1
|
Chen R, Chai X, Zhang Y, Zhou T, Xia Y, Jiang X, Lv B, Zhang J, Zhou L, Tian X, Wang R, Mao L, Zhao F, Zhang H, Hu J, Qiu J, Zou Z, Chen C. Novel role of FTO in regulation of gut-brain communication via Desulfovibrio fairfieldensis-produced hydrogen sulfide under arsenic exposure. Gut Microbes 2025; 17:2438471. [PMID: 39852343 PMCID: PMC11776478 DOI: 10.1080/19490976.2024.2438471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 10/26/2024] [Accepted: 11/26/2024] [Indexed: 01/26/2025] Open
Abstract
Fat mass and obesity-associated protein (FTO) is the key demethylase that reverses the abnormally altered N6-methyladenosine (m6A) modification in eukaryotic cells under environmental pollutants exposure. Arsenic is an environmental metalloid and can cause severe symptoms in human mainly through drinking water. However, there is no specific treatment for its toxic effects due to the uncovered mechanisms. We previously revealed that exposure to arsenic increased the level of m6A via down-regulation of FTO, which might serve as a potential target for intervention against arsenic-related disorders. In this study, our results demonstrated that chronic exposure to arsenic significantly disrupted the intestinal barrier and microenvironment. Also, this administration resulted in the enhancement of m6A modification and the reduction of FTO expression in the intestine. By using both CRISPR/Cas9-based FTO knock-in strategy and adeno-associated virus (AAV)-mediated overexpression of FTO in the intestine, we established for the first time that up-regulation of FTO remarkably ameliorated arsenic-induced disruption of intestinal barriers and altered microenvironment of mice. We also firstly identified a dominant gut microbial species, Desulfovibrio fairfieldensis, which was sharply reduced in arsenic-exposed mice, was able to proceed arsenic-induced neurobehavioral impairments by declining the levels of its major metabolite hydrogen sulfide. Administration of Desulfovibrio fairfieldensis could significantly alleviate the neurotoxicity of arsenic. Intriguingly, the beneficial effects of FTO against arsenic neurotoxicity possibly occurred through a novel gut-brain communication via Desulfovibrio fairfieldensis and its produced hydrogen sulfide. Collectively, these findings will provide new ideas for understanding the mechanisms of arsenic-induced toxic effects from a gut-brain communication perspective, and will assist the development of explicit intervention strategy via regulation of a new potential target FTO for prevention and treatment against arsenic-related both intestinal and neurological disorders.
Collapse
Affiliation(s)
- Ruonan Chen
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Xiaoqin Chai
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yunxiao Zhang
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Tianxiu Zhou
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yinyin Xia
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Xuejun Jiang
- Center of Experimental Teaching for Public Health, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Bo Lv
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Jun Zhang
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, People’s Republic of China
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Lixiao Zhou
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Xin Tian
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ruonan Wang
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Lejiao Mao
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Feng Zhao
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Hongyang Zhang
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Jun Hu
- Department of Neurology, Southwest Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Jingfu Qiu
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Zhen Zou
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, People’s Republic of China
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Chengzhi Chen
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
2
|
Zhou L, Chen SZ, Li YY, Xue RY, Duan X, Lin XY, Chen S, Zhou D, Li HB. Gut Dysbiosis Exacerbates Intestinal Absorption of Cadmium and Arsenic from Cocontaminated Rice in Mice Due to Impaired Intestinal Barrier Functions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:3459-3471. [PMID: 39945512 DOI: 10.1021/acs.est.5c00817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Globally, humans face gut microbiota dysbiosis; however, its impact on the bioavailability of cadmium (Cd) and arsenic (As) from rice consumption─a major source of human exposure to these metals─remains unclear. In this study, we compared Cd and As accumulation in the liver and kidneys of mice with disrupted gut microbiota (administered cefoperazone sodium), restored microbiota (administered probiotics and prebiotics following antibiotic exposure), and normal microbiota, all after consuming cocontaminated rice. Compared to normal mice, microbiota-disrupted mice exhibited 30.9-119% and 30.0-100% (p < 0.05) higher Cd and As levels in tissues after a 3 week exposure period. The increased Cd and As bioavailability was not due to changes in the duodenal expression of Cd-related transporters or As speciation biotransformation in the intestine. Instead, it was primarily attributed to a damaged mucus layer and depleted tight junctions associated with gut dysbiosis, which increased intestinal permeability. These mechanisms were confirmed by observing 34.3-74.3% and 25.0-75.0% (p < 0.05) lower Cd and As levels in the tissues of microbiota-restored mice with rebuilt intestinal barrier functions. This study enhances our understanding of the increased risk of dietary metal(loid) exposure in individuals with gut microbiota dysbiosis due to impaired intestinal barrier functions.
Collapse
Affiliation(s)
- Lei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Sheng-Zhi Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Yuan-Yuan Li
- School of Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Rong-Yue Xue
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xu Duan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xin-Ying Lin
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Shan Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Hong-Bo Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
3
|
Mukherjee M, Brandenburg L, Dong Y, Pfister S, Sidler A, Ramette A, Mestrot A, Chávez-Capilla T, Hapfelmeier S. Microbiota-dependent in vivo biotransformation, accumulation, and excretion of arsenic from arsenobetaine-rich diet. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136463. [PMID: 39536359 DOI: 10.1016/j.jhazmat.2024.136463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Arsenobetaine (AB), a major organic arsenic (As) species in seafood, is regarded as safe by current regulatory assessments due to low toxicity and rapid unmodified urinary excretion. This notion has been challenged by reports of AB metabolism by intestinal bacteria in vitro and more recent evidence of in vivo AB metabolism in mice. However, these studies did not establish the causal role of intestinal bacteria in AB transformation in vivo. To address this, we employed gnotobiology and compared the biotransformation of As from naturally AB-rich rodent diet in mice that were either germ-free or colonized with gut microbiota of varying microbial diversity. Our results confirm the in vivo metabolism of AB in the intestine under chronic dietary exposure. The transformation of ingested As was dependent on the presence/absence and complexity of the gut microbiota. Notably, specific toxic As species were absent under germ-free condition. Furthermore, gut microbial colonization was linked to increased As accumulation in the intestinal lumen as well as systemically, along with delayed clearance from the body. These findings emphasize the mammalian gut microbiota as a critical factor in evaluating the safety of AB-accumulating seafoods.
Collapse
Affiliation(s)
- Mohana Mukherjee
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, GCB, University of Bern, Bern, Switzerland.
| | - Lisa Brandenburg
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland.
| | - Yuan Dong
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland.
| | | | - Anika Sidler
- Institute of Geography, University of Bern, Bern, Switzerland.
| | - Alban Ramette
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland.
| | - Adrien Mestrot
- Institute of Geography, University of Bern, Bern, Switzerland.
| | | | | |
Collapse
|
4
|
Zhai W, Guo Q, Wang N, Liu X, Liu D, Zhou Z, Wang P. Antibiotics alter the metabolic profile of metolachlor in soil-plant system by disturbing the detoxifying process and oxidative stress. BIORESOURCE TECHNOLOGY 2024; 406:130855. [PMID: 38851596 DOI: 10.1016/j.biortech.2024.130855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/10/2024]
Abstract
Antibiotics are widely detected in farmland, which may influence the environmental behavior and risks of the coexisting pesticide. In this work, the effects of antibiotics on metolachlor transformation in soil-pea and the risk of metolachlor to earthworm were assessed, and the mechanism was explored in view of detoxifying process and oxidative stress. Antibiotics affected not the degradation rate but the metabolic profile of metolachlor. In soil, the content of metabolites oxaloacetic acid (OA) and ethane sulfonic acid (ESA) was decreased and dechlorometolachlor (DCL) was increased by antibiotics. In pea, the accumulation of metolachlor, DCL and ESA was decreased, while OA was increased by antibiotics. The changed transformation of metolachlor affected the risk to earthworm according to risk quote assessment. In further research, it was found that cytochrome P450 (CYP450) enzyme was reduced by 12.3% - 30.4% in soil and 12.4% - 23.6% in pea, which might due to excessive ROS accumulation induced by antibiotics, thus affecting the transformation and metabolite profile of metolachlor in soil-plant system.
Collapse
Affiliation(s)
- Wangjing Zhai
- Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Qiqi Guo
- Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Nan Wang
- Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Xueke Liu
- Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Donghui Liu
- Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Zhiqiang Zhou
- Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Peng Wang
- Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China.
| |
Collapse
|
5
|
Chen S, Gan H, Lin X, Wang B, Li M, Ma LQ, Zhou D, Li H. Microplastic co-exposure elevates cadmium accumulation in mouse tissue after rice consumption: Mechanisms and health implications. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135218. [PMID: 39024771 DOI: 10.1016/j.jhazmat.2024.135218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/04/2024] [Accepted: 07/14/2024] [Indexed: 07/20/2024]
Abstract
Rice cadmium (Cd) and microplastics are prevalent contaminants, posing a co-exposure threat to humans by means of dietary intake. To assess whether co-exposure of microplastics affects the bioavailability of rice Cd, mice were exposed to Cd-contaminated rice with microplastic co-exposure. We found that polyethylene (PE), polystyrene (PS), polypropylene (PP), and polyamide (PA) microplastic co-exposure via diet consumption (2 μg g-1) caused 1.17-1.38-fold higher Cd accumulation in tissue of mice fed by Cd-rice. For mice with co-exposure of PE microplastics, the higher rice-Cd bioavailability corresponded to colonization of Lactobacillus reuteri (38.9 % vs 17.5 %) in the gut compared to control mice, which caused higher production of gut metabolites particularly peptides, likely causing a 'side effect' of elevating Cd solubility in the intestinal lumen. In addition, abundance of sphingosine 1-phosphate in the gut of mice was reduced under PE microplastic exposure, which may reduce intracellular calcium ions (Ca2+) in enterocytes and form a weaker competition in pumping of intracellular Ca2+ and Cd2+ across the basolateral membrane of enterocytes, leading to higher Cd2+ transport efficiency. The results suggest elevated Cd exposure risk from rice consumption with microplastic co-exposure at environmentally relevant low concentrations.
