1
|
Wylie AC, Murgueitio N, Carlson AL, Fry RC, Propper CB. The role of the gut microbiome in the associations between lead exposure and child neurodevelopment. Toxicol Lett 2025; 408:95-104. [PMID: 40250742 DOI: 10.1016/j.toxlet.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 03/10/2025] [Accepted: 04/14/2025] [Indexed: 04/20/2025]
Abstract
Lead is highly toxic to the developing brain. Given its persistence in the environment, new intervention strategies are needed to mitigate the impacts of lead on child neurodevelopment. The gut microbiome, referring to the bacteria and microorganisms residing in the gastrointestinal system, may be a viable target for intervention. This short review summarizes recent evidence linking the gut-brain axis to child developmental outcomes. We explore how lead-induced effects to the gut microbiome could indirectly affect child neurodevelopment, such that disrupting or offsetting this mediating process could buffer the effects of lead on child developmental outcomes. Unexpected findings with respect to child microbiota diversity and child cognitive and behavioral outcomes as well as lead exposure and adult microbiota diversity are discussed. When possible, we draw connections between observed changes to relative bacterial abundance, proposed bacterial functions, and downstream effects to brain development. We also explore how the gut microbiome might modify the toxicity of lead by impeding the uptake of lead across the gastrointestinal tract or through indirect mechanisms in such ways that the gut microbiome does not fit within a mediating pathway. In this case, promoting the buffering capacity of the gut microbiome may reduce the impacts of lead on child neurodevelopment. The goal of this short review is to bring attention to the potential role of the gut microbiome in the associations between lead exposure and child neurodevelopment with an eye towards intervention.
Collapse
Affiliation(s)
- Amanda C Wylie
- RTI International, Research Triangle Park, North Carolina, United States; Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, United States.
| | - Nicolas Murgueitio
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, United States
| | | | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, United States; Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, United States
| | - Cathi B Propper
- School of Nursing, University of North Carolina at Chapel Hill, United States; Frank Porter Graham Child Development Institute, University of North Carolina at Chapel Hill, United States
| |
Collapse
|
2
|
Zhao K, Yang F, Wu M, Pan X, Xiang S, Tang Y, Song F, Peng Y, Wu S, Cao Y, Liu C, Qiu J. Association of thallium exposure in early life with gut microbiota in neonates. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 370:125876. [PMID: 39978530 DOI: 10.1016/j.envpol.2025.125876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
Previous research has found a correlation between heavy metals and gut microbiota in humans. However, there are few population-based studies examining the impact of early life thallium (Tl) exposure on neonatal microbiome. 342 newborns were recruited from Hunan Children's Hospital and subsequently divided into three groups (low, medium, and high) based on the 25th and 75th percentiles of serum Tl concentration. Additionally, the relationship between Tl and gut microbiota was analyzed in subgroups (preterm or full-term neonates). The association between Tl and gut microbiota in neonates was analyzed by Redundancy analysis, Spearman correlation analysis and MaAsLin2. The detection rate of Tl in neonates was 100%, with the median concentration of 0.021 μg/L. In all neonates, we found significant differences in the Chao1 and ACE indices of α-diversity in gut microbiota, and the relative abundances of Bacteroidota and Bacteroidetes were significantly different among groups (p < 0.05). Following the covariate adjustment, Tl was negatively correlated with Gemmatimonadota (Coef = 0.265, p < 0.05) in preterm neonates. In full-term neonates, Tl exhibited a positive correlation with the relative abundance of Robinsoniella (Coef = 0.563, p = 0.009) and a negative correlation with that of Pseudomonas (Coef = - 0.592, p = 0.012). Tryptophan and renin-angiotensin system pathways might exert important roles in Tl exposure. This study indicated that Tl exposure was associated with changes in α-diversity and the composition of gut microbiota in neonates, with Gemmatimonadota being predominantly affected in preterm neonates and Robinsoniella and Pseudomonas in full-term neonates.
Collapse
Affiliation(s)
- Kunyan Zhao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, 421001, China
| | - Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, 421001, China
| | - Mingyang Wu
- Department of Maternal and Child Health, Xiangya School of Public Health, Central South University, Changsha, 410007, China
| | - Xiongfeng Pan
- Pediatrics Research Institute of Hunan Province, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's hospital), Changsha, 410007, China
| | - Shiting Xiang
- Pediatrics Research Institute of Hunan Province, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's hospital), Changsha, 410007, China
| | - Yan Tang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, 421001, China
| | - Fengmei Song
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, 421001, China
| | - Yunlong Peng
- Department of Epidemiology and Health Statistics, Medical College of Soochow University, Suzhou, 215123, China
| | - Sha Wu
- Department of Pediatrics, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yunhui Cao
- Department of Pediatrics, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Caixia Liu
- Pediatrics Research Institute of Hunan Province, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's hospital), Changsha, 410007, China
| | - Jun Qiu
- Pediatrics Research Institute of Hunan Province, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's hospital), Changsha, 410007, China.
| |
Collapse
|
3
|
Rezazadegan M, Forootani B, Hoveyda Y, Rezazadegan N, Amani R. Major heavy metals and human gut microbiota composition: a systematic review with nutritional approach. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2025; 44:21. [PMID: 39871318 PMCID: PMC11773724 DOI: 10.1186/s41043-025-00750-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 01/10/2025] [Indexed: 01/29/2025]
Abstract
BACKGROUND The human gut microbiota has a critical role in several aspects of host homeostasis, such as immune development, metabolism, nutrition, and defense against pathogens during life. It can be sensitive to xenobiotics including drugs, diet, or even environmental pollutants, especially heavy metals (HMs). The findings of some previous studies are heterogeneous due to the inclusion of various types of study (human, and animal studies) and wide exposures (phthalate, bisphenol A, HMS, etc.), and no comprehensive systematic review has investigated the association between HMs exposure and human gut microbiota composition. Therefore, we carried out a systematic review of human observational studies to examine this association. PubMed, Scopus, ISI Web of Science, and Google Scholar were searched using Medical Subject Headings (MeSH) and non-MeSH terms. Eventually, 12 studies for arsenic (As), lead (Pb), mercury (Hg), and cadmium (Cd) were included in this study. No eligible study was found for Aluminium. SHORT CONCLUSION The findings showed exposure to HMs disturbs the composition of gut microbiota and can lead to dysbiosis. Exposure to high levels of As, Pb, and Hg increased the abundance of Collinsella as pathobionts. Evidently, it is related to leaky gut, oxidative stress, and several diseases such as inflammatory bowel disease and cancers. Probiotic treatment and nutritional strategies such as high fiber intake and following antioxidant-rich diets should be considered in terms of HMs exposure.
Collapse
Affiliation(s)
- Mahsa Rezazadegan
- Student Research Committee, Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bita Forootani
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Yeganeh Hoveyda
- Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Niloufar Rezazadegan
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Amani
- Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
4
|
Midya V, Nagdeo K, Lane JM, Torres-Olascoaga LA, Martínez GG, Horton MK, McRae N, Lopez I, Landero J, Gennings C, Téllez-Rojo MM, Wright RO, Arora M, Eggers S. Akkermansia muciniphila attenuates association between specific metal exposures during pregnancy and depressive symptoms in late childhood. iScience 2024; 27:111335. [PMID: 39640590 PMCID: PMC11617302 DOI: 10.1016/j.isci.2024.111335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/23/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
Emerging research suggests that exposures to metals during pregnancy and consequent disruptions in gut microbiome (GM) are associated with depressive disorders in childhood. Akkermansia muciniphila, a GM bacteria, has been studied for its potential antidepressant effects. However, its role in influencing the association between prenatal metal exposures and depressive symptoms during childhood is unknown. Leveraging a well-characterized pediatric birth cohort and its microbiome substudy (n = 112), we investigated whether a certain subgroup of children at 9-11-year-of-age (characterized by a specific pattern of prenatal exposure to groups of metals or metal-clique) had worsened depressive symptoms and if the presence of A.muciniphila in GM modifies this association. A subgroup of children characterized by the prenatal metal-clique signature of zinc-chromium-cobalt had significantly increased depression scores; however, within that subgroup, children with A.muciniphila had much lower depression scores than those without A.muciniphila in the GM. Our analysis provides exploratory evidence hypothesizing A.muciniphila as an intervention attenuating the effect of prenatal metal-exposures-associated depressive disorders in late childhood.
Collapse
Affiliation(s)
- Vishal Midya
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kiran Nagdeo
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jamil M. Lane
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Libni A. Torres-Olascoaga
- Center for Research on Nutrition and Health, National Institute of Public Health, Cuernavaca, Mexico
| | - Gabriela Gil Martínez
- Center for Research on Nutrition and Health, National Institute of Public Health, Cuernavaca, Mexico
| | - Megan K. Horton
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nia McRae
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Inessa Lopez
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Julio Landero
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chris Gennings
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Martha Maria Téllez-Rojo
- Center for Research on Nutrition and Health, National Institute of Public Health, Cuernavaca, Mexico
| | - Robert O. Wright
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Manish Arora
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Linus Biotechnology, Inc., North Brunswick Township, NJ, USA
| | - Shoshannah Eggers
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Epidemiology, University of Iowa College of Public Health, Iowa City, IA, USA
| |
Collapse
|
5
|
Gao F, Shen Y, Wu H, Laue HE, Lau FK, Gillet V, Lai Y, Shrubsole MJ, Prada D, Zhang W, Liu Z, Bellenger JP, Takser L, Baccarelli AA. Associations of Stool Metal Exposures with Childhood Gut Microbiome Multiomics Profiles in a Prospective Birth Cohort Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22053-22063. [PMID: 39630952 DOI: 10.1021/acs.est.4c09642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Metal exposures are closely related to childhood developmental health. However, their effects on the childhood gut microbiome, which also impacts health, are largely unexplored using microbiome multiomics including the metagenome and metatranscriptome. This study examined the associations of fecal profiles of metal/element exposures with gut microbiome species and active functional pathways in 8- to 12-year-old children (N = 116) participating in the GESTation and Environment (GESTE) cohort study. We analyzed 19 stool metal and element concentrations (B, Na, Mg, Al, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Mo, Cd, Ba, and Pb). Covariate-adjusted linear regression models identified several significant microbiome associations with continuous stool metal/element concentrations. For instance, Zn was positively associated with Turicibacter sanguinis (coef = 1.354, q-value = 0.039) and negatively associated with Eubacterium eligens (coef = -0.794, q-value = 0.044). Higher concentrations of Cd were associated with lower Eubacterium eligens (coef = -0.774, q-value = 0.045). Additionally, a total of 490 significant functional pathways such as biosynthesis and degradation/utilization/assimilation were identified, corresponding to different functions, including amino acid synthesis and carbohydrate degradation. Our results suggest links among metal exposures, pediatric gut microbiome multiomics, and potential health implications. Future work will further explore their relation to childhood health.
Collapse
Affiliation(s)
- Feng Gao
- Department of Environmental Health Sciences, Fielding School of Public Health, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, California 90095, United States
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Yike Shen
- Department of Earth and Environmental Sciences, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Haotian Wu
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Hannah E Laue
- Department of Biostatistics and Epidemiology, University of Massachusetts Amherst School of Public Health and Health Sciences, Amherst, Massachusetts 01003, United States
| | - Fion K Lau
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Virginie Gillet
- Département de Pédiatrie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Yunjia Lai
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Martha J Shrubsole
- Division of Epidemiology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Diddier Prada
- Institute for Health Equity Research - IHER, Department of Population Health Science and Policy and the Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Wei Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Zhonghua Liu
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, New York 10032, United States
| | | | - Larissa Takser
- Département de Pédiatrie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Andrea A Baccarelli
- Office of the Dean, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| |
Collapse
|
6
|
Midya V, Agrawal M, Lane JM, Gennings C, Tarassishin L, Torres-Olascoaga LA, Eggers J, Gregory JK, Picker M, Peter I, Faith JJ, Arora M, Téllez-Rojo MM, Wright RO, Colombel JF, Eggers S. Association between Exposure to Metals during Pregnancy, Childhood Gut Microbiome, and Risk of Intestinal Inflammation in Late Childhood. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2024; 2:739-749. [PMID: 39474439 PMCID: PMC11501044 DOI: 10.1021/envhealth.4c00125] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 12/12/2024]
Abstract
Alterations to the gut microbiome and exposure to metals during pregnancy have been suggested to impact inflammatory bowel disease. Nonetheless, how prenatal exposure to metals eventually results in long-term effects on the gut microbiome, leading to subclinical intestinal inflammation, particularly during late childhood, has not been studied. It is also unknown whether such an interactive effect drives a specific subgroup of children toward elevated susceptibility to intestinal inflammation. We used an amalgamation of machine-learning techniques with a regression-based framework to explore if children with distinct sets of gut microbes and certain patterns of exposure to metals during pregnancy (metal-microbial clique signature) had a higher likelihood of intestinal inflammation, measured based on fecal calprotectin (FC) in late childhood. We obtained samples from a well-characterized longitudinal birth cohort from Mexico City (n = 108), Mexico. In the second and third trimesters of pregnancy, 11 metals were measured in whole blood. Gut microbial abundances and FC were measured in stool samples from children 9-11 years of age. Elevated FC was defined as having FC above 100 μg/g of stool. We identified subgroups of children in whom microbial and metal-microbial clique signatures were associated with elevated FC (false discovery rate (FDR) < 0.05). In particular, we found two metal-microbial clique signatures significantly associated with elevated FC: (1) low cesium (Cs) and copper (Cu) in the third trimester and low relative abundance of Eubacterium ventriosum (OR [95%CI]: 10.27 [3.57,29.52], FDR < 0.001) and (2) low Cu in the third trimester and high relative abundances of Roseburia inulinivorans and Ruminococcus torques (OR [95%CI]: 7.21 [1.81,28.77], FDR < 0.05). This exploratory study demonstrates that children with specific gut microbes and specific exposure patterns to metals during pregnancy may have higher fecal calprotectin levels in late childhood, denoting an elevated risk of intestinal inflammation.
