1
|
Wang Y, Yang L, Shao J, Gao H, Norbäck D, Zhang Y, Wei J, Zhang L, Zhang X. Effect of pregnancy and infancy exposure to outdoor particulate matter (PM 1, PM 2.5, PM 10) and SO 2 on childhood pneumonia in preschool children in Taiyuan City, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 375:126303. [PMID: 40286839 DOI: 10.1016/j.envpol.2025.126303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 04/02/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
There is currently a paucity of research on the effects of early life exposure to particulate matter (PM) of various size fractions on pneumonia in preschool-aged children. We explored the connections between antenatal and postnatal exposure to atmospheric pollutants and diagnosed pneumonia among 4814 offspring children in Taiyuan City, northern China. Outdoor air pollutant concentrations and ambient temperature were collected. A machine learning-based model was utilized to compute daily mean concentrations of PM10, PM2.5, and PM1 at the home address. Associations were calculated using generalized linear mixed models, and stratified analysis was used to detect sensitive subpopulations. We observed significant associations between prenatal exposure to atmospheric pollutants and the incidence of pneumonia in children. For every 10 μg/m3 increase, the odds ratios (ORs) were 1.06 for PM10, 1.15 for PM2.5, 1.24 for PM1, and 1.05 for SO2 for the whole pregnancy period. In mid-pregnancy, the most vital connections were found for PM10, PM2.5, and PM1 exposure. Girls showed higher sensitivity to exposure to PM2.5 and PM10. The most significant connections between PM and pneumonia were observed at high SO2 exposure. Connections between PM1, PM2.5 and pneumonia were stronger in children without environmental tobacco smoke (ETS) at home. Associations between PM10 and pneumonia were stronger in children with ETS at home. The synthesis of the data suggests that exposure to PM10, PM2.5, PM1, and SO2 during pregnancy contributes to an elevated susceptibility to childhood pneumonia. The second trimester period is significant and represents a critical window of vulnerability. PM1 may have the strongest impact. Exposure to SO2 can further enhance the PM related risks of pneumonia. Gender and ETS exposure at home can modify associations between outdoor PM and pneumonia. Further reductions in outdoor PM, especially PM1, are needed to reduce childhood pneumonia in China.
Collapse
Affiliation(s)
- Ying Wang
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Liu Yang
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Jiyuan Shao
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Huiyu Gao
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Dan Norbäck
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Yunquan Zhang
- The Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
| | - Ling Zhang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China; The Department of Environmental Hygiene and Occupational Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan, China
| | - Xin Zhang
- Institute of Environmental Science, Shanxi University, Taiyuan, China.
| |
Collapse
|
2
|
He Z, Song AY, Schrott R, Feinberg JI, Bakulski KM, Benke KS, Croen LA, Hertz-Picciotto I, Schmidt RJ, Lyall K, Newschaffer CJ, Fallin MD, Volk HE, Ladd-Acosta C. The association of prenatal ambient air pollution with placental epigenetic gestational age at birth. Environ Epidemiol 2025; 9:e384. [PMID: 40331055 PMCID: PMC12055125 DOI: 10.1097/ee9.0000000000000384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/15/2025] [Indexed: 05/08/2025] Open
Abstract
Background Prenatal air pollutants have been associated with adverse birth outcomes, and DNA methylation (DNAm) changes in placenta may contribute to these associations. DNAm-based epigenetic gestational age (GA) estimators are emerging biomarkers for aging/biological age that can reflect early-life exposures and predict long-term health outcomes. We leveraged 103 mother-offspring pairs from the Early Autism Risk Longitudinal Investigation cohort to assess associations between prenatal air pollution and placental epigenetic GA at birth. Methods Prenatal air pollution concentrations (NO2, O3, PM2.5, and PM10) were estimated from weekly data from monitoring stations near maternal residence and calculated for preconception and pregnancy periods. DNAm from fetal-side placenta samples was measured on Illumina HumanMethylation450 BeadChip. Epigenetic GA was computed using Lee's robust placenta clock algorithm. GA acceleration/deceleration was the residual of predicted epigenetic GA on chronologic GA, adjusted (intrinsic) or unadjusted (extrinsic) for cell type proportions. We used linear regressions to examine associations between average air pollution levels in each period and GA acceleration/deceleration, and weekly distributed lag models to examine critical exposure windows. Results Higher pregnancy average O3 and PM10 exposures were associated with decelerated intrinsic (β = -0.65 and -0.79) and extrinsic GA (β = -0.69 and -0.74) at birth (per 10-unit increment). Trimester-specific analyses revealed higher O3 and PM10 exposures in trimesters 2 to 3 associated with decelerated GA at birth. Weekly distributed lag models suggested pregnancy weeks 21 to 31 and 21 to 29 were critical windows of O3 and PM10 exposures, respectively. Conclusions Prenatal air pollution exposures, especially during mid- to late-pregnancy, were associated with lower biological maturity at birth.
Collapse
Affiliation(s)
- Zhengting He
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
- Wendy Klag Center for Autism and Developmental Disabilities, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Ashley Y. Song
- Wendy Klag Center for Autism and Developmental Disabilities, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Rose Schrott
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
- Wendy Klag Center for Autism and Developmental Disabilities, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Jason I. Feinberg
- Wendy Klag Center for Autism and Developmental Disabilities, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Kelly M. Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan
| | - Kelly S. Benke
- Wendy Klag Center for Autism and Developmental Disabilities, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Lisa A. Croen
- Division of Research, Kaiser Permanente Northern California, Pleasanton, California
- Department of Health Systems Science, Kaiser Permanente School of Medicine, Pasadena, California
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, School of Medicine, University of California at Davis (UC Davis), Davis, California
- UC Davis MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, UC Davis, Sacramento, California
| | - Rebecca J. Schmidt
- Department of Public Health Sciences, School of Medicine, University of California at Davis (UC Davis), Davis, California
- UC Davis MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, UC Davis, Sacramento, California
| | - Kristen Lyall
- AJ Drexel Autism Institute, Drexel University, Philadelphia, Pennsylvania
| | - Craig J. Newschaffer
- College of Health and Human Development, Pennsylvania State University, State College, Pennsylvania
| | | | - Heather E. Volk
- Wendy Klag Center for Autism and Developmental Disabilities, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Christine Ladd-Acosta
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
- Wendy Klag Center for Autism and Developmental Disabilities, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
3
|
Renaers E, Wang C, Bijnens EM, Plusquin M, Nawrot TS, Martens DS. Prenatal ambient temperature exposure and cord blood and placental mitochondrial DNA content: Insights from the ENVIRONAGE birth cohort study. ENVIRONMENT INTERNATIONAL 2025; 196:109267. [PMID: 39837208 DOI: 10.1016/j.envint.2025.109267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/12/2024] [Accepted: 01/08/2025] [Indexed: 01/23/2025]
Abstract
BACKGROUND Mitochondrial DNA content (mtDNAc) at birth is a sensitive biomarker to environmental exposures that may play an important role in later life health. We investigated sensitive time windows for the association between prenatal ambient temperature exposure and newborn mtDNAc. METHODS In the ENVIRONAGE birth cohort (Belgium), we measured cord blood and placental mtDNAc in 911 participants using a quantitative real-time polymerase chain reaction. We associated newborn mtDNAc with average weekly mean temperature during pregnancy using distributed lag nonlinear models (DLNMs). Double-threshold DLNMs were used to study the relationships between ambient temperature and mtDNAc below predefined low (5th, 10th, 15th percentile of the temperature distribution) and above predefined high temperature thresholds (95th, 90th, 85th percentile of the temperature distribution). FINDINGS Prenatal temperature exposure above the used high temperature thresholds was linked to lower cord blood mtDNAc, with the strongest effect in trimester 2 (cumulative estimates ranging from -21.4% to -25.6%). Placental mtDNAc showed positive and negative associations for high temperature exposure depending on the applied high temperature threshold. Negative associations were observed during trimester 1 using the 90th and 95th percentile threshold (-26.1% and -33.2% lower mtDNAc respectively), and a positive association in trimester 3 when applying the most stringent 95th percentile threshold (127.0%). Low temperature exposure was associated with higher mtDNAc for both cord blood and placenta. Cord blood mtDNAc showed a positive association in trimester 2 when using the 10th percentile threshold (11.3%), while placental mtDNAc showed positive associations during the whole gestation and for all applied thresholds (estimates ranging from 80.8% - 320.6%). INTERPRETATION Our study shows that in utero temperature exposure is associated with differences in newborn mtDNAc at birth, with stronger associations observed in the placenta. These findings highlight the impact of prenatal ambient temperature exposure on mtDNAc during pregnancy.
Collapse
Affiliation(s)
- Eleni Renaers
- Centre for Environmental Sciences Hasselt University Hasselt Belgium
| | - Congrong Wang
- Centre for Environmental Sciences Hasselt University Hasselt Belgium
| | - Esmée M Bijnens
- Centre for Environmental Sciences Hasselt University Hasselt Belgium; Department of Environmental Sciences Open University Heerlen Netherlands
| | - Michelle Plusquin
- Centre for Environmental Sciences Hasselt University Hasselt Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences Hasselt University Hasselt Belgium; Department of Public Health and Primary Care Leuven University Leuven Belgium
| | - Dries S Martens
- Centre for Environmental Sciences Hasselt University Hasselt Belgium.
| |
Collapse
|
4
|
Marcon A. Air Pollution and Bronchitis: Childhood Exposure, Lifelong Consequences. Am J Respir Crit Care Med 2024; 210:973-975. [PMID: 39133483 PMCID: PMC11531100 DOI: 10.1164/rccm.202407-1278ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024] Open
Affiliation(s)
- Alessandro Marcon
- Department of Diagnostics and Public Health University of Verona Verona, Italy
| |
Collapse
|
5
|
Meredith Weiss S, Aydin E, Lloyd-Fox S, Johnson MH. Trajectories of brain and behaviour development in the womb, at birth and through infancy. Nat Hum Behav 2024; 8:1251-1262. [PMID: 38886534 DOI: 10.1038/s41562-024-01896-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 04/04/2024] [Indexed: 06/20/2024]
Abstract
Birth is often seen as the starting point for studying effects of the environment on human development, with much research focused on the capacities of young infants. However, recent imaging advances have revealed that the complex behaviours of the fetus and the uterine environment exert influence. Birth is now viewed as a punctuate event along a developmental pathway of increasing autonomy of the child from their mother. Here we highlight (1) increasing physiological autonomy and perceptual sensitivity in the fetus, (2) physiological and neurochemical processes associated with birth that influence future behaviour, (3) the recalibration of motor and sensory systems in the newborn to adapt to the world outside the womb and (4) the effect of the prenatal environment on later infant behaviours and brain function. Taken together, these lines of evidence move us beyond nature-nurture issues to a developmental human lifespan view beginning within the womb.
Collapse
Affiliation(s)
- Staci Meredith Weiss
- University of Cambridge, Department of Psychology, Cambridge, UK.
- University of Roehampton, School of Psychology, London, UK.
| | - Ezra Aydin
- University of Cambridge, Department of Psychology, Cambridge, UK
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Sarah Lloyd-Fox
- University of Cambridge, Department of Psychology, Cambridge, UK
| | - Mark H Johnson
- University of Cambridge, Department of Psychology, Cambridge, UK
- Centre for Brain and Cognitive Development, Birkbeck, University of London, London, UK
| |
Collapse
|
6
|
Qiao JC, Sun LJ, Zhang MY, Gui SY, Wang XC, Hu CY. Association between ambient particulate matter exposure and mitochondrial DNA copy number: A systematic review and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171423. [PMID: 38442762 DOI: 10.1016/j.scitotenv.2024.171423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/24/2024] [Accepted: 02/29/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Ambient particulate matter (PM) has been recognized as inducing oxidative stress, which could contribute to mitochondrial damage and dysfunction. However, studies investigating the association between ambient PM and mitochondria, particularly mitochondrial DNA copy number (mtDNA-CN), have yielded inconsistent results. METHODS We conducted comprehensive literature searches to identify observational studies published before July 17, 2023, examining the association between ambient PM exposure and mtDNA-CN. Meta-analysis using random effects model was employed to calculate the pooled effect estimates for general individual exposures, as well as for prenatal exposure with specific trimester. Additionally, the quality and level of evidence for each exposure-outcome pair was evaluated. RESULTS A total of 10 studies were included in the systematic review and meta-analysis. The results indicated that general individual exposure to PM2.5 (β = -0.084, 95 % CI: -0.521, 0.353; I2 = 93 %) and PM10 (β = 0.035, 95 % CI: -0.129, 0.199; I2 = 95 %) did not significantly affect mtDNA-CN. Prenatal exposure to PM2.5 (β = 0.023, 95 % CI: -0.087, 0.133; I2 = 0 %) and PM10 (β = 0.006, 95 % CI: -0.135; 0.147; I2 = 51 %) were also not significantly associated with mtDNA-CN in offspring. The level of evidence for each tested exposure-outcome pair was assessed as "inadequate." CONCLUSIONS The findings of this systematic review and meta-analysis indicate that there is an "inadequate" strength of evidence for the association between general individual or prenatal exposure to ambient PM and mtDNA-CN. Future research necessitates studies with more rigorous design, enhanced control of confounding factors, and improved measures of exposure to substantiate our findings.
Collapse
Affiliation(s)
- Jian-Chao Qiao
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Liang-Jie Sun
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Meng-Yue Zhang
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Si-Yu Gui
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei 230601, China
| | - Xin-Chen Wang
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei 230601, China
| | - Cheng-Yang Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, China; Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Humanistic Medicine, School of Humanistic Medicine, Anhui Medical University, 81 Meishan Road, Hefei 230032, China.
| |
Collapse
|
7
|
Fussell JC, Jauniaux E, Smith RB, Burton GJ. Ambient air pollution and adverse birth outcomes: A review of underlying mechanisms. BJOG 2024; 131:538-550. [PMID: 38037459 PMCID: PMC7615717 DOI: 10.1111/1471-0528.17727] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023]
Abstract
Epidemiological data provide varying degrees of evidence for associations between prenatal exposure to ambient air pollutants and adverse birth outcomes (suboptimal measures of fetal growth, preterm birth and stillbirth). To assess further certainty of effects, this review examines the experimental literature base to identify mechanisms by which air pollution (particulate matter, nitrogen dioxide and ozone) could cause adverse effects on the developing fetus. It likely that this environmental insult impacts multiple biological pathways important for sustaining a healthy pregnancy, depending upon the composition of the pollutant mixture and the exposure window owing to changes in physiologic maturity of the placenta, its circulations and the fetus as pregnancy ensues. The current body of evidence indicates that the placenta is a target tissue, impacted by a variety of critical processes including nitrosative/oxidative stress, inflammation, endocrine disruption, epigenetic changes, as well as vascular dysregulation of the maternal-fetal unit. All of the above can disturb placental function and, as a consequence, could contribute to compromised fetal growth as well increasing the risk of stillbirth. Furthermore, given that there is often an increased inflammatory response associated with preterm labour, inflammation is a plausible mechanism mediating the effects of air pollution on premature delivery. In the light of increased urbanisation and an ever-changing climate, both of which increase ambient air pollution and negatively affect vulnerable populations such as pregnant individuals, it is hoped that the collective evidence may contribute to decisions taken to strengthen air quality policies, reductions in exposure to air pollution and subsequent improvements in the health of those not yet born.