Collapse
Affiliation(s)
- Shan Chen
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Haijun Gan
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xinying Lin
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Boxuan Wang
- International Department of Nanjing No.13 Middle School, No. 14 Xijiadatang Road, Nanjing 210008, China
| | - Mengya Li
- Jiangsu Province Engineering Research Center of Soil and Groundwater Pollution Prevention and Control, Jiangsu Provincial Academy of Environmental Science, Nanjing 210036, China
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hongbo Li
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
6
|
Bi X, Wang Y, Qiu A, Wu S, Zhan W, Liu H, Li H, Qiu R, Chen G. Effects of arsenic on gut microbiota and its bioaccumulation and biotransformation in freshwater invertebrate. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134623. [PMID: 38754231 DOI: 10.1016/j.jhazmat.2024.134623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
This study aimed to investigate the impact of arsenic stress on the gut microbiota of a freshwater invertebrate, specifically the apple snail (Pomacea canaliculata), and elucidate its potential role in arsenic bioaccumulation and biotransformation. Waterborne arsenic exposure experiments were conducted to characterize the snail's gut microbiomes. The results indicate that low concentration of arsenic increased the abundance of gut bacteria, while high concentration decreased it. The dominant bacterial phyla in the snail were Proteobacteria, Firmicutes, Bacteroidota, and Actinobacteriota. In vitro analyses confirmed the critical involvement of the gut microbiota in arsenic bioaccumulation and biotransformation. To further validate the functionality of the gut microbiota in vivo, antibiotic treatment was administered to eliminate the gut microbiota in the snails, followed by exposure to waterborne arsenic. The results demonstrated that antibiotic treatment reduced the total arsenic content and the proportion of arsenobetaine in the snail's body. Moreover, the utilization of physiologically based pharmacokinetic modeling provided a deeper understanding of the processes of bioaccumulation, metabolism, and distribution. In conclusion, our research highlights the adaptive response of gut microbiota to arsenic stress and provides valuable insights into their potential role in the bioaccumulation and biotransformation of arsenic in host organisms. ENVIRONMENTAL IMPLICATION: Arsenic, a widely distributed and carcinogenic metalloid, with significant implications for its toxicity to both humans and aquatic organisms. The present study aimed to investigate the effects of As on gut microbiota and its bioaccumulation and biotransformation in freshwater invertebrates. These results help us to understand the mechanism of gut microbiota in aquatic invertebrates responding to As stress and the role of gut microbiota in As bioaccumulation and biotransformation.
Collapse
Affiliation(s)
- Xiaoyang Bi
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yan Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Aiting Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Shengze Wu
- Guangdong Testing Institute of Product Quality Supervision, Foshan 528300, China
| | - Wenhui Zhan
- Guangdong Testing Institute of Product Quality Supervision, Foshan 528300, China
| | - Hui Liu
- Guangdong Testing Institute of Product Quality Supervision, Foshan 528300, China
| | - Huashou Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Rongliang Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China.
| | - Guikui Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
7
|
Chen XC, Huang ZJ, Wang A, Yu JY, Zhang JY, Xiao ZJ, Cui XY, Liu XH, Yin NY, Cui YS. Immobilisation remediation of arsenic-contaminated soils with promising CaAl-layered double hydroxide and bioavailability, bioaccessibility, and speciation-based health risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134096. [PMID: 38522195 DOI: 10.1016/j.jhazmat.2024.134096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
Arsenic (As)-contaminated soil poses great health risk to human mostly through inadvertent oral exposure. We investigated CaAl-layered double hydroxide (CaAl-LDH), a promising immobilising agent, for the remediation of As-contaminated Chinese soils. The effects on specific soil properties and As fractionation were analyzed, and changes in the health risk of soil As were accurately assessed by means of advanced in vivo mice model and in vitro PBET-SHIME model. Results showed that the application of CaAl-LDH significantly increased soil pH and concentration of Fe and Al oxides, and effectively converted active As fractions into the most stable residual fraction, guaranteeing long-term remediation stability. Based on in vivo test, As relative bioavailability was significantly reduced by 37.75%. Based on in vitro test, As bioaccessibility in small intestinal and colon phases was significantly reduced by 25.65% and 28.57%, respectively. Furthermore, As metabolism (reduction and methylation) by the gut microbiota inhabiting colon was clearly observed. After immobilisation with CaAl-LDH, the concentration of bioaccessible As(Ⅴ) in the colon fluid was significantly reduced by 61.91%, and organic As (least toxic MMA(V) and DMA(V)) became the main species, which further reduced the health risk of soil As. In summary, CaAl-LDH proved to be a feasible option for immobilisation remediation of As-contaminated soils, and considerable progress was made in relevant health risk assessment.
Collapse
Affiliation(s)
- Xiao-Chen Chen
- Innovation Center for Soil Remediation and Restoration Technologies, College of Environment and Safety Engineering, Fuzhou University, 2 Wulongjiangbei Road, Fuzhou 350108, PR China
| | - Zhen-Jia Huang
- Innovation Center for Soil Remediation and Restoration Technologies, College of Environment and Safety Engineering, Fuzhou University, 2 Wulongjiangbei Road, Fuzhou 350108, PR China; Zhongke Tongheng Environmental Technology Co. Ltd.,1300 Jimei Road, Xiamen 361021, PR China
| | - Ao Wang
- Innovation Center for Soil Remediation and Restoration Technologies, College of Environment and Safety Engineering, Fuzhou University, 2 Wulongjiangbei Road, Fuzhou 350108, PR China
| | - Jian-Ying Yu
- Innovation Center for Soil Remediation and Restoration Technologies, College of Environment and Safety Engineering, Fuzhou University, 2 Wulongjiangbei Road, Fuzhou 350108, PR China; The Second Geological Exploration Institute, China Metallurgical Geology Bureau, 1 Kejidong Road, Fuzhou 350108, PR China
| | - Jian-Yu Zhang
- Jiangsu Longchang Chemical Co. Ltd., 1 Qianjiang Road, Rugao 226532, PR China
| | - Zi-Jun Xiao
- Quanzhou Yangyu Soil Technology Co. Ltd., 9 Huize Road, Quanzhou 362100, PR China
| | - Xiao-Yu Cui
- School of Environmental Science and Engineering, Tianjin University, 135 Yaguan Road, Tianjin 300350, PR China
| | - Xian-Hua Liu
- School of Environmental Science and Engineering, Tianjin University, 135 Yaguan Road, Tianjin 300350, PR China
| | - Nai-Yi Yin
- College of Resources and Environment, University of Chinese Academy of Sciences, 380 Huaibeizhuang, Beijing 101408, PR China
| | - Yan-Shan Cui
- College of Resources and Environment, University of Chinese Academy of Sciences, 380 Huaibeizhuang, Beijing 101408, PR China.
| |
Collapse
|
8
|
Liu Q, Liu Y, Zhang J, Guan Y, Zhou Q, Yan Y, Li W, An J, He M. Gut microbiota deficiency aggravates arsenic-induced toxicity by affecting bioaccumulation and biotransformation in C57BL/6J mice. Food Chem Toxicol 2024; 186:114564. [PMID: 38438009 DOI: 10.1016/j.fct.2024.114564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/20/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
Gut microbiome can influence the arsenic metabolism in mammals. Confusingly, gut microbiome was found to both mitigate and exacerbate arsenic toxicity. In this study, the role of gut microbiota in arsenic bioaccumulation, biotransformation, and organ toxicity in C57BL/6J mice was investigated. Gut microbiota deficiency model was established by antibiotics (Ab) cocktail AVNM. Conventional and gut microbiota deficiency mice were exposed to NaAsO2 for 4 weeks. Comparing with Ab-treated mice, the total arsenic (tAs) in the tissues was significantly reduced in conventional mice, which was opposed to the results of those in feces. Interestingly, dimethyl arsenite (DMA) was the most abundant metabolite in the feces of Ab-treated mice, while arsenic acid (AsV) had the highest proportion in the feces of conventional mice with approximately 16-fold than that in Ab-treated mice, indicating the critical role of gut microbiota in metabolizing arsenious acid (AsIII) to AsV. Additionally, the liver and kidney in Ab-treated mice showed more severe pathological changes and apoptosis. The significant increased level of ionized calcium-binding adapter molecule 1 (IBA-1) was also found in the brains of Ab-treated mice. Our results indicated that gut microbiota protected the host from arsenic-induced toxicity in liver, kidney, and brain by reducing the arsenic accumulation.
