1
|
Liu C, Zhu J, Zhu R, Yin Y. Neurotoxicity induced by difenoconazole in zebrafish larvae via activating oxidative stress and the protective role of resveratrol. Comp Biochem Physiol C Toxicol Pharmacol 2025; 295:110208. [PMID: 40246219 DOI: 10.1016/j.cbpc.2025.110208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 04/04/2025] [Accepted: 04/13/2025] [Indexed: 04/19/2025]
Abstract
Difenoconazole (DIF) is a typical triazole fungicide detected in the aquatic ecosystem and organisms. However, the neurotoxic effects of DIF remain largely unknown. This study aimed to investigate the neurotoxicity of DIF in zebrafish and the underlying neuroprotective properties of resveratrol (RES, an antioxidant polyphenol). Zebrafish embryos/larvae were treated with 0.6 and 1.2 mg/L DIF from 4 to 96 h post fertilization (hpf) and neurodevelopment was systematically assessed. DIF induced developmental toxicity and aberrant neurobehaviors, including decreased movement time, swimming distance and clockwise rotation times. DIF suppressed the neurogenesis of the central nervous system (CNS) in HuC:egfp transgenic zebrafish and the length of motor neuron axon in hb9:egfp transgenic zebrafish. DIF inhibited cholinesterase activities and downregulated neurodevelopment related genes. DIF also increased oxidative stress via excessive production of reactive oxygen species and decreased activities of antioxidant enzymes, subsequently triggering neuronal apoptosis in the brain. RES partially reinstated DIF-induced neurotoxicity and developmental toxicity by inhibiting excessive oxidative stress and apoptosis, suggesting the involvement of oxidative stress in DIF-induced neurotoxicity. Overall, this study identified the potential mechanisms underlying DIF-induced neurotoxicity and suggested RES as a promising therapeutic strategy.
Collapse
Affiliation(s)
- Chunlan Liu
- School of Public Health Management, Jiangsu Health Vocational College, Nanjing 211800, PR China
| | - Jiansheng Zhu
- Department of Public Health, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Renfei Zhu
- Department of Hepatobiliary Surgery, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226006, PR China.
| | - Yifei Yin
- Department of Thyroid and Breast Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huaian 223001, PR China.
| |
Collapse
|
2
|
Chen X, Zheng J, Wang C, Teng M, Jiang J, Wu F. Exposure of Parental Zebrafish to Difenoconazole throughout Their Life Cycle May Lead to Developmental Toxicity in the F1 Generation through Epigenetic Changes in Gametes, Impaired Nutrient Supply from the Ovum, and Maternal Transfer of Difenoconazole. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:6477-6487. [PMID: 40153714 DOI: 10.1021/acs.est.4c13073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2025]
Abstract
Difenoconazole is a widely used agricultural fungicide that has been frequently detected in aquatic environments. Given its stable presence in aquatic environments, long-term exposure of wild fish may pose a risk to offspring embryonic development. This study demonstrated that exposure of zebrafish to environmental concentrations of difenoconazole throughout their life cycle resulted in abnormal development of offspring embryos/larvae, including decreased heart rate, delayed hatching, increased malformation rate, shortened body length, and increased mortality. These changes were significantly correlated with the affected apoptosis, autophagy, energy metabolism and MAPK signaling pathways in F1 generation. This transgenerational toxic effect results from epigenetic alterations in gametes, impaired nutrient supply from the ovum, and maternal transfer of difenoconazole. After exposure to difenoconazole, the development of female fish offspring was affected more than that of male fish offspring, which was mainly caused by the impaired nutrient supply from the ovum and the maternal transfer of difenoconazole. Because this transgenerational developmental toxicity was observed at environmental levels, difenoconazole may pose a threat to the survival of wild larvae and therefore a risk to wild fish populations.