Collapse
Affiliation(s)
- Vishal Midya
- Department
of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York 10029-6574, New York, United States
| | - Manasi Agrawal
- The
Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York 10029-6574, New York, United States
- Center
for Molecular Prediction of Inflammatory Bowel Disease (PREDICT),
Department of Clinical Medicine, Aalborg
University, Copenhagen 9220, Denmark
| | - Jamil M. Lane
- Department
of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York 10029-6574, New York, United States
| | - Chris Gennings
- Department
of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York 10029-6574, New York, United States
| | - Leonid Tarassishin
- Department
of Genetics and Genomic Sciences, Icahn
School of Medicine, New York 10029-6574, New York, United States
| | - Libni A. Torres-Olascoaga
- Center
for Research on Nutrition and Health, National
Institute of Public Health, Cuernavaca 62508, Mexico
| | - Joseph Eggers
- Department
of Immunology and Immunotherapy, Icahn School
of Medicine at Mount Sinai, New York 10029-6574, New York, United States
- Department
of Epidemiology, University of Iowa College
of Public Health, Iowa City 52242, Iowa, United States
| | - Jill K. Gregory
- Instructional
Technology Group, Icahn School of Medicine
at Mount Sinai, New York 10029-6574, New York, United States
| | - Mellissa Picker
- Department
of Genetics and Genomic Sciences, Icahn
School of Medicine, New York 10029-6574, New York, United States
| | - Inga Peter
- Department
of Genetics and Genomic Sciences, Icahn
School of Medicine, New York 10029-6574, New York, United States
| | - Jeremiah J. Faith
- Department
of Immunology and Immunotherapy, Icahn School
of Medicine at Mount Sinai, New York 10029-6574, New York, United States
- Department
of Genetics and Genomic Sciences, Icahn
School of Medicine at Mount Sinai, New York 10029-6574, New York, United States
| | - Manish Arora
- Department
of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York 10029-6574, New York, United States
| | - Martha M. Téllez-Rojo
- Center
for Research on Nutrition and Health, National
Institute of Public Health, Cuernavaca 62508, Mexico
| | - Robert O. Wright
- Department
of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York 10029-6574, New York, United States
| | - Jean-Frederic Colombel
- The
Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York 10029-6574, New York, United States
| | - Shoshannah Eggers
- Department
of Epidemiology, University of Iowa College
of Public Health, Iowa City 52242, Iowa, United States
| |
Collapse
|
7
|
Zhang Z, Zhong Q, Qian Z, Zeng X, Zhang J, Xu X, Hylkema MN, Nolte IM, Snieder H, Huo X. Alterations of gut microbiota and its metabolomics in children with 6PPDQ, PBDE, PCB, and metal(loid) exposure. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134862. [PMID: 38885585 DOI: 10.1016/j.jhazmat.2024.134862] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024]
Abstract
The composition and metabolites of the gut microbiota can be altered by environmental pollutants. However, the effect of co-exposure to multiple pollutants on the human gut microbiota has not been sufficiently studied. In this study, gut microorganisms and their metabolites were compared between 33 children from Guiyu, an e-waste dismantling and recycling area, and 34 children from Haojiang, a healthy environment. The exposure level was assessed by estimating the daily intake (EDI) of polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), 6PPD-quinone (6PPDQ), and metal(loid)s in kindergarten dust. Significant correlations were found between the EDIs of 6PPDQ, BDE28, PCB52, Ni, Cu, and the composition of gut microbiota and specific metabolites. The Bayesian kernel machine regression model showed negative correlations between the EDIs of five pollutants (6PPDQ, BDE28, PCB52, Ni, and Cu) and the composition of gut microbiota. The EDIs of these five pollutants were positively correlated with the levels of the metabolite 2,4-diaminobutyric acid, while negatively correlated with the levels of d-erythro-sphingosine and d-threitol. Our study suggests that exposure to 6PPDQ, BDE28, PCB52, Ni, and Cu in kindergarten dust is associated with alterations in the composition and metabolites of the gut microbiota. These alterations may be associated with children's health.
Collapse
Affiliation(s)
- Zhuxia Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, Guangzhou 511443, Guangdong, China
| | - Qi Zhong
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, Guangzhou 511443, Guangdong, China; Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Ziyi Qian
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, Guangzhou 511443, Guangdong, China
| | - Xiang Zeng
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, Guangzhou 511443, Guangdong, China; School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province 310053, China
| | - Jian Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, Guangzhou 511443, Guangdong, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Machteld N Hylkema
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, the Netherlands
| | - Ilja M Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, the Netherlands
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, the Netherlands
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, Guangzhou 511443, Guangdong, China; Laboratory of Environmental Medicine and Developmental Toxicology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, Guangdong, China.
| |
Collapse
|
8
|
Xiang ST, Zhou C, Zhao K, Ma Y, Huang R, Peng Y, Tang Y, Yang F, Qiu J. Association of metals with early postnatal gut microbiota among infants admitted to the neonatal intensive care unit. Int J Hyg Environ Health 2024; 261:114410. [PMID: 38925082 DOI: 10.1016/j.ijheh.2024.114410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/02/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
The gut microbiota is closely related to infant health. However, the impact of environmental factors on the gut microbiota has not been widely investigated, particularly in vulnerable populations such as infants admitted to the neonatal intensive care unit (NICU). This study investigated the association between exposure to 12 metals and the composition of the gut microbiota in infants admitted to the NICU. Metal concentrations were determined in serum samples obtained from 107 infants admitted to the NICU at Hunan Children's hospital, China. Gut microbiota data were derived from 16S rRNA sequencing using stool samples. Generalized linear regression (GLR) models and Bayesian kernel machine regression (BKMR) analyses were used to estimate the associations between metals and both alpha-diversity indices and bacterial taxa. The GLR models showed that tin correlated negatively with the Shannon index (β = -0.55, 95% conficence interval [CI]: -0.79, -0.30, PFDR< 0.001) and positively with the Simpson index (β = 0.26, 95% CI: 0.13, 0.39, PFDR< 0.001). The BKMR analysis yielded similar results, showing that tin had the largest posterior inclusion probability for both the Shannon (0.986) and the Simpson (0.796) indices. Tin, cadmium, mercury, lead, and thallium were associated with changes in one or more taxa at the genus level. The BKMR analysis also revealed a negative correlation between metal mixtures and Clostridium_sensu_stricto, and tin contibuted mostly to the negative correlation. Early postnatal exposure to metals were associated with differences in the microbiome among infants admitted to the NICU. However, as the study was cross-sectional, these relationships must be confirmed in further studies.
Collapse
Affiliation(s)
- Shi-Ting Xiang
- Pediatrics Research Institute of Hunan Province, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's hospital), Changsha, 410007, China
| | - Changci Zhou
- Academy of Pediatrics, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Kunyan Zhao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Ye Ma
- Department of Neonatology, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's hospital), Changsha, China
| | - Ruiwen Huang
- Department of Neonatology, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's hospital), Changsha, China
| | - Yunlong Peng
- Department of Epidemiology and Health Statistics, Medical College of Soochow University, Suzhou, 215123, China
| | - Yan Tang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Jun Qiu
- Pediatrics Research Institute of Hunan Province, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's hospital), Changsha, 410007, China.
| |
Collapse
|
9
|
Zhu Q, Chen B, Zhang F, Zhang B, Guo Y, Pang M, Huang L, Wang T. Toxic and essential metals: metabolic interactions with the gut microbiota and health implications. Front Nutr 2024; 11:1448388. [PMID: 39135557 PMCID: PMC11317476 DOI: 10.3389/fnut.2024.1448388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Human exposure to heavy metals, which encompasses both essential and toxic varieties, is widespread. The intestine functions as a critical organ for absorption and metabolism of heavy metals. Gut microbiota plays a crucial role in heavy metal absorption, metabolism, and related processes. Toxic heavy metals (THMs), such as arsenic (As), mercury (Hg), lead (Pb), and cadmium (Cd), can cause damage to multiple organs even at low levels of exposure, and it is crucial to emphasize their potential high toxicity. Nevertheless, certain essential trace elements, including iron (Fe), copper (Cu), and manganese (Mn), play vital roles in the biochemical and physiological functions of organisms at low concentrations but can exert toxic effects on the gut microbiota at higher levels. Some potentially essential micronutrients, such as chromium (Cr), silicon (Si), and nickel (Ni), which were considered to be intermediate in terms of their essentiality and toxicity, had different effects on the gut microbiota and their metabolites. Bidirectional relationships between heavy metals and gut microbiota have been found. Heavy metal exposure disrupts gut microbiota and influences its metabolism and physiological functions, potentially contributing to metabolic and other disorders. Furthermore, gut microbiota influences the absorption and metabolism of heavy metals by serving as a physical barrier against heavy metal absorption and modulating the pH, oxidative balance, and concentrations of detoxification enzymes or proteins involved in heavy metal metabolism. The interactions between heavy metals and gut microbiota might be positive or negative according to different valence states, concentrations, and forms of the same heavy metal. This paper reviews the metabolic interactions of 10 common heavy metals with the gut microbiota and their health implications. This collated information could provide novel insights into the disruption of the intestinal microbiota caused by heavy metals as a potential contributing factor to human diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Tianjiao Wang
- Department of Personnel Management, Zhejiang Center for Disease Control and Prevention, Hangzhou, China
| |
Collapse
|
10
|
Fu Y, Jia F, Su J, Xu X, Zhang Y, Li X, Jiang X, Schäffer A, Virta M, Tiedje JM, Wang F. Co-occurrence patterns of gut microbiome, antibiotic resistome and the perturbation of dietary uptake in captive giant pandas. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134252. [PMID: 38657507 DOI: 10.1016/j.jhazmat.2024.134252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 03/15/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024]
Abstract
The microbiome is a key source of antibiotic resistance genes (ARGs), significantly influenced by diet, which highlights the interconnectedness between diet, gut microbiome, and ARGs. Currently, our understanding is limited on the co-occurrence among gut microbiome, antibiotic resistome in the captive giant panda and the perturbation of dietary uptake, especially for the composition and forms in dietary nutrition. Here, a qPCR array with 384 primer sets and 16 S rRNA gene amplicon sequencing were used to characterize the antibiotic resistome and microbiomes in panda feces, dietary bamboo, and soil around the habitat. Diet nutrients containing organic and mineral substances in soluble and insoluble forms were also quantified. Organic and mineral components in water-unextractable fractions were 7.5 to 139 and 637 to 8695 times higher than those in water-extractable portions in bamboo and feces, respectively, while the latter contributed more to the variation (67.5 %) of gut microbiota. Streptococcus, Prevotellaceae, and Bacteroides were the dominant genera in giant pandas. The ARG patterns in panda guts showed higher diversity in old individuals but higher abundance in young ones, driven directly by the bacterial community change and mobile genetic element mediation and indirectly by dietary intervention. Our results suggest that dietary nutrition mainly accounts for the shift of gut microbiota, while bacterial community and mobile genetic elements influenced the variation of gut antibiotic resistome.
