1
|
Wang Y, Wang B, Yan K, Liu L, Zhang J, Li Q, Huang Z, Wu KK, Liu S, Li J, Wei Q, Kwok HF, Luo S. Polysaccharides from Brasenia schreberi alleviated the toxicity induced by acrylamide on cells and Caenorhabditis elegans. Int J Biol Macromol 2025; 309:142831. [PMID: 40188917 DOI: 10.1016/j.ijbiomac.2025.142831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/11/2025] [Accepted: 04/02/2025] [Indexed: 05/10/2025]
Abstract
Acrylamide (AC), a widely used chemical compound in industrial production and the food industry, has been shown to exhibit reproductive toxicity, neurotoxicity, and genotoxicity. While no specific treatment has been developed to alleviate its harmful effects, identifying an effective therapeutic agent is necessary. In our previous work, polysaccharides from Brasenia schreberi (PSBS) demonstrated strong antioxidant activity, suggesting that PSBS may relieve AC-induced toxicity. In this study, we employed cellular models and Caenorhabditis elegans to evaluate the protective effects of PSBS against AC toxicity. The findings revealed that PSBS significantly reduced reactive oxygen species (ROS) levels and cell apoptosis through the activation of the MAPK signaling pathway. Furthermore, PSBS markedly improved the survival of C. elegans exposed to AC. Quantitative PCR (qPCR) analysis indicated that PSBS downregulated the insulin and PI3K/AKT pathways while upregulating the AMPK and MAPK pathways. Additionally, PSBS enhanced the expression of antioxidant enzymes such as catalase (CAT), superoxide dismutase (SOD), and glutathione S-transferase (GST) by activating skn-1 and daf-16. These results suggest that PSBS is a promising natural drug for mitigating acrylamide-induced toxicity.
Collapse
Affiliation(s)
- Yujie Wang
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
| | - Bangguo Wang
- The Third People's Hospital of Yibin, Yibin, China
| | - Kuan Yan
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
| | - Li Liu
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
| | - Jian Zhang
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
| | - Qiang Li
- Food Safety Inspection Technology Center of Sichuan Market Supervision Administration, Chengdu, China
| | - Zhenglin Huang
- Food Safety Inspection Technology Center of Sichuan Market Supervision Administration, Chengdu, China
| | - Ka Kun Wu
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Sicen Liu
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
| | - Junqiang Li
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
| | - Qin Wei
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
| | - Hang Fai Kwok
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau.
| | - Siyuan Luo
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau.
| |
Collapse
|
2
|
Šebeková K, Hodosy J, Celec P, Marková L, Miláček D, Ciesarová Z. Association of acrylamide dietary intake with glycation and oxidative status biomarkers and intakes of advanced glycation end-products or alpha-dicarbonyls. Sci Rep 2025; 15:14881. [PMID: 40295573 PMCID: PMC12037909 DOI: 10.1038/s41598-025-98285-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 04/10/2025] [Indexed: 04/30/2025] Open
Abstract
Acrylamide, advanced glycation end products (AGEs), and alpha-dicarbonyls are formed during the thermal processing of foods. Their dietary intake raises potential health concerns. Using food frequency questionnaires on acrylamide-rich Slovak foods, we estimated dietary acrylamide intake in 107 students aged 19-to-30 years and correlated it with salivary, plasma, skin autofluorescence; plasma levels of soluble receptor for advanced glycated end-products, and oxidative status markers (thiobarbituric acid reacting substances, ferric-reducing ability of plasma). No significant relationship was revealed between estimated daily acrylamide intake and analyzed biomarkers. As the extent of exposure to alpha-dicarbonyls and AGEs when consuming acrylamide-rich food remains unknown, we aligned acrylamide intake with that of glyoxal, methylglyoxal, 3-deoxyglucosone, and Nε-carboxymethyllysine, Nε-carboxyethyllysine, or methylglyoxal-derived hydroimidazolone. Correlation coefficients between intakes of acrylamide and alpha-dicarbonyls or AGEs reached 0.7-to-0.8 (p < 0.001, all), but, at individual levels, high intake of acrylamide was not unequivocally associated with high intake of AGEs or alpha-dicarbonyls. Our data suggest that the restriction of dietary AGEs recommended to patients with chronic non-communicable diseases must not simultaneously mitigate acrylamide intake. Nutritional research should explore the potential cumulative or synergistic adverse health effects of concurrent dietary intakes of acrylamide, AGEs, and alpha-dicarbonyls.
Collapse
Affiliation(s)
- Katarína Šebeková
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia.
| | - Július Hodosy
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Peter Celec
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Lucie Marková
- National Agricultural and Food Centre, Food Research Institute, Bratislava, Slovakia
| | - Dávid Miláček
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Zuzana Ciesarová
- National Agricultural and Food Centre, Food Research Institute, Bratislava, Slovakia
| |
Collapse
|
3
|
Peng H, Du Z, Li J, Wang W, Li Z, Ru S. The sprouting angiogenesis and vascular dysfunction triggered by bisphenol S and tetrabromobisphenol S through disrupting vascular endothelial-cadherin in zebrafish. ENVIRONMENTAL RESEARCH 2025; 278:121632. [PMID: 40246265 DOI: 10.1016/j.envres.2025.121632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/31/2025] [Accepted: 04/15/2025] [Indexed: 04/19/2025]
Abstract
Exogenous chemical toxicants may be important inducers of pathological angiogenesis diseases. However, few studies have investigated the associations between pathological angiogenesis diseases and chemical toxicant exposures, and the specific mechanism by which chemical toxicants induce sprouting angiogenesis is unclear. In this study, zebrafish were exposed to bisphenol S (BPS, 1-100 μg/L) and tetrabromobisphenol S (TBBPS, 0.1 and 10 μg/L) from the embryonic stage to the larval stage to investigate how pollutants interfere with angiogenesis and the function of ectopic sprouting vessels. The results showed that BPS and TBBPS promoted ectopic sprouting angiogenesis in different types of vascular plexuses, including the posterior cardinal vein (PCV) and superficial choroidal vessels (SOVs), at different developmental time points. Proteomic analyses of eGFP-positive endothelial cells (ECs) isolated from Tg(flk1: eGFP) zebrafish revealed that both BPS and TBBPS induced ectopic angiogenesis by acting on vascular endothelial-cadherin (VE-cadherin) and activating downstream proangiogenic signaling. In ectopic sprouting vessels induced by BPS and TBBPS, increased endothelial permeability resulted in white blood cell recruitment. Human oxidized lipids also tended to deposit in these ectopic vessels following BPS and TBBPS exposure. These findings suggest that chemical toxicant-induced ectopic angiogenesis is an important cause of vascular dysfunction and related diseases.
Collapse
Affiliation(s)
- Hongyuan Peng
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Zehui Du
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Jiali Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Weiwei Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| | - Ze Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| |
Collapse
|
4
|
Wang A, Ao Y, Liu X, Wan X, Zhuang P, Jiao J, Zhang Y. Potential impact of the time trend of fried food consumption on the cardiovascular disease burden in China. Food Funct 2025. [PMID: 40230178 DOI: 10.1039/d4fo02978j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Background: Cardiovascular disease (CVD) is a leading cause of death in China. Fried foods are a risk factor for increasing CVD and their consumption in China is rapidly rising. Evaluation of the impact of fried foods on the CVD burden has important implications for future public health and policy making. This study aimed to evaluate the impact of fried foods on the CVD burden. Methods: We estimated the temporal trends of fried food consumption from 1997 to 2011 using data from the China Health and Nutrition Survey. We estimated CVD events attributed to fried food consumption using comparative risk assessment methods. We also projected fried food consumption and the related CVD burden from 2011 to 2031. Results: Fried food consumption continued to increase from 1997 to 2011, reaching 110.2 g per week in 2011. It is estimated that high consumption of fried foods is responsible for 3.4%, 2.3%, and 14.3% of the CVD, CHD, and stroke burden, accounting for 0.112 million CVD cases, 0.036 million CHD cases, and 0.243 million stroke cases, respectively. Notably, fried food consumption is projected to increase to 127.6 g per week by 2031. High consumption levels are projected to cause 0.239 million CVD cases, 0.078 million CHD cases, and 0.529 million stroke cases by 2031. Conclusions: The consumption of fried foods has continued to increase over time, which has an important impact on the burden of CVD in China. Dietary guidelines should continue to emphasize on decreasing the consumption of fried foods to reduce the CVD burden in China.
Collapse
Affiliation(s)
- Anli Wang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Key Laboratory of Agri-Food Resources and High-value Utilization, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Yang Ao
- Department of Endocrinology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Clinical Nutrition, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Xiaohui Liu
- Department of Endocrinology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xuzhi Wan
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Key Laboratory of Agri-Food Resources and High-value Utilization, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Pan Zhuang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Key Laboratory of Agri-Food Resources and High-value Utilization, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Jingjing Jiao
- Department of Endocrinology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yu Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Key Laboratory of Agri-Food Resources and High-value Utilization, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Gan L, Wang J, Qu K, Jiang W, Lei Y, Dong M. Association of acrylamide exposure with markers of systemic inflammation and serum alpha-klotho concentrations in middle-late adulthood. Front Public Health 2025; 13:1457630. [PMID: 40177073 PMCID: PMC11961959 DOI: 10.3389/fpubh.2025.1457630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 03/10/2025] [Indexed: 04/05/2025] Open
Abstract
Background Acrylamide (AA) is a ubiquitous environmental contaminant linked to systemic inflammation and oxidative stress in animal studies; however, the epidemiological evidence is still lacking. This study aimed to evaluate the association of AA exposure with markers of systemic inflammation and serum concentrations of an anti-aging protein, α-klotho. Methods The study used data of 1,545 adults aged 40-79 years from the National Health and Nutrition Examination Survey (NHANES) 2013-2016. Internal AA exposure was assessed using hemoglobin adducts of acrylamide and glycidamide (HbAA and HbGA, respectively), the sum of HbAA and HbGA (HbAA + HbGA), and the ratio of HbGA and HbAA (HbGA/HbAA). Two novel indicators, systemic immune-inflammation index (SII) and system inflammation response index (SIRI), were calculated using the lymphocyte, platelet, neutrophil, and monocyte counts. The serum concentration of soluble α-klotho was measured using enzyme-linked immunosorbent assay. Multivariable linear regression models were used to estimate the associations of AA hemoglobin biomarkers with systemic inflammation indicators and serum concentration of α-klotho. Results Each one-unit increase in ln-transformed HbAA, HbGA, and HbAA+HbGA was associated with an increase in SII in models adjusted for age, sex, and race/ethnicity [regression coefficient (β) = 32.16, 95% confidence interval (CI): 3.59, 60.73; β =36.37, 95% CI: 5.59, 67.15; and β = 37.17, 95% CI: 6.79, 67.55, respectively]. However, the associations were no longer significant after additional adjustment for lifestyle factors. Higher HbAA and HbAA+HbGA predicted lower serum α-klotho concentrations (β = -35.76 pg./mL, 95% CI: -63.27, -8.25; β = -33.82 pg./mL, 95% CI: -62.68, -4.96, respectively). Conclusion The hemoglobin adducts of AA parameters, as biomarkers of internal AA exposure, were associated with reduced serum concentrations of α-klotho among the United States population in their middle-late adulthood. The findings indicated that exposure to AA may have impacts on the molecular pathways of aging and related diseases by influencing α-klotho concentrations.