Collapse
Affiliation(s)
- Qianying Liu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuenan Liu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jiazhen Zhang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Youbing Guan
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qihang Zhou
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yan Yan
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weiya Li
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jun An
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Meian He
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
9
|
Santiago MSA, Avellar MCW, Perobelli JE. Could the gut microbiota be capable of making individuals more or less susceptible to environmental toxicants? Toxicology 2024; 503:153751. [PMID: 38354972 DOI: 10.1016/j.tox.2024.153751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024]
Abstract
Environmental toxicants are chemical substances capable to impair environmental quality and exert adverse effects on humans and other animals. The main routes of exposure to these pollutants are through the respiratory tract, skin, and oral ingestion. When ingested orally, they will encounter trillions of microorganisms that live in a community - the gut microbiota (GM). While pollutants can disrupt the GM balance, GM plays an essential role in the metabolism and bioavailability of these chemical compounds. Under physiological conditions, strategies used by the GM for metabolism and/or excretion of xenobiotics include reductive and hydrolytic transformations, lyase and functional group transfer reactions, and enzyme-mediated functional transformations. Simultaneously, the host performs metabolic processes based mainly on conjugation, oxidation, and hydrolysis reactions. Thus, due to the broad variety of bacterial enzymes present in GM, the repertoire of microbial transformations of chemicals is considered a key component of the machinery involved in the metabolism of pollutants in humans and other mammals. Among pollutants, metals deserve special attention once contamination by metals is a worldwide problem, and their adverse effects can be observed even at very low concentrations due to their toxic properties. In this review, bidirectional interaction between lead, arsenic, cadmium, and mercury and the host organism and its GM will be discussed given the most recent literature, presenting an analysis of the ability of GM to alter the host organism's susceptibility to the toxic effects of heavy metals, as well as evaluating the extent to which interventions targeting the microbiota could be potential initiatives to mitigate the adverse effects resulting from poisoning by heavy metals. This study is the first to highlight the overlap between some of the bacteria found to be altered by metal exposure and the bacteria that also aid the host organism in the metabolism of these metals. This could be a key factor to determine the beneficial species able to minimize the toxicity of metals in future therapeutic approaches.
Collapse
Affiliation(s)
- Marcella S A Santiago
- Laboratory of Experimental Toxicology - LATOEX, Universidade Federal de São Paulo, Instituto do Mar, Carvalho de Mendonça, 144, Santos, SP 11070-100, Brazil
| | - Maria Christina W Avellar
- Department of Pharmacology, Universidade Federal de São Paulo - Escola Paulista de Medicina, Três de Maio, 100, São Paulo, SP 04044-020, Brazil
| | - Juliana E Perobelli
- Laboratory of Experimental Toxicology - LATOEX, Universidade Federal de São Paulo, Instituto do Mar, Carvalho de Mendonça, 144, Santos, SP 11070-100, Brazil.
| |
Collapse
|
10
|
Zhong X, Zhang G, Huang J, Chen L, Shi Y, Wang D, Zheng Q, Su H, Li X, Wang C, Zhang J, Guo L. Effects of Intestinal Microbiota on the Biological Transformation of Arsenic in Zebrafish: Contribution and Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2247-2259. [PMID: 38179619 DOI: 10.1021/acs.est.3c08010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Both the gut microbiome and their host participate in arsenic (As) biotransformation, while their exact roles and mechanisms in vivo remain unclear and unquantified. In this study, as3mt-/- zebrafish were treated with tetracycline (TET, 100 mg/L) and arsenite (iAsIII) exposure for 30 days and treated with probiotic Lactobacillus rhamnosus GG (LGG, 1 × 108 cfu/g) and iAsIII exposure for 15 days, respectively. Structural equation modeling analysis revealed that the contribution rates of the intestinal microbiome to the total arsenic (tAs) and inorganic As (iAs) metabolism approached 44.0 and 18.4%, respectively. Compared with wild-type, in as3mt-/- zebrafish, microbial richness and structure were more significantly correlated with tAs and iAs, and more differential microbes and microbial metabolic pathways significantly correlated with arsenic metabolites (P < 0.05). LGG supplement influenced the microbial communities, significantly up-regulated the expressions of genes related to As biotransformation (gss and gst) in the liver, down-regulated the expressions of oxidative stress genes (sod1, sod2, and cat) in the intestine, and increased arsenobetaine concentration (P < 0.05). Therefore, gut microbiome promotes As transformation and relieves As accumulation, playing more active roles under iAs stress when the host lacks key arsenic detoxification enzymes. LGG can promote As biotransformation and relieve oxidative stress under As exposure.
Collapse
Affiliation(s)
- Xiaoting Zhong
- Affiliated Hospital of Guangdong Medical University & Zhanjiang Key Laboratory of Zebrafish Model for Development and Disease, Guangdong Medical University, Zhanjiang 524001, China
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang 524045, PR China
| | - Guiwei Zhang
- Shenzhen Academy of Metrology and Quality Inspection, Shenzhen 518000, China
| | - Jieliang Huang
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Linkang Chen
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Yingying Shi
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Dongbin Wang
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Qiuyi Zheng
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Hongtian Su
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Xiang Li
- Affiliated Hospital of Guangdong Medical University & Zhanjiang Key Laboratory of Zebrafish Model for Development and Disease, Guangdong Medical University, Zhanjiang 524001, China
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Chunchun Wang
- Affiliated Hospital of Guangdong Medical University & Zhanjiang Key Laboratory of Zebrafish Model for Development and Disease, Guangdong Medical University, Zhanjiang 524001, China
| | - Jingjing Zhang
- Affiliated Hospital of Guangdong Medical University & Zhanjiang Key Laboratory of Zebrafish Model for Development and Disease, Guangdong Medical University, Zhanjiang 524001, China
| | - Lianxian Guo
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
11
|
Zhang YS, Juhasz AL, Xi JF, Ma LQ, Zhou D, Li HB. Dietary Galactooligosaccharides Supplementation as a Gut Microbiota-Regulating Approach to Lower Early Life Arsenic Exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19463-19472. [PMID: 37943691 DOI: 10.1021/acs.est.3c07168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Prebiotics may stimulate beneficial gut microorganisms. However, it remains unclear whether they can lower the oral bioavailability of early life arsenic (As) exposure via regulating gut microbiota and altering As biotransformation along the gastrointestinal (GI) tract. In this study, weanling mice were exposed to arsenate (iAsV) via diet (7.5 μg As g-1) amended with fructooligosaccharides (FOS), galactooligosaccharides (GOS), and inulin individually at 1% and 5% (w/w). Compared to As exposure control mice, As concentrations in mouse blood, liver, and kidneys and As urinary excretion factor (UEF) were reduced by 43.7%-74.1% when treated with 5% GOS. The decrease corresponded to a significant proliferation of Akkermansia and Psychrobacter, reduced percentage of inorganic arsenite (iAsIII) and iAsV by 47.4% and 65.4%, and increased proportion of DMAV in intestinal contents by 101% in the guts of mice treated with 5% GOS compared to the As control group. In contrast, FOS and inulin either at l% or 5% did not reduce As concentration in mouse blood, liver, and kidneys or As UEF. These results suggest that GOS supplementation may be a gut microbiota-regulating approach to lower early life As exposure via stimulating the growth of Akkermansia and Psychrobacter and enhancing As methylation in the GI tract.
Collapse
Affiliation(s)
- Yao-Sheng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Albert L Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Jin-Feng Xi
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hong-Bo Li
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
12
|
Zhou L, Lin XY, Xue RY, Yang JL, Zhang YS, Zhou D, Li HB. Mechanistic Insights into Effects of Different Dietary Polyphenol Supplements on Arsenic Bioavailability, Biotransformation, and Toxicity Based on a Mouse Model. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15422-15431. [PMID: 37797956 DOI: 10.1021/acs.est.3c05556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Arsenic (As) exposure has been related to many diseases, including cancers. Given the antioxidant and anti-inflammatory properties, the dietary supplementation of polyphenols may alleviate As toxicity. Based on a mouse bioassay, this study investigated the effects of chlorogenic acid (CA), quercetin (QC), tannic acid (TA), resveratrol (Res), and epigallocatechin gallate (EGCG) on As bioavailability, biotransformation, and toxicity. Intake of CA, QC, and EGCG significantly (p < 0.05) increased total As concentrations in liver (0.48-0.58 vs 0.27 mg kg-1) and kidneys (0.72-0.93 vs 0.59 mg kg-1) compared to control mice. Upregulated intestinal expression of phosphate transporters with QC and EGCG and proliferation of Lactobacillus in the gut of mice treated with CA and QC were observed, facilitating iAsV absorption via phosphate transporters and intestinal As solubility via organic acid metabolites. Although As bioavailability was elevated, serum levels of alpha fetoprotein and carcinoembryonic antigen of mice treated with all five polyphenols were reduced by 13.1-16.1% and 9.83-17.5%, suggesting reduced cancer risk. This was mainly due to higher DMAV (52.1-67.6% vs 31.4%) and lower iAsV contribution (4.95-10.7% vs 27.9%) in liver of mice treated with polyphenols. This study helps us develop dietary strategies to lower As toxicity.
