1
|
Gialluisi A, Costanzo S, De Bartolo MI, Veronesi G, Renzi M, Cembalo A, Tirozzi A, Falciglia S, Ricci M, Bonanni A, Martone F, Zazzaro G, Pepe A, Belvisi D, Ferrario MM, Gianfagna F, Cerletti C, Donati MB, Massari S, Berardelli A, de Gaetano G, Iacoviello L. Prominent role of PM10 in the link between air pollution and incident Parkinson's Disease. NPJ Parkinsons Dis 2025; 11:101. [PMID: 40335495 PMCID: PMC12059118 DOI: 10.1038/s41531-025-00935-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 04/02/2025] [Indexed: 05/09/2025] Open
Abstract
Air pollution has been associated with Parkinson's Disease (PD) risk, although this relationship remains unclear. We estimated yearly levels of exposure to ten air pollutants (period 2006-2018) in an Italian population cohort, the Moli-sani study (N = 24,325; ≥35 years; 51.9% women), and derived three principal components, testing their associations with incident PD risk over 23,841 participants (213 cases, median(IQR) follow-up 11.2(2.0) years). This revealed a statistically significant association of PC1 (explaining 38.2% of common variance, tagging PM10 levels), independent on sociodemographic, professional and lifestyles covariates (Hazard Ratio [95%CI] = 1.04[1.02-1.07]). The association was confirmed testing average PM10 levels during follow-up (18[13-24]% increase of PD risk per 1 μg/m3 increase of PM10). Among different circulating markers, lipoprotein a explained a significant proportion of this association (2.8[0.9; 8.4]%). These findings suggest PM10 as a target to lower PD risk at the population level and a potential implication of lipoprotein a in PD etiology.
Collapse
Affiliation(s)
- Alessandro Gialluisi
- Research Unit of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy.
- Department of Medicine and Surgery, LUM University, Casamassima, Italy.
| | - Simona Costanzo
- Research Unit of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy
- Department of Medicine and Surgery, EPIMED Research Center, University of Insubria, Varese, Italy
| | - Maria Ilenia De Bartolo
- IRCCS NEUROMED, Pozzilli, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Giovanni Veronesi
- Department of Medicine and Surgery, EPIMED Research Center, University of Insubria, Varese, Italy
| | - Matteo Renzi
- Department of Epidemiology, Lazio Region Health Service/ASL Roma 1, Rome, Italy
| | | | - Alfonsina Tirozzi
- Research Unit of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy
| | - Stefania Falciglia
- UOC Governance del Farmaco, Azienda Sanitaria Regionale del Molise -ASREM, Campobasso, Italy
| | - Moreno Ricci
- UOC Governance del Farmaco, Azienda Sanitaria Regionale del Molise -ASREM, Campobasso, Italy
| | - Americo Bonanni
- Research Unit of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy
| | | | | | - Antonietta Pepe
- Research Unit of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy
| | - Daniele Belvisi
- IRCCS NEUROMED, Pozzilli, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Marco Mario Ferrario
- Department of Medicine and Surgery, EPIMED Research Center, University of Insubria, Varese, Italy
| | - Francesco Gianfagna
- Department of Medicine and Surgery, EPIMED Research Center, University of Insubria, Varese, Italy
| | - Chiara Cerletti
- Research Unit of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy
| | | | - Stefania Massari
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority (INAIL), Rome, Italy
| | - Alfredo Berardelli
- IRCCS NEUROMED, Pozzilli, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Giovanni de Gaetano
- Research Unit of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy
| | - Licia Iacoviello
- Research Unit of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy
- Department of Medicine and Surgery, LUM University, Casamassima, Italy
| |
Collapse
|
2
|
Xie C, Xia X, Wang K, Yan J, Bai L, Guo L, Li X, Wu S. Ambient Air Pollution and Parkinson's Disease and Alzheimer's Disease: An Updated Meta-Analysis. TOXICS 2025; 13:139. [PMID: 39997954 PMCID: PMC11861764 DOI: 10.3390/toxics13020139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 02/26/2025]
Abstract
BACKGROUND Previous epidemiological evidence regarding the associations between ambient air pollution and two major neurodegenerative diseases, Alzheimer's disease (AD) and Parkinson's disease (PD), remains inconclusive. OBJECTIVE This study aimed to evaluate the associations between long-term and short-term exposure to PM2.5 and PM10 (i.e., particulate matter with an aerodynamic diameter of, or smaller than, 2.5 μm or 10 μm), nitrogen dioxide (NO2), ozone, sulfur dioxide, and carbon monoxide and the risks of AD and PD. METHODS A random-effects model was used to summarize individual effect estimates in the meta-analysis. A subgroup meta-analysis was further conducted to explore the potential sources of heterogeneity. RESULTS In total, 42 eligible studies were included. For each 5 μg/m3 increase in long-term PM2.5 exposure, the odds ratios (ORs) were 1.16 (95% CI: 1.04, 1.30; I2 = 95%) and 1.10 (95% CI: 1.03, 1.17; I2 = 95%) for AD and PD, respectively. For each 5 μg/m3 increase in short-term PM2.5 exposure, the OR was 1.01 (95% CI: 1.002, 1.01; I2 = 77%) for PD. For each 1 ppb increase in long-term NO2 exposure, the OR was 1.01 (95% CI: 1.0002, 1.02; I2 = 79%) for PD. CONCLUSION Ambient air pollution, particularly PM2.5, may contribute to the increased risks of neurodegenerative diseases including AD and PD.
Collapse
Affiliation(s)
- Cuiyao Xie
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (C.X.); (X.X.); (K.W.); (J.Y.); (L.B.)
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory of Trace Elements and Endemic Diseases, Ministry of Health, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an Jiaotong University, Xi’an 710061, China
| | - Xi Xia
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (C.X.); (X.X.); (K.W.); (J.Y.); (L.B.)
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory of Trace Elements and Endemic Diseases, Ministry of Health, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an Jiaotong University, Xi’an 710061, China
| | - Kai Wang
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (C.X.); (X.X.); (K.W.); (J.Y.); (L.B.)
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory of Trace Elements and Endemic Diseases, Ministry of Health, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an Jiaotong University, Xi’an 710061, China
| | - Jie Yan
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (C.X.); (X.X.); (K.W.); (J.Y.); (L.B.)
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory of Trace Elements and Endemic Diseases, Ministry of Health, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an Jiaotong University, Xi’an 710061, China
| | - Lijun Bai
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (C.X.); (X.X.); (K.W.); (J.Y.); (L.B.)
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory of Trace Elements and Endemic Diseases, Ministry of Health, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an Jiaotong University, Xi’an 710061, China
| | - Liqiong Guo
- School of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China;
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325000, China
| | - Xiaoxue Li
- Disaster Medicine Research Center, Medical Innovation Research Division of the Chinese PLA General Hospital, Beijing 100853, China
- 2021RU006 Research Unit of Disaster Medicine, Chinese Academy of Medical Sciences, Beijing 100005, China
- Beijing Key Laboratory of Disaster Medicine, Beijing 100039, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (C.X.); (X.X.); (K.W.); (J.Y.); (L.B.)
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory of Trace Elements and Endemic Diseases, Ministry of Health, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an Jiaotong University, Xi’an 710061, China
| |
Collapse
|
3
|
Peters S, Bouma F, Hoek G, Janssen N, Vermeulen R. Air pollution exposure and mortality from neurodegenerative diseases in the Netherlands: A population-based cohort study. ENVIRONMENTAL RESEARCH 2024; 259:119552. [PMID: 38964584 DOI: 10.1016/j.envres.2024.119552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Long-term exposure to ambient air pollution has been linked with all-cause mortality and cardiovascular and respiratory diseases. Suggestive associations between ambient air pollutants and neurodegeneration have also been reported, but due to the small effect and relatively rare outcomes evidence is yet inconclusive. Our aim was to investigate the associations between long-term air pollution exposure and mortality from neurodegenerative diseases. METHODS A Dutch national cohort of 10.8 million adults aged ≥30 years was followed from 2013 until 2019. Annual average concentrations of air pollutants (ultra-fine particles (UFP), nitrogen dioxide (NO2), fine particles (PM2.5 and PM10) and elemental carbon (EC)) were estimated at the home address at baseline, using land-use regression models. The outcome variables were mortality due to amyotrophic lateral sclerosis (ALS), Parkinson's disease, non-vascular dementia, Alzheimer's disease, and multiple sclerosis (MS). Hazard ratios (HR) were estimated using Cox models, adjusting for individual and area-level socio-economic status covariates. RESULTS We had a follow-up of 71 million person-years. The adjusted HRs for non-vascular dementia were significantly increased for NO2 (1.03; 95% confidence interval (CI) 1.02-1.05) and PM2.5 (1.02; 95%CI 1.01-1.03) per interquartile range (IQR; 6.52 and 1.47 μg/m3, respectively). The association with PM2.5 was also positive for ALS (1.02; 95%CI 0.97-1.07). These associations remained positive in sensitivity analyses and two-pollutant models. UFP was not associated with any outcome. No association with air pollution was found for Parkinson's disease and MS. Inverse associations were found for Alzheimer's disease. CONCLUSION Our findings, using a cohort of more than 10 million people, provide further support for associations between long-term exposure to air pollutants (PM2.5 and particularly NO2) and mortality of non-vascular dementia. No associations were found for Parkinson and MS and an inverse association was observed for Alzheimer's disease.
Collapse
Affiliation(s)
- Susan Peters
- Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 2, 3584 CM, Utrecht, the Netherlands.
| | - Femke Bouma
- Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 2, 3584 CM, Utrecht, the Netherlands
| | - Gerard Hoek
- Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 2, 3584 CM, Utrecht, the Netherlands
| | - Nicole Janssen
- National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA, Bilthoven, the Netherlands
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 2, 3584 CM, Utrecht, the Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, the Netherlands
| |
Collapse
|
4
|
Feng Y, Li M, Hao X, Ma D, Guo M, Zuo C, Li S, Liang Y, Hao C, Wang Z, Sun Y, Qi S, Sun S, Shi C. Air pollution, greenspace exposure and risk of Parkinson's disease: a prospective study of 441,462 participants. J Neurol 2024; 271:5233-5245. [PMID: 38847847 DOI: 10.1007/s00415-024-12492-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND The current understandings of the relationship between air pollution (AP), greenspace exposure and Parkinson's Disease (PD) remain inconclusive. METHODS We engaged 441,462 participants from the UK Biobank who were not diagnosed with PD. Utilizing Cox proportional hazard regression model, relationships between AP [nitrogen dioxide (NO2), and nitrogen oxides (NOX), particulate matter < 2.5 μm in aerodynamic diameter(PM2.5), coarse particulate matter between 2.5 μm and 10 μm in aerodynamic diameter(PM2.5-10), particulate matter < 10 μm in aerodynamic diameter(PM10)], greenspace exposure, and PD risk were determined independently. Our analyses comprised three models, adjusted for covariates, and affirmed through six sensitivity analyses to bolster the robustness of our findings. Moreover, mediation analysis was deployed to discern the mediating effect of AP between greenspaces and PD. RESULTS During a median follow-up of 12.23 years (5,574,293 person-years), there were 3,293 PD events. Each interquartile (IQR) increment in NO2 and PM10 concentrations were associated with 10% and 8% increase in PD onset risk, while the increases in NOX, PM2.5 and PM2.5-10 were not associated with PD risk. Additionally, greenspace may safeguard by reducing NO2 and PM10 levels, with the effect mediated by NO2 and PM10 in greenspace-PD relationship. CONCLUSION Our findings indicate that an IQR increase in ambient NO2 and PM10 concentrations was associated with risk of PD development, while other pollutants (NOX, PM2.5 and PM2.5-10) were not associated with PD risk. Firstly, we find that augmented exposure to greenspace was associated with the lower PD risk by reducing NO2 and PM10 levels.