Collapse
Affiliation(s)
- Xiangguang Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Junyue Zheng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Chengju Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Miaomiao Teng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jiazhen Jiang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
3
|
Marghany F, Ayobahan SU, Salinas G, Schäfers C, Hollert H, Eilebrecht S. Identification of molecular signatures for azole fungicide toxicity in zebrafish embryos by integrating transcriptomics and gene network analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 374:126215. [PMID: 40189088 DOI: 10.1016/j.envpol.2025.126215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 04/12/2025]
Abstract
Azoles control fungal growth by inhibiting sterol biosynthesis in fungi according to the fungicide resistance action committee. Furthermore, previous studies have highlighted several effects of azole fungicides in fish including endocrine disruption. In this study, we analysed the transcriptome responses of zebrafish embryos exposed to azole fungicides to identify gene expression fingerprints indicating toxic effects such as endocrine disruption induced by sterol biosynthesis inhibition. Firstly, a modified zebrafish embryo toxicity test was conducted following the OECD 236 guideline, exposing embryos to difenoconazole, epoxiconazole, and tebuconazole. After 96 h, RNA was extracted for transcriptome analysis, which revealed concentration-dependent responses for each fungicide. Additionally, overrepresentation analysis of significantly differentially expressed genes revealed biological functions related to sterol biosynthesis and endocrine disruption. A gene set with specific expression patterns was was identified as molecular signature for indicating adverse effects induced by sterol biosynthesis inhibitors in zebrafish embryos. After further validation, the gene expression fingerprints and biomarkers identified in this study may be used in the future to identify endocrine activity of substances under development in a pre-regulatory screening using the zebrafish embryo model.
Collapse
Affiliation(s)
- Fatma Marghany
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany; Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University Frankfurt, Frankfurt, Germany; Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, Egypt
| | - Steve U Ayobahan
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Gabriela Salinas
- NGS-Services for Integrative Genomics, University of Göttingen, Göttingen, Germany
| | - Christoph Schäfers
- Department Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Henner Hollert
- Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University Frankfurt, Frankfurt, Germany; Department Environmental Media Related Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Sebastian Eilebrecht
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany.
| |
Collapse
|
4
|
Saha S, Saha S, Pastorino P, Saha NC. Effects of Difenoconazole on Tubifex tubifex: Antioxidant Activity, Insights from GUTS Predictions, and Multi-Biomarker Analysis. BIOLOGY 2025; 14:302. [PMID: 40136558 PMCID: PMC11939907 DOI: 10.3390/biology14030302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/23/2025] [Accepted: 03/11/2025] [Indexed: 03/27/2025]
Abstract
The increasing demand for agricultural products has led to a rise in pesticide use, resulting in the pollution of aquatic habitats and raising significant health concerns for both aquatic life and humans. Difenoconazole, a triazole fungicide, is becoming increasingly popular in agriculture, yet its effects on non-target organisms, such as annelids, are not well understood. This study aimed to investigate the toxicological effects of difenoconazole and assess its potential impact on toxicity biomarkers, using Tubifex tubifex as a model organism, to better understand the ecotoxicity of difenoconazole on freshwater annelids. The 96-h LC50 value of difenoconazole was determined to be 2.68 mg/L. Sublethal concentrations (10% and 20% of the 96-h LC50 value; 0.268 and 0.536 mg/L, respectively) caused significant changes in the activities of oxidative stress enzymes. A concentration- and time-dependent decrease in the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione transferase (GST) was observed compared to control organisms. Additionally, malondialdehyde (MDA) concentrations increased throughout the exposure period. An Integrated Biomarker Response (IBR) assessment was used to characterize and illustrate the impact of difenoconazole on T. tubifex. In conclusion, exposure to this fungicide appears to reduce the survival rate of T. tubifex at acute levels and disrupt its normal behavioral patterns. Moreover, it alters oxidative stress enzyme levels during sublethal exposure. Long-term exposure to the fungicide could potentially have population-level consequences, including a reduction in the number of individuals within a population.
Collapse
Affiliation(s)
- Subhajit Saha
- Department of Zoology, West Bengal State University, North 24 Paraganas, Barasat 700126, West Bengal, India;
| | - Shubhajit Saha
- Fisheries and Ecotoxicology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan 713104, West Bengal, India;
| | - Paolo Pastorino
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Torino, Italy
| | - Nimai Chandra Saha
- Department of Zoology, Bidhannagar College, Bidhannagar, Kolkata 700064, West Bengal, India
| |
Collapse
|
5
|
Bellot P, Brischoux F, Fritsch C, Lièvre L, Ribout C, Angelier F. Chronic exposure to tebuconazole impairs offspring growth and survival in farmland birds: An experiment in captive house sparrows. ENVIRONMENTAL RESEARCH 2025; 275:121321. [PMID: 40058553 DOI: 10.1016/j.envres.2025.121321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 04/01/2025]
Abstract
European farmland bird populations have declined by over 60% in 40 years, with the use of pesticides suspected to be one of the main causes of this decline. However, it remains difficult to test the impact of these pesticides in field studies due to confounding environmental variables that can also affect avian wildlife (e.g., food resources, habitat fragmentation and alteration). Triazoles are a family of fungicides that are ubiquitous in agro-ecosystems due to their use on a wide range of crops. Triazoles are suspected to affect non-target avian species by disrupting key physiological mechanisms and by detrimentally affecting their reproduction. In this captive study, we experimentally investigated the effect of the most commonly used triazole fungicides (i.e., tebuconazole) on the reproduction of an avian species representative of farmlands, the house sparrow (Passer domesticus). We examined the impacts of tebuconazole at realistic concentrations (550 μg.L-1 in drinking water to achieve ∼ 60 pg g-1 in plasma of sparrows) under controlled conditions on multiple indicators of breeding performance (clutch size, hatching success, chick growth and survival). We found that chronic exposure to tebuconazole (9 months, including the breeding period) significantly altered the reproduction of sparrows. Although clutch size and hatching success were not affected by tebuconazole, chicks from the exposed group showed reduced growth and a higher mortality rate. Interestingly, these effects were exacerbated in female chicks, highlighting a sex-dependent effect of tebuconazole on sparrow offspring. This study demonstrates that tebuconazole can be detrimental to the reproduction of farmland birds. Further studies are now required to distinguish the direct effects of tebuconazole (toxic and sublethal effects on the developing chick/embryo) from the indirect ones (alteration of egg quality and parental care).