Collapse
Affiliation(s)
- Yuhao Fu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feiran Jia
- University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Jingfang Su
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xinyao Xu
- University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Yuqin Zhang
- University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Xiangzhen Li
- Engineering Research Center of Soil Remediation of Fujian Province University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xin Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Andreas Schäffer
- Institute for Environmental Research, RWTH Aachen University, Aachen 52074, Germany
| | - Marko Virta
- Department of Microbiology, University of Helsinki, Helsinki 00014, Finland
| | - James M Tiedje
- Center for Microbial Ecology, Department of Plant, Soil and Microbial Sciences, Michigan State University, MI 48824, USA
| | - Fang Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Environmental Research, RWTH Aachen University, Aachen 52074, Germany.
| |
Collapse
|
11
|
Laue HE, Gilmour AJ, Tirado VM, Romano ME. Conceptualizing the Role of the Microbiome as a Mediator and Modifier in Environmental Health Studies: A Scoping Review of Studies of Triclosan and the Microbiome. Curr Environ Health Rep 2024; 11:30-38. [PMID: 38217674 PMCID: PMC10922364 DOI: 10.1007/s40572-024-00428-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
PURPOSE OF REVIEW Triclosan is an endocrine-disrupting antimicrobial additive that is suspected of contributing to antibiotic resistance and altering the microbiome. In this scoping review, we summarize what is known about the association between triclosan exposure and the microbiome using evidence from in vivo and epidemiologic studies. RECENT FINDINGS Our review includes 11 rodent studies, seven fish studies, and five human studies. Evidence from animal studies suggests that triclosan decreases the diversity of the microbiome, although only one epidemiologic study agreed. Most studies suggest that triclosan alters the microbial community beta diversity, but disagree on which taxa contributed to compositional differences. Taxa in the Bacteroidetes, Firmicutes, and Proteobacteria may be more influenced by triclosan than those in other phyla. Studies on triclosan and the microbiome were scarce and were inconclusive as to the effects of triclosan on the microbiome. Additional research is needed to clarify windows of heightened susceptibility of the microbiome to triclosan. We recommend guidelines for future microbiome research in environmental health to increase comparability across studies.
Collapse
Affiliation(s)
- Hannah E Laue
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA.
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, One Medical Center Dr, WTRB 700 HB 7927, Lebanon, NH, 03756, USA.
| | - Aislinn J Gilmour
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | | | - Megan E Romano
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| |
Collapse
|
12
|
Midya V, Nagdeo K, Lane J, Torres-Olascoaga L, Martínez G, Horton M, Gennings C, Téllez-Rojo M, Wright R, Arora M, Eggers S. Akkermansia muciniphila modifies the association between metal exposure during pregnancy and depressive symptoms in late childhood. RESEARCH SQUARE 2024:rs.3.rs-3922286. [PMID: 38410473 PMCID: PMC10896378 DOI: 10.21203/rs.3.rs-3922286/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Emerging research suggests that exposures to metals during pregnancy and gut microbiome (GM) disruptions are associated with depressive disorders in childhood. Akkermansia muciniphila, a GM bacteria, has been studied for its potential antidepressant effects. However, its role in the influence of prenatal metal exposures on depressive symptoms during childhood is unknown. Leveraging a well-characterized pediatric longitudinal birth cohort and its microbiome substudy (n=112) and using a state-of-the-art machine-learning model, we investigated whether the presence of A.muciniphila in GM of 9-11-year-olds modifies the associations between exposure to a specific group of metals (or metal-clique) during pregnancy and concurrent childhood depressive symptoms. Among children with no A.muciniphila, a metal-clique of Zinc-Chromium-Cobalt was strongly associated with increased depression score (P<0.0001), whereas, for children with A.muciniphila, this same metal-clique was weakly associated with decreased depression score(P<0.4). Our analysis provides the first exploratory evidence hypothesizing A. muciniphila as a probiotic intervention attenuating the effect of prenatal metal-exposures-associated depressive disorders in late childhood.
Collapse
Affiliation(s)
| | | | | | | | - Gabriela Martínez
- Center for Research on Nutrition and Health, National Institute of Public Health
| | | | | | - Martha Téllez-Rojo
- Center for Research on Nutrition and Health, National Institute of Public Health
| | | | | | | |
Collapse
|
13
|
Bauer JA, Romano ME, Jackson BP, Bellinger D, Korrick S, Karagas MR. Associations of Perinatal Metal and Metalloid Exposures with Early Child Behavioral Development Over Time in the New Hampshire Birth Cohort Study. EXPOSURE AND HEALTH 2024; 16:135-148. [PMID: 38694196 PMCID: PMC11060719 DOI: 10.1007/s12403-023-00543-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/13/2023] [Accepted: 03/01/2023] [Indexed: 05/04/2024]
Abstract
Research on the neurodevelopmental effects of metal(loid)s has focused mainly on outcomes assessed at one time point, even though brain development progresses over time. We investigated biomarkers of perinatal exposure to metals and changes in child behavior over time. We followed 268 participants from the prospective New Hampshire Birth Cohort Study between birth and age 5 years. We measured arsenic (As), copper (Cu), manganese (Mn), lead (Pb), selenium (Se), and zinc (Zn) in toenails from 6-week-old infants. The Behavioral Symptoms Index (BSI), externalizing, and internalizing symptoms were assessed using the Behavior Assessment System for Children, 2nd edition (BASC-2) at ages 3 and 5 years. Multivariable linear regression was used to estimate associations of metals with behavior change, calculated as the difference in symptom raw scores between 3 and 5 years, in addition to the associations for symptom scores at 3 and 5 years separately. Sex-specific associations were also explored using stratified models and a sex-metal interaction term. Adjusted associations of metals and change in behavior varied by exposure and outcome. Each 1 μg/g increase in ln toenail Cu was associated with improved behavior between 3 and 5 years [BSI: β = - 3.88 (95%CI: - 7.12, - 0.64); Externalizing problems: β = - 2.20 (95%CI: - 4.07, - 0.33)]. Increasing Zn was associated with increased externalizing behavior over time (β = 3.42 (95%CI: 0.60, 6.25). Sex-stratified analyses suggested more pronounced associations among boys compared to girls. Perinatal exposure to metals may alter behavioral development between ages 3 and 5 years. Findings support the need for more research on associations between metals and neurodevelopment over longer time periods.
Collapse
Affiliation(s)
- Julia A. Bauer
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, 1 Medical Center Dr., Lebanon, Hanover, NH 03756, USA
| | - Megan E. Romano
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, 1 Medical Center Dr., Lebanon, Hanover, NH 03756, USA
| | - Brian P. Jackson
- Department of Earth Sciences, Dartmouth College, Hanover, NH, USA
| | - David Bellinger
- Departments of Neurology and Psychiatry, Boston Children’s Hospital, Boston, MA, USA
- Departments of Neurology and Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Susan Korrick
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Margaret R. Karagas
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, 1 Medical Center Dr., Lebanon, Hanover, NH 03756, USA
| |
Collapse
|
14
|
Barrack KE, Hampton TH, Valls RA, Surve SV, Gardner TB, Sanville JL, Madan JL, O’Toole GA. An in vitro medium for modeling gut dysbiosis associated with cystic fibrosis. J Bacteriol 2024; 206:e0028623. [PMID: 38169295 PMCID: PMC10810206 DOI: 10.1128/jb.00286-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
The gut physiology of pediatric and adult persons with cystic fibrosis (pwCF) is altered relative to healthy persons. The CF gut is characterized, in part, as having excess mucus, increased fat content, acidic pH, increased inflammation, increased antibiotic perturbation, and the potential for increased oxygen availability. These physiological differences shift nutritional availability and the local environment for intestinal microbes, thus likely driving significant changes in microbial metabolism, colonization, and competition with other microbes. The impact of any specific change in this physiological landscape is difficult to parse using human or animal studies. Thus, we have developed a novel culture medium representative of the CF gut environment, inclusive of all the aforementioned features. This medium, called CF-MiPro, maintains CF gut microbiome communities, while significantly shifting nonCF gut microbiome communities toward a CF-like microbial profile, characterized by low Bacteroidetes and high Proteobacteria abundance. This medium is able to maintain this culture composition for up to 5 days of passage. Additionally, microbial communities passaged in CF-MiPro produce significantly less immunomodulatory short-chain fatty acids (SCFA), including propionate and butyrate, than communities passaged in MiPro, a culture medium representative of healthy gut physiology, confirming not only a shift in microbial composition but also altered community function. Our results support the potential for this in vitro culture medium as a new tool for the study of CF gut dysbiosis. IMPORTANCE Cystic fibrosis is an autosomal recessive disease that disrupts ion transport at mucosal surfaces, leading to mucus accumulation and altered physiology of both the lungs and the intestines, among other organs, with the resulting altered environment contributing to an imbalance of microbial communities. Culture media representative of the CF airway have been developed and validated; however, no such medium exists for modeling the CF intestine. Here, we develop and validate a first-generation culture medium inclusive of features that are altered in the CF colon. Our findings suggest this novel medium, called CF-MiPro, as a maintenance medium for CF gut microbiome samples and a flexible tool for studying key drivers of CF-associated gut dysbiosis.
Collapse
Affiliation(s)
- Kaitlyn E. Barrack
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Thomas H. Hampton
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Rebecca A. Valls
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Sarvesh V. Surve
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Timothy B. Gardner
- Section of Gastroenterology and Hepatology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Julie L. Sanville
- Division of Pediatric Gastroenterology, Department of Pediatrics, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Juliette L. Madan
- Departments of Psychiatry and Pediatrics, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire, USA
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - George A. O’Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
15
|
Midya V, Lane JM, Gennings C, Torres-Olascoaga LA, Gregory JK, Wright RO, Arora M, Téllez-Rojo MM, Eggers S. Prenatal Lead Exposure Is Associated with Reduced Abundance of Beneficial Gut Microbial Cliques in Late Childhood: An Investigation Using Microbial Co-Occurrence Analysis (MiCA). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16800-16810. [PMID: 37878664 PMCID: PMC10634322 DOI: 10.1021/acs.est.3c04346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 10/27/2023]
Abstract
Many analytical methods used in gut microbiome research focus on either single bacterial taxa or the whole microbiome, ignoring multibacteria relationships (microbial cliques). We present a novel analytical approach to identify microbial cliques within the gut microbiome of children at 9-11 years associated with prenatal lead (Pb) exposure. Data came from a subset of participants (n = 123) in the Programming Research in Obesity, Growth, Environment and Social Stressors cohort. Pb concentrations were measured in maternal whole blood from the second and third trimesters of pregnancy. Stool samples collected at 9-11 years old underwent metagenomic sequencing to assess the gut microbiome. Using a novel analytical approach, Microbial Co-occurrence Analysis (MiCA), we paired a machine learning algorithm with randomization-based inference to first identify microbial cliques that were predictive of prenatal Pb exposure and then estimate the association between prenatal Pb exposure and microbial clique abundance. With second-trimester Pb exposure, we identified a two-taxa microbial clique that included Bifidobacterium adolescentis and Ruminococcus callidus and a three-taxa clique that also included Prevotella clara. Increasing second-trimester Pb exposure was associated with significantly increased odds of having the two-taxa microbial clique below the median relative abundance (odds ratio (OR) = 1.03, 95% confidence interval (CI) [1.01-1.05]). Using a novel combination of machine learning and causal inference, MiCA identified a significant association between second-trimester Pb exposure and the reduced abundance of a probiotic microbial clique within the gut microbiome in late childhood.
Collapse
Affiliation(s)
- Vishal Midya
- Department
of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Jamil M. Lane
- Department
of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Chris Gennings
- Department
of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Libni A. Torres-Olascoaga
- Center
for Research on Nutrition and Health, National
Institute of Public Health, Cuernavaca 62100, Mexico
| | - Jill K. Gregory
- Instructional
Technology Group, Icahn School of Medicine
at Mount Sinai, New York, New York 10029, United States
| | - Robert O. Wright
- Department
of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Manish Arora
- Department
of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Martha Maria Téllez-Rojo
- Center
for Research on Nutrition and Health, National
Institute of Public Health, Cuernavaca 62100, Mexico
| | - Shoshannah Eggers
- Department
of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Department
of Epidemiology, University of Iowa College
of Public Health, Iowa City, Iowa 52242, United States
| |
Collapse
|
16
|
Zhang J, Mai Q, Di D, Zhou H, Zhang R, Wang Q. Potential roles of gut microbiota in metal mixture and bone mineral density and osteoporosis risk association: an epidemiologic study in Wuhan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:117201-117213. [PMID: 37864687 DOI: 10.1007/s11356-023-30388-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/06/2023] [Indexed: 10/23/2023]
Abstract
Few studies have focused on the effects of multiple metal mixtures on bone health and the underlying mechanisms related to alterations in the gut microbiota. This study aimed to examine the potential roles of gut microbiota alterations in metal mixtures and their association with osteoporosis traits. Adults aged ≥ 55 years were recruited from two community healthcare centers in Wuhan City during 2016-2019. The plasma concentrations of six metals (zinc, iron, selenium, lead, cadmium, and arsenic) were measured using an inductively coupled plasma mass spectrometer. The k-means clustering method was employed to explore the exposure profiles of metal mixtures for all participants. 16S rRNA gene sequencing was used to profile the gut microbiota of participants. Combining these results with those of our previous study, we identified overlapping taxa and evaluated their potential roles. A total of 806 participants (516 females), with an average age of 67.36 years were included. The participants were grouped into three clusters using k-means clustering: Cluster 1 (n = 458), Cluster 2 (n = 199), and Cluster 3 (n = 149). The high-exposure group for iron, zinc, lead, and cadmium (Cluster 3) showed a negative association with lumbar spine 1-4 bone mineral density (BMD). A total of 201 individuals (121 females) underwent sequencing of the gut microbiota. Both alpha and beta diversities were statistically different among the three groups. Bacteroidaceae, Lachnospiraceae, Bifidobacteriaceae, Bacteroides, and Lachnospiraceae_incertae_sedis were identified as overlapping taxa associated with the metal mixtures and BMD. Interaction analysis revealed that Cluster 3 interacted with Bacteroidaceae/Bacteroides, resulting in a positive effect on LS1-4 BMD (β = 0.358 g/cm2, 95% CI: 0.047 to 0.669, P = 0.025). Our findings indicate associations between multiple metal mixtures and BMD as well as gut microbiota alterations. Exploring the interaction between metal mixtures and the gut microbiota provides new perspectives for the precise prevention and treatment of osteoporosis.