Collapse
Affiliation(s)
- YanMei Feng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, 1 Jian-She East Road, Zhengzhou, 450000, Henan, China
| | - MengJie Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, 1 Jian-She East Road, Zhengzhou, 450000, Henan, China
| | - XiaoYan Hao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, 1 Jian-She East Road, Zhengzhou, 450000, Henan, China
| | - DongRui Ma
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, 1 Jian-She East Road, Zhengzhou, 450000, Henan, China
| | - MengNan Guo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, 1 Jian-She East Road, Zhengzhou, 450000, Henan, China
| | - ChunYan Zuo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, 1 Jian-She East Road, Zhengzhou, 450000, Henan, China
| | - ShuangJie Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, 1 Jian-She East Road, Zhengzhou, 450000, Henan, China
| | - YuanYuan Liang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, 1 Jian-She East Road, Zhengzhou, 450000, Henan, China
| | - ChenWei Hao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, 1 Jian-She East Road, Zhengzhou, 450000, Henan, China
| | - ZhiYun Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, 1 Jian-She East Road, Zhengzhou, 450000, Henan, China
| | - YueMeng Sun
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, 1 Jian-She East Road, Zhengzhou, 450000, Henan, China
| | - ShaSha Qi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, 1 Jian-She East Road, Zhengzhou, 450000, Henan, China
| | - ShiLei Sun
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, 1 Jian-She East Road, Zhengzhou, 450000, Henan, China.
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China.
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, 450000, Henan, China.
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China.
| | - ChangHe Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, 1 Jian-She East Road, Zhengzhou, 450000, Henan, China.
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China.
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, 450000, Henan, China.
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
5
|
Feng J, Zhang P, Chen K, Huang P, Liang X, Dong J, Zhu B, Fu Z, Deng T, Zhu L, Chen C, Zhang Y. Soot nanoparticles promote ferroptosis in dopaminergic neurons via alteration of m6A RNA methylation in Parkinson's disease. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134691. [PMID: 38788584 DOI: 10.1016/j.jhazmat.2024.134691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/06/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
Soot nanoparticles (SNPs) are black carbon prevalent in atmospheric environment with significant impacts on public health, leading to neurodegenerative diseases including development of Parkinson's disease (PD). This study investigated the effects of SNPs exposure on PD symptoms, employing both in vivo and in vitro PD models. In the in vivo experiments, animal behavior assessments showed that SNPs exposure exacerbated motor and cognitive impairments in PD mice. Molecular biology techniques further unveiled that SNPs aggravated degeneration of dopaminergic neurons. In vitro experiments revealed that SNPs exposure intensified ferroptosis of PD cells by increasing reactive oxygen species and iron ion levels, while reducing glutathione levels and mitochondrial membrane potential. Sequencing tests indicated elevated N6-methyladenosine (m6A) alteration of the ferroptosis-related protein, acyl-CoA synthetase long chain family member 4 (ACSL4). This study demonstrates that SNPs may exacerbate the onset and progression of PD by recruiting YTH domain-containing family protein 1 (YTHDF1) protein, enhancing m6A methylation in the ACSL4 5'UTR, amplifying ACSL4 protein expression, and accelerating the ferroptosis process in dopaminergic neurons. These molecular mechanisms underlying SNPs exacerbation of PD development may provide crucial insights for formulating environmental safety regulations and potential therapeutic strategies addressing PD in populations residing in regions with varied air quality.
Collapse
Affiliation(s)
- Jiezhu Feng
- School of Medicine, South China University of Technology, Guangzhou 510006, China; Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province 510080, China; Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou 510080, China
| | - Piao Zhang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province 510080, China; Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou 510080, China
| | - Kunlin Chen
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Peiting Huang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province 510080, China; Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou 510080, China
| | - Xiaomei Liang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province 510080, China; Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou 510080, China
| | - Jiawei Dong
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Baoyu Zhu
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province 510080, China; Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou 510080, China
| | - Zhongling Fu
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province 510080, China; Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou 510080, China
| | - Tongtong Deng
- School of Medicine, South China University of Technology, Guangzhou 510006, China; Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province 510080, China; Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou 510080, China
| | - Linyan Zhu
- Department of Pharmacology, Medical College, Jinan University, Guangzhou 510632, China.
| | - Chengyu Chen
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Yuhu Zhang
- School of Medicine, South China University of Technology, Guangzhou 510006, China; Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province 510080, China; Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou 510080, China.
| |
Collapse
|
6
|
Chen TB, Liang CS, Chang CM, Yang CC, Yu HL, Wu YS, Huang WJ, Tsai IJ, Yan YH, Wei CY, Yang CP. Association Between Exposure to Particulate Matter and the Incidence of Parkinson's Disease: A Nationwide Cohort Study in Taiwan. J Mov Disord 2024; 17:313-321. [PMID: 38887056 PMCID: PMC11300401 DOI: 10.14802/jmd.24003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/20/2024] [Accepted: 06/18/2024] [Indexed: 06/20/2024] Open
Abstract
OBJECTIVE Emerging evidence suggests that air pollution exposure may increase the risk of Parkinson's disease (PD). We aimed to investigate the association between exposure to fine particulate matter (PM2.5) and the risk of incident PD nationwide. METHODS We utilized data from the Taiwan National Health Insurance Research Database, which is spatiotemporally linked with air quality data from the Taiwan Environmental Protection Administration website. The study population consisted of participants who were followed from the index date (January 1, 2005) until the occurrence of PD or the end of the study period (December 31, 2017). Participants who were diagnosed with PD before the index date were excluded. To evaluate the association between exposure to PM2.5 and incident PD risk, we employed Cox regression to estimate the hazard ratio and 95% confidence interval (CI). RESULTS A total of 454,583 participants were included, with a mean (standard deviation) age of 63.1 (9.9) years and a male proportion of 50%. Over a mean follow-up period of 11.1 (3.6) years, 4% of the participants (n = 18,862) developed PD. We observed a significant positive association between PM2.5 exposure and the risk of PD, with a hazard ratio of 1.22 (95% CI, 1.20-1.23) per interquartile range increase in exposure (10.17 μg/m3) when adjusting for both SO2 and NO2. CONCLUSION We provide further evidence of an association between PM2.5 exposure and the risk of PD. These findings underscore the urgent need for public health policies aimed at reducing ambient air pollution and its potential impact on PD.
Collapse
Affiliation(s)
- Ting-Bin Chen
- Department of Neurology, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Neurology, Kuang Tien General Hospital, Taichung, Taiwan
| | - Chih-Sung Liang
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ching-Mao Chang
- Center for Traditional Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Cheng-Chia Yang
- Department of Healthcare Administration, Asia University, Taichung, Taiwan
| | - Hwa-Lung Yu
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan
| | - Yuh-Shen Wu
- Department of Safety, Health, and Environmental Engineering, Hung Kuang University, Taichung, Taiwan
| | - Winn-Jung Huang
- Department of Safety, Health, and Environmental Engineering, Hung Kuang University, Taichung, Taiwan
| | - I-Ju Tsai
- Department of Medical Research, Kuang Tien General Hospital, Taichung, Taiwan
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
| | - Yuan-Horng Yan
- Department of Medical Research, Kuang Tien General Hospital, Taichung, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kuang Tien General Hospital, Taichung, Taiwan
- Department of Nutrition and Institute of Biomedical Nutrition, Hung Kuang University, Taichung, Taiwan
| | - Cheng-Yu Wei
- Department of Exercise and Health Promotion, College of Kinesiology and Health, Chinese Culture University, Taipei, Taiwan
- Department of Neurology, Chang Bing Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Chun-Pai Yang
- Department of Neurology, Kuang Tien General Hospital, Taichung, Taiwan
- Department of Safety, Health, and Environmental Engineering, Hung Kuang University, Taichung, Taiwan
- Department of Nutrition and Institute of Biomedical Nutrition, Hung Kuang University, Taichung, Taiwan
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
7
|
Li X, Ran Q, He X, Peng D, Xiong A, Jiang M, Zhang L, Wang J, Bai L, Liu S, Li S, Sun B, Li G. HO-1 upregulation promotes mitophagy-dependent ferroptosis in PM2.5-exposed hippocampal neurons. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 277:116314. [PMID: 38642409 DOI: 10.1016/j.ecoenv.2024.116314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/28/2024] [Accepted: 04/08/2024] [Indexed: 04/22/2024]
Abstract
Fine particulate matter (PM2.5) has been extensively implicated in the pathogenesis of neurodevelopmental disorders, but the underlying mechanism remains unclear. Recent studies have revealed that PM2.5 plays a role in regulating iron metabolism and redox homeostasis in the brain, which is closely associated with ferroptosis. In this study, the role and underlying mechanism of ferroptosis in PM2.5-induced neurotoxicity were investigated in mice, primary hippocampal neurons, and HT22 cells. Our findings demonstrated that exposure to PM2.5 could induce abnormal behaviors, neuroinflammation, and neuronal loss in the hippocampus of mice. These effects may be attributed to ferroptosis induced by PM2.5 exposure in hippocampal neurons. RNA-seq analysis revealed that the upregulation of iron metabolism-related protein Heme Oxygenase 1 (HO-1) and the activation of mitophagy might play key roles in PM2.5-induced ferroptosis in HT22 cells. Subsequent in vitro experiments showed that PM2.5 exposure significantly upregulated HO-1 in primary hippocampal neurons and HT22 cells. Moreover, PM2.5 exposure activated mitophagy in HT22 cells, leading to the loss of mitochondrial membrane potential, alterations in the expression of autophagy-related proteins LC3, P62, and mTOR, as well as an increase in mitophagy-related protein PINK1 and PARKIN. As a heme-degradation enzyme, the upregulation of HO-1 promotes the release of excess iron, genetically inhibiting the upregulation of HO-1 in HT22 cells could prevent both PM2.5-induced mitophagy and ferroptosis. Furthermore, pharmacological inhibition of mitophagy in HT22 cells reduced levels of ferrous ions and lipid peroxides, thereby preventing ferroptosis. Collectively, this study demonstrates that HO-1 mediates PM2.5-induced mitophagy-dependent ferroptosis in hippocampal neurons, and inhibiting mitophagy or ferroptosis may be a key therapeutic target to ameliorate neurotoxicity following PM2.5 exposure.
Collapse
Affiliation(s)
- Xiaolan Li
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China; Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu 610000, China; Department of Pulmonary and Critical Care Medicine, Chengdu Third People's Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu 610000, China
| | - Qin Ran
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu 610000, China; Department of Pulmonary and Critical Care Medicine, Chengdu Third People's Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu 610000, China
| | - Xiang He
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China; Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu 610000, China; Department of Pulmonary and Critical Care Medicine, Chengdu Third People's Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu 610000, China
| | - Dan Peng
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu 610000, China; Department of Pulmonary and Critical Care Medicine, Chengdu Third People's Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu 610000, China
| | - Anying Xiong
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu 610000, China; Department of Pulmonary and Critical Care Medicine, Chengdu Third People's Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu 610000, China
| | - Manling Jiang
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu 610000, China; Department of Pulmonary and Critical Care Medicine, Chengdu Third People's Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu 610000, China
| | - Lei Zhang
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu 610000, China; Department of Pulmonary and Critical Care Medicine, Chengdu Third People's Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu 610000, China
| | - Junyi Wang
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu 610000, China; Department of Pulmonary and Critical Care Medicine, Chengdu Third People's Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu 610000, China
| | - Lingling Bai
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu 610000, China; Department of Pulmonary and Critical Care Medicine, Chengdu Third People's Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu 610000, China
| | - Shengbin Liu
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu 610000, China; Department of Pulmonary and Critical Care Medicine, Chengdu Third People's Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu 610000, China
| | - Shiyue Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China.
| | - Baoqing Sun
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China.
| | - Guoping Li
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu 610000, China; Department of Pulmonary and Critical Care Medicine, Chengdu Third People's Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu 610000, China.
| |
Collapse
|
8
|
Ai B, Zhang J, Zhang S, Chen G, Tian F, Chen L, Li H, Guo Y, Jerath A, Lin H, Zhang Z. Causal association between long-term exposure to air pollution and incident Parkinson's disease. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133944. [PMID: 38457975 DOI: 10.1016/j.jhazmat.2024.133944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 03/10/2024]
Abstract
Epidemiological evidence for long-term air pollution exposure and Parkinson's disease (PD) is controversial, and analysis of causality is limited. We identified 293,888 participants who were free of PD at baseline in the UK Biobank (2006-2010). Time-varying air pollution [fine particulate (PM2.5) and ozone (O3)] exposures were estimated using spatio-temporal models. Incident cases of PD were identified using validated algorithms. Four methods were used to investigate the associations between air pollution and PD, including (1) standard time-varying Cox proportional-hazard model; (2) Cox models weighted by generalized propensity score (GPS) and inverse-probability weights (IPW); (3) instrumental variable (IV) analysis; and (4) negative control outcome analysis. During a median of 11.6 years of follow-up, 1822 incident PD cases were identified. Based on standard Cox regression, the hazard ratios (95% confidence interval) for a 1 µg/m3 or ppb increase in PM2.5 and O3 were 1.23 (1.17, 1.30) and 1.02 (0.98, 1.05), respectively. Consistent results were found in models weighted by GPS and IPW, and in IV analysis. There were no significant associations between air pollution and negative control outcomes. This study provides evidence to support a causal association between PM2.5 exposure and PD. Mitigation of air pollution could be a protective measure against PD.