Collapse
Affiliation(s)
- Julia C. Fussell
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
- National Institute for Health and Care Research Health Protection Research Unit in Environmental Exposures and Health, Imperial College London, London, United Kingdom
| | - Eric Jauniaux
- EGA Institute for Women's Health, Faculty of Population Health Sciences, University College London, London, UK
| | - Rachel B. Smith
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
- National Institute for Health and Care Research Health Protection Research Unit in Environmental Exposures and Health, Imperial College London, London, United Kingdom
- Mohn Centre for Children’s Health and Wellbeing, School of Public Health, Imperial College London, London, UK
| | - Graham J. Burton
- Department of Physiology, Development and Neuroscience, University of Cambridge
| |
Collapse
|
8
|
Mishra S, Stukken CVD, Drury S, Nawrot TS, Martens DS. Prenatal air pollution exposure in relation to the telomere-mitochondrial axis of aging at birth: A systematic review. ENVIRONMENTAL RESEARCH 2024; 244:117990. [PMID: 38141917 PMCID: PMC10922941 DOI: 10.1016/j.envres.2023.117990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/06/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
BACKGROUND Telomere length (TL) and mitochondrial DNA (mtDNA) are central markers of vital biological mechanisms, including cellular aging. Prenatal air pollution exposure may impact molecular markers of aging leading to adverse health effects. OBJECTIVE To perform a systematic review on human population-based studies investigating the association between prenatal air pollution exposure and TL or mtDNA content at birth. METHODOLOGY Searches were undertaken on PubMed and Web of Science until July 2023. The framework of the review was based on the PRISMA-P guidelines. RESULTS Nineteen studies studied prenatal air pollution and TL or mtDNA content at birth. Studies investigating TL or mtDNA content measured at any other time or did not evaluate prenatal air pollution were excluded. Twelve studies (including 4381 participants with study sample range: 97 to 743 participants) investigated newborn TL and eight studies (including 3081 participants with study sample range: 120 to 743 participants) investigated mtDNA content at birth. Seven studies focused on particulate matter (PM2.5) exposure and newborn TL of which all, except two, showed an inverse association in at least one of the gestational trimesters. Of the eight studies on mtDNA content, four focused on PM2.5 air pollution with two of them reporting an inverse association. For PM2.5 exposure, observations on trimester-specific effects were inconsistent. Current literature showing associations with other prenatal air pollutants (including nitrogen oxides, sulfur dioxide, carbon monoxide and ozone) is inconsistent. CONCLUSION This review provides initial evidence that prenatal PM2.5 exposure impacts the telomere-mitochondrial axis of aging at birth. The current evidence did not reveal harmonious observations for trimester-specific associations nor showed consistent effects of other air pollutants. Future studies should elucidate the specific contribution of prenatal exposure to pollutants other than PM in relation to TL and mtDNA content at birth, and the potential later life health consequences.
Collapse
Affiliation(s)
- Shradha Mishra
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | | | - Stacy Drury
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium; Department of Public Health & Primary Care, Occupational & Environmental Medicine, Leuven University, Leuven, Belgium
| | - Dries S Martens
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium.
| |
Collapse
|
9
|
Li J, Lai ZG, Huang XH. Association of Thallium with Diabetes Risk among Patients with Hearing Loss: Result from NHANES 2013 to 2018. Medicine (Baltimore) 2024; 103:e37317. [PMID: 38428895 PMCID: PMC10906567 DOI: 10.1097/md.0000000000037317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/30/2024] [Indexed: 03/03/2024] Open
Abstract
To evaluate the correlation between thallium and diabetes risk among participants with hearing loss. This retrospective cohort study extracted related data such as demographic characteristics, lifestyle factors, and laboratory findings from the National Health and Nutrition Examination Survey (NHANES) database (2013-2018). Logistic regression analysis and interaction analysis were adopted to analyze the correlation between thallium and diabetes risk among patients with hearing loss. Then, the restricted cubic spline was employed to assess the nonlinear relationship between thallium and diabetes risk. The receiver operating characteristic curve and decision curve analysis were used to assess the predictive values of 3 multivariate models with or without thallium for diabetes risk. The Delong test was adopted to assess the significant change of the area under the curves (AUCs) upon thallium addition. A total of 425 participants with hearing loss were enrolled in the study: without diabetes group (n = 316) and diabetes group (n = 109). Patients with hearing loss in the diabetes group had significantly lower thallium (P < .05). The thallium was an independent predictor for diabetes risk after adjusting various covariates (P < .05). The restricted cubic spline (RCS) result showed that there was a linear correlation between thallium and diabetes risk (P nonlinear > .05). Finally, the receiver operating characteristic and decision curve analysis results revealed that adding thallium to the models slightly increased the performance in predicting diabetes risk but without significance in AUC change. Thallium was an independent predictor of diabetes risk among patients with hearing loss. The addition of thallium might help improve the predictive ability of models for risk reclassification. However, the conclusions should be verified in our cohort in the future due to the limitations inherent in the NHANES database.
Collapse
Affiliation(s)
- Jing Li
- Otolaryngology department, Longyan First Affiliated Hospital of Fujian Medical University, Longyan 364000, Fujian, China
| | - Zhi-Gang Lai
- Otolaryngology department, Longyan First Affiliated Hospital of Fujian Medical University, Longyan 364000, Fujian, China
| | - Xiao-Hua Huang
- Otolaryngology department, Longyan First Affiliated Hospital of Fujian Medical University, Longyan 364000, Fujian, China
| |
Collapse
|
10
|
Ohadi H, Khalili P, Abasnezhad Kasrineh F, Esmaeili OS, Esmaeili Ranjbar F, Manshoori A, Hajizadeh MR, Jalali Z. Umbilical cord blood thyroid hormones are inversely related to telomere length and mitochondrial DNA copy number. Sci Rep 2024; 14:3164. [PMID: 38326475 PMCID: PMC10850477 DOI: 10.1038/s41598-024-53628-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 02/02/2024] [Indexed: 02/09/2024] Open
Abstract
Hypothyroidism has been linked to reduced mortality rate and increased lifespan and health span. Telomere shortening, enhanced oxidative stress, and reduced cellular mitochondrial content are important hallmarks of aging shown to be related to age-associated diseases. It was proposed that the status of these markers in early life can be predictive of lifespan and the predisposition to certain age-associated disease in adulthood. Animal studies indicated that prenatal injection of thyroid hormones affects postnatal telomere length. Here, we sought to determine whether thyroid hormones TSH and fT4 are related to the telomere length, mitochondrial DNA copy number (mtDNAcn), and oxidative stress resistance marker GPX in the cord blood of newborns. In this study, we analyzed 70 mothers (18-42 years) and neonate dyads born in 2022 at the Nik Nafs maternity Hospital in Rafsanjan. The relative telomere length (RTL) and mtDNAcn were measured in the genomic DNA of cord blood leukocytes using real-time PCR. GPX enzyme activity was measured in the serum using colorimetric assays. In this study the correlation between these markers and the cord blood TSH and fT4 hormones were assessed using regression models. We found a reverse relationship between TSH levels and RTL in the cord blood of neonates. Additionally, our results displayed increased TSH levels associated with enhanced GPX activity. Regarding the mitochondrial DNA copy number, we found an indirect relationship between fT4 level and mtDNAcn only in male newborns. Future analyses of various oxidative stress markers, mitochondrial biogenesis status, telomerase activity, and the level of DNA damage are warranted to demonstrate the underlying mechanism of our observations.
Collapse
Affiliation(s)
- Homa Ohadi
- Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Parvin Khalili
- Social Determinants of Health Research Centre, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Epidemiology, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Abasnezhad Kasrineh
- Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ozra Sadat Esmaeili
- Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Faeze Esmaeili Ranjbar
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Azita Manshoori
- Department of Gynecology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Reza Hajizadeh
- Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Zahra Jalali
- Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
- Non-Communicable Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
11
|
Miller RL, Rivera J, Lichtiger L, Govindarajulu US, Jung KH, Lovinsky-Desir S, Perera F, Balcer Whaley S, Newman M, Grant TL, McCormack M, Perzanowski M, Matsui EC. Associations between mitochondrial biomarkers, urban residential exposures and childhood asthma outcomes over 6 months. ENVIRONMENTAL RESEARCH 2023; 239:117342. [PMID: 37813137 PMCID: PMC10843300 DOI: 10.1016/j.envres.2023.117342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/26/2023] [Accepted: 10/07/2023] [Indexed: 10/11/2023]
Abstract
Determining biomarkers of responses to environmental exposures and evaluating whether they predict respiratory outcomes may help optimize environmental and medical approaches to childhood asthma. Relative mitochondrial (mt) DNA abundance and other potential mitochondrial indicators of oxidative stress may provide a sensitive metric of the child's shifting molecular responses to its changing environment. We leveraged two urban childhood cohorts (Environmental Control as Add-on Therapy in Childhood Asthma (ECATCh); Columbia Center for Children's Environmental Health (CCCEH)) to ascertain whether biomarkers in buccal mtDNA associate with airway inflammation and altered lung function over 6 months of time and capture biologic responses to multiple external stressors such as indoor allergens and fine particulate matter (PM2.5). Relative mtDNA content was amplified by qPCR and methylation of transfer RNA phenylalanine/rRNA 12S (TF/RNR1), cytochrome c oxidase (CO1), and carboxypeptidase O (CPO) was measured by pyrosequencing. Data on residential exposures and respiratory outcomes were harmonized between the two cohorts. Repeated measures and multiple regression models were utilized to assess relationships between mitochondrial biomarkers, respiratory outcomes, and residential exposures (PM2.5, allergens), adjusted for potential confounders and time-varying asthma. We found across the 6 month visits, a 0.64 fold higher level of TF/RNR1 methylation was detected among those with asthma in comparison to those without asthma ((parameter estimate (PE) 0.64, standard error 0.28, p = 0.03). In prospective analyses, CPO methylation was associated with subsequent reduced forced vital capacity (FVC; PE -0.03, standard error 0.01, p = 0.02). Bedroom dust mouse allergen, but not indoor PM2.5, was associated with higher methylation of TF/RNR1 (PE 0.015, standard error 0.006, p = 0.01). Select mtDNA measures in buccal cells may indicate children's responses to toxic environmental exposures and associate selectively with asthma and lung function.
Collapse
Affiliation(s)
- Rachel L Miller
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA; Columbia Center for Childrens Environmental Health, Columbia University Mailman School of Public Health, 722 West 168th Street, New York, NY, 10032, USA.
| | - Janelle Rivera
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Lydia Lichtiger
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Usha S Govindarajulu
- Center for Biostatistics, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Kyung Hwa Jung
- Division of Pediatric Pulmonary, Columbia University Irving Medical Center, 630 W. 168th St, New York, NY, 10032, USA
| | - Stephanie Lovinsky-Desir
- Division of Pediatric Pulmonary, Columbia University Irving Medical Center, 630 W. 168th St, New York, NY, 10032, USA
| | - Frederica Perera
- Columbia Center for Childrens Environmental Health, Columbia University Mailman School of Public Health, 722 West 168th Street, New York, NY, 10032, USA
| | - Susan Balcer Whaley
- Department of Population Health, Dell Medical School University of Texas at Austin, 1601 Trinity St., Bldg. B, Stop Z0500, Austin, TX, 78712, USA
| | - Michelle Newman
- Department of Epidemiology and Public Health, University of Maryland, 10 S. Pine St, MSTF 3-34, Baltimore, MD, 21201, USA
| | - Torie L Grant
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Meredith McCormack
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Matthew Perzanowski
- Columbia Center for Childrens Environmental Health, Columbia University Mailman School of Public Health, 722 West 168th Street, New York, NY, 10032, USA
| | - Elizabeth C Matsui
- Department of Population Health, Dell Medical School University of Texas at Austin, 1601 Trinity St., Bldg. B, Stop Z0500, Austin, TX, 78712, USA
| |
Collapse
|
12
|
Smith AR, Hinojosa Briseño A, Picard M, Cardenas A. The prenatal environment and its influence on maternal and child mitochondrial DNA copy number and methylation: A review of the literature. ENVIRONMENTAL RESEARCH 2023; 227:115798. [PMID: 37001851 PMCID: PMC10164709 DOI: 10.1016/j.envres.2023.115798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 03/13/2023] [Accepted: 03/28/2023] [Indexed: 05/08/2023]
Abstract
Mitochondrial DNA (mtDNA) is sensitive to environmental stressors and associated with human health. We reviewed epidemiological literature examining associations between prenatal environmental, dietary, and social exposures and alterations in maternal/child mtDNA copy number (mtDNAcn) and mtDNA methylation. Evidence exists that prenatal maternal exposures are associated with alterations in mtDNAcn for air pollution, chemicals (e.g. metals), cigarette smoke, human immunodeficiency virus (HIV) infection and treatment. Evidence for their associations with mtDNA methylation was limited. Given its potential implications as a disease pathway biomarker, studies with sufficient biological specificity should examine the long-term implications of prenatal and early-life mtDNA alterations in response to prenatal exposures.
Collapse
Affiliation(s)
- Anna R Smith
- Department of Epidemiology and Population Health, Stanford Medicine, Stanford, CA, USA
| | - Alejandra Hinojosa Briseño
- Department of Environmental and Occupational Health, California State University, Northridge, Northridge, CA, USA
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York City, New York, USA
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford Medicine, Stanford, CA, USA.
| |
Collapse
|
13
|
Liu J, Chen Y, Liu D, Ye F, Sun Q, Huang Q, Dong J, Pei T, He Y, Zhang Q. Prenatal exposure to particulate matter and term low birth weight: systematic review and meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:63335-63346. [PMID: 37059952 PMCID: PMC10172254 DOI: 10.1007/s11356-023-26831-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/03/2023] [Indexed: 04/16/2023]
Abstract
To evaluate the relationships between maternal particulate matter exposure and offspring birth weight. Studies were categorized into three subgroups: term low birth weight (TLBW) among full-term births and all births (regardless of gestational age) and low birth weight (LBW) among all births, based on the search results of MEDLINE and the Web of Science from the inception of the database to April 2022. Subgroup analyses were conducted based on the economic status, region, exposure assessment, risk of bias, and adjustment. Sixty-one studies involving 34,506,975 singleton live births in 15 countries were analyzed. Overall, the risk of bias for most studies (75%) was low. In 39 of 47 term birth studies, the pooled odds ratio of TLBW among term births for per interquartile range (IQR) increases throughout the entire pregnancy was 1.02 (1.01 to 1.03) for PM2.5 and 1.03 (1.01 to 1.05) for PM10 after adjustment for covariates. No significant relevance was detected across each trimester period for PM2.5. A stronger effect was observed during the second trimester (1.03, 1.01 to 1.06) for PM10. There was no increased risk of TLBW in all births associated with IQR increases in PM2.5 and PM10. LBW was associated with PM2.5 exposure in 4 of 7 studies, but statistical heterogeneity was considerable. In the TLBW subgroup analysis, the effects of PM2.5 and PM10 were both greater in studies conducted in advanced countries, studies with low bias, and studies that adjusted for maternal age, infant sex, and parity. Stronger effects were present for PM2.5 exposure collected from monitoring stations and PM10 exposure interpolated from the inverse distance weighting model. TLBW may be associated with prenatal exposure to particulate matter, but no critical windows were identified. Stronger associations were observed in advanced countries. Future original study designs need to consider the impact of different exposure assessment modalities and all possible confounding factors.
Collapse
Affiliation(s)
- Jing Liu
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuanmei Chen
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Die Liu
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Fang Ye
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Qi Sun
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Qiang Huang
- State Key Laboratory of Resources and Environmental Information Systems, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jing Dong
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- National Research Institute for Family Planning, Beijing, China
- National Human Genetic Resources Center, Beijing, China
| | - Tao Pei
- State Key Laboratory of Resources and Environmental Information Systems, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuan He
- National Research Institute for Family Planning, Beijing, China
- National Human Genetic Resources Center, Beijing, China
| | - Qi Zhang
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China.
| |
Collapse
|
14
|
Kupsco A, Bloomquist TR, Hu H, Reddam A, Tang D, Goldsmith J, Rundle AG, Baccarelli AA, Herbstman JB. Mitochondrial DNA copy number dynamics and associations with the prenatal environment from birth through adolescence in a population of Dominican and African American children. Mitochondrion 2023; 69:140-146. [PMID: 36804466 PMCID: PMC10006332 DOI: 10.1016/j.mito.2023.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/17/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
Mitochondrial DNA copy number (mtDNAcn) dynamics throughout childhood are poorly understood. We profiled mtDNAcn from birth through adolescence and evaluated how the prenatal environment influences mtDNAcn across childhood. Data were collected from children from New York City followed through 18 years. Using duplexed qRT-PCR, we quantified mtDNAcn relative to nuclear DNA in blood collected from the umbilical cord (n = 450), children aged 5-7 (n = 510), and adolescents aged 15-18 (n = 278). We examined mtDNAcn across childhood with linear mixed-effects models (LMM). Relative mtDNAcn was lowest at birth (mean ± SD: 0.67 ± 0.35) and increased in childhood (1.24 ± 0.50) then slightly declined in adolescence (1.13 ± 0.44). We observed no differences in mtDNAcn by sex or race/ethnicity. mtDNAcn was positively associated with prenatal environmental tobacco smoke exposure (0.077 [ 0.01, 0.14] change in relative mtDNAcn) but negatively associated with maternal completion of high school (-0.066 [-0.13, 0.00]), with the receipt of public assistance at birth (-0.074 [-0.14, -0.01]), and when mother born outside the U.S (-0.061 [-0.13, 0.003]). Infant birth outcomes were not associated with mtDNAcn. MtDNAcn levels were dynamic through childhood and associated with some prenatal factors, underscoring the need for the investigation of longitudinal mtDNAcn for human health research.