Collapse
Affiliation(s)
- Jianli Zhang
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Mai
- Wuhan Center for Disease Control and Prevention, Wuhan, China
| | - Dongsheng Di
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haolong Zhou
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruyi Zhang
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Wang
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
17
|
Barrack KE, Hampton TH, Valls RA, Surve SV, Gardner TB, Sanville JL, Madan JC, O’Toole GA. An In Vitro Medium for Modeling Gut Dysbiosis Associated with Cystic Fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.01.551570. [PMID: 37577487 PMCID: PMC10418193 DOI: 10.1101/2023.08.01.551570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The gut physiology of pediatric and adult persons with cystic fibrosis (pwCF) is altered relative to healthy persons. The CF gut is characterized, in part, as having excess mucus, increased fat content, acidic pH, increased inflammation, increased antibiotic perturbation and the potential for increased oxygen availability. These physiological differences shift nutritional availability and the local environment for intestinal microbes, thus likely driving significant changes in microbial metabolism, colonization and competition with other microbes. The impact of any specific change in this physiological landscape is difficult to parse using human or animal studies. Thus, we have developed a novel culture medium representative of the CF gut environment, inclusive of all the aforementioned features. This medium, called CF-MiPro, maintains CF gut microbiome communities, while significantly shifting non-CF gut microbiome communities toward a CF-like microbial profile, characterized by low Bacteroidetes and high Proteobacteria abundance. This medium is able to maintain this culture composition for up to 5 days of passage. Additionally, microbial communities passaged in CF-MiPro produce significantly less immunomodulatory short chain fatty acids (SCFA), including propionate and butyrate, than communities passaged in MiPro, a culture medium representative of healthy gut physiology, confirming not only a shift in microbial composition but altered community function. Our results support the potential for this in vitro culture medium as a new tool for the study of gut dysbiosis in CF.
Collapse
Affiliation(s)
- Kaitlyn E. Barrack
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Thomas H. Hampton
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Rebecca A. Valls
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Sarvesh V. Surve
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Timothy B. Gardner
- Section of Gastroenterology and Hepatology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Julie L. Sanville
- Division of Pediatric Gastroenterology, Department of Pediatrics, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Juliette C. Madan
- Departments of Psychiatry and Pediatrics, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire, USA and Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - George A. O’Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
18
|
Eggers S, Midya V, Bixby M, Gennings C, Torres-Olascoaga LA, Walker RW, Wright RO, Arora M, Téllez-Rojo MM. Prenatal lead exposure is negatively associated with the gut microbiome in childhood. Front Microbiol 2023; 14:1193919. [PMID: 37426026 PMCID: PMC10325945 DOI: 10.3389/fmicb.2023.1193919] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 05/23/2023] [Indexed: 07/11/2023] Open
Abstract
Background Metal exposures are associated with gut microbiome (GM) composition and function, and exposures early in development may be particularly important. Considering the role of the GM in association with many adverse health outcomes, understanding the relationship between prenatal metal exposures and the GM is critically important. However, there is sparse knowledge of the association between prenatal metal exposure and GM later in childhood. Objectives This analysis aims to identify associations between prenatal lead (Pb) exposure and GM composition and function in children 9-11 years old. Methods Data come from the Programming Research in Obesity, Growth, Environment and Social Stressors (PROGRESS) cohort based in Mexico City, Mexico. Prenatal metal concentrations were measured in maternal whole blood drawn during the second and third trimesters of pregnancy. Stool samples collected at 9-11 years old underwent metagenomic sequencing to assess the GM. This analysis uses multiple statistical modeling approaches, including linear regression, permutational analysis of variance, weighted quantile sum regression (WQS), and individual taxa regressions, to estimate the association between maternal blood Pb during pregnancy and multiple aspects of the child GM at 9-11 years old, adjusting for relevant confounders. Results Of the 123 child participants in this pilot data analysis, 74 were male and 49 were female. Mean prenatal maternal blood Pb was 33.6 (SE = 2.1) ug/L and 34.9 (SE = 2.1) ug/L at second and third trimesters, respectively. Analysis suggests a consistent negative relationship between prenatal maternal blood Pb and the GM at age 9-11, including measures of alpha and beta diversity, microbiome mixture analysis, and individual taxa. The WQS analysis showed a negative association between prenatal Pb exposure and the gut microbiome, for both second and third trimester exposures (2Tβ = -0.17, 95%CI = [-0.46,0.11]; 3Tβ = -0.17, 95%CI = [-0.44,0.10]). Ruminococcus gnavus, Bifidobacterium longum, Alistipes indistinctus, Bacteroides caccae, and Bifidobacterium bifidum all had weights above the importance threshold from 80% or more of the WQS repeated holdouts in association with both second and third trimester Pb exposure. Discussion Pilot data analysis suggests a negative association between prenatal Pb exposure and the gut microbiome later in childhood; however, additional investigation is needed.
Collapse
Affiliation(s)
- Shoshannah Eggers
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Epidemiology, University of Iowa College of Public Health, Iowa City, IA, United States
| | - Vishal Midya
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Moira Bixby
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Chris Gennings
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Libni A. Torres-Olascoaga
- Center for Research on Nutrition and Health, National Institute of Public Health, Cuernavaca, Mexico
| | - Ryan W. Walker
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Robert O. Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Manish Arora
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Martha María Téllez-Rojo
- Center for Research on Nutrition and Health, National Institute of Public Health, Cuernavaca, Mexico
| |
Collapse
|
19
|
Rodríguez-Viso P, Domene A, Sánchez A, Vélez D, Monedero V, Devesa V, Zúñiga M. Challenges and strategies for preventing intestinal damage associated to mercury dietary exposure. Toxicology 2023; 494:153580. [PMID: 37328091 DOI: 10.1016/j.tox.2023.153580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/02/2023] [Accepted: 06/12/2023] [Indexed: 06/18/2023]
Abstract
Food represents the major risk factor for exposure to mercury in most human populations. Therefore, passage through the gastrointestinal tract plays a fundamental role in its entry into the organism. Despite the intense research carried out on the toxicity of Hg, the effects at the intestinal level have received increased attention only recently. In this review we first provide a critical appraisal of the recent advances on the toxic effects of Hg at the intestinal epithelium. Next, dietary strategies aimed to diminish Hg bioavailability or modulate the epithelial and microbiota responses will be revised. Food components and additives, including probiotics, will be considered. Finally, limitations of current approaches to tackle this problem and future lines of research will be discussed.
Collapse
Affiliation(s)
| | - Adrián Domene
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna, Spain
| | - Alicia Sánchez
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna, Spain
| | - Dinoraz Vélez
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna, Spain
| | - Vicente Monedero
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna, Spain
| | - Vicenta Devesa
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna, Spain
| | - Manuel Zúñiga
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna, Spain.
| |
Collapse
|
20
|
Laue HE, Moroishi Y, Jackson BP, Palys TJ, Baker ER, Korrick SA, Madan JC, Karagas MR. Bacterial Modification of the Association Between Arsenic and Autism-Related Social Behavior Scores. EXPOSURE AND HEALTH 2023; 15:347-354. [PMID: 37840773 PMCID: PMC10569445 DOI: 10.1007/s12403-022-00494-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 10/17/2023]
Abstract
Arsenic is related to neurodevelopmental outcomes and is associated with the composition of the gut microbiome. Data on the modifying role of the microbiome are limited. We probed suggestive relationships between arsenic and social behaviors to quantify the modifying role of the infant gut microbiome. We followed children for whom arsenic concentrations were quantified in 6-week-old toenail clippings. Scores on the Social Responsiveness Scale (SRS-2), which measures autism-related social behaviors, were provided by caregivers when the child was approximately 3 years of age. Metagenomic sequencing was performed on infant stools collected at 6 weeks and 1 year of age. To evaluate modification by the top ten most abundant species and functional pathways, we modeled SRS-2 total T-scores as a function of arsenic concentrations, microbiome features dichotomized at their median, and an interaction between exposure and the microbiome, adjusting for other trace elements and sociodemographic characteristics. As compared to the standardized population (SRS-2 T-scores = 50), participants in our study had lower SRS-2 scores (n = 78, mean = 44, SD = 5).The relative abundances of several functional pathways identified in 6-week stool samples modified the arsenic-SRS-2 association, including the pathways of valine and isoleucine biosynthesis; we observed no association among those with high relative abundance of each pathway [β = - 0.67 (95% CI - 1.46, 0.12)], and an adverse association [β = 1.67 (95% CI 0.3, 3.04), pinteraction= 0.05] among infants with low relative abundance. Our findings indicate the infant gut microbiome may alter neurodevelopmental susceptibility to environmental exposures.
Collapse
Affiliation(s)
- Hannah E. Laue
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- One Medical Center Dr, WTRB 700, Lebanon, NH 03766, USA
| | - Yuka Moroishi
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Brian P. Jackson
- Department of Earth Sciences, Dartmouth College, Hanover, NH, USA
| | - Thomas J. Palys
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Emily R. Baker
- Department of Obstetrics and Gynecology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Susan A. Korrick
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Juliette C. Madan
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Division of Neonatology, Department of Pediatrics, Children’s Hospital at Dartmouth, Hanover, NH, USA
| | - Margaret R. Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| |
Collapse
|
21
|
Midya V, Lane JM, Gennings C, Torres-Olascoaga LA, Wright RO, Arora M, Téllez-Rojo MM, Eggers S. Prenatal Pb exposure is associated with reduced abundance of beneficial gut microbial cliques in late childhood: an investigation using Microbial Co-occurrence Analysis (MiCA). MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.18.23290127. [PMID: 37293091 PMCID: PMC10246125 DOI: 10.1101/2023.05.18.23290127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Background Many analytical methods used in gut microbiome research focus on either single bacterial taxa or the whole microbiome, ignoring multi-bacteria relationships (microbial cliques). We present a novel analytical approach to identify multiple bacterial taxa within the gut microbiome of children at 9-11 years associated with prenatal Pb exposure. Methods Data came from a subset of participants (n=123) in the Programming Research in Obesity, Growth, Environment and Social Stressors (PROGRESS) cohort. Pb concentrations were measured in maternal whole blood from the second and third trimesters of pregnancy. Stool samples collected at 9-11 years old underwent metagenomic sequencing to assess the gut microbiome. Using a novel analytical approach, Microbial Co-occurrence Analysis (MiCA), we paired a machine-learning algorithm with randomization-based inference to first identify microbial cliques that were predictive of prenatal Pb exposure and then estimate the association between prenatal Pb exposure and microbial clique abundance. Results With second-trimester Pb exposure, we identified a 2-taxa microbial clique that included Bifidobacterium adolescentis and Ruminococcus callidus, and a 3-taxa clique that added Prevotella clara. Increasing second-trimester Pb exposure was associated with significantly increased odds of having the 2-taxa microbial clique below the 50th percentile relative abundance (OR=1.03,95%CI[1.01-1.05]). In an analysis of Pb concentration at or above vs. below the United States and Mexico guidelines for child Pb exposure, odds of the 2-taxa clique in low abundance were 3.36(95%CI[1.32-8.51]) and 6.11(95%CI[1.87-19.93]), respectively. Trends were similar with the 3-taxa clique but not statistically significant. Discussion Using a novel combination of machine-learning and causal-inference, MiCA identified a significant association between second-trimester Pb exposure and reduced abundance of a probiotic microbial clique within the gut microbiome in late childhood. Pb exposure levels at the guidelines for child Pb poisoning in the United States, and Mexico are not sufficient to protect against the potential loss of probiotic benefits.