Collapse
Affiliation(s)
- Baozhuo Ai
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jiayue Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Shiyu Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ge Chen
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Fei Tian
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Lan Chen
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Haitao Li
- Shenzhen University General Hospital, Shenzhen, China
| | - Yuming Guo
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Angela Jerath
- Schulich Heart Program, Sunnybrook Research Institute, Toronto, ON, Canada; ICES, Toronto, ON, Canada; Department of Anesthesiology and Pain Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Hualiang Lin
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Zilong Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
9
|
Cristaldi A, Oliveri Conti G, Pellitteri R, La Cognata V, Copat C, Pulvirenti E, Grasso A, Fiore M, Cavallaro S, Dell'Albani P, Ferrante M. In vitro exposure to PM 2.5 of olfactory Ensheathing cells and SH-SY5Y cells and possible association with neurodegenerative processes. ENVIRONMENTAL RESEARCH 2024; 241:117575. [PMID: 37925127 DOI: 10.1016/j.envres.2023.117575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/06/2023]
Abstract
PM2.5 exposure represents a risk factor for the public health. PM2.5 is able to cross the blood-alveolar and blood-brain barriers and reach the brain through three routes: nasal olfactory pathway, nose-brain pathway, blood-brain barrier pathway. We evaluated the effect of PM2.5 to induce cytotoxicity and reduced viability on in vitro cultures of OECs (Olfactory Ensheathing Cells) and SH-SY5Y cells. PM2.5 samples were collected in the metropolitan area of Catania, and the gravimetric determination of PM2.5, characterization of 10 trace elements and 16 polycyclic aromatic hydrocarbons (PAHs) were carried out for each sample. PM2.5 extracts were exposed to cultures of OECs and SH-SY5Y cells for 24-48-72 h, and the cell viability assay (MTT) was evaluated. Assessment of mitochondrial and cytoskeleton damage, and the assessment of apoptotic process were performed in the samples that showed lower cell viability. We have found an annual average value of PM2.5 = 16.9 μg/m3 and a maximum value of PM2.5 = 27.6 μg/m3 during the winter season. PM2.5 samples collected during the winter season also showed higher concentrations of PAHs and trace elements. The MTT assay showed a reduction in cell viability for both OECs (44%, 62%, 64%) and SH-SY5Y cells (16%, 17%, 28%) after 24-48-72 h of PM2.5 exposure. Furthermore, samples with lower cell viability showed a decrease in mitochondrial membrane potential, increased cytotoxicity, and also impaired cellular integrity and induction of the apoptotic process after increased expression of vimentin and caspase-3 activity, respectively. These events are involved in neurodegenerative processes and could be triggered not only by the concentration and time of exposure to PM2.5, but also by the presence of trace elements and PAHs on the PM2.5 substrate. The identification of more sensitive cell lines could be the key to understanding how exposure to PM2.5 can contribute to the onset of neurodegenerative processes.
Collapse
Affiliation(s)
- Antonio Cristaldi
- Department of Medical Sciences, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Italy; ISDE: International Society of Doctors for Environments - ISDE, Catania Section, Italy
| | - Gea Oliveri Conti
- Department of Medical Sciences, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Italy; ISDE: International Society of Doctors for Environments - ISDE, Catania Section, Italy; NANOMED: Research Center in Nanomedicine and Pharmaceutical Nanotechnology, Department of Drug and Health Sciences, University of Catania, Italy.
| | - Rosalia Pellitteri
- CNR-IRIB: National Research Council - Institute for Biomedical Research and Innovation, National Research Council, Catania, Italy
| | - Valentina La Cognata
- CNR-IRIB: National Research Council - Institute for Biomedical Research and Innovation, National Research Council, Catania, Italy.
| | - Chiara Copat
- Department of Medical Sciences, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Italy; ISDE: International Society of Doctors for Environments - ISDE, Catania Section, Italy
| | - Eloise Pulvirenti
- Department of Medical Sciences, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Italy; ISDE: International Society of Doctors for Environments - ISDE, Catania Section, Italy; Department of Biological, Geological and Environmental Sciences, University of Catania, Italy
| | - Alfina Grasso
- Department of Medical Sciences, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Italy
| | - Maria Fiore
- Department of Medical Sciences, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Italy; ISDE: International Society of Doctors for Environments - ISDE, Catania Section, Italy
| | - Sebastiano Cavallaro
- CNR-IRIB: National Research Council - Institute for Biomedical Research and Innovation, National Research Council, Catania, Italy
| | - Paola Dell'Albani
- CNR-IRIB: National Research Council - Institute for Biomedical Research and Innovation, National Research Council, Catania, Italy.
| | - Margherita Ferrante
- Department of Medical Sciences, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Italy; ISDE: International Society of Doctors for Environments - ISDE, Catania Section, Italy; NANOMED: Research Center in Nanomedicine and Pharmaceutical Nanotechnology, Department of Drug and Health Sciences, University of Catania, Italy
| |
Collapse
|
10
|
Kwon D, Paul KC, Yu Y, Zhang K, Folle AD, Wu J, Bronstein JM, Ritz B. Traffic-related air pollution and Parkinson's disease in central California. ENVIRONMENTAL RESEARCH 2024; 240:117434. [PMID: 37858688 PMCID: PMC11232690 DOI: 10.1016/j.envres.2023.117434] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Prior studies suggested that air pollution exposure may increase the risk of Parkinson's Disease (PD). We investigated the long-term impacts of traffic-related and multiple sources of particulate air pollution on PD in central California. METHODS Our case-control analysis included 761 PD patients and 910 population controls. We assessed exposure at residential and occupational locations from 1981 to 2016, estimating annual average carbon monoxide (CO) concentrations - a traffic pollution marker - based on the California Line Source Dispersion Model, version 4. Additionally, particulate matter (PM2.5) concentrations were based on a nationwide geospatial chemical transport model. Exposures were assessed as 10-year averages with a 5-year lag time prior to a PD diagnosis for cases and an interview date for controls, subsequently categorized into tertiles. Logistic regression models were used, adjusting for various factors. RESULTS Traffic-related CO was associated with an increased odds ratio for PD at residences (OR for T3 vs. T1: 1.58; 95% CI: 1.20, 2.10; p-trend = 0.02) and workplaces (OR for T3 vs. T1: 1.91; 95% CI: 1.22, 3.00; p-trend <0.01). PM2.5 was also positively associated with PD at residences (OR for T3 vs. T1: 1.62; 95% CI: 1.22, 2.15; p-trend <0.01) and workplaces (OR for T3 vs. T1: 1.85; 95% CI: 1.21, 2.85; p-trend <0.01). Associations remained robust after additional adjustments for smoking status and pesticide exposure and were consistent across different exposure periods. CONCLUSION We found that long-term modeled exposure to local traffic-related air pollution (CO) and fine particulates from multiple sources (PM2.5) at homes and workplaces in central California was associated with an increased risk of PD.
Collapse
Affiliation(s)
- Dayoon Kwon
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, United States
| | - Kimberly C Paul
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, United States
| | - Yu Yu
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, United States; UCLA Center for Health Policy Research, University of California, Los Angeles, United States
| | - Keren Zhang
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, United States
| | - Aline D Folle
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, United States
| | - Jun Wu
- Department of Environmental and Occupational Health, Program in Public Health, University of California, Irvine, United States
| | - Jeff M Bronstein
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, United States
| | - Beate Ritz
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, United States; Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, United States.
| |
Collapse
|
11
|
Cao Z, Yuan Y, White AJ, Li C, Luo Z, D’Aloisio AA, Huang X, Kaufman JD, Sandler DP, Chen H. Air Pollutants and Risk of Parkinson's Disease among Women in the Sister Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:17001. [PMID: 38175185 PMCID: PMC10766011 DOI: 10.1289/ehp13009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Air pollutants may contribute to the development of Parkinson's disease (PD), but empirical evidence is limited and inconsistent. OBJECTIVES This study aimed to prospectively investigate the associations of PD with ambient exposures to fine particulate matter with aerodynamic diameter ≤ 2.5 μ m (PM 2.5 ) and nitrogen dioxide (NO 2 ). METHODS We analyzed data from 47,108 US women from the Sister Study, enrolled from 2003-2009 (35-80 years of age) and followed through 2018. Exposures of interest included address-level ambient PM 2.5 and NO 2 in 2009 and their cumulative averages from 2009 to PD diagnosis with varying lag-years. The primary outcome was PD diagnosis between 2009 and 2018 (n = 163 ). We used multivariable Cox proportional hazards and time-varying Cox models to calculate hazard ratios (HRs) and 95% confidence intervals (CIs). RESULTS NO 2 exposure in 2009 was associated with PD risk in a dose-response manner. The HR and 95% CI were 1.22 (95% CI: 1.03, 1.46) for one interquartile [4.8 parts per billion (ppb)] increment in NO 2 , adjusting for age, race and ethnicity, education, smoking status, alcohol drinking, caffeine intake, body mass index, physical activity, census region, residential area type, area deprivation index (ADI), and self-reported health status. The association was confirmed in secondary analyses with time-varying averaged cumulative exposures. For example, the multivariable adjusted HR for PD per 4.8 ppb increment in NO 2 was 1.25 (95% CI: 1.05, 1.50) in the 2-year lag analysis using cumulative average exposure. Post hoc subgroup analyses overall confirmed the association. However, statistical interaction analyses found that the positive association of NO 2 with PD risk was limited to women in urban, rural, and small town areas and women with ≥ 50 th percentile ADI but not among women from suburban areas or areas with < 50 th percentile ADI. In contrast, PM 2.5 exposure was not associated with PD risk with the possible exception for women from the Midwest region of the US (HR interquartile -range = 2.49 , 95% CI: 1.20, 5.14) but not in other census regions. DISCUSSION In this nationwide cohort of US women, higher level exposure to ambient NO 2 is associated with a greater risk of PD. This finding needs to be independently confirmed and the underlying mechanisms warrant further investigation. https://doi.org/10.1289/EHP13009.
