1
|
Xin J, Song Z, Zheng B, Hu J, Zhao C, Chen D, Yang W. Biodegradation of Poly(Styrene- Alt-Maleic Anhydride) in Soil and Its Toxic Effects on the Environment. ACS APPLIED MATERIALS & INTERFACES 2025; 17:28211-28221. [PMID: 40314769 DOI: 10.1021/acsami.5c02749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
In recent years, synthetic polymers have become integral to modern society, but their improper disposal has led to significant environmental challenges. Therefore, it is of great significance to investigate the environmental impact of polymer waste. Herein, we conducted comprehensive research on the biodegradability of poly(styrene-alt-maleic anhydride) (PSM) when exposed to soil and microbes, as well as its toxic effects on soybean seedlings and Eisenia fetida. The biodegradation process of PSM was thoroughly evaluated using respirometry tests, Fourier transform infrared spectroscopy, gel permeation chromatography, weight loss analysis, and bacterial reproduction tests. After 90 days of incubation in soil, the mineralization ratio of PSM reached 15%, and the weight-average molecular weight gradually decreased from 28.0 to 14.5 kg/mol in the first 14 days. Additionally, PSM experienced a 50% degradation by Pseudomonas aeruginosa after 30 days. In terms of phytotoxicity, PSM showed slight effects on the morphology of soybean seedlings while inducing oxidative stress in roots. The toxic effects of PSM on Eisenia fetida were investigated using both filter paper and soil contact methods. The filter paper contact test showed that the LC50 value was above 1000.0 μg/cm2 at 48 h, while the soil contact test indicated an LC50 value of 93.34 g/kg at 7 days. In conclusion, PSM demonstrates excellent biodegradability and low biotoxicity, suggesting great potential for emerging environmental applications.
Collapse
Affiliation(s)
- Jiayi Xin
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ziyang Song
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bo Zheng
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Jiawen Hu
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Changwen Zhao
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dong Chen
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wantai Yang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing 100029, China
| |
Collapse
|
2
|
Wang C, Shen J. From metabolism to lifespan trade-offs: polyethylene microplastics induce circadian disruption and sex-specific aging in Drosophila melanogaster. Comp Biochem Physiol C Toxicol Pharmacol 2025; 295:110214. [PMID: 40300706 DOI: 10.1016/j.cbpc.2025.110214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/02/2025] [Accepted: 04/26/2025] [Indexed: 05/01/2025]
Abstract
Microplastics (MPs), particularly polyethylene microplastics (PE-MPs), are increasingly recognized as contaminants in both aquatic and terrestrial environments. However, the ecological impacts of PE-MPs on terrestrial organisms remain underexplored. This study investigates the physiological and behavioral effects of PE-MPs exposure in the terrestrial model organism Drosophila melanogaster, shedding light on the potential risks posed by PE-MPs in land-based ecosystems. After exposing the fruit flies to different concentrations of PE-MPs for 20 days, we assessed several physiological biomarkers, including spontaneous behavioral activity, starvation resistance, metabolic biomarkers, and lifespan. Our findings indicate that PE-MPs exposure significantly affects fruit fly physiology, with increased spontaneous activity, decreased starvation resistance, and reduced triglyceride (TG) and protein levels (in males), reflecting disruption of metabolic processes. While PE-MPs did not affect female reproductive capacity, they did result in sex-specific impacts on lifespan, with male fruit flies showing a significant reduction in both mean and median lifespan at higher PE-MPs concentrations. These results highlight the need to consider the sex-dependent nature of PE-MPs toxicity when assessing their ecological risks. This study contributes new insights into the potential for PE-MPs to disrupt terrestrial ecosystems and underscores the importance of investigating the effects of microplastics on terrestrial invertebrates, providing a foundation for future ecotoxicological research.
Collapse
Affiliation(s)
- Chengpeng Wang
- College of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou 310018, China; Key Laboratory of Micro-nano Sensing and IoT of Wenzhou, Wenzhou Institute of Hangzhou Dianzi University, Wenzhou 325038, China
| | - Jie Shen
- College of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou 310018, China; Key Laboratory of Micro-nano Sensing and IoT of Wenzhou, Wenzhou Institute of Hangzhou Dianzi University, Wenzhou 325038, China.
| |
Collapse
|
3
|
Song K, Gao SH, Pan Y, Gao R, Li T, Xiao F, Zhang W, Fan L, Guo J, Wang A. Ecological and Health Risk Mediated by Micro(nano)plastics Aging Process: Perspectives and Challenges. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:5878-5896. [PMID: 40108891 DOI: 10.1021/acs.est.4c11813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Aged micro(nano)plastics (MNPs) are normally the ultimate state of plastics in the environment after aging. The changes in the physical and chemical characteristics of aged MNPs significantly influence their environmental behavior by releasing additives, forming byproducts, and adsorbing contaminants. However, a systematic review is lacking on the effects of aged MNPs on ecological and human health regarding the increasing but scattered studies and results. This Review first summarizes the unique characteristics of aged MNPs and methods for quantifying their aging degree. Then we focused on the potential impacts on organisms, ecosystems, and human health, including the "Trojan horse" under real environmental conditions. Through combining meta-analysis and analytic hierarchy process (AHP) model, we demonstrated that, compared to virgin MNPs, aged MNPs would result in biomass decrease and oxidative stress increase on organisms and lead to total N/P decrease and greenhouse gas emissions increase on ecosystems while causing cell apoptosis, antioxidant system reaction, and inflammation in human health. Within the framework of ecological and human health risk assessment, we used the risk quotient (RQ) and physiologically based pharmacokinetic (PBK) models as examples to illustrate the importance of considering aging characteristics and the degree of MNPs in the process of data acquisition, model building, and formula evaluation. Given the ecological and health risks of aged MNPs, our urgent call for more studies of aged MNPs is to understand the potential hazards of MNPs in real-world environments.
