1
|
Yang LX, Zhai J, Chen ZJ, Du Y. Female-specific associations of serum perfluoroalkyl and polyfluoroalkyl substances with sex hormonal/insulin dysregulation: An integrated population-based study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 298:118273. [PMID: 40344783 DOI: 10.1016/j.ecoenv.2025.118273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 05/02/2025] [Accepted: 05/02/2025] [Indexed: 05/11/2025]
Abstract
BACKGROUND Ubiquitous perfluoroalkyl/polyfluoroalkyl substances (PFASs) exhibit sex-differential blood accumulation. However, sex- and age-specific links between PFASs and insulin-hormone dysregulation remain unknown. METHODS This population-based study utilized survey-weighted data from the National Health and Nutrition Examination Survey 2013-2016. Correlations between PFASs and sex hormone- or insulin-related indicators were assessed using a survey-weighted generalized linear model (SWGLM) for individual analyses and weighted quantile sum (WQS) regression for mixture analyses, stratified by sex and age. The mixture-related findings were validated with Bayesian kernel machine regression (BKMR) and further examined through stratification by menopausal status. Moreover, we investigated whether homeostatic model assessment of insulin resistance (HOMA-IR) mediated the relationships between sex hormones and monomethyl branched isomers of perfluorooctane sulfonate (Sm-PFOS) sex-specifically. RESULTS The following results persisted only in females. In SWGLM, linear perfluorooctanoate (n-PFOA) and homeostatic model assessment of β cell function (HOMA-β) were positively correlated in females, with this correlation strengthening in those aged ≥ 60. In WQS, PFAS mixture was positively associated with total testosterone/estradiol (TT/E2) and negatively associated with estradiol (E2) in females, but not in postmenopausal participants; the BKMR demonstrated trends consistent with prior findings. These associations intensified in females aged 20-59, with n-PFOA and perfluorohexane sulfonic acid (PFHxS) being main pollutants in the 20-39 and 40-59 age groups, respectively in WQS. The relationships between Sm-PFOS and both free androgen index and sex hormone-binding globulin (SHBG) were mediated by HOMA-IR. CONCLUSIONS This cross-sectional study reveals female-specific associations between PFASs and insulin-hormone imbalance, suggesting multifaceted influences of PFASs on female endocrinology.
Collapse
Affiliation(s)
- Le-Xin Yang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics; Shanghai 200135, China
| | - Junyu Zhai
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics; Shanghai 200135, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics; Shanghai 200135, China; Center for Reproductive Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong Provincial Key Laboratory of Reproductive Medicine, Shandong 250012, China; NMU-SD Suzhou Collaborative Innovation Center for Reproductive Medicine, China.
| | - Yanzhi Du
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics; Shanghai 200135, China.
| |
Collapse
|
2
|
Yin T, He Y, Cong H. Association between cardiometabolic index and postmenopausal stress urinary incontinence: a cross-sectional study from NHANES 2013 to 2018. Lipids Health Dis 2025; 24:184. [PMID: 40399911 PMCID: PMC12093879 DOI: 10.1186/s12944-025-02601-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 05/08/2025] [Indexed: 05/23/2025] Open
Abstract
BACKGROUND Stress urinary incontinence (SUI) is a common condition affecting the genitourinary system in postmenopausal women. Obesity and dyslipidemia are recognized as significant factors that contribute to the onset of SUI. The cardiometabolic index (CMI), a reliable indicator of health risks associated with obesity, is crucial in assessing these risks. This study aims to investigate the relationship between CMI and the occurrence of SUI in postmenopausal women across the United States. METHODS This cross-sectional study employed data from the National Health and Nutrition Examination Survey (NHANES) conducted between 2013 and 2018, concentrating on postmenopausal women aged 40 years and above in the United States. Multiple regression models were utilized to evaluate the association between CMI and postmenopausal SUI, while controlling for pertinent confounding variables. Smooth curve fitting (SCF) techniques were utilized to evaluate the correlation between postmenopausal SUI incidence and CMI. To enhance the robustness of the findings, analyses of subgroups and assessments of interactions were performed. RESULTS 542 postmenopausal women participated in the study, with 237 of them indicating the presence of symptoms associated with stress urinary incontinence. The findings from the multiple regression analysis consistently demonstrated a positive correlation between CMI and SUI in all adjusted models. In particular, a one-unit increase in CMI correlated with a 63% greater probability of encountering postmenopausal SUI in fully adjusted models (OR = 1.63, 95% CI: 1.07-2.48). Additionally, a direct correlation was noted between CMI levels and the occurrence of SUI within this population. Subgroup analysis by the number of vaginal deliveries showed a significant interaction (P for interaction = 0.0471). CONCLUSIONS The findings emphasize the importance of managing CMI levels to identify postmenopausal women at increased risk for SUI. This study confirms the strong predictive value of CMI for SUI in this population.
Collapse
Affiliation(s)
- Ting Yin
- Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Yue He
- People's Hospital Affiliated of Fujian University of Traditional Chinese Medicine, Fuzhou, 350000, China
| | - Huifang Cong
- The Second Affiliated Hospital of Heilongjiang, University of Chinese Medicine, Harbin, 150040, China.
| |
Collapse
|
3
|
Wise LA, Coleman CM, Schildroth S, Geller RJ, Lovett SM, Claus Henn B, Calafat AM, Botelho JC, Marsh EE, Noel N, Wegienka GR, Bethea TN, Harmon QE, Baird DD, Wesselink AK. Associations of per- and polyfluoroalkyl substances with uterine leiomyomata incidence and growth: a prospective ultrasound study. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2025; 35:466-477. [PMID: 38914782 PMCID: PMC11803582 DOI: 10.1038/s41370-024-00698-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/26/2024]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are endocrine-disrupting chemicals used in commercial and consumer products. OBJECTIVE We evaluated PFAS exposure in relation to incidence and growth of uterine leiomyomata (UL), hormone-dependent neoplasms that are associated with severe gynecologic morbidity. METHODS We studied 1158 participants in the Study of Environment, Lifestyle, and Fibroids, a Detroit-based prospective cohort study of Black females aged 23-35 years at enrollment (2010-2012). At enrollment and four subsequent visits during 10 years of follow-up, participants attended in-person clinic visits, completed questionnaires, provided non-fasting blood samples, and underwent ultrasound for UL detection. We quantified 7 PFAS in baseline plasma samples using mass spectrometry. We used Cox regression and probit Bayesian kernel machine regression to estimate individual and joint effects of PFAS on UL incidence. We fit linear mixed models to estimate effects of individual PFAS on UL growth. We stratified by parity, an important route of PFAS elimination and determinant of UL. RESULTS In individual PFAS analyses, we observed inverse associations for perfluorodecanoate (PFDA; ≥0.3 vs. <0.2 ng/ml: hazard ratio [HR] = 0.74; 95% confidence interval [CI]: 0.54-1.00) and perfluoroundecanoate (detected vs. non-detected: HR = 0.78; 95% CI: 0.61-1.01) and a weak positive association for perfluorohexane sulfonate (≥1 vs. <0.6 ng/ml: HR = 1.17; 95% CI: 0.85-1.61), while perfluorooctane sulfonate, perfluorooctanoate, perfluorononanoate (PFNA), and 2-N-methyl-perfluorooctane sulfonamido acetate (MeFOSAA) showed little association with UL incidence. The PFAS mixture was inversely associated with UL incidence, a finding driven by MeFOSAA and PFDA; however, PFNA was positively associated with UL incidence. The inverse association for PFDA and positive association for PFNA were stronger among nulliparous participants. Most PFAS showed slight inverse associations with UL growth. IMPACT STATEMENT In this prospective ultrasound study of 1158 Black females aged 23-35 years at enrollment, we conducted a mixtures analysis to account for co-pollutant confounding and interaction. MeFOSAA and PFDA concentrations were inversely associated with UL incidence, while PFNA concentrations were positively associated with UL incidence. Concentrations of most PFAS were associated with decreased UL growth. This study contributes data to the sparse literature on PFAS exposure and UL development.
Collapse
Affiliation(s)
- Lauren A Wise
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA.
| | - Chad M Coleman
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Samantha Schildroth
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Ruth J Geller
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Sharonda M Lovett
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Birgit Claus Henn
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Julianne Cook Botelho
- Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Erica E Marsh
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
| | - Nyia Noel
- Department of Obstetrics and Gynecology, Boston University School of Medicine, Boston, MA, USA
| | | | - Traci N Bethea
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Chapel Hill, NC, USA
| | - Quaker E Harmon
- Office of Minority Health and Health Disparities Research, Georgetown Lombardi Comprehensive Center, Washington DC, WA, USA
| | - Donna D Baird
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Chapel Hill, NC, USA
| | - Amelia K Wesselink
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| |
Collapse
|
4
|
Huang HX, Ma JX, Du LY, Xu ZH, Tang XL, Qiu CS, Lai SM, Liao DQ, Li HM, Xiong ZY, Zhang BY, Kuang L, Chen HJ, Li ZH. Associations of exposure to individual polyfluoroalkyl substances and their mixtures with vitamin D biomarkers in postmenopausal women. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 294:118103. [PMID: 40154225 DOI: 10.1016/j.ecoenv.2025.118103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 03/15/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
The potential impact of polyfluoroalkyl substances (PFAS) on vitamin D status in postmenopausal women remains unexplored. This study examined the effects of individual PFAS and their combined exposures on vitamin D biomarkers among 2114 postmenopausal women utilizing data from the National Health and Nutrition Examination Survey (NHANES) spanning 2003-2018. The serum levels of four PFAS compounds, including perfluorooctanoic acid (PFOA), perfluorohexane sulfonic acid (PFHxS), perfluorooctane sulfonic acid (PFOS), and perfluorononanoic acid (PFNA), were assessed alongside the 25-hydroxyvitamin D [25(OH)D] level. Our findings indicated that elevated log-transformed PFAS concentrations were significantly associated with reduced 25(OH)D levels (βPFOS: -15.969, 95 % CI: -19.154, -12.785; βPFOA: -17.288, 95 % CI: -22.446, -12.131; βPFNA: -8.510, 95 % CI: -12.148, -4.871; βPFHxS: -4.056, 95 % CI: -7.003, -1.110) and increased odds of vitamin D deficiency (ORPFOS: 2.495, 95 % CI: 1.685, 3.694; ORPFOA: 3.146, 95 % CI: 1.823, 5.429; ORPFNA: 1.906, 95 % CI: 1.357, 2.677; ORPFHxS: 1.480, 95 % CI: 1.109, 1.976). These associations were modified by race, the family incomepoverty ratio and the survey cycle. Notably, non-Hispanic White individuals presented a stronger inverse association between PFOS exposure and 25(OH)D levels. Bayesian kernel machine regression and weighted quantile sum analyses demonstrated that the effects of exposure to mixtures of the four studied PFAS were consistent with the effects of exposure to individual PFAS. These findings indicate that exposure to individual PFAS, particularly PFOA and PFOS, and their four mixtures may adversely affect serum 25(OH)D concentrations in postmenopausal women, underscoring the need for further investigation into the potential impact of PFAS on vitamin D status in this population.
Collapse
Affiliation(s)
- Hong-Xuan Huang
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Jun-Xuan Ma
- First Clinical Medical College, Southern Medical University, Guangzhou, Guangdong, China
| | - Li-Ying Du
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Zi-Hao Xu
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Xu-Lian Tang
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Cheng-Shen Qiu
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Shu-Min Lai
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Dan-Qing Liao
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Hong-Min Li
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhi-Yuan Xiong
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Bing-Yun Zhang
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Ling Kuang
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Hao-Jie Chen
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhi-Hao Li
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
5
|
Zhang Y, Shu J, Ma Q, Gao H, Qin Y, Dong Q, Chen H. Association Between High Dietary Advanced Glycation End Products and Periodontitis. Int Dent J 2025; 75:727-734. [PMID: 39672780 PMCID: PMC11976597 DOI: 10.1016/j.identj.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/21/2024] [Accepted: 11/09/2024] [Indexed: 12/15/2024] Open
Abstract
OBJECTIVE The study aimed to provide evidence for a relationship between a high dietary intake of advanced glycation end products, and periodontitis. MATERIALS AND METHODS A total of 2334 adults from the National Health and Nutrition Examination Survey (NHANES) during 2003-2004 were included in this study. Binary regression analysis was conducted to measure the association between periodontitis and dietary advanced glycation end products (AGEs), and two adjusted models were constructed to further explore the relationship. RESULTS Participants with AGEs intake above 21.41 U/kcal had a higher prevalence of periodontitis compared to those with lower AGEs intake. After fully adjusting for associated factors, the odds ratios for periodontitis in relation to higher AGEs intake were 1.229 (95% confidence interval 1.015-1.488, p = .034), 1.349 (95% confidence interval 1.157-1.642, p = .003), and 1.331 (95% confidence interval 1.088-1.630 p = .006), respectively. CONCLUSIONS Our cross-sectional study reveals a strong association between periodontitis and AGEs. CLINICAL RELEVANCE An association between advanced glycation end products in the diet and periodontitis implies the importance of the quality of food intake for good oral health. PRINCIPAL FINDINGS The consumption of dietary advanced glycation end products is associated with an increased susceptibility to periodontitis development. PRACTICAL IMPLICATIONS These findings contribute to recognizing the harm of advanced glycation end products in various foods to periodontitis, and guiding clinical oral education.
Collapse
Affiliation(s)
- Yuehan Zhang
- Department of Stomatology, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Jiayu Shu
- Department of Stomatology, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Qiyang Ma
- Department of Dean's Office, Affiliated Stomatological Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Hongli Gao
- Department of Stomatology, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Yufeng Qin
- Department of Stomatology, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Qiang Dong
- Department of Prosthodontics & Implant Dentistry, Affiliated Stomatological Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China.
| | - Helin Chen
- Department of Prosthodontics & Implant Dentistry, Affiliated Stomatological Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China.
| |
Collapse
|
6
|
Cui Y, Wu A, Liu H, Zhong Y, Yi K. The effect and potential mechanisms of per- and polyfluoroalkyl substances (PFAS) exposure on kidney stone risk. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 294:118087. [PMID: 40157329 DOI: 10.1016/j.ecoenv.2025.118087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/16/2025] [Accepted: 03/18/2025] [Indexed: 04/01/2025]
Abstract
Exposure to per- and polyfluoroalkyl substances (PFAS) may be associated with an increased prevalence of some kidney diseases. Kidney stones are common and have a high prevalence of kidney diseases. However, there is no evidence for the effect and potential mechanisms of PFAS on kidney stone risk. In this study, we designed a cross-sectional study using the National Health and Nutrition Examination Surveys (NHANES) data from 2017 to 2020. Our results revealed that PFAS were positively associated with kidney stone risk, and PFDA was the main contributing compound among PFAS. The triglyceride-glucose (TyG) index and the systemic immune-inflammatory (SII) index had significant mediation effects. In addition, target proteins, such as IL-6, TNF, ALB, IL-1B, and AKT1, and signaling pathways, including TNF and IL-17 pathways, might be potential mechanisms of PFAS in promoting kidney stone risk. In conclusion, PFAS, especially PFDA, increases the risk of kidney stones by the mediation effects of the TyG index and SII index. TNF and IL-17 signaling pathways may be potential mechanisms. Our findings provide new evidence for the effects and potential mechanisms of PFAS exposure in increasing kidney stone risk. However, in the future, it is still imperative to further explore and validate the underlying mechanisms of PFAS-induced kidney stone formation through experimental studies.