Collapse
Affiliation(s)
- Allison Kupsco
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States.
| | - Tessa R Bloomquist
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Heng Hu
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Aalekhya Reddam
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Deliang Tang
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Jeff Goldsmith
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Andrew G Rundle
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Julie B Herbstman
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
| |
Collapse
|
15
|
Cosemans C, Wang C, Martens DS, Janssen BG, Vanpoucke C, Lefebvre W, Smeets K, Nawrot TS, Plusquin M. In Utero Exposure to Air Pollutants and Mitochondrial Heteroplasmy in Neonates. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:350-359. [PMID: 36516295 DOI: 10.1021/acs.est.2c02556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Mitochondria are sensitive to oxidative stress, which can be caused by traffic-related air pollution. Placental mitochondrial DNA (mtDNA) mutations have been previously linked with air pollution. However, the relationship between prenatal air pollution and cord-blood mtDNA mutations has been poorly understood. Therefore, we hypothesized that prenatal particulate matter (PM2.5) and NO2 exposures are associated with cord-blood mtDNA heteroplasmy. As part of the ENVIRONAGE cohort, 200 mother-newborn pairs were recruited. Cord-blood mitochondrial single-nucleotide polymorphisms were identified by whole mitochondrial genome sequencing, and heteroplasmy levels were evaluated based on the variant allele frequency (VAF). Outdoor PM2.5 and NO2 concentrations were determined by a high-resolution spatial-temporal interpolation method based on the maternal residential address. Distributed lag linear models were used to determine sensitive time windows for the association between NO2 exposure and cord-blood mtDNA heteroplasmy. A 5 μg/m3 increment in NO2 was linked with MT-D-Loop16311T>C heteroplasmy from gestational weeks 17-25. MT-CYTB14766C>T was negatively associated with NO2 exposure in mid pregnancy, from weeks 14-17, and positively associated in late pregnancy, from weeks 31-36. No significant associations were observed with prenatal PM2.5 exposure. This is the first study to show that prenatal NO2 exposure is associated with cord-blood mitochondrial mutations and suggests two critical windows of exposure in mid-to-late pregnancy.
Collapse
Affiliation(s)
- Charlotte Cosemans
- Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Congrong Wang
- Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Dries S Martens
- Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Bram G Janssen
- Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Charlotte Vanpoucke
- Belgian Interregional Environment Agency, IRCEL-CELINE, 1000 Brussels, Belgium
| | - Wouter Lefebvre
- Flemish Institute for Technological Research, VITO, 2400 Mol, Belgium
| | - Karen Smeets
- Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
- School of Public Health, Occupational & Environmental Medicine, Leuven University, 3000 Leuven, Belgium
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| |
Collapse
|
16
|
Environmental Chemical Exposures and Mitochondrial Dysfunction: a Review of Recent Literature. Curr Environ Health Rep 2022; 9:631-649. [PMID: 35902457 PMCID: PMC9729331 DOI: 10.1007/s40572-022-00371-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW Mitochondria play various roles that are important for cell function and survival; therefore, significant mitochondrial dysfunction may have chronic consequences that extend beyond the cell. Mitochondria are already susceptible to damage, which may be exacerbated by environmental exposures. Therefore, the aim of this review is to summarize the recent literature (2012-2022) looking at the effects of six ubiquitous classes of compounds on mitochondrial dysfunction in human populations. RECENT FINDINGS The literature suggests that there are a number of biomarkers that are commonly used to identify mitochondrial dysfunction, each with certain advantages and limitations. Classes of environmental toxicants such as polycyclic aromatic hydrocarbons, air pollutants, heavy metals, endocrine-disrupting compounds, pesticides, and nanomaterials can damage the mitochondria in varied ways, with changes in mtDNA copy number and measures of oxidative damage the most commonly measured in human populations. Other significant biomarkers include changes in mitochondrial membrane potential, calcium levels, and ATP levels. This review identifies the biomarkers that are commonly used to characterize mitochondrial dysfunction but suggests that emerging mitochondrial biomarkers, such as cell-free mitochondria and blood cardiolipin levels, may provide greater insight into the impacts of exposures on mitochondrial function. This review identifies that the mtDNA copy number and measures of oxidative damage are commonly used to characterize mitochondrial dysfunction, but suggests using novel approaches in addition to well-characterized ones to create standardized protocols. We identified a dearth of studies on mitochondrial dysfunction in human populations exposed to metals, endocrine-disrupting chemicals, pesticides, and nanoparticles as a gap in knowledge that needs attention.
Collapse
|
17
|
Avila-Rojas SH, Aparicio-Trejo OE, Sanchez-Guerra MA, Barbier OC. Effects of fluoride exposure on mitochondrial function: Energy metabolism, dynamics, biogenesis and mitophagy. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 94:103916. [PMID: 35738460 DOI: 10.1016/j.etap.2022.103916] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 06/09/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Fluoride is ubiquitous in the environment. Furthermore, drinking water represents the main source of exposure to fluoride for humans. Interestingly, low fluoride concentrations have beneficial effects on bone and teeth development; however, chronic fluoride exposure has harmful effects on human health. Besides, preclinical studies associate fluoride toxicity with oxidative stress, inflammation, and apoptosis. On the other hand, it is well-known that mitochondria play a key role in reactive oxygen species production. By contrast, fluoride's effect on processes such as mitochondrial dynamics, biogenesis and mitophagy are little known. These processes modulate the size, content, and distribution of mitochondria and their depuration help to counter the reactive oxygen species production and cytochrome c release, thereby allowing cell survival. However, a maladaptive response could enhance fluoride-induced toxicity. The present review gives a brief account of fluoride-induced mitochondrial alterations on soft and hard tissues, including liver, reproductive organs, heart, brain, lung, kidney, bone, and tooth.
Collapse
Affiliation(s)
- Sabino Hazael Avila-Rojas
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Departamento de Toxicología (CINVESTAV-IPN), Av. IPN No. 2508 Col., San Pedro Zacatenco, México CP 07360, Mexico.
| | | | - Marco Antonio Sanchez-Guerra
- Department of Developmental Neurobiology, National Institute of Perinatology, Montes Urales 800, Lomas Virreyes, Mexico 1100, Mexico.
| | - Olivier Christophe Barbier
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Departamento de Toxicología (CINVESTAV-IPN), Av. IPN No. 2508 Col., San Pedro Zacatenco, México CP 07360, Mexico.
| |
Collapse
|
18
|
Zhang R, Du J, Xiao Z, Jiang Y, Jin L, Weng Q. Association between the peripartum maternal and fetal telomere lengths and mitochondrial DNA copy numbers and preeclampsia: a prospective case-control study. BMC Pregnancy Childbirth 2022; 22:483. [PMID: 35698093 PMCID: PMC9195426 DOI: 10.1186/s12884-022-04801-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 06/01/2022] [Indexed: 11/17/2022] Open
Abstract
Purpose To explore changes in telomere length (TL) and mitochondrial copy number (mtDNA-CN) in preeclampsia (PE) and to evaluate the combined effect of maternal TL and mtDNA-CN on PE risk. Methods A case–control study of 471 subjects (130 PE cases and 341 age frequency matched controls with gestational age rank from 24 to 42 weeks) was conducted in Nanjing Drum Tower Hospital, Jiangsu Province of China. Relative telomere length (RTL) and mtDNA-CN were measured using quantitative polymerase chain reaction (qPCR), and PE risk was compared between groups by logistic regression analyses. Results PE patients displayed longer RTL (0.48 versus 0.30) and higher mtDNA-CN (3.02 versus 2.00) in maternal blood as well as longer RTL (0.61 versus 0.35) but lower mtDNA-CN (1.69 versus 5.49) in cord blood (all p < 0.001). Exercise during pregnancy exerted an obvious effect of maternal telomere length prolongation. Multiparous women with folic acid intake during early pregnancy and those who delivered vaginally showed longer telomere length, while those factors imposed no or opposite effect on RTL in PE cases. Furthermore, RTL and mtDNA-CN were positively correlated in controls (in maternal blood r = 0.18, p < 0.01; in cord blood r = 0.19, p < 0.001), but this correlation was disrupted in PE patients in both maternal blood and cord blood. Longer maternal RTL and higher mtDNA-CN were associated with a higher risk of PE, and the ROC curve of RTL and mtDNA-CN for predicting PE risk presented an AUC of 0.755 (95% CI: 0.698–0.812). Conclusions The interaction of TL and mtDNA-CN may play an important role in the pathogenesis of PE and could be a potential biomarker of PE risk. Supplementary information The online version contains supplementary material available at 10.1186/s12884-022-04801-0.
Collapse
Affiliation(s)
- Ruyi Zhang
- Department of Obstetrics & Gynecology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.,Department of Obstetrics & Gynecology, Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, 210008, China.,Department of Obstetrics & Gynecology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, China.,Department of Obstetrics & Gynecology, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing, 210008, China
| | - Jiangbo Du
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,StateKey Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Zhendong Xiao
- Department of Obstetrics & Gynecology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yuan Jiang
- Department of Obstetrics & Gynecology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Liang Jin
- Department of Obstetrics & Gynecology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Qiao Weng
- Department of Obstetrics & Gynecology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China. .,Department of Obstetrics & Gynecology, Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, 210008, China. .,Department of Obstetrics & Gynecology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, China. .,Department of Obstetrics & Gynecology, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing, 210008, China.
| |
Collapse
|
19
|
Herrera-Moreno JF, Estrada-Gutierrez G, Wu H, Bloomquist TR, Rosa MJ, Just AC, Lamadrid-Figueroa H, Téllez-Rojo MM, Wright RO, Baccarelli AA. Prenatal lead exposure, telomere length in cord blood, and DNA methylation age in the PROGRESS prenatal cohort. ENVIRONMENTAL RESEARCH 2022; 205:112577. [PMID: 34921825 DOI: 10.1016/j.envres.2021.112577] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/02/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Lead is a ubiquitous pollutant with deleterious effects on human health and remains a major current public health concern in developing countries. This heavy metal may interfere with nucleic acids via oxidative stress or epigenetic changes that affect biological markers of aging, e.g., telomere length and DNA methylation (DNAm). Telomere shortening associates with biological age in newborns, and DNA methylation at specific CpG sites can be used to calculate "epigenetic clocks". OBJECTIVE The aim of this study was to examine the associations of prenatal lead exposures with telomere length and DNA-methylation-based predictors of age in cord blood. DESIGN The study included 507 mother-child pairs from the Programming Research in Obesity, Growth, Environment and Social Stressors (PROGRESS) study, a birth cohort in Mexico City. Maternal blood (second trimester, third trimester and at delivery) and bone lead levels (one month postpartum) were measured using inductively coupled plasma-mass spectrometry and X-ray fluorescence, respectively. Cord blood leukocyte telomere length was measured using quantitative PCR and apparent age by DNA methylation biomarkers, i.e., Horvath's DNA methylation age and the Knight's predictor of gestational age. RESULTS Average maternal age was 28.5 ± 5.5 years, and 51.5% reported low socioeconomic status. Children's mean telomere length was 1.2 ± 1.3 relative units, and mean DNA methylation ages using the Horvath's and Knight's clocks were -2.6 ± 0.1 years and 37.9 ± 1.4 weeks (mean ± SD), respectively. No significant associations were found between maternal blood and bone lead concentrations with telomere length and DNAm age in newborns. CONCLUSION We found no associations of prenatal lead exposure with telomere length and DNA methylation age biomarkers.
Collapse
Affiliation(s)
- José F Herrera-Moreno
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | | | - Haotian Wu
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Tessa R Bloomquist
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Maria José Rosa
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Allan C Just
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hector Lamadrid-Figueroa
- Department of Perinatal Health, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | - Martha M Téllez-Rojo
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
20
|
Rosa MJ, Politis MD, Tamayo-Ortiz M, Colicino E, Pantic I, Estrada-Gutierrez G, Tolentino MC, Espejel-Nuñez A, Solano-Gonzalez M, Kloog I, Rivera NR, Baccarelli AA, Tellez-Rojo MM, Wright RO, Just AC, Sanders AP. Critical windows of perinatal particulate matter (PM 2.5) exposure and preadolescent kidney function. ENVIRONMENTAL RESEARCH 2022; 204:112062. [PMID: 34537199 PMCID: PMC8678189 DOI: 10.1016/j.envres.2021.112062] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
Air pollution exposure, especially particulate matter ≤2.5 μm in diameter (PM2.5), is associated with poorer kidney function in adults and children. Perinatal exposure may occur during susceptible periods of nephron development. We used distributed lag nonlinear models (DLNMs) to examine time-varying associations between early life daily PM2.5 exposure (periconceptional through age 8 years) and kidney parameters in preadolescent children aged 8-10 years. Participants included 427 mother-child dyads enrolled in the PROGRESS birth cohort study based in Mexico City. Daily PM2.5 exposure was estimated at each participant's residence using a validated satellite-based spatio-temporal model. Kidney function parameters included estimated glomerular filtration rate (eGFR), serum cystatin C, and blood urea nitrogen (BUN). Models were adjusted for child's age, sex and body mass index (BMI) z-score, as well as maternal education, indoor smoking report and seasonality (prenatal models were additionally adjusted for average first year of life PM2.5 exposure). We also tested for sex-specific effects. Average perinatal PM2.5 was 22.7 μg/m3 and ranged 16.4-29.3 μg/m3. Early pregnancy PM2.5 exposures were associated with higher eGFR in preadolescence. Specifically, we found that PM2.5 exposure between weeks 1-18 of gestation was associated with increased preadolescent eGFR, whereas exposure in the first 14 months of life after birth were associated with decreased eGFR. Specifically, a 5 μg/m3 increase in PM2.5 during the detected prenatal window was associated with a cumulative increase in eGFR of 4.44 mL/min/1.732 (95%CI: 1.37, 7.52), and during the postnatal window we report a cumulative eGFR decrease of -10.36 mL/min/1.732 (95%CI: -17.68, -3.04). We identified perinatal windows of susceptibility to PM2.5 exposure with preadolescent kidney function parameters. Follow-up investigating PM2.5 exposure with peripubertal kidney function trajectories and risk of kidney disease in adulthood will be critical.
Collapse
Affiliation(s)
- Maria José Rosa
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maria D Politis
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marcela Tamayo-Ortiz
- Occupational Health Research Unit, Mexican Social Security Institute, Mexico City, Mexico
| | - Elena Colicino
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ivan Pantic
- National Institute of Perinatology, Mexico City, Mexico
| | | | | | | | - Maritsa Solano-Gonzalez
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | - Itai Kloog
- Department of Geography and Environmental Development, Ben-Gurion University of the Negev, P.O.B. Beer Sheva, Israel
| | - Nadya Rivera Rivera
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Martha M Tellez-Rojo
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Allan C Just
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alison P Sanders
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
21
|
Brunst KJ, Hsu HHL, Zhang L, Zhang X, Carroll KN, Just A, Coull BA, Kloog I, Wright RO, Baccarelli AA, Wright RJ. Prenatal particulate matter exposure and mitochondrial mutational load at the maternal-fetal interface: Effect modification by genetic ancestry. Mitochondrion 2022; 62:102-110. [PMID: 34785263 PMCID: PMC9175302 DOI: 10.1016/j.mito.2021.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/26/2021] [Accepted: 11/08/2021] [Indexed: 12/30/2022]
Abstract
Prenatal ambient particulate matter (PM2.5) exposure impacts infant development and alters placental mitochondrial DNA abundance. We investigated whether the timing of PM2.5 exposure predicts placental mitochondrial mutational load using NextGen sequencing in 283 multi-ethnic mother-infant dyads. We observed increased PM2.5exposure, particularly during mid- to late-pregnancy and among genes coding for NADH dehydrogenase and subunits of ATP synthase, was associated with a greater amount of nonsynonymous mutations. The strongest associations were observed for participants of African ancestry. Further work is needed to tease out the role of mitochondrial genetics and its impact on offspring development and emerging disease disparities.