Collapse
Affiliation(s)
- Lei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xin-Ying Lin
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Rong-Yue Xue
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jin-Lei Yang
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yao-Sheng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hong-Bo Li
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
13
|
Wang H, Juhasz AL, Zhang Y, Zhang L, Ma LQ, Zhou D, Li H. Alcohol consumption promotes arsenic absorption but reduces tissue arsenic accumulation in mice. ECO-ENVIRONMENT & HEALTH (ONLINE) 2023; 2:107-116. [PMID: 38074988 PMCID: PMC10702898 DOI: 10.1016/j.eehl.2023.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/11/2023] [Accepted: 06/25/2023] [Indexed: 01/12/2024]
Abstract
Alcohol consumption alters gut microflora and damages intestinal tight junction barriers, which may affect arsenic (As) oral bioavailability. In this study, mice were exposed to arsenate in the diet (6 μg/g) over a 3-week period and gavaged daily with Chinese liquor (0.05 or 0.10 mL per mouse per day). Following ingestion, 78.0% and 72.9% of the total As intake was absorbed and excreted via urine when co-exposed with liquor at daily doses of 0.05 or 0.10 mL, significantly greater than when As was supplied alone (44.7%). Alcohol co-exposure significantly altered gut microbiota but did not significantly alter As biotransformation in the intestinal tract or tissue. Significantly lower relative mRNA expression was observed for genes encoding for tight junctions in the ileum of liquor co-exposed mice, contributing to greater As bioavailability attributable to enhanced As absorption via the intestinal paracellular pathway. However, As concentration in the liver, kidney, and intestinal tissue of liquor-treated mice was decreased by 24.4%-42.6%, 27.5%-38.1%, and 28.1%-48.9% compared to control mice. This was likely due to greater renal glomerular filtration rate induced by alcohol, as suggested by significantly lower expression of genes encoding for renal tight junctions. In addition, in mice gavaged daily with 0.05 mL liquor, the serum antidiuretic hormone level was significantly lower than control mice (2.83 ± 0.59 vs. 5.40 ± 1.10 pg/mL), suggesting the diuretic function of alcohol consumption, which may facilitate As elimination via urine. These results highlight that alcohol consumption has a significant impact on the bioavailability and accumulation of As.
Collapse
Affiliation(s)
- Hongyu Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Albert L. Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Yaosheng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Lizhu Zhang
- Department of Nanxin Pharm, Nanjing 210000, China
| | - Lena Q. Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hongbo Li
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
14
|
Xue XM, Wang HY, Yu XW, Hu S, Huang LJ, Yang HC, Gong L, Yang K, Li HB, Zhu YG. Gut Microbiota Control the Bioavailability and Metabolism of Organoarsenicals of Seaweeds in Mice after Oral Ingestion. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37236912 DOI: 10.1021/acs.est.2c09167] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Edible seaweed consumption is an essential route of human exposure to complex organoarsenicals, including arsenosugars and arsenosugar phospholipids. However, the effects of gut microbiota on the metabolism and bioavailability of arsenosugars in vivo are unknown. Herein, two nori and two kelp samples with phosphate arsenosugar and sulfonate arsenosugar, respectively, as the predominant arsenic species, were administered to normal mice and gut microbiota-disrupted mice treated with the broad-spectrum antibiotic cefoperazone for 4 weeks. Following exposure, the community structures of the gut microbiota, total arsenic concentrations, and arsenic species in excreta and tissues were analyzed. Total arsenic excreted in feces and urine did not differ significantly between normal and antibiotic-treated mice fed with kelp samples. However, the total urinary arsenic of normal mice fed with nori samples was significantly higher (p < 0.05) (urinary arsenic excretion factor, 34-38 vs 5-7%), and the fecal total arsenic was significantly lower than in antibiotic-treated mice. Arsenic speciation analysis revealed that most phosphate arsenosugars in nori were converted to arsenobetaine (53.5-74.5%) when passing through the gastrointestinal tract, whereas a large portion of sulfonate arsenosugar in kelp was resistant to speciation changes and was excreted in feces intact (64.1-64.5%). Normal mice exhibited greater oral bioavailability of phosphate arsenosugar from nori than sulfonate arsenosugar from kelp (34-38 vs 6-9%). Our work provides insights into organoarsenical metabolism and their bioavailability in the mammalian gut.
Collapse
Affiliation(s)
- Xi-Mei Xue
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Hong-Yu Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xin-Wei Yu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
- Zhejiang Marine Development Research Institute, Zhoushan 316021, China
- Zhoushan Centers for Disease Control and Prevention, Zhoushan 316021, China
| | - Shilin Hu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Li-Jie Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Hui-Cheng Yang
- Zhejiang Marine Development Research Institute, Zhoushan 316021, China
| | - Like Gong
- Hangzhou Centers for Disease Control and Prevention, Hangzhou 310016, China
| | - Kai Yang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Hong-Bo Li
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
15
|
Chen S, Yang JL, Zhang YS, Wang HY, Lin XY, Xue RY, Li MY, Li SW, Juhasz AL, Ma LQ, Zhou DM, Li HB. Microplastics affect arsenic bioavailability by altering gut microbiota and metabolites in a mouse model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121376. [PMID: 36863442 DOI: 10.1016/j.envpol.2023.121376] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Microplastics exposure is a new human health crisis. Although progress in understanding health effects of microplastic exposure has been made, microplastic impacts on absorption of co-exposure toxic pollutants such as arsenic (As), i.e., oral bioavailability, remain unclear. Microplastic ingestion may interfere As biotransformation, gut microbiota, and/or gut metabolites, thereby affecting As oral bioavailability. Here, mice were exposed to arsenate (6 μg As g-1) alone and in combination with polyethylene particles of 30 and 200 μm (PE-30 and PE-200 having surface area of 2.17 × 103 and 3.23 × 102 cm2 g-1) in diet (2, 20, and 200 μg PE g-1) to determine the influence of microplastic co-ingestion on arsenic (As) oral bioavailability. By determining the percentage of cumulative As consumption recovered in urine of mice, As oral bioavailability increased significantly (P < 0.05) from 72.0 ± 5.41% to 89.7 ± 6.33% with PE-30 at 200 μg PE g-1 rather than with PE-200 at 2, 20, and 200 μg PE g-1 (58.5 ± 19.0%, 72.3 ± 6.28%, and 69.2 ± 17.8%). Both PE-30 and PE-200 exerted limited effects on pre- and post-absorption As biotransformation in intestinal content, intestine tissue, feces, and urine. They affected gut microbiota dose-dependently, with lower exposure concentrations having more pronounced effects. Consistent with the PE-30-specific As oral bioavailability increase, PE exposure significantly up-regulated gut metabolite expression, and PE-30 exerted greater effects than PE-200, suggesting that gut metabolite changes may contribute to As oral bioavailability increase. This was supported by 1.58-4.07-fold higher As solubility in the presence of up-regulated metabolites (e.g., amino acid derivatives, organic acids, and pyrimidines and purines) in the intestinal tract assessed by an in vitro assay. Our results suggested that microplastic exposure especially smaller particles may exacerbate the oral bioavailability of As, providing a new angle to understand health effects of microplastics.
Collapse
Affiliation(s)
- Shan Chen
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Jin-Lei Yang
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yao-Sheng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Hong-Yu Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Xin-Ying Lin
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Rong-Yue Xue
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Meng-Ya Li
- Jiangsu Province Engineering Research Center of Soil and Groundwater Pollution Prevention and Control, Jiangsu Provincial Academy of Environmental Science, Nanjing, 210036, China
| | - Shi-Wei Li
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Albert L Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, 5095, Australia
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Dong-Mei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Hong-Bo Li
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
16
|
Yin N, Chang X, Xiao P, Zhou Y, Liu X, Xiong S, Wang P, Cai X, Sun G, Cui Y, Hu Z. Role of microbial iron reduction in arsenic metabolism from soil particle size fractions in simulated human gastrointestinal tract. ENVIRONMENT INTERNATIONAL 2023; 174:107911. [PMID: 37030286 DOI: 10.1016/j.envint.2023.107911] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/03/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
Gut microbiota provides protection against arsenic (As) induced toxicity, and As metabolism is considered an important part of risk assessment associated with soil As exposures. However, little is known about microbial iron(III) reduction and its role in metabolism of soil-bound As in the human gut. Here, we determined the dissolution and transformation of As and Fe from incidental ingestion of contaminated soils as a function of particle size (<250 μm, 100-250 μm, 50-100 μm and < 50 μm). Colon incubation with human gut microbiota yielded a high degree of As reduction and methylation of up to 53.4 and 0.074 μg/(log CFU/mL)/hr, respectively; methylation percentage increased with increasing soil organic matter and decreasing soil pore size. We also found significant microbial Fe(III) reduction and high levels of Fe(II) (48 %-100 % of total soluble Fe) may promote the capacity of As methylation. Although no statistical change in Fe phases was observed with low Fe dissolution and high molar Fe/As ratios, higher As bioaccessibility of colon phase (avg. 29.4 %) was mainly contributed from reductive dissolution of As(V)-bearing Fe(III) (oxy)hydroxides. Our results suggest that As mobility and biotransformation by human gut microbiota (carrying arrA and arsC genes) are strongly controlled by microbial Fe(III) reduction coupled with soil particle size. This will expand our knowledge on oral bioavailability of soil As and health risks from exposure to contaminated soils.