Collapse
Affiliation(s)
- Ying Cui
- Guangdong Food and Drug Vocational College, Guangzhou 510520, China
| | - Aitong Wu
- China Agriculture University, Beijing 100083, China
| | - Hao Liu
- Guangdong Food and Drug Vocational College, Guangzhou 510520, China
| | - Yuanyuan Zhong
- Department of Pharmacy, The Third People's Hospital of Yunnan Province, Kunming, Yunnan 650011, China
| | - Kefan Yi
- Clinical Nutrition Department, Shanghai Deji Hospital, Qingdao University, Shanghai 200331, China.
| |
Collapse
|
7
|
Li Z, Song X, Turay DAK, Chen Y, Zhao G, Jiang Y, Zhou K, Ji X, Zhang X, Chen M. Association of Personal Care and Consumer Product Chemicals with Long-Term Amenorrhea: Insights into Serum Globulin and STAT3. TOXICS 2025; 13:187. [PMID: 40137514 PMCID: PMC11945380 DOI: 10.3390/toxics13030187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/02/2025] [Accepted: 03/03/2025] [Indexed: 03/29/2025]
Abstract
Chemicals in personal care and consumer products are suspected to disrupt endocrine function and affect reproductive health. However, the link between mixed exposure and long-term amenorrhea is not well understood. This study analyzed data from 684 women (2013-2018 National Health and Nutrition Examination Survey) to assess exposure to eight polyfluorinated alkyl substances (PFASs), 15 phthalates (PAEs), six phenols, and four parabens. Various statistical models for robustness tests and mediation analysis were used to explore associations with long-term amenorrhea and the role of serum globulin. Biological mechanisms were identified through an integrated strategy involving target analysis of key chemicals and long-term amenorrhea intersections, pathway analysis, and target validation. Results showed that women with long-term amenorrhea had higher exposure levels of Perfluorodecanoic acid, Perfluorohexane sulfonic acid (PFHxS), Perfluorononanoic acid, n-perfluorooctanoic acid (n_PFOA), n-perfluorooctane sulfonic acid, and Perfluoromethylheptane sulfonic acid isomers. Logistic regression with different adjustments consistently found significant associations between elevated PFAS concentrations and increased long-term amenorrhea risk, confirmed by Partial Least Squares Discriminant Analysis. Mediation analysis revealed that serum globulin partially mediated the relationship between PFAS exposure and long-term amenorrhea. Network and target analysis suggested that PFHxS and n_PFOA may interact with Signal Transducer and Activator of Transcription 3 (STAT3). This study highlights significant associations between PFAS exposure, particularly PFHxS and n_PFOA, and long-term amenorrhea, with serum globulin and STAT3 serving as mediators in the underlying mechanisms.
Collapse
Affiliation(s)
- Ziyi Li
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (Z.L.); (X.S.); (D.A.K.T.); (Y.C.); (G.Z.); (Y.J.); (K.Z.)
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xue Song
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (Z.L.); (X.S.); (D.A.K.T.); (Y.C.); (G.Z.); (Y.J.); (K.Z.)
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Daniel Abdul Karim Turay
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (Z.L.); (X.S.); (D.A.K.T.); (Y.C.); (G.Z.); (Y.J.); (K.Z.)
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yanling Chen
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (Z.L.); (X.S.); (D.A.K.T.); (Y.C.); (G.Z.); (Y.J.); (K.Z.)
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Guohong Zhao
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (Z.L.); (X.S.); (D.A.K.T.); (Y.C.); (G.Z.); (Y.J.); (K.Z.)
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yingtong Jiang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (Z.L.); (X.S.); (D.A.K.T.); (Y.C.); (G.Z.); (Y.J.); (K.Z.)
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Kun Zhou
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (Z.L.); (X.S.); (D.A.K.T.); (Y.C.); (G.Z.); (Y.J.); (K.Z.)
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiaoming Ji
- Department of Occupational Medicine and Environmental Health, School of Public Health, Key Laboratory of Public Health Safety and Emergency Prevention and Control Technology of Higher Education Institutions in Jiangsu Province, Nanjing Medical University, Nanjing 211166, China;
| | - Xiaoling Zhang
- Department of Hygienic Analysis and Detection, Nanjing Medical University, Nanjing 211166, China;
| | - Minjian Chen
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (Z.L.); (X.S.); (D.A.K.T.); (Y.C.); (G.Z.); (Y.J.); (K.Z.)
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Occupational Medicine and Environmental Health, School of Public Health, Key Laboratory of Public Health Safety and Emergency Prevention and Control Technology of Higher Education Institutions in Jiangsu Province, Nanjing Medical University, Nanjing 211166, China;
| |
Collapse
|
8
|
Huacachino AA, Chung A, Sharp K, Penning TM. Specific and potent inhibition of steroid hormone pre-receptor regulator AKR1C2 by perfluorooctanoic acid: Implications for androgen metabolism. J Steroid Biochem Mol Biol 2025; 246:106641. [PMID: 39571823 PMCID: PMC11652220 DOI: 10.1016/j.jsbmb.2024.106641] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/30/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are ubiquitous environmental pollutants that are highly stable synthetic organofluorine compounds. One congener perfluorooctanoic acid (PFOA) can be detected in nearly all humans and is recognized as an endocrine disrupting chemical (EDC). EDCs disrupt hormone synthesis and metabolism and receptor function. One mechanism of steroid hormone action is the pre-receptor regulation of ligand access to steroid hormone receptors by aldo-keto reductases. Here we report PFOA inhibition of AKR family 1 member C2 (AKR1C2), leading to dysregulation of androgen action. Spectrofluorimetric inhibitor screens identified PFOA as a competitive and tight binding inhibitor of AKR1C2, whose role is to inactivate 5α-dihydrotestosterone (5α-DHT). Further site directed mutagenesis studies along with molecular docking simulations revealed the importance of residue Valine 54 in mediating AKR1C2 inhibitor specificity. Binding site restrictions were explored by testing inhibition of other related PFAS chemicals, confirming that steric hinderance is a key factor. Furthermore, radiochromatography using HPLC and in line radiometric detection confirmed the accumulation of 5α-DHT as a result of PFOA inhibition of AKR1C2. We showed that PFOA could enhance the transactivation of AR in reporter genes assays in which 5α-DHT metabolism was blocked by AKR1C2 inhibition in HeLa cells. Taken together, these data suggest PFOA has a role in disrupting androgen action through inhibiting AKR1C2. Our work identifies an EDC function for PFOA not previously revealed.
Collapse
Affiliation(s)
- Andrea Andress Huacachino
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anna Chung
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kim Sharp
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Trevor M Penning
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
9
|
Zhou J, Qin L. Associations of urinary caffeine metabolites with sex hormones: comparison of three statistical models. Front Nutr 2025; 11:1497483. [PMID: 39839288 PMCID: PMC11747151 DOI: 10.3389/fnut.2024.1497483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/17/2024] [Indexed: 01/23/2025] Open
Abstract
Aims The association between urinary caffeine and caffeine metabolites with sex hormones remains unclear. This study used three statistical models to explore the associations between urinary caffeine and its metabolites and sex hormones among adults. Methods We selected the participants aged ≥18 years in the National Health and Nutrition Examination Survey (NHANES) data 2013-2014 as our study subjects. We performed principal components analysis (PCA) to investigate the underlying correlation structure of urinary caffeine and its metabolites. Then we used these principal components (PCs) as independent variables to conduct multiple linear regression analysis to explore the associations between caffeine metabolites and sex hormones (E2, TT, SHBG). We also fitted weighted quantile sum (WQS) regression, and Bayesian kernel machine regression (BKMR) methods to further assess these relationships. Results In the PCA-multivariable linear regression, PC2 negatively correlates with E2: β = -0.01, p-value = 0.049 (male population). In the WQS regression model, the WQS indices were associated with SHBG and TT both in male (SHBG: WQS index = -0.11, p < 0.001; TT: WQS index = -0.10, p < 0.001) and female (SHBG: WQS index = -0.10, p < 0.001; TT: WQS index = -0.04, p < 0.001) groups. Besides, the WQS index was significantly associated with E2 in females (p < 0.05). In the BKMR model, despite no significant difference in the overall association between caffeine metabolites and the sex hormones (E2, TT, SHBG), there was nonetheless a declining trend in the male population E2 group, in the male and female population SHBG groups also observed a downward trend. Conclusion When considering the results of these three models, the whole-body burden of caffeine metabolites, especially the caffeine metabolites in the PC2 metabolic pathway was significantly negatively associated with E2 in males. Considering the advantages and disadvantages of the three statistical models, we recommend applying diverse statistical methods and interpreting their results together.
Collapse
Affiliation(s)
- Jianli Zhou
- Department of Science and Education, Guilin People’s Hospital, Guilin, China
| | - Linyuan Qin
- Department of Epidemiology and Health Statistics, School of Public Health, Guilin Medical University, Guilin, China
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin, China
| |
Collapse
|
10
|
Bharal B, Ruchitha C, Kumar P, Pandey R, Rachamalla M, Niyogi S, Naidu R, Kaundal RK. Neurotoxicity of per- and polyfluoroalkyl substances: Evidence and future directions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176941. [PMID: 39454776 DOI: 10.1016/j.scitotenv.2024.176941] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/28/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals widely used in various products, including food packaging, textiles, and firefighting foam, owing to their unique properties such as amphiphilicity and strong CF bonds. Despite their widespread use, concerns have arisen due to their resistance to degradation and propensity for bioaccumulation in both environmental and human systems. Emerging evidence suggests a potential link between PFAS exposure and neurotoxic effects, spanning cognitive deficits, neurodevelopmental disorders, and neurodegenerative diseases. This review comprehensively synthesizes current knowledge on PFAS neurotoxicity, drawing insights from epidemiological studies, animal experiments, and mechanistic investigations. PFAS, known for their lipophilic nature, tend to accumulate in lipid-rich tissues, including the brain, breaching biological barriers such as the blood-brain barrier (BBB). The accumulation of PFAS within the central nervous system (CNS) has been implicated in a spectrum of neurological maladies. Neurotoxicity induced by PFAS manifests through a multitude of direct and indirect mechanisms. A growing body of research associated PFAS exposure with BBB disruption, calcium dysregulation, neurotransmitter alterations, neuroinflammation, oxidative stress, and mitochondrial dysfunction, all contributing to neuronal impairment. Despite notable strides in research, significant lacunae persist, necessitating further exploration to elucidate the full spectrum of PFAS-mediated neurotoxicity. Prospective research endeavors should prioritize developing biomarkers, delineating sensitive exposure windows, and exploring mitigation strategies aimed at safeguarding neurological integrity within populations vulnerable to PFAS exposure.
Collapse
Affiliation(s)
- Bhagyashree Bharal
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| | - Chanda Ruchitha
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| | - Paarth Kumar
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| | - Rukmani Pandey
- Department of Psychiatry, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America
| | - Mahesh Rachamalla
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Ravinder K Kaundal
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India; Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India.
| |
Collapse
|
11
|
Zhang Q, Zhang M, Zhao C. Exposure to Per- and Polyfluoroalkyl Substances and Risk of Psoriasis: A Population-Based Study. TOXICS 2024; 12:828. [PMID: 39591006 PMCID: PMC11598214 DOI: 10.3390/toxics12110828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024]
Abstract
PFAS are a group of synthetic chemicals that have been reported to be associated with adverse health outcomes. However, the relationship of PFAS exposure with psoriasis risk has not been reported. Utilizing data from the 2003-2018 NHANES, we explored the relationship of PFAS exposure with psoriasis risk. Our study included 5370 participants and examined serum levels of five PFAS compounds: PFOA, PFOS, PFHxS, PFNA, and PFDA, along with self-reported psoriasis status. Generalized linear regression, quantile g-computation, repeated hold out WQS regression, and BKMR models were employed to assess individual and combined effects of PFAS on psoriasis risk. We found each doubling the PFOS concentration was associated with a 19% increased risk of psoriasis (OR: 1.19; 95% CI: 1.01, 1.41) in the overall population. Sex-stratified analyses indicated significant associations between PFOA and PFNA exposure and psoriasis risk in females. Mixture analyses using WQS regression indicated that PFAS mixtures were associated with an 11% increased risk of psoriasis (OR: 1.11, 95% CI: 1.01, 1.22) in females in both the negative and positive direction. BKMR analyses also indicated a positive trend of PFAS mixtures with psoriasis risk in females. Our findings indicate a possible association between PFAS exposure and psoriasis risk, particularly in females.
Collapse
Affiliation(s)
- Qing Zhang
- School of Public Health, Anhui Medical University, Hefei 230032, China;
| | - Mengyue Zhang
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei 230032, China;
| | - Cunxi Zhao
- School of Public Health, Anhui Medical University, Hefei 230032, China;
| |
Collapse
|
12
|
Clark KL, George JW, Davis JS. Adolescent exposure to a mixture of per- and polyfluoroalkyl substances (PFAS) depletes the ovarian reserve, increases ovarian fibrosis, and alters the Hippo pathway in adult female mice. Toxicol Sci 2024; 202:36-49. [PMID: 39141488 PMCID: PMC11514835 DOI: 10.1093/toxsci/kfae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals known for their environmental persistence and resistance to biodegradation. This study investigated the impact of adolescent exposure to a PFAS mixture on adult ovarian function. Female CD-1 mice were orally exposed to vehicle control or a PFAS mixture (comprised of perfluorooctanoic acid, perfluorooctanesulfonic acid, undecafluoro-2-methyl-3-oxahexanoic acid, and perfluorobutanesulfonic acid) for 15 d. After a 42-d recovery period, reproductive hormones, ovarian fibrosis, and ovarian gene and protein expression were analyzed using ELISA, Picrosirius red staining, qPCR, and immunoblotting, respectively. Results revealed that PFAS exposure did not affect adult body or organ weight, although ovarian weight slightly decreased. PFAS-exposed mice exhibited a disturbed estrous cycle, with less time spent in proestrus than control mice. Follicle counting indicated a reduction in primordial and primary follicles. Serum analysis revealed no changes in steroid hormones, follicle-stimulating hormone, or anti-Müllerian hormone, but a significant increase in luteinizing hormone was observed in PFAS-treated mice. Ovaries collected from PFAS-treated mice had increased mRNA transcripts for steroidogenic enzymes and fatty acid synthesis-related genes. PFAS exposure also increased collagen content in the ovary. Additionally, serum tumor necrosis factor-α levels were higher in PFAS-treated mice. Finally, transcripts and protein abundance for Hippo pathway components were upregulated in the ovaries of the PFAS-treated mice. Overall, these findings suggest that adolescent exposure to PFAS can disrupt ovarian function in adulthood.
Collapse
Affiliation(s)
- Kendra L Clark
- Department of Obstetrics and Gynecology, Olson Center for Women’s Health, University of Nebraska Medical Center, Omaha, NE 68198, United States
- Department of Environmental, Agricultural, and Occupational Health, University of Nebraska Medical Center, Omaha, NE 68198, United States
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States
| | - Jitu W George
- Department of Obstetrics and Gynecology, Olson Center for Women’s Health, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - John S Davis
- Department of Obstetrics and Gynecology, Olson Center for Women’s Health, University of Nebraska Medical Center, Omaha, NE 68198, United States
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States
| |
Collapse
|
13
|
Kagawa T. The effect of low-level phthalate mixture on the prevalence of type 2 diabetes mellitus among adults in the US. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:3575-3585. [PMID: 38303613 DOI: 10.1080/09603123.2024.2312431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/27/2024] [Indexed: 02/03/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is an important public health issue owing to its rising global prevalence. Phthalates cause various health problems and are currently regulated in developed countries. However, studies on the impacts of low-level phthalate exposure under these regulations on T2DM are limited. This study investigated the impacts of combined and single exposures to phthalates and their alternatives on the prevalence of T2DM in 3,005 adults in the United States. The results indicated a positive joint effect of phthalate mixtures on the prevalence of T2DM. The joint effect was primarily attributed to Di-2-ethylhexyl phthalate (DEHP) metabolites, whereas the contributions of others were limited. This study suggests that, despite the stringent regulations on phthalates, low levels of phthalates, including DEHP, still have joint effects on T2DM. The findings highlight the importance of regulating hazardous phthalates and the need for safer alternatives to reduce public health risks.
Collapse
Affiliation(s)
- Takumi Kagawa
- Graduate school of medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
14
|
Sdougkou K, Papazian S, Bonnefille B, Xie H, Edfors F, Fagerberg L, Uhlén M, Bergström G, Martin LJ, Martin JW. Longitudinal Exposomics in a Multiomic Wellness Cohort Reveals Distinctive and Dynamic Environmental Chemical Mixtures in Blood. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16302-16315. [PMID: 39236221 PMCID: PMC11411717 DOI: 10.1021/acs.est.4c05235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Chemical exposomes can now be comprehensively measured in human blood, but knowledge of their variability and longitudinal stability is required for robust application in cohort studies. Here, we applied high-resolution chemical exposomics to plasma of 46 adults, each sampled 6 times over 2 years in a multiomic cohort, resulting in 276 individual exposomes. In addition to quantitative analysis of 83 priority target analytes, we discovered and semiquantified substances that have rarely or never been reported in humans, including personal care products, pesticide transformation products, and polymer additives. Hierarchical cluster analysis for 519 confidently annotated substances revealed unique and distinctive coexposures, including clustered pesticides, poly(ethylene glycols), chlorinated phenols, or natural substances from tea and coffee; interactive heatmaps were publicly deposited to support open exploration of the complex (meta)data. Intraclass correlation coefficients (ICC) for all annotated substances demonstrated the relatively low stability of the exposome compared to that of proteome, microbiome, and endogenous small molecules. Implications are that the chemical exposome must be measured more frequently than other omics in longitudinal studies and four longitudinal exposure types are defined that can be considered in study design. In this small cohort, mixed-effect models nevertheless revealed significant associations between testosterone and perfluoroalkyl substances, demonstrating great potential for longitudinal exposomics in precision health research.
