1
|
Zhao T, Wang L, Yang J. Synergistic effects of combined application of biochar and arbuscular mycorrhizal fungi on the safe production of rice in cadmium contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175499. [PMID: 39151618 DOI: 10.1016/j.scitotenv.2024.175499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/02/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) have been shown to effectively mitigate the detrimental effects of heavy metal stress on their plant hosts. Nevertheless, the biological activities of AMF were concurrently compromised. Biochar (BC), as an abiotic factor, had the potential compensate for this limitation. To elucidate the synergistic effects of biotic and abiotic factors, a pot experiment was conducted to assess the impact of biochar and AMF on the growth, physiological traits, and genetic expression in rice plants subjected to Cd stress. The results demonstrated that biochar significantly increased the mycorrhizal colonization rate by 22.19 %, while the combined application of biochar and AMF led to a remarkable enhancement of rice root biomass by 42.2 %. This resulted in a shift in spatial growth patterns that preferentially promoted enhanced underground development. Biochar effectively mitigated the stomatal limitations imposed by Cd on photosynthetic processes. The decrease in IBRv2 (Integrated Biomarker Response version 2) values suggested that the antioxidant system was experiencing a state of remission. An increase of Cd content within the rice root systems was observed, ranging from 33.71 % to 48.71 %, accompanied by a reduction in Cd bioavailability and mobility curtailed its translocation to the aboveground tissues. Under conditions of low soil Cd concentration (Cd ≤ 1 mg·kg-1), the Cd content in rice seeds from the group subjected to the combined treatment remained below the national standard (Cd ≤ 0.2 mg·kg-1). Furthermore, the combined treatment modulated the uptake of Fe and Zn by rice, while simultaneously suppressing the expression of genes associated with Cd transport. Collectively, the integration of biological and abiotic factors provided a novel perspective and methodological framework for safe in-situ utilization of soils with low Cd contamination.
Collapse
Affiliation(s)
- Ting Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China
| | - Li Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China.
| | - Jixian Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China.
| |
Collapse
|
2
|
Jiang X, Liu Z, Yan B, Zhao L, Chen T, Yang X. Effects of active silicon amendment on Pb(II)/Cd(II) adsorption: Performance evaluation and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135614. [PMID: 39186844 DOI: 10.1016/j.jhazmat.2024.135614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/06/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024]
Abstract
In this study, a high-Si (Si) adsorbent (APR@Sam) was prepared by acid leaching slag (APR) from lead-zinc (Pb-Zn) tailings based on high-temperature alkali melting technology. The synthesized Si-based materials were applied to aqueous solutions contaminated with Pb and cadmium (Cd) to investigate the crucial role of active Si in sequestering heavy metals. The adsorption capacities of APR@Sam and the Si-depleted material (APR@Sam-NSi) were studied under different pH and temperature conditions. The results showed that as the pH increased from 3 to 7, the adsorption capacity increased, the active Si content in the solution increased by 63 %, and the maximum pH of the solution after adsorption was 7.12. After the removal of active Si, the Pb (II) and Cd (II) adsorption capacities of APR@Sam decreased by 45 % and 11.96 %, respectively. OH- promoted the release of Si into the solution, enhancing the material's adsorption efficiency. The reaction mechanism is mainly attributed to surface complexation guided by Si-O and Si-O-Si bonds, metal cation exchange, and bidentate coordination. The results indicated that the Si component is critical for the removal of Pb (II) and Cd (II) by APR@Sam and provide valuable insights into resource recovery strategies from leaching residues.
Collapse
Affiliation(s)
- Xueqin Jiang
- Guangdong Engineering Technology Research Center of Low Carbon and Advanced Energy Materials, Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, China; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, Guangdong Engineering Technology Research Center for Source Control of Combined Pollution in Mining Areas, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Zhenyuan Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, Guangdong Engineering Technology Research Center for Source Control of Combined Pollution in Mining Areas, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Bo Yan
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, Guangdong Engineering Technology Research Center for Source Control of Combined Pollution in Mining Areas, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Lingzhi Zhao
- Guangdong Engineering Technology Research Center of Low Carbon and Advanced Energy Materials, Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, China
| | - Tao Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, Guangdong Engineering Technology Research Center for Source Control of Combined Pollution in Mining Areas, School of Environment, South China Normal University, Guangzhou 510006, China.
| | - Xiaofan Yang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
3
|
Pan C, Sun Y, Dong Y, Hou H, Kai MF, Lan J. Efficient carbamazepine degradation by modified copper tailings and PMS system: Performance evaluation and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133198. [PMID: 38086306 DOI: 10.1016/j.jhazmat.2023.133198] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/22/2023] [Accepted: 12/05/2023] [Indexed: 02/08/2024]
Abstract
It is a green and sustainable path to establish cheap solid waste-based catalyst to establish peroxymonosulfate (PMS) catalytic system for the degradation of carbamazepine (CBZ) in water. In this study, durable copper tailing waste residue-based catalyst (CSWR) was prepared, and efficient CSWR/PMS system was constructed for catalytic degradation of CBZ for first time. The morphology and structure of CSWR changed from clumps to porous and loose amorphous by alkali leaching and medium temperature calcination. The reconstructed surface of the CSWR exposes more active sites promotes the catalytic reaction and increases the degradation rate of CBZ by more than 39.8 times. And the CSWR/PMS achieved a CBZ removal of nearly 99.99 % in 20 min. In particular, perovskite-type iron-calcium compounds were formed, which stimulated the production of more HO• and SO4•- in the system. DFT calculation shows that CSWR has stronger adsorption energy and electron transfer ability to PMS molecules, which improved the degradation efficiency of the system. In general, this study proposed a means of high-value waste utilization, which provided a new idea for the preparation of solid waste based environmental functional materials and is expected to be widely used in practical wastewater treatment.
Collapse
Affiliation(s)
- Cong Pan
- School of Resource and Environmental Sciences, Wuhan University, 430072, China
| | - Yan Sun
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Yiqie Dong
- School of Civil Engineering and Architecture, Wuhan Polytechnic University, Wuhan 430023, China
| | - Haobo Hou
- School of Resource and Environmental Sciences, Wuhan University, 430072, China
| | - Ming-Feng Kai
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Jirong Lan
- School of Resource and Environmental Sciences, Wuhan University, 430072, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China.
| |
Collapse
|
4
|
Wang Q, Liu M, Wang Z, Li J, Liu K, Huang D. The role of arbuscular mycorrhizal symbiosis in plant abiotic stress. Front Microbiol 2024; 14:1323881. [PMID: 38312502 PMCID: PMC10835807 DOI: 10.3389/fmicb.2023.1323881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/29/2023] [Indexed: 02/06/2024] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) can penetrate plant root cortical cells, establish a symbiosis with most land plant species, and form branched structures (known as arbuscules) for nutrient exchange. Plants have evolved a complete plant-AMF symbiosis system to sustain their growth and development under various types of abiotic stress. Here, we highlight recent studies of AM symbiosis and the regulation of symbiosis process. The roles of mycorrhizal symbiosis and host plant interactions in enhancing drought resistance, increasing mineral nutrient uptake, regulating hormone synthesis, improving salt resistance, and alleviating heavy metal stress were also discussed. Overall, studies of AM symbiosis and a variety of abiotic stresses will aid applications of AMF in sustainable agriculture and can improve plant production and environmental safety.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou, China
| | - Mengmeng Liu
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Zhifan Wang
- College of Agriculture, Guizhou Engineering Research Center for Fruit Crops, Guizhou University, Guiyang, Guizhou, China
| | - Junrong Li
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou, China
| | - Ke Liu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou, China
| | - Dong Huang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou, China
- College of Agriculture, Guizhou Engineering Research Center for Fruit Crops, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
5
|
Hu JR, Li JM, Wang HY, Sun ML, Huang CY, Wang HC. Analysis of growth dynamics in five different media and metabolic phenotypic characteristics of Piriformospora indica. Front Microbiol 2024; 14:1301743. [PMID: 38260913 PMCID: PMC10800966 DOI: 10.3389/fmicb.2023.1301743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/13/2023] [Indexed: 01/24/2024] Open
Abstract
Piriformospora indica is an important endophytic fungus with broad potential for alleviating biotic and abiotic stress on host plants. This study monitored the growth dynamics of P. indica on five commonly used artificial media for microorganisms and analyzed its metabolic characteristics using Biolog Phenotype Microarray (PM) technology. The results showed that P. indica grew fastest on Potato Dextrose Agar (PDA), followed by Kidney Bean Agar (KBA), Alkyl Ester Agar (AEA), Oatmeal Agar (OA), and Luria-Bertani Agar (LB), and the most suitable medium for spore production was OA. Using Biolog PM1-10, 950 metabolic phenotypes of P. indica were obtained. P. indica could metabolize 87.89% of the tested carbon sources, 87.63% of the tested nitrogen sources, 96.61% of the tested phosphorus sources, and 100% of the tested sulfur sources. P. indica displayed 92 kinds of tested biosynthetic pathways, and it could grow under 92 kinds of tested osmotic pressures and 88 kinds of tested pH conditions. PM plates 1-2 revealed 43 efficient carbon sources, including M-Hydroxyphenyl acid, N-Acetyl-D-Glucosamine, Tyramine, Maltotrios, α-D-Glucosine, I-Erythritol, L-Valine, D-Melezitose, D-Tagatose, and Turanose. PM plates 3,6-8 indicated 170 efficient nitrogen sources, including Adenosine, Inosine Allantoin, D, L-Lactamide, Arg-Met, lle-Trp, Ala-Arg, Thr-Arg, Trp-Tyr, Val-Asn, Gly-Gly-D-Leu, Gly-Gly-Phe, and Leu-Leu-Leu. This study demonstrates that P. indica can metabolize a variety of substrates, such as carbon and nitrogen sources, and has a wide range of environmental adaptability. The growth dynamics on artificial culture media and metabolic phenotypes of P. indica can be used to investigate its biological characteristics, screen for more suitable growth and sporulation conditions, and elucidate the physiological mechanisms that enhance the stress resistance of host plants. This study provides a theoretical basis for its better application in agriculture.
Collapse
Affiliation(s)
- Jing-rong Hu
- Institute of Advanced Agricultural Science, Hubei University of Arts and Science, Xiangyang, Hubei, China
- College of Agriculture, Yangtze University, Jingzhou, China
| | - Jin-meng Li
- College of Agriculture, Yangtze University, Jingzhou, China
| | - Hai-yan Wang
- Institute of Advanced Agricultural Science, Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Mei-li Sun
- College of Agriculture, Yangtze University, Jingzhou, China
| | - Chun-yang Huang
- Guizhou Provincial Tobacco Company, Zunyi Branch, Zunyi, China
| | - Han-cheng Wang
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, Guizhou, China
| |
Collapse
|
6
|
Sánchez-Matiz JJ, Díaz-Ariza LA. Glomeromycota associations with bamboos (Bambusoideae) worldwide, a qualitative systematic review of a promising symbiosis. PeerJ 2023; 11:e16151. [PMID: 38025720 PMCID: PMC10640841 DOI: 10.7717/peerj.16151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/30/2023] [Indexed: 12/01/2023] Open
Abstract
Background Around the world, bamboos are ecologically, economically, and culturally important plants, particularly in tropical regions of Asia, America, and Africa. The association of this plant group with arbuscular mycorrhizal fungi belonging to the phylum Glomeromycota is still a poorly studied field, which limits understanding of the reported ecological and physiological benefits for the plant, fungus, soil, and ecosystems under this symbiosis relationship. Methods Through a qualitative systematic review following the PRISMA framework for the collection, synthesis, and reporting of evidence, this paper presents a compilation of the research conducted on the biology and ecology of the symbiotic relationship between Glomeromycota and Bambusoideae from around the world. This review is based on academic databases enriched with documents retrieved using different online databases and the Google Scholar search engine. Results The literature search yielded over 6,000 publications, from which 18 studies were included in the present review after a process of selection and validation. The information gathered from the publications included over 25 bamboo species and nine Glomeromycota genera from eight families, distributed across five countries on two continents. Conclusion This review presents the current state of knowledge regarding the symbiosis between Glomeromycota and Bambusoideae, while reflecting on the challenges and scarcity of research on this promising association found across the world.