Collapse
Affiliation(s)
- Kelly J Brunst
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, 160 Panzeca Way, Cincinnati, OH 45267, USA.
| | - Hsiao-Hsien Leon Hsu
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 17 East 102(nd) St. New York, NY 10029, USA.
| | - Li Zhang
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, 160 Panzeca Way, Cincinnati, OH 45267, USA.
| | - Xiang Zhang
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, 160 Panzeca Way, Cincinnati, OH 45267, USA.
| | - Kecia N Carroll
- Kravis Children's Hospital, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, 17 East 102(nd) St. New York, NY 10029, USA; Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, 17 East 102(nd) St., New York, NY 10029, USA.
| | - Allan Just
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 17 East 102(nd) St. New York, NY 10029, USA
| | - Brent A Coull
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 655 Huntington Ave., Boston, MA 02115, USA.
| | - Itai Kloog
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 17 East 102(nd) St. New York, NY 10029, USA; Department of Geography and Environmental Development, Ben-Gurion University of the Negev, P.O.B 653, Beer Sheva, Israel.
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 17 East 102(nd) St. New York, NY 10029, USA; Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, 17 East 102(nd) St., New York, NY 10029, USA.
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Medical Center, 722 W 168(th) St. New York, NY 10032, USA.
| | - Rosalind J Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 17 East 102(nd) St. New York, NY 10029, USA; Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, 17 East 102(nd) St., New York, NY 10029, USA.
| |
Collapse
|
22
|
Rahman MM, Shu YH, Chow T, Lurmann FW, Yu X, Martinez MP, Carter SA, Eckel SP, Chen JC, Chen Z, Levitt P, Schwartz J, McConnell R, Xiang AH. Prenatal Exposure to Air Pollution and Autism Spectrum Disorder: Sensitive Windows of Exposure and Sex Differences. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:17008. [PMID: 35040691 PMCID: PMC8765363 DOI: 10.1289/ehp9509] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 12/02/2021] [Accepted: 12/22/2021] [Indexed: 05/24/2023]
Abstract
BACKGROUND Studies have shown that air pollution exposures during pregnancy are associated with an increased risk of autism spectrum disorder (ASD) in children, and the risk appears to be greater for boys. However, studies assessing gestational windows of susceptibility have been mostly limited by trimesters. OBJECTIVE We identified sensitive windows of exposure to regional air pollution and risk of ASD and examined sex differences in a large birth cohort. METHODS This population-based retrospective cohort study included 294,937 mother-child pairs with singleton deliveries in Kaiser Permanente Southern California (KPSC) hospitals from 2001 to 2014. Children were followed using electronic medical records until clinical ASD diagnosis, non-KPSC membership, death, or 31 December 2019, whichever came first. Weekly mean fine particulate matter [PM with an aerodynamic diameter of ≤2.5μm (PM2.5)], nitrogen dioxide (NO2), and ozone (O3) pregnancy exposures were estimated using spatiotemporal prediction models. Cox proportional hazard models with distributed lags were used to estimate weekly pollutant exposure associations with ASD risk for the entire cohort, and separately for boys and for girls. Models were adjusted for child sex (for full cohort), maternal race/ethnicity, maternal age at delivery, parity, maternal education, maternal comorbidities, medical center, census tract median household income, birth year, and season. RESULTS There were 5,694 ASD diagnoses (4,636 boys, 1,058 girls). Sensitive PM2.5 exposure windows associated with ASD were found early in pregnancy, statistically significant throughout the first two trimesters [1-27 wk of gestation, cumulative hazard ratio (HR)=1.14 [95% confidence interval (CI): 1.06, 1.23] per interquartile range (IQR) (7.4-μg/m3) increase]. O3 exposure during 34-37 wk of gestation was associated with increased risk [HR=1.06 (95% CI: 1.01, 1.11) per IQR (17.4 ppb) increase] but with reduced risk during 20-28 wk of gestation [HR=0.93 (95% CI: 0.89, 0.98)]. No associations were observed with NO2. Sex-stratified early gestational PM2.5 associations were stronger among boys [boys HR=1.16 (95% CI: 1.08, 1.26); girls HR=1.06 (95% CI: 0.89, 1.26)]. O3 associations in later gestation were observed only in boys [boys HR=1.10 (95% CI: 1.04, 1.16); girls HR=0.94 (95% CI: 0.84, 1.05)]. CONCLUSIONS Exposures to PM2.5 in the first two gestational trimesters were associated with increased ASD risk in children, with stronger associations observed for boys. The role of O3 exposure on ASD risk merits further investigation. https://doi.org/10.1289/EHP9509.
Collapse
Affiliation(s)
- Md Mostafijur Rahman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California (USC), Los Angeles, California, USA
| | - Yu-Hsiang Shu
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, California, USA
| | - Ting Chow
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, California, USA
| | | | - Xin Yu
- Spatial Science Institute, USC, Los Angeles, California, USA
| | - Mayra P. Martinez
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, California, USA
| | - Sarah A. Carter
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, California, USA
| | - Sandrah P. Eckel
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California (USC), Los Angeles, California, USA
| | - Jiu-Chiuan Chen
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California (USC), Los Angeles, California, USA
| | - Zhanghua Chen
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California (USC), Los Angeles, California, USA
| | - Pat Levitt
- Department of Pediatrics and Program in Developmental Neuroscience and Neurogenetics, Keck School of Medicine, Saban Research Institute, Children’s Hospital Los Angeles, USC, Los Angeles, California, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Rob McConnell
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California (USC), Los Angeles, California, USA
| | - Anny H. Xiang
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, California, USA
| |
Collapse
|
23
|
Dong Y, Chen S, Wang Z, Ma Y, Chen J, Li G, Zhou J, Ren Y, Ma H, Xie J, Li H, Zhu Z. Trends in Research of Prenatal Stress From 2011 to 2021: A Bibliometric Study. Front Pediatr 2022; 10:846560. [PMID: 35874593 PMCID: PMC9298743 DOI: 10.3389/fped.2022.846560] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 05/09/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Maternal stress during pregnancy can raise the risk of mental disorders in offspring. The continuous emergence of clinical concepts and the introduction of new technologies are great challenges. In this study, through bibliometric analysis, the research trends and hotspots on prenatal stress (PS) were explored to comprehend clinical treatments and recommend future scientific research directions. METHODS Studies on PS published on the Web of Science Core Collection (WoSCC) database between 2011 and 2021 were reviewed. Bibliometric analysis was conducted according to the number of publications, keywords, journals, citations, affiliations, and countries. With the data collected from the WoSCC, visualization of geographic distribution; clustering analysis of keywords, affiliations, and authors; and descriptive analysis and review of PS were carried out. RESULTS A total of 7,087 articles published in 2011-2021 were retrieved. During this period, the number of publications increased. Psychoneuroendocrinology is the leading journal on PS. The largest contributor was the United States. The University of California system was leading among institutions conducting relevant research. Wang H, King S, and Tain YL were scholars with significant contributions. Hotspots were classified into four clusters, namely, pregnancy, prenatal stress, oxidative stress, and growth. CONCLUSION The number of studies on PS increased. Journals, countries, institutions, researchers with the most contributions, and most cited articles worldwide were extracted. Studies have mostly concentrated on treating diseases, the application of new technologies, and the analysis of epidemiological characteristics. Multidisciplinary integration is becoming the focus of current development. Epigenetics is increasingly used in studies on PS. Thus, it constitutes a solid foundation for future clinical medical and scientific research.
Collapse
Affiliation(s)
- Yankai Dong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Institute of Maternal and Infant Health, Northwest University, Xi'an, China
| | - Shengquan Chen
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhifei Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Institute of Maternal and Infant Health, Northwest University, Xi'an, China
| | - Yao Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Institute of Maternal and Infant Health, Northwest University, Xi'an, China
| | - Jinfeng Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Institute of Maternal and Infant Health, Northwest University, Xi'an, China
| | - Ge Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Institute of Maternal and Infant Health, Northwest University, Xi'an, China
| | - Jiahao Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Institute of Maternal and Infant Health, Northwest University, Xi'an, China
| | - Yating Ren
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Institute of Maternal and Infant Health, Northwest University, Xi'an, China
| | - Hengyu Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Institute of Maternal and Infant Health, Northwest University, Xi'an, China
| | - Juanping Xie
- School of Medicine, Qinba Chinese Medicine Resources R&D Center, Ankang University, Ankang, China
| | - Hui Li
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhongliang Zhu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Institute of Maternal and Infant Health, Northwest University, Xi'an, China
| |
Collapse
|
24
|
Mitochondrial DNA Copy Number Adaptation as a Biological Response Derived from an Earthquake at Intrauterine Stage. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182211771. [PMID: 34831526 PMCID: PMC8624126 DOI: 10.3390/ijerph182211771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/06/2021] [Accepted: 11/07/2021] [Indexed: 01/07/2023]
Abstract
An altered mitochondrial DNA copy number (mtDNAcn) at birth can be a marker of increased disease susceptibility later in life. Gestational exposure to acute stress, such as that derived from the earthquake experienced on 19 September 2017 in Mexico City, could be associated with changes in mtDNAcn at birth. Our study used data from the OBESO (Biochemical and Epigenetic Origins of Overweight and Obesity) perinatal cohort in Mexico City. We compared the mtDNAcn in the umbilical cord blood of 22 infants born before the earthquake, 24 infants whose mothers were pregnant at the time of the earthquake (exposed), and 37 who were conceived after the earthquake (post-earthquake). We quantified mtDNAcn by quantitative real-time polymerase chain reaction normalized with a nuclear gene. We used a linear model adjusted by maternal age, body mass index, socioeconomic status, perceived stress, and pregnancy comorbidities. Compared to non-exposed newborns (mean ± SD mtDNAcn: 0.740 ± 0.161), exposed and post-earthquake newborns (mtDNAcn: 0.899 ± 0.156 and 0.995 ± 0.169, respectively) had increased mtDNAcn, p = 0.001. The findings of this study point at mtDNAcn as a potential biological marker of acute stress and suggest that experiencing an earthquake during pregnancy or before gestation can have programing effects in the unborn child. Long-term follow-up of newborns to women who experience stress prenatally, particularly that derived from a natural disaster, is warranted.
Collapse
|
25
|
Xie G, Sun L, Yang W, Wang R, Shang L, Yang L, Qi C, Xin J, Yue J, Chung MC. Maternal exposure to PM 2.5 was linked to elevated risk of stillbirth. CHEMOSPHERE 2021; 283:131169. [PMID: 34146867 DOI: 10.1016/j.chemosphere.2021.131169] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/02/2021] [Accepted: 06/07/2021] [Indexed: 05/11/2023]
Abstract
BACKGROUND More and more studies began to explore the hazardous health effects of PM2.5, but few reported its impacts on stillbirth. The sparse results were inconsistent and remained to be integrated. Therefore, we aimed to reveal the association between maternal exposure to PM2.5 and stillbirth. METHODS In this meta-analysis, we searched PubMed, Web of Science, Embase, and Cochrane Central Register of Controlled Trials (CENTRAL) databases for related articles written in English and published before October 18, 2020. Study selection was conducted according to the predetermined criteria and data attraction was done with predesigned form. A new instrument was applied to conduct the risk of bias assessment. And random-effect models were used to pool the estimates. RESULTS A total of 3655 records were identified from the databases, but only 7 studies were ultimately included in this study. Positive association was found between the maternal exposure to PM2.5 (per 10 μg/m3 increased) in the entire pregnancy (OR: 1.15, 95% CI: 1.07-1.25) and third trimester (OR: 1.09, 95% CI: 1.01-1.18) and stillbirth, but the association between the maternal exposure to PM2.5 (per 10 μg/m3 increased) in the first trimester (OR: 1.01, 95% CI: 0.90-1.13) and second trimester (OR: 1.06, 95% CI: 0.98-1.14) and stillbirth was not statistically significant. Besides, there was no publication bias. CONCLUSIONS Maternal exposure to PM2.5 in the entire pregnancy and third trimester was associated with elevated risk of stillbirth. However, due to the high heterogeneity, further pathophysiological researches and high quality population studies were still warranted.
Collapse
Affiliation(s)
- Guilan Xie
- Department of Obstetrics and Gynecology, Maternal & Child Health Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China; School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, People's Republic of China
| | - Landi Sun
- Department of Obstetrics and Gynecology, Maternal & Child Health Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China; School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, People's Republic of China
| | - Wenfang Yang
- Department of Obstetrics and Gynecology, Maternal & Child Health Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China.
| | - Ruiqi Wang
- Department of Obstetrics and Gynecology, Maternal & Child Health Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China; School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, People's Republic of China
| | - Li Shang
- Department of Obstetrics and Gynecology, Maternal & Child Health Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China; School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, People's Republic of China
| | - Liren Yang
- Department of Obstetrics and Gynecology, Maternal & Child Health Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China; School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, People's Republic of China
| | - Cuifang Qi
- Department of Obstetrics and Gynecology, Maternal & Child Health Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Juan Xin
- Department of Obstetrics and Gynecology, Maternal & Child Health Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China; School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, People's Republic of China
| | - Jie Yue
- Department of Pediatrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Mei Chun Chung
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Massachusetts, Boston, USA
| |
Collapse
|
26
|
Johnson NM, Hoffmann AR, Behlen JC, Lau C, Pendleton D, Harvey N, Shore R, Li Y, Chen J, Tian Y, Zhang R. Air pollution and children's health-a review of adverse effects associated with prenatal exposure from fine to ultrafine particulate matter. Environ Health Prev Med 2021; 26:72. [PMID: 34253165 PMCID: PMC8274666 DOI: 10.1186/s12199-021-00995-5] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/01/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Particulate matter (PM), a major component of ambient air pollution, accounts for a substantial burden of diseases and fatality worldwide. Maternal exposure to PM during pregnancy is particularly harmful to children's health since this is a phase of rapid human growth and development. METHOD In this review, we synthesize the scientific evidence on adverse health outcomes in children following prenatal exposure to the smallest toxic components, fine (PM2.5) and ultrafine (PM0.1) PM. We highlight the established and emerging findings from epidemiologic studies and experimental models. RESULTS Maternal exposure to fine and ultrafine PM directly and indirectly yields numerous adverse birth outcomes and impacts on children's respiratory systems, immune status, brain development, and cardiometabolic health. The biological mechanisms underlying adverse effects include direct placental translocation of ultrafine particles, placental and systemic maternal oxidative stress and inflammation elicited by both fine and ultrafine PM, epigenetic changes, and potential endocrine effects that influence long-term health. CONCLUSION Policies to reduce maternal exposure and health consequences in children should be a high priority. PM2.5 levels are regulated, yet it is recognized that minority and low socioeconomic status groups experience disproportionate exposures. Moreover, PM0.1 levels are not routinely measured or currently regulated. Consequently, preventive strategies that inform neighborhood/regional planning and clinical/nutritional recommendations are needed to mitigate maternal exposure and ultimately protect children's health.
Collapse
Affiliation(s)
- Natalie M Johnson
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX, 77843, USA.
| | | | - Jonathan C Behlen
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX, 77843, USA
| | - Carmen Lau
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, 77843, USA
| | - Drew Pendleton
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX, 77843, USA
| | - Navada Harvey
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX, 77843, USA
| | - Ross Shore
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX, 77843, USA
| | - Yixin Li
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Jingshu Chen
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, 77843, USA
| | - Yanan Tian
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, 77843, USA
| | - Renyi Zhang
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
27
|
Lee PC, Wu CD, Tsai HJ, Tsai HY, Lin SH, Wu CK, Hung CY, Yao TC. Residential greenness and birth outcomes: Evaluating the mediation and interaction effects of particulate air pollution. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 211:111915. [PMID: 33461015 DOI: 10.1016/j.ecoenv.2021.111915] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 01/02/2021] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The few studies that examined the association between residential greenness and birth outcomes have produced inconsistent results, and the underlying mechanisms of these associations remain unclear. OBJECTIVES We examined the mediation and interaction effects of particulate matter (PM) air pollution on the relationship between greenness exposure during the first and third trimesters of pregnancy and birth outcomes, including preterm birth (PTB), term low birth weight (TLBW), small for gestational age (SGA), birth weight (BW), and head circumference (HC). METHODS We conducted a retrospective cohort study on 16,184 singleton live births between 2010 and 2012 in Taiwan. Residential greenness was estimated based on the normalized difference vegetation index (NDVI), and the PM information during the first and third trimesters was estimated through hybrid kriging land use regression and ordinary kriging interpolation methods. Multiple regression analyses were performed to evaluate the associations between greenness exposure and birth outcomes. We estimated the mediating effects of PM associated with greenness exposure on birth outcomes through causal mediation analyses. We also examined the potential multiplicative and additive interactions between greenness exposure and PM and their effects on birth outcomes. RESULTS The first trimester NDVI exposure was associated with reduced risks for PTB, TLBW, and SGA, which had an adjusted OR (aOR) of 0.93 (95% CI: 0.89-0.97), 0.91 (95% CI: 0.83-0.99), and 0.95 (95% CI: 0.91-1.00), respectively, per 0.1 unit increase in multi-pollutant models. The causal mediation analysis showed that PM mediated approximately 5-19% of the association between first and third trimester greenness and PTB and mediated approximately 15-37% of the association between greenness and SGA. We identified multiplicative interactions in log scale between first trimester PM10 and NDVI exposure for SGA (aORinteraction = 0.92, p = 0.03) and HC (estimateinteraction = 1.47, p = 0.04). CONCLUSIONS This study revealed beneficial associations between residential greenness and birth outcomes, including PTB, TLBW, and SGA. The associations were partly mediated by a reduction in exposure to PM air pollution. SUMMARY The beneficial effects of greenness on PTB and SGA are partly mediated by a reduction in exposure to PM air pollution.