Collapse
Affiliation(s)
- Lin Gan
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jiaoyang Wang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Kang Qu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Wei Jiang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Yuhong Lei
- Cancer Institute, The First Hospital of Jilin University, Changchun, China
| | - Ming Dong
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
6
|
Gan L, Wang J, Qu K, Jiang W, Guo Z, Dong M. Associations between internal exposure to acrylamide and sleep health: evidence from NHANES 2013-2016. BMC Public Health 2025; 25:679. [PMID: 39972427 PMCID: PMC11837683 DOI: 10.1186/s12889-025-21850-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 02/07/2025] [Indexed: 02/21/2025] Open
Abstract
Acrylamide (AA) is a ubiquitous neurotoxic contaminant. Our objectives were to evaluate associations of internal AA exposure with sleep health outcomes. Data from 2753 adults aged 20-79 years in the National Health and Nutrition Examination Survey (NHANES) was utilized. Internal AA exposure was assessed using hemoglobin adducts and urinary biomarkers. Short sleep duration (SSD) and self-reported trouble sleeping were employed as indicators of sleep health. Markers of systemic inflammation were calculated. Each one-unit increase in ln-transformed hemoglobin adducts of acrylamide (HbAA), hemoglobin adducts of glycidamide (HbGA) and HbAA + HbGA and creatinine-adjusted urinary N-Acetyl-S-(2-carbamoylethyl)-L-cysteine concentration was statistically significantly associated with 1.37-fold (95% confidence interval [CI]: 1.16, 1.62; p = 0.002), 1.41-fold (95%CI: 1.19, 1.68; p = 0.002), 1.43-fold (95%CI: 1.19, 1.70; p = 0.001), and 1.24-fold (95%CI: 1.08, 1.42; p = 0.007) risk in SSD, respectively. The significant associations were strengthened in smokers after stratification by smoking status. Higher AA hemoglobin biomarkers predicted increases in markers of systemic inflammation. In conclusion, internal AA exposure was associated with an increased risk of SSD and elevated systemic inflammation among United States adults. The findings shed light on the potential effects of AA's health threat and future research is warranted to develop intervention strategies.
Collapse
Affiliation(s)
- Lin Gan
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street #1, Changchun, China
| | - Jiaoyang Wang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street #1, Changchun, China
| | - Kang Qu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street #1, Changchun, China
| | - Wei Jiang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street #1, Changchun, China
| | - Zeshang Guo
- Department of Neurosurgery, The First Hospital of Jilin University, Xinmin Street #1, Changchun, China
| | - Ming Dong
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street #1, Changchun, China.
| |
Collapse
|
7
|
Cai Y, Wang Y, He Y, Ren K, Liu Z, Zhao L, Wei T. Utilizing alternative in vivo animal models for food safety and toxicity: A focus on thermal process contaminant acrylamide. Food Chem 2025; 465:142135. [PMID: 39579401 DOI: 10.1016/j.foodchem.2024.142135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 11/07/2024] [Accepted: 11/16/2024] [Indexed: 11/25/2024]
Abstract
Rodent models have traditionally been used to assess the toxicity of food chemicals, but this approach is costly, time-consuming, and raises ethical concerns. Alternatively, non-mammalian models such as Drosophila melanogaster, Danio rerio, and Caenorhabditis elegans have been shown to be suitable for studying the toxicity of food hazards. Their advantages include low cost, short life cycles, adaptability to high-throughput screening, and adherence to the 3R principles of replacement, reduction, and refinement. These models have been extensively studied in the context of acrylamide toxicity, a common food contaminant. This article comprehensively reviews the biological characteristics of non-mammalian models, recent advances and challenges in acrylamide toxicity research using these models, and explores the potential of natural plant compounds in ameliorating acrylamide toxicity. The review aims to guide research using non-mammalian models for food safety assessment.
Collapse
Affiliation(s)
- Yang Cai
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Yuhan Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Yanfei He
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Kefeng Ren
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Zongzhong Liu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Lingli Zhao
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China.
| | - Tian Wei
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China.
| |
Collapse
|
8
|
Ageena SA, Bakr AG, Mokhlis HA, Abd-Ellah MF. Renoprotective effects of apocynin and/or umbelliferone against acrylamide-induced acute kidney injury in rats: role of the NLRP3 inflammasome and Nrf-2/HO-1 signaling pathways. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:569-580. [PMID: 39028331 PMCID: PMC11787205 DOI: 10.1007/s00210-024-03271-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024]
Abstract
Acrylamide (ACR) is a toxic, probably carcinogenic compound commonly found in fried foods and used in the production of many industrial consumer products. ACR-induced acute kidney injury is mediated through several signals. In this research, we investigated, for the first time, the therapeutic effects of phytochemicals apocynin (APO) and/or umbelliferone (UMB) against ACR-induced nephrotoxicity in rats and emphasized the underlying molecular mechanism. To achieve this goal, five groups of rats were randomly assigned: the control group received vehicle (0.5% CMC; 1 ml/rat), ACR (40 mg/kg, i.p.), ACR + APO (100 mg/kg, P.O.), ACR + UMB (50 mg/kg, P.O.), and combination group for 10 days. In ACR-intoxicated rats, there was a significant reduction in weight gain while the levels of blood urea, uric acid, creatinine, and Kim-1 were elevated, indicating renal injury. Histopathological injury was also observed in the kidneys of ACR-intoxicated rats, confirming the biochemical data. Moreover, MDA, TNF-α, and IL-1β levels were raised; and GSH and SOD levels were decreased. In contrast, treatment with APO, UMB, and their combination significantly reduced the kidney function biomarkers, prevented tissue damage, and decreased inflammatory cytokines and MDA. Mechanistically, it suppressed the expression of NLRP-3, ASC, GSDMD, caspase-1, and IL-1β, while it upregulated Nrf-2 and HO-1 in the kidneys of ACR-intoxicated rats. In conclusion, APO, UMB, and their combination prevented ACR-induced nephrotoxicity in rats by attenuating oxidative injury and inflammation, suppressing NLRP-3 inflammasome signaling, enhancing antioxidants, and upregulating Nrf-2 and HO-1 in the kidneys of ACR-induced rats.
Collapse
Affiliation(s)
- Saad A Ageena
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al Azhar University, Assiut Branch, Assiut, 71524, Egypt.
| | - Adel G Bakr
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Hamada A Mokhlis
- Department of Pharmacology & Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
- Department of Pharmacy Practice, Faculty of Pharmacy, Kantara Branch, Sinai University, Cairo, Egypt
| | - Mohamed F Abd-Ellah
- Department of Pharmacology & Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
9
|
Wan S, Yu L, Yang Y, Liu W, Shi D, Cui X, Song J, Zhang Y, Liang R, Chen W, Wang B. Exposure to acrylamide and increased risk of depression mediated by inflammation, oxidative stress, and alkaline phosphatase: Evidence from a nationally representative population-based study. J Affect Disord 2024; 367:434-441. [PMID: 39236889 DOI: 10.1016/j.jad.2024.08.217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/21/2024] [Accepted: 08/31/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND The health risk associated with acrylamide exposure has emerged as a significant issue of public health, attracting global attention. However, epidemiologic evidence on whether and how daily acrylamide exposure increases depression risk of the general population is unclear. METHODS The study included 3991 adults from the National Health and Nutrition Examination Survey. The urinary metabolites of acrylamide (N-Acetyl-S-(2-carbamoylethyl)-L-cysteine [AAMA] and N-Acetyl-S-(2-carbamoyl-2-hydroxyethyl)-L-cysteine [GAMA]) identified as reliable indicators of acrylamide exposure were examined to determine their relationships with depressive symptoms that were evaluated using the 9-item Patient Health Questionnaire. Besides, the measurements of alkaline phosphatase (ALP) and biomarkers of inflammation (white blood cell [WBC] count) and anti-oxidative stress (albumin [ALB]) were conducted to investigate their mediation roles in above relationships. RESULT AAMA, GAMA, and ΣUAAM (AAMA+GAMA) were linearly associated with increased risk of depressive symptoms. Each 2.7-fold increase in AAMA, GAMA, or ΣUAAM was associated with a 30 % (odds ratio: 1.30; 95 % confidence interval: 1.09, 1.55), 47 % (1.47; 1.16, 1.87), or 36 % (1.36; 1.13, 1.63) increment in risk of depressive symptoms, respectively. Increased WBC count (mediated proportion: 4.48-8.00 %), decreased ALB (4.88-7.78 %), and increased ALP (4.93-5.23 %) significantly mediated the associations between acrylamide metabolites and depressive symptoms. CONCLUSIONS Acrylamide exposure of the general adult population was related to increased risk of depressive symptoms, which was mediated in part by inflammation, oxidative stress, and increased ALP. Our findings provided pivotal epidemiologic evidence for depression risk increment from exposure to acrylamide.
Collapse
Affiliation(s)
- Shuhui Wan
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Linling Yu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yueru Yang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wei Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Da Shi
- Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Xiuqing Cui
- Institute of Health Surveillance Analysis and Protection, Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei 430079, China
| | - Jiahao Song
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yongfang Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ruyi Liang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Weihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Bin Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
10
|
Mérida DM, Rey-García J, Moreno-Franco B, Guallar-Castillón P. Acrylamide Exposure and Cardiovascular Risk: A Systematic Review. Nutrients 2024; 16:4279. [PMID: 39770901 PMCID: PMC11677207 DOI: 10.3390/nu16244279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 01/30/2025] Open
Abstract
Background/Objectives: Acrylamide is a food contaminant formed during high-temperature cooking processes, leading to unintentional human exposure. Diet is the primary source for non-smokers, with potatoes, cereals, and coffee being the main contributors. While animal studies have demonstrated that acrylamide is neurotoxic, genotoxic, mutagenic, and cardiotoxic, its effects on human cardiovascular health remain poorly understood. This study aimed to evaluate the association between acrylamide exposure and cardiovascular risk. Methods: A comprehensive literature search was conducted across four databases without restrictions on publication year or language (last search: 1 July 2024). The risk of bias was assessed using the Joanna Briggs Institute critical appraisal tools. Results: In total, 28 studies were included, predominantly from the US NHANES sample and with cross-sectional designs. Higher acrylamide exposure was associated with an increased risk of cardiovascular mortality but was inversely associated with glucose and lipid levels, as well as key cardiovascular risk factors such as diabetes, obesity, and metabolic syndrome. Conversely, glycidamide-acrylamide's most reactive metabolite-was positively associated with elevated glucose and lipid levels, higher systolic blood pressure, and increased obesity prevalence. Conclusions: These findings suggest that the adverse cardiovascular effects of acrylamide may be mediated by its conversion to glycidamide. Further research is necessary to fully elucidate the impact of acrylamide on cardiovascular health. Meanwhile, public health efforts should continue to focus on mitigation strategies within the food industry and raising public awareness about exposure.