Collapse
Affiliation(s)
- Juan José Sánchez-Matiz
- Grupo de Investigación en Agricultura Biológica, Laboratorio de Asociaciones Suelo Planta Microorganismo, Departamento de Biología/Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
| | - Lucia Ana Díaz-Ariza
- Grupo de Investigación en Agricultura Biológica, Laboratorio de Asociaciones Suelo Planta Microorganismo, Departamento de Biología/Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
| |
Collapse
|
7
|
Tan Q, Guo Q, Wei R, Zhu G, Du C, Hu H. Influence of arbuscular mycorrhizal fungi on bioaccumulation and bioavailability of As and Cd: A meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120619. [PMID: 36403873 DOI: 10.1016/j.envpol.2022.120619] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/16/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Increasing industrial activity has led to a growing risk of arsenic (As) and cadmium (Cd) accumulations and biomagnifications in plants and humans. Arbuscular mycorrhizal fungi (AMF) have been extensively studied as a soil amendment owing to their capability to reduce the accumulation of As and Cd in plant tissues. However, a quantitative and data-based consensus has yet to be reached on the effect of AMF on As and Cd bioaccumulation and bioavailability. Here, a meta-analysis was conducted to quantitatively evaluate the impact of AMF using 1430 individual observations from 194 articles. The results showed that AMF inoculation caused a decrease in shoot and root As and Cd accumulation compared to control, and the reduction rates were affected by experimental duration, P fertilizer, AMF species, plant family, plant lifecycle, and soil properties. Intermediate experimental duration (lasting 56-112 days) and no P fertilizer favored AMF to reduce the shoot As and root Cd accumulation. Compared to other plant families, the reduction in As and Cd accumulation in legumes was the greatest, following AMF inoculation. The soils with alkaline, high organic carbon (OC), and low available phosphorus (AP) appeared to be more favorable for AMF to reduce As accumulation in plant tissues, while soils with low AP were more conducive to reducing the Cd accumulation in plant tissues. In addition, AMF inoculation increased pH (1.92%), OC (6.27%), easily-extractable glomalin-related soil protein (EE-GRSP) (29.36%), and total glomalin-related soil protein (T-GRSP) (29.99%), and reduced bioavailable As (0.52%) and Cd (2.35%) in soils compared to control. Overall, the meta-analysis provides valuable guidelines for the optimal use of AMF in different plant-soil systems.
Collapse
Affiliation(s)
- Qiyu Tan
- School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, China.
| | - Qingjun Guo
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Rongfei Wei
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Guangxu Zhu
- College of Biology and Environment Engineering, Guiyang University, Guiyang 550005, China.
| | - Chenjun Du
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Huiying Hu
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
8
|
Zhang M, Shi Z, Zhang S, Gao J. A Database on Mycorrhizal Traits of Chinese Medicinal Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:840343. [PMID: 35300014 PMCID: PMC8921535 DOI: 10.3389/fpls.2022.840343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
The mycorrhizal traits of plants have been widely reported based on different scales or plant functional groups. To better utilize mycorrhizae to improve the cultivation yield and active ingredient accumulation of medicinal plants, a database of medicinal plant mycorrhizal characteristics is needed. A database on mycorrhizal traits including mycorrhizal type or status of Chinese medicinal plant species was assembled. In this study, the mycorrhizal type or status of a total of 3,230 medicinal plants was presented. Among them, the mycorrhizal traits of 1,321 species were ascertained. These medicinal plants had three mycorrhizal statuses, both single mycorrhiza (SM) and multi-mycorrhiza (MM) contained four mycorrhizal types. The majority of medicinal plants were obligatorily symbiotic with mycorrhizal fungi with 926 (70.10%) species. The most widespread mycorrhizal type is AM, which is associated with 842 medicinal plant species (90.93% of mycorrhiza has an obligatorily symbiotic relationship with Chinese medicinal plants). Another broadly studied mycorrhizal type is ECM, which is associated with 15 medicinal plant species. This study is the first exclusive database on mycorrhizal traits of medicinal plants, which provides both mycorrhizal type and status. This database provides valuable resources for identifying the mycorrhizal information of medicinal plants and enriching the theory of mycorrhizal traits, which will greatly benefit the production or management of medicinal plants.
Collapse
Affiliation(s)
- Menghan Zhang
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
- Henan Engineering Research Center for Rural Human Settlement, Luoyang, China
- Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang, China
| | - Zhaoyong Shi
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
- Henan Engineering Research Center for Rural Human Settlement, Luoyang, China
- Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang, China
| | - Shan Zhang
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
- Henan Engineering Research Center for Rural Human Settlement, Luoyang, China
- Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang, China
| | - Jiakai Gao
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
- Henan Engineering Research Center for Rural Human Settlement, Luoyang, China
- Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang, China
| |
Collapse
|
9
|
Sun C, Yang Y, Zeeshan M, Qin S, Ma J, Liu L, Yang J, Zhou X, Huang J. Arbuscular mycorrhizal fungi reverse selenium stress in Zea mays seedlings by improving plant and soil characteristics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:113000. [PMID: 34808506 DOI: 10.1016/j.ecoenv.2021.113000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/24/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Selenium (Se) is a beneficial trace element for certain animals including humans, while remaining controversial for plants. High Se concentration in soil is toxic to plants especially at seedling stage of the plants. Although, arbuscular mycorrhizal fungi (AMF) are important for plant stress resistance; but the mechanisms by which AMF alleviate Se stress in crop seedlings are unclear. Therefore, we investigated the potential strategies of AMF symbiosis to alleviate Se stress in maize (Zea mays) from plants and soil perspectives. Results showed that Se stress (Se application level > 5 mg kg-1) significantly inhibited leaf area, shoot dry weight, and root dry weight of maize (P < 0.05). In contrast, AM symbiosis significantly improved root morphology, increased nitrogen and phosphorus nutrition, promoted shoot growth, inhibited the transport of Se from soil/roots to shoots, and then diluted the concentration of Se in shoots (32.65-52.80%). In general, the response of maize growth to AMF was mainly observed in shoots rather than roots. In addition, AMF inoculation significantly increased the easily extractable glomalin-related soil protein and organic matter contents and decreased the availability of soil Se to the plant. Principal component analysis showed that AMF promoted growth and nutrition uptake of maize was the most dominant effect of Se stress alleviation, followed by the decrease of soil Se availability, limiting Se transport from soil/roots to shoots. Moreover, the expression of Se uptake-related ion transporter genes (ZmPht2, ZmNIP2;1, and ZmSultr1;3) in maize roots were down-regulated upon AM symbiosis which resultantly inhibited the uptake and transport of Se from soil to maize roots. Thus, AMF could impede Se stress in maize seedlings by improving plant and soil characteristics.
Collapse
Affiliation(s)
- Chenyu Sun
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China; National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China; College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| | - Yisen Yang
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China; National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China
| | - Muhammad Zeeshan
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China; National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China
| | - Shengfeng Qin
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China; National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China
| | - Junqing Ma
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China; National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China
| | - Lu Liu
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China; National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China
| | - Juan Yang
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China; National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China
| | - Xunbo Zhou
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China; National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China
| | - Jinghua Huang
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China; National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China.
| |
Collapse
|
10
|
Insight into the Adaptability of Dominant Plant Indigofera amblyantha Craib for Ecological Restoration of Rock Slopes in Stone Coal Mine. ADSORPT SCI TECHNOL 2021. [DOI: 10.1155/2021/3827991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The eco-restoration was a very effective measure to solve the problem of environmental pollution caused by the exposed mine surface in the stone coal mine site. In this study, the dominant plant, Indigofera amblyantha Craib, was well adapted to the eco-restoration in stone coal mining area. The changes of nutrient elements, pH, heavy metals in substrate material, the biological concentration/transfer factor, and the distribution and diversity of bacteria and fungi in rhizosphere soil were investigated. The results show that the plant communities help slow down the loss of nutrient elements and the increase of the concentrations of heavy metals in the eco-restoration process. The Indigofera amblyantha Craib had the advantaged ability to enrich and transfer Cd, Cu, Mn, and its diversity index of microbial communities in rhizosphere soils was higher than that of other quadrats. These excellent properties found in this work help reveal the insight into the adaptability of Indigofera amblyantha Craib in the eco-restoration of stone coal mines. It is valuable to evaluate Indigofera amblyantha Craib for eco-restoration engineering of stone coal mine and extend the application in heavy metal contaminated sites.
Collapse
|
11
|
Yang S, Shi Z, Zhang M, Li Y, Gao J, Wang X, Liu D. Stoichiometry of Carbon, Nitrogen and Phosphorus in Shrub Organs Linked Closely With Mycorrhizal Strategy in Northern China. FRONTIERS IN PLANT SCIENCE 2021; 12:687347. [PMID: 34557207 PMCID: PMC8453024 DOI: 10.3389/fpls.2021.687347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/18/2021] [Indexed: 05/31/2023]
Abstract
Mycorrhizal strategies include mycorrhizal statuses and mycorrhizal types, which are important reflections of the functional characteristics of ecosystems. The stoichiometry of carbon, nitrogen, and phosphorus in plant organs is an important part of ecosystem functions, which has an important impact on the nutrient cycle of the ecosystem. The concentration of carbon, nitrogen, and phosphorus played a crucial role in ecosystem functioning and dynamics. The purpose of this study is to provide theoretical basis and data support for improving the properties of global terrestrial ecosystems by exploring the impact of mycorrhizal strategies on the stoichiometry of C, N, and P in different shrub organs. In this study, stoichiometric patterns of carbon (C), nitrogen (N) and phosphorus (P) in different shrub organs under different mycorrhizal status or types were analyzed at 725 samples across Northern China. Results showed that in different mycorrhizal status, the highest carbon concentration in shrub organs appeared in the facultatively mycorrhizal (FM) mycorrhizal status, and the highest nitrogen concentration appeared in the Non-mycorrhizal (NM) mycorrhizal status. Under different mycorrhizal types, the nitrogen concentration in the shrub organs under the arbuscular mycorrhiza (AM) mycorrhizal type was the highest, and the phosphorus concentration under the ecto-mycorrhiza (ECM) mycorrhizal type was the highest. In the OM or FM mycorrhizal status, the concentrations of C, N, and P in the stems and leaves increase with the increase of the concentrations of C, N, and P in the roots. In the NM mycorrhizal status, the N concentration in the stems and leaves increases with the increase of the N concentration in the roots. Under AM, AM+ECM, and ECM mycorrhizal type, the concentrations of C, N, and P are closely related in roots, stems and leaves. The content of plant nutrients in different organs is closely related. It turned out that mycorrhizal statuses or types are able to alter the allocation of C, N, and P in different organs, and the relationships of C, N, and P among different organs are able to present different trend with the varying of mycorrhizal statuses or types.
Collapse
Affiliation(s)
- Shuang Yang
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
- Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang, China
- Henan Engineering Research Center of Human Settlements, Luoyang, China
| | - Zhaoyong Shi
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
- Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang, China
- Henan Engineering Research Center of Human Settlements, Luoyang, China
| | - Menghan Zhang
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
- Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang, China
- Henan Engineering Research Center of Human Settlements, Luoyang, China
| | - Yang Li
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
- Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang, China
- Henan Engineering Research Center of Human Settlements, Luoyang, China
| | - Jiakai Gao
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
- Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang, China
- Henan Engineering Research Center of Human Settlements, Luoyang, China
| | - Xugang Wang
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
- Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang, China
- Henan Engineering Research Center of Human Settlements, Luoyang, China
| | - Dehong Liu
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
- Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang, China
- Henan Engineering Research Center of Human Settlements, Luoyang, China
| |
Collapse
|
12
|
Stępień P, Gediga K, Spiak Z. Phosphorus-Induced Adaptation Mechanisms of Rye Grown on Post-Flotation Copper Tailings. BIOLOGY 2021; 10:biology10080818. [PMID: 34440050 PMCID: PMC8389543 DOI: 10.3390/biology10080818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/09/2021] [Accepted: 08/18/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary The mining activities for the production of copper, lead, zinc, and others are inevitably associated with the generation of an enormous volume of waste materials, i.e., tailings. The global area covered with tailings is on the order of hundreds of millions of hectares, with this being predicted to rise significantly in the coming decades. Importantly, the physicochemical properties of tailings, such as high content of heavy metals and high pH, pose a serious threat to the surrounding ecological environment. This, combined with low available nutrients, makes revegetation of degraded lands very difficult, with the number of field trials demonstrating successful revitalisation remaining very low. In this study, we investigate in rye, as a model plant, a wide array of physiological processes and their significance in determining survival on the copper tailings. We demonstrate that limitations in plant growth on such wastes is not simply related to high copper content. Rather, we present data that the low availability of phosphorus and activity of the mechanisms involved in phosphorus extraction from the rhizosphere are important determinants of the plant growth and survival rate. With these results, we make a direct and significant contribution towards meeting future demands for effective revitalisation techniques of degraded lands. Abstract Although a considerable effort has been made over the last decades to develop cost-effective phytotechnologies as an alternative to conventional techniques for the management of contaminated lands, successful revegetation of the tailings still represents a major challenge. Here, we evaluate the potential of rye (Secale cereale L.) for growth and survival on the tailings after copper (Cu) ore processing. Four rye varieties were cultivated in a pot experiment on the post-flotation sediment with increasing phosphorus (P) doses (22, 44, 66, 88, and 110 mg·kg−1). The resistance of the studied rye genotypes to stress was assessed by observing the growth and development of plants, determining the dry mass accumulation, the Cu and P uptake and content, and a number of physiological parameters related mainly to P mobilisation. Exposure of tested rye varieties to high Cu concentrations in the tailings did not result in any significant plant mortality, with the intracellular Cu concentrations being below the critical toxic level. In contrast, the low availability of P due to alkaline properties of the tailings and the mechanisms involved in the mobilisation of sparingly soluble forms of this element (i.e., H+-ATPase-driven proton efflux in roots and organic acid exudation), were identified as main factor determining the level of tolerance. The efficiency of the photosynthetic activity was a key determinant for the P-mobilising capacity of rye. We further showed that rye varieties with more primitive genetic background might be potentially more suitable for growth on the post-flotation copper tailings. The results provide important and novel knowledge that will certainly support future works in developing strategies for successful revitalisation of degraded lands.
