | - Emily Garner
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, United States
| | - Peter J Vikesland
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, United States
| | - Diana S Aga
- Department of Chemistry, The State University of New York at Buffalo, Buffalo, NY 14260, United States.
| |
Collapse
|
30
|
Dee S, Guzman JE, Hanson D, Garbes N, Morrison R, Amodie D, Galina Pantoja L. A randomized controlled trial to evaluate performance of pigs raised in antibiotic-free or conventional production systems following challenge with porcine reproductive and respiratory syndrome virus. PLoS One 2018; 13:e0208430. [PMID: 30521587 PMCID: PMC6283559 DOI: 10.1371/journal.pone.0208430] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 11/15/2018] [Indexed: 01/13/2023] Open
Abstract
The trial objective was to compare the performance and animal health parameters of pigs raised according to one of 3 antibiotic (AB) protocols: standard AB medication consisting of mass treatment on days 4 and 21 and judicious AB therapy given therapeutically thereafter as group medication in water and feed or by individual injection (group T1, N = 702); modified AB medication identical to group T1 but with mass treatment only on day 4 and without subsequent therapeutic feed medication (group T2, N = 675); or an antibiotic-free (ABF) regimen (group T3, N = 702). All pigs were vaccinated with a modified-live porcine reproductive and respiratory syndrome virus (PRRSV) vaccine 3 days after weaning. Using a seeder pig model to mimic endemic field infection dynamics, pigs were contact-challenged with virulent PRRSV lineage 1 strain 174 four weeks after vaccination. At finishing, average daily gain (ADG) and mean feed conversion ratio (FCR) were significantly better (p ≤ 0.05) for the T1 and T2 groups compared to the T3 group. There were no significant differences in post-weaning ADG and FCR between the T1 and T2 groups. Mortality and removals significantly favored (p ≤0.05) the T1 and T2 groups (20.94% and 24.89%, respectively) versus the T3 group (57.98%). Net revenue per pig was $105.43, $98.79, and $33.81 for the T1, T2 and T3 groups, respectively. Under the conditions of this study, these results indicate that in a PRRSV-endemic setting involving bacterial co-infections, an ABF production strategy may leave pigs at considerable risk of exposure to severe clinical disease and that judicious use of antibiotics can significantly improve animal health.
Collapse
Affiliation(s)
- Scott Dee
- Pipestone Applied Research, Pipestone, Minnesota, United States of America
| | - Jose Ezequiel Guzman
- Swine Technical Services, Zoetis, Parsippany, New Jersey, United States of America
| | - Dan Hanson
- Pipestone Applied Research, Pipestone, Minnesota, United States of America
| | - Noel Garbes
- Swine Technical Services, Zoetis, Parsippany, New Jersey, United States of America
| | - Robert Morrison
- College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Deborah Amodie
- Outcomes Research, Zoetis, Parsippany, New Jersey, United States of America
| | | |
Collapse
|
31
|
Harlow BE, Flythe MD, Aiken GE. Effect of biochanin A on corn grain (Zea mays) fermentation by bovine rumen amylolytic bacteria. J Appl Microbiol 2017; 122:870-880. [PMID: 28055130 DOI: 10.1111/jam.13397] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/27/2016] [Accepted: 01/02/2017] [Indexed: 02/01/2023]
Abstract
AIMS The objective was to determine the effect of biochanin A (BCA), an isoflavone produced by red clover (Trifolium pratense L.), on corn fermentation by rumen micro-organisms. METHODS AND RESULTS When bovine rumen bacterial cell suspensions (n = 3) were incubated (24 h, 39°C) with ground corn, amylolytic bacteria including group D Gram-positive cocci (GPC; Streptococcus bovis; enterococci) proliferated, cellulolytic bacteria were inhibited, lactate accumulated and pH declined. Addition of BCA (30 μg ml-1 ) inhibited lactate production, and pH decline. BCA had no effect on total amylolytics, but increased lactobacilli and decreased GPC. The initial rate and total starch disappearance was decreased by BCA addition. BCA with added Strep. bovis HC5 supernatant (containing bacteriocins) inhibited the amylolytic bacteria tested (Strep. bovis JB1; Strep. bovis HC5; Lactobacillus reuteri, Selenemonas ruminatium) to a greater extent than either addition alone. BCA increased cellulolytics and dry matter digestibility of hay with corn starch. CONCLUSIONS These results indicate that BCA mitigates changes associated with corn fermentation by bovine rumen bacteria ex vivo. SIGNIFICANCE AND IMPACT OF THE STUDY BCA could serve as an effective mitigation strategy for rumen acidosis. Future research is needed to evaluate the effect of BCA on mitigating rumen acidosis in vivo.
Collapse
Affiliation(s)
- B E Harlow
- Forage-Animal Production Research Unit, USDA, Agricultural Research Service, Lexington, KY, USA
| | - M D Flythe
- Forage-Animal Production Research Unit, USDA, Agricultural Research Service, Lexington, KY, USA
| | - G E Aiken
- Forage-Animal Production Research Unit, USDA, Agricultural Research Service, Lexington, KY, USA
| |
Collapse
|