Collapse
Affiliation(s)
- Kexiao Song
- State Key Laboratory of Urban-rural Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shu-Hong Gao
- State Key Laboratory of Urban-rural Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Yusheng Pan
- State Key Laboratory of Urban-rural Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Rui Gao
- State Key Laboratory of Urban-rural Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tianyao Li
- State Key Laboratory of Urban-rural Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Fan Xiao
- State Key Laboratory of Urban-rural Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Wanying Zhang
- State Key Laboratory of Urban-rural Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Lu Fan
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Aijie Wang
- State Key Laboratory of Urban-rural Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
- State Key Laboratory of Urban-rural Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| |
Collapse
|
4
|
Wang J, Lv L, An X, Zhang C, Tang T, Sun Y, Wang F. Combined effects of different-sized microplastics and fluindapyr on earthworm: Bioaccumulation, oxidative stress, histopathological responses and gut microbiota. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125478. [PMID: 39647773 DOI: 10.1016/j.envpol.2024.125478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 11/30/2024] [Accepted: 12/04/2024] [Indexed: 12/10/2024]
Abstract
Soil is an important sink for microplastics (MPs) and pesticides. MPs can act as carriers for pesticides, thus induce direct and indirect effects on soil organisms. Fluindapyr (FIP), a novel succinate dehydrogenase inhibitors fungicides (SDHIs), may pose a serious threat to earthworms. However, few studies have evaluated the effects of joint exposure to MPs and FIP. Here, earthworms (Eisenia fetida) were jointly exposed to PMMA (polymethylmethacrylate) and PS (polystyrene) MPs of different sizes (0.1, 1 and 10 μm) along with FIP for 28-day to investigate the toxic effects of single and joint exposure of FIP and MPs on earthworms. The results showed that joint exposure to 0.1 and 1 μm MP promoted the accumulation of FIP in earthworms at the beginning of the experiment compared to the sole group, but the elimination of FIP from earthworms accelerated after 14 d. In addition, the joint exposure caused more serious damages to the epidermis and intestine of earthworms and increased the severity of oxidative stress. The effects of joint exposure to FIP and MPs depended on the size of the MPs, and the strongest effects were observed in the treatment with the smallest size. The 16S rRNA sequencing results showed that the joint exposure to MPs and FIP didn't cause gut microbiota dysbiosis. However, the sole 0.1 μm PS significantly altered the community diversity and richness of earthworm gut bacteria, and the relative abundance of Proteobacteria, Actinobacteria and Firmicutes was significantly changed. The obtained results inferred that MPs could influence environmental and toxicological behaviors of FIP and may provide data support for the risk assessments of MPs and FIP on soil ecosystems.
Collapse
Affiliation(s)
- Jingjing Wang
- College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Lu Lv
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xuehua An
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Chunrong Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Tao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yangying Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo, 315800, China.
| | - Feidi Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
5
|
Yuan R, Li W, Salam M, Li H. Nano-biochar reduces sustainable remediation of cadmium-contaminated soil more than micro-biochar: Evidence from cadmium removal and Eisenia foetida toxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125479. [PMID: 39644949 DOI: 10.1016/j.envpol.2024.125479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/01/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Micro- (M-BC) and nano-biochar (N-BC) particles are ready to be disintegrated from biochar (BC), which is extensively applied to remediate heavy metal-contaminated soil. Still, its effects on the remediation efficiency remain poorly understood. This study investigated the interactions between the BC particles (M-BC and N-BC) and Eisenia foetida (E. foetida) in cadmium (Cd)-contaminated soils. Results indicated that M-BC has weak negative effect on E. foetida with survival rates of ≥85% as it is failed to be internalized. The interactive effects between M-BC/N-BC and Cd reduced the mobility of Cd, leading to low avoidance behavior of E. foetida. The synergistic effect of 0.1% M-BC and E. foetida caused pH regulation, BC diffusion and alternation of soil microbial community in the soil. This favored the remediation of Cd-contaminated soils with 56.2% Cd fixation efficiency identified. Conversely, internalization of Cd-loaded N-BC by E. foetida was recorded when 0.1% N-BC was amended in the soil. This triggered DNA damage, antioxidant suppression, antiapoptotic inhibition, digestion impairment, reproductive decline, and survival rates reduction (55%) in E. foetida, indicating the essential role of E. foetida in the soil is likely to be depressed. These findings are helpful to understand the potential negative effects of BC application in soil remediation.
Collapse
Affiliation(s)
- Ruoyu Yuan
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Wei Li
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Muhammad Salam
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Hong Li
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
6
|
Zhang L, Wang D, Yuan J, Chen J, Ding T, Zhu T, Li J. Ecotoxicological impact of naproxen on Eisenia fetida: Unraveling soil contamination risks and the modulating role of microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172267. [PMID: 38583628 DOI: 10.1016/j.scitotenv.2024.172267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Soils represent crucial sinks for pharmaceuticals and microplastics, making them hotspots for pharmaceuticals and plastic pollution. Despite extensive research on the toxicity of pharmaceuticals and microplastics individually, there is limited understanding of their combined effects on soil biota. This study focused on the earthworm Eisenia fetida as test organism to evaluate the biotoxicity and bioaccumulation of the typical pharmaceutical naproxen and microplastics in earthworms. Results demonstrated that high concentrations of naproxen (100 mg kg-1) significantly increased the malondialdehyde (MDA) content, inducing lipid peroxidation. Even though the low exposure of naproxen exhibits no significant influence to Eisenia fetida, the lipid peroxidation caused by higher concentration than environmental relevant concentrations necessitate attention due to temporal and spatial concentration variability found in the soil environment. Meanwhile, microplastics caused oxidative damage to antioxidant enzymes by reducing the superoxide dismutase (SOD) activity and MDA content in earthworms. Metabolome analysis revealed increased lipid metabolism in naproxen-treated group and reduced lipid metabolism in the microplastic-treated group. The co-exposure of naproxen and microplastics exhibited a similar changing trend to the microplastics-treated group, emphasizing the significant influence of microplastics. The detection of numerous including lipids like 17-Hydroxyandrostane-3-glucuronide, lubiprostone, morroniside, and phosphorylcholine, serves to identify potential biomarkers for naproxen and microplastics exposure. Additionally, microplastics increased the concentration of naproxen in earthworms at sub-organ and subcellular level. This study contributes valuable insights into the biotoxicity and distribution of naproxen and microplastics in earthworms, enhancing our understanding of their combined ecological risk to soil biota.
Collapse
Affiliation(s)
- Lili Zhang
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Dingxin Wang
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jiahui Yuan
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jiazhe Chen
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Tengda Ding
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Tingting Zhu
- State Environmental Protection Key Laboratory of Drinking Water Source Management and Technology, Shenzhen Key Laboratory of Emerging Contaminants Detection and Control in Water Environment, Guangdong Engineering Research Center of Low Energy Sewage Treatment, Shenzhen Academy of Environmental Sciences, Shenzhen 518001, China
| | - Juying Li
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
7
|
Bhat SA, Han ZM, Dewi SK, Wei Y, Li F. Effect of conventional and biodegradable microplastics on earthworms during vermicomposting process. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:189. [PMID: 38695970 DOI: 10.1007/s10653-024-01974-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/28/2024] [Indexed: 06/17/2024]
Abstract
The potential effect of microplastics is an increasingly growing environmental issue. However, very little is known regarding the impact of microplastics on the vermicomposting process. The present study explored the effect of non-biodegradable (low density polyethylene; LDPE) and biodegradable (polybutylene succinate-co-adipate; PBSA) microplastics on earthworm Eisenia fetida during vermicomposting of cow dung. For this, earthworms were exposed to different concentrations (0, 0.5, 1 and 2%) of LDPE and PBSA of 2 mm size. The cow dung supported the growth and hatchlings of earthworms, and the toxicity effect of both LDPE and PBSA microplastics on Eisenia fetida was analyzed. Microplastics decreased the body weight of earthworms and there was no impact on hatchlings. The body weight of earthworm decreased from 0 to 60th day by 18.18% in 0.5% of LDPE treatment, 5.42% in 1% of LDPE, 20.58% in 2% of LDPE, 19.99% in 0.5% of PBSA, 15.09% in 1% of PBSA and 16.36% in 2% of PBSA. The physico-chemical parameters [pH (8.55-8.66), electrical conductivity (0.93-1.02 (S/m), organic matter (77.6-75.8%), total nitrogen (3.95-4.25 mg/kg) and total phosphorus (1.16-1.22 mg/kg)] do not show much significant changes with varying microplastics concentrations. Results of SEM and FTIR-ATR analysis observed the surface damage of earthworms, morphological and biochemical changes at higher concentrations of both LDPE and PBSA. The findings of the present study contribute to a better understanding of microplastics in vermicomposting system.