Collapse
Affiliation(s)
- Pauline Bellot
- Centre d'Etudes Biologiques de Chizé, CNRS-La Rochelle Université, UMR 7372, 79360, Villiers en Bois, France.
| | - François Brischoux
- Centre d'Etudes Biologiques de Chizé, CNRS-La Rochelle Université, UMR 7372, 79360, Villiers en Bois, France
| | - Clémentine Fritsch
- Laboratoire Chrono-Environnement, UMR 6249 CNRS / Université Bourgone Franche-Comté, Université de Franche-Comté, F-25000, Besançon, France
| | - Loula Lièvre
- Centre d'Etudes Biologiques de Chizé, CNRS-La Rochelle Université, UMR 7372, 79360, Villiers en Bois, France
| | - Cécile Ribout
- Centre d'Etudes Biologiques de Chizé, CNRS-La Rochelle Université, UMR 7372, 79360, Villiers en Bois, France
| | - Frédéric Angelier
- Centre d'Etudes Biologiques de Chizé, CNRS-La Rochelle Université, UMR 7372, 79360, Villiers en Bois, France
| |
Collapse
|
6
|
Ball JS, Tochwin A, Winter MJ, Trznadel M, Currie R, Wolton K, French JM, Hetheridge MJ, Tyler CR. Determination of the zebrafish embryo developmental toxicity assessment (ZEDTA) as an alternative non-mammalian approach for the safety assessment of agrochemicals. Reprod Toxicol 2025; 132:108837. [PMID: 39848502 DOI: 10.1016/j.reprotox.2025.108837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/24/2024] [Accepted: 01/10/2025] [Indexed: 01/25/2025]
Abstract
With the US Environment Protection Agency reducing requests for (and funding of) mammalian studies alongside the proposed elimination of requests by 2035, there is an urgent need for fully validated New Approach Methods (NAMs) to fill the resultant gap for safety assessment of agrochemicals. One promising NAM for assessing the potential for human prenatal developmental toxicity potential is the Zebrafish Embryo Developmental Toxicity Assessment, a bioassay that has been used by the pharmaceutical industry for more than a decade in early-stage drug safety assessment. Despite its promise, little data has been generated to assess the validity of ZEDTA for assessing Developmental and Reproductive Toxicity of new agrochemical products. Addressing this knowledge gap, we tested 67 compounds (insecticides, herbicides and fungicides) spanning multiple different chemical groupings and mechanisms of action. ZEDTA assay results were compared with the European Chemicals Agency (ECHA) Classification and Labelling (C&L) for mammalian hazard classification and with publicly available data to determine the ZEDTA's translation power. Overall, the ZEDTA assay had an effective detection capability of 65 % for sensitivity and 64 % for specificity as compared with the ECHA-C&L classification and publicly available data. Comparing the ZEDTA data there were both strengths and weaknesses in alignments for across the different chemical classes and chemical mechanisms of action. Overall, the data generated, show the performance of the ZEDTA assay was comparable with other bioassays highlighted as alternatives for mammalian assessment and holds good promise as a NAM for screening agrochemical prenatal developmental toxicity during new product human safety assessment.