Collapse
Affiliation(s)
- Kalliroi Sdougkou
- Department of Environmental Science, Stockholm University, Stockholm 106 91, Sweden
| | - Stefano Papazian
- Department of Environmental Science, Stockholm University, Stockholm 106 91, Sweden
- National Facility for Exposomics, Metabolomics Platform, Science for Life Laboratory, Stockholm University, Solna 171 65, Sweden
| | - Bénilde Bonnefille
- Department of Environmental Science, Stockholm University, Stockholm 106 91, Sweden
- National Facility for Exposomics, Metabolomics Platform, Science for Life Laboratory, Stockholm University, Solna 171 65, Sweden
| | - Hongyu Xie
- Department of Environmental Science, Stockholm University, Stockholm 106 91, Sweden
| | - Fredrik Edfors
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm 100 44, Sweden
| | - Linn Fagerberg
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm 100 44, Sweden
| | - Mathias Uhlén
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm 100 44, Sweden
| | - Göran Bergström
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg 40530, Sweden
- Department of Clinical Physiology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg 413 45, Sweden
| | | | - Jonathan W Martin
- Department of Environmental Science, Stockholm University, Stockholm 106 91, Sweden
- National Facility for Exposomics, Metabolomics Platform, Science for Life Laboratory, Stockholm University, Solna 171 65, Sweden
| |
Collapse
|
15
|
Zhang YT, Zeeshan M, Fan YY, Tan WH, Zhao K, Liang LX, Huang JW, Zhou JX, Guo LH, Lin LZ, Liu RQ, Zeng XW, Dong GH, Chu C. Isomer of per- and polyfluoroalkyl substances and red blood cell indices in adults: The Isomers of C8 Health Project in China. ARCHIVES OF ENVIRONMENTAL & OCCUPATIONAL HEALTH 2024; 79:153-165. [PMID: 39219509 DOI: 10.1080/19338244.2024.2396927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
This study aimed to explore the isomer-specific, sex-specific, and joint associations of PFAS and red blood cell indices. We used data of 1,238 adults from the Isomers of C8 Health Project in China. Associations of PFAS isomers and red blood cell indices were explored using multiple linear regression models, Bayesian Kernel Machine Regression models and subgroup analysis across sex. We found that serum concentration of linear (n-) and branched (Br-) isomers of perfluorooctane sulfonate (PFOS) and perfluorohexanesulfonic acid (PFHxS) were significantly associated with red blood cell indices in single-pollutant models, with stronger associations observed for n-PFHxS than Br-PFHxS, in women than in men. For instance, the estimated percentage change in hemoglobin concentration for n-PFHxS (3.65%; 95% CI: 2.95%, 4.34%) was larger than that for Br-PFHxS (0.96%; 95% CI: 0.52%, 1.40%). The estimated percentage change in red blood cell count for n-PFHxS in women (2.55%; 95% CI: 1.81%, 3.28%) was significantly higher than that in men (0.12%; 95% CI: -1.04%, 1.29%) (Pinter < 0.001). Similarly, sex-specific positive association of PFAS mixture and outcomes was observed. Therefore, the structure, susceptive population, and joint effect of PFAS isomers should be taken into consideration when evaluating the health risk of chemicals.
Collapse
Affiliation(s)
- Yun-Ting Zhang
- Department of Reproductive Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Mohammed Zeeshan
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou, China
| | - Yuan-Yuan Fan
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou, China
| | - Wei-Hong Tan
- Department of Reproductive Medicine and Genetics Center, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Kun Zhao
- Department of Reproductive Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Li-Xia Liang
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou, China
| | - Jing-Wen Huang
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou, China
| | - Jia-Xin Zhou
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou, China
| | - Li-Hao Guo
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou, China
| | - Li-Zi Lin
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou, China
| | - Ru-Qing Liu
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou, China
| | - Xiao-Wen Zeng
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou, China
| | - Guang-Hui Dong
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou, China
| | - Chu Chu
- Department of Reproductive Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
16
|
Zhang Y, Zhang M, Jiang S, Hu H, Wang X, Yu F, Huang Y, Liang Y. Associations of perfluoroalkyl substances with metabolic-associated fatty liver disease and non-alcoholic fatty liver disease: NHANES 2017-2018. Cancer Causes Control 2024; 35:1271-1282. [PMID: 38764062 DOI: 10.1007/s10552-024-01865-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 02/14/2024] [Indexed: 05/21/2024]
Abstract
OBJECTIVES This study investigated the potential effects of perfluoroalkyl substance (PFAS) in serum on MAFLD, NAFLD, and liver fibrosis. METHODS Our sample included 696 participants (≥ 18 years) from the 2017-2018 NHANES study with available serum PFASs, covariates, and outcomes. Using the first quartile of PFAS as the reference group, we used weighted binary logistic regression and multiple ordered logistic regression used to analyze the relationship between PFAS and MAFLD, NAFLD, and liver fibrosis and multiple ordinal logistic regression to investigate the relationship between PFAS and MAFLD, NAFLD, and liver fibrosis and calculated the odds ratio (OR) and 95% confidence interval for each chemical. Finally, stratified analysis and sensitivity analysis were performed according to gender, age, BMI, and serum cotinine concentration. RESULTS A total of 696 study subjects were included, including 212 NAFLD patients (weighted 27.03%) and 253 MAFLD patients (weighted 32.65%). The quartile 2 of serum PFOA was positively correlated with MAFLD and NAFLD (MAFLD, OR 2.29, 95% CI 1.05-4.98; NAFLD, OR 2.37, 95% CI 1.03-5.47). PFAS were not significantly associated with liver fibrosis after adjusting for potential confounders in MAFLD and NAFLD. Stratified analysis showed that PFOA was strongly associated with MAFLD, NAFLD, and liver fibrosis in males and obese subjects. In women over 60 years old, PFHxS was also correlated with MAFLD, NAFLD, and liver fibrosis. CONCLUSION The serum PFOA was positively associated with MAFLD and NAFLD in US adults. After stratified analysis, the serum PFHxS was correlated with MFALD, NAFLD, and liver fibrosis.
Collapse
Affiliation(s)
- Yuxiao Zhang
- School of Public Health, Wannan Medical College, 22 Wenchang West Road, Wuhu, 241000, Anhui, China
| | - Min Zhang
- School of Public Health, Wannan Medical College, 22 Wenchang West Road, Wuhu, 241000, Anhui, China
| | - Shanjiamei Jiang
- School of Public Health, Wannan Medical College, 22 Wenchang West Road, Wuhu, 241000, Anhui, China
| | - Heng Hu
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China
| | - Xinzhi Wang
- School of Public Health, Wannan Medical College, 22 Wenchang West Road, Wuhu, 241000, Anhui, China
| | - Fan Yu
- School of Public Health, Wannan Medical College, 22 Wenchang West Road, Wuhu, 241000, Anhui, China
| | - Yue'e Huang
- School of Public Health, Wannan Medical College, 22 Wenchang West Road, Wuhu, 241000, Anhui, China.
| | - Yali Liang
- School of Public Health, Wannan Medical College, 22 Wenchang West Road, Wuhu, 241000, Anhui, China.
| |
Collapse
|
17
|
Pan M, Zou Y, Wei G, Zhang C, Zhang K, Guo H, Xiong W. Moderate-intensity physical activity reduces the role of serum PFAS on COPD: A cross-sectional analysis with NHANES data. PLoS One 2024; 19:e0308148. [PMID: 39110698 PMCID: PMC11305543 DOI: 10.1371/journal.pone.0308148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/18/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) has emerged as a leading cause of chronic disease morbidity and mortality globally, posing a substantial public health challenge. Perfluoroalkyl substances (PFAS) are synthetic chemicals known for their high stability and durability. Research has examined their potential link to decreased lung function. Physical activity (PA) has been identified as one of the primary modalities of the non-pharmacological treatment of COPD. METHODS To investigate the relationship between PFAS and COPD, and whether physical activity could reduce the risk of COPD caused by PFAS exposure, we used data from the NHANES 2013-2018, a cross-sectional study. Logistic regression analysis was used to examine the associations between PFAS and COPD in adult populations, and their associations in different PA types. RESULTS We finally included 4857 participants in the analysis, and found that Sm-PFOS (OR: 1.250), PFOA (OR: 1.398) and n-PFOA (OR: 1.354) were closely related to COPD; After stratified by gender, age and smoking, the results showed that Sm-PFOA (OR: 1.312) was related to COPD in female adult, and PFOA (OR: 1.398) and n-PFOA (OR: 1.354) were associated with COPD in male adults; The associations of Sm-PFOS (OR: 1.280), PFOA (OR: 1.481) and n-PFOA (OR: 1.424)with COPD tended to be stronger and more consistent in over 50 years old adults; Sm-PFOS was related to COPD in current smoker (OR: 1.408), and PFOA was related to COPD in former smoker (OR: 1.487); Besides, in moderate-intensity PA group, there were no associations of Sm-PFOS, PFOA and n-PFOA with COPD stratified by gender, age and smoking. CONCLUSION PFAS exposure may increase the risk of developing COPD, but regular moderate-intensity physical activity can protect individuals from evolving to the disease. However, longitudinal studies are needed to support these preliminary findings.
Collapse
Affiliation(s)
- Manyi Pan
- Department of Respiratory and Critical Care Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuxin Zou
- Department of Respiratory and Critical Care Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gang Wei
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Caoxu Zhang
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People’s Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kai Zhang
- Department of Public health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huaqi Guo
- Department of Respiratory and Critical Care Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weining Xiong
- Department of Respiratory and Critical Care Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Arredondo Eve A, Tunc E, Mehta D, Yoo JY, Yilmaz HE, Emren SV, Akçay FA, Madak Erdogan Z. PFAS and their association with the increased risk of cardiovascular disease in postmenopausal women. Toxicol Sci 2024; 200:312-323. [PMID: 38758093 PMCID: PMC11285195 DOI: 10.1093/toxsci/kfae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024] Open
Abstract
Cardiovascular diseases (CVDs) are one of the major causes of death globally. In addition to traditional risk factors such as unhealthy lifestyles (smoking, obesity, sedentary) and genetics, common environmental exposures, including persistent environmental contaminants, may also influence CVD risk. Per- and polyfluoroalkyl substances (PFASs) are a class of highly fluorinated chemicals used in household consumer and industrial products known to persist in our environment for years, causing health concerns that are now linked to endocrine disruptions and related outcomes in women, including interference of the cardiovascular and reproductive systems. In postmenopausal women, higher levels of PFAS are observed than in premenopausal women due to the cessation of menstruation, which is crucial for PFAS excretion. Because of these findings, we explored the association between perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), and perfluorobutanesulfonic acid in postmenopausal women from our previously established CVD study. We used liquid chromatography with tandem mass spectrometry, supported by machine learning approaches, and the detection and quantification of serum metabolites and proteins. Here, we show that PFOS can be a good predictor of coronary artery disease, whereas PFOA can be an intermediate predictor of coronary microvascular disease. We also found that the PFAS levels in our study are significantly associated with inflammation-related proteins. Our findings may provide new insight into the potential mechanisms underlying the PFAS-induced risk of CVDs in this population. This study shows that exposure to PFOA and PFOS is associated with an increased risk of cardiovascular disease in postmenopausal women. PFOS and PFOA levels correlate with amino acids and proteins related to inflammation. These circulating biomarkers contribute to the etiology of CVD and potentially implicate a mechanistic relationship between PFAS exposure and increased risk of cardiovascular events in this population.
Collapse
Affiliation(s)
- Alicia Arredondo Eve
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Elif Tunc
- Research and Training Hospital, Katip Celebi University, Izmir, 35310, Turkey
| | - Dhruv Mehta
- Department of Computer Science, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jin Young Yoo
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Huriye Erbak Yilmaz
- Research and Training Hospital, Katip Celebi University, Izmir, 35310, Turkey
- Izmir Biomedicine and Genome Center, Balcova, Izmir, 35340, Turkey
| | - Sadık Volkan Emren
- Research and Training Hospital, Katip Celebi University, Izmir, 35310, Turkey
| | | | - Zeynep Madak Erdogan
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
19
|
Zheng X, Pan Y, Qu Y, Ji S, Wang J, Li Z, Zhao F, Wu B, Xie L, Li Y, Song H, Hu X, Qiu Y, Zhang Z, Zhang W, Yang Y, Cai J, Zhu Y, Zhu Y, Cao Z, Ji JS, Lv Y, Dai J, Shi X. Associations of Serum Per- and Polyfluoroalkyl Substances with Hyperuricemia in Adults: A Nationwide Cross-Sectional Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12875-12887. [PMID: 38980177 DOI: 10.1021/acs.est.3c11095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
There has been widespread concern about the health hazards of per- and polyfluoroalkyl substances (PFAS), which may be the risk factor for hyperuricemia with evidence still insufficient in the general population in China. Here, we conducted a nationwide study involving 9,580 adults aged 18 years or older from 2017 to 2018, measured serum concentrations of uric acid and PFAS (PFOA, PFOS, 6:2 Cl-PFESA, PFNA, PFHxS) in participants, to assess the associations of individual PFAS with hyperuricemia, and estimated a joint effect of PFAS mixtures. We found positive associations of higher serum PFAS with elevated odds of hyperuricemia in Chinese adults, with the greatest contribution from PFOA (69.37%). The nonmonotonic dose-response (NMDR) relationships were observed for 6:2 Cl-PFESA and PFHxS with hyperuricemia. Participants with less marine fish consumption, overweight, and obesity may be the sensitive groups to the effects of PFAS on hyperuricemia. We highlight the potential health hazards of legacy long-chain PFAS (PFOA) once again because of the higher weights of joint effects. This study also provides more evidence about the NMDR relationships in PFAS with hyperuricemia and emphasizes a theoretical basis for public health planning to reduce the health hazards of PFAS in sensitive groups.
Collapse
Affiliation(s)
- Xulin Zheng
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yitao Pan
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yingli Qu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Saisai Ji
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Jinghua Wang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zheng Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Feng Zhao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Bing Wu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Linna Xie
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yawei Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Haocan Song
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xiaojian Hu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yidan Qiu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Zheng Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Wenli Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yanwei Yang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Jiayi Cai
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yuanduo Zhu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Ying Zhu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Zhaojin Cao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - John S Ji
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
| | - Yuebin Lv
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiaoming Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
20
|
Zhou R, Peng J, Zhang L, Sun Y, Yan J, Jiang H. Association between the dietary inflammatory index and serum perfluoroalkyl and polyfluoroalkyl substance concentrations: evidence from NANHES 2007-2018. Food Funct 2024; 15:7375-7386. [PMID: 37779497 DOI: 10.1039/d3fo01487h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Diet is an important source of perfluoroalkyl and polyfluoroalkyl substance (PFAS) exposure, and the dietary inflammatory index (DII) is a tool used to assess the inflammatory potential of an individual's diet. However, limited research has explored the association between the DII and PFAS exposure in humans. This study is the first to analyze the association between the five PFASs and DII using the National Health and Nutrition Examination Survey (NHANES) 2007-2018 database. Additionally, we assessed the interaction between the DII and PFASs regarding oxidative stress and inflammatory markers, including alkaline phosphatase, albumin, neutrophil count, lymphocyte count, total bilirubin, and serum iron based on a previous study. A series of covariates were included in the analysis to reduce the confounding bias. The study included 7773 and 5933 participants based on the different models. The DII was significantly associated with serum perfluorooctanoic acid, perfluorononanoic acid, perfluorooctane sulfonic acid, and sum-PFAS. Some of the food parameters used to calculate the DII also showed associations with special PFAS serum concentrations. Specifically, dietary fiber, n-3 polyunsaturated fatty acids, energy intake, and vitamin D were associated with more than three PFASs. Higher DII levels in participants were linked to a more significant association between bilirubin (the interaction P-value is not significant), alkaline phosphatase, serum iron, neutrophil counts, and some PFASs. In conclusion, this study clarified the association between the three PFASs and DII, highlighting the diverse effects of PFASs on oxidative stress and inflammatory markers across different DII levels.