Collapse
Affiliation(s)
- Sartaj Ahmad Bhat
- River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
| | - Zaw Min Han
- Graduate School of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Shiamita Kusuma Dewi
- United Graduated School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Yongfen Wei
- River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
| | - Fusheng Li
- River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| |
Collapse
|
8
|
Chen L, Liu Z, Yang T, Zhao W, Yao Y, Liu P, Jia H. Photoaged Tire Wear Particles Leading to the Oxidative Damage on Earthworms ( Eisenia fetida) by Disrupting the Antioxidant Defense System: The Definitive Role of Environmental Free Radicals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4500-4509. [PMID: 38415582 DOI: 10.1021/acs.est.3c07878] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Tire wear particles (TWPs) have caused increasing concerns due to their detrimental effects on the soil ecosystem. However, the role of weathering in altering the toxicity of TWP to soil organisms is poorly understood. In this study, the toxicity of original and photoaged TWP was compared using earthworms (Eisenia fetida) as soil model organisms. The obtained results indicated that photoaging of TWP resulted in an increase of environmentally persistent free radicals (EPFRs) from 3.69 × 1017 to 5.20 × 1017 spin/g. Meanwhile, photoaged TWP induced the changes of toxic endpoint in E. fetide, i.e., the increase of the weight loss and death ratio from 0.0425 to 0.0756 g/worm and 23.3 to 50% compared to original TWP under a 10% concentration, respectively. Analyses of transcriptomics, antioxidant enzyme activity, and histopathology demonstrated that the enhanced toxicity was mainly due to oxidative damage, which was induced by disruption in the antioxidant defense system. Free-radical quenching and correlation analysis further suggested that the excessive production of ex vivo reactive oxygen species, induced by EPFRs, led to the exhaustion of the antioxidant defense system. Overall, this work provides new insights into the potential hazard of the weathered TWP in a soil environment and has significant implications for the recycling and proper disposal of spent tire particles.
Collapse
Affiliation(s)
- Long Chen
- Key Laboratory of Low-Carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Nature Resources and Environment, Northwest A&F University, 3# Taicheng Road, Yangling 712100, P. R. China
| | - Ze Liu
- Key Laboratory of Low-Carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Nature Resources and Environment, Northwest A&F University, 3# Taicheng Road, Yangling 712100, P. R. China
| | - Tianhuan Yang
- Key Laboratory of Low-Carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Nature Resources and Environment, Northwest A&F University, 3# Taicheng Road, Yangling 712100, P. R. China
| | - Weijie Zhao
- Key Laboratory of Low-Carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Nature Resources and Environment, Northwest A&F University, 3# Taicheng Road, Yangling 712100, P. R. China
| | - Youzhi Yao
- Key Laboratory of Low-Carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Nature Resources and Environment, Northwest A&F University, 3# Taicheng Road, Yangling 712100, P. R. China
| | - Peng Liu
- Key Laboratory of Low-Carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Nature Resources and Environment, Northwest A&F University, 3# Taicheng Road, Yangling 712100, P. R. China
| | - Hanzhong Jia
- Key Laboratory of Low-Carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Nature Resources and Environment, Northwest A&F University, 3# Taicheng Road, Yangling 712100, P. R. China
| |
Collapse
|
9
|
Song J, Chen X, Li S, Tang H, Dong S, Wang M, Xu H. The environmental impact of mask-derived microplastics on soil ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169182. [PMID: 38092201 DOI: 10.1016/j.scitotenv.2023.169182] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/16/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023]
Abstract
During the COVID-19 pandemic, a significant increased number of masks were used and improperly disposed of. For example, the global monthly consumption of approximately 129 billion masks. Masks, composed of fibrous materials, can readily release microplastics, which may threaten various soil ecosystem components such as plants, animals, microbes, and soil properties. However, the specific effects of mask-derived microplastics on these components remain largely unexplored. Here, we investigated the effects of mask-derived microplastics (grouped by different concentrations: 0, 0.25, 0.5, and 1 % w/w) on soil physicochemical properties, microbial communities, growth performance of lettuce (Lactuca sativa L. var. ramosa Hort.) and earthworm (Eisenia fetida) under laboratory conditions for 80 days. Our findings suggest that mask-derived microplastics reduced soil bulk density while increasing the mean weight diameter of soil aggregates and modifying nutrient levels, including organic matter, potassium, nitrogen, and phosphorus. An increase in the abundance of denitrification bacteria (Rhodanobacteraceae) was also observed. Mask-derived microplastics were found to reduce lettuce germination, and a hormesis effect of low-concentration stimulation and high-concentration inhibition was observed on biomass, chlorophyll, and root activity. While the mortality of earthworms was not significantly affected by the mask-derived microplastics, but their growth was inhibited. Collectively, our results indicate that mask-derived microplastics can substantially impact soil properties, plant growth, and earthworm health, with potential implications for soil ecosystem functionality.
Collapse
Affiliation(s)
- Jianjincang Song
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Xianghan Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Shiyao Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Hao Tang
- Ecological Protection and Development Research Institute of Aba Tibetan and Qiang Autonomous Prefecture, Aba 623000, Sichuan, PR China
| | - Shunwen Dong
- Industrial Crop Research Institute of Sichuan Academy of Agricultural Sciences, Chengdu 610066, Sichuan, PR China
| | - Maolin Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China.
| | - Heng Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China.
| |
Collapse
|
10
|
Chen C, Zheng N, Zhu H, An Q, Pan J, Li X, Ji Y, Li N, Sun S. Co-exposure to UV-aged microplastics and cadmium induces intestinal toxicity and metabolic responses in earthworms. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132737. [PMID: 37832442 DOI: 10.1016/j.jhazmat.2023.132737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/12/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023]
Abstract
Aged microplastics (MPs) alter the interaction with heavy metals due to changes in surface properties. However, the combined toxicological effects of aged MPs on heavy metals in soil remain poorly understood. In this study, earthworms were employed as model animals to investigate the effects of aged MPs on the biotoxicity of cadmium (Cd) by simulating the exposure patterns of original and UV-aged MPs (polylactic acid (PLA) and polyethylene (PE)) with Cd. The results showed that UV-aging decreased the zeta potential and increased the specific surface area of the MPs, which enhanced the bioaccumulation of Cd and caused more severe oxidative stress to earthworms. Meanwhile, the earthworm intestines exhibited increased tissue damage, including chloragogenous tissue congestion lesions, and typhlosole damage. Furthermore, the combined exposure to UV-aged MPs and Cd enhanced the complexity of the microbial network in the earthworm gut and interfered with endocrine disruption, membrane structure, and energy metabolic pathways in earthworms. The results emphasized the need to consider the degradation of MPs in the environment. Hence, we recommend that future toxicological studies use aged MPs that are more representative of the actual environmental conditions, with the results being important for the risk assessment and management of MPs.