Collapse
Affiliation(s)
- Jonathan S Ball
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Stocker Road, Exeter, Devon EX4 4QD, UK.
| | - Anna Tochwin
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Stocker Road, Exeter, Devon EX4 4QD, UK.
| | - Matthew J Winter
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Stocker Road, Exeter, Devon EX4 4QD, UK.
| | - Maciej Trznadel
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Stocker Road, Exeter, Devon EX4 4QD, UK.
| | - Richard Currie
- Jealott's Hill International Research Centre, Syngenta, Bracknell, Berkshire RG42 6EY, UK.
| | - Kathryn Wolton
- Jealott's Hill International Research Centre, Syngenta, Bracknell, Berkshire RG42 6EY, UK.
| | - Julian M French
- Jealott's Hill International Research Centre, Syngenta, Bracknell, Berkshire RG42 6EY, UK.
| | - Malcolm J Hetheridge
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Stocker Road, Exeter, Devon EX4 4QD, UK.
| | - Charles R Tyler
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Stocker Road, Exeter, Devon EX4 4QD, UK.
| |
Collapse
|
7
|
Zhang M, Zhao F, Guo M, Duan M, Xie Y, Qiu L. Vitamin E alleviates zebrafish intestinal damage and microbial disturbances caused by pyraclostrobin. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106221. [PMID: 40015832 DOI: 10.1016/j.pestbp.2024.106221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/26/2024] [Accepted: 11/23/2024] [Indexed: 03/01/2025]
Abstract
Pyraclostrobin (PY) is highly toxic to aquatic organisms, and its increased residues in aquatic environments may have harmful effects on the intestine of aquatic creatures. Previous research demonstrated that vitamin E (VE) alleviated the acute toxicity of PY to zebrafish. This study further explored the mitigation effect of VE on PY-induced intestinal toxicity in fish and the underlying mechanisms by exposing adult zebrafish to PY (10, 20 μg/L) with or without 4 μM VE supplementation for 21 days. The results showed that VE alleviated the gut histopathological lesions caused by PY. VE co-exposure also improved PY-induced intestinal inflammation and restored the expression level of genes encoding intestinal tight junction protein. Furthermore, VE restored the anti-oxidation level inhibited by PY and reduced pro-apoptotic cytokine level and apoptotic enzyme activity increased by PY. 16S rRNA high-throughput sequencing showed that VE improved the zebrafish intestinal flora imbalance caused by 20 μg/L PY, increased the relative abundance of beneficial bacterium Cetobacterium, and reduced the relative abundance of pathogenic bacteria. In conclusion, VE alleviated PY-induced intestinal toxicity via repairing the damaged intestinal mucosal barrier, inhibiting inflammation, reducing oxidative stress and apoptosis, and improving the intestinal microbial disorder in zebrafish.
Collapse
Affiliation(s)
- Mengna Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Feng Zhao
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Mengyu Guo
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Manman Duan
- Institute of Rural Revitalization, Dezhou University, Dezhou, Shandong 253023, China
| | - Yao Xie
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Lihong Qiu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
8
|
Shohag S, Horie Y. Neurotoxicity and Cardiovascular Toxicity of Zinc Oxide Nanoparticles to Oryzias melastigma. J Appl Toxicol 2025; 45:452-459. [PMID: 39482283 DOI: 10.1002/jat.4718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/30/2024] [Accepted: 10/06/2024] [Indexed: 11/03/2024]
Abstract
Zinc oxide nanoparticles (ZnO NPs) are widely used in manufacturing cosmetic and pharmaceutical products. Although previous studies have reported their toxic effects on fish, the underlying mechanisms behind their toxic effects are yet to be identified. This study evaluated the impact of ZnO NPs on marine medaka's survival, heart rates (Oryzias melastigma), and the expression of genes linked to neurotoxicity and cardiovascular toxicity. Marine medaka samples were exposed to ZnO NPs at varying concentrations: 0.01, 0.1, 1, and 10 mg/L. Survival rates and heart rates were monitored on the 12th day postfertilization. Gene expression related to neurotoxicity (α-tubulin, elavl3, gap43, gfap) and cardiovascular toxicity (cdh2, atp2a1, cacna1da, crhr1, ahrra, arnt2) was assessed by performing real-time polymerase chain reaction. The survival rate of marine medaka samples was not significantly impacted by exposure to up to 1 mg/L of ZnO NPs; however, exposure to 10 mg/L of ZnO NPs resulted in a 60% reduction in survival rate. The heart rate of the samples did not significantly change across all concentrations. High ZnO NP concentrations (10 mg/L) significantly suppressed the expression of neurotoxic and cardiotoxic genes, including elavl3 and gfap. ZnO NPs exhibited dose-dependent toxic effects on the marine medaka samples by affecting the expression of genes related to neurological and cardiovascular functions. These findings underscore the potential risks of ZnO NPs to aquatic organisms. The distinct toxic actions of ZnO NPs and dissolved ions complicate the interpretation of results, as this study did not measure ion release, a critical factor in understanding NP toxicity. Moreover, ZnO NPs may cause oxidative stress and disrupt cellular pathways. Furthermore, without distinguishing between NP and ion effects, it is challenging to determine the exact cause of toxicity. These findings highlight the need for future studies to measure dissolved ions and particles separately to clarify their contributions to toxicity, where the mechanisms of action are still debated.