Collapse
Affiliation(s)
- Ren Zhou
- Department of Anesthesiology, The Ninth People's Hospital of Shanghai, Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, PR China.
| | - Jiali Peng
- Department of Anesthesiology, The Ninth People's Hospital of Shanghai, Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, PR China.
| | - Lei Zhang
- Department of Anesthesiology, The Ninth People's Hospital of Shanghai, Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, PR China.
| | - Yu Sun
- Department of Anesthesiology, The Ninth People's Hospital of Shanghai, Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, PR China.
| | - Jia Yan
- Department of Anesthesiology, The Ninth People's Hospital of Shanghai, Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, PR China.
| | - Hong Jiang
- Department of Anesthesiology, The Ninth People's Hospital of Shanghai, Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, PR China.
| |
Collapse
|
21
|
Liu WS, Liang SS, Cheng MM, Wu MT, Li SY, Cheng TT, Liu TY, Tsai CY, Lai YT, Lin CH, Wang HT, Tsou HH. How renal toxins respond to renal function deterioration and oral toxic adsorbent in pH-controlled releasing capsule. ENVIRONMENTAL TOXICOLOGY 2024; 39:3930-3943. [PMID: 38572829 DOI: 10.1002/tox.24248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/08/2024] [Accepted: 03/14/2024] [Indexed: 04/05/2024]
Abstract
The number of patients with chronic kidney disease (CKD) is increasing. Oral toxin adsorbents may provide some value. Several uremic toxins, including indoxyl sulfate (IS), p-cresol (PCS), acrolein, per- and poly-fluoroalkyl substances (PFAS), and inflammation markers (interleukin 6 [IL-6] and tumor necrosis factor [TNF]-alpha) have been shown to be related to CKD progression. A total of 81 patients taking oral activated charcoal toxin adsorbents (AC-134), which were embedded in capsules that dissolved in the terminal ileum, three times a day for 1 month, were recruited. The renal function, hemoglobulin (Hb), inflammation markers, three PFAS (PFOA, PFOS, and PFNA), and acrolein were quantified. Compared with the baseline, an improved glomerular filtration rate (GFR) and significantly lower acrolein were noted. Furthermore, the CKD stage 4 and 5 group had significantly higher concentrations of IS, PCS, IL-6, and TNF but lower levels of Hb and PFAS compared with the CKD Stage 3 group at baseline and after the intervention. Hb was increased only in the CKD Stage 3 group after the trial (p = .032). Acrolein did not differ between the different CKD stage groups. Patients with improved GFR (responders) (about 77%) and nonresponders had similar baseline GFR. Responders had higher acrolein and PFOA levels throughout the study and a more significant reduction in acrolein, indicating a better digestion function. Both the higher PFOA and lower acrolein may be related to improved eGFR (and possibly to improvements in proteinuria, which we did not measure. Proteinuria is associated with PFAS loss in the urine), AC-134 showed the potential to improve the GFR and decrease acrolein, which might better indicate renal function change. Future studies are needed with longer follow-ups.
Collapse
Affiliation(s)
- Wen-Sheng Liu
- Division of Nephrology, Department of Medicine, Taipei City Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- College of Science and Engineering, Fu Jen Catholic University, New Taipei City, Taiwan
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Department of Special Education, University of Taipei, Taipei, Taiwan
| | - Shih-Shin Liang
- Institute of Biomedical Science, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Mei-Mei Cheng
- Division of nephrology, Department of internal medicine, West Garden Hospital, Taipei, Taiwan
| | - Ming-Tsan Wu
- Department of internal medicine, Fu-Ling clinic, New Taipei City, Taiwan
| | - Szu-Yuan Li
- School of Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Division of Nephrology, and Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tien-Tien Cheng
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Tsung-Yun Liu
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Ching-Yao Tsai
- Institute of Public Health, Department of Public Health, College of Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Department of Ophthalmology, Taipei City Hospital, Taipei, Taiwan
- Department of Business Administration, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Yen-Ting Lai
- Department of Physical Medicine and Rehabilitation, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
- Department of Nursing, College of Medical Technology and Nursing, Yuanpei University of Medical Technology, Hsinchu, Taiwan
| | - Chien-Hung Lin
- School of Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- College of Science and Engineering, Fu Jen Catholic University, New Taipei City, Taiwan
- Division of Pediatric Immunology and Nephrology, Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hsiang-Tsui Wang
- Department of Pharmacology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Han-Hsing Tsou
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Kim Forest Enterprise Co., Ltd., New Taipei City, Taiwan
| |
Collapse
|
22
|
Clark KL, Shukla M, George JW, Gustin S, Rowley MJ, Davis JS. An environmentally relevant mixture of per- and polyfluoroalkyl substances (PFAS) impacts proliferation, steroid hormone synthesis, and gene transcription in primary human granulosa cells. Toxicol Sci 2024; 200:57-69. [PMID: 38603627 PMCID: PMC11199914 DOI: 10.1093/toxsci/kfae049] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a group of synthetic chemicals that are resistant to biodegradation and are environmentally persistent. PFAS are found in many consumer products and are a major source of water and soil contamination. This study investigated the effects of an environmentally relevant PFAS mixture (perfluorooctanoic acid [PFOA], perfluorooctanesulfonic acid [PFOS], perfluorohexanesulfonic acid [PFHxS]) on the transcriptome and function of human granulosa cells (hGCs). Primary hGCs were harvested from follicular aspirates of healthy, reproductive-age women who were undergoing oocyte retrieval for in vitro fertilization. Liquid Chromatography with tandem mass spectrometry (LC/MS-MS) was performed to identify PFAS compounds in pure follicular fluid. Cells were cultured with vehicle control or a PFAS mixture (2 nM PFHxS, 7 nM PFOA, 10 nM PFOS) for 96 h. Analyses of cell proliferation/apoptosis, steroidogenesis, and gene expression were measured via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays/immunofluorescence, ELISA/western blotting, and RNA sequencing/bioinformatics, respectively. PFOA, PFOS, and PFHxS were detected in 100% of follicle fluid samples. Increased cell proliferation was observed in hGCs treated with the PFAS mixture with no impacts on cellular apoptosis. The PFAS mixture also altered steroid hormone synthesis, increasing both follicle-stimulating hormone-stimulated and basal progesterone secretion and concomitant upregulation of STAR protein. RNA sequencing revealed inherent differences in transcriptomic profiles in hGCs after PFAS exposure. This study demonstrates functional and transcriptomic changes in hGCs after exposure to a PFAS mixture, improving our knowledge about the impacts of PFAS exposures and female reproductive health. These findings suggest that PFAS compounds can disrupt normal granulosa cell function with possible long-term consequences on overall reproductive health.
Collapse
Affiliation(s)
- Kendra L Clark
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska 68105, USA
| | - Mamta Shukla
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Jitu W George
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska 68105, USA
| | - Stephanie Gustin
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
- Heartland Center for Reproductive Medicine, Omaha, Nebraska 68138, USA
| | - M Jordan Rowley
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - John S Davis
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska 68105, USA
| |
Collapse
|
23
|
Niu Z, Duan Z, He W, Chen T, Tang H, Du S, Sun J, Chen H, Hu Y, Iijima Y, Han S, Li J, Zhao Z. Kidney function decline mediates the adverse effects of per- and poly-fluoroalkyl substances (PFAS) on uric acid levels and hyperuricemia risk. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134312. [PMID: 38640681 DOI: 10.1016/j.jhazmat.2024.134312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/30/2024] [Accepted: 04/14/2024] [Indexed: 04/21/2024]
Abstract
Previous studies indicated per- and poly-fluoroalkyl substances (PFAS) were related to uric acid and hyperuricemia risk, but evidence for the exposure-response (E-R) curves and combined effect of PFAS mixture is limited. Moreover, the potential mediation effect of kidney function was not assessed. Hence, we conducted a national cross-sectional study involving 13,979 US adults in NHANES 2003-2018 to examine the associations of serum PFAS with uric acid and hyperuricemia risk, and the mediation effects of kidney function. Generalized linear models and E-R curves showed positive associations of individual PFAS with uric acid and hyperuricemia risk, and nearly linear E-R curves indicated no safe threshold for PFAS. Weighted quantile sum regression found positive associations of PFAS mixture with uric acid and hyperuricemia risk, and PFOA was the dominant contributor to the adverse effect of PFAS on uric acid and hyperuricemia risk. Causal mediation analysis indicated significant mediation effects of kidney function decline in the associations of PFAS with uric acid and hyperuricemia risk, with the mediated proportion ranging from 19 % to 57 %. Our findings suggested that PFAS, especially PFOA, may cause increased uric acid and hyperuricemia risk increase even at low levels, and kidney function decline plays a crucial mediation effect.
Collapse
Affiliation(s)
- Zhiping Niu
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - Zhizhou Duan
- Preventive Health Service, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, 152 Aiguo Road, Nanchang, Jiangxi, China
| | - Weixiang He
- Department of Urology, Xijing Hospital, The Fourth Military Medical University, 127 West Changle Road, Xi'an 710032, China
| | - Tianyi Chen
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - Hao Tang
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - Shuang Du
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - Jin Sun
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - Han Chen
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - Yuanzhuo Hu
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - Yuka Iijima
- Department of Clinical Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Shichao Han
- Department of Urology, Xijing Hospital, The Fourth Military Medical University, 127 West Changle Road, Xi'an 710032, China.
| | - Jiufeng Li
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China.
| | - Zhuohui Zhao
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China; Shanghai Typhoon Institute/CMA, Shanghai Key Laboratory of Meteorology and Health, Shanghai 200030, China; IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai 200438, China; WMO/IGAC MAP-AQ Asian Office Shanghai, Fudan University, Shanghai 200438, China.
| |
Collapse
|
24
|
Shi T, Li D, Li D, Sun J, Xie P, Wang T, Li R, Li Z, Zou Z, Ren X. Individual and joint associations of per- and polyfluoroalkyl substances (PFAS) with gallstone disease in adults: A cross-sectional study. CHEMOSPHERE 2024; 358:142168. [PMID: 38685323 DOI: 10.1016/j.chemosphere.2024.142168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/28/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Disturbances in the enterohepatic circulation are important biological mechanisms for causing gallstones and also have important effects on the metabolism of Per- and polyfluoroalkyl substances (PFAS). Moreover, PFAS is associated with sex hormone disorder which is another important cause of gallstones. However, it remains unclear whether PFAS is associated with gallstones. In this study, we used logistic regression, restricted cubic spline (RCS), quantile g-computation (qg-comp), Bayesian kernel machine regression (BKMR), and subgroup analysis to assess the individual and joint associations of PFAS with gallstones and effect modifiers. We observed that the individual associations of perfluorodecanoic acid (PFDeA) (OR: 0.600, 95% CI: 0.444 to 0.811), perfluoroundecanoic acid (PFUA) (OR: 0.630, 95% CI: 0.453 to 0.877), n-perfluorooctane sulfonic acid (n-PFOS) (OR: 0.719, 95% CI: 0.571 to 0.906), and perfluoromethylheptane sulfonic acid isomers (Sm-PFOS) (OR: 0.768, 95% CI: 0.602 to 0.981) with gallstones were linearly negative. Qg-comp showed that the PFAS mixture (OR: 0.777, 95% CI: 0.514 to 1.175) was negatively associated with gallstones, but the difference was not statistically significant, and PFDeA had the highest negative association. Moreover, smoking modified the association of perfluorononanoic acid (PFNA) with gallstones. BKMR showed that PFDeA, PFNA, and PFUA had the highest groupPIP (groupPIP = 0.93); PFDeA (condPIP = 0.82), n-perfluorooctanoic acid (n-PFOA) (condPIP = 0.68), and n-PFOS (condPIP = 0.56) also had high condPIPs. Compared with the median level, the joint association of the PFAS mixture with gallstones showed a negative trend; when the PFAS mixture level was at the 70th percentile or higher, they were negatively associated with gallstones. Meanwhile, when other PFAS were fixed at the 25th, 50th, and 75th percentiles, PFDeA had negative associations with gallstones. Our evidence emphasizes that PFAS is negatively associated with gallstones, and more studies are needed in the future to definite the associations of PFAS with gallstones and explore the underlying biological mechanisms.
Collapse
Affiliation(s)
- Tianshan Shi
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Di Li
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Donghua Li
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Jin Sun
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, China
| | - Peng Xie
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Tingrong Wang
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Rui Li
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Zhenjuan Li
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Zixuan Zou
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaowei Ren
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China; Institute for Health Statistics and Intelligent Analysis, School of Public Health, Lanzhou University, Lanzhou, Gansu, China.
| |
Collapse
|
25
|
Qiao JC, Li ZH, Ma YB, Ma HY, Zhang MY, Zhang XJ, Hu CY. Associations of per- and polyfluoroalkyl substances (PFAS) and their mixture with risk of rheumatoid arthritis in the U.S. adult population. Environ Health 2024; 23:38. [PMID: 38609943 PMCID: PMC11015572 DOI: 10.1186/s12940-024-01073-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are known environmental contaminants with immunosuppressive properties. Their connection to rheumatoid arthritis (RA), a condition influenced by the immune system, is not well studied. This research explores the association between PFAS exposure and RA prevalence. METHODS This research utilized data from the NHANES, encompassing a sample of 10,496 adults from the 2003-2018 cycles, focusing on serum levels of several PFAS. The presence of RA was determined based on self-reports. This study used multivariable logistic regression to assess the relationship between individual PFAS and RA risk, adjusting for covariates to calculate odds ratios (ORs). The combined effects of PFAS mixtures were evaluated using BKMR, WQS regression, and quantile g-computation. Additionally, sex-specific associations were explored through stratified analysis. RESULTS Higher serum PFOA (OR = 0.88, 95% CI: 0.79, 0.98), PFHxS (OR = 0.91, 95% CI: 0.83, 1.00), PFNA (OR = 0.87, 95% CI: 0.77, 0.98), and PFDA (OR = 0.89, 95% CI: 0.81, 0.99) concentration was related to lower odds of RA. Sex-specific analysis in single chemical models indicated the significant inverse associations were only evident in females. BKMR did not show an obvious pattern of RA estimates across PFAS mixture. The outcomes of sex-stratified quantile g-computation demonstrated that an increase in PFAS mixture was associated with a decreased odds of RA in females (OR: 0.76, 95% CI: 0.62, 0.92). We identified a significant interaction term of the WQS*sex in the 100 repeated hold out WQS analysis. Notably, a higher concentration of the PFAS mixture was significantly associated with reduced odds of RA in females (mean OR = 0.93, 95% CI: 0.88, 0.98). CONCLUSIONS This study indicates potential sex-specific associations of exposure to various individual PFAS and their mixtures with RA. Notably, the observed inverse relationships were statistically significant in females but not in males. These findings contribute to the growing body of evidence indicating that PFAS may have immunosuppressive effects.
Collapse
Affiliation(s)
- Jian-Chao Qiao
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Zhen-Hua Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Yu-Bo Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Hui-Ya Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
- Management & Checkup Center, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui, 230022, China
| | - Meng-Yue Zhang
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Xiu-Jun Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, 81 Meishan Road, Hefei, 230032, China.
| | - Cheng-Yang Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, 81 Meishan Road, Hefei, 230032, China.
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY, 10029, USA.
- Department of Humanistic Medicine, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.
| |
Collapse
|
26
|
Adeogun AO, Chukwuka AV, Ibor OR, Asimakopoulos AG, Zhang J, Arukwe A. Occurrence, bioaccumulation and trophic dynamics of per- and polyfluoroalkyl substances in two tropical freshwater lakes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123575. [PMID: 38365077 DOI: 10.1016/j.envpol.2024.123575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/04/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
We have investigated the occurrence, distribution, and biomagnification of per- and polyfluoroalkyl substances (PFAS) in two tropical lakes (Asejire and Eleyele) of Southwestern Nigeria, with contrasting urban intensities. Over an 8-month period, we sampled sediment and fish species (Clarias gariepinus: CIG; Oreochromis niloticus: ON; Coptodon guineensis: CG; Sarotherodon melanotheron: SM) across trophic levels, and analyzed various PFAS congeners, in addition to a select group of toxicological responses. While herbivores (SM) and benthic omnivores (CIG) at Asejire exhibited elevated levels of PFBS and PFOS, the pelagic omnivores (ON) showed a dominance of PFOS, PFDA, PFHxDA and EtFOSE in the muscle. At the Eleyele urban lake, PFAS patterns was dominated by PFBS, EtFOSE, PFPeS, PFOcDA and PFOS in the herbivores (SM, CG), EtFOSE, PFOS and PFBS in the pelagic omnivore (ON) and benthic omnivore (ClG). The estimated biomagnification factor (BMF) analysis for both lakes indicated trophic level increase of PFOS, PFUnA and PFDA at the suburban lake, while PFOS and EtFOSE biomagnified at the urban lake. We detected the occurrence of diSAMPAP and 9CL-PF3ONS, novel compounds not commonly reported, in PFAS studies at both lakes. The studied toxicological responses varied across trophic groups in both lakes with probable modulations by environmental conditions, trophic structure, and relative PFAS exposures in the lakes. The present study documents, for the first time in Nigeria, or any other African country, the role of urbanization on contaminant load into the environment and their implications for contaminant dynamics within the ecosystem and for aquatic food safety.