Collapse
Affiliation(s)
- V Midya
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - J M Lane
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - C Gennings
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - L A Torres-Olascoaga
- Center for Research on Nutrition and Health, National Institute of Public Health, Cuernavaca, Mexico
| | - R O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - M Arora
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - M M Téllez-Rojo
- Center for Research on Nutrition and Health, National Institute of Public Health, Cuernavaca, Mexico
| | - S Eggers
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Epidemiology, University of Iowa College of Public Health, Iowa City, Iowa, USA
| |
Collapse
|
22
|
Eggers S, Midya V, Bixby M, Gennings C, Torres-Olascoaga LA, Walker RW, Wright RO, Arora M, Téllez-Rojo MM. Prenatal Lead Exposure is Negatively Associated with the Gut Microbiome in Childhood. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.10.23289802. [PMID: 37214901 PMCID: PMC10197792 DOI: 10.1101/2023.05.10.23289802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Background Metal exposures are associated with gut microbiome (GM) composition and function, and exposures early in development may be particularly important. Considering the role of the GM in association with many adverse health outcomes, understanding the relationship between prenatal metal exposures and the GM is critically important. However, there is sparse knowledge of the association between prenatal metal exposure and GM later in childhood. Objectives This analysis aims to identify associations between prenatal lead (Pb) exposure and GM composition and function in children 9-11 years old. Methods Data come from the Programming Research in Obesity, Growth, Environment and Social Stressors (PROGRESS) cohort based in Mexico City, Mexico. Prenatal metal concentrations were measured in maternal whole blood drawn during the second and third trimesters of pregnancy. Stool samples collected at 9-11 years old underwent metagenomic sequencing to assess the GM. This analysis uses multiple statistical modeling approaches, including linear regression, permutational analysis of variance, weighted quantile sum regression (WQS), and individual taxa regressions, to estimate the association between maternal blood Pb during pregnancy and multiple aspects of the child GM at 9-11 years old, adjusting for relevant confounders. Results Of the 123 child participants in this pilot data analysis, 74 were male and 49 were female. Mean prenatal maternal blood Pb was 33.6(SE=2.1) ug/L and 34.9(SE=2.1) ug/L at second and third trimesters, respectively. Analysis suggests a consistent negative relationship between prenatal maternal blood Pb and the GM at age 9-11, including measures of alpha and beta diversity, microbiome mixture analysis, and individual taxa. The WQS analysis showed a negative association between prenatal Pb exposure and the gut microbiome, for both second and third trimester exposures (2Tβ=-0.17,95%CI=[-0.46,0.11]; 3Tβ=-0.17,95%CI=[-0.44,0.10]). Ruminococcus gnavus, Bifidobacterium longum, Alistipes indistinctus, Bacteroides caccae, and Bifidobacterium bifidum all had weights above the importance threshold from 80% or more of the WQS repeated holdouts in association with both second and third trimester Pb exposure. Discussion Pilot data analysis suggests a negative association between prenatal Pb exposure and the gut microbiome later in childhood; however, additional investigation is needed.
Collapse
Affiliation(s)
- Shoshannah Eggers
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Epidemiology, University of Iowa College of Public Health, Iowa City, Iowa, USA
| | - Vishal Midya
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Moira Bixby
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Chris Gennings
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Libni A Torres-Olascoaga
- Center for Research on Nutrition and Health, National Institute of Public Health, Cuernavaca, Mexico
| | - Ryan W. Walker
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Robert O. Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Manish Arora
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Martha María Téllez-Rojo
- Center for Research on Nutrition and Health, National Institute of Public Health, Cuernavaca, Mexico
| |
Collapse
|
23
|
Laue HE, Moroishi Y, Palys TJ, Christensen BC, Criswell RL, Peterson LA, Huset CA, Baker ER, Karagas MR, Madan JC, Romano ME. Early-life exposure to per- and polyfluoroalkyl substances and infant gut microbial composition. Environ Epidemiol 2023; 7:e238. [PMID: 36777525 PMCID: PMC9916123 DOI: 10.1097/ee9.0000000000000238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/17/2022] [Indexed: 12/23/2022] Open
Abstract
Human milk is rich in essential nutrients and immune-activating compounds but is also a source of toxicants including per- and polyfluoroalkyl substances (PFAS). Evidence suggests that immune-related effects of PFAS may, in part, be due to alterations of the microbiome. We aimed to identify the association between milk PFAS exposure and the infant gut microbiome. Methods PFAS [perfluorooctane sulfonic acid (PFOS) and perfluorooctanoate (PFOA)] were quantified in milk from ~6 weeks postpartum using high-performance liquid chromatography with tandem mass spectrometry. A molar sum (ΣPFAS) was calculated. Caregivers collected infant stool samples at 6 weeks (n = 116) and/or 1 year postpartum (n = 119). Stool DNA underwent metagenomic sequencing. We estimated the association of PFAS with diversity and relative abundances of species with linear regression. Single- and multi-PFAS models adjusted for potential confounders in complete case analyses and with imputed missing covariate data for 6-week and 1-year microbiomes separately. We assessed sensitive populations with stratification. Results PFOS and PFOA were detected in 94% and 83% of milk samples, respectively. PFOS was associated with increased diversity at 6 weeks among infants fed exclusively human milk [β = 0.24 per PFOS doubling, (95% CI = 0.03, 0.45), P = 0.03] and born to primiparous mothers [β = 0.37 (0.06, 0.67), P = 0.02]. Estimates were strongest in multi-PFAS models and among complete cases. ΣPFAS was associated with Bacteroides vulgatus relative abundance at 1 year [(β = -2.34% per doubling (-3.63, -1.05), FDR q = 0.099]. Conclusions PFAS may increase infant gut microbiome diversity and alter the relative abundance of biologically relevant bacteria. Additional analyses may identify related health outcomes.
Collapse
Affiliation(s)
- Hannah E. Laue
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, NH
| | - Yuka Moroishi
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, NH
| | - Thomas J. Palys
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, NH
| | - Brock C. Christensen
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, NH
| | | | - Lisa A. Peterson
- Division of Environmental Health Sciences, University of Minnesota, Minneapolis, MN
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | | | - Emily R. Baker
- Department of Obstetrics and Gynecology, Dartmouth Hitchcock Medical Center, Lebanon, NH
| | - Margaret R. Karagas
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, NH
| | - Juliette C. Madan
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, NH
- Departments of Pediatrics and Psychiatry, Children’s Hospital at Dartmouth, Lebanon, NH
| | - Megan E. Romano
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, NH
| |
Collapse
|
24
|
Campana AM, Laue HE, Shen Y, Shrubsole MJ, Baccarelli AA. Assessing the role of the gut microbiome at the interface between environmental chemical exposures and human health: Current knowledge and challenges. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120380. [PMID: 36220576 PMCID: PMC10239610 DOI: 10.1016/j.envpol.2022.120380] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 05/05/2023]
Abstract
The explosion of microbiome research over the past decade has shed light on the various ways that external factors interact with the human microbiome to drive health and disease. Each individual is exposed to more than 300 environmental chemicals every day. Accumulating evidence indicates that the microbiome is involved in the early response to environmental toxicants and biologically mediates their adverse effects on human health. However, few review articles to date provided a comprehensive framework for research and translation of the role of the gut microbiome in environmental health science. This review summarizes current evidence on environmental compounds and their effect on the gut microbiome, discusses the involved compound metabolic pathways, and covers environmental pollution-induced gut microbiota disorders and their long-term outcomes on host health. We conclude that the gut microbiota may crucially mediate and modify the disease-causing effects of environmental chemicals. Consequently, gut microbiota needs to be further studied to assess the complete toxicity of environmental exposures. Future research in this field is required to delineate the key interactions between intestinal microbiota and environmental pollutants and further to elucidate the long-term human health effects.
Collapse
Affiliation(s)
- Anna Maria Campana
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA.
| | - Hannah E Laue
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Yike Shen
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Martha J Shrubsole
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, School of Medicine, Vanderbilt University, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| |
Collapse
|
25
|
Karagas MR, McRitchie S, Hoen AG, Takigawa C, Jackson B, Baker ER, Madan J, Sumner SJ, Pathmasiri W. Alterations in Microbial-Associated Fecal Metabolites in Relation to Arsenic Exposure Among Infants. EXPOSURE AND HEALTH 2022; 14:941-949. [PMID: 36776720 PMCID: PMC9918239 DOI: 10.1007/s12403-022-00468-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/09/2021] [Accepted: 01/22/2022] [Indexed: 05/13/2023]
Abstract
In utero and early life exposure to inorganic arsenic (iAs) alters immune response in experimental animals and is associated with an increased risk of infant infections. iAs exposure is related to differences in the gut microbiota diversity, community structure, and the relative abundance of individual microbial taxa both in laboratory and human studies. Metabolomics permits a direct measure of molecular products of microbial and host metabolic processes. We conducted NMR metabolomics analysis on infant stool samples and quantified the relative concentrations of 34 known microbial-related metabolites. We examined these metabolites in relation to both in utero and infant log2 urinary total arsenic concentrations (utAs, the sum of iAs and iAs metabolites) collected at approximately 6 weeks of age using linear regression models, adjusted for infant sex, age at sample collection, type of delivery (vaginal vs. cesarean section), feeding mode (breast milk vs. any formula), and specific gravity. Increased fecal butyrate (b = 214.24), propionate (b = 518.33), cholate (b = 8.79), tryptophan (b= 14.23), asparagine (b = 28.80), isoleucine (b = 65.58), leucine (b = 95.91), malonate (b = 50.43), and uracil (b = 36.13), concentrations were associated with a doubling of infant utAs concentrations (p< 0.05). These associations were largely among infants who were formula fed. No clear associations were observed with maternal utAs and infant fecal metabolites. Metabolomic analyses of infant stool samples lend further evidence that the infant gut microbiota is sensitive to As exposure, and these effects may have functional consequences.
Collapse
Affiliation(s)
- Margaret R. Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
| | - Susan McRitchie
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anne G. Hoen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
| | - Cindy Takigawa
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
| | - Brian Jackson
- Department of Earth Sciences, Dartmouth College, Hanover, NH, USA
| | - Emily R. Baker
- Department of Obstetrics and Gynecology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
| | - Juliette Madan
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
- Department of Pediatrics & Psychiatry, Children’s Hospital at Dartmouth, Dartmouth Hitchcock Medical Center, Lebanon, NH, USA
| | - Susan J. Sumner
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Wimal Pathmasiri
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
26
|
Laue HE, Moroishi Y, Palys TJ, Jackson BP, Madan JC, Karagas MR. Contribution of gut bacteria to arsenic metabolism in the first year of life in a prospective birth cohort. ENVIRONMENTAL RESEARCH 2022; 214:114099. [PMID: 35998698 PMCID: PMC10319341 DOI: 10.1016/j.envres.2022.114099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 05/05/2023]
Abstract
Gut bacteria are at the interface of environmental exposures and their impact on human systems, and may alter host absorption, metabolism, and excretion of toxic chemicals. We investigated whether arsenic-metabolizing bacterial gene pathways related to urinary arsenic concentrations. In the New Hampshire Birth Cohort Study, urine and stool samples were obtained at six weeks (n = 186) and one year (n = 190) of age. Inorganic arsenic (iAs), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), and arsenobetaine (AsB) were quantified in infant urine samples using high-performance liquid chromatography with inductively coupled plasma mass spectrometry. Total arsenic exposure (tAs) was summarized as Σ(iAs, MMA, DMA) and log2-transformed. Fecal microbial DNA underwent metagenomic sequencing and the relative abundance of bacterial gene pathways were grouped as KEGG Orthologies (KOs) using BioBakery algorithms. Arsenic metabolism KOs with >80% prevalence were log2-transformed and modeled continuously using linear regression, those with <10% were not evaluated and those with 10-80% prevalence were analyzed dichotomously (detect/non-detect) using logistic regression. In the first set of models, tAs was regressed against KO relative abundance or detection adjusting for age at sample collection and child's sex. Effect modification by delivery mode was assessed in stratified models. In the second set of models, the association between the relative abundance/detection of the KOs and arsenic speciation (%iAs, %MMA, %DMA) was quantified with linear regression. Urinary tAs was associated with the increased relative abundance/detection odds of several arsenic-related KOs, including K16509, an arsenate reductase transcriptional regulator, with stronger associations among six-week-olds than one-year-olds. K16509 was also associated with decreased %MMA and increased %DMA at six weeks and one year. Notably, many associations were stronger among operatively-delivered than vaginally-delivered infants. Our findings suggest associations between arsenic-metabolizing bacteria in the infant gut microbiome and urinary arsenic excretion.
Collapse
Affiliation(s)
- Hannah E Laue
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.
| | - Yuka Moroishi
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.
| | - Thomas J Palys
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.
| | - Brian P Jackson
- Department of Earth Sciences, Dartmouth College, Hanover, NH, USA.
| | - Juliette C Madan
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA; Department of Pediatrics and Psychiatry, Children's Hospital at Dartmouth,Lebanon, NH, United States.