Collapse
Affiliation(s)
- Zichun Cao
- Department of Epidemiology and Biostatistics, Michigan State University College of Human Medicine, East Lansing, Michigan, USA
| | - Yaqun Yuan
- Department of Epidemiology and Biostatistics, Michigan State University College of Human Medicine, East Lansing, Michigan, USA
| | - Alexandra J. White
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Chenxi Li
- Department of Epidemiology and Biostatistics, Michigan State University College of Human Medicine, East Lansing, Michigan, USA
| | - Zhehui Luo
- Department of Epidemiology and Biostatistics, Michigan State University College of Human Medicine, East Lansing, Michigan, USA
| | - Aimee A. D’Aloisio
- Social & Scientific Systems, DLH Holdings Corporation, Durham, North Carolina, USA
| | - Xuemei Huang
- Department of Neurology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Joel D. Kaufman
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Dale P. Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Honglei Chen
- Department of Epidemiology and Biostatistics, Michigan State University College of Human Medicine, East Lansing, Michigan, USA
| |
Collapse
|
12
|
Lomme J, Reedijk M, Peters S, Downward GS, Stefanopoulou M, Vermeulen R, Huss A. Traffic-related air pollution, road traffic noise, and Parkinson's disease: Evaluations in two Dutch cohort studies. Environ Epidemiol 2023; 7:e272. [PMID: 38912395 PMCID: PMC11189687 DOI: 10.1097/ee9.0000000000000272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/06/2023] [Indexed: 06/25/2024] Open
Abstract
Background Environmental factors such as air pollution have been associated with Parkinson's disease (PD), but findings have been inconsistent. We investigated the association between exposure to several air pollutants, road traffic noise, and PD risk in two Dutch cohorts. Methods Data from 50,087 participants from two Dutch population-based cohort studies, European Prospective Investigation into Cancer and Nutrition in the Netherlands and Arbeid, Milieu en Gezondheid Onderzoek were analyzed. In these cohorts, 235 PD cases were ascertained based on a previously validated algorithm combining self-reported information (diagnosis, medication, and symptoms) and registry data. We assigned the following traffic-related exposures to residential addresses at baseline: NO2, NOx, particulate matter (PM)2.5absorbance (as a marker for black carbon exposure), PM with aerodynamic diameter ≤2.5 µm (PM2.5), ≤10 µm (PM10), PMcoarse (size fraction 2.5-10 µm), ultrafine particles <0.1 µm (UFP), and road traffic noise (Lden). Logistic regression models were applied to investigate the associations with PD, adjusted for possible confounders. Results Both single- and two-pollutant models indicated associations between exposure to NOx, road traffic noise, and increasing odds of developing PD. Odds ratios of fully adjusted two-pollutant models in the highest compared with the lowest exposure quartile were 1.62 (95% CI = 1.02, 2.62) for NOx and 1.47 (95% CI = 0.97, 2.25) for road traffic noise, with clear trends across exposure categories. Conclusions Our findings suggest that NOx and road traffic noise are associated with an increased risk of PD. While the association with NOx has been shown before, further investigation into the possible role of environmental noise on PD is warranted.
Collapse
Affiliation(s)
- Jara Lomme
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Marije Reedijk
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Susan Peters
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - George S. Downward
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
- Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht, The Netherlands
| | | | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
- Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Anke Huss
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
13
|
Krzyzanowski B, Searles Nielsen S, Turner JR, Racette BA. Fine Particulate Matter and Parkinson Disease Risk Among Medicare Beneficiaries. Neurology 2023; 101:e2058-e2067. [PMID: 37903644 PMCID: PMC10663024 DOI: 10.1212/wnl.0000000000207871] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/03/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Numerous studies suggest that environmental exposures play a critical role in Parkinson disease (PD) pathogenesis, and large, population-based studies have the potential to advance substantially the identification of novel PD risk factors. We sought to study the nationwide geographic relationship between PD and air pollution, specifically PM2.5 (particulate matter with a diameter <2.5 micrometers), using population-based US Medicare data. METHODS We conducted a population-based geographic study of Medicare beneficiaries aged 66-90 years geocoded to US counties and zip+4. We used integrated nested Laplace approximation to create age, sex, race, smoking, and health care utilization-adjusted relative risk (RR) at the county level for geographic analyses with PM2.5 as the primary exposure of interest. We also performed an individual-level analysis using logistic regression with cases and controls with zip+4 centroid PM2.5. We adjusted a priori for the same covariates and verified no confounding by indicators of socioeconomic status or neurologist density. RESULTS Among 21,639,190 Medicare beneficiaries, 89,390 had incident PD in 2009. There was a nationwide association between average annual PM2.5 and PD risk whereby the RR of PD was 56% (95% CI 47%-66%) greater for those exposed to the median level of PM2.5 compared with those with the lowest level of PM2.5. This association was linear up to 13 μg/m3 corresponding to a 4.2% (95% CI 3.7%-4.8%) greater risk of PD for each additional μg/m3 of PM2.5 (p trend < 0.0001). We identified a region with high PD risk in the Mississippi-Ohio River Valley, where the risk of PD was 19% greater compared with the rest of the nation. The strongest association between PM2.5 and PD was found in a region with low PD risk in the Rocky Mountains. PM2.5 was also associated with PD in the Mississippi-Ohio River Valley where the association was relatively weaker, due to a possible ceiling effect at average annual PM2.5 levels of ∼13 μg/m3. DISCUSSION State-of-the-art geographic analytic techniques revealed an association between PM2.5 and PD that varied in strength by region. A deeper investigation into the specific subfractions of PM2.5 may provide additional insight into regional variability in the PM2.5-PD association.
Collapse
Affiliation(s)
- Brittany Krzyzanowski
- From the Barrow Neurological Institute (B.K., B.A.R.), Phoenix, AZ; Washington University in St. Louis (S.S.N., J.R.T.) MO.
| | - Susan Searles Nielsen
- From the Barrow Neurological Institute (B.K., B.A.R.), Phoenix, AZ; Washington University in St. Louis (S.S.N., J.R.T.) MO
| | - Jay R Turner
- From the Barrow Neurological Institute (B.K., B.A.R.), Phoenix, AZ; Washington University in St. Louis (S.S.N., J.R.T.) MO
| | - Brad A Racette
- From the Barrow Neurological Institute (B.K., B.A.R.), Phoenix, AZ; Washington University in St. Louis (S.S.N., J.R.T.) MO
| |
Collapse
|
14
|
Lee J, Weerasinghe-Mudiyanselage PDE, Kim B, Kang S, Kim JS, Moon C. Particulate matter exposure and neurodegenerative diseases: A comprehensive update on toxicity and mechanisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115565. [PMID: 37832485 DOI: 10.1016/j.ecoenv.2023.115565] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/30/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023]
Abstract
Exposure to particulate matter (PM) has been associated with a range of health impacts, including neurological abnormalities that affect neurodevelopment, neuroplasticity, and behavior. Recently, there has been growing interest in investigating the possible relationship between PM exposure and the onset and progression of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis. However, the precise mechanism by which PM affects neurodegeneration is still unclear, even though several epidemiological and animal model studies have provided mechanistic insights. This article presents a review of the current research on the neurotoxicity of PM and its impact on neurodegenerative diseases. This review summarizes findings from epidemiological and animal model studies collected through searches in Google Scholar, PubMed, Web of Science, and Scopus. This review paper also discusses the reported effects of PM exposure on the central nervous system and highlights research gaps and future directions. The information presented in this review may inform public health policies aimed at reducing PM exposure and may contribute to the development of new treatments for neurodegenerative diseases. Further mechanistic and therapeutic research will be needed to fully understand the relationship between PM exposure and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jeongmin Lee
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR program, Chonnam National University, Gwangju 61186, South Korea
| | - Poornima D E Weerasinghe-Mudiyanselage
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR program, Chonnam National University, Gwangju 61186, South Korea
| | - Bohye Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR program, Chonnam National University, Gwangju 61186, South Korea
| | - Sohi Kang
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR program, Chonnam National University, Gwangju 61186, South Korea
| | - Joong-Sun Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR program, Chonnam National University, Gwangju 61186, South Korea
| | - Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR program, Chonnam National University, Gwangju 61186, South Korea.
| |
Collapse
|
15
|
Karakis I, Yarza S, Zlotnik Y, Ifergane G, Kloog I, Grant-Sasson K, Novack L. Contribution of Solar Radiation and Pollution to Parkinson's Disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2254. [PMID: 36767621 PMCID: PMC9916057 DOI: 10.3390/ijerph20032254] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Background. Parkinson's disease (PD) is believed to develop from epigenetic modulation of gene expression through environmental factors that accounts for up to 85% of all PD cases. The main objective of this study was to examine the association between PD onset and a cumulative exposure to potentially modifiable ambient exposures. Methods. The study population comprised 3343 incident PD cases and 31,324 non-PD controls in Southern Israel. The exposures were determined based on the monitoring stations and averaged per year. Their association with PD was modeled using a distributed lag non-linear model and presented as an effect of exposure to the 75th percentile as compared to the 50th percentile of each pollutant, accumulated over the span of 5 years prior to the PD. Results. We recorded an adverse effect of particulate matter of size ≤10 μm in diameter (PM10) and solar radiation (SR) with odds ratio (OR) = 1.06 (95%CI: 1.02; 1.10) and 1.23 (95%CI: 1.08; 1.39), respectively. Ozone (O3) was also adversely linked to PD, although with a borderline significance, OR: 1.12 (95%CI: 0.99; 1.25). Immigrants arriving in Israel after 1989 appeared to be more vulnerable to exposure to O3 and SR. The dose response effect of SR, non-existent for Israeli-born (OR = 0.67, 95%CI: 0.40; 1.13), moderate for immigrants before 1989 (OR = 1.17, 95%CI: 0.98; 1.40) and relatively high for new immigrants (OR = 1.25, 95%CI: 1.25; 2.38) indicates an adaptation ability to SR. Conclusions. Our findings supported previous reports on adverse association of PD with exposure to PM10 and O3. Additionally, we revealed a link of Parkinson's Disease with SR that warrants an extensive analysis by research groups worldwide.
Collapse
Affiliation(s)
- Isabella Karakis
- Environmental Epidemiology Division, Israel Ministry of Health, Jerusalem 9446724, Israel
- Negev Environmental Health Research Institute, Soroka University Medical Center, Beer-Sheva P.O. Box 651, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva P.O. Box 653, Israel
| | - Shaked Yarza
- Negev Environmental Health Research Institute, Soroka University Medical Center, Beer-Sheva P.O. Box 651, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva P.O. Box 653, Israel
| | - Yair Zlotnik
- Neurology Department, Soroka University Medical Center, Beer-Sheva P.O. Box 651, Israel
| | - Gal Ifergane
- Neurology Department, Soroka University Medical Center, Beer-Sheva P.O. Box 651, Israel
| | - Itai Kloog
- Negev Environmental Health Research Institute, Soroka University Medical Center, Beer-Sheva P.O. Box 651, Israel
- Department of Geography and Environmental Development, Faculty of Humanities and Social Sciences, Ben-Gurion University of the Negev, Beer-Sheva P.O. Box 653, Israel
| | - Kineret Grant-Sasson
- Negev Environmental Health Research Institute, Soroka University Medical Center, Beer-Sheva P.O. Box 651, Israel
- Soroka Clinical Research Center, Soroka University Medical Center, Beer-Sheva P.O. Box 651, Israel
| | - Lena Novack
- Negev Environmental Health Research Institute, Soroka University Medical Center, Beer-Sheva P.O. Box 651, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva P.O. Box 653, Israel
| |
Collapse
|
16
|
Cole-Hunter T, Zhang J, So R, Samoli E, Liu S, Chen J, Strak M, Wolf K, Weinmayr G, Rodopolou S, Remfry E, de Hoogh K, Bellander T, Brandt J, Concin H, Zitt E, Fecht D, Forastiere F, Gulliver J, Hoffmann B, Hvidtfeldt UA, Jöckel KH, Mortensen LH, Ketzel M, Yacamán Méndez D, Leander K, Ljungman P, Faure E, Lee PC, Elbaz A, Magnusson PKE, Nagel G, Pershagen G, Peters A, Rizzuto D, Vermeulen RCH, Schramm S, Stafoggia M, Katsouyanni K, Brunekreef B, Hoek G, Lim YH, Andersen ZJ. Long-term air pollution exposure and Parkinson's disease mortality in a large pooled European cohort: An ELAPSE study. ENVIRONMENT INTERNATIONAL 2023; 171:107667. [PMID: 36516478 DOI: 10.1016/j.envint.2022.107667] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/22/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The link between exposure to ambient air pollution and mortality from cardiorespiratory diseases is well established, while evidence on neurodegenerative disorders including Parkinson's Disease (PD) remains limited. OBJECTIVE We examined the association between long-term exposure to ambient air pollution and PD mortality in seven European cohorts. METHODS Within the project 'Effects of Low-Level Air Pollution: A Study in Europe' (ELAPSE), we pooled data from seven cohorts among six European countries. Annual mean residential concentrations of fine particulate matter (PM2.5), nitrogen dioxide (NO2), black carbon (BC), and ozone (O3), as well as 8 PM2.5 components (copper, iron, potassium, nickel, sulphur, silicon, vanadium, zinc), for 2010 were estimated using Europe-wide hybrid land use regression models. PD mortality was defined as underlying cause of death being either PD, secondary Parkinsonism, or dementia in PD. We applied Cox proportional hazard models to investigate the associations between air pollution and PD mortality, adjusting for potential confounders. RESULTS Of 271,720 cohort participants, 381 died from PD during 19.7 years of follow-up. In single-pollutant analyses, we observed positive associations between PD mortality and PM2.5 (hazard ratio per 5 µg/m3: 1.25; 95% confidence interval: 1.01-1.55), NO2 (1.13; 0.95-1.34 per 10 µg/m3), and BC (1.12; 0.94-1.34 per 0.5 × 10-5m-1), and a negative association with O3 (0.74; 0.58-0.94 per 10 µg/m3). Associations of PM2.5, NO2, and BC with PD mortality were linear without apparent lower thresholds. In two-pollutant models, associations with PM2.5 remained robust when adjusted for NO2 (1.24; 0.95-1.62) or BC (1.28; 0.96-1.71), whereas associations with NO2 or BC attenuated to null. O3 associations remained negative, but no longer statistically significant in models with PM2.5. We detected suggestive positive associations with the potassium component of PM2.5. CONCLUSION Long-term exposure to PM2.5, at levels well below current EU air pollution limit values, may contribute to PD mortality.