Collapse
Affiliation(s)
- Aina O Adeogun
- Department of Zoology, University of Ibadan, Ibadan, Nigeria
| | - Azubuike V Chukwuka
- National Environmental Standards and Regulations Enforcement Agency (NESREA), Nigeria
| | - Oju R Ibor
- Department of Zoology and Environmental Biology, University of Calabar, Calabar, Nigeria
| | | | - Junjie Zhang
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Augustine Arukwe
- Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| |
Collapse
|
27
|
Wu Y, Qiu Y, Wu Y, Li H, Yang H, Deng Q, He B, Yan F, Li Y, Chen F. Association of per- and polyfluoroalkyl substances (PFAS) with periodontitis: the mediating role of sex hormones. BMC Oral Health 2024; 24:243. [PMID: 38360594 PMCID: PMC10870532 DOI: 10.1186/s12903-024-03863-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/04/2024] [Indexed: 02/17/2024] Open
Abstract
OBJECTIVES To investigate the association between serum per- and polyfluoroalkyl substances (PFAS) and periodontitis, and further explore the possible mediating role of sex hormones in this association. METHODS We extracted data from National Health and Nutrition Examination Survey (NHANES) 2009-2014. Univariable and multivariable logistic regression models were performed to investigate the association between serum levels of seven PFASs and periodontitis. Bayesian kernel machine regression (BKMR) was conducted to assess the joint effect of PFASs in mixtures. Mediation analyses were used to explore the potential mediating role of sex hormones. RESULTS Participants with periodontitis had higher concentrations of serum perfluorooctane sulfonate (PFOS) and perfluorononanoic acid (PFNA) than those without periodontitis (both P < 0.05). In fully adjusted models, high serum concentrations of PFOS and PFNA were positively associated with periodontitis (tertile 3 vs. tertile 1: prevalence ratio (PR) = 1.19 for PFOS, 95% CI: 1.01-1.39; PR = 1.17 for PFNA, 95% CI: 1.02-1.34). The results from the BKMR models consistently showed a positive association between PFAS mixtures and periodontitis. Of note, testosterone and the ratio of testosterone to estradiol significantly mediated the relationship between high level of PFOS and periodontitis, accounting for 16.5% and 31.7% of the total effect, respectively. Sensitivity analyses yielded similar results when using periodontal clinical indices (mean loss of attachment, mean periodontal probing depth, and the number of teeth) as dependent variables. CONCLUSIONS These findings provide evidence to support a positive association between certain PFASs and periodontitis, which might be partially mediated by sex hormones.
Collapse
Affiliation(s)
- Yuxuan Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Yu Qiu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350122, China
| | - Yuying Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Husheng Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Han Yang
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Qingrong Deng
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Baochang He
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Fuhua Yan
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Yanfen Li
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, China.
| | - Fa Chen
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350122, China.
| |
Collapse
|
28
|
Xing W, Liang M, Gu W, Wang Z, Fan D, Zhang B, Sun S, Wang L, Shi L. Exposure to Perfluoroalkyl Substances and Hyperlipidemia Among Adults: Data From NHANES 2017-2018. J Occup Environ Med 2024; 66:105-110. [PMID: 37853679 DOI: 10.1097/jom.0000000000003000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
BACKGROUND The present study aims to explore the relationship between perfluoroalkyl substances (PFAS) exposure and hyperlipidemia using data from the National Health and Nutrition Examination Survey. METHODS A total of 1600 subjects were included in the analysis, and nine kinds of PFAS were measured. Multivariate logistic regression analysis was performed to explore the association between serum PFAS and hyperlipidemia. RESULTS Compared with the lowest quartile of perfluoromethylheptane sulfonic acid isomers (Sm-PFOS), the percentage change for hyperlipidemia was 57% and 41% in the third and highest quartile of PFOS. The positive association between Sm-PFOS and hyperlipidemia remained significant in population younger than 60 years, and the odds ratio for hyperlipidemia in fourth quartile of Sm-PFOS was 1.81. CONCLUSIONS These findings indicated that serum Sm-PFOS was independently associated with a higher risk for hyperlipidemia. The epidemiological study warrants further study to elucidate the causal relationship between them.
Collapse
Affiliation(s)
- Weilong Xing
- From the Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Averina M, Huber S, Almås B, Brox J, Jacobsen BK, Furberg AS, Grimnes G. Early menarche and other endocrine disrupting effects of per- and polyfluoroalkyl substances (PFAS) in adolescents from Northern Norway. The Fit Futures study. ENVIRONMENTAL RESEARCH 2024; 242:117703. [PMID: 37984785 DOI: 10.1016/j.envres.2023.117703] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) comprise a large group of chemicals that are ubiquitous in the environment and include recognized persistent organic pollutants. The aim of this cross-sectional study was to investigate possible endocrine disrupting effects of different PFAS in adolescents. METHODS Serum concentrations of PFAS, thyroid, parathyroid and steroid hormones were measured in 921 adolescents aged 15-19 years in the Fit Futures study, Northern Norway. The questionnaire included data on self-reported age at menarche and puberty development score (PDS). Multiple linear and logistic regression analyses and principle component analyses (PCA) were used to assess associations of PFAS with hormones concentrations and puberty indices. RESULTS In girls, total PFAS (∑PFAS), perfluorooctanoate (PFOA), perfluorooctane sulfonate (PFOS), perfluorononanoate (PFNA), perfluorodecanoate (PFDA) were positively associated with dehydroepiandrosterone sulfate (DHEAS) and negatively associated with 11-deoxycorticosterone (11-DOC)/DHEAS ratio. In boys, the associations with 11-DOC/DHEAS ratio were positive for ∑PFAS, perfluoroheptanoate (PFHpA), perfluoroheptane sulfonate (PFHpS), PFOA, and PFOS. Perfluoroundecanoate (PFUnDA) was negatively associated with free thyroxine (fT4) and free triiodothyronine (fT3) in boys. PFNA and PFDA were also negatively associated with fT3 in boys. Serum parathyroid hormone concentration (PTH) was negatively associated with ∑PFAS and perfluorohexane sulfonate (PFHxS) in girls, and with PFOS in boys. PFDA and PFUnDA were positively associated with early menarche, while ∑PFAS and PFOA were positively associated with PDS in boys. No associations of PFAS with serum testosterone, follicle-stimulating hormone, or luteinizing hormone were found in either sex. In girls, PFOA was positively associated with free testosterone index (FTI). In boys, PFOA was positively associated with androstendione and 17-OH-progesterone, while PFHpA was positively associated with estradiol. CONCLUSIONS Serum concentrations of several PFAS were associated with parathyroid and steroid hormones in both sexes, and with thyroid hormones in boys, as well as with early menarche in girls and higher PDS in boys.
Collapse
Affiliation(s)
- Maria Averina
- Department of Laboratory Medicine, University Hospital of North Norway, Hansine Hansens veg 67, 9019, Tromsø, Norway; Department of Clinical Medicine, Endocrinological and Geriatric Research Group, UiT - The Arctic University of Norway, Hansine Hansens veg 18, 9019, Tromsø, Norway.
| | - Sandra Huber
- Department of Laboratory Medicine, University Hospital of North Norway, Hansine Hansens veg 67, 9019, Tromsø, Norway
| | - Bjørg Almås
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Haukelandsveien 22, 5009, Bergen, Norway
| | - Jan Brox
- Department of Laboratory Medicine, University Hospital of North Norway, Hansine Hansens veg 67, 9019, Tromsø, Norway
| | - Bjarne K Jacobsen
- Department of Community Medicine, UiT The Arctic University of Norway, Hansine Hansens veg 18, 9019, Tromsø, Norway; Center for Sami Health Research, Department of Community Medicine, UiT The Arctic University of Norway, Hansine Hansens veg 18, 9019, Tromsø, Norway
| | - Anne-Sofie Furberg
- Department of Microbiology and Infection Control, University Hospital of North Norway, Hansine Hansens veg 67, 9019, Tromsø, Norway; Molde University College, Britvegen 2, 6410, Molde, Norway
| | - Guri Grimnes
- Department of Clinical Medicine, Endocrinological and Geriatric Research Group, UiT - The Arctic University of Norway, Hansine Hansens veg 18, 9019, Tromsø, Norway; Division of Medicine, University Hospital of North Norway, Hansine Hansens veg 67, 9019, Tromsø, Norway
| |
Collapse
|
30
|
Li L, Guo Y, Ma S, Wen H, Li Y, Qiao J. Association between exposure to per- and perfluoroalkyl substances (PFAS) and reproductive hormones in human: A systematic review and meta-analysis. ENVIRONMENTAL RESEARCH 2024; 241:117553. [PMID: 37931739 DOI: 10.1016/j.envres.2023.117553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) is persistent endocrine disrupting chemicals. Previous evidence suggests that exposure to PFAS is associated with reproductive hormone levels, but the results of relevant studies are inconsistent. The objective of our study is to determine the association between exposure to PFAS and reproductive hormone levels in gender-specific general population. METHOD Based on scientific search strategies, we systematically searched PubMed, Web of Science, Embase, Medline, and Scopus to obtain the eligible studies published before January 21, 2023. The quality of the included articles was assessed using the Office of Health Assessment and Translation (OHAT) Risk of Bias tool. We combined the β coefficient and 95% confidence intervals (CI) using Stata.17 with random-effect model or fixed-effect model. We also performed subgroup analysis, sensitivity analysis, and Begger's and Egger's tests. RESULTS Eleven studies involving 7714 participants were included. Meta-analysis showed that PFHxS exposure was positively associated with estradiol (E2) levels in female [β = 0.030, 95% CI: (0.013, 0.046), P = 0.000]. A negative association was found between PFOA [β = -0.012, 95% CI: (-0.023, -0.002), P = 0.017] and PFOS [β = -0.011; 95% CI: (-0.021, -0.000), P = 0.042] exposure with male testosterone (TT) levels. In the subgroup analysis, there were stronger associations in children than in adults. And the high heterogeneity was mainly due to the cross-sectional studies. Publication bias was not found in most of the analyses. CONCLUSION Our study showed that PFAS exposure was significantly associated with reproductive hormone levels. Further related studies are needed to identify the association and potential mechanism in the future.
Collapse
Affiliation(s)
- Ling Li
- School of Nursing, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Yingkun Guo
- School of Nursing, Weifang Medical University, Weifang, 261053, China
| | - Shuai Ma
- School of Nursing, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Hui Wen
- School of Nursing, Weifang Medical University, Weifang, 261053, China
| | - Yupei Li
- School of Nursing, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Jianhong Qiao
- School of Nursing and Rehabilitation, Shandong University, Jinan, 250012, China; The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China.
| |
Collapse
|
31
|
Rodríguez-Carrillo A, Salamanca-Fernández E, den Hond E, Verheyen VJ, Fábelová L, Murinova LP, Pedraza-Díaz S, Castaño A, García-Lario JV, Remy S, Govarts E, Schoeters G, Olea N, Freire C, Fernández MF. Association of exposure to perfluoroalkyl substances (PFAS) and phthalates with thyroid hormones in adolescents from HBM4EU aligned studies. ENVIRONMENTAL RESEARCH 2023; 237:116897. [PMID: 37598845 DOI: 10.1016/j.envres.2023.116897] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/24/2023] [Accepted: 08/13/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND Perfluoroalkyl substances (PFAS) and phthalates are synthetic chemicals widely used in various types of consumer products. There is epidemiological and experimental evidence that PFAS and phthalates may alter thyroid hormone levels; however, studies in children and adolescents are limited. AIM To investigate the association of exposure to PFAS and phthalate with serum levels of thyroid hormones in European adolescents. METHODS A cross-sectional study was conducted in 406 female and 327 male adolescents (14-17 years) from Belgium, Slovakia, and Spain participating in the Aligned Studies of the HBM4EU Project (FLEHS IV, PCB cohort, and BEA, respectively). Concentrations of perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), perfluorononanoic acid (PFNA), free thyroxine (FT4), free triiodothyronine (FT3), and thyroid-stimulating hormone (TSH) were measured in sera from study participants, and urinary metabolites of six phthalates (DEP, DiBP, DnBP, BBzP, DEHP, and DiNP) and the non-phthalate plasticizer DINCH® were quantified in spot urine samples. Associations were assessed with linear regression and g-computational models for mixtures. Effect modification by sex was examined. RESULTS In females, serum PFOA and the PFAS mixture concentrations were associated with lower FT4 and higher FT3 levels; MEP and the sums of DEHP, DiNP, and DINCH® metabolites (∑DEHP, ∑DiNP, and ∑DINCH) were associated with higher FT4; ∑DEHP with lower FT3; and the phthalate/DINCH® metabolite mixture with higher FT4 and lower FT3. In males, PFOA was associated with lower FT4 and the PFAS mixture with higher TSH levels and lower FT4/TSH ratio; MEP and ∑DiNP were associated with higher FT4; and MBzP, ∑DEHP, and the phthalate/DINCH® metabolite mixture with lower TSH and higher FT4/TSH. PFOA, mono-(2-ethyl-5-hydroxyhexyl) phthalate (OH-MEHP), mono-(2-ethyl-5-oxohexyl) phthalate (oxo-MEHP), and monocarboxyoctyl phthalate (MCOP) made the greatest contribution to the mixture effect. CONCLUSIONS Results suggest that exposure to PFAS and phthalates is associated with sex-specific differences in thyroid hormone levels in adolescents.
Collapse
Affiliation(s)
- Andrea Rodríguez-Carrillo
- VITO Health, Flemish Institute for Technological Research (VITO), 2400, Mol, Belgium; Toxicological Centre, University of Antwerp, Universiteitsplein, 1, 2610, Wilrijk, Belgium
| | - Elena Salamanca-Fernández
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Department of Radiology and Physical Medicine, University of Granada, 18071, Granada, Spain; Biomedical Research Centre, University of Granada, 18016, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain
| | | | - Veerle J Verheyen
- VITO Health, Flemish Institute for Technological Research (VITO), 2400, Mol, Belgium
| | - Lucia Fábelová
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, Bratislava, Slovakia
| | - Lubica Palkovicova Murinova
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, Bratislava, Slovakia
| | - Susana Pedraza-Díaz
- National Centre for Environmental Health, Instituto de Salud Carlos III, Madrid, Spain
| | - Argelia Castaño
- National Centre for Environmental Health, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Sylvie Remy
- VITO Health, Flemish Institute for Technological Research (VITO), 2400, Mol, Belgium
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), 2400, Mol, Belgium
| | - Greet Schoeters
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Nicolás Olea
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Department of Radiology and Physical Medicine, University of Granada, 18071, Granada, Spain; Biomedical Research Centre, University of Granada, 18016, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain
| | - Carmen Freire
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Biomedical Research Centre, University of Granada, 18016, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; Department of Legal Medicine, Toxicology and Physical Anthropology, University of Granada, 18071, Granada, Spain.
| | - Mariana F Fernández
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Department of Radiology and Physical Medicine, University of Granada, 18071, Granada, Spain; Biomedical Research Centre, University of Granada, 18016, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain
| |
Collapse
|
32
|
Rodríguez-Carrillo A, Remy S, Koppen G, Wauters N, Freire C, Olivas-Martínez A, Schillemans T, Åkesson A, Desalegn A, Iszatt N, den Hond E, Verheyen V, Fábelová L, Murinova LP, Pedraza-Díaz S, Castaño A, García-Lario JV, Cox B, Govarts E, Baken K, Tena-Sempere M, Olea N, Schoeters G, Fernández MF. PFAS association with kisspeptin and sex hormones in teenagers of the HBM4EU aligned studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122214. [PMID: 37482334 DOI: 10.1016/j.envpol.2023.122214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/18/2023] [Accepted: 07/15/2023] [Indexed: 07/25/2023]
Abstract
Exposure to Perfluoroalkyl acids (PFAS) can impair human reproductive function, e.g., by delaying or advancing puberty, although their mechanisms of action are not fully understood. We therefore set out to evaluate the relationship between serum PFAS levels, both individually and as a mixture, on the Hypothalamic-Pituitary-Gonadal (HPG) axis by analyzing serum levels of reproductive hormones and also kisspeptin in European teenagers participating in three of the HBM4EU Aligned Studies. For this purpose, PFAS compounds were measured in 733 teenagers from Belgium (FLEHS IV study), Slovakia (PCB cohort follow-up), and Spain (BEA study) by high performance liquid chromatography-tandem mass spectrometry (HPLC/MS) in laboratories under the HBM4EU quality assurance quality control (QA/QC) program. In the same serum samples, kisspeptin 54 (kiss-54) protein, follicle-stimulating hormone (FSH), total testosterone (TT), estradiol (E2), and sex hormone-binding globulin (SHBG) levels were also measured using immunosorbent assays. Sex-stratified single pollutant linear regression models for separate studies, mixed single pollutant models accounting for random effects for pooled studies, and g-computation and Bayesian kernel machine regression (BKMR) models for the mixture of the three most available (PFNA, PFOA, and PFOS) were fit. PFAS associations with reproductive markers differed according to sex. Each natural log-unit increase of PFOA, PFNA, and PFOS were associated with higher TT [18.41 (6.18; 32.31), 15.60 (7.25; 24.61), 14.68 (6.18; 24.61), respectively] in girls, in the pooled analysis (all studies together). In males, G-computation showed that PFAS mixture was associated with lower FSH levels [-10.51 (-18.81;-1.36)]. The BKMR showed the same patterns observed in G-computation, including a significant increase on male Kiss-54 and SHBG levels. Overall, effect biomarkers may enhance the current epidemiological knowledge regarding the adverse effect of PFAS in human HPG axis, although further research is warranted.