Collapse
Affiliation(s)
- Diana María Mérida
- Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain
- Department of Pharmacoepidemiology and Biostatistics, Fundación Teófilo Hernando, 28290 Las Rozas de Madrid, Spain
- CIBERESP (CIBER of Epidemiology and Public Health), 28029 Madrid, Spain
| | - Jimena Rey-García
- Department of Internal Medicine, Hospital Universitario Rey Juan Carlos, IIS-FJD, 28933 Móstoles, Spain
| | - Belén Moreno-Franco
- Instituto de Investigación Sanitaria Aragón, Hospital Universitario Miguel Servet, 50009 Zaragoza, Spain
- Department of Preventive Medicine and Public Health, Universidad de Zaragoza, 50009 Zaragoza, Spain
- CIBERCV (CIBER of Cardiovascular Diseases), 28029 Madrid, Spain
| | - Pilar Guallar-Castillón
- Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain
- CIBERESP (CIBER of Epidemiology and Public Health), 28029 Madrid, Spain
- IMDEA-Food Institute, CEI UAM+CSIC, Carretera de Cantoblanco 8, 28049 Madrid, Spain
| |
Collapse
|
11
|
Ungvari Z, Kunutsor SK. Coffee consumption and cardiometabolic health: a comprehensive review of the evidence. GeroScience 2024; 46:6473-6510. [PMID: 38963648 PMCID: PMC11493900 DOI: 10.1007/s11357-024-01262-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/21/2024] [Indexed: 07/05/2024] Open
Abstract
This review provides a comprehensive synthesis of longitudinal observational and interventional studies on the cardiometabolic effects of coffee consumption. It explores biological mechanisms, and clinical and policy implications, and highlights gaps in the evidence while suggesting future research directions. It also reviews evidence on the causal relationships between coffee consumption and cardiometabolic outcomes from Mendelian randomization (MR) studies. Findings indicate that while coffee may cause short-term increases in blood pressure, it does not contribute to long-term hypertension risk. There is limited evidence indicating that coffee intake might reduce the risk of metabolic syndrome and non-alcoholic fatty liver disease. Furthermore, coffee consumption is consistently linked with reduced risks of type 2 diabetes (T2D) and chronic kidney disease (CKD), showing dose-response relationships. The relationship between coffee and cardiovascular disease is complex, showing potential stroke prevention benefits but ambiguous effects on coronary heart disease. Moderate coffee consumption, typically ranging from 1 to 5 cups per day, is linked to a reduced risk of heart failure, while its impact on atrial fibrillation remains inconclusive. Furthermore, coffee consumption is associated with a lower risk of all-cause mortality, following a U-shaped pattern, with the largest risk reduction observed at moderate consumption levels. Except for T2D and CKD, MR studies do not robustly support a causal link between coffee consumption and adverse cardiometabolic outcomes. The potential beneficial effects of coffee on cardiometabolic health are consistent across age, sex, geographical regions, and coffee subtypes and are multi-dimensional, involving antioxidative, anti-inflammatory, lipid-modulating, insulin-sensitizing, and thermogenic effects. Based on its beneficial effects on cardiometabolic health and fundamental biological processes involved in aging, moderate coffee consumption has the potential to contribute to extending the healthspan and increasing longevity. The findings underscore the need for future research to understand the underlying mechanisms and refine health recommendations regarding coffee consumption.
Collapse
Affiliation(s)
- Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College/Department of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - Setor K Kunutsor
- Leicester Real World Evidence Unit, Diabetes Research Centre, University of Leicester, Leicester General Hospital, Gwendolen Road, Leicester, LE5 4WP, UK.
- Section of Cardiology, Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Saint Boniface Hospital, Winnipeg, MB, R2H 2A6, Canada.
| |
Collapse
|
12
|
Wang J, Chen T, Zhu W, Shi Z, Yan X, Lei Z, Wang Q. Ultra-processed food, genetic risk, and the risk of cardiometabolic diseases and cardiometabolic multimorbidity: A prospective study. Nutr Metab Cardiovasc Dis 2024; 34:2799-2806. [PMID: 39443279 DOI: 10.1016/j.numecd.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND AND AIMS This study aims to evaluate the impact of ultra-processed food (UPF) on type 2 diabetes (T2D), cardiovascular disease (CVD), hypertension, and cardiometabolic multimorbidity (CMM), and to explore the role of genetic susceptibility in these associations. METHODS AND RESULTS 90 631 participants from the UK Biobank were included (collected between 2006 and 2010). The outcomes assessed included T2D, CVD, hypertension and CMM. The Cox proportional hazards model was used to evaluate their associations and the potential modification by genetic risk, which was estimated using the polygenic risk score (PRS). Participants with high UPF consumption had a higher risk of T2D, CVD, and CMM, with the adjusted hazard ratio (HR) of 1.36 (95 % confidence interval [CI]: 1.15, 1.61), 1.13 (95%CI: 1.03, 1.23), and 1.14 (95%CI: 1.05, 1.24), respectively. Those with high UPF consumption and high PRS for T2D, CVD, and hypertension had the highest risk of T2D (HR: 4.01; 95%CI: 2.83, 5.69), CVD (HR: 2.18; 95%CI: 1.86, 2.56), and hypertension (HR: 1.79; 95%CI: 1.61, 1.99), respectively. In participants with one cardiometabolic disease (CMD), those with high UPF consumption and high PRST2D or PRSCVD had the highest risk of developing CMM. A significant additive interaction was observed between PRST2D and UPF consumption on the risk of T2D. CONCLUSION Our study underscored the importance of identifying individuals with high UPF consumption for targeted dietary interventions to mitigate the risk of CMDs and CMM, particularly among those with a high genetic risk of CMDs.
Collapse
Affiliation(s)
- Jing Wang
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, 518000, China; Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tingting Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Wenmin Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ziwei Shi
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaolong Yan
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhiqun Lei
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qi Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
13
|
Ma M, Zhu X, Li F, Guan G, Hui R, Zhu L, Pang H, Zhang Y. Associations of urinary volatile organic compounds with cardiovascular disease among the general adult population. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:3876-3890. [PMID: 38523395 DOI: 10.1080/09603123.2024.2331732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/13/2024] [Indexed: 03/26/2024]
Abstract
This study was to estimate the associations of volatile organic compounds (VOCs) exposure with the prevalence of total and specific cardiovascular disease (CVD) among the general adult population. This cross-sectional study analyzed 15 urinary VOC metabolites in the general population using the 2011-2016 National Health and Nutrition Examination Survey (n = 5,213). The weighted study population with 47.0 years median age, was primarily female (51.2%). The prevalence of total CVD in the overall population was 7.9%. The single-exposure analyzes of AAMA, ATCA, CEMA, CYMA, DHBMA, 3HPMA, and 3MHA +4MHA were significantly associated with increased prevalence of total CVD. Qgcomp regression consistently showed that urinary VOCs-mixed exposure was positively correlated with the prevalence of total and specific CVDs (chronic heart failure, angina, and stroke), and highlighted each VOCs metabolite weights and direction. The similar results were observed for the WQS regression using mixed analysis methods. In conclusion, exposure to VOCs increases CVD prevalence and advances the identification of risk factors for CVD for environmental study.
Collapse
Affiliation(s)
- Meijuan Ma
- Department of Cadre Physical Examination Center, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Xu Zhu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Feipeng Li
- Department of Cardiology, Huayin People's Hospital, Weinan, Shaanxi, China
| | - Gongchang Guan
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Rutai Hui
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ling Zhu
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
- Department of Cardiology, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hui Pang
- Department of Cardiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Zhang
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
14
|
Dai Z, Zhang Z, Hu Q, Yu X, Cao Y, Xia Y, Fu Y, Tan Y, Jing C, Zhang C. Mediating role of systemic inflammation in the association between volatile organic compounds exposure and periodontitis: NHANES 2011-2014. BMC Oral Health 2024; 24:1324. [PMID: 39478578 PMCID: PMC11523851 DOI: 10.1186/s12903-024-05110-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/23/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND Volatile organic compounds (VOCs) are ubiquitous environmental pollutants which have been suggested to have adverse effects on human health. While the influence of environmental pollutant exposures on periodontitis has attracted elevating attention in recent years, the epidemiological evidence on the association between VOCs exposure and periodontitis was scarce. This study aimed to investigate the potential mediating role of systemic inflammation factors in the complex association between VOCs exposure and periodontitis. METHODS Utilizing data from the National Health and Nutrition Examination Survey (NHANES) 2011-2014, we examined the impacts of VOCs exposure on periodontitis. Concentrations of urinary metabolites of VOCs (mVOCs) were measured using electrospray tandem mass spectrometry to evaluate internal VOCs exposure. Multivariable logistic regression, restricted cubic spline regression (RCS), Bayesian kernel machine regression (BKMR) and Quantile g-computation (QGC) models were performed to investigate the impacts of VOCs exposure on periodontitis. Mediation models were applied to assess the mediated effects of systemic inflammation on the association between mixed VOCs exposure and periodontitis. Besides, we analyzed the association between mixed VOCs exposure and periodontitis in stratified age, gender, and smoking status subgroups. RESULTS 1,551 participants were ultimately included for further analyses, of whom 45.20% suffering from periodontitis. Multivariable logistic regression and RCS identified positive associations between single urinary mVOCs and periodontitis (P < 0.05). Notably, BKMR and QGC models suggested that mixed VOCs exposure was significantly associated with periodontitis, with 2-Aminothiazoline-4-carboxylic acid (ATCA) contributing the most (conditional posterior inclusion probability = 0.997). Moreover, systemic inflammation markers (leukocyte and lymphocyte counts) were found to partly mediate the association between VOCs exposure and periodontitis (P < 0.05). No interaction effect was identified between mixed VOCs exposure and periodontitis in age, gender and smoking status subgroups (P > 0.05). CONCLUSION This study demonstrated a positive association between VOCs exposure and periodontitis, which was potentially mediated by systemic inflammation factors. Further longitudinal researches are demanded to clarify the underlying mechanisms.
Collapse
Affiliation(s)
- Zhida Dai
- School of Stomatology, Jinan University, No.601 Huangpu Ave West, Guangzhou, Guangdong, 510632, P. R. China
- Department of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Zhixiang Zhang
- School of Stomatology, Jinan University, No.601 Huangpu Ave West, Guangzhou, Guangdong, 510632, P. R. China
- Department of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Qiaobin Hu
- School of Stomatology, Jinan University, No.601 Huangpu Ave West, Guangzhou, Guangdong, 510632, P. R. China
- Department of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Xinyuan Yu
- School of Stomatology, Jinan University, No.601 Huangpu Ave West, Guangzhou, Guangdong, 510632, P. R. China
- Department of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Yixi Cao
- School of Stomatology, Jinan University, No.601 Huangpu Ave West, Guangzhou, Guangdong, 510632, P. R. China
- Department of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Yian Xia
- School of Stomatology, Jinan University, No.601 Huangpu Ave West, Guangzhou, Guangdong, 510632, P. R. China
- Department of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Yingyin Fu
- Department of Preventive Medicine and Public Health, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, Guangdong, 510632, P. R. China
- Guangdong Key Laboratory of Environmental Exposure and Health, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Yuxuan Tan
- Department of Preventive Medicine and Public Health, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, Guangdong, 510632, P. R. China
- Guangdong Key Laboratory of Environmental Exposure and Health, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Chunxia Jing
- Department of Preventive Medicine and Public Health, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, Guangdong, 510632, P. R. China.
- Guangdong Key Laboratory of Environmental Exposure and Health, Jinan University, Guangzhou, Guangdong, 510632, P. R. China.
| | - Chunlei Zhang
- School of Stomatology, Jinan University, No.601 Huangpu Ave West, Guangzhou, Guangdong, 510632, P. R. China.