Collapse
Affiliation(s)
- Thomas Cole-Hunter
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Jiawei Zhang
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Rina So
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Evangelia Samoli
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Shuo Liu
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Jie Chen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Maciej Strak
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands; National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Kathrin Wolf
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Gudrun Weinmayr
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Sophia Rodopolou
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Elizabeth Remfry
- Wolfson Institute of Population Health, Queen Mary University of London, United Kingdom
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Tom Bellander
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Jørgen Brandt
- Department of Environmental Science, Aarhus University, Roskilde, Denmark; iClimate, interdisciplinary Centre for Climate Change, Aarhus University, Roskilde, Denmark
| | - Hans Concin
- Agency for Preventive and Social Medicine (aks), Bregenz, Austria
| | - Emanuel Zitt
- Agency for Preventive and Social Medicine (aks), Bregenz, Austria; Department of Internal Medicine 3, LKH Feldkirch, Feldkirch, Austria
| | - Daniela Fecht
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
| | - Francesco Forastiere
- Department of Epidemiology, Lazio Region Health Service / ASL Roma 1, Rome, Italy; MRC Centre for Environment and Health, Environmental Research Group, School of Public Health, Imperial College London, London, United Kingdom
| | - John Gulliver
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom; Centre for Environmental Health and Sustainability & School of Geography, Geology and the Environment, University of Leicester, Leicester, United Kingdom
| | - Barbara Hoffmann
- Institute for Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty, Heinrich Heine University Düsseldorf, Germany
| | | | - Karl-Heinz Jöckel
- Institute for Medical Informatics, Biometry and Epidemiology, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Laust H Mortensen
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark; Statistics Denmark, Copenhagen, Denmark
| | - Matthias Ketzel
- Department of Environmental Science, Aarhus University, Roskilde, Denmark; Global Centre for Clean Air Research (GCARE), University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Diego Yacamán Méndez
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden; Centre for Epidemiology and Community Medicine, Region Stockholm, Stockholm, Sweden
| | - Karin Leander
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Petter Ljungman
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Cardiology, Danderyd University Hospital, Stockholm, Sweden
| | - Elodie Faure
- University Paris-Saclay, UVSQ, Inserm, Gustave Roussy, "Exposome and Heredity" team, CESP UMR1018, 94805 Villejuif, France
| | - Pei-Chen Lee
- University Paris-Saclay, UVSQ, Inserm, Gustave Roussy, "Exposome and Heredity" team, CESP UMR1018, 94805 Villejuif, France; Department of Public Health, National Cheng Kung University, Tainan, Taiwan
| | - Alexis Elbaz
- University Paris-Saclay, UVSQ, Inserm, Gustave Roussy, "Exposome and Heredity" team, CESP UMR1018, 94805 Villejuif, France
| | - Patrik K E Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Gabriele Nagel
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany; Ludwig Maximilians Universität München, München, Germany
| | - Debora Rizzuto
- Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden; Stockholm Gerontology Research Center, Stockholm, Sweden
| | - Roel C H Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Sara Schramm
- Institute for Medical Informatics, Biometry and Epidemiology, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Massimo Stafoggia
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Epidemiology, Lazio Region Health Service / ASL Roma 1, Rome, Italy
| | - Klea Katsouyanni
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece; MRC Centre for Environment and Health, Environmental Research Group, School of Public Health, Imperial College London, London, United Kingdom
| | - Bert Brunekreef
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Gerard Hoek
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Youn-Hee Lim
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Zorana J Andersen
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
17
|
Song J, Qu R, Sun B, Wang Y, Chen R, Kan H, An Z, Wu H, Li J, Jiang J, Zhang Y, Wu W. Acute effects of ambient nitrogen dioxide exposure on serum biomarkers of nervous system damage in healthy older adults. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114423. [PMID: 36525948 DOI: 10.1016/j.ecoenv.2022.114423] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
Ambient nitrogen dioxide (NO2)-induced adverse health effects have been studied, but documented evidence on neural systems is limited. This study aimed to determine the acute effect of NO2 exposure on nervous system damage biomarker levels in healthy older adults. Five rounds of follow-up among 34 healthy retired people were scheduled from December 2018 to April 2019 in Xinxiang, China. The real-time NO2 concentrations were measured using a fixed site monitor. Serum samples were acquired during each round to measure nervous system damage biomarker levels: brain-derived neurotrophic factor (BDNF), neurofilament light chain (NfL), neuron-specific enolase (NSE), protein gene product 9.5 (PGP9.5), and S100 calcium-binding protein B (S100B). A linear mixed-effect model was incorporated to analyze the association between short-term NO2 exposure and serum concentrations of the above-mentioned biomarkers. Stratification analysis based on sex, educational attainment, glutathione S-transferase theta 1 gene (GSTT1) polymorphism, and physical activity intensity was conducted to explore their potential modification effect. The NO2 concentration ranged from 34.7 to 59.0 µg/m3 during the study period. Acute exposure to ambient NO2 was significantly associated with elevated serum levels of NfL, PGP9.5, and BDNF. In response to a 10 µg/m3 increase in NO2 concentration, NfL and PGP9.5 levels increased by 76 % (95 % confidence interval [CI]: 12-140 %) and 54 % (95 % CI: 1-107 %) on the lag0 day, respectively, while BDNF levels increased by 49 % (95 % CI: 2-96 %) at lag4 day. The estimated effect of NO2 on NSE levels in GSTT1-sufficient participants was significantly higher than that in GSTT1-null participants. Intriguingly, the estimation of NO2 on PGP9.5 levels in females was significantly higher than that in males. Most two-pollutant models showed robust results, except for O3, which might have had confounding effects on NO2-induced BDNF stimulation. In summary, acute exposure to NO2 was associated with increased levels of serum nervous system damage biomarker levels including NFL, PGP9.5, and BDNF. The present study provided insights into NO2 exposure-induced adverse neural effects.
Collapse
Affiliation(s)
- Jie Song
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Rongrong Qu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Beibei Sun
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Yinbiao Wang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Renjie Chen
- School of Public Health, Fudan University, Shanghai, China
| | - Haidong Kan
- School of Public Health, Fudan University, Shanghai, China
| | - Zhen An
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Hui Wu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Juan Li
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Jing Jiang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Yange Zhang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Weidong Wu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China.
| |
Collapse
|
18
|
Fu C, Kuang D, Zhang H, Ren J, Chen J. Different components of air pollutants and neurological disorders. Front Public Health 2022; 10:959921. [PMID: 36518583 PMCID: PMC9742385 DOI: 10.3389/fpubh.2022.959921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/24/2022] [Indexed: 11/29/2022] Open
Abstract
The harmful effects of air pollution can cause various diseases. Most research on the hazards of air pollution focuses on lung and cardiovascular diseases. In contrast, the impact of air pollution on neurological disorders is not widely recognized. Air pollution can cause various neurological conditions and diseases, such as neural inflammation, neurodegeneration, and cerebrovascular barrier disorder; however, the mechanisms underlying the neurological diseases induced by various components of air pollutants remain unclear. The present paper summarizes the effects of different components of air pollutants, including particulate matter, ozone, sulfur oxides, carbon oxides, nitrogen oxides, and heavy metals, on the nervous system and describes the impact of various air pollutants on neurological disorders, providing ideas for follow-up research.
Collapse
Affiliation(s)
- Chunlia Fu
- Department of Emergency Intensive Care Unit, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, China
| | - Daibing Kuang
- Department of Emergency Intensive Care Unit, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, China
| | - He Zhang
- School of Public Health, Guangdong Medical University, Dongguan, China
| | - Jinxin Ren
- The Second Clinical Medical College, Guangdong Medical University, Dongguan, China
| | - Jialong Chen
- School of Public Health, Guangdong Medical University, Dongguan, China
| |
Collapse
|
19
|
Jewell S, Herath AM, Gordon R. Inflammasome Activation in Parkinson’s Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:S113-S128. [PMID: 35848038 PMCID: PMC9535572 DOI: 10.3233/jpd-223338] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Chronic sterile inflammation and persistent immune activation is a prominent pathological feature of Parkinson’s disease (PD). Inflammasomes are multi-protein intracellular signaling complexes which orchestrate inflammatory responses in immune cells to a diverse range of pathogens and host-derived signals. Widespread inflammasome activation is evident in PD patients at the sites of dopaminergic degeneration as well as in blood samples and mucosal biopsies. Inflammasome activation in the nigrostriatal system is also a common pathological feature in both neurotoxicant and α-synuclein models of PD where dopaminergic degeneration occurs through distinct mechanisms. The NLRP3 (NLR Family Pyrin Domain Containing 3) inflammasome has been shown to be the primary driver of inflammatory neurotoxicity in PD and other neurodegenerative diseases. Chronic NLRP3 inflammasome activation is triggered by pathogenic misfolded α-synuclein aggregates which accumulate and spread over the disease course in PD. Converging lines of evidence suggest that blocking inflammasome activation could be a promising therapeutic strategy for disease modification, with both NLRP3 knockout mice and CNS-permeable pharmacological inhibitors providing robust neuroprotection in multiple PD models. This review summarizes the current evidence and knowledge gaps around inflammasome activation in PD, the pathological mechanisms by which persistent inflammasome activation can drive dopaminergic degeneration and the therapeutic opportunities for disease modification using NLRP3 inhibitors.
Collapse
Affiliation(s)
- Shannon Jewell
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Ashane M. Herath
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Richard Gordon
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| |
Collapse
|
20
|
Functional Kriging for Spatiotemporal Modeling of Nitrogen Dioxide in a Middle Eastern Megacity. ATMOSPHERE 2022. [DOI: 10.3390/atmos13071095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Long-term hour-specific air pollution exposure estimates have rarely been of interest in epidemiological research. However, this can be relevant for studies that aim to estimate the residential exposure for the hours that subjects mostly spend time there, or for those hours that they may work in another location. Here, we developed a model by spatially predicting the long-term diurnal curves of nitrogen dioxide (NO2) in Tehran, Iran, one of the most polluted and populated megacities in the Middle East. We used the statistical framework of functional data analysis (FDA) including ordinary kriging for functional data (OKFD) and functional analysis of variance (fANOVA) for modeling. The long-term NO2 diurnal curves had two distinct maxima and minima. The absolute minimum value of the city average was 40.6 ppb (around 4:00 p.m.) and the absolute maximum value was 52.0 ppb (around 10:00 p.m.). The OKFD showed the concentrations, the diurnal maximum/minimum values, and their corresponding occurring times varied across the city. The fANOVA highlighted that the effect of population density on the NO2 concentrations is not constant and depends on time within the diurnal period. The provided estimation of long-term hour-specific maps can inform future epidemiological studies to use the long-term mean for specific hour(s) of the day. Moreover, the demonstrated FDA framework can be used as a set of flexible statistical methods.