Collapse
Affiliation(s)
- Changcheng Chen
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| | - Na Zheng
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China.
| | - Huicheng Zhu
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| | - Qirui An
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| | - Jiamin Pan
- Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Xiaoqian Li
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| | - Yining Ji
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| | - Ning Li
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| | - Siyu Sun
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| |
Collapse
|
11
|
Peng BY, Sun Y, Li P, Yu S, Xu Y, Chen J, Zhou X, Wu WM, Zhang Y. Biodegradation of polyvinyl chloride, polystyrene, and polylactic acid microplastics in Tenebrio molitor larvae: Physiological responses. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118818. [PMID: 37633102 DOI: 10.1016/j.jenvman.2023.118818] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/05/2023] [Accepted: 08/12/2023] [Indexed: 08/28/2023]
Abstract
It is widely understood that microplastics (MPs) can induce various biological stresses in macroinvertebrates that are incapable of biodegrading plastics. However, the biodegradation and physiological responses of plastic-degrading macroinvertebrates toward MPs of different degradability levels remain unexplored. In this study, Tenebrio molitor larvae (mealworms) were selected as a model of plastics-degrading macroinvertebrate, and were tested against three common plastics of different degradability rankings: polyvinyl chloride (PVC), polystyrene (PS), and polylactic acid (PLA) MPs (size <300 μm). These three MPs were biodegraded with the rate sequence of PLA > PS > PVC, resulting in a reversed order of negative physiological responses (body weight loss, decreased survival, and biomass depletion) of mealworms. Simultaneously, the levels of reactive oxygen species (ROS), antioxidant enzyme activities, and lipid peroxidation were uniformly increased as polymer degradability decreased and intermediate toxicity increased. PVC MPs exhibited higher toxicity than the other two polymers. The oxidative stresses were effectively alleviated by supplementing co-diet bran. The T. molitor larvae fed with PLA plus bran showed sustainable growth without an increase in oxidative stress. The results provide new insights into the biotoxicity of MPs on macroinvertebrates and offer comprehensive information on the physiological stress responses of plastic-degrading macroinvertebrates during the biodegradation of plastics with different degradability levels.
Collapse
Affiliation(s)
- Bo-Yu Peng
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Ying Sun
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Ping Li
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Siran Yu
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yazhou Xu
- National Engineering Research Center of Protected Agriculture, Shanghai Engineering Research Center of Protected Agriculture, Tongji University, Shanghai, 200092, China
| | - Jiabin Chen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Wei-Min Wu
- Department of Civil and Environmental Engineering, William & Cloy Codiga Resource Recovery Center, Stanford University, Stanford, CA, 94305-4020, United States.
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; National Engineering Research Center of Protected Agriculture, Shanghai Engineering Research Center of Protected Agriculture, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
12
|
Peng BY, Xiao S, Sun Y, Liu Y, Chen J, Zhou X, Wu WM, Zhang Y. Unveiling Fragmentation of Plastic Particles during Biodegradation of Polystyrene and Polyethylene Foams in Mealworms: Highly Sensitive Detection and Digestive Modeling Prediction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15099-15111. [PMID: 37751481 DOI: 10.1021/acs.est.3c04406] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
It remains unknown whether plastic-biodegrading macroinvertebrates generate microplastics (MPs) and nanoplastics (NPs) during the biodegradation of plastics. In this study, we utilized highly sensitive particle analyzers and pyrolyzer-gas chromatography mass spectrometry (Py-GCMS) to investigate the possibility of generating MPs and NPs in frass during the biodegradation of polystyrene (PS) and low-density polyethylene (LDPE) foams by mealworms (Tenebrio molitor larvae). We also developed a digestive biofragmentation model to predict and unveil the fragmentation process of ingested plastics. The mealworms removed 77.3% of ingested PS and 71.1% of ingested PE over a 6-week test period. Biodegradation of both polymers was verified by the increase in the δ13C signature of residual plastics, changes in molecular weights, and the formation of new oxidative functional groups. MPs accumulated in the frass due to biofragmentation, with residual PS and PE exhibiting the maximum percentage by number at 2.75 and 7.27 μm, respectively. Nevertheless, NPs were not detected using a laser light scattering sizer with a detection limit of 10 nm and Py-GCMS analysis. The digestive biofragmentation model predicted that the ingested PS and PE were progressively size-reduced and rapidly biodegraded, indicating the shorter half-life the smaller plastic particles have. This study allayed concerns regarding the accumulation of NPs by plastic-degrading mealworms and provided critical insights into the factors controlling MP and NP generation during macroinvertebrate-mediated plastic biodegradation.
Collapse
Affiliation(s)
- Bo-Yu Peng
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shaoze Xiao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ying Sun
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yurong Liu
- Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Jiabin Chen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Wei-Min Wu
- Department of Civil and Environmental Engineering, William & Cloy Codiga Resource Recovery Center, Stanford University, Stanford, California 94305-4020, United States
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
13
|
Li Y, Wang J, Shao M, Jia H. Earthworm activity effectively mitigated the negative impact of microplastics on maize growth. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132121. [PMID: 37499490 DOI: 10.1016/j.jhazmat.2023.132121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
Microplastic pollution can have detrimental effects on soil environments and inhibit crop growth. Earthworms, known as soil engineers, promote crop growth, but their role and impact on the amelioration of microplastic-polluted soil is not yet clear. In this study, we investigated the impact and pathways of earthworm activity on microplastic-contaminated soil by introducing varying densities (without earthworm:0, low-density: 1, medium-density: 2, high-density: 5 ind column-1) of earthworms (epi-endogeic) into soil contaminated with two types of microplastics: polyethylene and polyvinyl chloride. Our results showed that earthworms all survived in soil polluted with two types of microplastics. Meanwhile, earthworm activity increased nutrient content and enzyme activity by 0.2-36.1% and 2.9-34.3%, respectively, and significantly increased soil microbial biomass and community diversity index. Earthworm activity also decreased antioxidant enzyme activity and promoted maize plant growth, including agronomic traits such as plant height, biomass, root length, and root surface area. Furthermore, the nutrient content of maize organs increased by 1.1-29.7%. Partial least squares models confirmed that earthworm activity alleviated the stress effect of microplastic pollution on plant growth by improving soil structure, fertility, and microbial abundance and diversity. The greatest effect on maize growth was observed with the improvement of soil physical-chemical properties. Our results suggest that medium densities of earthworms have the greatest soil improvement effect and provide an important basis for bioremediation of farmland contaminated by microplastics and promoting green and efficient development in agriculture.