Collapse
|
13
|
|
14
|
Wang G, Wang L, Ma F, Yang D, You Y. Earthworm and arbuscular mycorrhiza interactions: Strategies to motivate antioxidant responses and improve soil functionality. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:115980. [PMID: 33189450 DOI: 10.1016/j.envpol.2020.115980] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/06/2020] [Accepted: 10/30/2020] [Indexed: 06/11/2023]
Abstract
Earthworms and arbuscular mycorrhizal fungi (AMF) act synergistically in the rhizosphere and may increase host plant tolerance to Cd. However, mechanisms by which earthworm-AMF-plant partnerships counteract Cd phytotoxicity are unknown. Thus, we evaluated individual and interactive effects of these soil organisms on photosynthesis, antioxidant capacity, and essential nutrient uptake by Solanum nigrum, as well as on soil quality following Cd exposure (0-120 mg kg-1). Decreases in biomass and photosynthetic activity, as well as nutrient imbalances were observed in Cd-stressed plants; however, the addition of AMF and earthworms reversed these effects. Cd exposure increased superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities, whereas inoculation with Rhizophagus intraradices decreased those. Soil enzymatic activity decreased by 15-60% with increasing Cd concentrations. However, Cd-mediated toxicity was partially reversed by soil organisms. Earthworms and AMF ameliorated soil quality based on soil enzyme activity. At 120 mg kg-1 Cd, the urease, catalase, and acid phosphatase activities were 1.6-, 1.4-, and 1.2-fold higher, respectively, in soils co-incubated with earthworms and AMF than in uninoculated soil. Cd inhibited shoot Fe and Ca phytoaccumulation, whereas AMF and earthworms normalized the status of essential elements in plants. Cd detoxification by earthworm-AMF-S. nigrum symbiosis was manifested by increases in plant biomass accumulation (22-117%), chlorophyll content (17-63%), antioxidant levels (SOD 10-18%, POD 9-25%, total polyphenols 17-22%, flavonoids 15-29%, and glutathione 7-61%). It also ameliorated the photosynthetic capacity, and macro- and micronutrient statuses of plants; markedly reduced the levels of malondialdehyde (20-27%), superoxide anion (29-36%), and hydrogen peroxide (19-30%); and upregulated the transcription level of FeSOD. Thus, the combined action of earthworms and AMF feasibly enhances metal tolerance of hyperaccumulating plants and improves the quality of polluted soil.
Collapse
Affiliation(s)
- Gen Wang
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang District, Harbin, 150090, People's Republic of China
| | - Li Wang
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang District, Harbin, 150090, People's Republic of China.
| | - Fang Ma
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang District, Harbin, 150090, People's Republic of China
| | - Dongguang Yang
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang District, Harbin, 150090, People's Republic of China
| | - Yongqiang You
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang District, Harbin, 150090, People's Republic of China
| |
Collapse
|
15
|
Riaz M, Kamran M, Fang Y, Wang Q, Cao H, Yang G, Deng L, Wang Y, Zhou Y, Anastopoulos I, Wang X. Arbuscular mycorrhizal fungi-induced mitigation of heavy metal phytotoxicity in metal contaminated soils: A critical review. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123919. [PMID: 33254825 DOI: 10.1016/j.jhazmat.2020.123919] [Citation(s) in RCA: 212] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 09/03/2020] [Accepted: 09/05/2020] [Indexed: 05/07/2023]
Abstract
The heavy metal pollution is a worldwide problem and has received a serious concern for the ecosystem and human health. In the last decade, remediation of the agricultural polluted soil has attracted great attention. Phytoremediation is one of the technologies that effectively alleviate heavy metal toxicity, however, this technique is limited to many factors contributing to low plant growth rate and nature of metal toxicities. Arbuscular mycorrhizal fungi (AMF) assisted alleviation of heavy metal phytotoxicity is a cost-effective and environment-friendly strategy. AMF have a symbiotic relationship with the host plant. The bidirectional exchange of resources is a hallmark and also a functional necessity in mycorrhizal symbiosis. During the last few years, a significant progress in both physiological and molecular mechanisms regarding roles of AMF in the alleviation of heavy metals (HMs) toxicities in plants, acquisition of nutrients, and improving plant performance under toxic conditions of HMs has been well studied. This review summarized the current knowledge regarding AMF assisted remediation of heavy metals and some of the strategies used by mycorrhizal fungi to cope with stressful environments. Moreover, this review provides the information of both molecular and physiological responses of mycorrhizal plants as well as AMF to heavy metal stress which could be helpful for exploring new insight into the mechanisms of HMs remediation by utilizing AMF.
Collapse
Affiliation(s)
- Muhammad Riaz
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Muhammad Kamran
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yizeng Fang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Qianqian Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Huayuan Cao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Guoling Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Lulu Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Youjuan Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China
| | - Ioannis Anastopoulos
- Radioanalytical and Environmental Chemistry Group, Department of Chemistry, University of Cyprus, P.O. Box 20537, Nicosia, CY-1678, Cyprus
| | - Xiurong Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China.
| |
Collapse
|
16
|
The Inhibitory Effect of Endophyte-Infected Tall Fescue on White Clover Can Be Alleviated by Glomus mosseae Instead of Rhizobia. Microorganisms 2021; 9:microorganisms9010109. [PMID: 33466333 PMCID: PMC7824791 DOI: 10.3390/microorganisms9010109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/31/2022] Open
Abstract
In artificial ecosystems, mixed planting of gramineous and leguminous plants can have obvious advantages and is very common. Due to their improved growth performances and stress tolerance, endophyte-infected grasses are considered to be ideal plant species for grasslands. However, endophytic fungi can inhibit the growth of neighboring nonhost leguminous plants. In this study, we chose endophyte-infected and endophyte-free tall fescue (Lolium arundinaceum Darbyshire ex. Schreb.) and clover (Trifolium repens) as the experimental materials to explore whether arbuscular mycorrhizal fungi and rhizobium can alleviate the inhibitory effect of endophyte infection on clover. The results showed that endophytic fungi significantly reduced clover biomass. Arbuscular mycorrhizal fungi inoculation significantly increased the biomass of clover in both endophyte-infected tall fescue/clover and endophyte-free tall fescue/clover systems but the beneficial contribution of arbuscular mycorrhizal fungi was more obvious in the endophyte-infected tall fescue/clover system. Rhizobia inoculation could alleviate the detrimental effect of tall fescue on the growth of clover but did not alleviate the detrimental effect of endophyte infection on the growth of clover.
Collapse
|
17
|
Punia A. Role of temperature, wind, and precipitation in heavy metal contamination at copper mines: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:4056-4072. [PMID: 33188519 DOI: 10.1007/s11356-020-11580-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/06/2020] [Indexed: 06/11/2023]
Abstract
The increasing demand for minerals pressurizing the mining authorities to extract low-grade ore results in more mining waste and degradation of the environment. The main aim of review was to understand the role of climatic factors (temperature, wind, and precipitation) in dispersal and mobility of heavy metals in soil, water, and vegetation in Cu mining region. The major source of contamination in the mining sector is tailings, overburden rocks, and abandoned mines. The contaminates or fine particles of sulfide-rich mining waste follow two major pathways for the dispersal: aerial and leaching. Sulfides on exposure to oxygen and water generate acid mine drainage which results in leaching of heavy metals. The pit water of abandoned mines is also a cause of concern which contaminates the groundwater resources. Climatic factors such as temperature, precipitation, and wind significantly influence the paths of contaminate dispersal. In arid/semi-arid regions, high temperature forms fine-grained efflorescence salts on tailings or exposed surficial mines which are carried away by strong winds/water and contaminates the surroundings. In wet regions, the leaching of heavy metals from both tailings and overburden rocks sulfides results in environmental contamination. The application of impermeable layers is highly recommended. The climatic factors (temperature, wind, and precipitation) significantly control the dispersal and mobility of heavy metals in Cu mining region. The implementation of waste management policies and pollution control technologies is recommended after considering the climatic factors.
Collapse
Affiliation(s)
- Anita Punia
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
- Department of Civil Engineering, Indian Institute of Technology, Guwahati, Assam, 781039, India.
| |
Collapse
|
18
|
Hu R, Beguiristain T, De Junet A, Leyval C. No significant transfer of the rare earth element samarium from spiked soil to alfalfa by Funneliformis mosseae. MYCORRHIZA 2020; 30:761-771. [PMID: 33105489 DOI: 10.1007/s00572-020-00991-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
Rare earth elements including samarium have been widely used in modern technologies in recent decades. Following over-exploitation and soil contamination, they can accumulate in plants and be toxic at high concentrations. Arbuscular mycorrhizae benefit plants in metal-contaminated soils by improving their survival and growth and alleviating metal toxicity, but little information is available about soil contaminated by rare earth elements. We performed two experiments using samarium to study the role of arbuscular mycorrhizal fungi on plant growth and samarium transfer to alfalfa in a samarium-spiked soil. A pot experiment was conducted in a soil spiked with two concentrations of samarium and a non-spiked control, inoculated or not with a metal-tolerant Funneliformis mosseae. A compartmented pot experiment was then performed with a separated compartment containing samarium-spiked sand only accessible by F. mosseae fungal hyphae to further study the transport of samarium from the soil to alfalfa. The biomass of alfalfa grown on samarium-spiked soil was reduced, while it was significantly higher following arbuscular mycorrhiza inoculation in the pot experiment, both in the control and samarium-spiked soil. Although mycorrhizal plants had a higher phosphorus content than non-mycorrhizal ones, there was no significant difference in samarium concentrations between mycorrhizal and non-mycorrhizal plants. The compartment experiment confirmed that there was no significant samarium transfer to the plant by F. mosseae. Other fungi and plants should be tested, and field experiments performed, but our results suggest that arbuscular mycorrhizal plants might be considered in phytorestoration of rare-earth-contaminated soils.
Collapse
Affiliation(s)
- Ruoyu Hu
- Université de Lorraine, CNRS, LIEC, 54000, Nancy, France
| | | | | | - Corinne Leyval
- Université de Lorraine, CNRS, LIEC, 54000, Nancy, France.
| |
Collapse
|
19
|
Lu RR, Hu ZH, Zhang QL, Li YQ, Lin M, Wang XL, Wu XN, Yang JT, Zhang LQ, Jing YX, Peng CL. The effect of Funneliformis mosseae on the plant growth, Cd translocation and accumulation in the new Cd-hyperaccumulator Sphagneticola calendulacea. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 203:110988. [PMID: 32678761 DOI: 10.1016/j.ecoenv.2020.110988] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/28/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
The screening and identification of hyperaccumulators is the key to the phytoremediation of soils contaminated by heavy metal (HM). Arbuscular mycorrhizal fungus (AMF) can improve plant growth and tolerance to HM; therefore, AMF-assisted phytoextraction has been regarded as a potential technique for the remediation of HM-polluted soils. A greenhouse pot experiment was conducted to determine whether Sphagneticola calendulacea is a Cd-hyperaccumulator and to investigate the effect of the AMF-Funneliformis mosseae (FM) on plant growth and on the accumulation, subcellular distribution and chemical form of Cd in S. calendulacea grown in soils supplemented with different Cd levels. At 25, 50 and 100 mg Cd kg-1 level, S. calendulacea showed high Cd tolerance, the translocation factor and the bioconcentration factor exceeded 1, and accumulation of more than 100 mg Cd kg-1 was observed in the aboveground parts of the plant, meeting the requirements for a Cd-hyperaccumulator. Moreover, FM colonization significantly increased both biomasses and Cd concentration in S. calendulacea. After FM inoculation, the Cd concentrations and proportions increased in the cell walls, but exhibited no significant change in the organelles of the shoots. Meanwhile, FM symbiosis contributed to the conversion of Cd from highly toxic chemical forms (extracted by 80% ethanol and deionized water) to less toxic chemical forms (extracted by 1 M NaCl, 2% acetic acid, 0.6 M HCl) of Cd in the shoots. Overall, S. calendulacea is a typical Cd-hyperaccumulator, and FM symbiosis relieved the phytotoxicity of Cd and promoted plant growth and Cd accumulation, and thus greatly increasing the efficiency of phytoextraction for Cd-polluted soil. Our study provides a theoretical basis and application guidance for the remediation of Cd-contaminated soil by the symbiont of S. calendulacea with FM.