Collapse
Affiliation(s)
- Naiyi Yin
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Xuhui Chang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Peng Xiao
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Yi Zhou
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Xiaotong Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Shimao Xiong
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Pengfei Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Xiaolin Cai
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Guoxin Sun
- Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China.
| | - Yanshan Cui
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China.
| | - Zhengyi Hu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China; Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China
| |
Collapse
|
17
|
Huang L, Ye Z, Zhao Q, Li Y, Yu ZG, Zhang W. Role of microbial microbes in arsenic bioaccumulation and biotransformation in mice. Toxicol Appl Pharmacol 2023; 464:116447. [PMID: 36889513 DOI: 10.1016/j.taap.2023.116447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023]
Abstract
Although gut microbes can affect the accumulation and metabolism of arsenic (As), the microbes contributing to these processes remain largely unknown. Therefore, this study aimed to investigate the bioaccumulation and biotransformation of arsenate [As(V)] and arsenobetaine (AsB) in mice with a disordered gut microbiome. We used cefoperazone (Cef) to construct a mouse model of gut microbiome disruption along with 16S rRNA sequencing to elucidate the effect of gut microbiome destruction on the biotransformation and bioaccumulation of As(V) and AsB. This revealed the role of specific bacteria in As metabolism. Gut microbiome destruction increased the bioaccumulation of As(V) and AsB in various organs and reduced the excretion of As(V) and AsB in the feces. Further, gut microbiome destruction was found to be important for the biotransformation of As(V). Interference with Cef can significantly decrease Blautia and Lactobacillus while increasing Enterococcus, leading to increase As accumulation in mice and enhanced methylation. We also identified Lachnoclostridium, Erysipelatoclostridium, Blautia, Lactobacillus, and Enterococcus as biomarkers involved in As bioaccumulation and biotransformation. In conclusion, specific microbes can increase As accumulation in the host, exacerbating its potential health risks.
Collapse
Affiliation(s)
- Liping Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Zijun Ye
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Qianyu Zhao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yujie Li
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Zhi-Guo Yu
- School of Hydrology and Water Resources, Nanjing University of InformationScience and Technology, Nanjing, China
| | - Wei Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
18
|
Liu R, Kong S, Shao Y, Cai D, Bai B, Wei X, Root RA, Gao X, Li C, Chorover J. Mechanisms and health implications of toxicity increment from arsenate-containing iron minerals through in vitro gastrointestinal digestion. GEODERMA 2023; 432:116377. [PMID: 37928070 PMCID: PMC10624400 DOI: 10.1016/j.geoderma.2023.116377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Inadvertent oral ingestion is an important exposure pathway of arsenic (As) containing soil and dust. Previous researches evidenced health risk of bioaccessible As from soil and dust, but it is unclear about As mobilization mechanisms in health implications from As exposure. In this study, we investigated As release behaviors and the solid-liquid interface reactions toward As(V)-containing iron minerals in simulated gastrointestinal bio-fluids. The maximum As release amount was 0.57 mg/L from As-containing goethite and 0.82 mg/L from As-containing hematite at 9 h, and the As bioaccessibility was 10.8% and 21.6%, respectively. The higher exposure risk from hematite-sorbed As in gastrointestinal fluid was found even though goethite initially contained more arsenate than hematite. Mechanism analysis revealed that As release was mainly coupled with acid dissolution and reductive dissolution of iron minerals. Proteases enhanced As mobilization and thus increased As bioaccessibility. The As(V) released and simultaneously transformed to high toxic As(III) by gastric pepsin, while As(V) reduction in intestine was triggered by pancreatin and freshly formed Fe(II) in gastric digests. CaCl2 reduced As bioaccessibility, indicating that calcium-rich food or drugs may be effective dietary strategies to reduce As toxicity. The results deepened our understanding of the As release mechanisms associated with iron minerals in the simulated gastrointestinal tract and supplied a dietary strategy to alleviate the health risk of incidental As intake.
Collapse
Affiliation(s)
- Ruiqi Liu
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, PR China
| | - Shuqiong Kong
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, PR China
| | - Yixian Shao
- Zhejiang Institute of Geological Survey, Hangzhou 311203, Zhejiang, PR China
| | - Dawei Cai
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, PR China
| | - Bing Bai
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, PR China
| | - Xiaguo Wei
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, PR China
| | - Robert A. Root
- Department of Environmental Science, University of Arizona, Tucson, AZ 85721, United States
| | - Xubo Gao
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, PR China
| | - Chengcheng Li
- State Key of Biogeology and Environmental Geology Laboratory, China University of Geosciences, Wuhan 430074, Hubei, PR China
| | - Jon Chorover
- Department of Environmental Science, University of Arizona, Tucson, AZ 85721, United States
| |
Collapse
|
19
|
Li J, Wang H, Reddy N, Zhu Z, Zheng J, Wang W, Liu B, Hu C. MOF FeCo/B-CN composites achieve efficient degradation of antibiotics in a non-homogeneous concurrent photocatalytic-persulfate activation system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159795. [PMID: 36336040 DOI: 10.1016/j.scitotenv.2022.159795] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/09/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
We synthesized an MFeCoB0.4CNx% (MOF-Fe/Co nanosheets/boron-doped g-C3N4) composite catalyst for enhancing the concurrent photocatalytic-persulfate activation (CPPA) system and achieved efficient degradation of antibiotics. The role of MOF-Fe/Co is to activate persulfate, while boron-doped g-C3N4 can generate photogenerated electrons for the reduction of Co3+/Fe3+ to enhance the regeneration of the active center. The rate constant for Tetracycline degradation by the CPPA system was 4.74 and 7.54 times higher than the photocatalytic and persulfate-activated systems, respectively. This composite was shown to be practical and economically viable for antibiotic degradation. The degradation behavior was explored based on experiments, and molecular orbitals and Fukui functions were obtained by density functional theory calculations. Mechanisms were investigated using reactive oxygen species trapping studies and electron spin resonance, and the process was explained in terms of the charge population and electron density difference of MOF-Fe/Co nanosheets. The CPPA system is an ecologically benign technology for removing antibiotic-related risks to the environment and human health.
Collapse
Affiliation(s)
- Jinyang Li
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry and Chemical Engineering, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Haofu Wang
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry and Chemical Engineering, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Narendra Reddy
- Centre for Incubation, Innovation, Research and Consultancy (CIIRC), Jyothy Institute of Technology, Thataguni, Off Kanakapura Road, Bangalore, Karnataka 560082, India
| | - Zhijia Zhu
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry and Chemical Engineering, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Jian Zheng
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry and Chemical Engineering, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Wei Wang
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry and Chemical Engineering, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China; Department of Textile &Garment Engineering, Changshu Institute of Technology, Suzhou 215500, China
| | - Baojiang Liu
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry and Chemical Engineering, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Chunyan Hu
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry and Chemical Engineering, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China.
| |
Collapse
|
20
|
Wang HY, Chen S, Xue RY, Lin XY, Yang JL, Zhang YS, Li SW, Juhasz AL, Ma LQ, Zhou D, Li HB. Arsenic Ingested Early in Life Is More Readily Absorbed: Mechanistic Insights from Gut Microbiota, Gut Metabolites, and Intestinal Morphology and Functions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1017-1027. [PMID: 36580282 DOI: 10.1021/acs.est.2c04584] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Early-life arsenic (As) exposure is a particular health concern. However, it is unknown if As ingested early in life is more readily absorbed from the gastrointestinal (GI) tract, i.e., higher in oral bioavailability. Here, weanling (3-week) and adult (6-week-old) female mice were exposed to arsenate in the diet (10 μg g-1) over a 3-week period with As oral bioavailability estimated using As urinary excretion as the bioavailability endpoint. The As urinary excretion factor was 1.54-fold higher in weanling mice compared to adult mice (82.2 ± 7.29 versus 53.1 ± 3.73%), while weanling mice also showed 2.28-, 1.50-, 1.48-, and 1.89-fold higher As concentration in small intestine tissue, blood, liver, and kidneys, demonstrating significantly higher As oral bioavailability of early-life exposure. Compared to adult mice, weanling mice significantly differed in gut microbiota, but the difference did not lead to remarkable differences in As biotransformation in the GI tract or tissue and in overall gut metabolite composition. Although the expression of several metabolites (e.g., atrolactic acid, hydroxyphenyllactic acid, and xanthine) was up-regulated in weanling mice, they had limited ability to elevate As solubility in the intestinal tract. Compared to adult mice, the intestinal barrier function and intestinal expression of phosphate transporters responsible for arsenate absorption were similar in weanling mice. However, the small intestine of weanling mice was characterized by more defined intestinal villi with greater length and smaller width, providing a greater surface area for As to be absorbed across the GI barrier. The results highlight that early-life As exposure can be more readily absorbed, advancing the understanding of its health risk.