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.
| |
Collapse
|
27
|
Deng YL, Yang P, Wang YX, Liu C, Luo Q, Shi T, Zeng JY, Lu TT, Chen PP, Miao Y, Zhang M, Cui FP, Lu WQ, Zeng Q. Urinary concentrations of polycyclic aromatic hydrocarbon and phthalate metabolite mixtures in relation to semen quality among men attending an infertility clinic. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:81749-81759. [PMID: 35737263 DOI: 10.1007/s11356-022-21525-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Previous studies have reported that exposure to phthalates and polycyclic aromatic hydrocarbons (PAHs) is individually associated with altered semen quality, but no human studies have evaluated their joint effects of exposure mixtures, a more real-world scenario. We aimed to explore urinary metabolite mixtures of phthalates and PAHs in associations with semen quality. Repeated spot-urine samples gathered from 695 men attending a fertility clinic were analyzed for urinary metabolites of eight phthalates and ten monohydroxylated-PAHs (OH-PAHs). Principal component analysis (PCA)-multivariable linear regression (MLR) model, quantile g-computation (qg-comp), and Bayesian kernel machine regression (BKMR) were applied to estimate the associations of urinary mixtures of phthalate and OH-PAH metabolites with semen quality. The overall effects of urinary mixtures of phthalate and PAH metabolites on semen quality were not statistically significant. However, hydroxynaphthalene (OHNa) factor identified from PCA was monotonically associated with decreased total sperm count and sperm concentration, whereas di(2-ethylhexyl) phthalate (DEHP) factor was non-monotonically related to increased progressive sperm motility and total sperm motility. Qg-comp and BKMR models confirmed these findings and identified 2-OHNa and 2-OHFlu as the primary negative contributors, whereas MEOHP and MEHP as the primary positive contributors. Our findings suggest that exposure to mixtures of naphthalene and DEHP is associated with altered semen quality. The finding is warranted to confirm in further well-designed epidemiological studies.
Collapse
Affiliation(s)
- Yan-Ling Deng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Pan Yang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Department of Occupational and Environmental Health, School of Medicine, Jinan University, Guangzhou, Guangdong, People's Republic of China
| | - Yi-Xin Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Chong Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Qiong Luo
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Tian Shi
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Jia-Yue Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Ting-Ting Lu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Pan-Pan Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Yu Miao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Min Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Fei-Peng Cui
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Wen-Qing Lu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
28
|
Geng M, Gao H, Wang B, Huang K, Wu X, Liang C, Yan S, Han Y, Ding P, Wang W, Wang S, Zhu P, Liu K, Cao Y, Tao F. Urinary tetracycline antibiotics exposure during pregnancy and maternal thyroid hormone parameters: A repeated measures study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156146. [PMID: 35605876 DOI: 10.1016/j.scitotenv.2022.156146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/13/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Studies on potential maternal thyrotoxicity related to tetracycline antibiotics exposure during pregnancy are lacking. Based on a large prospective cohort study, this study aimed to examine the associations between tetracycline antibiotics exposure in maternal urine and maternal thyroid hormone parameters. METHODS Based on the Ma'anshan Birth Cohort study, urine and serum samples of 2969 pregnant women were collected in the first, second and third trimesters. Tetracycline antibiotics, including oxytetracycline, chlorotetracycline, tetracycline and doxycycline in urine samples, as well as free thyroxine (FT4), thyroid stimulating hormone (TSH), total triiodothyronine (TT3) and total thyroxine (TT4) levels in serum samples, were measured. Linear mixed models and multivariate linear regression models were employed to examine associations between tetracycline antibiotics exposure during pregnancy and maternal thyroid hormone parameters. RESULTS The detection rates of four individual tetracycline antibiotics and all antibiotics (sum of four individual tetracycline antibiotics) in the three trimesters were 5.0%-52.3%, and the 95th percentile concentration ranged from 0.11 to 4.84 ng/mL. After adjusting for potential confounding factors, the repeated measures analyses indicated that pregnant women exposed to doxycycline and all antibiotics during the entire pregnancy were negatively associated with serum FT4 and TT4 levels but positively associated with serum TSH and TT3 levels. Trimester-stratified analyses found that doxycycline and all antibiotics exposure during the first trimester were negatively associated with serum FT4 and TT4 levels, while doxycycline was positively associated with TSH levels. In the third trimester, a significant association was only found between all antibiotics and TSH levels. CONCLUSIONS Our results suggest that exposure of pregnant women to tetracycline antibiotics is associated with maternal thyroid hormone parameters, and the first trimester might be the most critical window. More studies are needed to substantiate our findings and determine the underlying biological mechanisms.
Collapse
Affiliation(s)
- Menglong Geng
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Hui Gao
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei 230032, Anhui, China; Department of Pediatric, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, Anhui, China
| | - Baolin Wang
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Kun Huang
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Xiaoyan Wu
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Chunmei Liang
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Shuangqin Yan
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; Ma'anshan Maternal and Child Healthcare (MCH) Center, Ma'anshan 243011, China
| | - Yan Han
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Peng Ding
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Wei Wang
- Suzhou Vocational Health College, No. 28, Kehua Road, North District, Suzhou International Education Park, Suzhou 215000, Jiangsu, China
| | - Sheng Wang
- The Center for Scientific Research of Anhui Medical University, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Peng Zhu
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Kaiyong Liu
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Yunxia Cao
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Fangbiao Tao
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China.
| |
Collapse
|
29
|
Laue HE, Shen Y, Bloomquist TR, Wu H, Brennan KJM, Cassoulet R, Wilkie E, Gillet V, Desautels AS, Abdelouahab N, Bellenger JP, Burris HH, Coull BA, Weisskopf MG, Zhang W, Takser L, Baccarelli AA. In Utero Exposure to Caffeine and Acetaminophen, the Gut Microbiome, and Neurodevelopmental Outcomes: A Prospective Birth Cohort Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:9357. [PMID: 35954712 PMCID: PMC9367926 DOI: 10.3390/ijerph19159357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/22/2022] [Accepted: 07/28/2022] [Indexed: 02/05/2023]
Abstract
Pregnant individuals are exposed to acetaminophen and caffeine, but it is unknown how these exposures interact with the developing gut microbiome. We aimed to determine whether acetaminophen and/or caffeine relate to the childhood gut microbiome and whether features of the gut microbiome alter the relationship between acetaminophen/caffeine and neurodevelopment. Forty-nine and 85 participants provided meconium and stool samples at 6-7, respectively, for exposure and microbiome assessment. Fecal acetaminophen and caffeine concentrations were quantified, and fecal DNA underwent metagenomic sequencing. Caregivers and study staff assessed the participants' motor and cognitive development using standardized scales. Prenatal exposures had stronger associations with the childhood microbiome than concurrent exposures. Prenatal acetaminophen exposure was associated with a trend of lower gut bacterial diversity in childhood [β = -0.17 Shannon Index, 95% CI: (-0.31, -0.04)] and was marginally associated with differences in the relative abundances of features of the gut microbiome at the phylum (Firmicutes, Actinobacteria) and gene pathway levels. Among the participants with a higher relative abundance of Proteobacteria, prenatal exposure to acetaminophen and caffeine was associated with lower scores on WISC-IV subscales. Acetaminophen during bacterial colonization of the naïve gut is associated with lasting alterations in childhood microbiome composition. Future studies may inform our understanding of downstream health effects.
Collapse
Affiliation(s)
- Hannah E. Laue
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Yike Shen
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY 10032, USA; (Y.S.); (T.R.B.); (H.W.); (K.J.M.B.); (A.A.B.)
| | - Tessa R. Bloomquist
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY 10032, USA; (Y.S.); (T.R.B.); (H.W.); (K.J.M.B.); (A.A.B.)
| | - Haotian Wu
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY 10032, USA; (Y.S.); (T.R.B.); (H.W.); (K.J.M.B.); (A.A.B.)
| | - Kasey J. M. Brennan
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY 10032, USA; (Y.S.); (T.R.B.); (H.W.); (K.J.M.B.); (A.A.B.)
| | - Raphael Cassoulet
- Département de Chimie, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (R.C.); (J.P.B.)
| | - Erin Wilkie
- Département de Pédiatrie, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (E.W.); (V.G.); (A.-S.D.); (N.A.); (L.T.)
| | - Virginie Gillet
- Département de Pédiatrie, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (E.W.); (V.G.); (A.-S.D.); (N.A.); (L.T.)
| | - Anne-Sandrine Desautels
- Département de Pédiatrie, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (E.W.); (V.G.); (A.-S.D.); (N.A.); (L.T.)
| | - Nadia Abdelouahab
- Département de Pédiatrie, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (E.W.); (V.G.); (A.-S.D.); (N.A.); (L.T.)
| | - Jean Philippe Bellenger
- Département de Chimie, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (R.C.); (J.P.B.)
| | - Heather H. Burris
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
- Division of Neonatology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Brent A. Coull
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA;
| | - Marc G. Weisskopf
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA;
| | - Wei Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA;
| | - Larissa Takser
- Département de Pédiatrie, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (E.W.); (V.G.); (A.-S.D.); (N.A.); (L.T.)
- Département de Psychiatrie, Faculté de Médicine et Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Andrea A. Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY 10032, USA; (Y.S.); (T.R.B.); (H.W.); (K.J.M.B.); (A.A.B.)
| |
Collapse
|
30
|
Diamond L, Wine R, Morris SK. Impact of intrapartum antibiotics on the infant gastrointestinal microbiome: a narrative review. Arch Dis Child 2022; 107:627-634. [PMID: 34716171 DOI: 10.1136/archdischild-2021-322590] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/14/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND The composition of the infant gastrointestinal (GI) microbiome has been linked to adverse long-term health outcomes and neonatal sepsis. Several factors are known to impact the composition of the microbiome, including mode of delivery, gestational age, feeding method and exposure to antibiotics. The impact of intrapartum antibiotics (IPAs) on the infant microbiome requires further research. OBJECTIVE We aimed to evaluate the impact of IPAs on the infant GI microbiome. METHODS We searched Ovid MEDLINE and Embase Classic+Embase for articles in English reporting on the microbiome of infants exposed to IPAs from the date of inception to 3 January 2021. Primary outcomes included abundance and colonisation of Bifidobacterium and Lactobacillus, as well as alpha and beta diversity. RESULTS 30 papers were included in this review. In the first year of life, following exposure to IPAs, 30% (6/20) of infant cohorts displayed significantly reduced Bifidobacterium, 89% (17/19) did not display any significant differences in Lactobacillus colonisation, 21% (7/34) displayed significantly reduced alpha diversity and 35% (12/34) displayed alterations in beta diversity. Results were further stratified by delivery, gestational age (preterm or full term) and feeding method. CONCLUSIONS IPAs impact the composition of the infant GI microbiome, resulting in possible reductions Bifidobacterium and alpha diversity, and possible alterations in beta diversity. Our findings may have implications for maternal and neonatal health, including interventions to prevent reductions in health-promoting bacteria (eg, probiotics) and IPA class selection.
Collapse
Affiliation(s)
- Laura Diamond
- Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Rachel Wine
- Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Shaun K Morris
- Division of Infectious Diseases and Centre for Global Child Health, The Hospital for Sick Children, Toronto, Ontario, Canada .,Department of Pediatrics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
31
|
Schmidt S. Navigating a Two-Way Street: Metal Toxicity and the Human Gut Microbiome. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:32001. [PMID: 35302387 PMCID: PMC8932408 DOI: 10.1289/ehp9731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/07/2021] [Indexed: 05/21/2023]
|
32
|
Shen Y, Laue HE, Shrubsole MJ, Wu H, Bloomquist TR, Larouche A, Zhao K, Gao F, Boivin A, Prada D, Hunting DJ, Gillet V, Takser L, Baccarelli AA. Associations of Childhood and Perinatal Blood Metals with Children's Gut Microbiomes in a Canadian Gestation Cohort. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:17007. [PMID: 35037767 PMCID: PMC8763169 DOI: 10.1289/ehp9674] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 05/21/2023]
Abstract
BACKGROUND The gut microbiome is important in modulating health in childhood. Metal exposures affect multiple health outcomes, but their ability to modify bacterial communities in children is poorly understood. OBJECTIVES We assessed the associations of childhood and perinatal blood metal levels with childhood gut microbiome diversity, structure, species, gene family-inferred species, and potential pathway alterations. METHODS We assessed the gut microbiome using 16S rRNA gene amplicon sequencing and shotgun metagenomic sequencing in stools collected from 6- to 7-year-old children participating in the GESTation and Environment (GESTE) cohort study. We assessed blood metal concentrations [cadmium (Cd), manganese (Mn), mercury (Hg), lead (Pb), selenium (Se)] at two time points, namely, perinatal exposures at delivery (N = 70 ) and childhood exposures at the 6- to 7-y follow-up (N = 68 ). We used multiple covariate-adjusted statistical models to determine microbiome associations with continuous blood metal levels, including linear regression (Shannon and Pielou alpha diversity indexes), permutational multivariate analysis of variance (adonis; beta diversity distance matrices), and multivariable association model (MaAsLin2; phylum, family, species, gene family-inferred species, and pathways). RESULTS Children's blood Mn and Se significantly associated with microbiome phylum [e.g., Verrucomicrobiota (coef = - 0.305 , q = 0.031 ; coef = 0.262 , q = 0.084 , respectively)] and children's blood Mn significantly associated with family [e.g., Eggerthellaceae (coef = - 0.228 , q = 0.052 )]-level differences. Higher relative abundance of potential pathogens (e.g., Flavonifractor plautii), beneficial species (e.g., Bifidobacterium longum, Faecalibacterium prausnitzii), and both potentially pathogenic and beneficial species (e.g., Bacteriodes vulgatus, Eubacterium rectale) inferred from gene families were associated with higher childhood or perinatal blood Cd, Hg, and Pb (q < 0.1 ). We found significant negative associations between childhood blood Pb and acetylene degradation pathway abundance (q < 0.1 ). Finally, neither perinatal nor childhood metal concentrations were associated with children's gut microbial inter- and intrasubject diversity. DISCUSSION Our findings suggest both long- and short-term associations between metal exposure and the childhood gut microbiome, with stronger associations observed with more recent exposure. Future epidemiologic analyses may elucidate whether the observed changes in the microbiome relate to children's health. https://doi.org/10.1289/EHP9674.