Collapse
Affiliation(s)
- Rui-Rui Lu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Zun-He Hu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Qi-Lei Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Yu-Qi Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Min Lin
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Xian-Ling Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Xue-Ni Wu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Jie-Ting Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Li-Qin Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Yuan-Xiao Jing
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| | - Chang-Lian Peng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
20
|
Ai YJ, Li FP, Gu HH, Chi XJ, Yuan XT, Han DY. Combined effects of green manure returning and addition of sewage sludge compost on plant growth and microorganism communities in gold tailings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:31686-31698. [PMID: 32500491 DOI: 10.1007/s11356-020-09118-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
Remediation of gold tailings is often difficult due to their extremely barren nature and highly heavy metal concentrations. Returning green manure and applying sewage sludge compost have the beneficial effects of providing nutrients and improving the soil environment. The effects of green manure plants, alfalfa (Medicago sativa L.), ryegrass (Lolium perenne Linn.), and tall fescue (Festuca arundinacea), returning in situ on nutrients, bioavailability of trace metals, and community structure of microorganism in gold tailings amended with 0%, 5%, and 10% (weight/weight) sewage sludge compost on the top 4 cm of tailings (SSC-5, SSC-10) were investigated in a pot experiment. The results showed that the plant biomass and microbial biomass carbon in tailings significantly increased in the treatments with sewage sludge compost. The available N and available P and the availability of Zn decreased markedly with the returning of alfalfa and ryegrass. Moreover, through high-throughput sequencing, it was found that the returning of alfalfa had positive effects on the bacterial community richness but a negative impact on the fungal community richness. The microbial community diversity was reduced in the treatment without sewage sludge compost amendment and with alfalfa returning. However, the microbial community diversity was enriched in the treatment of alfalfa returning with sewage sludge compost. In each plant species, 9 dominant bacterial phyla and 10 dominant fungi phyla could be detected. Returning alfalfa green manure and applying sewage sludge compost led to a relative increase in the abundance of Proteobacteria and Ascomycota. These results demonstrated that returning alfalfa and applying sewage sludge compost could be effective in the ecological restoration of gold tailings.
Collapse
Affiliation(s)
- Yan-Jun Ai
- College of Mining Engineering, North China University of Science and Technology, Tangshan, 063210, China
| | - Fu-Ping Li
- College of Mining Engineering, North China University of Science and Technology, Tangshan, 063210, China
- Hebei Key Laboratory of Mining Development and Security Technology, Tangshan, 063210, China
- Hebei Industrial Technology Institute of Mine Ecological Remediation, Tangshan, 063210, China
| | - Hai-Hong Gu
- College of Mining Engineering, North China University of Science and Technology, Tangshan, 063210, China.
- Hebei Key Laboratory of Mining Development and Security Technology, Tangshan, 063210, China.
- Hebei Industrial Technology Institute of Mine Ecological Remediation, Tangshan, 063210, China.
| | - Xiao-Jie Chi
- College of Mining Engineering, North China University of Science and Technology, Tangshan, 063210, China
| | - Xue-Tao Yuan
- College of Mining Engineering, North China University of Science and Technology, Tangshan, 063210, China
| | - Dong-Yun Han
- Hebei Industrial Technology Institute of Mine Ecological Remediation, Tangshan, 063210, China
- College of Chemical Engineering, North China University of Science and Technology, Tangshan, China
| |
Collapse
|
21
|
Lee SJ, Morse D, Hijri M. Holobiont chronobiology: mycorrhiza may be a key to linking aboveground and underground rhythms. MYCORRHIZA 2019; 29:403-412. [PMID: 31190278 DOI: 10.1007/s00572-019-00903-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/05/2019] [Indexed: 06/09/2023]
Abstract
Circadian clocks are nearly ubiquitous timing mechanisms that can orchestrate rhythmic behavior and gene expression in a wide range of organisms. Clock mechanisms are becoming well understood in fungal, animal, and plant model systems, yet many of these organisms are surrounded by a complex and diverse microbiota which should be taken into account when examining their biology. Of particular interest are the symbiotic relationships between organisms that have coevolved over time, forming a unit called a holobiont. Several studies have now shown linkages between the circadian rhythms of symbiotic partners. Interrelated regulation of holobiont circadian rhythms seems thus important to coordinate shifts in activity over the day for all the partners. Therefore, we suggest that the classical view of "chronobiological individuals" should include "a holobiont" rather than an organism. Unfortunately, mechanisms that may regulate interspecies temporal acclimation and the evolution of the circadian clock in holobionts are far from being understood. For the plant holobiont, our understanding is particularly limited. In this case, the holobiont encompasses two different ecosystems, one above and the other below the ground, with the two potentially receiving timing information from different synchronizing signals (Zeitgebers). The arbuscular mycorrhizal (AM) symbiosis, formed by plant roots and fungi, is one of the oldest and most widespread associations between organisms. By mediating the nutritional flux between the plant and the many microbes in the soil, AM symbiosis constitutes the backbone of the plant holobiont. Even though the importance of the AM symbiosis has been well recognized in agricultural and environmental sciences, its circadian chronobiology remains almost completely unknown. We have begun to study the circadian clock of arbuscular mycorrhizal fungi, and we compile and here discuss the available information on the subject. We propose that analyzing the interrelated temporal organization of the AM symbiosis and determining its underlying mechanisms will advance our understanding of the role and coordination of circadian clocks in holobionts in general.
Collapse
Affiliation(s)
- Soon-Jae Lee
- Institut de Recherche en Biologie Végétale (IRBV), Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, Québec, H1X 2B2, Canada
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland
| | - David Morse
- Institut de Recherche en Biologie Végétale (IRBV), Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, Québec, H1X 2B2, Canada
| | - Mohamed Hijri
- Institut de Recherche en Biologie Végétale (IRBV), Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, Québec, H1X 2B2, Canada.
| |
Collapse
|
22
|
Direct and indirect influence of arbuscular mycorrhizae on enhancing metal tolerance of plants. Arch Microbiol 2019; 202:1-16. [DOI: 10.1007/s00203-019-01730-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/29/2019] [Accepted: 09/13/2019] [Indexed: 12/17/2022]
|
23
|
Cui G, Ai S, Chen K, Wang X. Arbuscular mycorrhiza augments cadmium tolerance in soybean by altering accumulation and partitioning of nutrient elements, and related gene expression. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 171:231-239. [PMID: 30612010 DOI: 10.1016/j.ecoenv.2018.12.093] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/29/2018] [Accepted: 12/27/2018] [Indexed: 05/08/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi can protect plants against cadmium (Cd) stress, and are the most prominent symbiotic fungi for contribution to phytoremediation. However, the tolerance mechanism for AM symbiosis on Cd toxicity still remains unclear, especially the related molecular mechanisms. In this study, different Cd treatments were applied to two soybean genotypes with different Cd tolerance in the presence or absence of AM fungal inoculation. The results showed that Cd addition obviously decreased AM colonization. AM symbiosis significantly increased plant dry weight, root growth, and P acquisition in Cd-tolerant HX3 genotype at Cd addition treatments. The effectiveness was associated with a concomitant increased expression of the AM inducible phosphate (Pi) transporter genes GmPT8, GmPT9, GmPT10, and upregulated expression of P-type heavy metal ATPase gene GmHMA19. Additionally, AM fungal inoculation effectively impacted the partitioning of Mg, Cu and Zn, including increased Mg, and decreased Cu and Zn relative concentrations in shoots of Cd tolerant HX3. Taken together, these results suggest that AM symbiosis can alleviate Cd toxicity in soybean through enhanced P nutrition, up-regulated expression of AM inducible GmPTs and GmHMA19, as well as, the alteration of the partitioning of essential nutrient elements.
Collapse
Affiliation(s)
- Guangjuan Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Root Biology Center, South China Agricultural University, Guangzhou 510642, China
| | - Shaoying Ai
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Kang Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Root Biology Center, South China Agricultural University, Guangzhou 510642, China
| | - Xiurong Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Root Biology Center, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
24
|
Li X, Chen AY, Yu LY, Chen XX, Xiang L, Zhao HM, Mo CH, Li YW, Cai QY, Wong MH, Li H. Effects of β-cyclodextrin on phytoremediation of soil co-contaminated with Cd and BDE-209 by arbuscular mycorrhizal amaranth. CHEMOSPHERE 2019; 220:910-920. [PMID: 33395812 DOI: 10.1016/j.chemosphere.2018.12.211] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 12/14/2018] [Accepted: 12/31/2018] [Indexed: 06/12/2023]
Abstract
Pot experiments were conducted to investigate the effects of a series of β-cyclodextrin (β-CD) on phytoremediation of soil co-contaminated with Cd and BDE-209 by amaranth (Amaranthus hypochondriacus L.) inoculated with arbuscular mycorrhizal fungus (AMF) - Rhizophagus intraradices. Results showed that the combination of mycorrhizal amaranth and 0.4% β-CD (RI+β0.4) significantly enhanced Cd concentrations and contents in shoots, total PBDEs concentration in roots, and BDE-209 dissipation in soil. Moreover, the RI+β0.4 treatment exerted the highest removal efficiency of both Cd and BDE-209. On the contrary, the xylem area, shoot Cd and BDE-209 concentrations and contents, and removal efficiency of Cd were markedly reduced in mycorrhizal amaranth with 0.8% or 1.2% β-CD treatments (RI+β0.8, RI+β1.2), compared with single inoculation treatment. The well-organized chloroplast and well-defined root anatomical structure were also observed in the treatment of RI+β0.4. Positive correlation was found between shoot biomass and chlorophyll concentrations. Shoot Cd or BDE-209 concentrations were positively correlated with xylem areas. In conclusion, mycorrhizal amaranth added with 0.4% β-CD could be used for the decontamination of soil polluted with mixture of Cd and BDE-209 due to the higher chlorophyll concentration and the larger xylem area.
Collapse
Affiliation(s)
- Xing Li
- Guangdong Provincial Research Centre for Environment Pollution Control and Remediation Materials, Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, PR China
| | - Ao Yu Chen
- Guangdong Provincial Research Centre for Environment Pollution Control and Remediation Materials, Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, PR China
| | - Le Yi Yu
- Guangdong Provincial Research Centre for Environment Pollution Control and Remediation Materials, Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, PR China
| | - Xue Xue Chen
- Guangdong Provincial Research Centre for Environment Pollution Control and Remediation Materials, Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, PR China
| | - Lei Xiang
- Guangdong Provincial Research Centre for Environment Pollution Control and Remediation Materials, Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, PR China
| | - Hai Ming Zhao
- Guangdong Provincial Research Centre for Environment Pollution Control and Remediation Materials, Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, PR China
| | - Ce Hui Mo
- Guangdong Provincial Research Centre for Environment Pollution Control and Remediation Materials, Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, PR China
| | - Yan Wen Li
- Guangdong Provincial Research Centre for Environment Pollution Control and Remediation Materials, Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, PR China
| | - Quan Ying Cai
- Guangdong Provincial Research Centre for Environment Pollution Control and Remediation Materials, Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, PR China
| | - Ming Hung Wong
- Guangdong Provincial Research Centre for Environment Pollution Control and Remediation Materials, Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, PR China; Consortium on Environment, Health, Education and Research (CHEER), and Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| | - Hui Li
- Guangdong Provincial Research Centre for Environment Pollution Control and Remediation Materials, Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, PR China.
| |
Collapse
|
25
|
Domka AM, Rozpaądek P, Turnau K. Are Fungal Endophytes Merely Mycorrhizal Copycats? The Role of Fungal Endophytes in the Adaptation of Plants to Metal Toxicity. Front Microbiol 2019; 10:371. [PMID: 30930857 PMCID: PMC6428775 DOI: 10.3389/fmicb.2019.00371] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/12/2019] [Indexed: 12/04/2022] Open
Abstract
The contamination of soil with toxic metals is a worldwide problem, resulting in the disruption of plant vegetation and subsequent crop production. Thus, remediation techniques for contaminated soil and water remain a constant interest of researchers. Phytoremediation, which utilizes plants to remove or stabilize contaminants, is perceived to be a promising strategy. However, phytoremediation's use to date is limited because of constraints associated with such factors as slow plant growth rates or metal toxicity. Microbial-assisted phytoremediation serves as an alternative solution, since the impact of the microbial symbionts on plant growth and stress tolerance has frequently been described. Endophytic fungi occur in almost every plant in the natural environment and contribute to plant growth and tolerance to environmental stress conditions. Although this group of symbiotic fungi was found to form association with a wide range of hosts, including the non-mycorrhizal Brassicaceae metallophytes, their role in the response of plants to metal toxicity has not been thoroughly elucidated to date. This review summarizes the current knowledge regarding the role of endophytic fungi in the tolerance of plants to toxic metals and highlights the similarities and differences between this group of symbiotic fungi and mycorrhizal associations in terms of the survival of the plant during heavy metal stress.