Collapse
Affiliation(s)
- Hong-Yu Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Shan Chen
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Rong-Yue Xue
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xin-Ying Lin
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jin-Lei Yang
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yao-Sheng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Shi-Wei Li
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Albert L Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hong-Bo Li
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
21
|
Chen L, Li C, Zhong X, Lai C, Zhang B, Luo Y, Guo H, Liang K, Fang J, Zhu X, Zhang J, Guo L. The gut microbiome promotes arsenic metabolism and alleviates the metabolic disorder for their mammal host under arsenic exposure. ENVIRONMENT INTERNATIONAL 2023; 171:107660. [PMID: 36470123 DOI: 10.1016/j.envint.2022.107660] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 10/27/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Gut microbiome can participate in arsenic metabolism. However, its efficacy in the host under arsenic stress is still controversial. To clarify their roles in fecal arsenic excretion, tissue arsenic accumulation, host physiological states and metabolism, in this study, ninety-six C57BL/6 male mice were randomly divided to four groups, groups A and B were given sterile water, and groups C and D were given the third generation of broad-spectrum antibiotic (ceftriaxone) to erase the background gut microbiome. Subsequently, groups B and D were subchronicly exposed to arsenic containing feed prepared by adding arsenical mixture (rice arsenic composition) into control feed. In group D, the fecal total arsenic (CtAs) decreased by 25.5 %, iAsIII composition increased by 46.9 %, unclarified As (uAs) composition decreased by 92.4 %, and the liver CtAs increased by 26.7 %; the fecal CtAs was positively correlated with microbial richness and some metabolites (organic acids, amino acids, carbohydrates, SCFAs, hydrophilic bile acids and their derivatives); and fecal DMA was positively correlated with microbial richness and some metabolites (ferulic acid, benzenepropanoic acid and pentanoic acid); network analysis showed that the numbers of modules, nodes, links were decreased and vulnerability was increased; some SCFAs and hydrophilic bile acid decreased, and hydrophobic bile acids increased (Ps < 0.05). In the tissue samples of group D, Il-18 and Ifn-γ gene expression increased and intestinal barrier-related genes Muc2, Occludin and Zo-1 expression decreased (Ps < 0.05); serum glutathione and urine malondialdehyde significantly increased (Ps < 0.05); urine metabolome significantly changed and the variation was correlated with six SCFAs-producing bacteria, and some SCFAs including isobutyric acid, valeric acid and heptanoic acid decreased (Ps < 0.05). Therefore, the normal gut microbiome increases fecal arsenic excretion and biotransformation, which can maintain a healthier microbiome and metabolic functions, and alleviate the metabolic disorder for their mammal host under arsenic exposure.
Collapse
Affiliation(s)
- Linkang Chen
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Chengji Li
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China; Yunfu City Center for Disease Control, Guangdong Province 527300, China
| | - Xiaoting Zhong
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Chengze Lai
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Bin Zhang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Yu Luo
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Honghui Guo
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Keqing Liang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Jingwen Fang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Xuan Zhu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Jingjing Zhang
- Key Laboratory of Zebrafish Model for Development and Disease & Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China.
| | - Lianxian Guo
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
22
|
Luo Y, Wang J, Wang C, Wang D, Li C, Zhang B, Zhong X, Chen L, Li H, Su H, Zheng Q, Zhu D, Tang H, Guo L. The fecal arsenic excretion, tissue arsenic accumulation, and metabolomics analysis in sub-chronic arsenic-exposed mice after in situ arsenic-induced fecal microbiota transplantation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158583. [PMID: 36084774 DOI: 10.1016/j.scitotenv.2022.158583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 09/03/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
Arsenic can be specifically enriched by rice, and the health hazards caused by high arsenic rice are gradually attracting attention. This study aimed to explore the potential of microbial detoxification via gut microbiome in the treatment of sub-chronic arsenic poisoning. We first exposed mice to high-dose arsenic feed (30 mg/kg, rice arsenic composition) for 60 days to promote arsenic-induced microbes in situ in the gastrointestinal tract, then transplanted their fecal microbiota (FMT) into another batch of healthy recipient mice, and dynamically monitored the microbial colonization by 16S rRNA sequencing and ITS sequencing. The results showed that in situ arsenic-induced fecal microbiome can stably colonized and interact with indigenous microbes in the recipient mice in two weeks, and established a more stable network of gut microbiome. Then, the recipient mice continued to receive high-dose arsenic exposure for 52 days. After above sub-chronic arsenic exposure, compared with the non-FMT group, fecal arsenic excretion, liver and plasma arsenic accumulation were significantly lower (P < 0.05), and that in kidney, hair, and thighbone present no significant differences. Metabolomics of feces- plasma-brain axis were also disturbed, some up-regulated metabolites in feces, plasma, and cerebral cortex may play positive roles for the host. Therefore, microbial detoxification has potential in the treatment of sub-chronic arsenic poisoning. However, gut flora is an extremely complex community with different microorganisms have different arsenic metabolizing abilities, and various microbial metabolites. Coupled with the matrix effects, these factors will have various effects on the efflux and accumulation of arsenic. The definite effects (detoxification or non-detoxification) could be not assured based on the current study, and more systematic and rigorous studies are needed in the future.
Collapse
Affiliation(s)
- Yu Luo
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Jiating Wang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Chenfei Wang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China; Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen 518000, China
| | - Dongbin Wang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Chengji Li
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Bin Zhang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Xiaoting Zhong
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Linkang Chen
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Hao Li
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Hongtian Su
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Qiuyi Zheng
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Dajian Zhu
- Department of Surgery, Shunde Women and Children's Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan 528399, China.
| | - Huanwen Tang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Lianxian Guo
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
23
|
George SE, Devereux R, James J, Wan Y, Diamond GL, Bradham KD, Thomas DJ. Dietary lead modulates the mouse intestinal microbiome: Subacute exposure to lead acetate and lead contaminated soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114430. [PMID: 37192935 PMCID: PMC10181873 DOI: 10.1016/j.ecoenv.2022.114430] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The effect of dietary lead on the intestinal microbiome has not been fully elucidated. To determine if there was an association between microflora modulation, predicted functional genes, and Pb exposure, mice were provided diets amended with increasing concentrations of a single lead compound, lead acetate, or a well characterized complex reference soil containing lead, i.e. 6.25-25 mg/kg Pb acetate (PbOAc) or 7.5-30 mg/kg Pb in reference soil SRM 2710a having 0.552 % Pb among other heavy metals such as Cd. Feces and ceca were collected following 9 days of treatment and the microbiome analyzed by 16 S rRNA gene sequencing. Treatment effects on the microbiome were observed in both feces and ceca of mice. Changes in the cecal microbiomes of mice fed Pb as Pb acetate or as a constituent in SRM 2710a were statistically different except for a few exceptions regardless of dietary source. This was accompanied by increased average abundance of functional genes associated with metal resistance, including those related to siderophore synthesis and arsenic and/or mercury detoxification. Akkermansia, a common gut bacterium, was the highest ranked species in control microbiomes whereas Lactobacillus ranked highest in treated mice. Firmicutes/Bacteroidetes ratios in the ceca of SRM 2710a treated mice increased more than with PbOAc, suggestive of changes in gut microbiome metabolism that promotes obesity. Predicted functional gene average abundance related to carbohydrate, lipid, and/or fatty acid biosynthesis and degradation were greater in the cecal microbiome of SRM 2710a treated mice. Bacilli/Clostridia increased in the ceca of PbOAc treated mice and may be indicative of increased risk of host sepsis. Family Deferribacteraceae also was modulated by PbOAc or SRM 2710a possibly impacting inflammatory response. Understanding the relationship between microbiome composition, predicted functional genes, and Pb concentration, especially in soil, may provide new insights into the utility of various remediation methodologies that minimize dysbiosis and modulate health effects, thus assisting in the selection of an optimal treatment for contaminated sites.
Collapse
Affiliation(s)
- S. Elizabeth George
- U. S. Environmental Protection Agency, Office of Research & Development, Center for Environmental Measurement & Modeling, Gulf Ecosystem Measurement & Modeling Division, Gulf Breeze, FL 32561, United States
| | - Richard Devereux
- U. S. Environmental Protection Agency, Office of Research & Development, Center for Environmental Measurement & Modeling, Gulf Ecosystem Measurement & Modeling Division, Gulf Breeze, FL 32561, United States
| | - Joseph James
- U. S. Environmental Protection Agency, Office of Research & Development, Center for Environmental Measurement & Modeling, Gulf Ecosystem Measurement & Modeling Division, Gulf Breeze, FL 32561, United States
| | - Yongshan Wan
- U. S. Environmental Protection Agency, Office of Research & Development, Center for Environmental Measurement & Modeling, Gulf Ecosystem Measurement & Modeling Division, Gulf Breeze, FL 32561, United States
| | | | - Karen D. Bradham
- U. S. Environmental Protection Agency, Office of Research & Development, Center for Environmental Measurement & Modeling, Research Triangle Park, NC 27711, United States
| | - David J. Thomas
- U. S. Environmental Protection Agency, Office of Research & Development, Center for Computational Toxicology & Exposure, Chemical Characterization & Exposure Division, Research Triangle Park, NC 27711, United States
| |
Collapse
|
24
|
Shi X, Xu W, Che X, Cui J, Shang X, Teng X, Jia Z. Effect of arsenic stress on the intestinal structural integrity and intestinal flora abundance of Cyprinus carpio. Front Microbiol 2023; 14:1179397. [PMID: 37168116 PMCID: PMC10165157 DOI: 10.3389/fmicb.2023.1179397] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/31/2023] [Indexed: 05/13/2023] Open
Abstract
Aquatic organisms such as fish can accumulate high concentrations of arsenic (As), which has toxic effects on fish. However, whether the intestinal flora are involved in As damage to fish intestinal tissues and the underlying process are unclear. Common carp (Cyprinus carpio) were exposed to As (2.83 mg/L) in water for 30 days, and blood, muscle, intestine, and intestine samples were collected. Intestinal pathological sections were observed, and the lipopolysaccharide (LPS) levels in serum and the levels of As accumulation and tight junction-related factors in intestinal tissues were measured. The gut microbiota was analysed by 16S rRNA sequencing. The results showed that As treatment decreased the abundance of microbiota, increased the number of harmful bacteria, and decreased the number of beneficial bacteria in the intestine. In our experiment, the top 30 harmful and beneficial bacteria with the highest relative abundance were identified. Among the top 30 harmful and beneficial bacteria, As treatment resulted in a significant (P < 0.05) increase in harmful bacteria (such as Fusobacteriota, Bacteroidota (LPS-producing bacteria), Verrucomicrobiota, Bacteroides, Aeromonas, and Stenotrophomonas) and a significant (P < 0.05) decrease in beneficial bacteria (such as Actinobacteriota, Planctomycetota, Firmicutes, Reyranella, Akkermansia, and Pseudorhodobacter), which further demonstrated that As affects the abundance of intestinal flora. In addition, As exposure increased the LPS level in serum and the abundance of Bacteroidota (LPS-producing bacteria) in the intestine. Bacteroidota exhibits the six highest relative abundance at the phylum level, which indicates that LPS produced by Bacteroidota can increase the LPS level in serum. Additionally, the protein and gene levels of the tight junction markers ZO-1 and occludin in the intestine were reduced by As treatment, which further indicated that As exposure impaired the structural integrity of the intestine. In conclusion, the results obtained in our study indicate that the intestinal flora, LPS, and tight junctions participate in the impairment of the structural integrity of the common carp intestine resulting from As exposure.