Collapse
Affiliation(s)
- Pei-Chen Lee
- Department of Health Care Management, College of Health Technology, National Taipei University of Nursing and Health Sciences, Taipei 10845, Taiwan, ROC; Taipei City Hospital, Taipei 11080, Taiwan, ROC; Centre for Research in Epidemiology and Population Health (CESP), INSERM, U1018 Villejuif, France
| | - Chih-Da Wu
- Department of Geomatics, National Cheng Kung University, Tainan 701, Taiwan, ROC
| | - Hui-Ju Tsai
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli 35053, Taiwan, ROC
| | - Hsin-Yun Tsai
- Department of Health Care Management, College of Health Technology, National Taipei University of Nursing and Health Sciences, Taipei 10845, Taiwan, ROC
| | - Sheng-Hsuan Lin
- Department of Statistics, National Chiao Tung University, Hsinchu 300, Taiwan, ROC
| | - Chia-Kai Wu
- Department of Health Care Management, College of Health Technology, National Taipei University of Nursing and Health Sciences, Taipei 10845, Taiwan, ROC
| | - Chi-Yen Hung
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan, ROC
| | - Tsung-Chieh Yao
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan 33305, Taiwan, ROC.
| |
Collapse
|
28
|
Pavanello S, Campisi M, Mastrangelo G, Hoxha M, Bollati V. The effects of everyday-life exposure to polycyclic aromatic hydrocarbons on biological age indicators. Environ Health 2020; 19:128. [PMID: 33272294 PMCID: PMC7713168 DOI: 10.1186/s12940-020-00669-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/16/2020] [Indexed: 05/25/2023]
Abstract
BACKGROUND Further knowledge on modifiable aging risk factors is required to mitigate the increasing burden of age-related diseases in a rapidly growing global demographic of elderly individuals. We explored the effect of everyday exposure to polycyclic aromatic hydrocarbons (PAHs), which are fundamental constituents of air pollution, on cellular biological aging. This was determined via the analysis of leukocyte telomere length (LTL), mitochondrial DNA copy number (LmtDNAcn), and by the formation of anti-benzo[a]pyrene diolepoxide (B[a]PDE-DNA) adducts. METHODS The study population consisted of 585 individuals living in North-East Italy. PAH exposure (diet, indoor activities, outdoor activities, traffic, and residential exposure) and smoking behavior were assessed by questionnaire and anti-B[a]PDE-DNA by high-performance-liquid-chromatography. LTL, LmtDNAcn and genetic polymorphisms [glutathione S-transferase M1 and T1 (GSTM1; GSTT1)] were measured by polymerase chain reaction. Structural equation modelling analysis evaluated these complex relationships. RESULTS Anti-B[a]PDE-DNA enhanced with PAH exposure (p = 0.005) and active smoking (p = 0.0001), whereas decreased with detoxifying GSTM1 (p = 0.021) and in females (p = 0.0001). Subsequently, LTL and LmtDNAcn reduced with anti-B[a]PDE-DNA (p = 0.028 and p = 0.018), particularly in males (p = 0.006 and p = 0.0001). Only LTL shortened with age (p = 0.001) while elongated with active smoking (p = 0.0001). Besides this, the most significant determinants of PAH exposure that raised anti-B[a]PDE-DNA were indoor and diet (p = 0.0001), the least was outdoor (p = 0.003). CONCLUSION New findings stemming from our study suggest that certain preventable everyday life exposures to PAHs reduce LTL and LmtDNAcn. In particular, the clear association with indoor activities, diet, and gender opens new perspectives for tailored preventive measures in age-related diseases. CAPSULE Everyday life exposure to polycyclic aromatic hydrocarbons reduces leukocyte telomere length and mitochondrial DNA copy number through anti-B[a]PDE-DNA adduct formation.
Collapse
Affiliation(s)
- Sofia Pavanello
- Medicina del Lavoro, Dipartimento di Scienze Cardio- Toraco- Vascolari e Sanità Pubblica, Università di Padova, Padova, Italy
- Azienda Ospedaliera di Padova, Unità di Medicina del Lavoro, Padova, Italy
| | - Manuela Campisi
- Medicina del Lavoro, Dipartimento di Scienze Cardio- Toraco- Vascolari e Sanità Pubblica, Università di Padova, Padova, Italy
| | - Giuseppe Mastrangelo
- Medicina del Lavoro, Dipartimento di Scienze Cardio- Toraco- Vascolari e Sanità Pubblica, Università di Padova, Padova, Italy
| | - Mirjam Hoxha
- EPIGET – Epidemiology, Epigenetics and Toxicology Lab, Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano, Milan, Italy
| | - Valentina Bollati
- EPIGET – Epidemiology, Epigenetics and Toxicology Lab, Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano, Milan, Italy
- Dipartimento di Medicina Preventiva, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milano, Italy
| |
Collapse
|
29
|
Chen X, Zhou Y, Hu C, Xia W, Xu S, Cai Z, Li Y. Prenatal exposure to benzotriazoles and benzothiazoles and cord blood mitochondrial DNA copy number: A prospective investigation. ENVIRONMENT INTERNATIONAL 2020; 143:105920. [PMID: 32653801 DOI: 10.1016/j.envint.2020.105920] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/06/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Mitochondria are sensitive to environmental toxicants due to the limited repair capacity. Exposure to benzotriazoles (BTRs) and benzothiazoles (BTHs) may contribute to adverse health outcomes through oxidative stress, which may interfere with mitochondrial function. However, the mitochondrial effects of exposure to BTs (BTRs and BTHs) have not yet been elucidated, particularly in human investigations. OBJECTIVES We examined the associations between trimester-specific urinary BTRs and BTHs concentrations and cord blood mitochondrial DNA copy number (mtDNAcn) in a prospective birth cohort. METHODS The present study included 742 mother-infant pairs who participated in a birth cohort between 2014 and 2015 in Wuhan and had data on urinary concentrations of BTRs and BTHs and mtDNAcn in cord blood. Concentrations of BTs were repeatedly measured in maternal urine samples at different trimesters using high performance liquid chromatography-tandem mass spectrometry. Relative mtDNAcn in umbilical cord blood was analyzed by quantitative real-time polymerase chain reaction. Generalized estimating equations were used to evaluate the associations between BTs exposure across gestation and mtDNAcn in cord blood. RESULTS In the present study, we observed a positive association between urinary 2-methylthio-benzothiazole (2-MeS-BTH) concentrations in the first trimester and cord blood mtDNAcn, with marginal significance [percent changes (%Δ) = 3.97, 95% confidence interval (CI): -0.05, 8.16, p = 0.05], while urinary 2-amino-benzothiazole concentrations in the third trimester were significantly negatively associated with cord blood mtDNAcn (%Δ = -5.89, 95% CI: -10.32, -1.24). Similar patterns of associations were demonstrated between urinary 1-H-benzotriazole (1-H-BTR) and xylyltriazole concentrations in the third trimester and cord blood mtDNAcn (%Δ = -4.18 to -3.23). In sex-specific analysis, we identified that maternal urinary 1-H-BTR in the first trimester and 2-MeS-BTH in the third trimester were positively associated with cord blood mtDNAcn among male infants but not female (P for interaction = 0.05 for 1-H-BTR, P for interaction = 0.05 for 2-MeS-BTH, respectively). CONCLUSIONS We found evidence that prenatal exposure to BTRs and BTHs were associated with cord blood mtDNAcn alternation, and these associations were modified by infant gender. Further investigations are needed to corroborate these findings.
Collapse
Affiliation(s)
- Xiaomei Chen
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan 430030, Hubei, PR China
| | - Yanqiu Zhou
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Chen Hu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan 430030, Hubei, PR China
| | - Wei Xia
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan 430030, Hubei, PR China
| | - Shunqing Xu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan 430030, Hubei, PR China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China.
| | - Yuanyuan Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan 430030, Hubei, PR China.
| |
Collapse
|
30
|
Wang X, Hart JE, Liu Q, Wu S, Nan H, Laden F. Association of particulate matter air pollution with leukocyte mitochondrial DNA copy number. ENVIRONMENT INTERNATIONAL 2020; 141:105761. [PMID: 32388147 PMCID: PMC7419671 DOI: 10.1016/j.envint.2020.105761] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/07/2020] [Accepted: 04/22/2020] [Indexed: 05/22/2023]
Abstract
BACKGROUND Ambient particulate matter (PM) has been associated with mitochondrial damage and dysfunction caused by excessive oxidative stress, but the associations between long-term PM exposure and leukocyte mitochondrial DNA copy number (mtDNAcn), a biomarker of mitochondrial dysfunction due to oxidative stress, are less studied. OBJECTIVES To investigate the associations between short-, intermediate- and long-term exposure (1-, 3- and 12-months) to different size fractions of PM (PM2.5, PM2.5-10 and PM10) and leukocyte mtDNAcn in a cross-sectional study. METHODS The associations between each of the PM exposure metrics with z scores of log-transformed mtDNAcn were examined using generalized linear regression models in 2758 female participants from the Nurses' Health Study (NHS). Monthly exposures to PM were estimated from spatio-temporal prediction models matched to each participants' address history. Potential effect modification by selected covariates was examined using multiplicative interaction terms and subgroup analyses. RESULTS In single-size fraction models, increases in all size fractions of PM were associated with decreases in mtDNAcn, although only models with longer averages of PM2.5 reached statistical significance. For example, an interquartile range (IQR) increase in 12-month average ambient PM2.5 (5.5 μg/m3) was associated with a 0.07 [95% confidence interval (95% CI): -0.13, -0.01; p-value = 0.02] decrease in mtDNAcn z score in both basic- and multivariable-adjusted models. Associations for PM2.5 were stronger after controlling for PM2.5-10 in two size-fraction models. CONCLUSIONS Our study suggests that long-term exposure to ambient PM2.5 is associated with decreased mtDNAcn in healthy women.
Collapse
Affiliation(s)
- Xinmei Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Jaime E Hart
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Exposure, Epidemiology and Risk Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Qisijing Liu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences, Peking University, Ministry of Education, China.
| | - Hongmei Nan
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, IN, USA; Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN, USA
| | - Francine Laden
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Exposure, Epidemiology and Risk Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
31
|
Hu C, Sheng X, Li Y, Xia W, Zhang B, Chen X, Xing Y, Li X, Liu H, Sun X, Xu S. Effects of prenatal exposure to particulate air pollution on newborn mitochondrial DNA copy number. CHEMOSPHERE 2020; 253:126592. [PMID: 32289600 DOI: 10.1016/j.chemosphere.2020.126592] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/05/2020] [Accepted: 03/21/2020] [Indexed: 06/11/2023]
Abstract
Prenatal exposure to particulate matter (PM) in ambient air has been linked to changes in newborn mitochondrial DNA copy number (mtDNAcn), but the effects of exposure are inconsistent. We aimed to investigate the effect of weekly PM exposure during pregnancy on newborn mtDNAcn. The present study included 762 mother-infant pairs who were recruited in a birth cohort established between November 2013 and March 2015 in Wuhan, China. Mother's prenatal daily exposure to PM2.5 and PM10 was calculated using a spatial-temporal land use regression model. Relative mtDNAcn in cord blood leukocytes was determined by quantitative real-time polymerase chain reaction. Distributive lag regression models (DLMs) were applied to estimate the association between PM exposure and newborn mtDNAcn. In the adjusted models, prenatal PM2.5 exposure during 25-32 weeks and PM10 exposure during 25-31weeks were significantly associated with decreased cord blood mtDNAcn. PM2.5 exposure during the third trimester was related to decreased mtDNAcn (cumulative percent change: -8.55%, 95% CI: -13.32%, -3.51%). We also identified other exposure windows (17-22 and 11-22 weeks) in which PM exposure was positively associated with mtDNAcn. Overall, exposure to particulate air pollution during mid-to-late gestation is significantly associated with alterations in newborn mtDNAcn, potentially suggesting an enhanced sensitivity to PM exposure during this period.
Collapse
Affiliation(s)
- Chen Hu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Xia Sheng
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Bin Zhang
- Women and Children Medical and Healthcare Center of Wuhan, Wuhan, Hubei, People's Republic of China
| | - Xiaomei Chen
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Yuling Xing
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Xinping Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Hongxiu Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Xiaojie Sun
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
32
|
Gyllenhammer LE, Entringer S, Buss C, Wadhwa PD. Developmental programming of mitochondrial biology: a conceptual framework and review. Proc Biol Sci 2020; 287:20192713. [PMID: 32345161 PMCID: PMC7282904 DOI: 10.1098/rspb.2019.2713] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Research on mechanisms underlying the phenomenon of developmental programming of health and disease has focused primarily on processes that are specific to cell types, organs and phenotypes of interest. However, the observation that exposure to suboptimal or adverse developmental conditions concomitantly influences a broad range of phenotypes suggests that these exposures may additionally exert effects through cellular mechanisms that are common, or shared, across these different cell and tissue types. It is in this context that we focus on cellular bioenergetics and propose that mitochondria, bioenergetic and signalling organelles, may represent a key cellular target underlying developmental programming. In this review, we discuss empirical findings in animals and humans that suggest that key structural and functional features of mitochondrial biology exhibit developmental plasticity, and are influenced by the same physiological pathways that are implicated in susceptibility for complex, common age-related disorders, and that these targets of mitochondrial developmental programming exhibit long-term temporal stability. We conclude by articulating current knowledge gaps and propose future research directions to bridge these gaps.
Collapse
Affiliation(s)
- Lauren E Gyllenhammer
- Development, Health and Disease Research Program, School of Medicine, Irvine, CA, USA.,Department of Pediatrics, School of Medicine, Irvine, CA, USA
| | - Sonja Entringer
- Development, Health and Disease Research Program, School of Medicine, Irvine, CA, USA.,Department of Pediatrics, School of Medicine, Irvine, CA, USA.,Charité-Universitätsmedizin Berlin, Institute of Medical Psychology, Berlin, Germany
| | - Claudia Buss
- Development, Health and Disease Research Program, School of Medicine, Irvine, CA, USA.,Department of Pediatrics, School of Medicine, Irvine, CA, USA.,Charité-Universitätsmedizin Berlin, Institute of Medical Psychology, Berlin, Germany
| | - Pathik D Wadhwa
- Development, Health and Disease Research Program, School of Medicine, Irvine, CA, USA.,Department of Pediatrics, School of Medicine, Irvine, CA, USA.,Department of Psychiatry and Human Behaviour, School of Medicine, Irvine, CA, USA.,Department of Obstetrics and Gynecology, School of Medicine, Irvine, CA, USA.,Department of Epidemiology, University of California, School of Medicine, Irvine, CA, USA
| |
Collapse
|
33
|
McGuinn LA, Coull BA, Kloog I, Just AC, Tamayo-Ortiz M, Osorio-Yáñez C, Baccarelli AA, Wright RJ, Téllez-Rojo MM, Wright RO. Fine particulate matter exposure and lipid levels among children in Mexico city. Environ Epidemiol 2020; 4:e088. [PMID: 32337473 PMCID: PMC7147392 DOI: 10.1097/ee9.0000000000000088] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/07/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Studies have identified associations between air pollution and lipid levels in adults, suggesting a mechanism by which air pollution contributes to cardiovascular disease. However, little is known about the association between early life air pollution exposure and lipid levels in children. METHODS Participants included 465 mother-child pairs from a prospective birth cohort in Mexico City. Daily particulate matter <2.5 µm in diameter (PM2.5) predictions were estimated using a satellite-based exposure model and averaged over trimesters, the entire pregnancy, and the first year of life. We assessed associations with several lipid measures at 4-6 years of age, including total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), non-HDL-C, high-density lipoprotein cholesterol (HDL-C), and triglycerides (TG). Linear regression models were used to estimate change in lipid levels with each interquartile range increase in PM2.5. We additionally assessed if associations between PM2.5 and lipid levels varied across lipid quantiles using quantile regression. Models were adjusted for maternal education, body mass index, and age, child's age at study visit, prenatal environmental tobacco smoke, and season of conception. RESULTS PM2.5 exposure during the third trimester was associated with increases in childhood total cholesterol, LDL-C, and non-HDL-C, and decreases in HDL-C and triglycerides. There was additionally an increasing trend in the effect estimate across higher quantiles of total cholesterol, LDL-C, and non-HDL-C during the third trimester and entire pregnancy period. There were no consistent associations for first year of life exposures. CONCLUSION In this longitudinal birth cohort in Mexico City, associations between prenatal PM2.5 and childhood lipid (total cholesterol, LDL-C, non-HDL-C) levels were greater for children at higher lipid quantiles.