- Department of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510632, P. R. China.
| |
Collapse
|
15
|
Cao Q, Song Y, Huan C, Jia Z, Gao Q, Ma X, Zhou G, Chen S, Wei J, Wang Y, Wang C, Mao Z, Hou J, Huo W. Biological aging mediates the association between volatile organic compounds and cardiovascular disease. BMC Public Health 2024; 24:2928. [PMID: 39438892 PMCID: PMC11520164 DOI: 10.1186/s12889-024-20349-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Evidence for the relationship between individual and combined volatile organic compounds (VOCs) and cardiovascular disease (CVD) is limited. Besides, the mediating role of biological aging (BA) has not been studied. Therefore, this study aimed to examine the association between VOCs and CVD risk and to explore the mediating effects of BA. METHODS Logistic regression models were used to investigate the relationships of metabolites of volatile organic compounds (mVOCs) and BA with CVD. In addition, weighted quantile sum (WQS) regression, adaptive elastic networks, and Environmental Risk Score (AENET-ERS) were utilized to assess overall associations of mixed VOCs co-exposure with CVD. Mediation analyses were used to identify potential mediating effects of BA. RESULTS In the single-pollutant model, CYMA was shown to be associated with an increased risk of CVD. Additionally, we identified significantly positive associations between the WQS index and CVD (odds ratio (OR) = 1.292, 95% confidence interval (CI): 1.006, 1.660), and DHBMA had the greatest contribution for CVD (0.246). Furthermore, the AENET-ERS results showed that 8 mVOCs were significantly associated with CVD, and ERS was related to an elevated risk of CVD (OR = 1.538, 95%CI: 1.255, 1.884). Three BA indicators mediated the association of the mVOCs mixture with CVD, with mediating effect proportions of 11.32%, 34.34%, and 7.92%, respectively. CONCLUSION The risk of CVD was found to increase with both individual and combined exposure to VOCs. BA mediates the positive effects of VOCs on CVD, suggesting that this pathway may be one of the mechanisms of CVD.
Collapse
Affiliation(s)
- Qingqing Cao
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Yu Song
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Changsheng Huan
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Zexin Jia
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Qian Gao
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Xiaoqing Ma
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Guihong Zhou
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Siyu Chen
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Jin Wei
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Yuchuan Wang
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Zhenxing Mao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jian Hou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Wenqian Huo
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China.
| |
Collapse
|
16
|
Nalini M, Poustchi H, Bhandari D, Chang CM, Blount BC, Wang L, Feng J, Gross A, Khoshnia M, Pourshams A, Sotoudeh M, Gail MH, Graubard BI, Dawsey SM, Kamangar F, Boffetta P, Brennan P, Abnet CC, Malekzadeh R, Freedman ND, Etemadi A. Volatile organic compounds and mortality from ischemic heart disease: A case-cohort study. Am J Prev Cardiol 2024; 19:100700. [PMID: 39100747 PMCID: PMC11296009 DOI: 10.1016/j.ajpc.2024.100700] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/04/2024] [Accepted: 06/22/2024] [Indexed: 08/06/2024] Open
Abstract
Background Volatile organic compounds (VOCs) are major components of air pollution and tobacco smoke, two known risk factors for cardiovascular diseases. VOCs are ubiquitous in the environment and originate from a wide range of sources, including the burning of biomass, fossil fuels, and consumer products. Direct evidence for associations between specific VOCs and ischemic heart disease (IHD) mortality in the general population is scarce. Methods In a case-cohort study (stratified by age groups, sex, residence, and tobacco smoking), nested within the population-based Golestan cohort study (n = 50,045, 40-75 years, 58% women, enrollment: 2004-2008) in northeastern Iran, we measured urinary concentrations of 20 smoking-related VOC biomarkers using ultra high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry. We calculated hazard ratio (HR) and 95% confidence interval (CI) for their associations with IHD mortality during follow-up to 2018, using Cox regression models adjusted for age, ethnicity, education, marital status, body mass index, physical activity, wealth, and urinary cotinine. Results There were 575 non-cases from random subcohort and 601 participants who died from IHD, mean (standard deviation) age, 58.2 (9.3) years, with a median of 8.4 years follow-up. Significant associations [3rd vs. 1st tertile, HR (95% CI), P for trend] were observed between biomarkers of acrylamide [1.68(1.05,2.69), 0.025], acrylonitrile [2.06(1.14,3.72), 0.058], acrolein [1.98(1.30,3.01), 0.003 and 2.44(1.43,4.18), 0.002], styrene/ethylbenzene [1.83(1.19,2.84), 0.007 and 1.44(1.01,2.07), 0.046], dimethylformamide/methylisocyanate [2.15(1.33,3.50), 0.001], and 1,3butadiene [2.35(1.52,3.63),<0.001] and IHD mortality. These associations were independent of tobacco smoking, and they were only present in the non-smoking subgroup. Conclusion Our findings provide direct evidence for associations between exposure to several VOCs with widespread household and commercial use and IHD mortality many years after these exposures. These results highlight the importance of VOC exposure in the general population as a risk factor for cardiovascular diseases and underline the importance of bio-monitoring non-tobacco VOC exposure.
Collapse
Affiliation(s)
- Mahdi Nalini
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Poustchi
- Liver and Pancreaticobilliary Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Deepak Bhandari
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Cindy M. Chang
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Benjamin C. Blount
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Lanqing Wang
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jun Feng
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Amy Gross
- Center for Tobacco Products, Food and Drug Administration, Silver Spring, MD, USA
| | - Masoud Khoshnia
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Pourshams
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Sotoudeh
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mitchell H. Gail
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Barry I. Graubard
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sanford M Dawsey
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Farin Kamangar
- Department of Biology, School of Computer, Mathematical, and Natural Sciences, Morgan State University, Baltimore, MD, USA
| | - Paolo Boffetta
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Paul Brennan
- International Agency for Research on Cancer, Lyon, France
| | - Christian C. Abnet
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Reza Malekzadeh
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Neal D. Freedman
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Arash Etemadi
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
17
|
Yue Z, Zhao F, Guo Y, Zhang Y, Chen Y, He L, Li L. Lactobacillus reuteri JCM 1112 ameliorates chronic acrylamide-induced glucose metabolism disorder via the bile acid-TGR5-GLP-1 axis and modulates intestinal oxidative stress in mice. Food Funct 2024; 15:6450-6458. [PMID: 38804210 DOI: 10.1039/d4fo01061b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Acrylamide (AA) is a toxic food contaminant that has been reported to cause glucose metabolism disorders (GMD) at high doses. However, it is unclear whether chronic low-dose AA can induce GMD and whether probiotics can alleviate AA-induced GMD. Here, C57BL/6N mice were orally administered with 5 mg per kg bw AA for 10 weeks, followed by another 3 weeks of glucagon-like peptide-1 (GLP-1) analogue (dulaglutide) treatment. Chronic low-dose AA exposure increased the blood glucose level and decreased serum insulin and GLP-1 levels, whereas dulaglutide treatment decreased the blood glucose level and increased the serum insulin level in AA-exposed mice. Then, mice were administered with AA or AA + INT-777 (Takeda G-protein-coupled receptor 5 (TGR5) agonist) for 10 weeks. INT-777 treatment reversed AA-induced downregulation of ileal TGR5 and proglucagon (PG) gene expression and decreased the serum GLP-1 level. These findings indicated that chronic low-dose AA induced GMD via inhibiting the TGR5-GLP-1 axis. Finally, mice were administered with AA for 10 weeks, followed by another 3 weeks of Lactobacillus reuteri JCM 1112 supplementation. L. reuteri supplementation significantly increased serum glucose, insulin and GLP-1 levels, upregulated ileal TGR5 and PG gene expression, and effectively restored the imbalance of bile acid (BA) metabolism in AA-exposed mice, demonstrating that L. reuteri ameliorates chronic AA-induced GMD via the BA-TGR5-GLP-1 axis. In addition, L. reuteri significantly enhanced ileal superoxide dismutase and catalase activities and total antioxidant capacity, thereby preventing chronic AA-induced oxidative stress. Our research provides new insights into the GMD toxicity of chronic low-dose AA and confirms the role of probiotics in alleviating AA-induced GMD.
Collapse
Affiliation(s)
- Zonghao Yue
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou 466001, China.
| | - Feiyue Zhao
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou 466001, China.
| | - Yuqi Guo
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou 466001, China.
| | - Yidan Zhang
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou 466001, China.
| | - Yanjuan Chen
- School of Mechanical and Electrical Engineering, Zhoukou Normal University, Zhoukou 466001, China
| | - Le He
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou 466001, China.
| | - Lili Li
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou 466001, China.
| |
Collapse
|
18
|
Huang X, Mu M, Wang B, Zhang H, Liu Y, Yu L, Zhou M, Ma J, Wang D, Chen W. Associations of coal mine dust exposure with arterial stiffness and atherosclerotic cardiovascular disease risk in chinese coal miners. Int Arch Occup Environ Health 2024; 97:473-484. [PMID: 38530481 DOI: 10.1007/s00420-024-02062-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/09/2024] [Indexed: 03/28/2024]
Abstract
OBJECTIVE Whether coal mine dust exposure increases cardiovascular diseases (CVDs) risk was rarely explored. Our objective was to examine the association between coal mine dust exposure and cardiovascular risk. METHODS We estimated cumulative coal mine dust exposure (CDE) for 1327 coal miners by combining data on workplace dust concentrations and work history. We used brachial-ankle pulse wave velocity (baPWV, a representative indicator of arterial stiffness) and ten-year atherosclerotic cardiovascular disease (ASCVD) risk to assess potential CVD risk, exploring their associations with CDE. RESULTS Positive dose-response relationships of CDE with baPWV and ten-year ASCVD risk were observed after adjusting for covariates. Specifically, each 1 standard deviation (SD) increase in CDE was related to a 0.27 m/s (95% CI: 0.21, 0.34) increase in baPWV and a 1.29 (95% CI: 1.14, 1.46) elevation in OR (odds ratio) of risk of abnormal baPWV. Moreover, each 1 SD increase in CDE was associated with a 0.74% (95% CI: 0.63%, 0.85%) increase in scores of ten-year ASCVD and a 1.91 (95% CI: 1.62, 2.26) increase in OR of risk of ten-year ASCVD. When compared with groups unexposed to coal mine dust, significant increase in the risk of arterial stiffness and ten-year ASCVD in the highest CDE groups were detected. CONCLUSION The study suggested that cumulative exposure to coal mine dust was associated with elevated arterial stiffness and ten-year ASCVD risk in a dose-response manner. These findings contribute valuable insights for cardiovascular risk associated with coal mine dust.
Collapse
Affiliation(s)
- Xuezan Huang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Min Mu
- Key Laboratory of Industrial Dust Control and Occupational Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, 232000, Anhui, China
| | - Bin Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Haozhe Zhang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yang Liu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Linling Yu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Min Zhou
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Jixuan Ma
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Dongming Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
19
|
Jiang H, Yu X, Guo J, Shang G, Dai Y. Rapid Degradation of Hazardous Amides by Immobilized Engineered Pseudomonas putida KT2440 Based on a Novel Gene Expression Vector. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2109-2119. [PMID: 38247140 DOI: 10.1021/acs.jafc.3c08124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
The amides 4-trifluoromethylnicotinamide, acrylamide, and benzamide are widely used in agriculture and industry, posing hazards to the environment and animals. Immobilized bacteria are preferred in wastewater treatment, but degradation of these amides by immobilized engineered bacteria has not been explored. Here, engineered Pseudomonas putida KT2440 pLSJ15-amiA was constructed by introducing a new amidase gene expression vector into environmentally safe P. putida KT2440. P. putida KT2440 pLSJ15-amiA had high amidase activity, even at 80 °C. P. putida KT2440 pLSJ15-amiA immobilized with calcium alginate exhibited a greater environmental tolerance than free cells. The amides were rapidly degraded by the immobilized cells, but the activity was inhibited by high concentrations of substrates. The substrate inhibition model revealed that the optimum initial concentrations of 4-trifluoromethylnicotinamide, acrylamide, and benzamide for degradation by immobilized cells were 197.65, 350.76, and 249.40 μmol/L, respectively. This study develops a novel and excellent immobilized biocatalyst for remediation of wastewater containing hazardous amides.