Collapse
Affiliation(s)
- Xiaodan Shi
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Wei Xu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Xinghua Che
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Jiawen Cui
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xinchi Shang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- Xiaohua Teng,
| | - Zhiying Jia
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- *Correspondence: Zhiying Jia,
| |
Collapse
|
25
|
Li HB, Xue RY, Chen XQ, Lin XY, Shi XX, Du HY, Yin NY, Cui YS, Li LN, Scheckel KG, Juhasz AL, Xue XM, Zhu YG, Ma LQ. Ca Minerals and Oral Bioavailability of Pb, Cd, and As from Indoor Dust in Mice: Mechanisms and Health Implications. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:127004. [PMID: 36541774 PMCID: PMC9769408 DOI: 10.1289/ehp11730] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/21/2022] [Accepted: 11/22/2022] [Indexed: 05/19/2023]
Abstract
BACKGROUND Elevating dietary calcium (Ca) intake can reduce metal(loid)oral bioavailability. However, the ability of a range of Ca minerals to reduce oral bioavailability of lead (Pb), cadmium (Cd), and arsenic (As) from indoor dust remains unclear. OBJECTIVES This study evaluated the ability of Ca minerals to reduce Pb, Cd, and As oral bioavailability from indoor dust and associated mechanisms. METHODS A mouse bioassay was conducted to assess Pb, Cd, and As relative bioavailability (RBA) in three indoor dust samples, which were amended into mouse chow without and with addition of CaHPO 4 , CaCO 3 , Ca gluconate, Ca lactate, Ca aspartate, and Ca citrate at 200 - 5,000 μ g / g Ca . The mRNA expression of Ca and phosphate (P) transporters involved in transcellular Pb, Cd and As transport in the duodenum of mice was quantified using real-time polymerase chain reaction. Serum 1,25-Dihydroxyvitamin D3 [1,25 ( OH ) 2 D 3 ], parathyroid hormone (PTH), and renal CYP27B1 activity controlling 1,25 ( OH ) 2 D 3 synthesis were measured using ELISA kits. Metal(loid) speciation in the feces of mice was characterized using X-ray absorption near-edge structure (XANES) spectroscopy. RESULTS In general, mice exposed to each of the Ca minerals exhibited lower Pb-, Cd-, and As-RBA for three dusts. However, RBAs with the different Ca minerals varied. Among minerals, mice fed dietary CaHPO 4 did not exhibit lower duodenal mRNA expression of Ca transporters but did have the lowest Pb and Cd oral bioavailability at the highest Ca concentration (5,000 μ g / g Ca ; 51%-95% and 52%-74% lower in comparison with the control). Lead phosphate precipitates (e.g., chloropyromorphite) were observed in feces of mice fed dietary CaHPO 4 . In comparison, mice fed organic Ca minerals (Ca gluconate, Ca lactate, Ca aspartate, and Ca citrate) had lower duodenal mRNA expression of Ca transporters, but Pb and Cd oral bioavailability was higher than in mice fed CaHPO 4 . In terms of As, mice fed Ca aspartate exhibited the lowest As oral bioavailability at the highest Ca concentration (5,000 μ g / g Ca ; 41%-72% lower) and the lowest duodenal expression of P transporter (88% lower). The presence of aspartate was not associated with higher As solubility in the intestine. DISCUSSION Our study used a mouse model of exposure to household dust with various concentrations and species of Ca to determine whether different Ca minerals can reduce bioavailability of Pb, Cd, and As in mice and elucidate the mechanism(s) involved. This study can contribute to the practical application of optimal Ca minerals to protect humans from Pb, Cd, and As coexposure in the environment. https://doi.org/10.1289/EHP11730.
Collapse
Affiliation(s)
- Hong-Bo Li
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing, China
| | - Rong-Yue Xue
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing, China
| | - Xiao-Qiang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing, China
| | - Xin-Ying Lin
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing, China
| | - Xiao-Xia Shi
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing, China
| | - Hai-Yan Du
- Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Nai-Yi Yin
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yan-Shan Cui
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Li-Na Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, China
| | - Kirk G. Scheckel
- National Risk Management Research Laboratory, Land Remediation and Pollution Control Division, U.S. Environmental Protection Agency, Cincinnati, Ohio, USA
| | - Albert L. Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, Australia
| | - Xi-Mei Xue
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Lena Q. Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
26
|
Xiao J, Shi Y, Deng Y, Liu Y, Feng W, Liao M, Cao H. Incorporating Tenax into the in vitro method to improve the predictive capability of bioaccessibility of triazole fungicides in grape. Food Chem 2022; 396:133740. [PMID: 35878443 DOI: 10.1016/j.foodchem.2022.133740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/09/2022] [Accepted: 07/16/2022] [Indexed: 12/07/2022]
Abstract
In vitro bioaccessibility assays have been developed for high-throughput prediction of relative bioavailability (RBA). However, methods to reliably and efficiently assess pesticide residues remain limited, hindering the precise estimation of pesticide exposure risk. The inclusion of a sorption sink material to simulate intestinal sorption could be a promising approach to optimize in vitro bioaccessibility methods. The current study aimed to explore the feasibility of incorporating Tenax into the Rijksinstituut voor Volksgezondheid en Milieu (RIVM) method for accurate evaluation of the bioaccessibility of triazole fungicides. The use of 1.0 g of Tenax enabled the valid trapping of triazole fungicides released from grape, resulting in a significant increase of 23.59-38.51 % in the value of bioaccessibility. A strong in vivo-in vitro correlation was observed between pesticide RBA and bioaccessibility, suggesting that the Tenax-assisted RIVM method is a suitable replacement for time-consuming and laborious in vivo alternatives. In addition, the exposure assessment indicated that the hazard quotients for triazole fungicides in grape may be overestimated by 5.79-27.34 % without considering bioaccessibility based on the Tenax-assisted RIVM method. These results provide further insights into the assessment of bioaccessibility-based human exposure to pesticides as well as dietary exposure and related risk for human health.
Collapse
Affiliation(s)
- Jinjing Xiao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Yanhong Shi
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Yajing Deng
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Yuying Liu
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Wenzhe Feng
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Min Liao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Haiqun Cao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China.
| |
Collapse
|
27
|
Song D, Chen L, Zhu S, Zhang L. Gut microbiota promote biotransformation and bioaccumulation of arsenic in tilapia. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119321. [PMID: 35439597 DOI: 10.1016/j.envpol.2022.119321] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/04/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Aquatic organisms such as fish can accumulate high levels of arsenic (As) and transform toxic inorganic As (iAs) to non-toxic arsenobetaine (AsB). Whether the gut microbiota are involved in the process of As accumulation and transformation in fish is unclear. Herein, we subjected tilapia (Oreochromis mossambicus) to antibiotic treatment for 19 d to remove the gut microbiota, followed by the dietary exposure to arsenate (As(V)) for 16 d. The antibiotic-treated fish accumulated significantly less total As and AsB levels in the intestine and muscle than the fish in the control group. The gut contents (mixture of microbiota, digestive fluid, and diet debris) in the control fish metabolized As(V) to arsenite (As(III)) and organoarsenicals in vitro, while those in the antibiotic-treated fish lost this ability. As(V) exposure significantly changed the fish gut microbiota community. Stenotrophomonas maltophilia was found to be the dominant species (>60% of total operational taxonomic unit (OTU) number) in the gut microbiota of As-treated fish. The isolated As-resistant strain S. maltophilia SCSIOOM owned a high capability to metabolize As(V) to As(III) and organoarsenicals. Overall, these results demonstrated that the gut microbiota, at least the As-resistant bacteria, were involved in As biotransformation pathways in fish.