Collapse
Affiliation(s)
- Andrea Rodríguez-Carrillo
- VITO Health, Flemish Institute for Technological Research (VITO), 2400, Mol, Belgium; Toxicological Centre, University of Antwerp, Universiteitsplein, 1, 2610, Wilrijk, Belgium
| | - Sylvie Remy
- VITO Health, Flemish Institute for Technological Research (VITO), 2400, Mol, Belgium
| | - Gudrun Koppen
- VITO Health, Flemish Institute for Technological Research (VITO), 2400, Mol, Belgium
| | - Natasha Wauters
- VITO Health, Flemish Institute for Technological Research (VITO), 2400, Mol, Belgium
| | - Carmen Freire
- Biomedical Research Center (CIBM), University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain
| | | | - Tessa Schillemans
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Sweden
| | - Agneta Åkesson
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain
| | - Anteneh Desalegn
- Division of Food Safety, Norwegian Institute of Public Health, Norway
| | - Nina Iszatt
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Norway
| | | | - Veerle Verheyen
- VITO Health, Flemish Institute for Technological Research (VITO), 2400, Mol, Belgium
| | - Lucia Fábelová
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, Bratislava, Slovakia
| | - Lubica Palkovicova Murinova
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, Bratislava, Slovakia
| | - Susana Pedraza-Díaz
- National Centre for Environmental Health, Instituto de Salud Carlos III, Madrid, Spain
| | - Argelia Castaño
- National Centre for Environmental Health, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Bianca Cox
- VITO Health, Flemish Institute for Technological Research (VITO), 2400, Mol, Belgium
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), 2400, Mol, Belgium
| | - Kirsten Baken
- VITO Health, Flemish Institute for Technological Research (VITO), 2400, Mol, Belgium
| | - Manuel Tena-Sempere
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Menéndez Pidal s/n. 14004., Córdoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Campus de Rabanales, Ctra. Madrid-Cádiz, Km. 396. 14071. Córdoba, Spain; University Hospital Reina Sofía, Menéndez Pidal s/n. 14004, Córdoba, Spain; CIBER Pathophysiology of Obesity and Nutrition, Carlos III Health Institute, Menéndez Pidal s/n. 14004. Córdoba, Spain
| | - Nicolás Olea
- Biomedical Research Center (CIBM), University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016 Granada, Spain
| | - Greet Schoeters
- VITO Health, Flemish Institute for Technological Research (VITO), 2400, Mol, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Mariana F Fernández
- Biomedical Research Center (CIBM), University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016 Granada, Spain.
| |
Collapse
|
33
|
Wang J, Qiu Y, Zhu X. Trends of mental health care utilization among US adults from 1999 to 2018. BMC Psychiatry 2023; 23:665. [PMID: 37700243 PMCID: PMC10496400 DOI: 10.1186/s12888-023-05156-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/30/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND Mental health disorders affect millions of US adults, however, the trends and related factors for mental health care utilization in the US remain unknown. AIMS Our study aimed to assess the trend of mental health utilization and related socio-demographic factors in the US. METHODS The study included 55,052 individuals from the National Health and Nutrition Examination Survey (NHANES) in 1999-2018. Temporal trends in the percentages of mental health care utilizers were estimated across survey cycles. Trends and linked factors of mental health care utilization were assessed by a logistic regression model, while the non-linearity was estimated by restricted cubic splines. RESULTS From 1999 to 2018, the percentage of mental health care utilizers in the US adult population increased from 7.0 to 11.3% (P < 0.001); meanwhile, the trends in males and females were consistent. The percentage increased positively with age in individuals aged 20-39 (P < 0.001) or aged 60 and over (P = 0.003). The trends were consistent in three race/ethnicity groups (P < 0.05). The logistic regression analysis revealed that several disparities existed in the subpopulations. Older age, female, lower family poverty-income ratio (PIR), chronic diseases, higher educational level, and smoking were estimated to be associated with a higher percentage of mental health care. CONCLUSIONS The percentage of mental health care utilizers took on an increasing trend in the US adult population from 1999 to 2018. These trends were also observed in the subpopulations, but with disparities. Future research for exploring factors associated with mental health care utilizations is necessary.
Collapse
Affiliation(s)
- Junzhe Wang
- Nanjing Medical University, Nanjing, 211166, China
| | - Yang Qiu
- Jiangsu Provincial Academy of Environmental Science, Nanjing, 210036, China
- Jiangsu Key Lab of Environmental Engineering, Nanjing, 210036, China
| | - Xiaozhou Zhu
- Department of Medical Insurance, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
34
|
Di X, Xiang L, Wang M, Wei X. Association between marijuana use and kidney stone: a cross-sectional study of NHANES 2009 to 2018. Front Pharmacol 2023; 14:1214647. [PMID: 37745067 PMCID: PMC10513173 DOI: 10.3389/fphar.2023.1214647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/25/2023] [Indexed: 09/26/2023] Open
Abstract
Objective: The purpose of this investigation is to determine whether regular marijuana use is related to history of kidney stones in the US population. Methods: Data were obtained from the National Health and Nutrition Examination Survey (NHANES) from 2009 to 2018. Kidney stone and marijuana use data were collected from self-report questionnaires. Multivariate logistic regression and multiple sensitivity analyses were applied to examine the relationship between marijuana usage and kidney stones. Results: There are approximately 26.04% of the US population have admitted to using marijuana in their lifetime. Compared with none regular users, those with a higher frequency of marijuana use were more males, more non-Hispanic races, lower than high school education, overweight, no recreational activity, without diabetes mellitus, and more coronary heart disease. After adjusting for potential confounders, multivariate regression analysis demonstrated that marijuana use was inversely correlated to kidney stones in males (Odds ratio [OR] = 0.72, 95% Confidence interval [CI] = 0.54-0.97). One to seven times/week regular consumption of marijuana was associated with kidney stones in males (OR = 0.62, 95% CI = 0.43-0.89). Sensitivity analyses validated the robustness of our outcomes. Conclusion: Our findings revealed that regular marijuana male users were inversely associated with kidney stones. Marijuana use one to six times/week was inversely related to the risk of kidney stones in males. Further studies are required to explore the dose and type associations of marijuana with kidney stones.
Collapse
Affiliation(s)
- Xingpeng Di
- Laboratory of Reconstructive Urology, Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Liyuan Xiang
- Laboratory of Reconstructive Urology, Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Clinical Research Management, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Menghua Wang
- Laboratory of Reconstructive Urology, Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xin Wei
- Laboratory of Reconstructive Urology, Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
35
|
Cathey AL, Nguyen VK, Colacino JA, Woodruff TJ, Reynolds P, Aung MT. Exploratory profiles of phenols, parabens, and per- and poly-fluoroalkyl substances among NHANES study participants in association with previous cancer diagnoses. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:687-698. [PMID: 37718377 PMCID: PMC10541322 DOI: 10.1038/s41370-023-00601-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/19/2023]
Abstract
BACKGROUND Some hormonally active cancers have low survival rates, but a large proportion of their incidence remains unexplained. Endocrine disrupting chemicals may affect hormone pathways in the pathology of these cancers. OBJECTIVE To evaluate cross-sectional associations between per- and polyfluoroalkyl substances (PFAS), phenols, and parabens and self-reported previous cancer diagnoses in the National Health and Nutrition Examination Survey (NHANES). METHODS We extracted concentrations of 7 PFAS and 12 phenols/parabens and self-reported diagnoses of melanoma and cancers of the thyroid, breast, ovary, uterus, and prostate in men and women (≥20 years). Associations between previous cancer diagnoses and an interquartile range increase in exposure biomarkers were evaluated using logistic regression models adjusted for key covariates. We conceptualized race as social construct proxy of structural social factors and examined associations in non-Hispanic Black, Mexican American, and other Hispanic participants separately compared to White participants. RESULTS Previous melanoma in women was associated with higher PFDE (OR:2.07, 95% CI: 1.25, 3.43), PFNA (OR:1.72, 95% CI: 1.09, 2.73), PFUA (OR:1.76, 95% CI: 1.07, 2.89), BP3 (OR: 1.81, 95% CI: 1.10, 2.96), DCP25 (OR: 2.41, 95% CI: 1.22, 4.76), and DCP24 (OR: 1.85, 95% CI: 1.05, 3.26). Previous ovarian cancer was associated with higher DCP25 (OR: 2.80, 95% CI: 1.08, 7.27), BPA (OR: 1.93, 95% CI: 1.11, 3.35) and BP3 (OR: 1.76, 95% CI: 1.00, 3.09). Previous uterine cancer was associated with increased PFNA (OR: 1.55, 95% CI: 1.03, 2.34), while higher ethyl paraben was inversely associated (OR: 0.31, 95% CI: 0.12, 0.85). Various PFAS were associated with previous ovarian and uterine cancers in White women, while MPAH or BPF was associated with previous breast cancer among non-White women. IMPACT STATEMENT Biomarkers across all exposure categories (phenols, parabens, and per- and poly- fluoroalkyl substances) were cross-sectionally associated with increased odds of previous melanoma diagnoses in women, and increased odds of previous ovarian cancer was associated with several phenols and parabens. Some associations differed by racial group, which is particularly impactful given the established racial disparities in distributions of exposure to these chemicals. This is the first epidemiological study to investigate exposure to phenols in relation to previous cancer diagnoses, and the first NHANES study to explore racial/ethnic disparities in associations between environmental phenol, paraben, and PFAS exposures and historical cancer diagnosis.
Collapse
Affiliation(s)
- Amber L Cathey
- Department of Environmental Health Sciences, University of Michigan, School of Public Health, Ann Arbor, MI, USA
| | - Vy K Nguyen
- Department of Environmental Health Sciences, University of Michigan, School of Public Health, Ann Arbor, MI, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Justin A Colacino
- Department of Environmental Health Sciences, University of Michigan, School of Public Health, Ann Arbor, MI, USA
| | - Tracey J Woodruff
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Peggy Reynolds
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Max T Aung
- Department of Population and Public Health Sciences, University of Southern California, Keck School of Medicine, Los Angeles, CA, USA.
| |
Collapse
|
36
|
India-Aldana S, Yao M, Midya V, Colicino E, Chatzi L, Chu J, Gennings C, Jones DP, Loos RJF, Setiawan VW, Smith MR, Walker RW, Barupal D, Walker DI, Valvi D. PFAS Exposures and the Human Metabolome: A Systematic Review of Epidemiological Studies. CURRENT POLLUTION REPORTS 2023; 9:510-568. [PMID: 37753190 PMCID: PMC10520990 DOI: 10.1007/s40726-023-00269-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/03/2023] [Indexed: 09/28/2023]
Abstract
Purpose of Review There is a growing interest in understanding the health effects of exposure to per- and polyfluoroalkyl substances (PFAS) through the study of the human metabolome. In this systematic review, we aimed to identify consistent findings between PFAS and metabolomic signatures. We conducted a search matching specific keywords that was independently reviewed by two authors on two databases (EMBASE and PubMed) from their inception through July 19, 2022 following PRISMA guidelines. Recent Findings We identified a total of 28 eligible observational studies that evaluated the associations between 31 different PFAS exposures and metabolomics in humans. The most common exposure evaluated was legacy long-chain PFAS. Population sample sizes ranged from 40 to 1,105 participants at different stages across the lifespan. A total of 19 studies used a non-targeted metabolomics approach, 7 used targeted approaches, and 2 included both. The majority of studies were cross-sectional (n = 25), including four with prospective analyses of PFAS measured prior to metabolomics. Summary Most frequently reported associations across studies were observed between PFAS and amino acids, fatty acids, glycerophospholipids, glycerolipids, phosphosphingolipids, bile acids, ceramides, purines, and acylcarnitines. Corresponding metabolic pathways were also altered, including lipid, amino acid, carbohydrate, nucleotide, energy metabolism, glycan biosynthesis and metabolism, and metabolism of cofactors and vitamins. We found consistent evidence across studies indicating PFAS-induced alterations in lipid and amino acid metabolites, which may be involved in energy and cell membrane disruption.
Collapse
Affiliation(s)
- Sandra India-Aldana
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Meizhen Yao
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Vishal Midya
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Elena Colicino
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Leda Chatzi
- Department of Population and Public Health Sciences, Keck
School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jaime Chu
- Department of Pediatrics, Icahn School of Medicine at Mount
Sinai, New York, NY, USA
| | - Chris Gennings
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Dean P. Jones
- Clinical Biomarkers Laboratory, Division of Pulmonary,
Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Ruth J. F. Loos
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
- Charles Bronfman Institute for Personalized Medicine, Icahn
School of Medicine at Mount Sinai, New York, NY, USA
- Faculty of Health and Medical Sciences, Novo Nordisk
Foundation Center for Basic Metabolic Research, University of Copenhagen,
Copenhagen, Denmark
| | - Veronica W. Setiawan
- Department of Population and Public Health Sciences, Keck
School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mathew Ryan Smith
- Clinical Biomarkers Laboratory, Division of Pulmonary,
Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
- Veterans Affairs Medical Center, Decatur, GA, USA
| | - Ryan W. Walker
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Dinesh Barupal
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Douglas I. Walker
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Damaskini Valvi
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| |
Collapse
|
37
|
Taibl KR, Dunlop AL, Barr DB, Li YY, Eick SM, Kannan K, Ryan PB, Schroder M, Rushing B, Fennell T, Chang CJ, Tan Y, Marsit CJ, Jones DP, Liang D. Newborn metabolomic signatures of maternal per- and polyfluoroalkyl substance exposure and reduced length of gestation. Nat Commun 2023; 14:3120. [PMID: 37253729 PMCID: PMC10229585 DOI: 10.1038/s41467-023-38710-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/10/2023] [Indexed: 06/01/2023] Open
Abstract
Marginalized populations experience disproportionate rates of preterm birth and early term birth. Exposure to per- and polyfluoroalkyl substances (PFAS) has been reported to reduce length of gestation, but the underlying mechanisms are unknown. In the present study, we characterized the molecular signatures of prenatal PFAS exposure and gestational age at birth outcomes in the newborn dried blood spot metabolome among 267 African American dyads in Atlanta, Georgia between 2016 and 2020. Pregnant people with higher serum perfluorooctanoic acid and perfluorohexane sulfonic acid concentrations had increased odds of an early birth. After false discovery rate correction, the effect of prenatal PFAS exposure on reduced length of gestation was associated with 8 metabolomic pathways and 52 metabolites in newborn dried blood spots, which suggested perturbed tissue neogenesis, neuroendocrine function, and redox homeostasis. These mechanisms explain how prenatal PFAS exposure gives rise to the leading cause of infant death in the United States.
Collapse
Grants
- R01 NR014800 NINR NIH HHS
- U2C ES026542 NIEHS NIH HHS
- P50 ES026071 NIEHS NIH HHS
- R01 MD009064 NIMHD NIH HHS
- R01 MD009746 NIMHD NIH HHS
- R21 ES032117 NIEHS NIH HHS
- U2C ES026560 NIEHS NIH HHS
- P30 ES019776 NIEHS NIH HHS
- R24 ES029490 NIEHS NIH HHS
- U24 ES029490 NIEHS NIH HHS
- UG3 OD023318 NIH HHS
- T32 ES012870 NIEHS NIH HHS
- UH3 OD023318 NIH HHS
- U.S. Department of Health & Human Services | NIH | National Institute of Environmental Health Sciences (NIEHS)
- U.S. Department of Health & Human Services | NIH | National Institute of Nursing Research (NINR)
- U.S. Department of Health & Human Services | NIH | National Institute on Minority Health and Health Disparities (NIMHD)
- Research reported in this publication was supported by the Environmental Influences on Child Health Outcomes (ECHO) program, Office of the Director, National Institutes of Health, under Award Numbers 5U2COD023375-05/A03-3824, the National Institute of Health (NIH) research grants [R21ES032117, R01NR014800, R01MD009064, R24ES029490, R01MD009746], NIH Center Grants [P50ES02607, P30ES019776, UH3OD023318, U2CES026560, U2CES026542], and Environmental Protection Agency (USEPA) center grant [83615301].