Collapse
Affiliation(s)
- Yanpei Li
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Jiao Wang
- CAS Engineering Laboratory for Yellow River Delta Modern Agriculture, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Ming'an Shao
- CAS Engineering Laboratory for Yellow River Delta Modern Agriculture, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Hanzhong Jia
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China.
| |
Collapse
|
14
|
Li X, Kong Y, Juhasz AL, Zhou P, Zhang Q, Cui X. Effect of Microplastic Types on the In Vivo Bioavailability of Polychlorinated Biphenyls. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12838-12846. [PMID: 37587565 DOI: 10.1021/acs.est.3c04068] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
As MPs are released into the soil, various equilibrium statuses are expected. MPs could play roles as a "source," a "cleaner," or a "sink" of HOCs. Three types of MPs (LDPE, PLA, and PS) were selected to study their effect on polychlorinated biphenyl (PCBs) relative bioavailability (RBA) measured by a mouse model. As a "source" of HOCs, exposure to MP-sorbed PCBs resulted in their accumulation in adipose tissue with PCB RBA as 101 ± 6.73% for LDPE, 76.2 ± 19.2% for PLA, and 9.22 ± 2.02% for PS. The addition of 10% MPs in PCB-contaminated soil led to a significant (p < 0.05) reduction in PCB RBA (52.2 ± 16.7%, 49.3 ± 4.85%, and 47.1 ± 5.99% for LDPE, PLA, and PS) compared to control (75.0 ± 4.26%), implying MPs acted as "cleaner" by adsorbing PCBs from the digestive system and reducing PCB accumulation. MPs acted as a "sink" for PCBs in contaminated soil after aging, but the sink effect varied among MP types with more pronounced effect for LDPE than PLA and PS. Therefore, the role played by MPs in bioavailability of HOCs closely depended on the MP types as well as the equilibrium status among MPs, soil, and HOCs.
Collapse
Affiliation(s)
- Xinyu Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yi Kong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Albert L Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Pengfei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Qian Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xinyi Cui
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
15
|
Foetisch A, Filella M, Watts B, Bragoni M, Bigalke M. After the sun: a nanoscale comparison of the surface chemical composition of UV and soil weathered plastics. MICROPLASTICS AND NANOPLASTICS 2023; 3:18. [PMID: 37547699 PMCID: PMC10400702 DOI: 10.1186/s43591-023-00066-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/16/2023] [Indexed: 08/08/2023]
Abstract
Once emitted into the environment, macro- (MaP), micro- (MP) and nanoplastics (NP) are exposed to environmental weathering. Yet, the effects of biogeochemical weathering factors occurring in the soil environment are unknown. As the transport, fate, and toxicity of MP and NP depend directly on their surface properties, it is crucial to characterize their transformation in soils to better predict their impact and interactions in this environment. Here, we used scanning transmission x-ray micro spectroscopy to characterize depth profiles of the surface alteration of environmental plastic debris retrieved from soil samples. Controlled weathering experiments in soil and with UV radiation were also performed to investigate the individual effect of these weathering factors on polymer surface alteration. The results revealed a weathered surface on a depth varying between 1 µm and 100 nm in PS, PET and PP environmental plastic fragments naturally weathered in soil. Moreover, the initial step of surface fragmentation was observed on a PS fragment, providing an insight on the factors and processes leading to the release of MP and NP in soils. The comparison of environmental, soil incubated (for 1 year) and UV weathered samples showed that the treatments led to different surface chemical modifications. While the environmental samples showed evidence of alteration involving oxidation processes, the UV weathered samples did not reveal oxidation signs at the surface but only decrease in peak intensities (indicating decrease of the number of chemical C bonds). After a one-year incubation of samples in soil no clear aging effects were observed, indicating that the aging of polymers can be slow in soils. Supplementary Information The online version contains supplementary material available at 10.1186/s43591-023-00066-2.
Collapse
Affiliation(s)
- Alexandra Foetisch
- Institute of Geography, University of Bern, Hallerstrasse 12, 3012 Bern, Switzerland
| | - Montserrat Filella
- Department F.-A. Forel, University of Geneva, Boulevard Carl-Vogt 66, CH-1205 Geneva, Switzerland
| | - Benjamin Watts
- Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen-PSI, Switzerland
| | - Maeva Bragoni
- Institute of Geography, University of Bern, Hallerstrasse 12, 3012 Bern, Switzerland
| | - Moritz Bigalke
- Institute of Applied Geoscience, Technical University of Darmstadt, Schnittspahnstrasse 9, 64287 Darmstadt, Germany
| |
Collapse
|
16
|
Zhou Y, He G, Bhagwat G, Palanisami T, Yang Y, Liu W, Zhang Q. Nanoplastics alter ecosystem multifunctionality and may increase global warming potential. GLOBAL CHANGE BIOLOGY 2023; 29:3895-3909. [PMID: 37089084 DOI: 10.1111/gcb.16734] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/04/2023] [Indexed: 05/03/2023]
Abstract
Although the presence of nanoplastics in aquatic and terrestrial ecosystems has received increasing attention, little is known about its potential effect on ecosystem processes and functions. Here, we evaluated if differentially charged polystyrene (PS) nanoplastics (PS-NH2 and PS-SO3 H) exhibit distinct influences on microbial community structure, nitrogen removal processes (denitrification and anammox), emissions of greenhouse gases (CO2 , CH4 , and N2 O), and ecosystem multifunctionality in soils with and without earthworms through a 42-day microcosm experiment. Our results indicated that nanoplastics significantly altered soil microbial community structure and potential functions, with more pronounced effects for positively charged PS-NH2 than for negatively charged PS-SO3 H. Ecologically relevant concentration (3 g kg-1 ) of nanoplastics inhibited both soil denitrification and anammox rates, while environmentally realistic concentration (0.3 g kg-1 ) of nanoplastics decreased the denitrification rate and enhanced the anammox rate. The soil N2 O flux was always inhibited 6%-51% by both types of nanoplastics, whereas emissions of CO2 and CH4 were enhanced by nanoplastics in most cases. Significantly, although N2 O emissions were decreased by nanoplastics, the global warming potential of total greenhouse gases was increased 21%-75% by nanoplastics in soils without earthworms. Moreover, ecosystem multifunctionality was increased 4%-12% by 0.3 g kg-1 of nanoplastics but decreased 4%-11% by 3 g kg-1 of nanoplastics. Our findings provide the only evidence to date that the rapid increase in nanoplastics is altering not only ecosystem structure and processes but also ecosystem multifunctionality, and it may increase the emission of CO2 and CH4 and their global warming potential to some extent.