Collapse
Affiliation(s)
- Yike Shen
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York, USA
| | - Hannah E. Laue
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Martha J. Shrubsole
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Haotian Wu
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York, USA
| | - Tessa R. Bloomquist
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York, USA
| | - Annie Larouche
- Département de Pédiatrie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Kankan Zhao
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Feng Gao
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Amélie Boivin
- Département de Pédiatrie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Diddier Prada
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York, USA
- Department of Basic Science, Instituto Nacional de Cancerologia, Ciudad de México, México
| | - Darel J. Hunting
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Virginie Gillet
- Département de Pédiatrie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Larissa Takser
- Département de Pédiatrie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Departement de Psychiatrie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Andrea A. Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York, USA
| |
Collapse
|
33
|
Laue HE, Coker MO, Madan JC. The Developing Microbiome From Birth to 3 Years: The Gut-Brain Axis and Neurodevelopmental Outcomes. Front Pediatr 2022; 10:815885. [PMID: 35321011 PMCID: PMC8936143 DOI: 10.3389/fped.2022.815885] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/10/2022] [Indexed: 12/18/2022] Open
Abstract
The volume and breadth of research on the role of the microbiome in neurodevelopmental and neuropsychiatric disorders has expanded greatly over the last decade, opening doors to new models of mechanisms of the gut-brain axis and therapeutic interventions to reduce the burden of these outcomes. Studies have highlighted the window of birth to 3 years as an especially sensitive window when interventions may be the most effective. Harnessing the powerful gut-brain axis during this critical developmental window clarifies important investigations into the microbe-human connection and the developing brain, affording opportunities to prevent rather than treat neurodevelopmental disorders and neuropsychiatric illness. In this review, we present an overview of the developing intestinal microbiome in the critical window of birth to age 3; and its prospective relationship with neurodevelopment, with particular emphasis on immunological mechanisms. Next, the role of the microbiome in neurobehavioral outcomes (such as autism, anxiety, and attention-deficit hyperactivity disorder) as well as cognitive development are described. In these sections, we highlight the importance of pairing mechanistic studies in murine models with large scale epidemiological studies that aim to clarify the typical health promoting microbiome in early life across varied populations in comparison to dysbiosis. The microbiome is an important focus in human studies because it is so readily alterable with simple interventions, and we briefly outline what is known about microbiome targeted interventions in neurodevelopmental outcomes. More novel examinations of known environmental chemicals that adversely impact neurodevelopmental outcomes and the potential role of the microbiome as a mediator or modifier are discussed. Finally, we look to the future and emphasize the need for additional research to identify populations that are sensitive to alterations in their gut microbiome and clarify how interventions might correct and optimize neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Hannah E Laue
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Modupe O Coker
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States.,Rutgers School of Dental Medicine, The State University of New Jersey, Newark, NJ, United States
| | - Juliette C Madan
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States.,Department of Pediatrics and Psychiatry, Children's Hospital at Dartmouth, Lebanon, NH, United States
| |
Collapse
|
34
|
Chen L, Wang Z, Wang P, Yu X, Ding H, Wang Z, Feng J. Effect of Long-Term and Short-Term Imbalanced Zn Manipulation on Gut Microbiota and Screening for Microbial Markers Sensitive to Zinc Status. Microbiol Spectr 2021; 9:e0048321. [PMID: 34730437 PMCID: PMC8567254 DOI: 10.1128/spectrum.00483-21] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/23/2021] [Indexed: 12/20/2022] Open
Abstract
Zinc (Zn) imbalance is a common single-nutrient disorder worldwide, but little is known about the short-term and long-term effects of imbalanced dietary zinc in the intestinal microbiome. Here, 3-week-old C57BL/6 mice were fed diets supplemented with Zn at the doses of 0 (low Zn), 30 (control Zn), 150 (high Zn), and 600 mg/kg of body weight (excess Zn) for 4 weeks (short term) and 8 weeks (long term). The gut bacterial composition at the phyla, genus, and species levels were changed as the result of the imbalanced Zn diet (e.g., Lactobacillus reuteri and Akkermansia muciniphila). Moreover, pathways including carbohydrate, glycan, and nucleotide metabolism were decreased by a short-term low-Zn diet. Valeriate production was suppressed by a long-term low-Zn diet. Pathways such as drug resistance and infectious diseases were upregulated in high- and excess-Zn diets over 4-week and 8-week intervals. Long-term zinc fortification doses, especially at the high-Zn level, suppressed the abundance of short-chain fatty acids (SCFAs)-producing genera as well as the concentrations of metabolites. Finally, Melainabacteria (phylum) and Desulfovibrio sp. strain ABHU2SB (species) were identified to be potential markers for Zn status with high accuracy (area under the curve [AUC], >0.8). Collectively, this study identified significant changes in gut microbial composition and its metabolite concentration in altered Zn-fed mice and the relevant microbial markers for Zn status. IMPORTANCE Zn insufficiency is an essential health problem in developing countries. To prevent the occurrence of zinc deficit, zinc fortification and supplementation are widely used. However, in developed countries, the amounts of Zn consumed often exceed the tolerable upper intake limit. Our results demonstrated that dietary Zn is an essential mediator of microbial community structure and that both Zn deficiency and Zn overdose can generate a dysbiosis in the gut microbiota. Moreover, specific microbial biomarkers of Zn status were identified and correlated with serum Zn level. Our study found that a short-term low-Zn diet (0 mg/kg) and a long-term high-zinc diet (150 mg/kg) had obvious negative effects in a mouse model. Thus, these results indicate that the provision and duration of supplemental Zn should be approached with caution.
Collapse
Affiliation(s)
- Lingjun Chen
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Zhonghang Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Peng Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xiaonan Yu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Haoxuan Ding
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Zinan Wang
- Elpida Institute of Life Sciences, Hangzhou, Zhejiang, China
| | - Jie Feng
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
35
|
Jaramillo Ortiz S, Howsam M, van Aken EH, Delanghe JR, Boulanger E, Tessier FJ. Biomarkers of disease in human nails: a comprehensive review. Crit Rev Clin Lab Sci 2021; 59:125-141. [PMID: 34726550 DOI: 10.1080/10408363.2021.1991882] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Diagnostic, monitoring, response, predictive, risk, and prognostic biomarkers of disease are all widely studied, for the most part in biological fluids or tissues, but there is steadily growing interest in alternative matrices such as nails. Here we comprehensively review studies dealing with molecular or elemental biomarkers of disease, as opposed to semiological, pharmacological, toxicological, or biomonitoring studies. Nails have a long history of use in medicine as indicators of pathological processes and have also been used extensively as a matrix for monitoring exposure to environmental pollution. Nail clippings are simple to collect noninvasively as well as to transport and store, and the matrix itself is relatively stable. Nails incorporate, and are influenced by, circulating molecules and elements over their several months of growth, and it is widely held that markers of biological processes will remain in the nail, even when their levels in blood have declined. Nails thus offer the possibility to not only look back into a subject's metabolic history but also to study biomarkers of processes that operate over a longer time scale such as the post-translational modification of proteins. Reports on ungual biomarkers of metabolic and endocrine diseases, cancer, and psychological and neurological disorders will be presented, and an overview of the sampling and analytical techniques provided.
Collapse
Affiliation(s)
- Sarahi Jaramillo Ortiz
- University Lille, INSERM, CHU Lille, Institut Pasteur de Lille, UMR 1167 - RID-AGE, Lille, France
| | - Michael Howsam
- University Lille, INSERM, CHU Lille, Institut Pasteur de Lille, UMR 1167 - RID-AGE, Lille, France
| | | | - Joris R Delanghe
- Department of Clinical Chemistry, Ghent University, Ghent, Belgium
| | - Eric Boulanger
- University Lille, INSERM, CHU Lille, Institut Pasteur de Lille, UMR 1167 - RID-AGE, Lille, France
| | - Frédéric J Tessier
- University Lille, INSERM, CHU Lille, Institut Pasteur de Lille, UMR 1167 - RID-AGE, Lille, France
| |
Collapse
|
36
|
Arun KB, Madhavan A, Sindhu R, Emmanual S, Binod P, Pugazhendhi A, Sirohi R, Reshmy R, Awasthi MK, Gnansounou E, Pandey A. Probiotics and gut microbiome - Prospects and challenges in remediating heavy metal toxicity. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126676. [PMID: 34329091 DOI: 10.1016/j.jhazmat.2021.126676] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/02/2021] [Accepted: 07/15/2021] [Indexed: 05/26/2023]
Abstract
The gut microbiome, often referred to as "super organ", comprises up to a hundred trillion microorganisms, and the species diversity may vary from person to person. They perform a decisive role in diverse biological functions related to metabolism, immunity and neurological responses. However, the microbiome is sensitive to environmental pollutants, especially heavy metals. There is continuous interaction between heavy metals and the microbiome. Heavy metal exposure retards the growth and changes the structure of the phyla involved in the gut microbiome. Meanwhile, the gut microbiome tries to detoxify the heavy metals by altering the physiological conditions, intestinal permeability, enhancing enzymes for metabolizing heavy metals. This review summarizes the effect of heavy metals in altering the gut microbiome, the mechanism by which gut microbiota detoxifies heavy metals, diseases developed due to heavy metal-induced dysbiosis of the gut microbiome, and the usage of probiotics along with advancements in developing improved recombinant probiotic strains for the remediation of heavy metal toxicity.
Collapse
Affiliation(s)
- K B Arun
- Rajiv Gandhi Centre for Biotechnology, Trivandrum 695014, Kerala, India
| | - Aravind Madhavan
- Rajiv Gandhi Centre for Biotechnology, Trivandrum 695014, Kerala, India
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695019, Kerala, India
| | - Shibitha Emmanual
- Department of Zoology, St. Joseph's College, Thrissur 680121, Kerala, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695019, Kerala, India
| | - Arivalagan Pugazhendhi
- School of Renewable Energy, Maejo University, Chiang Mai 50290, Thailand; College of Medical and Health Science, Asia University, Taichung, Taiwan ROC
| | - Ranjna Sirohi
- Department of Chemical & Biological Engineering, Korea University, Seoul 136713, Republic of Korea; Centre for Energy and Environmental Sustainability, Lucknow 226029, Uttar Pradesh, India
| | - R Reshmy
- Post Graduate and Research Department of Chemistry, Bishop Moore College, Mavelikara 690110, Kerala, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, North West A & F University, Yangling, Shaanxi 712100, China
| | - Edgard Gnansounou
- Ecole Polytechnique Federale de Lausanne, ENAC GR-GN, CH-1015 Lausanne, Switzerland
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR, Indian Institute for Toxicology Research, Lucknow 226001, Uttar Pradesh, India; Centre for Energy and Environmental Sustainability, Lucknow 226029, Uttar Pradesh, India.
| |
Collapse
|
37
|
Rothenberg SE, Sweitzer DN, Rackerby BR, Couch CE, Cohen LA, Broughton HM, Steingass SM, Beechler BR. Fecal Methylmercury Correlates With Gut Microbiota Taxa in Pacific Walruses ( Odobenus rosmarus divergens). Front Microbiol 2021; 12:648685. [PMID: 34177830 PMCID: PMC8220164 DOI: 10.3389/fmicb.2021.648685] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/30/2021] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVES Methylmercury metabolism was investigated in Pacific walruses (Odobenus rosmarus divergens) from St. Lawrence Island, Alaska, United States. METHODS Total mercury and methylmercury concentrations were measured in fecal samples and paired colon samples (n = 16 walruses). Gut microbiota composition and diversity were determined using 16S rRNA gene sequencing. Associations between fecal and colon mercury and the 24 most prevalent gut microbiota taxa were investigated using linear models. RESULTS In fecal samples, the median values for total mercury, methylmercury, and %methylmercury (of total mercury) were 200 ng/g, 4.7 ng/g, and 2.5%, respectively, while in colon samples, the median values for the same parameters were 28 ng/g, 7.8 ng/g, and 26%, respectively. In fecal samples, methylmercury was negatively correlated with one Bacteroides genus, while members of the Oscillospirales order were positively correlated with both methylmercury and %methylmercury (of total mercury). In colon samples, %methylmercury (of total mercury) was negatively correlated with members of two genera, Romboutsia and Paeniclostridium. CONCLUSIONS Median %methylmercury (of total mercury) was 10 times higher in the colon compared to the fecal samples, suggesting that methylmercury was able to pass through the colon into systemic circulation. Fecal total mercury and/or methylmercury concentrations in walruses were comparable to some human studies despite differences in seafood consumption rates, suggesting that walruses excreted less mercury. There are no members (at this time) of the Oscillospirales order which are known to contain the genes to methylate mercury, suggesting the source of methylmercury in the gut was from diet and not in vivo methylation.