Collapse
|
21
|
Cristaldi A, Fiore M, Oliveri Conti G, Pulvirenti E, Favara C, Grasso A, Copat C, Ferrante M. Possible association between PM 2.5 and neurodegenerative diseases: A systematic review. ENVIRONMENTAL RESEARCH 2022; 208:112581. [PMID: 34979121 DOI: 10.1016/j.envres.2021.112581] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Air pollution is one of the most serious environmental problems that afflict our planet and one of the greatest risk factors for human health. In particular, PM2.5 is able to cross the blood-alveolar and blood-brain barriers, thus increasing the onset of respiratory, cardiovascular and neurodegenerative diseases. Neurodegenerative disease is a progressive neuronal dysfunction that leads to neuronal lesions in both structure and function, and includes several diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), vascular dementia (VaD), multiple sclerosis (MS), and others. We carried out a systematic review using PRISMA approach to investigate on the possible association between exposure to PM2.5 and neurodegenerative diseases. The international databases (PubMed, Science Direct, Web of Sciences) were used to find published studies on the topic. The search period was between January 2011 and June 2021. About 2000 full research articles were selected, and finally, we included 20 full-research articles. Selected studies have highlighted how PM2.5 exposure can be associated with the onset of neurodegenerative diseases (AD, PD, MS, VaD). This association depends not only on age, PM2.5 levels and exposure time, but also on exposure to other air pollutants, proximity to areas with high vehicular traffic, and the presence of comorbidities. Exposure to PM2.5 promotes neuroinflammation processes, because through breathing the particles can reach the nasal epithelial mucosa and transferred to the brain through the olfactory bulb. Furthermore, exposure to PM2.5 has been associated with an increased expression of markers of neurodegenerative diseases (e.g. alpha-synuclein or beta-amyloid), which can contribute to the etiopathogenesis of neurodegenerative diseases. Although many studies have revealed the pathological relationship between PM2.5 exposure and cognitive impairment, the potential cellular and molecular mechanisms of PM2.5 leading to neurodegenerative disease remain not entirely clear, and then, further studies need to be carried out on the topic.
Collapse
Affiliation(s)
- Antonio Cristaldi
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, Catania, 95123, Italy
| | - Maria Fiore
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, Catania, 95123, Italy
| | - Gea Oliveri Conti
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, Catania, 95123, Italy.
| | - Eloise Pulvirenti
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, Catania, 95123, Italy
| | - Claudia Favara
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, Catania, 95123, Italy
| | - Alfina Grasso
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, Catania, 95123, Italy
| | - Chiara Copat
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, Catania, 95123, Italy
| | - Margherita Ferrante
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, Catania, 95123, Italy
| |
Collapse
|
22
|
Caioni G, Cimini A, Benedetti E. Food Contamination: An Unexplored Possible Link between Dietary Habits and Parkinson’s Disease. Nutrients 2022; 14:nu14071467. [PMID: 35406080 PMCID: PMC9003245 DOI: 10.3390/nu14071467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 12/10/2022] Open
Abstract
Importance of a healthy lifestyle in maintaining the population’s well-being and health, especially in terms of balanced nutrition, is well known. Food choice of and dieting habits could impact disease management, which is especially true for Parkinson’s disease (PD). However, nowadays, it is not that simple to maintain a balance in nutrition, and the idea of a healthy diet tends to fade as the consequence of a western lifestyle. This should not only be dealt with in the context of food choice, but also from an environmental point of view. What we put into our bodies is strictly related to the quality of ecosystems we live in. For these reasons, attention should be directed to all the pollutants, which in many cases, we unknowingly ingest. It will be necessary to explore the interaction between food and environment, since human activity also influences the raw materials destined for consumption. This awareness can be achieved by means of an innovative scientific approach, which involves the use of new models, in order to overcome the traditional scientific investigations included in the study of Parkinson’s disease.
Collapse
Affiliation(s)
- Giulia Caioni
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.C.); (A.C.)
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.C.); (A.C.)
- Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.C.); (A.C.)
- Correspondence: ; Tel.: +39-086-243-3267
| |
Collapse
|
23
|
Dhiman V, Trushna T, Raj D, Tiwari RR. Is ambient air pollution a risk factor for Parkinson's disease? A meta-analysis of epidemiological evidence. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022:1-18. [PMID: 35262433 DOI: 10.1080/09603123.2022.2047903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Current evidence shows inconsistencies about ambient air pollution (AAP) exposure as a risk factor for Parkinson's disease (PD). We performed meta-analyses to estimate the pooled risk of PD due to AAP exposure. We performed a systematic search in PubMed, Google Scholar, The Cochrane Library, and J-GATEPLUS databases for peer-reviewed epidemiological studies reporting the risk of PD due to exposure to PM2.5, PM10, O3, CO, NO2, NOX and SO2; from the beginning until October 2021. The pooled odds ratio (OR) for the effect of NO2 (per 1 μg/m3) and O3 (per 1 ppb) on PD was 1.01[95% CI: 1.00,1.02; I2 = 69% (p = .01)] and 1.01 [95% CI: 1.00,1.02; I2 = 66% (p = .03)], respectively. The ORs for the effects of PM2.5 (per 1 µg/m3) and CO (per 1 ppm) on PD were 1.01 [95% CI: .99,1.03; I2 = 40%] and 1.64 [95% CI: .96,2.78; I2 = 75% (p = .01)], respectively. The study showed the adverse roles of NO2, O3, PM2.5, and CO in increasing the risk for PD.
Collapse
Affiliation(s)
- Vikas Dhiman
- Department of Environmental Health and Epidemiology, ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Tanwi Trushna
- Department of Environmental Health and Epidemiology, ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Dharma Raj
- Department of Biostatistics and Bioinformatics, ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | | |
Collapse
|
24
|
Chen H, Wang K, Scheperjans F, Killinger B. Environmental triggers of Parkinson's disease - Implications of the Braak and dual-hit hypotheses. Neurobiol Dis 2022; 163:105601. [PMID: 34954321 PMCID: PMC9525101 DOI: 10.1016/j.nbd.2021.105601] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/05/2021] [Accepted: 12/22/2021] [Indexed: 11/22/2022] Open
Abstract
Idiopathic Parkinson's disease (PD) may take decades to develop, during which many risk or protective factors may come into play to initiate the pathogenesis or modify its progression to clinical PD. The lack of understanding of this prodromal phase of PD and the factors involved has been a major hurdle in the study of PD etiology and preventive strategies. Although still controversial, the Braak and dual-hit hypotheses that PD may start peripherally in the olfactory structures and/or the gut provides a theoretical platform to identify the triggers and modifiers of PD prodromal development and progression. This is particularly true for the search of environmental causes of PD as the olfactory structures and gut are the major human mucosal interfaces with the environment. In this review, we lay out our personal views about how the Braak and dual-hit hypotheses may help us search for the environmental triggers and modifiers for PD, summarize available experimental and epidemiological evidence, and discuss research gaps and strategies.
Collapse
Affiliation(s)
- Honglei Chen
- Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA.
| | - Keran Wang
- Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Filip Scheperjans
- Department of Neurology, Helsinki University Hospital, and Clinicum, University of Helsinki, Haartmaninkatu 4, 00290 Helsinki, Finland
| | - Bryan Killinger
- Graduate College, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
25
|
Li J, Wang Y, Steenland K, Liu P, van Donkelaar A, Martin RV, Chang HH, Caudle WM, Schwartz J, Koutrakis P, Shi L. Long-term effects of PM2.5 components on incident dementia in the Northeastern United States. Innovation (N Y) 2022; 3:100208. [PMID: 35199078 PMCID: PMC8844282 DOI: 10.1016/j.xinn.2022.100208] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 01/13/2022] [Indexed: 11/26/2022] Open
|
26
|
Yuan X, Tian Y, Liu C, Zhang Z. Environmental factors in Parkinson's disease: New insights into the molecular mechanisms. Toxicol Lett 2021; 356:1-10. [PMID: 34864130 DOI: 10.1016/j.toxlet.2021.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/25/2021] [Accepted: 12/02/2021] [Indexed: 02/07/2023]
Abstract
Parkinson's disease is a chronic, progressive neurodegenerative disorder affecting 2-3% of the population ≥65 years. It has long been characterized by motor impairment, autonomic dysfunction, and psychological and cognitive changes. The pathological hallmarks are intracellular inclusions containing α-synuclein aggregates and the loss of dopaminergic neurons in the substantia nigra. Parkinson's disease is thought to be caused by a combination of various pathogenic factors, including genetic factors, environmental factors, and lifestyles. Although much research has focused on the genetic causes of PD, environmental risk factors also play a crucial role in the development of the disease. Here, we summarize the environmental risk factors that may increase the occurrence of PD, as well as the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Xin Yuan
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ye Tian
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Chaoyang Liu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, 430073, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
27
|
Nunez Y, Boehme AK, Li M, Goldsmith J, Weisskopf MG, Re DB, Navas-Acien A, van Donkelaar A, Martin RV, Kioumourtzoglou MA. Parkinson's disease aggravation in association with fine particle components in New York State. ENVIRONMENTAL RESEARCH 2021; 201:111554. [PMID: 34181919 PMCID: PMC8478789 DOI: 10.1016/j.envres.2021.111554] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/09/2021] [Accepted: 06/16/2021] [Indexed: 05/07/2023]
Abstract
BACKGROUND Long-term exposure to fine particulate matter (PM2.5) has been associated with neurodegenerative diseases, including disease aggravation in Parkinson's disease (PD), but associations with specific PM2.5 components have not been evaluated. OBJECTIVE To characterize the association between specific PM2.5 components and PD first hospitalization, a surrogate for disease aggravation. METHODS We obtained data on hospitalizations from the New York Department of Health Statewide Planning and Research Cooperative System (2000-2014) to calculate annual first PD hospitalization counts in New York State per county. We used well-validated prediction models at 1 km2 resolution to estimate county level population-weighted annual black carbon (BC), organic matter (OM), nitrate, sulfate, sea salt (SS), and soil particle concentrations. We then used a multi-pollutant mixed quasi-Poisson model with county-specific random intercepts to estimate rate ratios (RR) of one-year exposure to each PM2.5 component and PD disease aggravation. We evaluated potential nonlinear exposure-outcome relationships using penalized splines and accounted for potential confounders. RESULTS We observed a total of 197,545 PD first hospitalizations in NYS from 2000 to 2014. The annual average count per county was 212 first hospitalizations. The RR (95% confidence interval) for PD aggravation was 1.06 (1.03, 1.10) per one standard deviation (SD) increase in nitrate concentrations and 1.06 (1.04, 1.09) for the corresponding increase in OM concentrations. We also found a nonlinear inverse association between PD aggravation and BC at concentrations above the 96th percentile. We found a marginal association with SS and no association with sulfate or soil exposure. CONCLUSION In this study, we detected associations between the PM2.5 components OM and nitrate with PD disease aggravation. Our findings support that PM2.5 adverse effects on PD may vary by particle composition.
Collapse
Affiliation(s)
- Yanelli Nunez
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA.
| | - Amelia K Boehme
- Department of Epidemiology and Neurology, Columbia University, New York, NY, USA
| | - Maggie Li
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Jeff Goldsmith
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Marc G Weisskopf
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Diane B Re
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Aaron van Donkelaar
- Department of Energy, Environmental & Chemical Engineering, Washington University at St. Louis, MO, USA; Department of Physics and Atmospheric Science, Dalhousie University, Halix, Nova Scotia, Canada
| | - Randall V Martin
- Department of Energy, Environmental & Chemical Engineering, Washington University at St. Louis, MO, USA; Department of Physics and Atmospheric Science, Dalhousie University, Halix, Nova Scotia, Canada
| | | |
Collapse
|
28
|
Jo S, Kim YJ, Park KW, Hwang YS, Lee SH, Kim BJ, Chung SJ. Association of NO2 and Other Air Pollution Exposures With the Risk of Parkinson Disease. JAMA Neurol 2021; 78:800-808. [PMID: 33999109 DOI: 10.1001/jamaneurol.2021.1335] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Importance The development of Parkinson disease (PD) may be promoted by exposure to air pollution. Objective To investigate the potential association between exposure to particulate matters (PM2.5 and PM10), nitrogen dioxide (NO2), ozone (O3), sulfur dioxide (SO2), and carbon monoxide (CO) and the risk of incident PD. Design, Setting, and Participants This retrospective cohort study used data from the Korean National Health Insurance Service. Among the 1 021 208 Korean individuals in the database, those who had lived in Seoul from January 2002 to December 2006 (n = 176 875) were screened for eligibility. A total of 78 830 adults older than 40 years without PD and who lived in Seoul between January 2002 and December 2006 were included in this study. Individuals diagnosed with PD before 2006 (n = 159) and individuals 40 years or younger (n = 97 886) were excluded. Each participant was followed up with annually from January 2007 to December 2015, thereby adding up to 757 704 total person-years of follow-up. Data were analyzed from January to September 2020. Exposures Individual exposure levels to PM2.5, PM10, NO2, O3, SO2, and CO were estimated based on the participants' residential address at the district level. To evaluate long-term exposure to air pollution, time-varying 5-year mean air pollutant exposure was calculated for each participant. Main Outcomes and Measures The outcome measure was the association between air pollution and the risk of incident PD measured as hazard ratios after adjusting for demographic factors, socioeconomic factors, and medical comorbidities. Results At baseline, the mean (SD) age of the 78 830 participants was 54.4 (10.7) years, and 41 070 (52.1%) were female. A total of 338 individuals with newly diagnosed PD were identified during the study period. Exposure to NO2 was associated with an increase in risk of PD (hazard ratio for highest vs lowest quartile, 1.41; 95% CI, 1.02-1.95; P for trend = .045). No statistically significant associations between exposure to PM2.5, PM10, O3, SO2, or CO and PD incidence were found. Conclusions and Relevance In this large cohort study, a statistically significant association between NO2 exposure and PD risk was identified. This finding suggests the role of air pollutants in PD development, advocating for the need to implement a targeted public health policy.