Collapse
Affiliation(s)
- Kaitlin R Taibl
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Anne L Dunlop
- Department of Gynecology and Obstetrics, School of Medicine, Emory University, Atlanta, GA, USA.
| | - Dana Boyd Barr
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Yuan-Yuan Li
- Metabolomics and Exposome Laboratory, Nutrition Research Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Stephanie M Eick
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Kurunthachalam Kannan
- Department of Pediatrics, New York University School of Medicine, New York, NY, USA
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - P Barry Ryan
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Madison Schroder
- Metabolomics and Exposome Laboratory, Nutrition Research Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Blake Rushing
- Metabolomics and Exposome Laboratory, Nutrition Research Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Timothy Fennell
- Analytical Chemistry and Pharmaceuticals, RTI International, Research Triangle Park, Durham, NC, USA
| | - Che-Jung Chang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Youran Tan
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Carmen J Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Dean P Jones
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Donghai Liang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| |
Collapse
|
38
|
Wei C, Zhang W, Chen J, He Q, Cao L, Zhang P, Deng C, Xiong M, Huang Y, Guo H, Wang M, Chen Z. Systematic analysis between inflammation-related index and sex hormones in American adults: cross-sectional research based NHANES 2013-2016. Front Immunol 2023; 14:1175764. [PMID: 37304307 PMCID: PMC10250748 DOI: 10.3389/fimmu.2023.1175764] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/15/2023] [Indexed: 06/13/2023] Open
Abstract
Background A series of novel inflammation-related indexes has been confirmed to be efficient indicators of human immune and inflammatory status, with great potential as predictors for a variety of diseases. However, the association between inflammation-related indexes and sex hormones in the general population remained uncertain. Methods We incorporated data from the NHANES 2013-2016 survey of American adults. On the basis of distribution and comparison analysis, we chose to undertake separate analyses of men and women (including premenopausal and postmenopausal groups). Multivariable weighted linear regression models, eXtreme Gradient Boosting (XGBoost) models, generalized linear analysis, stratified models, logistic regression models and sensitivity analysis were utilized to assess the relationships between inflammation-related indexes and sex hormones. Results Total 9372 participants out of 20146 were fitted into our research. We conducted separate gender analysis due to different distribution. Multivariable weighted linear regression indicated every component of the inflammation-related index was negatively correlated with at least one component of the male hormone indexes. However, SII, NLR, PPN, and NC were associated positively with female estradiol. XGBoost identify SII, PLR and NLR were the critical indexes on sex hormones. Inflammation-related indexes was associated with Testosterone deficiency in male and postmenstrual group and associated with Excessive Estradiol in premenstrual group. Finally, the subgroup analysis revealed that the association between sex hormones and inflammatory indicators was prominent in American adults over the age of 60 or those with BMI (>28 kg/m2). Conclusion In all, inflammation-related indexes act as independent risks associated with sex hormone alterations and metabolic disorder in both genders. Using multiple models, we revealed the relative importance of inflammation-related indexes. Subgroup analysis also identified the high-risk population. More prospective and experimental research should be conducted to validate the results.
Collapse
Affiliation(s)
- Chengcheng Wei
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenting Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiabi Chen
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Qingliu He
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Li Cao
- Department of Orthopaedic, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Pu Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Changqi Deng
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ming Xiong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yu Huang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Haixin Guo
- Department of Ultrasound, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Miao Wang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhaohui Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
39
|
Liu Q, Hu S, Fan F, Zheng Z, Zhou X, Zhang Y. Association of blood metals with serum sex hormones in adults: A cross-sectional study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:69628-69638. [PMID: 37140863 DOI: 10.1007/s11356-023-27384-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/28/2023] [Indexed: 05/05/2023]
Abstract
Heavy metals such as lead, mercury, and cadmium have been identified to have negative impacts on human health. Although the individual effects of these metals have been extensively researched, the present study aims to explore their combined effects and their association with serum sex hormones among adults. Data for this study were obtained from the general adult population of the 2013-2016 National Health and Nutrition Survey (NHANES) and included five metal (mercury, cadmium, manganese, lead, and selenium) exposures and three sex hormones (total testosterone [TT], estradiol [E2], and sex hormone-binding globulin [SHBG]) levels. The free androgen index (FAI) and TT/E2 ratio were also calculated. The relationships between blood metals and serum sex hormones were analysed using linear regression and restricted cubic spline regression. The effect of blood metal mixtures on sex hormone levels was examined using the quantile g-computation (qgcomp) model. There were 3,499 participants in this study, including 1,940 males and 1,559 females. In males, positive relationships between blood cadmium and serum SHBG (β=0.049 [0.006, 0.093]), lead and SHBG (β=0.040 [0.002, 0.079]), manganese and FAI (β=0.080 [0.016, 0.144]), and selenium and FAI (β=0.278 [0.054, 0.502]) were observed. In contrast, manganese and SHBG (β=-0.137 [-0.237, -0.037]), selenium and SHBG (β=-0.281 [-0.533, -0.028]), and manganese and TT/E2 ratio (β=-0.094 [-0.158, -0.029]) were negative associations. In females, blood cadmium and serum TT (β=0.082 [0.023, 0.141]), manganese and E2 (β=0.282 [0.072, 0.493]), cadmium and SHBG (β=0.146 [0.089, 0.203]), lead and SHBG (β=0.163 [0.095, 0.231]), and lead and TT/E2 ratio (β=0.174 [0.056, 0.292]) were positive relationships, while lead and E2 (β=-0.168 [-0.315, -0.021]) and FAI (β=-0.157 [-0.228, -0.086]) were negative associations. This correlation was stronger among elderly women (>50 years old). The qgcomp analysis revealed that the positive effect of mixed metals on SHBG was mainly driven by cadmium, while the negative effect of mixed metals on FAI was mainly driven by lead. Our findings indicate that exposure to heavy metals may disrupt hormonal homeostasis in adults, particularly in older women.
Collapse
Affiliation(s)
- Qiongshan Liu
- Department of Gynecology, Shantou Central Hospital, Shantou, 515031, China
| | - Shijian Hu
- Department of Rheumatology and Immunology, Shantou Central Hospital, Shantou, 515031, China
| | - Fufang Fan
- Department of Gynecology, Shantou Central Hospital, Shantou, 515031, China
| | - Zhixiang Zheng
- Department of Gynecology, Shantou Central Hospital, Shantou, 515031, China
| | - Xinye Zhou
- Centre for Reproductive Medicine, Shantou Central Hospital, Shantou, 515031, China
| | - Yuanfeng Zhang
- Department of Urology, Shantou Central Hospital, Shantou, 515031, China.
| |
Collapse
|
40
|
Li M, Ma Y, Cheng W, Zhang L, Zhou C, Zhang W, Zhang W. Association between perfluoroalkyl and polyfluoroalkyl internal exposure and serum α-Klotho levels in middle-old aged participants. Front Public Health 2023; 11:1136454. [PMID: 37228732 PMCID: PMC10204767 DOI: 10.3389/fpubh.2023.1136454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/11/2023] [Indexed: 05/27/2023] Open
Abstract
Purpose Exposure to perfluoroalkyl and polyfluoroalkyl substances causes oxidative stress, which is strongly associated with adverse health effects. Klotho protein plays an anti-aging role via antioxidation activity. Methods We investigated the levels of serum α-Klotho and PFAS exposure in adults who participated in the National Health and Nutrition Examination Survey from 2013 to 2016. A nationally representative subsample of 1,499 adults aged 40-79 years was analyzed for the associations of serum α-Klotho levels with serum PFAS exposures by correlation analysis and multiple general linear models. Of note, the potential confounding factors including age and gender were adjusted. Quantile-based g-computation models were used to assess the effects of mixed PFAS exposure on serum α-Klotho levels. Results The weighted geometric mean of serum α-Klotho was 791.38 pg/mL for the subjects during 2013-2016. After adjusting for potential confounders, serum Klotho levels showed a statistically significant downward trend with increasing quartiles of PFOA and PFNA. Multivariate adjusted general linear regression analysis showed that increased exposure to PFNA was substantially associated with lower serum levels of α-Klotho, and each 1-unit increase in PFNA concentration was accompanied by a 20.23 pg/mL decrease in α-Klotho level; while no significant association was observed between other PFAS exposures and serum α-Klotho levels. It was negatively correlated between α-Klotho and Q4 for PFNA relative to the lowest quartile (Q1) of exposure (P = 0.025). It was found that the strongest negative correlation between PFNA exposure and serum α-Klotho levels was in the middle-aged (40-59 years) female participants. Furthermore, the mixture of the four PFAS substances showed an overall inverse association with serum α-Klotho concentrations, with PFNA being the major contributor. Conclusions Taken together, in a representative sample of the U.S. middle-aged and elderly populations, serum concentrations of PFAS, especially PFNA, have been negatively associated with serum levels of α-Klotho, which is strongly associated with cognition and aging. It was important to note that the majority of associations were limited to middle-aged women. It will be meaningful to clarify the causal relationship and the pathogenic mechanisms of PFAS exposure and α-Klotho levels, which is helpful to aging and aging-related diseases.
Collapse
Affiliation(s)
- Min Li
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong, China
- Guangdong Provincial Engineering and Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Key Laboratory of Crop Genetic Improvement of Guangdong Province, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Yuanlin Ma
- Reproductive Medicine Center, Guangdong Provincial Key Laboratory of Reproductive Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenli Cheng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Luyun Zhang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Cheng Zhou
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Wenji Zhang
- Guangdong Provincial Engineering and Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Key Laboratory of Crop Genetic Improvement of Guangdong Province, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Wenjuan Zhang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
41
|
Cao HM, Yang YZ, Huang BY, Zhang Y, Wu Y, Wan Z, Ma L. A cross-sectional study of the association between heavy metals and pan-cancers associated with sex hormones in NHANES 1999-2018. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:61005-61017. [PMID: 37046159 DOI: 10.1007/s11356-023-26828-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/03/2023] [Indexed: 05/10/2023]
Abstract
Given the complexity of tumorigenesis, numerous studies have also shown that excessive exposure to heavy metals increases the risk of cancers and disrupts the secretion of sex hormones. However, the specific effects of heavy metals on cancers remain to be proven. To confirm the association between heavy metals and pan-cancer sex hormone levels among adults, 94,337 individuals from the National Health and Nutrition Examination Survey were assessed. We examined the associations between pan-cancers associated with sex hormones (ovarian, testicular, breast, and prostate cancers) and heavy metals in blood/urine. The methods (the WQS (weighted quantile sums) and SVYGLM (survey generalized linear model) regressions) were used to evaluate the association between sex hormone-related cancers and each metal category by incorporating covariates. To evaluate the overall effect of heavy metals and detect the dose-response relationship between the prevalence of pan-cancers associated with sex hormones and heavy metals, RCS (restricted cubic splines) were applied. Environmental exposure to heavy metals may be associated with pan-cancers associated with sex hormones in adults in the USA. Prostate cancer was inversely associated with blood cadmium while positively associated with blood lead, urinary tin, and thallium. Breast cancer was inversely associated with blood lead. Ovarian cancer was positively associated with blood cadmium. We also found a non-linear dose-response relationship between pan-cancers associated with sex hormones and heavy metals, which was non-parametric, using RCS models. The OR for breast cancer decreased along with the increase in lead concentration under approximately 20 µg/dl, while the OR for prostate cancer increased between urine thallium levels of approximately 0.17-1.1 ng/ml. Pan-cancers associated with sex hormones are associated with exposure to heavy metals. Considering the design of the NHANES study, further studies need to be conducted on other nationally representative surveys.
Collapse
Affiliation(s)
- Hai-Ming Cao
- The Reproductive Andrology, The Reproductive Medicine Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518000, People's Republic of China
| | - Ya-Zhu Yang
- The Reproductive Medicine Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518000, People's Republic of China
| | - Bao-Yi Huang
- The Reproductive Medicine Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518000, People's Republic of China
| | - Yunzhe Zhang
- Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Yu Wu
- The Urology Department, The Second Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, People's Republic of China
| | - Zi Wan
- The Andrology Department, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China
| | - Lin Ma
- The Reproductive Medicine Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518000, People's Republic of China.
| |
Collapse
|
42
|
Baek K, Sakong J, Park C. Association of serum polyfluoroalkyl substances (PFAS) with anemia and erythrocytosis in Korean adults: Data from Korean National Environmental Health Survey cycle 4 (2018–2020). Int J Hyg Environ Health 2023. [DOI: 10.1016/j.ijheh.2023.114136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
43
|
Guo J, Huang S, Yang L, Zhou J, Xu X, Lin S, Li H, Xie X, Wu S. Association between polyfluoroalkyl substances exposure and sex steroids in adolescents: The mediating role of serum albumin. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114687. [PMID: 36857915 DOI: 10.1016/j.ecoenv.2023.114687] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Polyfluoroalkyl substances (PFASs) are an emerging class of contaminants with endocrine disrupting hazards. The impact of PFASs exposure on sex steroids remain inconclusive. METHODS This study used data from the 2013-2016 National Health and Nutrition Examination Survey (NHANES), including 525 adolescents aged 12-19. We explored the association between serum PFASs and sex steroids using multiple linear regression, weighted quantified sum (WQS) regression, and Bayesian kernel machine regression (BKMR). Mediation analyses were performed to assess whether serum albumin mediates the effects of PFASs on sex steroids. RESULTS Single exposure to perfluorohexane sulfonic acid (PFHxS) or n-perfluorooctanoic acid (n-PFOA) was found to be inversely associated with sex hormone binding protein (SHBG) after adjustment for confounders. Results from both the WQS and BKMR models showed that mixed exposure to the five PFASs was negatively associated with SHBG and testosterone (TT) in all adolescents, while only in the WQS model, the mixed exposure to PFASs was negatively correlated with E2 and FAI in boys and negatively correlated with TT and SHBG in girls. Serum albumin was found to possibly mediate 9.7 % of the association between mixed PFAS exposure and TT, and 9.7 % of the association between mixed PFAS exposure and SHBG. CONCLUSION Our study demonstrates a negative association between mixed exposure to PFASs and adolescent TT and SHBG levels, and suggests that albumin may merit further study as a potential target for PFAS harm reduction.
Collapse
Affiliation(s)
- Jianhui Guo
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Shuna Huang
- Department of Clinical Research and Translation Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China
| | - Le Yang
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Jungu Zhou
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Xingyan Xu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Shaowei Lin
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Huangyuan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Xiaoxu Xie
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| | - Siying Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| |
Collapse
|
44
|
Xing W, Gu W, Liang M, Wang Z, Fan D, Zhang B, Wang L. Association between aldehyde exposure and sex steroid hormones among adults. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:30444-30461. [PMID: 36434445 DOI: 10.1007/s11356-022-24362-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Exogenous and endogenous exposure to aldehydes is seen worldwide. Aldehydes are closely associated with human diseases, especially reproductive toxicity. However, the effect of aldehyde exposure on sex steroid hormones among adults remains uninvestigated. A total of 851 participants aged over 18 years were included in this cross-sectional analysis based on data from National Health and Nutrition Examination Survey (NHANES) 2013-2014. Serum aldehyde concentrations were quantified following an automated analytical method. Sex steroid hormones including total testosterone, estradiol, and sex hormone binding globulin (SHBG) were detected. Multivariate linear regression models, forest plots, generalized additive model (GAM), and smooth curve fitting analysis were used to assess the associations between quartiles of aldehydes and sex steroid hormones levels after adjusting for potential confounders. Butyraldehyde and propanaldehyde were found to be negatively associated with estradiol and SHBG in females and males, respectively. β values with 95% confidence intervals (95% CIs) were - 20.59 (- 38.30 to - 2.88) for Q2 vs. Q1 of butyraldehyde and - 8.13 (- 14.92 to - 1.33) and - 7.79 (- 14.91 to - 0.67) for Q2 vs. Q1 and Q4 vs. Q1 of propanaldehyde. No significant associations were observed between other aldehydes and sex hormones. In premenopausal women, isopentanaldehyde was inversely associated with serum total testosterone levels (Q4 vs. Q1: OR = - 7.95, 95% CI: - 15.62 to - 0.27), whereas propanaldehyde was positively associated with serum estradiol concentration (Q3 vs. Q1: β = 28.88, 95% CI: 0.83 to 56.94). Compared with Q1, Q3 of isopentanaldehyde was associated with 3.53 pg/mL higher concentration of estradiol in postmenopausal women (β = 3.53, 95% CI: 0.08 to 6.97). Moreover, in males under 40 years, butyraldehyde and heptanaldehyde were inversely proportional to total testosterone levels and heptanaldehyde and butyraldehyde were negatively associated with estradiol and SHBG. Decreased total testosterone, elevated estradiol, and decreased SHBG levels were found in higher quartiles of benzaldehyde, hexanaldehyde and isopentanaldehyde, and propanaldehyde, respectively, in males aged over 60 years. In male participants aged 40-60 years, only hexanaldehyde was observed to be correlated with higher serum estradiol levels. In conclusion, our current research presented the association between six serum aldehydes and sex hormones. Of note, stratification analyses were conducted in participants with different menopausal statuses and age among males and females. Sex- and age-specific effect of aldehyde exposure on alterations in sex hormone levels were observed. Further studies are warranted to confirm the causal relationship and explore the underlying mechanisms.