Collapse
Affiliation(s)
- Yanfei Zhou
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Gang He
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Geetika Bhagwat
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Thava Palanisami
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Yuyi Yang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Wenzhi Liu
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Quanfa Zhang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
17
|
Peng BY, Sun Y, Zhang X, Sun J, Xu Y, Xiao S, Chen J, Zhou X, Zhang Y. Unveiling the residual plastics and produced toxicity during biodegradation of polyethylene (PE), polystyrene (PS), and polyvinyl chloride (PVC) microplastics by mealworms (Larvae of Tenebrio molitor). JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131326. [PMID: 37027925 DOI: 10.1016/j.jhazmat.2023.131326] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/17/2023] [Accepted: 03/29/2023] [Indexed: 05/03/2023]
Abstract
Evidence for plastic degradation by mealworms has been reported. However, little is known about the residual plastics derived from incomplete digestion during mealworm-mediated plastic biodegradation. We herein reveal the residual plastic particles and toxicity produced during mealworm-mediated biodegradation of the three most common microplastics, i.e., polyethylene (PE), polystyrene (PS), and polyvinyl chloride (PVC). All three microplastics are effectively depolymerized and biodegraded. We discover that the PVC-fed mealworms exhibit the lowest survival rate (81.3 ± 1.5%) and the highest body weight reduction (15.1 ± 1.1%) among the experimental groups by the end of the 24-day experiment. We also demonstrate that the residual PVC microplastic particles are more difficult to depurate and excrete for the mealworms compared to the residual PE and PS particles by using laser direct infrared spectrometry. The levels of oxidative stress responses, including reactive oxygen species, antioxidant enzyme activities, and lipid peroxidation, are also highest in the PVC-fed mealworms. Sub-micron microplastics and small microplastics are found in the frass of mealworms fed with PE, PS, and PVC, with the smallest particles detected at diameters of 5.0, 4.0, and 5.9 µm, respectively. Our findings provide insights into the residual microplastics and microplastic-induced stress responses in macroinvertebrates under micro(nano)plastics exposure.
Collapse
Affiliation(s)
- Bo-Yu Peng
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ying Sun
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xu Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Science, Shanghai 201403, China
| | - Jingjing Sun
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yazhou Xu
- National Engineering Research Center of Protected Agriculture, Shanghai Engineering Research Center of Protected Agriculture, Tongji University, Shanghai 200092, China
| | - Shaoze Xiao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jiabin Chen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
18
|
Ju H, Yang X, Osman R, Geissen V. The role of microplastic aging on chlorpyrifos adsorption-desorption and microplastic bioconcentration. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121910. [PMID: 37247767 DOI: 10.1016/j.envpol.2023.121910] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 05/31/2023]
Abstract
Microplastics (MPs) in soil undergo different aging processes such as photoaging, mechanical abrasion and biodegradation, leading to alterations in the surface properties of MPs. In this study, we investigated the adsorption-desorption of chlorpyrifos (CPF) on pristine and UV light-aged low-density polyethylene (LDPE) and biodegradable (Bio) MPs that were derived from plastic mulch films. We also tested the bioconcentration of pristine and aged MPs (LDPE- and Bio-MPs aged under UV light and LDPE-MPs aged in three different soils) associated with CPF by earthworms (Lumbricus terrestris). The results showed that UV-aged MPs showed higher CPF adsorption capacities than pristine MPs, with the adsorption capacities at 184.9 ± 5.3, 200.5 ± 1.8, 193.0 ± 8.7, and 215.9 ± 1.1 μg g-1 for pristine LDPE-, UV-aged LDPE-, pristine Bio- and UV-aged Bio-MPs, respectively. The desorption rate of CPF from UV-aged LDPE-MPs within 48 h was lower than the desorption from pristine ones (28.8 ± 7.7% vs. 40.0 ± 3.9%), while both pristine and UV-aged Bio-MPs showed very low CPF desorption rates. A 4-day Petri dish experiment showed that UV-aged MPs were significantly less concentrated in earthworm casts than pristine counterparts (52% and 36% lower for UV-aged LDPE- and Bio-MPs), while UV-aged MPs with adsorbed CPF were concentrated significantly more than UV-aged MPs without CPF. Interestingly, LDPE-MPs aged in soil with a high carbon, nitrogen, and carbon-to-nitrogen ratio were significantly more concentrated in earthworm casts than pristine LDPE-MPs. In conclusion, UV-aged MPs acted as stronger vectors for CPF than pristine MPs. The bioconcentration of MPs differed significantly due to microplastic aging, as well as the combined effect with CPF. Moreover, LDPE-MPs aged in soil with enriched carbon and nitrogen were significantly concentrated in earthworm casts. Further studies on the environmental behaviours of aged MPs associated with other pollutants in soil, especially soils high in carbon and nitrogen, are needed.
Collapse
Affiliation(s)
- Hui Ju
- Soil Physics and Land Management, Wageningen University & Research, 6700AA, Wageningen, the Netherlands
| | - Xiaomei Yang
- Soil Physics and Land Management, Wageningen University & Research, 6700AA, Wageningen, the Netherlands; College of Natural Resources and Environment, Northwest A&F University, 712100, Yangling, China.
| | - Rima Osman
- Soil Physics and Land Management, Wageningen University & Research, 6700AA, Wageningen, the Netherlands
| | - Violette Geissen
- Soil Physics and Land Management, Wageningen University & Research, 6700AA, Wageningen, the Netherlands
| |
Collapse
|
19
|
Wu R, Liu H, Lu C, Hou K, Wang X, Wang J, Du Z, Li B, Zhu L, Wang J. The effect of TiO 2NPs on cloransulam-methyl toxicity to earthworm (Eisenia fetida). CHEMOSPHERE 2023; 322:138242. [PMID: 36841449 DOI: 10.1016/j.chemosphere.2023.138242] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/14/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Cloransulam-methyl is a new herbicide and has broad application prospect. However, the effect of cloransulam-methyl on earthworm have yet to be clarified. As more and more titanium dioxide nanoparticles (TiO2NPs) enter the soil, cloransulam-methyl and TiO2NPs have a risk of co-exposure, but the effect of TiO2NPs on cloransulam-methyl toxicity is unknown. In the study, the ecotoxicity of cloransulam-methyl (0.1, 1 mg kg-1) on earthworm and the effect of TiO2NPs (10 mg kg-1) on cloransulam-methyl toxicity was investigated after exposure for 28 and 56 d. Exposure tests showed cloransulam-methyl and cloransulam-methyl + TiO2NPs promoted the accumulation of reactive oxygen species, malondialdehyde and 8-hydroxydeoxyguanosine, increased the activities of superoxide dismutase and catalase, resulted in lipid peroxidation and DNA damage. Besides, the results at the genetic level showed cloransulam-methyl and cloransulam-methyl + TiO2NPs altered the expression of physiologically-related genes, which demonstrated that cloransulam-methyl and cloransulam-methyl + TiO2NPs induced oxidative stress and cell apoptosis, and disturbed the normal reproduction in earthworm. The results of comprehensive toxicity comparison indicated cloransulam-methyl and TiO2NPs co-exposure has higher toxicity compared to cloransulam single exposure. Our results suggest that TiO2NPs can enhance the toxicity of cloransulam-methyl on Eisenia fetida in terms of oxidative stress, cell apoptosis and reproduction aspects. Based on above studies, it is of great importance for evaluating the risk of cloransulam-methyl co-exposure with TiO2NPs in soil.