Collapse
Affiliation(s)
- Huoyong Jiang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Xuexiu Yu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Jingjing Guo
- Nanjing Normal University Zhongbei College, Zhenjiang 212334, People's Republic of China
| | - Guangdong Shang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Yijun Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China
| |
Collapse
|
20
|
Yan R, Ying S, Jiang Y, Duan Y, Chen R, Kan H, Fu Q, Gu Y. Associations between ultrafine particle pollution and daily outpatient visits for respiratory diseases in Shanghai, China: a time-series analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:3004-3013. [PMID: 38072886 PMCID: PMC10791965 DOI: 10.1007/s11356-023-31248-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/22/2023] [Indexed: 01/18/2024]
Abstract
Previous epidemiological studies have linked short-term exposure to particulate matter with outpatient visits for respiratory diseases. However, evidence on ultrafine particle (UFP) is still scarce in China. To investigate the association between short-term UFP exposure and outpatient visits for respiratory diseases as well as the corresponding lag patterns, information on outpatient visits for main respiratory diseases during January 1, 2017, to December 31, 2019 was collected from electronic medical records of two large tertiary hospitals in Shanghai, China. Generalized additive models employing a Quasi-Poisson distribution were employed to investigate the relationships between UFP and respiratory diseases. We computed the percentage change and its corresponding 95% confidence interval (CI) for outpatient visits related to respiratory diseases per interquartile range (IQR) increase in UFP concentrations. Based on a total of 1,034,394 hospital visits for respiratory diseases in Shanghai, China, we found that the strongest associations of total UFP with acute upper respiratory tract infection (AURTI), bronchitis, chronic obstructive pulmonary disease (COPD), and pneumonia occurred at lag 03, 03, 0, and 03 days, respectively. Each IQR increase in the total UFP concentrations was associated with increments of 9.02% (95% CI: 8.64-9.40%), 3.94% (95% CI: 2.84-5.06%), 4.10% (95% CI: 3.01-5.20%), and 10.15% (95% CI: 9.32-10.99%) for AURTI, bronchitis, COPD, and pneumonia, respectively. Almost linear concentration-response relationship curves without apparent thresholds were observed between total UFP and outpatient-department visits for four respiratory diseases. Stratified analyses illustrated significantly stronger associations of total UFP with AURTI, bronchitis, and pneumonia among female patients, while that with COPD was stronger among male patients. After adjustment of criteria air pollutants, these associations all remained robust. This time-series study indicates that short-term exposure to UFP was associated with increased risk of hospital visits for respiratory diseases, underscoring the importance of reducing ambient UFP concentrations for respiratory diseases control and prevention.
Collapse
Affiliation(s)
- Ran Yan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Shengjie Ying
- Shanghai Minhang District Center for Disease Control and Prevention, Shanghai, 201101, China
| | - Yixuan Jiang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Yusen Duan
- Shanghai Environmental Monitoring Center, Shanghai, 200235, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Qingyan Fu
- Shanghai Environmental Monitoring Center, Shanghai, 200235, China
| | - Yiqin Gu
- Shanghai Minhang District Center for Disease Control and Prevention, Shanghai, 201101, China.
- Shanghai Minhang Dental Disease Prevention and Treatment Institute, Shanghai, 201103, China.
| |
Collapse
|
21
|
Marques C, Frenoy P, Elbaz A, Laouali N, Shah S, Severi G, Mancini FR. Association between dietary intake of acrylamide and increased risk of mortality in women: Evidence from the E3N prospective cohort. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167514. [PMID: 37783439 DOI: 10.1016/j.scitotenv.2023.167514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/13/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
Acrylamide is an organic compound classified as probably carcinogenic to humans because of sufficient evidence in animals but not in humans. Other health risks associated with acrylamide intake are still not fully elucidated. We aimed to study the relationship between acrylamide dietary intake and mortality in the E3N (Etude Epidémiologique auprès de femmes de l'Education Nationale) French cohort. We studied 72,585 women of the E3N prospective cohort, which completed a food frequency questionnaire in 1993. The E3N food consumption database and the food contamination database obtained from the second French total diet study were used to estimate participants' average daily acrylamide dietary intake. We estimated the associations between acrylamide dietary intake and all-cause or cause-specific mortality using Cox proportional hazard models. During follow-up (1993-2014), we identified 6441 deaths. The mean acrylamide dietary intake was 32.6 μg/day, with coffee consumption as principal contributor (48.6 %). In the fully adjusted model, we found a non-linear association between acrylamide dietary intake and all-cause mortality and a linear positive association with cardiovascular disease (HR per one STD increment [95%CI]: 1.11 [1.02; 1.21]), all-cancer (HR [95%CI]: 1.05 [1.01; 1.10]) and lung cancer (HR [95%CI]: 1.22 [1.09; 1.38]) mortality, while we observed no association with breast (HR [95%CI]: 0.94 [0.86; 1.03]) and colorectal (HR [95%CI]: 1.12 [0.97; 1.29]) cancer mortality. We highlighted an interaction between acrylamide dietary intake and smoking status in the models for all-cause and all-cancer mortality: when stratifying on smoking status, statistically significant positive associations were observed only in current smokers. This study on a large prospective cohort following more than 70,000 women for over 20 years suggests that higher acrylamide dietary intakes are associated with an increased risk of mortality. Therefore, it is essential to keep reducing acrylamide contamination and prevent dietary intake of acrylamide, especially among smokers.
Collapse
Affiliation(s)
- Chloé Marques
- Paris-Saclay University, UVSQ, Gustave Roussy, Inserm, "Exposome, heredity, cancer and health" team, CESP U1018, 94805 Villejuif, France
| | - Pauline Frenoy
- Paris-Saclay University, UVSQ, Gustave Roussy, Inserm, "Exposome, heredity, cancer and health" team, CESP U1018, 94805 Villejuif, France
| | - Alexis Elbaz
- Paris-Saclay University, UVSQ, Gustave Roussy, Inserm, "Exposome, heredity, cancer and health" team, CESP U1018, 94805 Villejuif, France
| | - Nasser Laouali
- Paris-Saclay University, UVSQ, Gustave Roussy, Inserm, "Exposome, heredity, cancer and health" team, CESP U1018, 94805 Villejuif, France
| | - Sanam Shah
- Paris-Saclay University, UVSQ, Gustave Roussy, Inserm, "Exposome, heredity, cancer and health" team, CESP U1018, 94805 Villejuif, France
| | - Gianluca Severi
- Paris-Saclay University, UVSQ, Gustave Roussy, Inserm, "Exposome, heredity, cancer and health" team, CESP U1018, 94805 Villejuif, France; Department of Statistics, Computer Science, Applications "G. Parenti", University of Florence, Italy
| | - Francesca Romana Mancini
- Paris-Saclay University, UVSQ, Gustave Roussy, Inserm, "Exposome, heredity, cancer and health" team, CESP U1018, 94805 Villejuif, France.
| |
Collapse
|
22
|
Liu W, Cao S, Shi D, Yu L, Qiu W, Chen W, Wang B. Single-chemical and mixture effects of multiple volatile organic compounds exposure on liver injury and risk of non-alcoholic fatty liver disease in a representative general adult population. CHEMOSPHERE 2023; 339:139753. [PMID: 37553041 DOI: 10.1016/j.chemosphere.2023.139753] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/17/2023] [Accepted: 08/05/2023] [Indexed: 08/10/2023]
Abstract
Evidence on liver injury and non-alcoholic fatty liver disease (NAFLD) from volatile organic compounds (VOCs) exposure is insufficient. A cross-sectional study including 3011 US adults from the National Health and Nutrition Examination Survey was conducted to explore the associations of urinary exposure biomarkers (EBs) for 13 VOCs (toluene, xylene, ethylbenzene, styrene, acrylamide, N,N-dimethylformamide, acrolein, crotonaldehyde, 1,3-butadiene, acrylonitrile, cyanide, propylene oxide, and 1-bromopropane) with liver injury biomarkers and the risk of NAFLD by performing single-chemical (survey weight regression) and mixture (Bayesian kernel machine regression [BKMR] and weighted quantile sum [WQS]) analyses. We found significant positive associations of EBs for toluene and 1-bromopropane with alanine aminotransferase (ALT), EBs for toluene, crotonaldehyde, and 1,3-butadiene with asparate aminotransferase (AST), EBs for 1,3-butadiene and cyanide with alkaline phosphatase (ALP), EBs for xylene and cyanide with hepamet fibrosis score (HFS), EBs for the total 13 VOCs (except propylene oxide) with United States fatty liver index (USFLI), and EBs for xylene, N,N-dimethylformamide, acrolein, crotonaldehyde, and acrylonitrile with NALFD; and significant inverse associations of EBs for ethylbenzene, styrene, acrylamide, acrolein, crotonaldehyde, 1,3-butadiene, acrylonitrile, cyanide, and propylene oxide with total bilirubin, EBs for ethylbenzene, styrene, acrylamide, acrolein, 1,3-butadiene, acrylonitrile, and cyanide with albumin (ALB), EBs for ethylbenzene, styrene, acrylamide, N,N-dimethylformamide, acrolein, crotonaldehyde, 1,3-butadiene, acrylonitrile, cyanide, and propylene oxide with total protein (TP), and EB for 1-bromopropane with AST/ALT (all P-FDR<0.05). In BKMR and WQS, the mixture of VOC-EBs was significantly positively associated with ALT, AST, ALP, HFS, USFLI, and the risk of NAFLD, while significantly inversely associated with TBIL, ALB, TP, and AST/ALT. VOCs exposure was associated with liver injury and increased risk of NAFLD in US adults. These findings highlight that great attention should be paid to the potential risk of liver health damage from VOCs exposure.
Collapse
Affiliation(s)
- Wei Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Shuting Cao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Da Shi
- Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Linling Yu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Weihong Qiu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Weihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Bin Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
23
|
Zhao FF, Wang XL, Lei YT, Li HQ, Li ZM, Hao XX, Ma WW, Wu YH, Wang SY. A systematic review: on the mercaptoacid metabolites of acrylamide, N-acetyl-S-(2-carbamoylethyl)-L-cysteine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:88350-88365. [PMID: 37458885 DOI: 10.1007/s11356-023-28714-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 07/06/2023] [Indexed: 08/11/2023]
Abstract
Acrylamide is widely found in a variety of fried foods and cigarettes and is not only neurotoxic and carcinogenic, but also has many potential toxic effects. The current assessment of acrylamide intake through dietary questionnaires is confounded by a variety of factors, which poses limitations to safety assessment. In this review, we focus on the levels of AAMA, the urinary metabolite of acrylamide in humans, and its association with other diseases, and discuss the current research gaps in AAMA and the future needs. We reviewed a total of 25 studies from eight countries. In the general population, urinary AAMA levels were higher in smokers than in non-smokers, and higher in children than in adults; the highest levels of AAMA were found in the population from Spain, compared with the general population from other countries. In addition, AAMA is associated with several diseases, especially cardiovascular system diseases. Therefore, AAMA, as a biomarker of internal human exposure, can reflect acrylamide intake in the short term, which is of great significance for tracing acrylamide-containing foods and setting the allowable intake of acrylamide in foods.