Collapse
Affiliation(s)
- Sungyang Jo
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ye-Jee Kim
- Department of Clinical Epidemiology and Biostatistics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kye Won Park
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yun Su Hwang
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Seung Hyun Lee
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Bum Joon Kim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sun Ju Chung
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
29
|
Yu Z, Wei F, Zhang X, Wu M, Lin H, Shui L, Jin M, Wang J, Tang M, Chen K. Air pollution, surrounding green, road proximity and Parkinson's disease: A prospective cohort study. ENVIRONMENTAL RESEARCH 2021; 197:111170. [PMID: 33887274 DOI: 10.1016/j.envres.2021.111170] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/04/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Though growing evidence has linked air pollution to Parkinson's disease (PD), the results remain inconsistent. Less is known about the relevance of road proximity and surrounding green. We aimed to investigate the individual and joint associations of air pollution, road proximity and surrounding green with the incidence of PD in a prospective cohort study. METHODS We used data from a prospective cohort of 47,516 participants recruited from July 2015 to January 2018 in Ningbo, China. Long-term exposure to particulate matter with aerodynamic diameter ≤2.5 μm (PM2.5) and ≤10 μm (PM10) and nitrogen dioxide (NO2) estimated by land-use regression models, road proximity and surrounding green assessed by Normalized Difference Vegetation Index (NDVI) were calculated based on the residential address for each participant. Cox proportional hazard models were used to analyze the individual and joint effects of air pollution, road proximity, and surrounding green on PD. RESULTS In single-exposure models, PM2.5, PM10, NO2 and road proximity was associated with increased risk of PD (e.g. Hazard Ratio (HR) = 1.51, 95%CI:1.02, 2.24 per interquartile range (IQR) increase for PM2.5) while surrounding green was associated with decreased risk of PD (e.g. HR = 0.80, 95%CI:0.65, 0.98 per IQR increase for NDVI in 300 m buffer). In two-exposure models, the associations of PM2.5 and surrounding green persisted while the associations of NO2 and road proximity attenuated towards unity. CONCLUSIONS We found that PM2.5 were associated with increased risk of incident PD while surrounding green was associated with decreased risk of PD. Future studies about PD etiology may benefit from including multiple environmental exposures to address potential joint associations.
Collapse
Affiliation(s)
- Zhebin Yu
- Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, Hangzhou, Zhejiang, China
| | - Fang Wei
- Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, Hangzhou, Zhejiang, China
| | - Xinhan Zhang
- Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, Hangzhou, Zhejiang, China
| | - Mengyin Wu
- Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, Hangzhou, Zhejiang, China
| | - Hongbo Lin
- The Center for Disease Control and Prevention of Yinzhou District, Ningbo, Zhejiang, China
| | - Liming Shui
- Health Commission of Ningbo, Zhejiang, China
| | - Mingjuan Jin
- Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, Hangzhou, Zhejiang, China; Department of Epidemiology and Biostatistics, And Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Jianbing Wang
- Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, Hangzhou, Zhejiang, China; Department of Epidemiology and Biostatistics, And National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Mengling Tang
- Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, Hangzhou, Zhejiang, China.
| | - Kun Chen
- Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, Hangzhou, Zhejiang, China; Department of Epidemiology and Biostatistics, And Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China.
| |
Collapse
|
30
|
The Impact of Air Pollution on Neurodegenerative Diseases. Ther Drug Monit 2021; 43:69-78. [PMID: 33009291 DOI: 10.1097/ftd.0000000000000818] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 09/23/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND With the development of industrialization in human society, ambient pollutants are becoming more harmful to human health. Epidemiological and toxicological studies indicate that a close relationship exists between particulate matter with a diameter ≤2.5 µm (PM2.5) and neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). To further confirm the relationship, we focus on possible relevant mechanisms of oxidative stress and neuroinflammation underlying the association between PM2.5 and neurodegenerative diseases in the review. METHODS A literature search was performed on the studies about PM2.5 and neurodegenerative diseases via PubMed. A total of 113 articles published were selected, and 31 studies were included. RESULTS PM2.5 can enter the central nervous system through 2 main pathways, the blood-brain barrier and olfactory neurons. The inflammatory response and oxidative stress are 2 primary mechanisms via which PM2.5 leads to toxicity in the brain. PM2.5 abnormally activates microglia, inducing the neuroinflammatory process. Inflammatory markers such as IL-1β play an essential role in neurodegenerative diseases such as AD and PD. Moreover, the association between lipid mechanism disorders related to PM2.5 and neurodegenerative diseases has been gaining momentum. CONCLUSIONS In conclusion, PM2.5 could significantly increase the risk of neurological disorders, such as AD and PD. Furthermore, any policy aimed at reducing air-polluting emissions and increasing air quality would be protective in human beings.
Collapse
|
31
|
Fleury V, Himsl R, Joost S, Nicastro N, Bereau M, Guessous I, Burkhard PR. Geospatial analysis of individual-based Parkinson's disease data supports a link with air pollution: A case-control study. Parkinsonism Relat Disord 2021; 83:41-48. [PMID: 33476876 DOI: 10.1016/j.parkreldis.2020.12.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND The etiology of Parkinson's disease (PD) remains unknown. To approach the issue of PD's risk factors from a new perspective, we hypothesized that coupling the geographic distribution of PD with spatial statistics may provide new insights into environmental epidemiology research. The aim of this case-control study was to examine the spatial dependence of PD prevalence in the Canton of Geneva, Switzerland (population = 474,211). METHODS PD cases were identified through Geneva University Hospitals, private neurologists and nursing homes medical records (n = 1115). Controls derived from a population-based study (n = 12,614) and a comprehensive population census dataset (n = 237,771). All individuals were geographically localized based on their place of residence. Spatial Getis-Ord Gi* statistics were used to identify clusters of high versus low disease prevalence. Confounder-adjustment was performed for age, sex, nationality and income. Tukey's honestly significant difference was used to determine whether nitrogen dioxide and particulate matters PM10 concentrations were different within PD hotspots, coldspots or neutral areas. RESULTS Confounder-adjustment greatly reduced greatly the spatial association. Characteristics of the geographic space influenced PD prevalence in 6% of patients. PD hotspots were concentrated in the urban centre. There was a significant difference in mean annual nitrogen dioxide and PM10 levels (+3.6 μg/m3 [p < 0.001] and +0.63 μg/m3 [p < 0.001] respectively) between PD hotspots and coldspots. CONCLUSION PD prevalence exhibited a spatial dependence for a small but significant proportion of patients. A positive association was detected between PD clusters and air pollution. Our data emphasize the multifactorial nature of PD and support a link between PD and air pollution.
Collapse
Affiliation(s)
- Vanessa Fleury
- Division of Neurology, Geneva University Hospitals, 1211, Geneva 14, Switzerland; Faculty of Medicine, University of Geneva, CMU, 1211, Geneva 4, Switzerland.
| | - Rebecca Himsl
- Unit of Population Epidemiology, Division of Primary Care Medicine, Department of Primary Care Medicine, Geneva University Hospitals, 1211, Geneva 14, Switzerland; Geographic Information Research and Analysis in Population Health (GIRAPH) Group, Geneva University Hospitals, Geneva and Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland; Laboratory of Geographical Information Systems (LASIG), School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Stéphane Joost
- Geographic Information Research and Analysis in Population Health (GIRAPH) Group, Geneva University Hospitals, Geneva and Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland; Laboratory of Geographical Information Systems (LASIG), School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland; La Source, School of Nursing, University of Applied Sciences and Arts Western Switzerland (HES-SO), Lausanne, Switzerland
| | - Nicolas Nicastro
- Division of Neurology, Geneva University Hospitals, 1211, Geneva 14, Switzerland; Department of Psychiatry, University of Cambridge, UK
| | - Matthieu Bereau
- Division of Neurology, Geneva University Hospitals, 1211, Geneva 14, Switzerland
| | - Idris Guessous
- Faculty of Medicine, University of Geneva, CMU, 1211, Geneva 4, Switzerland; Unit of Population Epidemiology, Division of Primary Care Medicine, Department of Primary Care Medicine, Geneva University Hospitals, 1211, Geneva 14, Switzerland; Geographic Information Research and Analysis in Population Health (GIRAPH) Group, Geneva University Hospitals, Geneva and Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Pierre R Burkhard
- Division of Neurology, Geneva University Hospitals, 1211, Geneva 14, Switzerland; Faculty of Medicine, University of Geneva, CMU, 1211, Geneva 4, Switzerland
| |
Collapse
|
32
|
Mishra S, Rajput C, Singh MP. Cypermethrin Induces the Activation of Rat Primary Microglia and Expression of Inflammatory Proteins. J Mol Neurosci 2020; 71:1275-1283. [PMID: 33230707 DOI: 10.1007/s12031-020-01753-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/08/2020] [Indexed: 10/22/2022]
Abstract
Cypermethrin activates microglia, which is found to be decisive in neurodegeneration in the experimental rats. While the involvement of microglial activation in toxicant-induced neurodegeneration is reported, the effect of low concentration of cypermethrin on the expression of inflammatory proteins from the rat primary microglia is not yet properly understood. The study intended to delineate the effect of low concentration of cypermethrin on the expression and release of proteins from the microglia. Rat primary microglial cells were treated with cypermethrin to check the expression of inflammatory proteins. Cypermethrin-treated microglia conditioned media and cells were collected to measure the expression and release of inflammatory proteins. Cypermethrin augmented the protein kinase C-δ (PKC-δ), inducible nitric oxide synthase (iNOS), phosphorylated mitogen-activated protein kinase (MAPK) p38 and p42/44, matrix metalloproteinase (MMP)-3, and MMP-9 levels in the cell lysate and tumour necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) levels in the microglia conditioned media. Pre-treatment with minocycline, a microglial activation inhibitor or rottlerin, a PKC-δ inhibitor, notably reduced the release of TNF-α in the conditioned media and expression of iNOS protein in the microglia. Minocycline reduced the expression of PKC-δ, phosphorylated p38 and p42/44 MAPKs, MMP-3, and MMP-9 proteins in the microglia. While cypermethrin-treated conditioned media induced the toxicity in the rat primary neurons, minocycline or rottlerin reduced the cypermethrin treated microglia conditioned media-induced toxicity. The outcomes of the present study suggest that cypermethrin activates microglia and releases TNF-α and IL-1β as well as up-regulates the expression of PKC-δ, iNOS, phosphorylated p38 and p42/44 MAPKs, MMP-3, and MMP-9 proteins, which could contribute to neurodegeneration.