Collapse
Affiliation(s)
- Laura A. McGuinn
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Brent A. Coull
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Itai Kloog
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Geography and Environmental Development, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Allan C. Just
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Marcela Tamayo-Ortiz
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Mexico
- National Council of Science and Technology, Mexico City, Mexico
| | - Citlalli Osorio-Yáñez
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Mexico
| | - Andrea A. Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
| | - Rosalind J. Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Martha M. Téllez-Rojo
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Mexico
| | - Robert O. Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
34
|
Song L, Liu B, Wang L, Wu M, Zhang L, Liu Y, Bi J, Yang S, Zhang B, Xia W, Xu S, Chen R, Cao Z, Wang Y. Exposure to arsenic during pregnancy and newborn mitochondrial DNA copy number: A birth cohort study in Wuhan, China. CHEMOSPHERE 2020; 243:125335. [PMID: 31765894 DOI: 10.1016/j.chemosphere.2019.125335] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/06/2019] [Accepted: 11/06/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Arsenic (As) is a widely distributed environmental chemical with potentially different toxicities. However, little is known about the impact of maternal As exposure on newborn mitochondrial DNA copy number (mtDNAcn), which may lie on the pathway linking As exposure to adverse health impacts. OBJECTIVES We aimed to explore whether maternal As exposure was associated with newborn mtDNAcn. METHODS We conducted a birth cohort study of 762 mother-infant pairs in Wuhan, China, 2013-2015. Cord blood mtDNAcn was determined using qPCR. Maternal urinary As levels in each trimester were quantified by ICP-MS. Multiple informant models were used to examine the associations of repeated urinary As levels with cord blood mtDNAcn. RESULTS The median urinary As levels in the first, second, and third trimesters were 17.2 μg/L, 16.0 μg/L, and 17.0 μg/L, respectively. In the multivariate model, each doubling increase in the first-trimester urinary As level was associated with a 6.6% (95% CI: -12.4%, -0.5%) decrease in cord blood mtDNAcn. The highest versus lowest quintile of first-trimester urinary As level was associated with a 19.0% (95% CI: -32.9%, -2.2%) lower cord blood mtDNAcn. No significant associations of urinary As levels in the second and third trimesters with cord blood mtDNAcn were observed. The inverse relationship between first-trimester urinary As level and cord blood mtDNAcn was more pronounced among female infants. CONCLUSIONS First-trimester As exposure was related to decreased cord blood mtDNAcn. The potential health impacts of decreased mtDNAcn in early life need to be further clarified.
Collapse
Affiliation(s)
- Lulu Song
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bingqing Liu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lulin Wang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mingyang Wu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lina Zhang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yunyun Liu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jianing Bi
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Senbei Yang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bin Zhang
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ruoling Chen
- Faculty of Education, Health and Wellbeing, University of Wolverhampton, Wolverhampton, UK
| | - Zhongqiang Cao
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Youjie Wang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
35
|
Wheelock CE, Rappaport SM. The role of gene-environment interactions in lung disease: the urgent need for the exposome. Eur Respir J 2020; 55:55/2/1902064. [PMID: 32029645 DOI: 10.1183/13993003.02064-2019] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/09/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Craig E Wheelock
- Division of Physiological Chemistry 2, Dept of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Stephen M Rappaport
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| |
Collapse
|
36
|
Yang SI, Kim HB, Kim HC, Lee SY, Kang MJ, Cho HJ, Yoon J, Jung S, Lee E, Yang HJ, Ahn K, Kim KW, Shin YH, Suh DI, Hong SJ. Particulate matter at third trimester and respiratory infection in infants, modified by GSTM1. Pediatr Pulmonol 2020; 55:245-253. [PMID: 31746563 DOI: 10.1002/ppul.24575] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 11/08/2019] [Indexed: 12/18/2022]
Abstract
OBJECTIVES To investigate the association between particulate matter with an aerodynamic diameter of less than 2.5 μm (PM2.5 ) exposure during each trimester of pregnancy and development of lower respiratory tract infections (LRTIs) during the first 3 years of life and whether GSTM1 gene polymorphisms modify these effects. METHODS This study included 1,180 mother-child pairs from the Cohort for Childhood Origin of Asthma and allergic diseases. The PM2.5 levels during pregnancy were estimated by residential address using land-use regression models based on a national monitoring system. A diagnosis of LRTIs was based on a parental report of a physician's diagnosis. Real-time polymerase chain reaction was used for GSTM1 genotyping. RESULTS Higher PM2.5 exposure during the third trimester was associated with LRTIs at 1 year of age (aRR, 1.06; 95% CI, 1.00-1.13). This result did not change after adjusting for PM2.5 exposures during the first and second trimesters (aRR, 1.06; 95% CI, 0.99-1.13). This association was significant after adjusting for PM2.5 exposures during first year of age (aRR, 1.08; 95% CI, 1.02-1.15) and exposures to NO2 and ozone at the third trimester (aRR, 1.07; 95% CI, 1.00-1.16). In addition, PM2.5 exposure during the third trimester increased the risk of LRTIs at 1 year of age in cases with the GSTM1 null genotype (aRR, 1.26; 95% CI, 1.01-1.57; P for interaction .20). CONCLUSION Higher PM2.5 exposure during the third trimester of pregnancy may increase the susceptibility to LRTIs at 1 year of age. This effect is modified by GSTM1 gene polymorphisms.
Collapse
Affiliation(s)
- Song-I Yang
- Department of Pediatrics, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, South Korea
| | - Hyo-Bin Kim
- Department of Pediatrics, Inje University Sanggye Paik Hospital, Seoul, South Korea
| | - Hwan-Cheol Kim
- Department of Occupational and Environmental Medicine, Inha University School of Medicine, Incheon, South Korea
| | - So-Yeon Lee
- Department of Pediatrics, Childhood Asthma Atopy Center, Environmental Health Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Mi-Jin Kang
- Department of Pediatrics, Asan Institute for Life Science, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hyun-Ju Cho
- Department of Pediatrics, International St Mary's Hospital, Catholic Kwandong University, Incheon, South Korea
| | - Jisun Yoon
- Department of Pediatrics, Mediplex Sejong Hospital, Incheon, South Korea
| | - Sungsu Jung
- Department of Pediatrics, Pusan National University Yangsan Hospital, Yangsan, South Korea
| | - Eun Lee
- Department of Pediatrics, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, South Korea
| | - Hyeon-Jong Yang
- Department of Pediatrics, Soonchunhyang University School of Medicine, Seoul, South Korea
| | - Kangmo Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Kyung Won Kim
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Youn Ho Shin
- Department of Pediatrics, CHA Gangnam Medical Center, CHA University School of Medicine, Seoul, South Korea
| | - Dong In Suh
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, South Korea
| | - Soo-Jong Hong
- Department of Pediatrics, Childhood Asthma Atopy Center, Environmental Health Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
37
|
Moody EC, Cantoral A, Tamayo-Ortiz M, Pizano-Zárate ML, Schnaas L, Kloog I, Oken E, Coull B, Baccarelli A, Téllez-Rojo MM, Wright RO, Just AC. Association of Prenatal and Perinatal Exposures to Particulate Matter With Changes in Hemoglobin A1c Levels in Children Aged 4 to 6 Years. JAMA Netw Open 2019; 2:e1917643. [PMID: 31851346 PMCID: PMC6991256 DOI: 10.1001/jamanetworkopen.2019.17643] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
IMPORTANCE Environmental risk factors for childhood type 2 diabetes, an increasing global problem, are understudied. Air pollution exposure has been reported to be a risk factor for this condition. OBJECTIVE To examine the association between prenatal and perinatal exposures to fine particulate matter with a diameter less than 2.5 μm (PM2.5) and changes in hemoglobin A1c (HbA1c), a measure of glycated hemoglobin and marker of glucose dysregulation, in children aged 4 to 7 years. DESIGN, SETTING, AND PARTICIPANTS The Programming Research in Obesity, Growth, Environment, and Social Stressors (PROGRESS) study, a birth cohort study conducted in Mexico City, Mexico, recruited pregnant women from July 3, 2007, to February 21, 2011, through public health maternity clinics. The present analysis includes 365 mother-child pairs followed up until the child was approximately 7 years of age. This study included data from only study visits at approximately 4 to 5 years (visit 1) and 6 to 7 years (visit 2) post partum because HbA1c levels were not measured in earlier visits. The data were analyzed from March 11, 2018, to May 3, 2019. EXPOSURES Daily PM2.5 exposure estimates at participants' home addresses from 4 weeks prior to mothers' date of last menstrual period (LMP), a marker of the beginning of pregnancy, to 12 weeks after the due date. Exposure was estimated from satellite measurements and calibrated against ground PM2.5 measurements, land use, and meteorological variables. MAIN OUTCOMES AND MEASURES Outcomes included HbA1c levels at 4 to 5 years and 6 to 7 years of age, and the change in the level from the former age group to the latter. RESULTS The sample included 365 children, of whom 184 (50.4%) were girls. The mean (range) age of the children was 4.8 (4.0-6.4) years at visit 1, and 6.7 (6.0-9.7) years at visit 2. At the time of delivery, the mean (range) age of the mothers was 27.7 (18.3-44.4) years, with a mean (range) prepregnancy body mass index of 26.4 (18.5-43.5). The mean (SD) prenatal PM2.5 exposure (22.4 μg/m3 [2.7 μg/m3]) was associated with an annual increase in HbA1c levels of 0.25% (95% CI, 0.004%-0.50%) from age 4 to 5 years to 6 to 7 years compared with exposure at 12 μg/m3, the national regulatory standard in Mexico. Sex-specific effect estimates were statistically significant for girls (β = 0.21%; 95% CI, 0.10% to 0.32%) but not for boys (β = 0.31%; 95% CI, -0.09% to 0.72%). The statistically significant windows of exposure were from week 28 to 50.6 after the mother's LMP for the overall cohort and from week 11 to the end of the study period for girls. Lower HbA1c levels were observed at age 4 to 5 years in girls (β = -0.72%; 95% CI, -1.31% to -0.13%, exposure window from week 16 to 37.3) and boys (β = -0.98%; 95% CI, -1.70% to -0.26%, exposure window from the beginning of the study period to week 32.7), but no significant association was found in the overall cohort (β = -0.13%; 95% CI, -1.27% to 1.01%). There was no significant association between PM2.5 exposure and HbA1c level at age 6 to 7 years in any group. CONCLUSIONS AND RELEVANCE The findings of this study suggest that prenatal and perinatal exposures to PM2.5 are associated with changes in HbA1c, which are indicative of glucose dysregulation, in early childhood. Further research is needed because this finding may represent a risk factor for childhood or adolescent diabetes.
Collapse
Affiliation(s)
- Emily C. Moody
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Alejandra Cantoral
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Mexico
- National Council of Science and Technology, Mexico City, Mexico
| | - Marcela Tamayo-Ortiz
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Mexico
- National Council of Science and Technology, Mexico City, Mexico
| | - Ma. Luisa Pizano-Zárate
- Division of Community Interventions Research, National Institute of Perinatology, Mexico City, Mexico
| | - Lourdes Schnaas
- Division of Community Interventions Research, National Institute of Perinatology, Mexico City, Mexico
| | - Itai Kloog
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Geography & Human Environment, Ben Gurion University of the Negev, Be’er Sheva, Israel
| | - Emily Oken
- Harvard Medical School and Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts
| | - Brent Coull
- Department of Biostatistics and Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts
| | - Andrea Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York
| | - Martha M. Téllez-Rojo
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Mexico
| | - Robert O. Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Allan C. Just
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
38
|
Saenen ND, Martens DS, Neven KY, Alfano R, Bové H, Janssen BG, Roels HA, Plusquin M, Vrijens K, Nawrot TS. Air pollution-induced placental alterations: an interplay of oxidative stress, epigenetics, and the aging phenotype? Clin Epigenetics 2019; 11:124. [PMID: 31530287 PMCID: PMC6749657 DOI: 10.1186/s13148-019-0688-z] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/27/2019] [Indexed: 01/04/2023] Open
Abstract
According to the "Developmental Origins of Health and Disease" (DOHaD) concept, the early-life environment is a critical period for fetal programming. Given the epidemiological evidence that air pollution exposure during pregnancy adversely affects newborn outcomes such as birth weight and preterm birth, there is a need to pay attention to underlying modes of action to better understand not only these air pollution-induced early health effects but also its later-life consequences. In this review, we give an overview of air pollution-induced placental molecular alterations observed in the ENVIRONAGE birth cohort and evaluate the existing evidence. In general, we showed that prenatal exposure to air pollution is associated with nitrosative stress and epigenetic alterations in the placenta. Adversely affected CpG targets were involved in cellular processes including DNA repair, circadian rhythm, and energy metabolism. For miRNA expression, specific air pollution exposure windows were associated with altered miR-20a, miR-21, miR-146a, and miR-222 expression. Early-life aging markers including telomere length and mitochondrial DNA content are associated with air pollution exposure during pregnancy. Previously, we proposed the air pollution-induced telomere-mitochondrial aging hypothesis with a direct link between telomeres and mitochondria. Here, we extend this view with a potential co-interaction of different biological mechanisms on the level of placental oxidative stress, epigenetics, aging, and energy metabolism. Investigating the placenta is an opportunity for future research as it may help to understand the fundamental biology underpinning the DOHaD concept through the interactions between the underlying modes of action, prenatal environment, and disease risk in later life. To prevent lasting consequences from early-life exposures of air pollution, policy makers should get a basic understanding of biomolecular consequences and transgenerational risks.
Collapse
Affiliation(s)
- N. D. Saenen
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - D. S. Martens
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - K. Y. Neven
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - R. Alfano
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - H. Bové
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - B. G. Janssen
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - H. A. Roels
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - M. Plusquin
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - K. Vrijens
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - T. S. Nawrot
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
- Department of Public Health and Primary Care, Leuven University, Leuven, Belgium
| |
Collapse
|
39
|
Wu M, Shu Y, Song L, Liu B, Zhang L, Wang L, Liu Y, Bi J, Xiong C, Cao Z, Xu S, Xia W, Li Y, Wang Y. Prenatal exposure to thallium is associated with decreased mitochondrial DNA copy number in newborns: Evidence from a birth cohort study. ENVIRONMENT INTERNATIONAL 2019; 129:470-477. [PMID: 31158593 DOI: 10.1016/j.envint.2019.05.053] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 04/29/2019] [Accepted: 05/20/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND Prenatal exposure to thallium is related to adverse birth outcomes. However, little is known about the effects of prenatal exposure to thallium on the mitochondrial DNA copy number (mtDNAcn) in newborns; such knowledge might reveal a potential mechanism linking maternal thallium exposure and adverse birth outcomes. OBJECTIVE To investigate the trimester-specific associations of maternal thallium exposure with cord blood leukocyte mtDNAcn. METHODS A total of 746 pregnant women with trimester-specific urinary samples and cord blood samples were recruited from Wuhan Children Hospital between November 2013 and March 2015 in Wuhan City, China. The concentration of thallium in maternal urine was quantified using inductively coupled plasma mass spectrometry (ICP-MS). Cord blood leukocyte mtDNAcn was measured by real-time quantitative polymerase chain reaction (qPCR). Trimester-specific associations of specific gravity (SG)-adjusted urinary thallium concentrations with mtDNAcn were estimated using a multiple informant model. RESULTS The geometric mean value of maternal urinary thallium was 0.34 μg/L, 0.36 μg/L, and 0.34 μg/L for the first, second, and third trimesters, respectively. Prenatal exposure to thallium during the first trimester, rather than during the second or the third trimester, was identified as negatively related to mtDNAcn. The multiple informant model showed a 10.4% lower level of mtDNAcn with each doubling increase of thallium levels (95% CI, -16.4%, -3.9%; P = 0.002). The observed associations were stronger among female newborns and among newborns born to older mothers. CONCLUSIONS The present study revealed a significant negative association between maternal thallium exposure during early pregnancy and cord blood leukocyte mtDNAcn in Chinese newborns, pointing to the important role of mitochondria as a target of thallium toxicity in early pregnancy.