Collapse
Affiliation(s)
- Fang-Fang Zhao
- Department of Occupational Health, Public Health College, Harbin Medical University, 157 Baojian Road, Nan gang District, Harbin, 150086, People's Republic of China
| | - Xiao-Li Wang
- Department of Occupational Health, Public Health College, Harbin Medical University, 157 Baojian Road, Nan gang District, Harbin, 150086, People's Republic of China
| | - Ya-Ting Lei
- Department of Occupational Health, Public Health College, Harbin Medical University, 157 Baojian Road, Nan gang District, Harbin, 150086, People's Republic of China
| | - Hong-Qiu Li
- Department of Occupational Health, Public Health College, Harbin Medical University, 157 Baojian Road, Nan gang District, Harbin, 150086, People's Republic of China
| | - Zhi-Ming Li
- Department of Occupational Health, Public Health College, Harbin Medical University, 157 Baojian Road, Nan gang District, Harbin, 150086, People's Republic of China
| | - Xiao-Xiao Hao
- Department of Occupational Health, Public Health College, Harbin Medical University, 157 Baojian Road, Nan gang District, Harbin, 150086, People's Republic of China
| | - Wei-Wei Ma
- Harbin Railway Center for Disease Control and Prevention, Harbin, People's Republic of China
| | - Yong-Hui Wu
- Department of Occupational Health, Public Health College, Harbin Medical University, 157 Baojian Road, Nan gang District, Harbin, 150086, People's Republic of China
| | - Sheng-Yuan Wang
- Department of Occupational Health, Public Health College, Harbin Medical University, 157 Baojian Road, Nan gang District, Harbin, 150086, People's Republic of China.
| |
Collapse
|
24
|
Tan Q, Wang B, Ye Z, Mu G, Liu W, Nie X, Yu L, Zhou M, Chen W. Cross-sectional and longitudinal relationships between ozone exposure and glucose homeostasis: Exploring the role of systemic inflammation and oxidative stress in a general Chinese urban population. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121711. [PMID: 37100372 DOI: 10.1016/j.envpol.2023.121711] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/05/2023] [Accepted: 04/22/2023] [Indexed: 05/21/2023]
Abstract
The adverse health effects of ozone pollution have been a globally concerned public health issue. Herein we aim to investigate the association between ozone exposure and glucose homeostasis, and to explore the potential role of systemic inflammation and oxidative stress in this association. A total of 6578 observations from the Wuhan-Zhuhai cohort (baseline and two follow-ups) were included in this study. Fasting plasma glucose (FPG) and insulin (FPI), plasma C-reactive protein (CRP, biomarker for systemic inflammation), urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG, biomarker for oxidative DNA damage), and urinary 8-isoprostane (biomarker for lipid peroxidation) were repeatedly measured. After adjusting for potential confounders, ozone exposure was positively associated with FPG, FPI, and homeostasis model assessment of insulin resistance (HOMA-IR), and negatively associated with HOMA of beta cell function (HOMA-β) in cross-sectional analyses. Each 10 ppb increase in cumulative 7-days moving average ozone was associated with a 13.19%, 8.31%, and 12.77% increase in FPG, FPI, and HOMA-IR, respectively, whereas a 6.63% decrease in HOMA-β (all P < 0.05). BMI modified the associations of 7-days ozone exposure with FPI and HOMA-IR, and the effects were stronger in subgroup whose BMI ≥24 kg/m2. Consistently high exposure to annual average ozone was associated with increased FPG and FPI in longitudinal analyses. Furthermore, ozone exposure was positively related to CRP, 8-OHdG, and 8-isoprostane in dose-response manner. Increased CRP, 8-OHdG, and 8-isoprostane could dose-dependently aggravate glucose homeostasis indices elevations related to ozone exposure. Increased CRP and 8-isoprostane mediated 2.11-14.96% of ozone-associated glucose homeostasis indices increment. Our findings suggested that ozone exposure could cause glucose homeostasis damage and obese people were more susceptible. Systemic inflammation and oxidative stress might be potential pathways in glucose homeostasis damage induced by ozone exposure.
Collapse
Affiliation(s)
- Qiyou Tan
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Bin Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zi Ye
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Ge Mu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Wei Liu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xiuquan Nie
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Linling Yu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Min Zhou
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
25
|
Song J, Wang D, Zhou M, You X, Tan Q, Liu W, Yu L, Wang B, Chen W, Zhang X. Carbon disulfide exposure induced lung function reduction partly through oxidative protein damage: A cross-sectional and longitudinal analysis. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131464. [PMID: 37104953 DOI: 10.1016/j.jhazmat.2023.131464] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/10/2023] [Accepted: 04/20/2023] [Indexed: 05/19/2023]
Abstract
Carbon disulfide (CS2) exposure has been associated with lung function reduction in occupational population. However, evidence on the general population with relatively low CS2 exposure is lacking and the mechanism involved remains largely unknown. Urinary CS2 metabolite (2-mercaptothiazolidine-4-carboxylic acid, TTCA) and lung function were determined in the urban adults from the Wuhan-Zhuhai cohort at baseline in 2011-2012 and were repeated every 3 years. Cross-sectional and longitudinal associations between TTCA and lung function were estimated using linear mixed models. Inflammation and oxidative damage biomarkers in blood/urine were measured to evaluate their potential mediating roles involved. Cross-sectionally, participants in the highest quartile of TTCA level showed a 0.64% reduction in FEV1/FVC and a -308.22 mL/s reduction in PEF, compared to those in the lowest quartile. Longitudinally, participants with consistently high TTCA level had annually -90.27 mL/s decline in PEF, compared to those with consistently low TTCA level. Mediation analysis revealed that plasma protein carbonyl mediated 49.89% and 22.10% of TTCA-associated FEV1/FVC and PEF reductions, respectively. Conclusively, there was a cross-sectional and longitudinal association between CS2 exposure and lung function reduction in the general urban adults, and protein carbonylation (oxidative protein damage) partly mediated lung function reduction from CS2 exposure.
Collapse
Affiliation(s)
- Jiahao Song
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Dongming Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Min Zhou
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiaojie You
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Qiyou Tan
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wei Liu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Linling Yu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Bin Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China.
| |
Collapse
|
26
|
Song J, Cheng M, Wang B, Zhou M, Ye Z, Fan L, Yu L, Wang X, Ma J, Chen W. The potential role of plasma miR-4301 in PM 2.5 exposure-associated lung function reduction. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121506. [PMID: 36997143 DOI: 10.1016/j.envpol.2023.121506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
The effect of PM2.5 exposure on lung function reduction has been well-documented, but the underlying mechanism remains unclear. MiR-4301 may be involved in regulating pathways related to lung injury/repairment, and this study aimed to explore the potential role of miR-4301 in PM2.5 exposure-associated lung function reduction. A total of 167 Wuhan community nonsmokers were included in this study. Lung function was measured and personal PM2.5 exposure moving averages were evaluated for each participant. Plasma miRNA was determined by real-time polymerase chain reaction. A generalized linear model was conducted to assess the relationships among personal PM2.5 moving average concentrations, lung function, and plasma miRNA. The mediation effect of miRNA on the association of personal PM2.5 exposure with lung function reduction was estimated. Finally, we performed pathway enrichment analysis to predict the underlying pathways of miRNA in lung function reduction from PM2.5 exposure. We found that each 10 μg/m3 increase in the 7-day personal PM2.5 moving average concentration (Lag0-7) was related to a 46.71 mL, 1.15%, 157.06 mL/s, and 188.13 mL/s reductions in FEV1, FEV1/FVC, PEF, and MMF, respectively. PM2.5 exposure was negatively associated with plasma miR-4301 expression levels in a dose‒response manner. Additionally, each 1% increase in miR-4301 expression level was significantly associated with a 0.36 mL, 0.01%, 1.14 mL/s, and 1.28 mL/s increases in FEV1, FEV1/FVC, MMF, and PEF, respectively. Mediation analysis further revealed that decreased miR-4301 mediated 15.6% and 16.8% of PM2.5 exposure-associated reductions in FEV1/FVC and MMF, respectively. Pathway enrichment analyses suggested that the wingless related-integration site (Wnt) signaling pathway might be one of the pathways regulated by miR-4301 in the reduction of lung function from PM2.5 exposure. In brief, personal PM2.5 exposure was negatively associated with plasma miR-4301 or lung function in a dose‒response manner. Moreover, miR-4301 partially mediated the lung function reduction associated with PM2.5 exposure.
Collapse
Affiliation(s)
- Jiahao Song
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Man Cheng
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bin Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Min Zhou
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zi Ye
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Lieyang Fan
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Linling Yu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xing Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Jixuan Ma
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
27
|
Yu L, Liu W, Zhou M, Yang S, Tan Q, Fan L, Wang B, Chen W. Long-term effect of styrene and ethylbenzene exposure on fasting plasma glucose: A gene-environment interaction study. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131346. [PMID: 37030230 DOI: 10.1016/j.jhazmat.2023.131346] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/16/2023] [Accepted: 04/01/2023] [Indexed: 05/03/2023]
Abstract
Styrene and ethylbenzene (S/EB) are hazardous pollutants that have attracted worldwide concern. In this prospective cohort study, S/EB exposure biomarker (the sum of mandelic acid and phenylglyoxylic acid [MA+PGA]) and fasting plasma glucose (FPG) were repeatedly measured three times. The polygenic risk score (PRS) based on 137 single nucleotide polymorphisms for type 2 diabetes mellitus (T2DM) was calculated to evaluate cumulative genetic effect. In repeated-measures cross-sectional analyses, MA+PGA (β [95% confidence interval]: 0.106 [0.022, 0.189]) and PRS (0.111 [0.047, 0.176]) were significantly related to FPG. For long-term effect assessment, participants with sustained high MA+PGA or with high PRS had 0.021 (95% CI: -0.398, 0.441) or 0.465 (0.064, 0.866) mmol/L increase in FPG, respectively, over 3 years follow-up, and had 0.256 (0.017, 0.494) or 0.265 (0.004, 0.527) mmol/L increase in FPG, respectively, over 6 years follow-up. We further detected a significant interaction effect between MA+PGA and PRS on FPG change, compared with participants with sustained low MA+PGA and low PRS, those with sustained high MA+PGA and high PRS had 0.778 (0.319, 1.258) mmol/L increase in FPG (P for interaction=0.028) over 6 years follow-up. Our study provides the first evidence that long-term exposure to S/EB potentially increases FPG, which might be aggravated by genetic susceptibility.