Collapse
Affiliation(s)
- Saumya Mishra
- Toxicogenomics and Predictive Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, Uttar Pradesh, India
| | - Charul Rajput
- Toxicogenomics and Predictive Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, Uttar Pradesh, India
| | - Mahendra Pratap Singh
- Toxicogenomics and Predictive Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, Uttar Pradesh, India.
| |
Collapse
|
33
|
Air Pollution-Related Brain Metal Dyshomeostasis as a Potential Risk Factor for Neurodevelopmental Disorders and Neurodegenerative Diseases. ATMOSPHERE 2020. [DOI: 10.3390/atmos11101098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Increasing evidence links air pollution (AP) exposure to effects on the central nervous system structure and function. Particulate matter AP, especially the ultrafine (nanoparticle) components, can carry numerous metal and trace element contaminants that can reach the brain in utero and after birth. Excess brain exposure to either essential or non-essential elements can result in brain dyshomeostasis, which has been implicated in both neurodevelopmental disorders (NDDs; autism spectrum disorder, schizophrenia, and attention deficit hyperactivity disorder) and neurodegenerative diseases (NDGDs; Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, and amyotrophic lateral sclerosis). This review summarizes the current understanding of the extent to which the inhalational or intranasal instillation of metals reproduces in vivo the shared features of NDDs and NDGDs, including enlarged lateral ventricles, alterations in myelination, glutamatergic dysfunction, neuronal cell death, inflammation, microglial activation, oxidative stress, mitochondrial dysfunction, altered social behaviors, cognitive dysfunction, and impulsivity. Although evidence is limited to date, neuronal cell death, oxidative stress, and mitochondrial dysfunction are reproduced by numerous metals. Understanding the specific contribution of metals/trace elements to this neurotoxicity can guide the development of more realistic animal exposure models of human AP exposure and consequently lead to a more meaningful approach to mechanistic studies, potential intervention strategies, and regulatory requirements.
Collapse
|
34
|
Air Pollution and Systemic Inflammation in Patients With Suspected OSA Living in an Urban Residential Area. Chest 2020; 158:1713-1722. [DOI: 10.1016/j.chest.2020.05.596] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 04/05/2020] [Accepted: 05/13/2020] [Indexed: 01/28/2023] Open
|
35
|
Manigrasso M, Costabile F, Liberto LD, Gobbi GP, Gualtieri M, Zanini G, Avino P. Size resolved aerosol respiratory doses in a Mediterranean urban area: From PM 10 to ultrafine particles. ENVIRONMENT INTERNATIONAL 2020; 141:105714. [PMID: 32416371 DOI: 10.1016/j.envint.2020.105714] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/25/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
In the framework of the 2017 "carbonaceous aerosol in Rome and Environs" (CARE) experiment, particle number size distributions have been continuously measured on February 2017 in downtown Rome. These data have been used to estimate, through MPPD model, size and time resolved particle mass, surface area and number doses deposited into the respiratory system. Dosimetry estimates are presented for PM10, PM2.5, PM1 and Ultrafine Particles (UFPs), in relation to the aerosol sources peculiar to the Mediterranean basin and to the atmospheric conditions. Particular emphasis is focused on UFPs and their fraction deposited on the olfactory bulb, in view of their possible translocation to the brain. The site of PM10 deposition within the respiratory system considerably changes, depending on the aerosol sources and then on its different size distributions. On making associations between health endpoints and aerosol mass concentrations, the relevant coarse and fine fractions would be more properly adopted, because they have different sources, different capability of penetrating deep into the respiratory system and different toxicological implications. The separation between them should be set at 1 µm, rather than at 2.5 µm, because the fine fraction is considerably less affected by the contribution of the natural sources. Mass dose is a suitable metric to describe coarse aerosol events but gives a poor representation of combustion aerosol. This fraction of particles, made of UFPs and of accumulation mode particles (mainly with size below 0.2 µm), is of high health relevance. It elicited the highest oxidative activity in the CARE experiment and is properly described by the particle surface area and by the number metrics. Such metrics are even more relevant for the UFP doses deposited on the olfactory bulb, in consideration of the role recognized to oxidative stress in the progression of neurodegenerative diseases. Such metrics would be more appropriate, rather than PMx mass concentrations, to correlate neurodegenerative pathologies with aerosol pollution.
Collapse
Affiliation(s)
- Maurizio Manigrasso
- Department of Technological Innovations, INAIL, Via IV Novembre 144, I-00187 Rome, Italy.
| | - Francesca Costabile
- CNR-ISAC - Italian National Research Council, Institute of Atmospheric Science and Climate, via Fosso del Cavaliere 100, I-00133 Rome, Italy
| | - Luca Di Liberto
- CNR-ISAC - Italian National Research Council, Institute of Atmospheric Science and Climate, via Fosso del Cavaliere 100, I-00133 Rome, Italy
| | - Gian Paolo Gobbi
- CNR-ISAC - Italian National Research Council, Institute of Atmospheric Science and Climate, via Fosso del Cavaliere 100, I-00133 Rome, Italy
| | | | - Gabriele Zanini
- ENEA SSPT-MET-INAT, Via Martiri di Monte Sole 4, I-40129 Bologna, Italy
| | - Pasquale Avino
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, via F. De Sanctis, I-86100, Campobasso, Italy
| |
Collapse
|
36
|
Yuchi W, Sbihi H, Davies H, Tamburic L, Brauer M. Road proximity, air pollution, noise, green space and neurologic disease incidence: a population-based cohort study. Environ Health 2020; 19:8. [PMID: 31964412 PMCID: PMC6974975 DOI: 10.1186/s12940-020-0565-4] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 01/07/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Emerging evidence links road proximity and air pollution with cognitive impairment. Joint effects of noise and greenness have not been evaluated. We investigated associations between road proximity and exposures to air pollution, and joint effects of noise and greenness, on non-Alzheimer's dementia, Parkinson's and Alzheimer's disease and multiple sclerosis within a population-based cohort. METHODS We assembled administrative health database cohorts of 45-84 year old residents (N ~ 678,000) of Metro Vancouver, Canada. Cox proportional hazards models were built to assess associations between exposures and non-Alzheimer's dementia and Parkinson's disease. Given reduced case numbers, associations with Alzheimer's disease and multiple sclerosis were evaluated in nested case-control analyses by conditional logistic regression. RESULTS Road proximity was associated with all outcomes (e.g. non-Alzheimer's dementia hazard ratio: 1.14, [95% confidence interval: 1.07-1.20], for living < 50 m from a major road or < 150 m from a highway). Air pollutants were associated with incidence of Parkinson's disease and non-Alzheimer's dementia (e.g. Parkinson's disease hazard ratios of 1.09 [1.02-1.16], 1.03 [0.97-1.08], 1.12 [1.05-1.20] per interquartile increase in fine particulate matter, Black Carbon, and nitrogen dioxide) but not Alzheimer's disease or multiple sclerosis. Noise was not associated with any outcomes while associations with greenness suggested protective effects for Parkinson's disease and non-Alzheimer's dementia. CONCLUSIONS Road proximity was associated with incidence of non-Alzheimer's dementia, Parkinson's disease, Alzheimer's disease and multiple sclerosis. This association may be partially mediated by air pollution, whereas noise exposure did not affect associations. There was some evidence of protective effects of greenness.
Collapse
Affiliation(s)
- Weiran Yuchi
- School of Population and Public Health, Faculty of Medicine, The University of British Columbia, 2206 East Mall, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Hind Sbihi
- School of Population and Public Health, Faculty of Medicine, The University of British Columbia, 2206 East Mall, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Hugh Davies
- School of Population and Public Health, Faculty of Medicine, The University of British Columbia, 2206 East Mall, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Lillian Tamburic
- School of Population and Public Health, Faculty of Medicine, The University of British Columbia, 2206 East Mall, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Michael Brauer
- School of Population and Public Health, Faculty of Medicine, The University of British Columbia, 2206 East Mall, Vancouver, British Columbia, V6T 1Z3, Canada.
| |
Collapse
|
37
|
Tatullo M, Codispoti B, Spagnuolo G, Zavan B. Human Periapical Cyst-Derived Stem Cells Can Be A Smart "Lab-on-A-Cell" to Investigate Neurodegenerative Diseases and the Related Alteration of the Exosomes' Content. Brain Sci 2019; 9:E358. [PMID: 31817546 PMCID: PMC6955839 DOI: 10.3390/brainsci9120358] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/04/2019] [Accepted: 12/04/2019] [Indexed: 12/14/2022] Open
Abstract
Promising researches have demonstrated that the alteration of biological rhythms may be consistently linked to neurodegenerative pathologies. Parkinson's disease (PD) has a multifactorial pathogenesis, involving both genetic and environmental and/or molecular co-factors. Generally, heterogeneous alterations in circadian rhythm (CR) are a typical finding in degenerative processes, such as cell aging and death. Although numerous genetic phenotypes have been discovered in the most common forms of PD, it seems that severe deficiencies in synaptic transmission and high vesicular recycling are frequently found in PD patients. Neuron-to-neuron interactions are often ensured by exosomes, a specific type of extracellular vesicle (EV). Neuron-derived exosomes may carry several active compounds, including miRNAs: Several studies have found that circulating miRNAs are closely associated with an atypical oscillation of circadian rhythm genes, and they are also involved in the regulation of clock genes, in animal models. In this context, a careful analysis of neural-differentiated Mesenchymal Stem Cells (MSCs) and the molecular and genetic characterization of their exosome content, both in healthy cells and in PD-induced cells, could be a strategic field of investigation for early diagnosis and better treatment of PD and similar neurodegenerative pathologies. A novel MSC population, called human periapical cyst-mesenchymal stem cells (hPCy-MSCs), has demonstrated that it naively expresswa the main neuronal markers, and may differentiate towards functional neurons. Therefore, hPCy-MSCs can be considered of particular interest for testing of in vitro strategies to treat neurological diseases. On the other hand, the limitations of using stem cells is an issue that leads researchers to perform experimental studies on the exosomes released by MCSs. Human periapical cyst-derived mesenkymal stem cells can be a smart "lab-on-a-cell" to investigate neurodegenerative diseases and the related exosomes' content alteration.
Collapse
Affiliation(s)
- Marco Tatullo
- Marelli Health, Tecnologica Research Institute, Stem Cell Unit, 88900 Crotone, Italy;
- Department of Therapeutic Dentistry, Sechenov University Russia, 19c1 Moscow, Russia
| | - Bruna Codispoti
- Marelli Health, Tecnologica Research Institute, Stem Cell Unit, 88900 Crotone, Italy;
| | - Gianrico Spagnuolo
- Department of Therapeutic Dentistry, Sechenov University Russia, 19c1 Moscow, Russia
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples, 80138 Napoli, Italy
| | - Barbara Zavan
- Department of Medical Sciences, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy;
| |
Collapse
|
38
|
Influence of intranasal exposure of MPTP in multiple doses on liver functions and transition from non-motor to motor symptoms in a rat PD model. Naunyn Schmiedebergs Arch Pharmacol 2019; 393:147-165. [PMID: 31468077 DOI: 10.1007/s00210-019-01715-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/15/2019] [Indexed: 12/14/2022]
Abstract
Besides the effects on the striatum, the impairment of visceral organs including liver functions has been reported in Parkinson's disease (PD) patients. However, it is yet unclear if liver functions are affected in the early stage of the disease before the motor phase has appeared. The aim of our present study was thus to assess the effect of intranasal administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in different doses on striatum and liver functions. Deterioration of non-motor activities appeared on single exposure to MPTP along with rise in striatum oxidative stress and decline in antioxidant levels. Decreases in dopamine, noradrenaline, and GABA and increase in serotonin were detected in striatum. Motor coordination was impaired with a single dose of MPTP, and with repeated MPTP exposure, there was further significant impairment. Locomotor activity was affected from second exposure of MPTP, and the impairment increased with third MPTP exposure. Impairment of liver function through increase in serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels was observed after first MPTP insult, and it worsened with second and third administrations. First administration of MPTP triggered systemic inflammation showing significant increase in inflammatory markers in the liver. Our data shows for the first time that an intranasal route of entry of MPTP affects liver from the non-motor phase of PD itself, occurring concomitantly with the reduction of striatal dopamine. It also suggests that a single dose is not enough to bring about progression of the disease from non-motor to locomotor deficiency, and a repeated dose is needed to establish the motor severity phase in the rat intranasal MPTP model.
Collapse
|