Collapse
Affiliation(s)
- Mingyang Wu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yanling Shu
- Department of Nutrition and Food Hygiene, School of Public Health, Guangdong Medical University, Dongguan, Guangdong, China
| | - Lulu Song
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bingqing Liu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lina Zhang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lulin Wang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yunyun Liu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jianing Bi
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chao Xiong
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhongqiang Cao
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Youjie Wang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
40
|
Kirwa K, McConnell-Rios R, Manjourides J, Cordero J, Alshawabekeh A, Suh HH. Low birth weight and PM 2.5 in Puerto Rico. Environ Epidemiol 2019; 3:e058. [PMID: 32095739 PMCID: PMC7039618 DOI: 10.1097/ee9.0000000000000058] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 06/19/2019] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Low birth weight (LBW) has been associated with adverse health outcomes across the lifespan. Among ethnic/racial minority populations, few studies have examined the association between LBW (<2,500 or ≥2,500 g) and prenatal exposure to air pollution, a key modifiable environmental risk factor. METHODS We examined the association between LBW and prenatal exposure to PM2.5 in a Hispanic and black population in Puerto Rico between 1999 and 2013, adjusting for individual and municipality-level confounders. We used modified Poisson regression to estimate the association and performed sensitivity analyses treating birth weight as continuous or polychotomous. In secondary analyses, we applied a 2-stage mixed effects model suitable for longitudinally measured exposures and binary outcomes. RESULTS Among 332,129 total and 275,814 term births, 12.2% and 6.3% of infants had LBW, respectively. Eighty-eight percent of mothers were Hispanic. Mean (SD) PM2.5 concentrations declined from 9.9 (1.7) μg/m3 in 1999 to 6.1 (1.1) μg/m3 in 2013. Mean birth weights dropped to 3,044 g in 2010 and rose steadily afterward. Among term births, a SD increase in PM2.5 was associated with a 3.2% (95% CI = -1.0%, 6.3%) higher risk of LBW. First (risk ratio, 1.02; 95% CI = 1.00, 1.04) and second (1.02; 95% CI = 1.01, 1.05) trimester exposures were associated with increased LBW risk. In a 2-stage approach that longitudinally modeled monthly prenatal exposure levels, a standard deviation increase in average PM2.5 was associated with higher risk of LBW (odds ratio, 1.04; 95% CI = 1.01, 1.08). CONCLUSIONS In Puerto Rico, LBW is associated with prenatal PM2.5 exposure.
Collapse
Affiliation(s)
- Kipruto Kirwa
- Department of Civil and Environmental Engineering, Tufts University, Medford, MA
| | | | | | - J. Cordero
- Department of Epidemiology, University of Georgia, Athens, GA
| | - A. Alshawabekeh
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA
| | - Helen H. Suh
- Department of Civil and Environmental Engineering, Tufts University, Medford, MA
| |
Collapse
|
41
|
Song L, Zhang B, Liu B, Wu M, Zhang L, Wang L, Xu S, Cao Z, Wang Y. Effects of maternal exposure to ambient air pollution on newborn telomere length. ENVIRONMENT INTERNATIONAL 2019; 128:254-260. [PMID: 31059920 DOI: 10.1016/j.envint.2019.04.064] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Telomere length (TL) is considered as a surrogate of biological aging and has been related to aging-related diseases. The initial setting of newborn TL has important implications for telomere dynamics in adulthood, and is affected by the intrauterine environment. However, the effects of prenatal air pollution exposure on the initial setting of newborn TL are poor understood. OBJECTIVES We aimed to explore the trimester-specific relationships between maternal air pollution exposure and newborn TL. METHODS Between November 2013 and March 2015, a total of 762 mother-newborn pairs were recruited in a birth cohort study in Wuhan, China. Relative cord blood TL was assessed using quantitative real-time polymerase chain reaction. Maternal exposures to PM2.5, PM10, SO2, CO, and NO2, were determined using spatial-temporal land use regression models. Multiple informant models were applied to explore the trimester-specific associations of maternal air pollution exposure with cord blood TL. RESULTS In single-pollutant models, a 10 μg/m3 increase in PM2.5, PM10, SO2, and a 100 μg/m3 increase in CO during the third trimester were related to 3.71% (95% confidence interval [CI]: -6.06%, -1.30%), 3.24% (95% CI: -5.29%, -1.14%), 11.07% (95% CI: -18.86%, -2.53%), and 3.67% (95% CI: -6.27%, -1.00%) shorter cord blood TL, respectively. The inverse relationships between exposures to PM2.5, PM10, SO2, and CO during the third trimester and cord blood TL were more evident in male infants. In multi-pollutant models, exposures to PM2.5 and PM10 during the third trimester were both related to shorter cord blood TL, but not SO2 and CO. CONCLUSION This study suggested that maternal exposures to PM2.5, PM10, CO, and SO2 during the third trimester were related to shorter newborn TL, which highlights the importance of improving air quality in favor of subsequent health in later life of newborns.
Collapse
Affiliation(s)
- Lulu Song
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bin Zhang
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bingqing Liu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mingyang Wu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lina Zhang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lulin Wang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhongqiang Cao
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Youjie Wang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
42
|
Kupsco A, Sanchez-Guerra M, Amarasiriwardena C, Brennan KJM, Estrada-Gutierrez G, Svensson K, Schnaas L, Pantic I, Téllez-Rojo MM, Baccarelli AA, Wright RO. Prenatal manganese and cord blood mitochondrial DNA copy number: Effect modification by maternal anemic status. ENVIRONMENT INTERNATIONAL 2019; 126:484-493. [PMID: 30849576 PMCID: PMC6471611 DOI: 10.1016/j.envint.2019.02.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/11/2019] [Accepted: 02/11/2019] [Indexed: 05/06/2023]
Abstract
INTRODUCTION Manganese (Mn) is an essential nutrient but also a toxicant at high exposures, when it can induce oxidative stress (OS). Mn uptake is inversely correlated with iron status, therefore anemic individuals may be more susceptible to Mn overload induced-OS, which can manifest as changes in mitochondrial DNA copy number (mtDNA CN). Our objectives were to: 1) determine stage-specific associations of prenatal Mn exposure with cord blood MtDNA CN; and 2) investigate effect modification by maternal anemia, ferritin, and mean corpuscular volume (MCV). MATERIALS AND METHODS We measured whole blood Mn, hemoglobin, serum ferritin, and MCV in the 2nd and 3rd trimester, in maternal blood at birth, and in cord blood from a prospective birth cohort in Mexico City, Mexico (n = 485). We then extracted DNA from cord blood leukocytes to determine mtDNA CN. We used robust regression to measure associations between Mn and mtDNA CN at each trimester and at birth. Anemia (hemoglobin ≤11 g/dL), iron deficiency (ferritin ≤15 ng/mL) and MCV (stratified at median), were examined as effect modifiers. RESULTS Mn levels increased throughout pregnancy, and Mn was inversely correlated with ferritin. We observed a positive association between Mn in the 3rd trimester and Mn in cord blood and mtDNA CN (β = 0.04-0.05; 95% CI = 0.01, 0.08). Anemia significantly modified the association between mtDNA CN and Mn in the 2nd trimester. We found a positive association between 2nd trimester Mn and mtDNA CN in mothers with normal hemoglobin, and a negative association in those with low hemoglobin. (βhigh = 0.06; 95% CI = 0.01, 0.11; p = 0.01 and βlow = -0.06; 95% CI = 0.03, -0.13; p = 0.06). No associations were detected between anemia, iron deficiency and MCV and mtDNA CN. CONCLUSIONS Maternal blood Mn in the 3rd trimester and in cord blood was positively associated with mtDNA CN, suggesting that higher late pregnancy prenatal Mn exposures can impact newborn mitochondria by promoting OS. Furthermore, 2nd trimester Mn was positively associated with mtDNA in non-anemic mother-child pairs but inversely associated in anemic individuals, indicating potential interactions between Mn and chronic anemia.
Collapse
Affiliation(s)
- Allison Kupsco
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Medical Center, New York, NY, USA.
| | | | - Chitra Amarasiriwardena
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kasey J M Brennan
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Medical Center, New York, NY, USA
| | | | - Katherine Svensson
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Ivan Pantic
- National Institute of Perinatology, Mexico City, Mexico
| | - Martha María Téllez-Rojo
- Center for Research on Nutrition and Health, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Medical Center, New York, NY, USA
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
43
|
Rosa MJ, Hsu HHL, Just AC, Brennan KJ, Bloomquist T, Kloog I, Pantic I, Mercado García A, Wilson A, Coull BA, Wright RO, Téllez Rojo MM, Baccarelli AA, Wright RJ. Association between prenatal particulate air pollution exposure and telomere length in cord blood: Effect modification by fetal sex. ENVIRONMENTAL RESEARCH 2019; 172:495-501. [PMID: 30852452 PMCID: PMC6511309 DOI: 10.1016/j.envres.2019.03.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/18/2019] [Accepted: 03/01/2019] [Indexed: 05/20/2023]
Abstract
INTRODUCTION In utero particulate matter exposure produces oxidative stress that impacts cellular processes that include telomere biology. Newborn telomere length is likely critical to an individual's telomere biology; reduction in this initial telomere setting may signal increased susceptibility to adverse outcomes later in life. We examined associations between prenatal particulate matter with diameter ≤2.5 µm (PM2.5) and relative leukocyte telomere length (LTL) measured in cord blood using a data-driven approach to characterize sensitive windows of prenatal PM2.5 effects and explore sex differences. METHODS Women who were residents of Mexico City and affiliated with the Mexican Social Security System were recruited during pregnancy (n = 423 for analyses). Mothers' prenatal exposure to PM2.5 was estimated based on residence during pregnancy using a validated satellite-based spatio-temporally resolved prediction model. Leukocyte DNA was extracted from cord blood obtained at delivery. Duplex quantitative polymerase chain reaction was used to compare the relative amplification of the telomere repeat copy number to single gene (albumin) copy number. A distributed lag model incorporating weekly averages for PM2.5 over gestation was used in order to explore sensitive windows. Sex-specific associations were examined using Bayesian distributed lag interaction models. RESULTS In models that included child's sex, mother's age at delivery, prenatal environmental tobacco smoke exposure, pre-pregnancy BMI, gestational age, birth season and assay batch, we found significant associations between higher PM2.5 exposure during early pregnancy (4-9 weeks) and shorter LTL in cord blood. We also identified two more windows at 14-19 and 34-36 weeks in which increased PM2.5 exposure was associated with longer LTL. In stratified analyses, the mean and cumulative associations between PM2.5 and shortened LTL were stronger in girls when compared to boys. CONCLUSIONS Increased PM2.5 during specific prenatal windows was associated with shorter LTL and longer LTL. PM2.5 was more strongly associated with shortened LTL in girls when compared to boys. Understanding sex and temporal differences in response to air pollution may provide unique insight into mechanisms.
Collapse
Affiliation(s)
- Maria José Rosa
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Hsiao-Hsien Leon Hsu
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Allan C Just
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Kasey J Brennan
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA.
| | - Tessa Bloomquist
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA.
| | - Itai Kloog
- Department of Geography and Environmental Development, Ben-Gurion University of the Negev, P.O.B. 653, Beer Sheva, Israel.
| | - Ivan Pantic
- Department of Developmental Neurobiology, National Institute of Perinatology, Mexico City, Mexico
| | - Adriana Mercado García
- Center for Nutrition and Health Research, National Institute of Public Health, Ministry of Health, Cuernavaca, Morelos, Mexico.
| | - Ander Wilson
- Department of Statistics, Colorado State University, Fort Collins, CO, USA.
| | - Brent A Coull
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Martha María Téllez Rojo
- Center for Nutrition and Health Research, National Institute of Public Health, Ministry of Health, Cuernavaca, Morelos, Mexico.
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA.
| | - Rosalind J Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Kravis Children's Hospital, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
44
|
Reimann B, Janssen BG, Alfano R, Ghantous A, Espín-Pérez A, de Kok TM, Saenen ND, Cox B, Robinson O, Chadeau-Hyam M, Penders J, Herceg Z, Vineis P, Nawrot TS, Plusquin M. The Cord Blood Insulin and Mitochondrial DNA Content Related Methylome. Front Genet 2019; 10:325. [PMID: 31031804 PMCID: PMC6474284 DOI: 10.3389/fgene.2019.00325] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/25/2019] [Indexed: 12/16/2022] Open
Abstract
Mitochondrial dysfunction seems to play a key role in the etiology of insulin resistance. At birth, a link has already been established between mitochondrial DNA (mtDNA) content and insulin levels in cord blood. In this study, we explore shared epigenetic mechanisms of the association between mtDNA content and insulin levels, supporting the developmental origins of this link. First, the association between cord blood insulin and mtDNA content in 882 newborns of the ENVIRONAGE birth cohort was assessed. Cord blood mtDNA content was established via qPCR, while cord blood levels of insulin were determined using electrochemiluminescence immunoassays. Then the cord blood DNA methylome and transcriptome were determined in 179 newborns, using the human 450K methylation Illumina and Agilent Whole Human Genome 8 × 60 K microarrays, respectively. Subsequently, we performed an epigenome-wide association study (EWAS) adjusted for different maternal and neonatal variables. Afterward, we focused on the 20 strongest associations based on p-values to assign transcriptomic correlates and allocate corresponding pathways employing the R packages ReactomePA and RDAVIDWebService. On the regional level, we examined differential methylation using the DMRcate and Bumphunter packages in R. Cord blood mtDNA content and insulin were significantly correlated (r = 0.074, p = 0.028), still showing a trend after additional adjustment for maternal and neonatal variables (p = 0.062). We found an overlap of 33 pathways which were in common between the association with cord blood mtDNA content and insulin levels, including pathways of neurodevelopment, histone modification, cytochromes P450 (CYP)-metabolism, and biological aging. We further identified a DMR annotated to Repulsive Guidance Molecule BMP Co-Receptor A (RGMA) linked to cord blood insulin as well as mtDNA content. Metabolic variation in early life represented by neonatal insulin levels and mtDNA content might reflect or accommodate alterations in neurodevelopment, histone modification, CYP-metabolism, and aging, indicating etiological origins in epigenetic programming. Variation in metabolic hormones at birth, reflected by molecular changes, might via these alterations predispose children to metabolic diseases later in life. The results of this study may provide important markers for following targeted studies.