Collapse
Affiliation(s)
- Dongdong Song
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lizhao Chen
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China
| | - Siqi Zhu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China; Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China.
| |
Collapse
|
28
|
Zhang X, Zhao G, Shi X, Yuan B, Zhao K, Tian Z, Huang Z, Ma Z, Li M, Zhao L. Loading ferric lignin on polyethylene film and its influence on arsenic-polluted soil and growth of romaine lettuce plant. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:50362-50375. [PMID: 35229267 DOI: 10.1007/s11356-022-19490-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
This work developed a composite (Pe-FeLs) which loaded ferric lignin on polyethylene film (PE film) by chemical modification and physico-chemically characterized by Microscope, FESEM with elemental mapping analysis, and XRD. Microscope pictures showed that chemical modification did not destroy the appearance of PE film. The FESEM images of Pe-FeLs showed the well-distributed clusters could be clearly seen and most of the particles were spherical morphology. Elemental mapping of individual element on Pe-FeLs clearly indicated the existing of iron. The XRD pattern showed the amorphous hydroxides of iron on Pe-FeLs. In arsenic solution, the total arsenic adsorption capacity of Pe-FeLs was much higher than that of ferric lignin and PE, which showed Pe-FeLs had the ability to adsorb arsenic. For making Pe-FeLs work well in the soil, a Pe-FeLs system was set up with plastic grid plate, PE film with holes, Pe-FeLs, PE film, and plastic grid plate from the upper to bottom in order. With applying Pe-FeLs system under the soil, arsenic was significantly reduced by 25.5 ~ 53.4% in heavily, moderately, and lower arsenic-polluted soils, the biomass of the romaine lettuce increased and arsenic accumulation in the romaine lettuce decreased.
Collapse
Affiliation(s)
- Xiaozhuan Zhang
- Henan International Joint Lab of Key Technology in Water Treatment, Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, School of Environments, Henan Normal University, Xinxiang, 453007, Henan, China.
| | - Guohua Zhao
- Henan International Joint Lab of Key Technology in Water Treatment, Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, School of Environments, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Xibao Shi
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Bingbing Yuan
- Key Lab of Green Chemistry Media & Reaction, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Kejiang Zhao
- Henan International Joint Lab of Key Technology in Water Treatment, Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, School of Environments, Henan Normal University, Xinxiang, 453007, Henan, China
- Henan Institute of Chemistry, Henan Academy of Sciences, Zhengzhou, 450002, Henan, China
| | - Zhenbang Tian
- Henan Institute of Chemistry, Henan Academy of Sciences, Zhengzhou, 450002, Henan, China
| | - Zuohua Huang
- Henan Institute of Chemistry, Henan Academy of Sciences, Zhengzhou, 450002, Henan, China
| | - Zhongjun Ma
- Henan International Joint Lab of Key Technology in Water Treatment, Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, School of Environments, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Meng Li
- Henan International Joint Lab of Key Technology in Water Treatment, Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, School of Environments, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Liang Zhao
- Henan Institute of Chemistry, Henan Academy of Sciences, Zhengzhou, 450002, Henan, China
| |
Collapse
|
29
|
Yin N, Cai X, Wang P, Feng R, Du H, Fu Y, Sun G, Cui Y. Predictive capabilities of in vitro colon bioaccessibility for estimating in vivo relative bioavailability of arsenic from contaminated soils: Arsenic speciation and gut microbiota considerations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151804. [PMID: 34808186 DOI: 10.1016/j.scitotenv.2021.151804] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/07/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Arsenic (As) transformation by human gut microbiota has been evidenced to impact As toxicity and human health. However, little is known about the influence of gut microbiota on As bioavailability from incidental ingestion of soil. In this study, we assessed As relative bioavailability (RBA) using an in vivo mouse model and As bioaccessibility in the colon phase of in vitro assays. Strong in vivo-in vitro correlations (R2 = 0.70-0.92, P < 0.05) were observed between soil As RBA (10.2%-57.7%) and colon bioaccessibility (4.8%-49.0%) in 13 As-contaminated soils. Upon in vitro incubation of human colon microbiota, we found a high degree of As transformation and 65.9% of generated As(III) was observed in soil residues. For in vivo mouse assay, DMA(V) accounted for 79.0% of cumulative urinary As excretion. Except for As(V), dominant As species including As(III), DMA(V) and As sulfides were also detected in mouse feces. Gut bacteria (families Rikenellaceae and Marinifilaceae) could be significantly correlated with As intake and excretion in mice (P < 0.05). Our findings provide evidence that gut microbiota can affect transformation, bioavailability, and fate of the orally ingested soil As in human gastrointestinal tract.
Collapse
Affiliation(s)
- Naiyi Yin
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Xiaolin Cai
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Pengfei Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Run Feng
- Beijing Laboratory Animal Research Center (BLARC), Beijing 100012, PR China
| | - Huili Du
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Yaqi Fu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Guoxin Sun
- Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Yanshan Cui
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| |
Collapse
|
30
|
Kaviani Rad A, Balasundram SK, Azizi S, Afsharyzad Y, Zarei M, Etesami H, Shamshiri RR. An Overview of Antibiotic Resistance and Abiotic Stresses Affecting Antimicrobial Resistance in Agricultural Soils. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:4666. [PMID: 35457533 PMCID: PMC9025980 DOI: 10.3390/ijerph19084666] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 01/29/2023]
Abstract
Excessive use of antibiotics in the healthcare sector and livestock farming has amplified antimicrobial resistance (AMR) as a major environmental threat in recent years. Abiotic stresses, including soil salinity and water pollutants, can affect AMR in soils, which in turn reduces the yield and quality of agricultural products. The objective of this study was to investigate the effects of antibiotic resistance and abiotic stresses on antimicrobial resistance in agricultural soils. A systematic review of the peer-reviewed published literature showed that soil contaminants derived from organic and chemical fertilizers, heavy metals, hydrocarbons, and untreated sewage sludge can significantly develop AMR through increasing the abundance of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARBs) in agricultural soils. Among effective technologies developed to minimize AMR's negative effects, salinity and heat were found to be more influential in lowering ARGs and subsequently AMR. Several strategies to mitigate AMR in agricultural soils and future directions for research on AMR have been discussed, including integrated control of antibiotic usage and primary sources of ARGs. Knowledge of the factors affecting AMR has the potential to develop effective policies and technologies to minimize its adverse impacts.
Collapse
Affiliation(s)
- Abdullah Kaviani Rad
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz 71946-85111, Iran;
| | - Siva K. Balasundram
- Department of Agriculture Technology, Faculty of Agriculture, University Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Shohreh Azizi
- UNESCO-UNISA Africa Chair in Nanosciences and Nanotechnology, College of Graduate Studies, University of South Africa, Pretoria 0003, South Africa;
- Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, Cape Town 7129, South Africa
| | - Yeganeh Afsharyzad
- Department of Microbiology, Faculty of Modern Sciences, The Islamic Azad University of Tehran Medical Sciences, Tehran 19496-35881, Iran;
| | - Mehdi Zarei
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz 71946-85111, Iran;
- Department of Agriculture and Natural Resources, Higher Education Center of Eghlid, Eghlid 73819-43885, Iran
| | - Hassan Etesami
- Department of Soil Science, University of Tehran, Tehran 14179-35840, Iran;
| | - Redmond R. Shamshiri
- Leibniz Institute for Agricultural Engineering and Bioeconomy, 14469 Potsdam-Bornim, Germany;
| |
Collapse
|
31
|
Li J, Chen S, Li H, Liu X, Cheng J, Ma LQ. Arsenic bioaccessibility in rice grains via modified physiologically-based extraction test (MPBET): Correlation with mineral elements and comparison with As relative bioavailability. ENVIRONMENTAL RESEARCH 2021; 198:111198. [PMID: 33933486 DOI: 10.1016/j.envres.2021.111198] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
Rice consumption is a major dietary source of human exposure to arsenic (As), with As bioavailability being an important factor influencing its health risk. In this study, the As bioaccessibility was measured in 11 rice grains (140-335 μg As kg-1), which were compared to As relative bioavailability previously measured based on a mouse bioassay (Li et al., 2017). Using modified physiologically-based extraction test for rice (MPBET), As bioaccessibility in raw rice samples (44-88% in the gastric phase and 47-102% in the intestinal phase) was similar to those in cooked rice (42-73% and 43-99%). Arsenic bioaccessibility in rice was generally higher in the intestinal phase than in the gastric phase, with Fe and Ca concentrations in rice being negatively correlated with As bioaccessibility in the gastric phase (R2 = 0.47-0.49). In addition, for cooked rice, strong positive correlation was observed between bioaccessible As and inorganic As (R2 = 0.63-0.72), suggesting inorganic As in rice was easier to dissolve than organic As in gastrointestinal digestive fluids. Due to limited variation in As bioaccessibility and As bioavailability among the 11 samples, a weak correlation was observed between them (R2 = 0.01-0.03); however, As bioaccessibility values measured by the gastric phase (GP) of the MPBET agreed with As bioavailability values based on a mouse bioassay, suggesting the potential of the MPBETGP to predict As bioavailability in rice. Future work is needed to ascertain the robustness of the MPBETGP in predicting As bioavailability in rice using additional samples.
Collapse
Affiliation(s)
- Jie Li
- College of Geography and Environment, Shandong Normal University, Jinan, 250358, People's Republic of China
| | - Shuo Chen
- College of Geography and Environment, Shandong Normal University, Jinan, 250358, People's Republic of China
| | - Hongbo Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Xue Liu
- Institute of Environmental Remediation and Human Health, Southwest Forestry University, Kunming, 650224, People's Republic of China
| | - Jiemin Cheng
- College of Geography and Environment, Shandong Normal University, Jinan, 250358, People's Republic of China.
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|