Collapse
Affiliation(s)
- Sarah E. Rothenberg
- College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, United States
| | - Danielle N. Sweitzer
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States
| | - Bryna R. Rackerby
- Department of Food Science and Technology, College of Agricultural Sciences, Oregon State University, Corvallis, OR, United States
| | - Claire E. Couch
- Department of Fisheries, Wildlife, and Conservation Sciences, College of Agricultural Sciences, Oregon State University, Corvallis, OR, United States
| | - Lesley A. Cohen
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States
| | - Heather M. Broughton
- Department of Biology, Oregon State University-Cascades, Bend, OR, United States
| | - Sheanna M. Steingass
- Department of Fisheries, Wildlife, and Conservation Sciences, Marine Mammal Institute, Oregon State University, Corvallis, OR, United States
| | - Brianna R. Beechler
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
38
|
Signes-Pastor AJ, Desai G, García-Villarino M, Karagas MR, Kordas K. Exposure to a mixture of metals and growth indicators in 6-11-year-old children from the 2013-16 NHANES. EXPOSURE AND HEALTH 2021; 13:173-184. [PMID: 34151044 PMCID: PMC8210664 DOI: 10.1007/s12403-020-00371-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/09/2020] [Accepted: 07/03/2020] [Indexed: 05/18/2023]
Abstract
Lead (Pb), mercury (Hg) and fluoride (F) exposure during childhood is of concern owing to their toxicity. Also, evidence suggests that high and low exposure levels to manganese (Mn) and selenium (Se) during this vulnerable period are associated with an increased risk of adverse health effects. A reduced growth is associated with high Pb and F exposure; however, little is known about their impact on children's body size, and there is a lack of consensus on the effects of Hg, Mn, and Se exposure on children's anthropometric measures. This is particularly true for childhood metal co-exposures at levels relevant to the general population. We investigated the joint effects of exposure to a metal mixture (Pb, Mn, Hg, and Se in blood and F in plasma) on 6-11-year-old US children's anthropometry (n = 1,634). Median F, Pb, Mn, Hg, and Se concentrations were 0.3 μmol/L, 0.5 μg/dL, 10.2 μg/L, 0.3 μg/L, and 178.0 μg/L, respectively. The joint effects of the five metals were modeled using Bayesian kernel machine and linear regressions. Pb and Mn showed opposite directions of associations with all outcome measured, where Pb was inversely associated with anthropometry. For body mass index and waist circumference, the effect estimates for Pb and Mn appeared stronger at high and low concentrations of the other metals of the mixture, respectively. Our findings suggest that metal co-exposures may influence children's body mass and linear growth indicators, and that such relations may differ by the exposure levels of the components of the metal mixture.
Collapse
Affiliation(s)
| | - Gauri Desai
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY
| | - Miguel García-Villarino
- Unit of Molecular Cancer Epidemiology- IUOPA-CIBERESP, Department of Medicine, University of Oviedo, Oviedo
| | - Margaret R. Karagas
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH
| | - Katarzyna Kordas
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY
| |
Collapse
|
39
|
Syrkasheva AG, Frankevich VE, Dolgushina NV. Elemental composition of blood of infertile patients participating in assisted reproduction programs. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2021. [DOI: 10.24075/brsmu.2021.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The association between levels of trace elements, endocrine diseases and reproductive impairments is actively investigated currently. In this connection, it seems relevant to study elemental status (elemental composition of blood and amounts of elements therein) of infertile patients enlisted in programs employing assisted reproductive technologies (ART). This study aimed to analyze trace elements in blood of infertile patients, relationship between the level of such trace elements and parameters of the ART programs they are in. The study included 30 infertile patients aged 18–39 years. Relying on inductively coupled plasma mass spectrometry, we identified concentrations of 31 chemical element in blood of the participants. Two elements out of 31 (antimony and beryllium) were not found in any blood sample; 10 elements (titanium, chromium, cobalt, nickel, arsenic, mercury, barium, gold, vanadium) were detected in some blood samples, the remaining 19 elements were found in all samples. Age of the patients correlated negatively with the level of silicon (r = –0.384; p = 0.036) and positively with the level of molybdenum (r = 0.384; p = 0.036). The level of anti-mullerian hormone was in a significant negative correlation with the level of lithium (r = –0.367; p = 0.046). The level of free thyroxine was in a significant negative correlation with the level of boron (r = –0.402; p = 0.028) and a positively correlated with the levels of iron (r = 0.410; p = 0.024) and silver (r = 0.432; p = 0.017). Considering the embryological cycle, we noted a positive correlation between the level of silicon and the number of blastocysts obtained (r = 0.387; p = 0.034). There was no statistical relationship registered between elemental composition of blood the frequency of pregnancy in ART cycles.
Collapse
Affiliation(s)
- AG Syrkasheva
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V. I. Kulakov, Moscow, Russia
| | - VE Frankevich
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V. I. Kulakov, Moscow, Russia
| | - NV Dolgushina
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V. I. Kulakov, Moscow, Russia
| |
Collapse
|
40
|
Calatayud Arroyo M, García Barrera T, Callejón Leblic B, Arias Borrego A, Collado MC. A review of the impact of xenobiotics from dietary sources on infant health: Early life exposures and the role of the microbiota. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:115994. [PMID: 33310490 DOI: 10.1016/j.envpol.2020.115994] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/22/2020] [Accepted: 11/02/2020] [Indexed: 06/12/2023]
Abstract
Xenobiotics are worldwide distributed and humans are unavoidably exposed to multiple chemical compounds during life, from preconception to adulthood. The human microbiota is mainly settled during early life and modulate host health and fitness. One of the main routes for chemical exposure is by intake of contaminated food and water. Thus, the interplay between diet-xenobiotics-microbiota during pregnancy and perinatal period may have relevant consequences for infant and adult health. Maternal exposure to metal(oid)s, persistent organic pollutants, and some food additives can modify the infant's microbiota with unknown consequences for child or adult health. Toxicants' exposure may also modulate the maternal transfer of microorganisms to the progeny during birth and breastfeeding; however, scarce information is available. The rapid increase in releasing novel chemicals to the environment, the exposure to chemical mixtures, the chronic/low dose scenario, and the delay in science-stakeholders action call for novel and groundbreaking approaches to improve a comprehensive risk assessment in sensitive population groups like pregnant women and neonates, with emphasis on microbiota as modulating factor and target-organ of xenobiotic's toxicity.
Collapse
Affiliation(s)
- M Calatayud Arroyo
- Department of Biotechnology, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Agustin Escardino 7, Paterna, Valencia, 46980, Spain.
| | - T García Barrera
- Research Center on Natural Resources, Health and the Environment (RENSMA), Department of Chemistry "Prof. J.C. Vílchez Martín", University of Huelva, Fuerzas Armadas Ave., Huelva, 21120, Spain
| | - B Callejón Leblic
- Research Center on Natural Resources, Health and the Environment (RENSMA), Department of Chemistry "Prof. J.C. Vílchez Martín", University of Huelva, Fuerzas Armadas Ave., Huelva, 21120, Spain
| | - A Arias Borrego
- Research Center on Natural Resources, Health and the Environment (RENSMA), Department of Chemistry "Prof. J.C. Vílchez Martín", University of Huelva, Fuerzas Armadas Ave., Huelva, 21120, Spain
| | - M C Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Agustin Escardino 7, Paterna, Valencia, 46980, Spain.
| |
Collapse
|
41
|
Nielsen CC, Gascon M, Osornio-Vargas AR, Shier C, Guttman DS, Becker AB, Azad MB, Sears MR, Lefebvre DL, Moraes TJ, Turvey SE, Subbarao P, Takaro TK, Brook JR, Scott JA, Mandhane PJ, Tun HM, Kozyrskyj AL. Natural environments in the urban context and gut microbiota in infants. ENVIRONMENT INTERNATIONAL 2020; 142:105881. [PMID: 32610248 DOI: 10.1016/j.envint.2020.105881] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/27/2020] [Accepted: 06/07/2020] [Indexed: 06/11/2023]
Abstract
The biodiversity hypothesis that contact with natural environments (e.g. native vegetation) and biodiversity, through the influence of environmental microbes, may be beneficial for human commensal microbiota has been insufficiently tested. We aimed to study the association between living near natural environments in the urban context, and gut microbiota diversity and composition in young infants. Based on data linkage between the unique Urban Primary Land and Vegetation Inventory (uPLVI) for the city of Edmonton and 355 infants in the CHILD Cohort Study, infant exposure to natural environments (any and specific types, yes/no) was determined within 500 m and 1000 m of their home residence. Gut microbiota composition and diversity at age 4 months was assessed in infant fecal samples. Adjusted for covariates, we observed a reduced odds of high microbial alpha-diversity in the gut of infants exposed to any natural environment within 500 m [Shannon index aOR (95%CI) = 0.63 (0.40, 0.98) and Simpson index = 0.63 (0.41, 0.98)]. In stratified analyses, these associations remained only among infants not breastfed or living with household pets. When doubly stratifying by these variables, the reduced likelihood of high alpha-diversity was present only among infants who were not breastfed and lived with household pets [9% of the study population, Shannon index = 0.07 (0.01, 0.49) and Simpson index = 0.11 (0.02, 0.66)]. Differences in beta-diversity was also seen (p = 0.04) with proximity to a nature space in not breastfed and pets-exposed infants. No associations were observed among infants who were fully formula-fed but without pets at home. When families and their pets had close access to a natural environment, Verrucomicrobiales colonization was reduced in the gut microbiota of formula-fed infants, the abundance of Clostridiales was depleted, whereas the abundance of Enterobacteriales was enriched. Our double-stratified results indicate that proximity to a natural environment plus pet ownership has the capacity to alter the gut microbiota of formula-fed infants. Further research is needed to replicate and better interpret these results, as well as to understand their health consequences.
Collapse
Affiliation(s)
- Charlene C Nielsen
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada; inVIVO Planetary Health, Canada
| | - Mireia Gascon
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Alvaro R Osornio-Vargas
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada; inVIVO Planetary Health, Canada
| | - Catherine Shier
- Urban Form and Corporate Strategic Development, City Planning, City of Edmonton, Edmonton, AB, Canada
| | - David S Guttman
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, Canada
| | - Allan B Becker
- Department of Pediatrics & Child Health, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
| | - Meghan B Azad
- Department of Pediatrics & Child Health, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
| | - Malcolm R Sears
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Diana L Lefebvre
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Theo J Moraes
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Stuart E Turvey
- Department of Pediatrics, Child & Family Research Institute, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Padmaja Subbarao
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Tim K Takaro
- Faculty of Health Sciences, Simon Fraser University, Vancouver, BC, Canada
| | - Jeffrey R Brook
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - James A Scott
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Piush J Mandhane
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Hein M Tun
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; inVIVO Planetary Health, Canada.
| | - Anita L Kozyrskyj
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada; Department of Obstetrics & Gynecology, University of Alberta, AB, Canada; School of Public Health, University of Alberta, AB, Canada; inVIVO Planetary Health, Canada.
| |
Collapse
|
42
|
Underwood MA, Mukhopadhyay S, Lakshminrusimha S, Bevins CL. Neonatal intestinal dysbiosis. J Perinatol 2020; 40:1597-1608. [PMID: 32968220 PMCID: PMC7509828 DOI: 10.1038/s41372-020-00829-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/17/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022]
Abstract
The initial colonization of the neonatal intestinal tract is influenced by delivery mode, feeding, the maternal microbiota, and a host of environmental factors. After birth, the composition of the infant's microbiota undergoes a series of significant changes particularly in the first weeks and months of life ultimately developing into a more stable and diverse adult-like population in childhood. Intestinal dysbiosis is an alteration in the intestinal microbiota associated with disease and appears to be common in neonates. The consequences of intestinal dysbiosis are uncertain, but strong circumstantial evidence and limited confirmations of causality suggest that dysbiosis early in life can influence the health of the infant acutely, as well as contribute to disease susceptibility later in life.
Collapse
Affiliation(s)
- Mark A. Underwood
- grid.27860.3b0000 0004 1936 9684Department of Pediatrics, UC Davis School of Medicine, Sacramento, CA USA
| | - Sagori Mukhopadhyay
- grid.25879.310000 0004 1936 8972Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA USA
| | - Satyan Lakshminrusimha
- grid.27860.3b0000 0004 1936 9684Department of Pediatrics, UC Davis School of Medicine, Sacramento, CA USA
| | - Charles L. Bevins
- grid.27860.3b0000 0004 1936 9684Department of Medical Microbiology and Immunology, UC Davis School of Medicine, Davis, CA USA
| |
Collapse
|