Collapse
Affiliation(s)
- Linling Yu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wei Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Min Zhou
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Shijie Yang
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Qiyou Tan
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Lieyang Fan
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Bin Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Weihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
28
|
Wang B, Liu W, Yu L, Ye Z, Cheng M, Qiu W, Zhou M, Ma J, Wang X, Yang M, Song J, Chen W. Acrolein Exposure Impaired Glucose Homeostasis and Increased Risk of Type 2 Diabetes: An Urban Adult Population-Based Cohort Study with Repeated Measures. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7162-7173. [PMID: 37098180 DOI: 10.1021/acs.est.2c09299] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Acrolein is an identified high-priority hazardous air pollutant ubiquitous in daily life and associated with cardiometabolic risk that attracts worldwide attention. However, the etiology role of acrolein exposure in glucose dyshomeostasis and type 2 diabetes (T2D) is unclear. This repeated-measurement prospective cohort study included 3522 urban adults. Urine/blood samples were repeatedly collected for determinations of acrolein metabolites (N-acetyl-S-(3-hydroxypropyl)-l-cysteine, N-acetyl-S-(2-carboxyethyl)-l-cysteine; acrolein exposure biomarkers), glucose homeostasis, and T2D at baseline and a three-year follow-up. We found that each 3-fold increment in acrolein metabolites was cross-sectionally associated with 5.91-6.52% decrement in homeostasis model assessment-insulin sensitivity (HOMA-IS) and 0.07-0.14 mmol/L, 4.02-4.57, 5.91-6.52, 19-20, 18-19, and 23-31% increments in fasting glucose (FPG), fasting insulin (FPI), HOMA-insulin resistance (HOMA-IR), risks of prevalent IR, impaired fasting glucose (IFG), and T2D, respectively; longitudinally, participants with sustained-high acrolein metabolite levels had increased risks of incident IR, IFG, and T2D by 63-80, 87-99, and 120-154%, respectively (P < 0.05). In addition, biomarkers of heme oxygenase-1 activity (exhaled carbon monoxide), lipid peroxidation (8-iso-prostaglandin-F2α), protein carbonylation (protein carbonyls), and oxidative DNA damage (8-hydroxy-deoxyguanosine) mediated 5.00-38.96% of these associations. Our study revealed that acrolein exposure may impair glucose homeostasis and increase T2D risk via mediating mechanisms of heme oxygenase-1 activation, lipid peroxidation, protein carbonylation, and oxidative DNA damage.
Collapse
Affiliation(s)
- Bin Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wei Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Linling Yu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zi Ye
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Man Cheng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Weihong Qiu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Min Zhou
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jixuan Ma
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xing Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Meng Yang
- Wuhan Children's Hospital (Wuhan Maternal and Child Health Care Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430019, China
| | - Jiahao Song
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Weihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| |
Collapse
|
29
|
Wang X, Wang B, Cheng M, Yu L, Liu W, Nie X, Wang M, Zhou M, Chen W. Lipid peroxidation mediates the association between iron overload and liver injury: cross-sectional and longitudinal analyses in general Chinese urban adults. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:60343-60353. [PMID: 37022540 DOI: 10.1007/s11356-023-26702-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 03/24/2023] [Indexed: 05/10/2023]
Abstract
Iron overload has been associated with acute/chronic organ failure, but whether iron overload induces liver injury remains unclear. The objectives of this study were to assess the relationship between urinary iron and serum alanine aminotransferase (ALT, a biomarker for liver injury), and investigate the potential mediating roles of lipid peroxidation and oxidative DNA damage in such association. Levels of urinary iron, serum ALT, and urinary biomarkers of lipid peroxidation (8-iso-prostaglandin-F2α [8-iso-PGF2α]) and oxidative DNA damage (8-hydroxy-deoxyguano-sine [8-OHdG]) were measured among 5386 observations of 4220 participants from the Wuhan-Zhuhai cohort. The relationships of urinary iron with serum ALT and risk of hyperALT were evaluated by linear mixed model and logistic regression model, respectively. The mediating roles of 8-iso-PGF2α and 8-OHdG were assessed by mediation analyses. This cross-sectional analysis found that urinary iron was positively associated with ALT (β = 0.032; 95% CI: 0.020, 0.044) and hyperALT prevalence (OR = 1.127; 95% CI: 1.065, 1.192). After 3 years of follow-up, participants with persistent high iron levels had increased risk of developing hyperALT (RR = 3.800; 95% CI: 1.464, 9.972) when compared with those with persistent low iron levels. In addition, each 1% increase in urinary iron was associated with a 0.146% (95% CI: 0.128%, 0.164%) increase and a 0.192% (95% CI: 0.154%, 0.229%) increase in 8-iso-PGF2α and 8-OHdG, respectively. Urinary 8-iso-PGF2α (β = 0.056; 95% CI: 0.039, 0.074) was positively associated with ALT, while the association between 8-OHdG and ALT was insignificant. Furthermore, increased 8-iso-PGF2α significantly mediated 22.48% of the urinary iron-associated ALT increment. Our study demonstrated that iron overload was significantly associated with liver injury, which was partly mediated by lipid peroxidation. Controlling iron intake and regulating lipid peroxidation may help in preventing liver injury.
Collapse
Affiliation(s)
- Xing Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Bin Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Man Cheng
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Linling Yu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Wei Liu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xiuquan Nie
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Mengyi Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Min Zhou
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China.
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
30
|
Zhang Y, Zhou M, Liang R, Yu L, Cheng M, Wang X, Wang B, Chen W. Arsenic exposure incurs hyperglycemia mediated by oxidative damage in urban adult population: A prospective cohort study with three repeated measures. ENVIRONMENTAL RESEARCH 2023; 229:116009. [PMID: 37119843 DOI: 10.1016/j.envres.2023.116009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/03/2023]
Abstract
The associations and potential mechanisms of low to moderate arsenic exposure with fasting plasma glucose (FPG) and type 2 diabetes mellitus (T2DM) are still unclear. To assess the effects of short-term and long-term arsenic exposure on hyperglycemia and the mediating effect of oxidative damage on such association, three repeated-measures studies with 9938 observations were conducted in the Wuhan-Zhuhai cohort. The levels of urinary total arsenic, FPG, urinary 8-iso-prostaglandin F2alpha (8-iso-PGF2α), urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG), and plasma protein carbonyls (PCO) were measured. Generalized linear mixed models were used to evaluate the exposure-response relationships of urinary total arsenic with FPG and the prevalent risks of impaired fasting glucose (IFG), T2DM, and abnormal glucose regulation (AGR). Cox regression models were applied to assess the associations of arsenic exposure with incident risks of IFG, T2DM, and AGR. Mediation analyses were performed to assess the mediating effects of 8-iso-PGF2α, 8-OHdG, and PCO. In cross-sectional analyses, each one-unit increase in natural log-transformed urinary total arsenic was associated with a 0.082 (95% CI: 0.047 to 0.118) mmol/L increase in FPG, as well as a 10.3% (95% CI: 1.4%-20.0%), 4.4% (95% CI: 5.3%-15.2%), and 8.7% (95% CI: 1.2%-16.6%) increase in prevalent risks of IFG, T2DM, and AGR, respectively. In longitudinal analyses, arsenic exposure was further associated with the annual increased rate of FPG with a β (95% CI) of 0.021 (95% CI: 0.010 to 0.033). The incident risks of IFG, T2DM, and AGR were increased without statistical significance when arsenic levels increased. Mediation analyses showed that 8-iso-PGF2α and PCO mediated 30.04% and 10.02% of the urinary total arsenic-associated FPG elevation, respectively. Our study indicated that arsenic exposure was associated with elevated level and progression rate of FPG among general Chinese adults, where lipid peroxidation and oxidative protein damage might be the potential mechanisms.
Collapse
Affiliation(s)
- Yongfang Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Zhou
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruyi Liang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linling Yu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Man Cheng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Weihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
31
|
Liu W, Cao S, Shi D, Ye Z, Yu L, Liang R, Chen W, Wang B. Daily folate consumption is associated with reduced all-cause and cardiovascular disease mortality among US adults with diabetes, prediabetes, or insulin resistance. Nutr Res 2023; 114:71-80. [PMID: 37209506 DOI: 10.1016/j.nutres.2023.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/22/2023]
Abstract
We hypothesized that daily folate consumption may have a beneficial effect on mortality among adults with dysglycemia. This prospective cohort study was conducted on 9266, 12,601, and 16,025 US adults with diabetes, prediabetes, and insulin resistance (IR; homeostasis model assessment of IR >2.6), respectively, from the National Health and Nutrition Examination Survey Ⅲ and 1999-2018. Daily folate consumption was obtained from dietary recall. All-cause, cardiovascular disease (CVD), and cancer mortality were obtained by linking to the National Death Index Mortality Data. During 117,746.00, 158,129.30, and 210,896.80 person-years of follow-up, 3356 (1053 CVD and 672 cancer), 3796 (1117 CVD and 854 cancer), and 4340 (1286 CVD and 928 cancer) deaths occurred among participants with diabetes, prediabetes, and IR, respectively. After multivariate adjustment, each 1-unit increase in ln-transformed daily folate consumption was linearly associated with 7.1% (hazard ratio [HR], 0.929; 95% confidence interval [CI], 0.914-0.945), 12.4% (HR, 0.886; 95% CI, 0.860-0.912), and 6.4% (HR, 0.936; 95% CI, 0.903-0.972) decreases in risk of all-cause, CVD, and cancer mortality, respectively, among participants with diabetes. Among participants with prediabetes, each 1-unit increase in ln-transformed daily folate consumption was linearly associated with 3.6% (HR, 0.964; 95% CI, 0.949-0.980), 7.8% (HR, 0.922; 95% CI, 0.895-0.949), and 3.6% (HR, 0.964; 95% CI, 0.932-0.997) decreases in risk of all-cause, CVD, and cancer mortality, respectively. Among participants with IR, each 1-unit increase in ln-transformed daily folate consumption was linearly associated with 5.7% (HR, 0.943; 95% CI, 0.929-0.956) and 9.0% (HR, 0.910; 95% CI, 0.885-0.933) decreases in risk of all-cause and CVD mortality, respectively. Increased daily folate consumption may be beneficial in reducing all-cause and CVD mortality of adults with dysglycemia. More research is needed to explore the underlying mechanisms.
Collapse
Affiliation(s)
- Wei Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Shuting Cao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Da Shi
- Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Zi Ye
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Linling Yu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ruyi Liang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Weihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Bin Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
32
|
Tristan Asensi M, Napoletano A, Sofi F, Dinu M. Low-Grade Inflammation and Ultra-Processed Foods Consumption: A Review. Nutrients 2023; 15:1546. [PMID: 36986276 PMCID: PMC10058108 DOI: 10.3390/nu15061546] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/14/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Low-grade inflammation alters the homeostasis of the organism and favors the onset of many chronic diseases. The global growth in the prevalence of noncommunicable diseases in recent years has been accompanied by an increase in the consumption of ultra-processed foods (UPF). Known to be hyperpalatable, economic and ready-to-eat, increased consumption of UPF has already been recognized as a risk factor for several chronic diseases. Different research groups have tried to investigate whether UPF consumption could promote low-grade inflammation and thus favor the development of noncommunicable diseases. Current evidence highlights the adverse health effects of UPF characteristics, not only due to the nutrients provided by a diet rich in UPF, but also due to the non-nutritive components present in UPF and the effect they may have on gut health. This review aims to summarize the available evidence on the possible relationship between excessive UPF consumption and modulation of low-grade inflammation, as potential promoters of chronic disease.