Collapse
Affiliation(s)
- Brigitte Reimann
- Centre for Environmental Sciences, University of Hasselt, Hasselt, Belgium
| | - Bram G. Janssen
- Centre for Environmental Sciences, University of Hasselt, Hasselt, Belgium
| | - Rossella Alfano
- Centre for Environmental Sciences, University of Hasselt, Hasselt, Belgium
| | - Akram Ghantous
- Epigenetics Group, International Agency for Research on Cancer (IARC), Lyon, France
| | - Almudena Espín-Pérez
- Department of Biomedical Informatics Research, Stanford University, California, CA, United States
| | - Theo M. de Kok
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Nelly D. Saenen
- Centre for Environmental Sciences, University of Hasselt, Hasselt, Belgium
| | - Bianca Cox
- Centre for Environmental Sciences, University of Hasselt, Hasselt, Belgium
| | - Oliver Robinson
- Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, United Kingdom
- Medical Research Council-Health Protection Agency Centre for Environment and Health, Imperial College London, London, United Kingdom
| | - Marc Chadeau-Hyam
- Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, United Kingdom
- Medical Research Council-Health Protection Agency Centre for Environment and Health, Imperial College London, London, United Kingdom
- Institute for Risk Assessment Sciences (IRAS), Division of Environmental Epidemiology, Utrecht University, Utrecht, Netherlands
| | - Joris Penders
- Laboratory of Clinical Biology, East-Limburg Hospital, Genk, Belgium
| | - Zdenko Herceg
- Epigenetics Group, International Agency for Research on Cancer (IARC), Lyon, France
| | - Paolo Vineis
- Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, United Kingdom
- Medical Research Council-Health Protection Agency Centre for Environment and Health, Imperial College London, London, United Kingdom
- Italian Institute for Genomic Medicine (IIGM), Turin, Italy
| | - Tim S. Nawrot
- Centre for Environmental Sciences, University of Hasselt, Hasselt, Belgium
- School of Public Health, Occupational and Environmental Medicine, KU Leuven, Leuven, Belgium
| | - Michelle Plusquin
- Centre for Environmental Sciences, University of Hasselt, Hasselt, Belgium
- Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, United Kingdom
- Medical Research Council-Health Protection Agency Centre for Environment and Health, Imperial College London, London, United Kingdom
| |
Collapse
|
45
|
Sanchez-Guerra M, Peng C, Trevisi L, Cardenas A, Wilson A, Osorio-Yáñez C, Niedzwiecki MM, Zhong J, Svensson K, Acevedo MT, Solano-Gonzalez M, Amarasiriwardena CJ, Estrada-Gutierrez G, Brennan KJM, Schnaas L, Just AC, Laue HE, Wright RJ, Téllez-Rojo MM, Wright RO, Baccarelli AA. Altered cord blood mitochondrial DNA content and pregnancy lead exposure in the PROGRESS cohort. ENVIRONMENT INTERNATIONAL 2019; 125:437-444. [PMID: 30753999 PMCID: PMC6391888 DOI: 10.1016/j.envint.2019.01.077] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 05/23/2023]
Abstract
INTRODUCTION Lead (Pb) crosses the placenta and can cause oxidative stress, reduced fetal growth and neurological problems. The principal source of oxidative stress in human cells is mitochondria. Therefore, disruption of normal mitochondrial function during pregnancy may represent a primary mechanism behind the adverse effects of lead. We sought to assess the association of Pb exposure during pregnancy with mitochondrial DNA (mtDNA) content, a sensitive marker of mitochondrial function, in cord blood. MATERIALS AND METHODS This study comprised mother-infant pairs from the Programming Research in Obesity, Growth, Environment and Social Stressors (PROGRESS) study, a prospective birth-cohort that enrolled 1050 pregnant women from Mexico City who were receiving prenatal care between December 2007 and July 2011. Quantitative PCR was used to calculate relative MtDNA content (mitochondrial-to-nuclear DNA ratio (mtDNA/nDNA)) in cord blood. Lead concentrations in both maternal blood (2nd and 3rd trimester and at delivery day) and in cord blood were measured by ICP-MS. Multivariable regression models adjusting for multiple confounders were fitted with 410 mother-infant pairs for whom complete data for mtDNA content, lead levels, and covariates were available. RESULTS Maternal blood Pb measured in the second (mean 3.79 μg/dL, SD 2.63; β = 0.059, 95% CI 0.008, 0.111) and third trimester (mean 3.90 μg/dL; SD 2.84; β = 0.054, 95% CI 0.002, 0.107) during pregnancy and PB in cord blood (mean 3.50 μg/dL, SD 2.59; β = 0.050, 95% CI 0.004; 0.096) were associated with increased cord blood mtDNA content (mean 1.46, SD 0.44). In two-way interaction analyses, cord blood Pb marginally interacted with gestational age leading to an increase in mtDNA content for pre-term births (Benjamini-Hochberg False Discovery Rate correction; BH-FDR = 0.08). CONCLUSION This study shows that lead exposure in pregnancy alters mtDNA content in cord blood; therefore, alteration of mtDNA content might be a mechanism underlying the toxicity of lead.
Collapse
Affiliation(s)
- Marco Sanchez-Guerra
- Department of Developmental Neurobiology, National Institute of Perinatology, Montes Urales 800, Lomas Virreyes, Mexico City 11000, Mexico.
| | - Cheng Peng
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Letizia Trevisi
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA, USA
| | - Andres Cardenas
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim HealthCare Institute, Boston, MA, USA
| | - Ander Wilson
- Department of Statistics, Colorado State University, Fort Collins, CO 80523, USA
| | - Citlalli Osorio-Yáñez
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Center for Nutrition and Health Research, National Institute of Public Health, Ministry of Health, Cuernavaca, Morelos, Mexico
| | - Megan M Niedzwiecki
- Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jia Zhong
- Department of Environmental Health Sciences, Columbia University, Mailman School of Public Health, New York, NY, USA
| | - Katherine Svensson
- Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maria Teresa Acevedo
- Department of Developmental Neurobiology, National Institute of Perinatology, Montes Urales 800, Lomas Virreyes, Mexico City 11000, Mexico
| | - Maritsa Solano-Gonzalez
- Center for Nutrition and Health Research, National Institute of Public Health, Ministry of Health, Cuernavaca, Morelos, Mexico
| | | | - Guadalupe Estrada-Gutierrez
- Department of Developmental Neurobiology, National Institute of Perinatology, Montes Urales 800, Lomas Virreyes, Mexico City 11000, Mexico
| | - Kasey J M Brennan
- Department of Environmental Health Sciences, Columbia University, Mailman School of Public Health, New York, NY, USA
| | - Lourdes Schnaas
- Department of Developmental Neurobiology, National Institute of Perinatology, Montes Urales 800, Lomas Virreyes, Mexico City 11000, Mexico
| | - Allan C Just
- Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hannah E Laue
- Department of Environmental Health Sciences, Columbia University, Mailman School of Public Health, New York, NY, USA
| | - Rosalind J Wright
- Kravis Children's Hospital, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Martha Maria Téllez-Rojo
- Center for Nutrition and Health Research, National Institute of Public Health, Ministry of Health, Cuernavaca, Morelos, Mexico
| | - Robert O Wright
- Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia University, Mailman School of Public Health, New York, NY, USA.
| |
Collapse
|
46
|
Li Z, Tang Y, Song X, Lazar L, Li Z, Zhao J. Impact of ambient PM 2.5 on adverse birth outcome and potential molecular mechanism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 169:248-254. [PMID: 30453172 DOI: 10.1016/j.ecoenv.2018.10.109] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/26/2018] [Accepted: 10/30/2018] [Indexed: 05/20/2023]
Abstract
PM2.5 (particulate matter ≤2.5 µm in aerodynamic diameter) refers to atmospheric particulate matter (PM) with an aerodynamic diameter of equal and less than 2.5 µm that tends to be suspended for long periods of time and travel over long distances in both outdoor and indoor atmospheres. PM2.5, along with the toxic compounds attached on it, may cause a wide range of disorders. The fetus is considered to be highly susceptible to a variety of toxicants including atmospheric pollutants such as PM2.5 through prenatal exposure. To better understand the relationship between maternal exposure to PM2.5 and adverse birth outcomes for reproduction and fetus development, we studied the published data on this issue including case-control studies, cohort studies and meta-analyses studies, and summarized the basic impact of ambient particulate matter on adverse birth outcomes. Research evidence indicates that PM2.5 has a potential to induce low birth weight (LBW), preterm birth (PTB), and stillbirth. A further in-depth analysis shows that oxidative stress, DNA methylation, mitochondrial DNA (mtDNA) content alteration, and endocrine disruptions may all play an important role in PM2.5 induced adverse effects to pregnant women and fetuses. In addition, PM2.5 exposure can cause male reproductive toxicity, leading to associated adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Zhou Li
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medicine School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province 315211, People's Republic of China
| | - Yuqing Tang
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medicine School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province 315211, People's Republic of China
| | - Xin Song
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medicine School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province 315211, People's Republic of China
| | - Lissy Lazar
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medicine School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province 315211, People's Republic of China
| | - Zhen Li
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medicine School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province 315211, People's Republic of China.
| | - Jinshun Zhao
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medicine School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province 315211, People's Republic of China.
| |
Collapse
|
47
|
Prenatal Household Air Pollution Alters Cord Blood Mononuclear Cell Mitochondrial DNA Copy Number: Sex-Specific Associations. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 16:ijerph16010026. [PMID: 30583542 PMCID: PMC6338880 DOI: 10.3390/ijerph16010026] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 12/16/2022]
Abstract
Background: Associations between prenatal household air pollution (HAP) exposure or cookstove intervention to reduce HAP and cord blood mononuclear cell (CBMC) mitochondrial deoxyribonucleic acid copy number (mtDNAcn), an oxidative stress biomarker, are unknown. Materials and Methods: Pregnant women were recruited and randomized to one of two cookstove interventions, including a clean-burning liquefied petroleum gas (LPG) stove, or control. Prenatal HAP exposure was determined by serial, personal carbon monoxide (CO) measurements. CBMC mtDNAcn was measured by quantitative polymerase chain reaction. Multivariable linear regression determined associations between prenatal CO and cookstove arm on mtDNAcn. Associations between mtDNAcn and birth outcomes and effect modification by infant sex were explored. Results: LPG users had the lowest CO exposures (p = 0.02 by ANOVA). In boys only, average prenatal CO was inversely associated with mtDNAcn (β = -14.84, SE = 6.41, p = 0.03, per 1ppm increase in CO). When examined by study arm, LPG cookstove had the opposite effect in all children (LPG β = 19.34, SE = 9.72, p = 0.049), but especially boys (β = 30.65, SE = 14.46, p = 0.04), as compared to Control. Increased mtDNAcn was associated with improved birth outcomes. Conclusions: Increased prenatal HAP exposure reduces CBMC mtDNAcn, suggesting cumulative prenatal oxidative stress injury. An LPG stove intervention may reverse this effect. Boys appear most susceptible.
Collapse
|
48
|
Hoffmann A, Spengler D. The Mitochondrion as Potential Interface in Early-Life Stress Brain Programming. Front Behav Neurosci 2018; 12:306. [PMID: 30574076 PMCID: PMC6291450 DOI: 10.3389/fnbeh.2018.00306] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/26/2018] [Indexed: 12/23/2022] Open
Abstract
Mitochondria play a central role in cellular energy-generating processes and are master regulators of cell life. They provide the energy necessary to reinstate and sustain homeostasis in response to stress, and to launch energy intensive adaptation programs to ensure an organism’s survival and future well-being. By this means, mitochondria are particularly apt to mediate brain programming by early-life stress (ELS) and to serve at the same time as subcellular substrate in the programming process. With a focus on mitochondria’s integrated role in metabolism, steroidogenesis and oxidative stress, we review current findings on altered mitochondrial function in the brain, the placenta and peripheral blood cells following ELS-dependent programming in rodents and recent insights from humans exposed to early life adversity (ELA). Concluding, we propose a role of the mitochondrion as subcellular intersection point connecting ELS, brain programming and mental well-being, and a role as a potential site for therapeutic interventions in individuals exposed to severe ELS.
Collapse
Affiliation(s)
- Anke Hoffmann
- Epigenomics of Early Life, Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Dietmar Spengler
- Epigenomics of Early Life, Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
49
|
Particulate Air Pollution, Blood Mitochondrial DNA Copy Number, and Telomere Length in Mothers in the First Trimester of Pregnancy: Effects on Fetal Growth. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5162905. [PMID: 30524658 PMCID: PMC6247572 DOI: 10.1155/2018/5162905] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/27/2018] [Accepted: 10/03/2018] [Indexed: 12/28/2022]
Abstract
Growing evidences have shown that particulate matter (PM) exposures during pregnancy are associated with impaired fetal development and adverse birth outcomes, possibly as a result of an exaggerated systemic oxidative stress and inflammation. Telomere length (TL) is strongly linked to biological age and is impacted by oxidative stress. We hypothesized that PM exposure during different time windows in the first trimester of pregnancy influences both mitochondrial DNA copy number (mtDNAcn), an established biomarker for oxidative stress, and TL. Maternal blood TL and mtDNAcn were analysed in 199 healthy pregnant women recruited at the 11th week of pregnancy by quantitative polymerase chain reaction. We also examined whether maternal mtDNAcn and TL were associated with fetal growth outcomes measured at the end of the first trimester of pregnancy (fetal heart rate, FHR; crown-rump length, CRL; and nuchal translucency, NT) and at delivery (birth weight, length, head circumference). The possible modifying effect of prepregnancy maternal body mass index was evaluated. PM10 exposure during the first pregnancy trimester was associated with an increased maternal mtDNAcn and a reduced TL. As regards ultrasound fetal outcomes, both FHR and CRL were positively associated with PM2.5, whereas the association with FHR was confirmed only when examining PM10 exposure. PM10 was also associated with a reduced birth weight. While no association was found between mtDNAcn and CRL, we found a negative relationship between mtDNAcn and fetal CRL only in overweight women, whereas normal-weight women exhibited a positive, albeit nonsignificant, association. As abnormalities of growth in utero have been associated with postnatal childhood and adulthood onset diseases and as PM is a widespread pollutant relevant to the large majority of the human population and obesity a rising risk factor, our results, if confirmed in a larger population, might represent an important contribution towards the development of more targeted public health strategies.
Collapse
|
50
|
Bai Y, Casas L, Scheers H, Janssen BG, Nemery B, Nawrot TS. Mitochondrial DNA content in blood and carbon load in airway macrophages. A panel study in elderly subjects. ENVIRONMENT INTERNATIONAL 2018; 119:47-53. [PMID: 29933237 DOI: 10.1016/j.envint.2018.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/20/2018] [Accepted: 06/04/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Mitochondria are sensitive to air pollutants due to their lack of repair capacity. Changes in mitochondrial DNA copy number (mtDNAcn) or content is a proxy of mitochondrial damage and has been associated with recent exposure to traffic-derived air pollutants, nitrogen dioxide (NO2) and black carbon (BC). Inhaled BC can be phagocytosed by airway macrophages (AMs), and its amount in AM reflects personal exposure to traffic-related air pollution. OBJECTIVES The present study investigated the relation between the internal marker AM BC and ambient NO2 concentration and examined the associations of mtDNAcn with NO2 and AM BC. METHODS A panel of 20 healthy retired participants (10 couples) living in Belgium underwent repeated assessments of health and air pollution exposure at 11 time points over one year. We increased exposure contrast temporarily by moving participants for 10 days to Milan, Italy (high exposure) and to Vindeln, Sweden (low exposure). Personal exposure to NO2 was measured during 5 consecutive days prior to each assessment time point. The amount of BC was assessed by image analysis in AMs retrieved from induced sputum collected at 7 time points. Blood mtDNAcn was determined by qPCR at each time point. Associations between AM BC and NO2, and of mtDNAcn with NO2 and AM BC were estimated using linear mixed effect models adjusted for covariates and potential confounders. RESULTS Mean concentrations of 5-day average NO2 were higher in Milan (64 μg/m3) and lower in Vindeln (4 μg/m3) than Belgium (26 μg/m3). Each 10 μg/m3 increment in NO2 exposure during the last 5 days was associated with 0.07 μm2 (95% CI: 0.001 to 0.012) increase in median area of AM BC. A 10 μg/m3 increase in NO2 was associated with 3.9% (95% CI: 2.2 to 5.5%) decrease in mtDNAcn. Consistently, each 1 μm2 increment in median area of AM BC was associated with 24.8% (95% CI: 6.8 to 39.3%) decrease in mtDNAcn. CONCLUSION In this quasi-experimental setting involving moving persons to places with high and low ambient air pollution, we found changes in AM BC according to ambient air pollution levels measured during the previous 5 days. Both higher ambient NO2 and the internal lung BC load, paralleled mitochondrial compromises as exemplified by lower mtDNA content.
Collapse
Affiliation(s)
- Yang Bai
- Center for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Lidia Casas
- Center for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Hans Scheers
- Center for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Bram G Janssen
- Centre for Environmental Sciences, Hasselt University, Campus Diepenbeek, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium.
| | - Benoit Nemery
- Center for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Tim S Nawrot
- Center for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Centre for Environmental Sciences, Hasselt University, Campus Diepenbeek, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium.
| |
Collapse
|