Collapse
Affiliation(s)
| | - Piotr Rozpaądek
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Katarzyna Turnau
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| |
Collapse
|
26
|
He G, Wang X, Liu X, Xiao X, Huang S, Wu J. Nutrients Availability Shapes Fungal Community Composition and Diversity in the Rare Earth Mine Tailings of Southern Jiangxi, China. RUSS J ECOL+ 2019. [DOI: 10.1134/s1067413618660037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Ikram M, Ali N, Jan G, Jan FG, Rahman IU, Iqbal A, Hamayun M. IAA producing fungal endophyte Penicillium roqueforti Thom., enhances stress tolerance and nutrients uptake in wheat plants grown on heavy metal contaminated soils. PLoS One 2018; 13:e0208150. [PMID: 30496253 PMCID: PMC6264496 DOI: 10.1371/journal.pone.0208150] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/12/2018] [Indexed: 11/19/2022] Open
Abstract
Heavy metals contaminated soil is a serious environmental concern that has a negative impact on agriculture and ecosystem. Economical and efficient ways are needed to address this problem worldwide. In this regard, exploration and application of proficient microbial strains that can help the crop plants to thrive in agricultural soils that are greatly contaminated with heavy metals. The present study mainly focused on the effect of IAA producing endophytic fungi Penicillium ruqueforti Thom., on wheat plants cultivated in soil rich in heavy metals (Ni, Cd, Cu, Zn, and Pb). P. ruqueforti has induced great resistance in wheat inoculated plants grown in heavy metal contaminated soil. Application of the isolated strain of P. ruqueforti restricted the transfer of heavy metals from soil to the plants by secreting indole acetic acid (IAA). Furthermore, P. ruqueforti inoculated wheat seedlings watered with waste water had higher plant growth, nutrient uptake and low concentrations of heavy metals in shoot and roots. On the contrary, non-inoculated wheat plants under heavy metal stress had stunted growth with symptoms of chlorosis. From the results, it is concluded that P. ruqueforti inoculation can establish a symbiotic relationship with host plants, which is useful for phytostabilization of heavy metals or in other words helping the host crops to flourish through soil that are highly contaminated with heavy metals.
Collapse
Affiliation(s)
- Muhammad Ikram
- Department of Botany, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Niaz Ali
- Department of Botany, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Gul Jan
- Department of Botany, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Farzana Gul Jan
- Department of Botany, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Inayat Ur Rahman
- Department of Botany, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Amjad Iqbal
- Department of Agriculture, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Hamayun
- Department of Botany, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
28
|
Li J, Sun Y, Zhang X, Hu Y, Li T, Zhang X, Wang Z, Wu S, Wu Z, Chen B. A methyltransferase gene from arbuscular mycorrhizal fungi involved in arsenic methylation and volatilization. CHEMOSPHERE 2018; 209:392-400. [PMID: 29935468 DOI: 10.1016/j.chemosphere.2018.06.092] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 05/27/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF), ubiquitous symbiotic fungi associated with the majority of terrestrial plants, were demonstrated to play important roles in arsenic (As) translocation and transformation in the plant-soil continuum, and substantially influence plant As tolerance. However, the direct involvement of AMF in As methylation and volatilization and their molecular mechanisms remain unsolved. Here, an arsenite methyltransferase gene RiMT-11 was identified and characterized from AM fungus Rhizophagus irregularis. Heterologous expression of RiMT-11 enhanced arsenite resistance of E. coli (Δars) through methylating As into monomethylarsonic acid (MMA), dimethylarsinic acid (DMA) and ultimately volatile trimethyl arsine (TMAs). In a two-compartment in vitro monoxenic cultivation system, methylated and volatile As were also detected from AM symbioses with arsenate addition, accompanied by strong up-regulation of RiMT-11 expression in extraradical hyphae. The present study provided direct evidence and illustrated an underlying mechanism of As methylation and volatilization by AMF, leading to a deeper insight into the role of AMF in As biogeochemical cycling.
Collapse
Affiliation(s)
- Jinglong Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuqing Sun
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yajun Hu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Tao Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xuemeng Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Forestry, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Songlin Wu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhaoxiang Wu
- Jiangxi Engineering and Technology Research Center for Ecological Remediation of Heavy Metal Pollution, Institute of Biology and Resources, Jiangxi Academy of Sciences, Nanchang, Jiangxi 330096, China
| | - Baodong Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
29
|
Chang Q, Diao FW, Wang QF, Pan L, Dang ZH, Guo W. Effects of arbuscular mycorrhizal symbiosis on growth, nutrient and metal uptake by maize seedlings (Zea mays L.) grown in soils spiked with Lanthanum and Cadmium. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 241:607-615. [PMID: 29886381 DOI: 10.1016/j.envpol.2018.06.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 05/30/2018] [Accepted: 06/01/2018] [Indexed: 05/08/2023]
Abstract
Multiple contaminants can affect plant-microbial remediation processes because of their interactive effects on environmental behaviour, bioavailability and plant growth. Recent studies have suggested that arbuscular mycorrhizal fungi (AMF) can facilitate the revegetation of soils co-contaminated with rare earth elements (REEs) and heavy metals. However, little is known regarding the role of AMF in the interaction of REEs and heavy metals. A pot experiment was conducted to evaluate the effects of Claroideoglomus etunicatum on the biomass, nutrient uptake, metal uptake and translocation of maize grown in soils spiked with Lanthanum (La) and Cadmium (Cd). The results indicated that individual and combined applications of La (100 mg kg-1) and Cd (5 mg kg-1) significantly decreased root colonization rates by 22.0%-35.0%. With AMF inoculation, dual-metal treatment significantly increased maize biomass by 26.2% compared to single-metal treatment. Dual-metal treatment significantly increased N, P and K uptake by 20.1%-76.8% compared to single-metal treatment. Dual-metal treatment significantly decreased shoot La concentration by 52.9% compared to single La treatment, whereas AM symbiosis caused a greater decrease of 87.8%. Dual-metal treatment significantly increased shoot and root Cd concentrations by 65.5% and 58.7% compared to single Cd treatment and the La translocation rate by 142.0% compared to single La treatment, whereas no difference was observed between their corresponding treatments with AMF inoculation. Furthermore, AMF had differential effects on the interaction of La and Cd on metal uptake and translocation under the background concentrations of soil metals. Taken together, these results indicated that AMF significantly affected the interaction between La and Cd, depending on metal types and concentrations in soils. These findings promote a further understanding of the contributions of AMF to the phytoremediation of co-contaminated soil.
Collapse
Affiliation(s)
- Qing Chang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Feng-Wei Diao
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Qi-Fan Wang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Liang Pan
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Zhen-Hua Dang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Wei Guo
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
30
|
Assessing Soil Metal Levels in an Industrial Environment of Northwestern China and the Phytoremediation Potential of Its Native Plants. SUSTAINABILITY 2018. [DOI: 10.3390/su10082686] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Various industrial activities contribute heavy metals to terrestrial ecosystems. In order to evaluate the soil quality of industrial areas and to identify the potential phytoremediator from the native plant species, we collected 45 surface soil samples and 21 plant species in a typical industrial area of northwestern China. The results showed that the average values of the Cd, Cr, As, Pb, Cu, and Zn in the soils were 36.91, 1.67, 7.20, 1.38, 1.27, and 6.66 times, respectively, compared with the corresponding background values. The average single factor pollution index for heavy metals decreased in the order of Cd > As > Zn > Cr > Cu > Pb. The study area was seriously polluted by Cd and As, slightly polluted by Zn, and had relatively little contamination by Cr, Pb, and Cu. In terms of the average Nemerow synthetic pollution index in every sampling site, 97.78% of the samples were seriously polluted and 2.22% of the samples were moderately polluted, which indicated that almost all of the samples in the industrial area were seriously polluted. The results of the biomass, heavy metal concentrations, bioconcentration factors (BCF), and translocation factors (TF) for the native plants showed that Achnatherum splendens for metal Cr presented a phytostabilization potential, Artemisia scoparia and Echinochloa crusgalli for metal Cu and Halogeton arachnoideus for metal Zn presented a phytoextraction potential, and all of the studied plants were limited as phytoremediators for Cd or Pb contaminated soil.
Collapse
|
31
|
Wu S, Vosátka M, Vogel-Mikus K, Kavčič A, Kelemen M, Šepec L, Pelicon P, Skála R, Valero Powter AR, Teodoro M, Michálková Z, Komárek M. Nano Zero-Valent Iron Mediated Metal(loid) Uptake and Translocation by Arbuscular Mycorrhizal Symbioses. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:7640-7651. [PMID: 29894629 DOI: 10.1021/acs.est.7b05516] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nano zero-valent iron (nZVI) has great potential in the remediation of metal(loid)-contaminated soils, but its efficiency in metal(loid) stabilization in the plant-microbe continuum is unclear. This study investigated nZVI-mediated metal(loid) behavior in the arbuscular mycorrhizal (AM) fungal-maize ( Zea mays L.) plant association. Plants with AM fungal inoculation were grown in metal(loid)- (mainly Zn and Pb) contaminated soils (Litavka River, Czech Republic) amended with/without 0.5% (w/w) nZVI. The results showed that nZVI decreased plant metal(loid) uptake but inhibited AM development and its function in metal(loid) stabilization in the rhizosphere. AM fungal inoculation alleviated the physiological stresses caused by nZVI and restrained nZVI efficiency in reducing plant metal(loid) uptake. Micro proton-induced X-ray emission (μ-PIXE) analysis revealed the sequestration of Zn (possibly through binding to thiols) by fungal structures in the roots and the precipitation of Pb and Cu in the mycorrhizal root rhizodermis (possibly by Fe compounds originated from nZVI). XRD analyses further indicated that Pb/Fe mineral transformations in the rhizosphere were influenced by AM and nZVI treatments. The study revealed the counteractive effects of AM and nZVI on plant metal(loid) uptake and uncovered details of metal(loid) behavior in the AM fungal-root-nZVI system, calling into question about nZVI implementation in mycorrhizospheric systems.