Collapse
Affiliation(s)
- Ruolin Wu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, China.
| | - Hunan Liu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, China.
| | - Chengbo Lu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, China.
| | - Kaixuan Hou
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, China.
| | - Xiaole Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, China.
| | - Jun Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, China.
| | - Zhongkun Du
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, China.
| | - Bing Li
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, China.
| | - Lusheng Zhu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, China.
| | - Jinhua Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, China.
| |
Collapse
|
20
|
Zhou Y, He G, Jiang H, Pan K, Liu W. Nanoplastics induces oxidative stress and triggers lysosome-associated immune-defensive cell death in the earthworm Eisenia fetida. ENVIRONMENT INTERNATIONAL 2023; 174:107899. [PMID: 37054650 DOI: 10.1016/j.envint.2023.107899] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/03/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Nanoplastics (NPs) are increasingly perceived as an emerging threat to terrestrial environments, but the adverse impacts of NPs on soil fauna and the mechanisms behind these negative outcomes remain elusive. Here, a risk assessment of NPs was conducted on model organism (earthworm) from tissue to cell. Using palladium-doped polystyrene NPs, we quantitatively measured nanoplastic accumulation in earthworm and investigated its toxic effects by combining physiological assessment with RNA-Seq transcriptomic analyses. After a 42-day exposure, earthworm accumulated up to 15.9 and 143.3 mg kg-1 of NPs for the low (0.3 mg kg-1) and high (3 mg kg-1) dose groups, respectively. NPs retention led to the decrease of antioxidant enzyme activity and the accumulation of reactive oxygen species (O2- and H2O2), which reduced growth rate by 21.3 %-50.8 % and caused pathological abnormalities. These adverse effects were enhanced by the positively charged NPs. Furthermore, we observed that irrespective of surface charge, after 2 h of exposure, NPs were gradually internalized by earthworm coelomocytes (∼0.12 μg per cell) and mainly amassed at lysosomes. Those agglomerations stimulated lysosomal membranes to lose stability and even rupture, resulting in impeded autophagy process and cellular clearance, and eventually coelomocyte death. In comparison with negatively charged nanoplastics, the positively charged NPs exerted 83 % higher cytotoxicity. Our findings provide a better understanding of how NPs posed harmful effects on soil fauna and have important implications for evaluating the ecological risk of NPs.
Collapse
Affiliation(s)
- Yanfei Zhou
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Gang He
- Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Hao Jiang
- Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Ke Pan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
| | - Wenzhi Liu
- Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, China.
| |
Collapse
|
21
|
Zhao Y, Jia H, Deng H, Xing W, Feng D, Li J, Ge C, Yu H, Zhang Y, Chen H. Response of earthworms to microplastics in soil under biogas slurry irrigation: Toxicity comparison of conventional and biodegradable microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160092. [PMID: 36370787 DOI: 10.1016/j.scitotenv.2022.160092] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/13/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
As a reliable environment-friendly alternative, biodegradable plastic mulching films have been introduced into agricultural practice to reduce the adverse threats posed by conventional plastic products. Information regarding whether potential untoward effects of biodegradable plastics exist in soil and how strong are such effects on terrestrial organisms, however, still remains unknown. This study examined differences in the responses of earthworm, represented by Eisenia fetida, to exposure to biodegradable (PLA: polylactic acid) and conventional microplastics (PVC: polyvinylchloride, LDPE: low-density polyethylene) in soil with biogas slurry irrigation. Mortality, growth, histopathology and biochemical enzymes of the earthworms exposed to different concentrations of microplastics (5, 20 and 50 g/kg wet weight of soil, respectively) were investigated after 28 days of incubation in the experiment. The obtained results showed that the ecotoxicity of microplastics (MPs) to earthworms was time-dependent. Regardless of MPs type, continuous exposure to MPs at the concentration of 50 g/kg induced mucous vacuolization, longitude muscle disorder, and granular lipofuscin-like deposits generation in the epithelium. Moreover, tissue fibrosis and cavity formation were also observed in intestinal tissue. The presence of MPs stimulated the oxidative stress system of the earthworms, as indicated by the enhancement of malonaldehyde (MDA) content in vivo. The antioxidative defense system in earthworms was supposed to collapse at the MPs concentration of 50 g/kg after 28 days of exposure. Interestingly, PLA exhibited similar ecotoxicity effects with LDPE, which might violate the original intention of biodegradable plastics with less harmful or nontoxic influence on the terrestrial biotas. Thus, knowledge regarding the molecular and genetic mechanisms of the earthworms in soil containing biodegradable plastics should be further explored to better understand the risk posed by biodegradable plastics in the agroecosystem.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- College of Ecology and Environment, Hainan University, Renmin Road, Haikou 570228, China; Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Ministry of Education, Haikou 570228, China.
| | - Huiting Jia
- College of Ecology and Environment, Hainan University, Renmin Road, Haikou 570228, China; Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Ministry of Education, Haikou 570228, China.
| | - Hui Deng
- College of Ecology and Environment, Hainan University, Renmin Road, Haikou 570228, China; Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Ministry of Education, Haikou 570228, China.
| | - Wenzhe Xing
- College of Ecology and Environment, Hainan University, Renmin Road, Haikou 570228, China; Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Ministry of Education, Haikou 570228, China.
| | - Dan Feng
- College of Ecology and Environment, Hainan University, Renmin Road, Haikou 570228, China; Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Ministry of Education, Haikou 570228, China; Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Guangzhou 510006, China.
| | - Jiatong Li
- College of Ecology and Environment, Hainan University, Renmin Road, Haikou 570228, China; Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Ministry of Education, Haikou 570228, China.
| | - Chengjun Ge
- College of Ecology and Environment, Hainan University, Renmin Road, Haikou 570228, China; Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Ministry of Education, Haikou 570228, China.
| | - Huamei Yu
- College of Ecology and Environment, Hainan University, Renmin Road, Haikou 570228, China; Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Ministry of Education, Haikou 570228, China.
| | - Ying Zhang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| | - Haiying Chen
- Hainan Qingshi Environmental Engineering & Technology Co., Ltd, Haikou 570100, China.
| |
Collapse
|
22
|
Gu Z, Han J, Zhang L, Wang H, Luo X, Meng X, Zhang Y, Niu X, Lan Y, Wu S, Cao J, Lichtfouse E. Unanswered questions on the airborne transmission of COVID-19. ENVIRONMENTAL CHEMISTRY LETTERS 2023; 21:725-739. [PMID: 36628267 PMCID: PMC9816530 DOI: 10.1007/s10311-022-01557-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Policies and measures to control pandemics are often failing. While biological factors controlling transmission are usually well explored, little is known about the environmental drivers of transmission and infection. For instance, respiratory droplets and aerosol particles are crucial vectors for the airborne transmission of the severe acute respiratory syndrome coronavirus 2, the causation agent of the coronavirus 2019 pandemic (COVID-19). Once expectorated, respiratory droplets interact with atmospheric particulates that influence the viability and transmission of the novel coronavirus, yet there is little knowledge on this process or its consequences on virus transmission and infection. Here we review the effects of atmospheric particulate properties, vortex zones, and air pollution on virus survivability and transmission. We found that particle size, chemical constituents, electrostatic charges, and the moisture content of airborne particles can have notable effects on virus transmission, with higher survival generally associated with larger particles, yet some viruses are better preserved on small particles. Some chemical constituents and surface-adsorbed chemical species may damage peptide bonds in viral proteins and impair virus stability. Electrostatic charges and water content of atmospheric particulates may affect the adherence of virion particles and possibly their viability. In addition, vortex zones and human thermal plumes are major environmental factors altering the aerodynamics of buoyant particles in air, which can strongly influence the transport of airborne particles and the transmission of associated viruses. Insights into these factors may provide explanations for the widely observed positive correlations between COVID-19 infection and mortality with air pollution, of which particulate matter is a common constituent that may have a central role in the airborne transmission of the novel coronavirus. Supplementary Information The online version contains supplementary material available at 10.1007/s10311-022-01557-z.