Collapse
Affiliation(s)
- Marta Tristan Asensi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Antonia Napoletano
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Francesco Sofi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Unit of Clinical Nutrition, Careggi University Hospital, 50134 Florence, Italy
| | - Monica Dinu
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| |
Collapse
|
33
|
Wang B, Fan L, Yang S, Zhou M, Mu G, Liu W, Yu L, Yang M, Cheng M, Wang X, Qiu W, Shi T, Chen W. Cross-sectional and longitudinal relationships between urinary 1-bromopropane metabolite and pulmonary function and underlying role of oxidative damage among urban adults in the Wuhan-Zhuhai cohort in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120147. [PMID: 36096263 DOI: 10.1016/j.envpol.2022.120147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/11/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
1-bromopropane is a US Environmental Protection Agency-identified significant hazardous air pollutant with concerned adverse respiratory effect. We aimed to investigate the relationship between 1-bromopropane exposure and pulmonary function and the underlying role of oxidative damage, which all remain unknown. Pulmonary function and urinary biomarkers of 1-bromopropane exposure (N-Acetyl-S-(n-propyl)-L-cysteine, BPMA) and oxidative damage to DNA (8-hydroxy-deoxyguanosine, 8-OHdG) and lipid (8-iso-prostaglandin-F2α, 8-iso-PGF2α) were measured for 3259 Chinese urban adults from the Wuhan-Zhuhai cohort. The cross-sectional relationship of BPMA with pulmonary function and the joint relationship of BPMA and 8-OHdG or 8-iso-PGF2α with pulmonary function were investigated by linear mixed models. The mediating roles of 8-OHdG and 8-iso-PGF2α were evaluated by mediation analysis. Additionally, a panel of 138 subjects was randomly convened from the same cohort to evaluate the stability of BPMA repeatedly measured in urine samples collected over consecutive three days and intervals of one, two, and three years, and to estimate the longitudinal relationship of BPMA with pulmonary function change in three years. We found each 3-fold increase in BPMA was cross-sectionally related to FVC and FEV1 reductions by 29.88-mL and 25.67-mL, respectively (all P < 0.05). Joint relationship of BPMA and 8-OHdG rather than 8-iso-PGF2α with reduced pulmonary function was observed. Moreover, 8-OHdG significantly mediated 9.44% of the BPMA-related FVC reduction. Findings from the panel revealed a fair to excellent stability (intraclass correlation coefficient: 0.43-0.79) of BPMA in repeated urines collected over a period of three years. Besides, BPMA was longitudinally related to pulmonary function reduction in three years: compared with subjects with persistently low BPMA level, those with persistently high BPMA level had 79.08-mL/year and 49.80-mL/year declines in FVC and FEV1, respectively (all P < 0.05). Conclusively, 1-bromopropane exposure might impair pulmonary function of urban adult population, and oxidative DNA damage might be a potential mechanism underlying 1-bromopropane impairing pulmonary function especially FVC.
Collapse
Affiliation(s)
- Bin Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Lieyang Fan
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Shijie Yang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, Hubei, China
| | - Min Zhou
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Ge Mu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Data Center, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710068, China
| | - Wei Liu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Linling Yu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Meng Yang
- Wuhan Children's Hospital (Wuhan Maternal and Child Health Care Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430019, China
| | - Man Cheng
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xing Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Weihong Qiu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Tingming Shi
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, Hubei, China
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
34
|
Tea Polyphenols Protect the Mammary Gland of Dairy Cows by Enhancing Antioxidant Capacity and Regulating the TGF-β1/p38/JNK Pathway. Metabolites 2022; 12:metabo12111009. [PMID: 36355092 PMCID: PMC9699432 DOI: 10.3390/metabo12111009] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 12/12/2022] Open
Abstract
Tea polyphenols (TPs) are the main active substances in tea and they have many beneficial effects, such as anti-inflammation, antioxidant, anti-cancer and metabolic regulation effects. The quality of milk is affected by mammary gland diseases and there are substantial economic losses resulting from reduced milk production as a consequence of inflammatory injury of the mammary gland. In this study, transcriptome analysis and molecular biology techniques were used to study the effects of TPs on inflammatory injury of the mammary gland. After intervention with TPs, a total of 2085 differentially expressed genes were identified, including 1189 up-regulated genes and 896 down-regulated genes. GO analysis showed that differentially expressed genes played an important role in proton transmembrane transport, oxidation-reduction reactions and inflammatory response. KEGG enrichment suggested that differential genes were concentrated in the TGF-β pathway and active oxygen metabolism process. Experiments were performed to confirm that TPs increased SOD, CAT, T-AOC and GSH-Px content along with a reduction in MDA. Meanwhile, TPs inhibited the expression of TGF-β1 and reduced the phosphorylation of p38 and JNK. The expression of inflammatory cytokines IL-1β, IL-6 and TNF-α were significantly decreased after intervention with TPs. In summary, all the data indicated that TPs protected the mammary gland by enhancing the antioxidant capacity and down-regulating the TGF-β1/p38/JNK pathway.
Collapse
|
35
|
Hogervorst J, Virgolino A, Halldorsson TI, Vinceti M, Åkesson A, Leander K, Nawrot T, Filippini T, Laguzzi F. Maternal acrylamide exposure during pregnancy and fetal growth: A systematic review and dose-response meta-analysis of epidemiological studies. ENVIRONMENTAL RESEARCH 2022; 213:113705. [PMID: 35724727 DOI: 10.1016/j.envres.2022.113705] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Acrylamide is a food contaminant linked to developmental toxicity in animals and possibly in humans. OBJECTIVES We performed a systematic review and dose-response meta-analysis of epidemiological studies evaluating the relationship between maternal acrylamide exposure during pregnancy and the risk of being small for gestational age (SGA) and birth weight, birth head circumference and birth length. METHODS We performed the literature search in PubMed, Scopus, and Web of Science, until June 6th, 2022. Studies carried out in mother-newborn pairs, assessing maternal acrylamide exposure during pregnancy, either via dietary assessments or biomarkers i.e., hemoglobin adducts of acrylamide (AA-Hb) and glycidamide (GA-Hb), and evaluating birth outcomes were included. We employed a random-effects model to assess the pooled effect estimates and their 95% confidence intervals (CI) for the association between acrylamide exposure and birth outcomes. Risk of Bias for Nutrition Observational Studies tool was used for bias assessment. RESULTS Out of 169 records identified, five original studies were eligible, including 53,870 mother-newborn pairs in total. Means were 21.9 μg/day for estimated dietary acrylamide exposure (3 studies), and 18.4 and 14.9 pmol/g for AA-Hb and GA-Hb, respectively (2 studies). Higher risk of SGA and lower birth weight and head circumference were observed in the highest quartile of AA-Hb [odds ratio (OR): 1.20 (95% CI: 1.08; 1.33); mean difference (MD): -131 g (95% CI: -204; -58) and -0.31 cm (95% CI: -0.58; -0.04), respectively], and GA-Hb [OR: 1.36 (95% CI: 1.13; 1.64), MD: -161 g (95% CI: -271; -52); and MD: -0.38 cm (95% CI: -0.66; -0.10), respectively], whereas a lower birth length was observed only in the highest quartile of GA-Hb (MD: -0.85 cm (95% CI: -1.38; -0.33). Results from the dose-response meta-analysis between increasing maternal acrylamide exposure during pregnancy and birth weight showed no clear evidence of a deviation from linearity. CONCLUSIONS Overall, our findings strengthen the evidence of an adverse effect of maternal acrylamide exposure during pregnancy on fetal growth. These results encourage to increase preventive actions towards lowering acrylamide exposure in the population.
Collapse
Affiliation(s)
- Janneke Hogervorst
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Ana Virgolino
- EnviHeB Lab, Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal; Laboratório Associado TERRA, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Thorhallur I Halldorsson
- Centre for Fetal Programming, Department of Epidemiology Research, Copenhagen, Denmark; Faculty of Food Science and Nutrition, University of Iceland, Reykjavík, Iceland
| | - Marco Vinceti
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN) - Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Agneta Åkesson
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Karin Leander
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tim Nawrot
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium; Center for Environment and Health, Department of Public Health, Leuven University (KU Leuven), Leuven, Belgium
| | - Tommaso Filippini
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN) - Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; School of Public Health, University of California Berkeley, Berkeley, CA, USA
| | - Federica Laguzzi
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
36
|
Wang B, Yu L, Liu W, Yang M, Fan L, Zhou M, Ma J, Wang X, Nie X, Cheng M, Qiu W, Ye Z, Song J, Chen W. Cross-sectional and longitudinal associations of acrolein exposure with pulmonary function alteration: Assessing the potential roles of oxidative DNA damage, inflammation, and pulmonary epithelium injury in a general adult population. ENVIRONMENT INTERNATIONAL 2022; 167:107401. [PMID: 35850081 DOI: 10.1016/j.envint.2022.107401] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/13/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Acrolein is a significant high priority hazardous air pollutant with pulmonary toxicity and the leading cause of most noncancer adverse respiratory effects among air toxics that draws great attention. Whether and how acrolein exposure impacts pulmonary function remain inconclusive. OBJECTIVES To assess the association of acrolein exposure with pulmonary function and the underlying roles of oxidative DNA damage, inflammation, and pulmonary epithelium integrity. METHODS Among 3,279 Chinese adults from the Wuhan-Zhuhai cohort, associations of urinary acrolein metabolites (N-Acetyl-S-(2-carboxyethyl)-L-cysteine, CEMA; N-Acetyl-S-(3-hydroxypropyl)-L-cysteine, 3HPMA) as credible biomarkers of acrolein exposure with pulmonary function were analyzed by linear mixed models. Joint effects of biomarkers of oxidative DNA damage (8-hydroxy-deoxyguanosine), inflammation (C-reactive protein, CRP), and pulmonary epithelium integrity (Club cell secretory protein, CC16) with acrolein metabolites on pulmonary function and the mediating roles of these biomarkers were assessed. Besides, a subgroup (N = 138) was randomly recruited from the cohort to assess the stabilities of acrolein metabolites and their longitudinal associations with pulmonary function change in three years. RESULTS Significant inverse dose-response relationships between acrolein metabolites and pulmonary function were found. Each 10-fold increment in CEMA, 3HPMA, or ΣUACLM (CEMA + 3HPMA) was cross-sectionally related to a 68.56-, 40.98-, or 46.02-ml reduction in FVC and a 61.54-, 43.10-, or 50.14-ml reduction in FEV1, respectively (P < 0.05). Furthermore, acrolein metabolites with fair to excellent stabilities were found to be longitudinally associated with pulmonary function decline in three years. Joint effects of acrolein metabolites with 8-hydroxy-deoxyguanosine, CRP, and CC16 on pulmonary function were identified. CRP significantly mediated 5.97% and 5.51% of CEMA-associated FVC and FEV1 reductions, respectively. 8-hydroxy-deoxyguanosine significantly mediated 6.78%, 6.88%, and 7.61% of CEMA-, 3HPMA-, and ΣUACLM-associated FVC reductions, respectively. CONCLUSIONS Acrolein exposure of general adults was cross-sectionally and longitudinally related to pulmonary function decline, which was aggravated and/or partly mediated by oxidative DNA damage, inflammation, and pulmonary epithelium injury.
Collapse
Affiliation(s)
- Bin Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Linling Yu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wei Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Meng Yang
- Wuhan Children's Hospital (Wuhan Maternal and Child Health Care Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430019, China
| | - Lieyang Fan
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Min Zhou
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jixuan Ma
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xing Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiuque Nie
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Man Cheng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Weihong Qiu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zi Ye
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jiahao Song
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Weihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|