Collapse
Affiliation(s)
- Songlin Wu
- Department of Environmental Geosciences, Faculty of Environmental Sciences , Czech University of Life Sciences Prague , Kamýcká 129 , 165 00 Prague-Suchdol , Czech Republic
| | - Miroslav Vosátka
- Department of Mycorrhizal Symbioses, Institute of Botany , Czech Academy of Sciences , 272 53 Pruhonice , Czech Republic
| | - Katarina Vogel-Mikus
- Department of Biology, Biotechnical Faculty , University of Ljubljana , Jamnikarjeva 101 , SI-1000 Ljubljana , Slovenia
- Jozef Stefan Institute , Jamova 39 , SI-1000 Ljubljana , Slovenia
| | - Anja Kavčič
- Department of Biology, Biotechnical Faculty , University of Ljubljana , Jamnikarjeva 101 , SI-1000 Ljubljana , Slovenia
| | - Mitja Kelemen
- Jozef Stefan Institute , Jamova 39 , SI-1000 Ljubljana , Slovenia
| | - Luka Šepec
- Jozef Stefan Institute , Jamova 39 , SI-1000 Ljubljana , Slovenia
| | - Primož Pelicon
- Jozef Stefan Institute , Jamova 39 , SI-1000 Ljubljana , Slovenia
| | - Roman Skála
- Institute of Geology of the Czech Academy of Sciences , Rozvojová 269 , CZ-165 00 Prague 6 , Czech Republic
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science , Charles University in Prague , Albertov 6 , CZ-128 43 Prague 2 , Czech Republic
| | - Antonio Roberto Valero Powter
- Department of Environmental Geosciences, Faculty of Environmental Sciences , Czech University of Life Sciences Prague , Kamýcká 129 , 165 00 Prague-Suchdol , Czech Republic
| | - Manuel Teodoro
- Department of Environmental Geosciences, Faculty of Environmental Sciences , Czech University of Life Sciences Prague , Kamýcká 129 , 165 00 Prague-Suchdol , Czech Republic
| | - Zuzana Michálková
- Department of Environmental Geosciences, Faculty of Environmental Sciences , Czech University of Life Sciences Prague , Kamýcká 129 , 165 00 Prague-Suchdol , Czech Republic
| | - Michael Komárek
- Department of Environmental Geosciences, Faculty of Environmental Sciences , Czech University of Life Sciences Prague , Kamýcká 129 , 165 00 Prague-Suchdol , Czech Republic
| |
Collapse
|
32
|
Pierart A, Dumat C, Maes AQ, Roux C, Sejalon-Delmas N. Opportunities and risks of biofertilization for leek production in urban areas: Influence on both fungal diversity and human bioaccessibility of inorganic pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 624:1140-1151. [PMID: 29929226 DOI: 10.1016/j.scitotenv.2017.12.100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/08/2017] [Accepted: 12/08/2017] [Indexed: 05/22/2023]
Abstract
The influence of biofertilization with arbuscular mycorrhizal fungi (AMF) on trace metal and metalloids (TM) - Pb, Cd and Sb - uptake by leek (Allium porrum L.) grown in contaminated soils was investigated. The effect of biofertilization on human bioaccessibility of the TM in the plants was also examined. Leek were cultivated in one soil with geogenic TM sources and one soil with anthropogenic TM, to assess the influence of pollutant origin on soil-plant transfer. Leek were grown for six months on these contaminated soils, with and without a local AMF based biofertilizer. Fungal communities associated with leek roots were identified by high throughput sequencing (illumina Miseq®) metagenomic analysis. The TM compartmentation was studied using electron microscopy in plants tissues. In all the soils, biofertilization generated a loss of diversity favoring the AM fungal species Rhizophagus irregularis, which could explain the observed modification of metal transfer at the soil-AMF-plant interface. The human bioaccessibility of Sb increased in biofertilized treatments. Consequently, this latter result highlights a potential health risk of the use of this fertilization technique on contaminated soil since further field investigation is performed to better understand the mechanisms governing (1) the effect of AMF on TM bioaccessibility and (2) the evolution of AMF communities in contaminated soils.
Collapse
Affiliation(s)
| | - Camille Dumat
- CERTOP, CNRS-UT2J-UPS, France; INP-ENSAT, Université de Toulouse, France
| | | | | | | |
Collapse
|
33
|
Berthelot C, Blaudez D, Beguiristain T, Chalot M, Leyval C. Co-inoculation of Lolium perenne with Funneliformis mosseae and the dark septate endophyte Cadophora sp. in a trace element-polluted soil. MYCORRHIZA 2018; 28:301-314. [PMID: 29502186 DOI: 10.1007/s00572-018-0826-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 02/07/2018] [Indexed: 06/08/2023]
Abstract
The presence of dark septate endophytes (DSEs) or arbuscular mycorrhizal fungi (AMF) in plant roots and their effects on plant fitness have been extensively described. However, little is known about their interactions when they are simultaneously colonizing a plant root, especially in trace element (TE)-polluted soils. We therefore investigated the effects of Cadophora sp. and Funneliformis mosseae on ryegrass (Lolium perenne) growth and element uptake in a Cd/Zn/Pb-polluted soil. The experiment included four treatments, i.e., inoculation with Cadophora sp., inoculation with F. mosseae, co-inoculation with Cadophora sp. and F. mosseae, and no inoculation. Ryegrass biomass and shoot Na, P, K, and Mg concentrations significantly increased following AMF inoculation as compared to non-inoculated controls. Similarly, DSE inoculation increased shoot Na concentration, whereas dual inoculation significantly decreased shoot Cd concentration. Moreover, oxidative stress determined by ryegrass leaf malondialdehyde concentration was alleviated both in the AMF and dual inoculation treatments. We used quantitative PCR and microscope observations to quantify colonization rates. They demonstrated that DSEs had no effect on AMF colonization, while AMF colonization slightly decreased DSE frequency. We also monitored fluorescein diacetate (FDA) hydrolysis and alkaline phosphatase (AP) activity in the rhizosphere soils. FDA hydrolysis remained unchanged in the three inoculated treatments, but AMF colonization increased AP activity and P mobility in the soil whereas DSE colonization did not alter AP activity. In this experiment, we unveiled the interactions between two ecologically important fungal groups likely to occur in roots which involved a decrease of oxidative stress and Cd accumulation in shoots. These results open promising perspectives on the fungal-based phytomanagement of TE-contaminated sites by the production of uncontaminated and marketable plant biomass.
Collapse
Affiliation(s)
| | - Damien Blaudez
- Université de Lorraine, CNRS, LIEC, F-54000, Nancy, France
| | | | - Michel Chalot
- Université de Bourgogne Franche-Comté, CNRS, Laboratoire Chrono-Environnement, Pôle Universitaire du Pays de Montbéliard, F-25211, Montbéliard, France
- Université de Lorraine, F-54000, Nancy, France
| | - Corinne Leyval
- Université de Lorraine, CNRS, LIEC, F-54000, Nancy, France.
| |
Collapse
|
34
|
Sun H, Xie Y, Zheng Y, Lin Y, Yang F. The enhancement by arbuscular mycorrhizal fungi of the Cd remediation ability and bioenergy quality-related factors of five switchgrass cultivars in Cd-contaminated soil. PeerJ 2018; 6:e4425. [PMID: 29527410 PMCID: PMC5844250 DOI: 10.7717/peerj.4425] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 02/07/2018] [Indexed: 11/20/2022] Open
Abstract
A greenhouse experiment was carried out to investigate the effects of arbuscular mycorrhizal fungi (AMF) on the growth, P and Cd concentrations and bioenergy quality-related factors of five cultivars of switchgrass, including three lowland cultivars (Alamo (Ala), Kanlow (Kan), Performer (Per)) and two highland cultivars (Blackwell (Bw), Summer (Sum)), with 0, 1 and 10 mg/kg Cd addition levels. The results showed that AMF inoculation notably increased the biomass and P concentrations of all the cultivars. The Cd concentrations in the roots were higher than those in the shoots of all cultivars irrespective of inoculation, but the AMF had different effects on Cd accumulation in highland and lowland cultivars. AMF inoculation decreased the shoot and root concentrations in Ala and Kan, increased the shoot and root concentrations of Cd in Bw and Sum, and increased shoot Cd concentrations and decreased root Cd concentrations in Per. The highest Cd concentrations were detected in the roots of Bw and in the shoots of Sum with AMF symbiosis. Bw contained the highest total extracted Cd which was primarily in the roots. Ala had the second highest extracted Cd in the shoots, reaching 32% with 1 mg/kg of added Cd, whereas Sum had the lowest extracted Cd. AMF symbiosis had varied effects on bioenergy quality-related factors: for example, AMF decreased the ash lignin content in Ala and the C/N in Sum, increased the nitrogen, gross calorie values, and maintained the hemicellulose and cellulose contents in all cultivars with all tested concentrations of Cd. A principal component analysis (PCA) showed that AMF inoculation could enhance, weaken or transform (positive-negative, PC1-PC2) the correlations of these factors with the principle components under Cd stress. Therefore, AMF symbiosis enhanced the growth of different cultivars of switchgrass, increased/decreased Cd accumulation, promoted Cd extraction, and regulated the bioenergy quality-related factors in Cd-polluted areas. Bw is a suitable cultivar for phytostabilization due to high root Cd stabilization, whereas Ala is an appropriate cultivar for phytoremediation of less polluted areas because of its high Cd extraction and excellent bioenergy quality.
Collapse
Affiliation(s)
- Hong Sun
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yixiao Xie
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yulong Zheng
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yanli Lin
- Beijing Sure Academy of Biosciences, Beijing, China
| | - Fuyu Yang
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
35
|
Luo N, Li X, Chen AY, Zhang LJ, Zhao HM, Xiang L, Cai QY, Mo CH, Wong MH, Li H. Does arbuscular mycorrhizal fungus affect cadmium uptake and chemical forms in rice at different growth stages? THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 599-600:1564-1572. [PMID: 28531965 DOI: 10.1016/j.scitotenv.2017.05.047] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/05/2017] [Accepted: 05/05/2017] [Indexed: 06/07/2023]
Abstract
Effects of the arbuscular mycorrhizal fungus (AMF) - Rhizophagus intraradices (a mix of root pieces, mycelium pieces and spores) on the temporal variation of Cd uptake and chemical forms in rice at four growth periods (tillering, jointing, flowering, and ripening stages) were investigated in soil added with 0, 2 and 10mgCdkg-1. Results showed that the interactions amongst rice growth stages, soil Cd concentrations and mycorrhizal inoculation had significant effects (P˂0.001) on root biomass, straw and root Cd concentrations, and straw Cd chemical forms in rice. Root colonization rates fluctuated with growth stages, reaching its peak at jointing stage and then decreasing at flowering and ripening stages. AMF increased the grain yield in rice plant grown in soil added with 10mgCdkg-1, whereas no effect was found in soil added with 2mgCdkg-1. In soil added with 2mgCdkg-1, the concentrations of ethanol and d-H2O extractable Cd at flowering stage was significantly reduced in mycorrhizal treatments, which subsequently induce less Cd accumulation in grains due to the positive correlations between ethanol or d-H2O extractable Cd and grain Cd concentrations at flowering stage. In soil added with 10mgCdkg-1, AMF significantly elevated the proportions of NaCl extractable Cd at ripening stage which also lead to the reduced grain Cd concentrations, since there was a negative correlation between the percentage of NaCl extractable Cd and grain Cd concentration at this stage. Our study indicated that flowering and ripening stages were important periods for AMF to limit the grain Cd concentrations in rice, when grown in Cd-contaminated soil.
Collapse
Affiliation(s)
- Na Luo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Guangzhou Key Laboratory of Environmental Exposure and Health, School of Environment, Jinan University, Guangzhou 510632, PR China
| | - Xing Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Guangzhou Key Laboratory of Environmental Exposure and Health, School of Environment, Jinan University, Guangzhou 510632, PR China
| | - Ao Yu Chen
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Guangzhou Key Laboratory of Environmental Exposure and Health, School of Environment, Jinan University, Guangzhou 510632, PR China
| | - Li Jun Zhang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Guangzhou Key Laboratory of Environmental Exposure and Health, School of Environment, Jinan University, Guangzhou 510632, PR China
| | - Hai Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Guangzhou Key Laboratory of Environmental Exposure and Health, School of Environment, Jinan University, Guangzhou 510632, PR China
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Guangzhou Key Laboratory of Environmental Exposure and Health, School of Environment, Jinan University, Guangzhou 510632, PR China
| | - Quan Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Guangzhou Key Laboratory of Environmental Exposure and Health, School of Environment, Jinan University, Guangzhou 510632, PR China
| | - Ce Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Guangzhou Key Laboratory of Environmental Exposure and Health, School of Environment, Jinan University, Guangzhou 510632, PR China.
| | - Ming Hung Wong
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Guangzhou Key Laboratory of Environmental Exposure and Health, School of Environment, Jinan University, Guangzhou 510632, PR China; Consortium on Environment, Health, Education and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, SAR, PR China
| | - Hui Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Guangzhou Key Laboratory of Environmental Exposure and Health, School of Environment, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
36
|
Gu HH, Zhou Z, Gao YQ, Yuan XT, Ai YJ, Zhang JY, Zuo WZ, Taylor AA, Nan SQ, Li FP. The influences of arbuscular mycorrhizal fungus on phytostabilization of lead/zinc tailings using four plant species. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2017; 19:739-745. [PMID: 28537795 DOI: 10.1080/15226514.2017.1284751] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A greenhouse experiment was conducted to investigate the effects of the arbuscular mycorrhizal fungus Funneliformis mosseae on three parameters: Pb, Zn, Cu and Cd accumulation, translocation and plant growth in perennial ryegrass (Lolium perenne), tall fescue (Festuca arundinacea), showy stonecrop (Hylotelephium spectabile) and Purple Heart (Tradescantia pallida). The purpose of this work is to enhance site-specific phytostabilization of lead/zinc mine tailings using native plant species. The results showed that mycorrhizal fungi inoculation significantly increased plant biomass of F. arundinacea, H. spectabile and T. pallida. The Pb, Zn, Cu and Cd concentrations in roots were higher than those in shoots both with and without mycorrhizae, with the exception of the Zn concentration in H. spectabile. Mycorrhizae generally increased metal concentrations in roots and decreased metal concentrations in shoots of L. perenne and F. arundinacea. In addition, it was found that the majority of the bioconcentration and translocation factors were lower than 1 and mycorrhizal fungi inoculation further reduced these values. These results suggest that appropriate plant species inoculated with mycorrhiza might be a potential approach to revegetating mine tailing sites and that H. spectabile is an appropriate plant for phytostabilization of Pb/Zn tailings in northern China due to its higher biomass production and lower metal accumulation in shoots.