Collapse
Affiliation(s)
- Weilong Xing
- Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing, 210042, People's Republic of China.
| | - Wen Gu
- Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing, 210042, People's Republic of China
| | - Mengyuan Liang
- Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing, 210042, People's Republic of China
| | - Zhen Wang
- Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing, 210042, People's Republic of China
| | - Deling Fan
- Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing, 210042, People's Republic of China
| | - Bing Zhang
- Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing, 210042, People's Republic of China
| | - Lei Wang
- Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing, 210042, People's Republic of China
| |
Collapse
|
45
|
Han Y, Li D, Zou C, Li Y, Zhao F. Effects of perchlorate, nitrate, and thiocyanate exposures on serum total testosterone in children and adolescents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160566. [PMID: 36574544 DOI: 10.1016/j.scitotenv.2022.160566] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Perchlorate, nitrate, and thiocyanate are common thyroid disruptors in daily life and alter testosterone levels in animals. However, little is known about the effects of perchlorate, nitrate, and thiocyanate on serum total testosterone (TT) in the general population. The study was designed to assess the associations between urinary levels of perchlorate, nitrate, and thiocyanate and serum total testosterone (TT) in the general population. The present study utilized data from the 2011-2016 National Health and Nutritional Examination Survey (NHANES). A total of 6201 participants aged 6-79 with information on urinary perchlorate, nitrate, thiocyanate, and serum total testosterone were included. We conducted multiple linear regression models and Bayesian Kernel Machine Regression (BKMR) models to estimate the associations by sex-age groups. Children (ages 6-11) have higher levels of perchlorate and nitrate than the rest. After adjusting for covariates, urinary perchlorate was significantly negatively associated with serum TT in male adolescents (β = -0.1, 95 % confidence interval: -0.2, -0.01) and female children [-0.13, (-0.21, -0.05)]. Urinary nitrate was significantly negatively associated with serum TT in female children, while urinary thiocyanate was significantly positively associated with serum TT in female adults aged 20 to 49 [0.05 (0.02, 0.08)]. BKMR analysis indicated that no other interactions were found between urinary perchlorate, nitrate, and thiocyanate. Our findings suggested that urinary perchlorate, nitrate, and thiocyanate levels may relate to serum total testosterone levels in specific sex-age groups. We identified male adolescents and female children as are most sensitive subgroups where testosterone is susceptible to interference.
Collapse
Affiliation(s)
- Yingying Han
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dandan Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chenxi Zou
- Department of Respiratory and Critical Medicine, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yonggang Li
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Centre for Disease Control and Prevention, Wuhan, China; National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China.
| | - Feng Zhao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
46
|
Tan Y, Fu Y, Yao H, Wu X, Yang Z, Zeng H, Zeng Z, Liang H, Li Y, Jing C. Relationship between phthalates exposures and hyperuricemia in U.S. general population, a multi-cycle study of NHANES 2007-2016. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160208. [PMID: 36400295 DOI: 10.1016/j.scitotenv.2022.160208] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Phthalates exposure might cause kidney damage and a potential risk for hyperuricemia. However, direct evidence on phthalates and hyperuricemia is somewhat limited. OBJECTIVE To examine associations between 10 phthalates metabolites and hyperuricemia in a large-scale representative of the U.S. METHODS A cross-sectional study of 6865 participants aged over 20 from NHANES 2007-2016 was performed. All participants had complete data on ten phthalate metabolites (MECPP, MnBP, MEHHP, MEOHP, MiBP, cx-MiNP, MCOP, MCPP, MEP, MBzP), hyperuricemia, and covariates. We used multivariable logistics regression, restricted cubic splines (RCS) model, and Bayesian kernel machine regression (BKMR) models to assess single, nonlinear, and mixed relationships between phthalate metabolites and hyperuricemia. As a complement, we also assessed the relationship between phthalate metabolites and serum uric acid (SUA) levels. RESULTS The multivariable logistics regression showed that MECPP, MEOHP, MEHHP, MBzP, and MiBP were generally positively associated with hyperuricemia (PFDR < 0.05), especially in MiBP (Q3 (OR (95 %): 1.31 (1.02, 1.68)) and Q4 (OR (95 %): 1.68 (1.27, 2.24)), compared to Q1). All ten phthalate metabolites had a linear dose-response relationship with hyperuricemia in the RCS model (P for non-linear >0.05). BKMR showed that mixed phthalate metabolites were associated with a higher risk of hyperuricemia, with MBzP contributing the most (groupPIP = 0.999, condPIP = 1.000). We observed the consistent results between phthalate metabolites and SUA levels in three statistical models. The relationship between phthalate metabolites and hyperuricemia remained in the sensitivity analysis. CONCLUSIONS The present study suggests that exposure to phthalates, individually or jointly, might increase the risk of hyperuricemia. Since hyperuricemia influences on the quality of life, more explorations are needed to confirm these findings.
Collapse
Affiliation(s)
- Yuxuan Tan
- Department of Epidemiology, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou 510632, Guangdong, China
| | - Yingyin Fu
- Department of Epidemiology, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou 510632, Guangdong, China
| | - Huojie Yao
- Department of Epidemiology, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou 510632, Guangdong, China
| | - Xiaomei Wu
- Department of Epidemiology, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou 510632, Guangdong, China
| | - Zhiyu Yang
- Department of Epidemiology, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou 510632, Guangdong, China
| | - Huixian Zeng
- Department of Epidemiology, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou 510632, Guangdong, China
| | - Zurui Zeng
- Department of Epidemiology, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou 510632, Guangdong, China
| | - Huanzhu Liang
- Department of Epidemiology, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou 510632, Guangdong, China
| | - Yexin Li
- Department of Epidemiology, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou 510632, Guangdong, China
| | - Chunxia Jing
- Department of Epidemiology, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou 510632, Guangdong, China; Guangdong Key Laboratory of Environmental Exposure and Health, Jinan University, Guangzhou 510632, Guangdong, China.
| |
Collapse
|
47
|
Itoh H, Harada KH, Kasuga Y, Yokoyama S, Onuma H, Nishimura H, Kusama R, Yokoyama K, Zhu J, Harada Sassa M, Yoshida T, Tsugane S, Iwasaki M. Association between serum concentrations of perfluoroalkyl substances and global DNA methylation levels in peripheral blood leukocytes of Japanese women: A cross-sectional study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:159923. [PMID: 36356761 DOI: 10.1016/j.scitotenv.2022.159923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 10/05/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Global DNA methylation levels in peripheral blood leukocytes can be a biomarker for cancer risk; however, levels can be changed by various factors such as environmental pollutants. We investigated the association between serum concentrations of perfluoroalkyl substances (PFASs) and global DNA methylation levels of leukocytes in a cross-sectional study using the control group of a Japanese breast cancer case-control study [397 women with a mean age of 54.1 (SD 10.1) years]. Importantly, our analysis distinguished branched PFAS isomers as different from linear isomers. The serum concentrations of 20 PFASs were measured by in-port arylation gas-chromatography negative chemical ionization mass spectrometry. Global DNA methylation levels in peripheral blood leukocytes were measured using a luminometric methylation assay. Associations between log10-transformed serum PFAS concentrations and global DNA methylation levels were evaluated by regression coefficients in multivariable robust linear regression analyses. Serum concentrations of 13 PFASs were significantly associated with increased global DNA methylation levels in leukocytes. Global DNA methylation was significantly increased by 1.45 %-3.96 % per log10-unit increase of serum PFAS concentration. Our results indicate that exposure to PFASs may increase global DNA methylation levels in peripheral blood leukocytes of Japanese women.
Collapse
Affiliation(s)
- Hiroaki Itoh
- Department of Epidemiology and Environmental Health, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; Division of Epidemiology, National Cancer Center Institute for Cancer Control, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | - Kouji H Harada
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida, Kyoto 606-8501, Japan
| | - Yoshio Kasuga
- Department of Surgery, Nagano Matsushiro General Hospital, 183 Matsushiro, Matsushiro-cho, Nagano, Nagano 381-1231, Japan; Department of Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Shiro Yokoyama
- Department of Breast and Thyroid Surgery, Nagano Red Cross Hospital, 5-22-1 Wakasato, Nagano, Nagano 380-8582, Japan
| | - Hiroshi Onuma
- Department of Breast and Thyroid Surgery, Nagano Red Cross Hospital, 5-22-1 Wakasato, Nagano, Nagano 380-8582, Japan
| | - Hideki Nishimura
- Department of Chest Surgery and Breast Surgery, Nagano Municipal Hospital, 1333-1 Tomitake, Nagano, Nagano 381-8551, Japan
| | - Ritsu Kusama
- Department of Surgery, Hokushin General Hospital, 1-5-63 Nishi, Nakano, Nagano 383-8505, Japan
| | - Kazuhito Yokoyama
- Department of Epidemiology and Environmental Health, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; Department of Epidemiology and Social Medicine, International University of Health and Welfare Graduate School of Public Health, 4-1-26 Akasaka, Minato-ku, Tokyo 107-8402, Japan
| | - Jing Zhu
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida, Kyoto 606-8501, Japan; Department of Sanitary Technology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610061, China
| | - Mariko Harada Sassa
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida, Kyoto 606-8501, Japan
| | - Teruhiko Yoshida
- Division of Genetics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Shoichiro Tsugane
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Motoki Iwasaki
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Division of Cohort Research, National Cancer Center Institute for Cancer Control, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| |
Collapse
|
48
|
Wang R, Deng X, Ma Q, Ma F. Association between acrylamide exposure and sex hormones among premenopausal and postmenopausal women: NHANES, 2013-2016. J Endocrinol Invest 2023:10.1007/s40618-022-01976-3. [PMID: 36602706 DOI: 10.1007/s40618-022-01976-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/29/2022] [Indexed: 01/06/2023]
Abstract
PURPOSE Acrylamide (AA) is a potential carcinogen that mainly comes from fried, baked and roasted foods, and Hb adducts of AA (HbAA) and its metabolite glycidamide (HbGA) are the biomarkers of its exposure. Increasing evidence suggests that AA is associated with various hormone-related cancers. This study aims to explore the association of HbAA and HbGA with female serum sex hormone concentrations. METHODS 942 women from the National Health and Nutrition Examination Survey cycles (2013-2016) were included in this cross-sectional study. The associations between HbAA or HbGA or HbGA/HbAA and sex hormones were assessed by the multiple linear regression. Further stratified analyses were conducted to figure out the effects of menopausal status, BMI and smoking status on sex hormone levels. RESULTS Among all participants, 597 were premenopausal and 345 were postmenopausal. HbAA was positively associated with both two androgen indicators. Specifically, a ln-unit increase in HbAA was associated with 0.41 ng/dL higher ln(total testosterone, TT) (95% CI 0.00, 0.27) and 0.14 ng/dL higher ln(free testosterone) (95%CI 0.00, 0.28), respectively. However, HbGA concentrations had no association with sex hormones in the overall population. Additionally, HbGA/HbAA was negatively associated with TT and SHBG in the overall population as well as postmenopausal women. In stratified analysis, higher HbAA was associated with rising TT in postmenopausal women (β = 0.29, 95%CI 0.04, 0.53) and underweight/normal-weight women (β = 0.18, 95%CI 0.03, 0.33). Other indicators had no significant association detected in estradiol and sex hormone-binding globulin. CONCLUSION Our results revealed that HbAA was positively associated with androgen concentrations, especially in postmenopausal and BMI < 25 women.
Collapse
Affiliation(s)
- R Wang
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - X Deng
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, Sichuan Province, China
| | - Q Ma
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - F Ma
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China.
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China.
| |
Collapse
|
49
|
Jain RB, Ducatman A. Serum concentrations of selected perfluoroalkyl substances for US females compared to males as they age. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156891. [PMID: 35753482 DOI: 10.1016/j.scitotenv.2022.156891] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 01/09/2023]
Abstract
Gender-age specific linear statistical models were fitted to analyze gender-based differences in serum concentrations of PFOA, PFNA, PFHxS, and PFOS for US adults and adolescents (N = 17,932) and children age < 12 years (N = 637) using nationally representative data for US for 2003-2018. Around the age of about 11-12 years for PFOS, PFNA, and PFNA, and around 15 years for PFOA, females begin to have reliably lower serum PFAS than males. This divergence is maximized around the ages of about 35 to 40 years for the alkylate compounds PFOA and PFNA, and from around 24-52 years for the sulfonate compounds PFOS and PFHxS. For example, for PFOS, gender divergence was 1.15 ng/mL at age 15, compared to 5.6 ng/mL at the age of 37 years. Uniquely, PFOS remained lower in females in most years after age 56, a contrast to the convergence in other PFAS studied. For males, increasing patterns were followed by somewhat decreasing patterns of concentration for most PFAS, the reverse was observed for females. The findings have implications for study design. Based on the results provided in detailed tables and figures for this study, we recommend separate analyses of male and female data. In addition, female serum concentration data should be considered for stratified analysis for pre- and post-menopausal time periods. From a mechanistic perspective, the data add support to existing questions about influences on gender differences in serum PFAS that may be attributed to causes other than menstruation, pregnancy, and lactation. These are amenable to further study.
Collapse
Affiliation(s)
- Ram B Jain
- Independent Researcher, Loganville, GA, USA.
| | - Alan Ducatman
- West Virginia University School of Public Health, Morgantown, WV, USA
| |
Collapse
|
50
|
Liang H, Wu X, Yao H, Weng X, Liu S, Chen J, Li Y, Wu Y, Wen L, Chen Q, Jing C. Association of urinary metabolites of non-persistent pesticides with serum sex hormones among the US females: NHANES 2013-2014. CHEMOSPHERE 2022; 300:134577. [PMID: 35421444 DOI: 10.1016/j.chemosphere.2022.134577] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/25/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Evidence indicated the possibility of non-persistent pesticides disrupting the homeostasis of sex hormones. However, few studies have focused on this relationship in females. We aimed to explore the relationship between non-persistent pesticide exposure and sex hormones among the US females from the National Health and Nutrition Examination Survey 2013-2014. METHODS A total of 790 females, including girls (6-11 years), female adolescents (12-19 years), and adult females (>19 years), were enrolled in this study. Age stratified associations of individual non-persistent pesticide metabolites and their mixtures with sex hormones were analyzed by weighted multiple linear regression and Bayesian kernel machine regression (BKMR) using spot urinary non-persistent pesticide measurement, including 2,4-dichlorophenoxyacetic acid (2,4-D), 3,5,6-trichloropyridinol (TCPY), para-nitrophenol (PNP) and 3-phenoxybenzoic acid (3-PBA), and three serum sex hormones [total testosterone (TT), estradiol (E2) and sex hormone binding globulin (SHBG)]. RESULTS In girls, weighted multivariate linear regression indicated that both 2,4-D and PNP were negatively associated with TT, and TCPY was inversely associated with SHBG. In female adolescents, TCPY was negatively associated with TT and E2, and 3-PBA was negatively associated with SHBG; positive associations were detected both in 2,4-D with SHBG, and in PNP with TT. In adult females, a higher concentration of 3-PBA was associated with higher levels of TT. The BKMR model showed that in female adolescents, the concentrations of pesticide metabolite mixtures at or above the 55th percentile were negatively related to the levels of E2 compared with their mixtures at 50th percentile, and an inverse U-shaped exposure-response function between PNP and E2 was found. CONCLUSIONS Associations between the four non-persistent pesticide metabolites and serum sex hormones were identified in the US females from NHANES 2013-2014 and these associations were age dependent, especially in adolescents. Large-scale cohort studies are needed to confirm these findings and elucidate the potential biological mechanisms.
Collapse
Affiliation(s)
- Huanzhu Liang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Xiaomei Wu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Huojie Yao
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Xueqiong Weng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Shan Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Jingmin Chen
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Yexin Li
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Yingying Wu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Lin Wen
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Qian Chen
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Chunxia Jing
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China; Guangdong Key Laboratory of Environmental Exposure and Health, Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|