Collapse
Affiliation(s)
- Zhaolin Gu
- School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an, 710049 People’s Republic of China
| | - Jie Han
- School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an, 710049 People’s Republic of China
| | - Liyuan Zhang
- School of Water and Environment, Chang’an University, Xi’an, 710064 People’s Republic of China
| | - Hongliang Wang
- Health Science Center, Xi’an Jiaotong University, Xi’an, 710049 People’s Republic of China
| | - Xilian Luo
- School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an, 710049 People’s Republic of China
| | - Xiangzhao Meng
- School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an, 710049 People’s Republic of China
| | - Yue Zhang
- School of Architecture, Chang’an University, Xi’an, 710064 People’s Republic of China
| | - Xinyi Niu
- School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an, 710049 People’s Republic of China
| | - Yang Lan
- School of Public Health, Xi’an Jiaotong University, Xi’an, 710049 People’s Republic of China
| | - Shaowei Wu
- School of Public Health, Xi’an Jiaotong University, Xi’an, 710049 People’s Republic of China
| | - Junji Cao
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029 People’s Republic of China
| | - Eric Lichtfouse
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi People’s Republic of China
- CNRS, IRD, INRAE, CEREGE, Aix-Marseille University, 13100, Aix-en-Provence, France
| |
Collapse
|
23
|
Zhu L, Liu J, Zhou J, Wu X, Yang K, Ni Z, Liu Z, Jia H. The overlooked toxicity of environmentally persistent free radicals (EPFRs) induced by anthracene transformation to earthworms (Eisenia fetida). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158571. [PMID: 36075414 DOI: 10.1016/j.scitotenv.2022.158571] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/22/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
Environmentally persistent free radicals (EPFRs) as intermediate products exist widely in the PAHs-contaminated soils, but toxicity assessment associated with EPFRs for terrestrial invertebrates remains unclear. Using the model organism Eisenia fetida, we compared the adverse effects among anthracene (ANT), anthraquinone (ANQ), and EPFRs induced by ANT transformation on clay surfaces. Our results showed that EPFRs-exposed earthworms experienced histopathological damage, which was more severe than ANT and ANQ-exposed earthworms. The source of EPFRs damage was associated with the obvious dysbiosis of reactive oxygen species in earthworms. Specifically, EPFRs trigged more severe antioxidant responses and oxidative damages (e.g., membrane lipid and DNA injury) in comparison with ANT and ANQ exposure, as evidenced by the values of integrated biomarker response (IBR) following the order of EPFRs (14.5) > ANT (12.8) > ANQ (10.9). Moreover, high-throughput sequencing found that EPFRs induced dramatic changes in the composition and structure of earthworm gut microbiota, which may involve immune and metabolism dysfunction, in turn aggravated EPFRs toxicity. Overall, the obtained information highlights the more severe injury of EPFRs to terrestrial organisms, deserving more attentions for the assessment of potential risks associated with radical intermediates in PAHs-contaminated soils.
Collapse
Affiliation(s)
- Lang Zhu
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Jinbo Liu
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Jinyi Zhou
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Xintong Wu
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Kangjie Yang
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Zheng Ni
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Ze Liu
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Hanzhong Jia
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China; Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, China.
| |
Collapse
|
24
|
Walker TR, Wang L, Horton A, Xu EG. Micro(nano)plastic toxicity and health effects: Special issue guest editorial. ENVIRONMENT INTERNATIONAL 2022; 170:107626. [PMID: 36379729 DOI: 10.1016/j.envint.2022.107626] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Affiliation(s)
- Tony R Walker
- School for Resource and Environmental Studies, Dalhousie University, Halifax, Nova Scotia, Canada.
| | - Lei Wang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Alice Horton
- National Oceanography Centre, European Way, Southampton SO14 3ZH, UK
| | - Elvis Genbo Xu
- Department of Biology, University of Southern Denmark, 5230 Odense M, Denmark.
| |
Collapse
|
25
|
Lin L, Li H, Hong H, Yuan B, Sun X, He L, Xue C, Lu H, Liu J, Yan C. Enhanced heavy metal adsorption on microplastics by incorporating flame retardant hexabromocyclododecanes: Mechanisms and potential migration risks. WATER RESEARCH 2022; 225:119144. [PMID: 36194945 DOI: 10.1016/j.watres.2022.119144] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/04/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Microplastics (MPs) are known to act as carriers of heavy metals; however, little is known about the intrinsic chemical additives of MPs, such as hexabromocyclododecane (HBCD), in terms of the adsorption behaviors and migration risks of heavy metals on MPs. Here, we reported the potential mechanisms and risks of HBCD inherent in polystyrene (PS) MPs with Cu(II), Ni(II), and Zn(II) adsorption/desorption. A comparison of the adsorption capacity of the metals onto HBCD/PS composites (HBCD/PS) MPs (10.31-20.76 μmol/g), pure MPs (0-3.60 μmol/g), and natural minerals (0.11-13.88 μmol/g) showed that the addition of HBCD significantly promoted the metals adsorption onto the HBCD/PS MPs, and even exceeded that of natural particles. Isotherms and thermodynamic data suggested that the adsorption process of the metals onto the HBCD/PS MPs was spontaneous and endothermic, and that the adsorption was a mainly multi-ion process with an inclined direction. Furthermore, the results of SEM-EDS, FTIR, and XPS analyses, as well as density functional theory well explained that the metals were mainly adsorbed on the -O and -Br groups of the HBCD/PS MPs via electrostatic interactions and surface complexation. More importantly, by comparing the desorption activity with natural river water and seawater, HBCD inherent in MPs can enhance the long-range transfer of metals carried by the HBCD/PS MPs from contamination sources to potential sink like oceans. Thus, the HBCD/PS MPs with high loading of Cu(II), Ni(II), and Zn(II) could be potential secondary sources of these metals in seawater. Overall, these findings revealed the potential risks of flame retardant in MPs associated with metal migration, and advocated that flame retardant-related waste MPs should be included in coastal sustainable development.
Collapse
Affiliation(s)
- Lujian Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361102, PR China
| | - Hanyi Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361102, PR China
| | - Hualong Hong
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361102, PR China.
| | - Bo Yuan
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361102, PR China
| | - Xuan Sun
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, PR China
| | - Le He
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361102, PR China
| | - Chengwen Xue
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361102, PR China
| | - Haoliang Lu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361102, PR China
| | - Jingchun Liu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361102, PR China
| | - Chongling Yan
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361102, PR China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, PR China.
| |
Collapse
|