Collapse
Affiliation(s)
- Hai-Hong Gu
- a College of Mining Engineering, North China University of Science and Technology , Tangshan , China
- b Hebei Provincial Key Laboratory of Mining Development and Security Technology , Tangshan , China
| | - Zheng Zhou
- c College of Mechanical Engineering, North China University of Science and Technology , Tangshan , China
| | - Yu-Qian Gao
- d Mine Design Co., Ltd. Hebei Iron & Steel Group , Luan County , China
| | - Xue-Tao Yuan
- a College of Mining Engineering, North China University of Science and Technology , Tangshan , China
| | - Yan-Jun Ai
- a College of Mining Engineering, North China University of Science and Technology , Tangshan , China
| | - Jun-Ying Zhang
- e College of Chemical Engineering, North China University of Science and Technology , Tangshan , China
| | - Wen-Zhe Zuo
- a College of Mining Engineering, North China University of Science and Technology , Tangshan , China
| | - Alicia A Taylor
- f Department of Plant and Microbial Biology , University of California , Berkeley , CA , USA
- g Exponent, Inc. , Bellevue , WA , USA
| | - Shi-Qing Nan
- d Mine Design Co., Ltd. Hebei Iron & Steel Group , Luan County , China
| | - Fu-Ping Li
- a College of Mining Engineering, North China University of Science and Technology , Tangshan , China
- b Hebei Provincial Key Laboratory of Mining Development and Security Technology , Tangshan , China
| |
Collapse
|
37
|
Huang X, Ho SH, Zhu S, Ma F, Wu J, Yang J, Wang L. Adaptive response of arbuscular mycorrhizal symbiosis to accumulation of elements and translocation in Phragmites australis affected by cadmium stress. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 197:448-455. [PMID: 28411572 DOI: 10.1016/j.jenvman.2017.04.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/22/2017] [Accepted: 04/05/2017] [Indexed: 05/08/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi have been reported to play a central role in improving plant tolerance to cadmium (Cd)-contaminated sites. This is achieved by enhancing both the growth of host plants and the nutritive elements in plants. This study assessed potential regulatory effects of AM symbiosis with regard to nutrient uptake and transport, and revealed different response strategies to various Cd concentrations. Phragmites australis was inoculated with Rhizophagus irregularis in the greenhouse cultivation system, where it was treated with 0-20 mg L-1 of Cd for 21days to investigate growth parameters, as well as Cd and nutritive element distribution in response to AM fungus inoculation. Mycorrhizal plants showed a higher tolerance, particularly under high Cd-level stress in the substrate. Moreover, our results determined the roots as dominant Cd reservoirs in plants. The AM fungus improved Cd accumulation and saturated concentration in the roots, thus inhibiting Cd uptake to shoots. The observed distributions of nutritive elements and the interactions among these indicated the highest microelement contribution to roots, Ca contributed maximally in leaves, and K and P contributed similarly under Cd stress. In addition, AM fungus inoculation effectively impacted Mn and P uptake and accumulation while coping with Cd toxicity. This study also demonstrated translocation factor from metal concentration (TF) could be a good parameter to evaluate different transportation strategies induced by various Cd stresses in contrast to the bioconcentration factor (BCF) and translocation factor from metal accumulation (TF').
Collapse
Affiliation(s)
- Xiaochen Huang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China; Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, 61801, United States
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Shishu Zhu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Jieting Wu
- School of Environmental Science, Liaoning University, Shenyang, 110036, PR China
| | - Jixian Yang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Li Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| |
Collapse
|
38
|
Huang L, Zhang H, Song Y, Yang Y, Chen H, Tang M. Subcellular Compartmentalization and Chemical Forms of Lead Participate in Lead Tolerance of Robinia pseudoacacia L. with Funneliformis mosseae. FRONTIERS IN PLANT SCIENCE 2017; 8:517. [PMID: 28443111 PMCID: PMC5385381 DOI: 10.3389/fpls.2017.00517] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 03/23/2017] [Indexed: 05/11/2023]
Abstract
The effect of arbuscular mycorrhizal fungus on the subcellular compartmentalization and chemical forms of lead (Pb) in Pb tolerance plants was assessed in a pot experiment in greenhouse conditions. We measured root colonization, plant growth, photosynthesis, subcellular compartmentalization and chemical forms of Pb in black locust (Robinia pseudoacacia L.) seedlings inoculated with Funneliformis mosseae isolate (BGC XJ01A) under a range of Pb treatments (0, 90, 900, and 3000 mg Pb kg-1 soil). The majority of Pb was retained in the roots of R. pseudoacacia under Pb stress, with a significantly higher retention in the inoculated seedlings. F. mosseae inoculation significantly increased the proportion of Pb in the cell wall and soluble fractions and decreased the proportion of Pb in the organelle fraction of roots, stems, and leaves, with the largest proportion of Pb segregated in the cell wall fraction. F. mosseae inoculation increased the proportion of inactive Pb (especially pectate- and protein-integrated Pb and Pb phosphate) and reduced the proportion of water-soluble Pb in the roots, stems, and leaves. The subcellular compartmentalization of Pb in different chemical forms was highly correlated with improved plant biomass, height, and photosynthesis in the inoculated seedlings. This study indicates that F. mosseae could improve Pb tolerance in R. pseudoacacia seedlings growing in Pb polluted soils.
Collapse
Affiliation(s)
- Li Huang
- College of Life Sciences, Northwest A&F UniversityYangling, China
| | - Haoqiang Zhang
- College of Forestry, Northwest A&F UniversityYangling, China
| | - Yingying Song
- College of Life Sciences, Northwest A&F UniversityYangling, China
| | - Yurong Yang
- College of Forestry, Northwest A&F UniversityYangling, China
| | - Hui Chen
- College of Forestry, Northwest A&F UniversityYangling, China
| | - Ming Tang
- College of Forestry, Northwest A&F UniversityYangling, China
| |
Collapse
|
39
|
Gong B, Liu G, Liao R, Song J, Zhang H. Endophytic fungus Purpureocillium sp. A5 protect mangrove plant Kandelia candel under copper stress. Braz J Microbiol 2017; 48:530-536. [PMID: 28237674 PMCID: PMC5498457 DOI: 10.1016/j.bjm.2016.10.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/17/2016] [Accepted: 10/21/2016] [Indexed: 12/03/2022] Open
Abstract
Mangrove is an important ecosystem in the world. Mangrove ecosystems have a large capacity in retaining heavy metals, and now they are usually considered as sinks for heavy metals. However, the mechanism of why the soil of mangrove ecosystems can retain heavy metal is not certain. In this research, endophytic fungus Purpureocillium sp. A5 was isolated and identified from the roots of Kandelia candel. When this fungus was added, it protected the growth of K. candel under Cu stress. This can be illustrated by analyzing chlorophyll A and B, RWC and WSD to leaves of K. candel. Purpureocillium sp. A5 reduces uptake of Cu in K. candel and changes the pH characterization of soil. Furthermore, A5 increase the concentration of Cu complexes in soil, and it enhanced the concentration of carbonate-bound Cu, Mn–Fe complexes Cu and organic-bound Cu in soil. Nevertheless, a significant reduction of the Cu ion was noted among A5-treated plants. This study is significant and illustrates a promising potential use for environmental remediation of endophytes, and also may partially explain the large capacity of mangrove ecosystems in retaining heavy metals.
Collapse
Affiliation(s)
- Bin Gong
- Qinzhou University, Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Guangxi, China.
| | - Guixiang Liu
- Qinzhou University, Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Guangxi, China
| | - Rquan Liao
- Qinzhou University, Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Guangxi, China
| | - Jingjing Song
- Qinzhou University, Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Guangxi, China
| | - Hong Zhang
- Qinzhou University, Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Guangxi, China
| |
Collapse
|
40
|
Zhou X, Fu L, Xia Y, Zheng L, Chen C, Shen Z, Chen Y. Arbuscular mycorrhizal fungi enhance the copper tolerance of Tagetes patula through the sorption and barrier mechanisms of intraradical hyphae. Metallomics 2017; 9:936-948. [DOI: 10.1039/c7mt00072c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ultrastructure of transverse sections of root tips ofT. patulawith and without AMF inoculation and Cu content determined by energy spectrum analysis.
Collapse
Affiliation(s)
- Xishi Zhou
- College of Life Sciences
- Nanjing Agricultural University
- Nanjing 210095
- China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource
| | - Lei Fu
- College of Life Sciences
- Nanjing Agricultural University
- Nanjing 210095
- China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource
| | - Yan Xia
- College of Life Sciences
- Nanjing Agricultural University
- Nanjing 210095
- China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource
| | - Luqing Zheng
- College of Life Sciences
- Nanjing Agricultural University
- Nanjing 210095
- China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource
| | - Chen Chen
- College of Life Sciences
- Nanjing Agricultural University
- Nanjing 210095
- China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource
| | - Zhenguo Shen
- College of Life Sciences
- Nanjing Agricultural University
- Nanjing 210095
- China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource
| | - Yahua Chen
- College of Life Sciences
- Nanjing Agricultural University
- Nanjing 210095
- China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource
| |
Collapse
|
41
|
Simmler M, Suess E, Christl I, Kotsev T, Kretzschmar R. Soil-to-plant transfer of arsenic and phosphorus along a contamination gradient in the mining-impacted Ogosta River floodplain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 572:742-754. [PMID: 27614862 DOI: 10.1016/j.scitotenv.2016.07.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 07/06/2016] [Accepted: 07/06/2016] [Indexed: 06/06/2023]
Abstract
Riverine floodplains downstream of active or former metal sulfide mines are in many cases contaminated with trace metals and metalloids, including arsenic (As). Since decontamination of such floodplains on a large scale is unfeasible, management of contaminated land must focus on providing land use guidelines or even restrictions. This should be based on knowledge about how contaminants enter the food chain. For As, uptake by plants may be an important pathway, but the As soil-to-plant transfer under field conditions is poorly understood. Here, we investigated the soil-to-shoot transfer of As and phosphorus (P) in wild populations of herbaceous species growing along an As contamination gradient across an extensive pasture in the mining-impacted Ogosta River floodplain. The As concentrations in the shoots of Trifolium repens and Holcus lanatus reflected the soil contamination gradient. However, the soil-to-shoot transfer factors (TF) were fairly low, with values mostly below 0.07 (TF=Asshoot/Assoil). We found no evidence for interference of As with P uptake by plants, despite extremely high molar As:P ratios (up to 2.6) in Olsen soil extracts of the most contaminated topsoils (0-20cm). Considering the restricted soil-to-shoot transfer, we estimated that for grazing livestock As intake via soil ingestion is likely more important than intake via pasture herbage.
Collapse
Affiliation(s)
- Michael Simmler
- Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, CHN, ETH Zurich, Zurich, Switzerland
| | - Elke Suess
- Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, CHN, ETH Zurich, Zurich, Switzerland; Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Iso Christl
- Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, CHN, ETH Zurich, Zurich, Switzerland.
| | - Tsvetan Kotsev
- Department of Geography, National Institute of Geophysics, Geodesy and Geography, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Ruben Kretzschmar
- Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, CHN, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
42
|
Wu S, Zhang X, Sun Y, Wu Z, Li T, Hu Y, Lv J, Li G, Zhang Z, Zhang J, Zheng L, Zhen X, Chen B. Chromium immobilization by extra- and intraradical fungal structures of arbuscular mycorrhizal symbioses. JOURNAL OF HAZARDOUS MATERIALS 2016; 316:34-42. [PMID: 27209517 DOI: 10.1016/j.jhazmat.2016.05.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/04/2016] [Accepted: 05/05/2016] [Indexed: 06/05/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi can enhance plant Cr tolerance through immobilizing Cr in mycorrhizal roots. However, the detailed processes and mechanisms are unclear. The present study focused on cellular distribution and speciation of Cr in both extraradical mycelium (ERM) and mycorrhizal roots exposed to Cr(VI) by using field emission scanning electron microscopy equipped with energy dispersive X-ray spectrometer (FE-SEM-EDS), scanning transmission soft X-ray microscopy (STXM) and X-ray absorption fine structure (XAFS) spectroscopy techniques. We found that amounts of particles (possibly extracellular polymeric substances, EPS) were produced on the AM fungal surface upon Cr(VI) stress, which contributed greatly to Cr(VI) reduction and immobilization. With EDS of the surface of AM fungi exposed to various Cr(VI) levels, a positive correlation between Cr and P was revealed, suggesting that phosphate groups might act as counter ions of Cr(III), which was also confirmed by the XAFS analysis. Besides, STXM and XAFS analyses showed that Cr(VI) was reduced to Cr(III) in AM fungal structures (arbuscules, intraradical mycelium, etc.) and cell walls in mycorrhizal roots, and complexed possibly with carboxyl groups or histidine analogues. The present work provided evidence of Cr immobilization on fungal surface and in fungal structures in mycorrhizal roots at a cellular level, and thus unraveled the underlying mechanisms by which AM symbiosis immobilize Cr.
Collapse
Affiliation(s)
- Songlin Wu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China; Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamycká 129, Prague 6-Suchdol 165 21, Czech Republic
| | - Xin Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China
| | - Yuqing Sun
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Zhaoxiang Wu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Tao Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China
| | - Yajun Hu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, People's Republic of China
| | - Jitao Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Gang Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Zhensong Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Jing Zhang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xiangjun Zhen
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, People's Republic of China
| | - Baodong Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China.
| |
Collapse
|
43
|
Almeida-Rodríguez AM, Gómes MP, Loubert-Hudon A, Joly S, Labrecque M. Symbiotic association between Salix purpurea L. and Rhizophagus irregularis: modulation of plant responses under copper stress. TREE PHYSIOLOGY 2016; 36:407-20. [PMID: 26546365 DOI: 10.1093/treephys/tpv119] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/05/2015] [Indexed: 05/09/2023]
Abstract
There are increasing concerns about trace metal levels such as copper (Cu) in industrial sites and the broader environment. Different studies have highlighted the role of mycorrhizal associations in plant tolerance to trace metals, modulating some of the plant metabolic and physiological responses. In this study, we investigated the role of the symbiotic association betweenRhizophagus irregularisandSalix purpureaL. in modulating plant responses under Cu stress. We measured Cu accumulation, oxidative stress-related, photosynthetic-related and hydraulic traits, for non-inoculated (non-arbuscular mycorrhizal fungi) and inoculated saplings exposed to different Cu concentrations. We found thatS. purpureais a suitable option for phytoremediation of Cu, acting as a phytostabilizer of this trace metal in its root system. We observed that the symbiotic association modulates a broad spectrum of metabolic and physiological responses inS. purpureaunder Cu conditions, including (i) a reduction in gas exchange associated with chlorophyll content changes and (ii) the sequestration of Cu into the cell walls, modifying vessels anatomy and impacting leaf specific conductivity (KL) and root hydraulic conductance (LP). UpholdingKLandLPunder Cu stress might be related to a dynamic Aquaporin gene regulation ofPIP1;2along with an up-regulation ofTIP2;2in the roots of inoculatedS. purpurea.
Collapse
Affiliation(s)
- Adriana M Almeida-Rodríguez
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale (IRBV), Université de Montréal, 4101 Sherbrooke East, Montréal, QC, Canada H1X 2B2
| | - Marcelo P Gómes
- Institut des Sciences de l'environnement, Université du Québec à Montréal, Succ. Centre-Ville, C.P. 8888, Montréal, QC, Canada H3C 3P8
| | - Audrey Loubert-Hudon
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale (IRBV), Université de Montréal, 4101 Sherbrooke East, Montréal, QC, Canada H1X 2B2
| | - Simon Joly
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale (IRBV), Université de Montréal, 4101 Sherbrooke East, Montréal, QC, Canada H1X 2B2 Montreal Botanical Garden, 4101 Sherbrooke East, Montréal, QC, Canada H1X 2B2
| | - Michel Labrecque
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale (IRBV), Université de Montréal, 4101 Sherbrooke East, Montréal, QC, Canada H1X 2B2 Montreal Botanical Garden, 4101 Sherbrooke East, Montréal, QC, Canada H1X 2B2
| |
Collapse
|
44
|
Wu S, Zhang X, Sun Y, Wu Z, Li T, Hu Y, Su D, Lv J, Li G, Zhang Z, Zheng L, Zhang J, Chen B. Transformation and Immobilization of Chromium by Arbuscular Mycorrhizal Fungi as Revealed by SEM-EDS, TEM-EDS, and XAFS. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:14036-14047. [PMID: 26551890 DOI: 10.1021/acs.est.5b03659] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF), ubiquitous soil fungi that form symbiotic relationships with the majority of terrestrial plants, are known to play an important role in plant tolerance to chromium (Cr) contamination. However, the underlying mechanisms, especially the direct influences of AMF on the translocation and transformation of Cr in the soil-plant continuum, are still unresolved. In a two-compartment root-organ cultivation system, the extraradical mycelium (ERM) of mycorrhizal roots was treated with 0.05 mmol L(-1) Cr(VI) for 12 days to investigate the uptake, translocation, and transformation of Cr(VI) by AMF using inductively coupled plasma mass spectrometry (ICP-MS), scanning electron microscopy equipped with energy-dispersive spectroscopy (SEM-EDS), transmission electron microscopy equipped with energy-dispersive spectroscopy (TEM-EDS), and X-ray-absorption fine structure (XAFS) technologies. The results indicated that AMF can immobilize quantities of Cr via reduction of Cr(VI) to Cr(III), forming Cr(III)-phosphate analogues, likely on the fungal surface. Besides this, we also confirmed that the extraradical mycelium (ERM) can actively take up Cr [either in the form of Cr(VI) or Cr(III)] and transport Cr [potentially in the form of Cr(III)-histidine analogues] to mycorrhizal roots but immobilize most of the Cr(III) in the fungal structures. Based on an X-ray absorption near-edge spectroscopy analysis of Cr(VI)-treated roots, we proposed that the intraradical fungal structures can also immobilize Cr within mycorrhizal roots. Our findings confirmed the immobilization of Cr by AMF, which plays an essential role in the Cr(VI) tolerance of AM symbioses.
Collapse
Affiliation(s)
- Songlin Wu
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | | | - Yuqing Sun
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Zhaoxiang Wu
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | | | - Yajun Hu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences , Changsha 410125, People's Republic of China
| | - Dan Su
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | | | | | | | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Jing Zhang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | | |
Collapse
|
45
|
Wang C, Xiao H, Liu J, Wang L, Du D. Insights into Ecological Effects of Invasive Plants on Soil Nitrogen Cycles. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/ajps.2015.61005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
46
|
Kanwal S, Bano A, Malik RN. Effects of Arbuscular Mycorrhizal Fungi on Metals Uptake, Physiological and Biochemical Response of <i>Medicago Sativa</i> L. with Increasing Zn and Cd Concentrations in Soil. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/ajps.2015.618287] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
47
|
Lin A, Zhang X, Yang X. Glomus mosseae enhances root growth and Cu and Pb acquisition of upland rice (Oryza sativa L.) in contaminated soils. ECOTOXICOLOGY (LONDON, ENGLAND) 2014; 23:2053-2061. [PMID: 25326862 DOI: 10.1007/s10646-014-1368-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/11/2014] [Indexed: 06/04/2023]
Abstract
A pot culture experiment was carried out to investigate the roles of Glomus mosseae in Cu and Pb acquisition by upland rice (Oryza sativa L.) and the interactions between Cu and Pb. The soil was treated with three Cu levels (0, 100 and 200 mg kg(-1)) and three Pb levels (0, 300, and 600 mg kg(-1)). All treatments were designed with (+M) or without (-M) G. mosseae inoculation in a randomized block design. The addition of Cu and Pb significantly decreased root mycorrhizal colonization. Compared with -M, +M significantly increased root biomass in almost all treatments, and also significantly increased shoot biomass in the Pb(0)Cu(200), Pb(300)Cu(0), and all Pb(600) treatments. AM fungi enhanced plant Cu acquisition, but decreased plant Cu concentrations with all Cu plus Pb treatments, except for shoot in the Cu(200)Pb(600) treatment. Irrespective of Cu and Pb levels, +M plants had higher Pb uptakes than -M plants, but had lower root Pb and higher shoot Pb concentrations than those of -M plants. Another interpretation for the higher shoot Pb concentration in +M plants relied on Cu-Pb interactions. The study provided further evidences for the protective effects of AM fungi on upland rice against Cu and Pb contamination, and uncovered the phenomenon that Cu addition could promote Pb uptake and Pb partitioning to shoot. The possible mechanisms by which AM fungi can alleviate the toxicity induced by Cu and Pb are also discussed.
Collapse
Affiliation(s)
- Aijun Lin
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China,
| | | | | |
Collapse
|
48
|
Wu SL, Chen BD, Sun YQ, Ren BH, Zhang X, Wang YS. Chromium resistance of dandelion (Taraxacum platypecidum Diels.) and bermudagrass (Cynodon dactylon [Linn.] Pers.) is enhanced by arbuscular mycorrhiza in Cr(VI)-contaminated soils. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2014; 33:2105-2113. [PMID: 24920536 DOI: 10.1002/etc.2661] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 04/07/2014] [Accepted: 06/06/2014] [Indexed: 06/03/2023]
Abstract
In a greenhouse pot experiment, dandelion (Taraxacum platypecidum Diels.) and bermudagrass (Cynodon dactylon[Linn.] Pers.), inoculated with and without arbuscular mycorrhizal fungus (AMF) Rhizophagus irregularis, were grown in chromium (Cr)-amended soils (0 mg/kg, 5 mg/kg, 10 mg/kg, and 20 mg/kg Cr[VI]) to test whether arbuscular mycorrhizal (AM) symbiosis can improve Cr tolerance in different plant species. The experimental results indicated that the dry weights of both plant species were dramatically increased by AM symbiosis. Mycorrhizal colonization increased plant P concentrations and decreased Cr concentrations and Cr translocation from roots to shoots for dandelion; in contrast, mycorrhizal colonization decreased plant Cr concentrations without improvement of P nutrition in bermudagrass. Chromium speciation analysis revealed that AM symbiosis potentially altered Cr species and bioavailability in the rhizosphere. The study confirmed the protective effects of AMF on host plants under Cr contaminations.
Collapse
Affiliation(s)
- Song-Lin Wu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | |
Collapse
|
49
|
Curaqueo G, Schoebitz M, Borie F, Caravaca F, Roldán A. Inoculation with arbuscular mycorrhizal fungi and addition of composted olive-mill waste enhance plant establishment and soil properties in the regeneration of a heavy metal-polluted environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:7403-7412. [PMID: 24584643 DOI: 10.1007/s11356-014-2696-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/20/2014] [Indexed: 06/03/2023]
Abstract
A greenhouse experiment was carried out in order to investigate the effects of arbuscular mycorrhizal (AM) fungi inoculation and the use of composted olive waste (COW) in the establishment of Tetraclinis articulata and soil properties in a heavy metal-polluted soil. The treatments assayed were as follows: AM + 0% COW, AM + 1% COW, and AM + 3% COW. The higher doses of COW in combination with AM fungi increased shoot and root biomass production of T. articulata by 96 and 60%, respectively. These treatments trended to improve the soil properties evaluated, highlighting the C compounds and N as well as the microbiological activities. In relation to the metal translocation in T. articulata, doses of COW applied decreased the Cr, Ni, and Pb contents in shoot, as well as Cr and As in root, although the most of them reached low levels and far from phytotoxic. The COW amendment aided Glomus mosseae-inoculated T. articulata plants to thrive in contaminated soil, mainly through an improvement in both nutrients uptake, mainly P and soil microbial function. In addition, the combined use of AM fungi plus COW could be a feasible strategy to be incorporated in phytoremediation programs because it promotes soil properties, a better performance of plants for supporting the stress in heavy metal-contaminated soils derived from the mining process, and also can be a good way for olive-mill waste disposal.
Collapse
Affiliation(s)
- Gustavo Curaqueo
- Scientific and Technological Nucleus of Bioresources, BIOREN-UFRO, Universidad de La Frontera, P.O. Box 54-D, Temuco, Chile
| | | | | | | | | |
Collapse
|
50
|
Shen Z, Sun Q, Liu M. Soil Carbon and Nitrogen Dynamics Induced by Tissue-Litter Decomposition of Copper Mine Tailings from the Gramineae and Cryptogram Communities, China. ANAL LETT 2014. [DOI: 10.1080/00032719.2013.853181] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|