Collapse
Affiliation(s)
- Sheikh Shohag
- Department of Genetic Engineering and Biotechnology, Faculty of Earth and Ocean Science, Bangabandhu Sheikh Mujibur Rahman Maritime University, Dhaka, Bangladesh
| | - Yoshifumi Horie
- Graduate School of Maritime Science, Kobe University, Kobe, Japan
- Research Center for Inland Seas (KURCIS), Kobe University, Kobe, Japan
| |
Collapse
|
9
|
Li J, Zheng W, Li J, Askari K, Tian Z, Liu R. Salicylic acid mitigates the physiological and biochemistry toxicity of fungicide difenoconazole and reduces its accumulation in wheat (Triticum aestivum L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109504. [PMID: 39832395 DOI: 10.1016/j.plaphy.2025.109504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/03/2025] [Accepted: 01/11/2025] [Indexed: 01/22/2025]
Abstract
Continuous misuse of difenoconazole (DFZ) results in farmland contamination, posing risks to crops and human health. Salicylic acid (SA) has been shown to enhance plant resistance and reduce pesticide phytotoxicity and accumulation. However, whether SA effectively reduces DFZ phytotoxicity and accumulation and its underlying mechanisms remain poorly understood. To address this, a short-term indoor experiment and a long-term outdoor pot experiment were conducted to evaluate the potential of SA to alleviate DFZ-induced phytotoxicity and its effects on DFZ uptake, translocation, metabolism, and accumulation. The underlying mechanisms were explored through physiological, biochemical, and gene expression analyses. The results showed that DFZ induced oxidative damage and reduced photosynthesis by 15.6% in wheat. SA upregulated the expression of genes encoding antioxidant enzymes (POD, CAT, SOD1, and SOD2) in the roots and leaves of DFZ-exposed plants, leading to a 7.5%-13.4% increase in antioxidant enzyme activities and a subsequent 9.7%-14.5% decrease in reactive oxygen species levels. Additionally, SA increased the total chlorophyll content by 16.3%, which was enhanced by regulating chlorophyll synthesis and degradation-related genes, thereby improving the net photosynthetic rate by 12.2%. Furthermore, SA upregulated the expression of lignin biosynthesis-related, CYP450, and GST genes, which reduced DFZ uptake and accelerated its degradation. Consequently, the wheat grain DFZ content decreased by 36.2%, thus reducing the health risk index. This study confirms the potential of SA to reduce DFZ phytotoxicity and accumulation. Based on these findings, we recommend using SA in DFZ-contaminated areas to mitigate phytotoxicity and the associated human dietary exposure risks.
Collapse
Affiliation(s)
- Jingchong Li
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection and School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Wende Zheng
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingkun Li
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection and School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Komelle Askari
- College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhixiang Tian
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection and School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Runqiang Liu
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection and School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China.
| |
Collapse
|
10
|
Vieira RSF, Venâncio CAS, Félix LM. Behavioral, metabolic, and biochemical alterations caused by an acute stress event in a zebrafish larvae model. FISH PHYSIOLOGY AND BIOCHEMISTRY 2025; 51:25. [PMID: 39673016 PMCID: PMC11645430 DOI: 10.1007/s10695-024-01421-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 11/03/2024] [Indexed: 12/15/2024]
Abstract
Animal welfare is a growing concern in aquaculture practices. Stress induced by handling or transportation can lead to negative impacts on the sector. Zebrafish has raised as an important aquaculture model, but still with few focus on its stress response in early life stages. Therefore, the objective of this study was to improve the evaluation of different markers of the stress response after a stress event in a zebrafish larvae model. Zebrafish larvae (96 hpf) were vortex-stimulated for 1 min at 200 rpm for acute stress induction. After 10 min, 1- and 4-h behavioral larvae outcomes and larvae were sampled to the following quantification: levels of cortisol, lactate, glucose and biochemical biomarkers (reactive oxygen species, superoxide dismutase, catalase, glutathione peroxidase, lipidic oxidation level and protein carbonylation, glutathione s-transferase, acetylcholinesterase, lactate dehydrogenase and ATPase), and the metabolic rate. The cortisol, glucose, and lactate levels had no alterations. At the behavioral level, an increase in the distance swam and in the speed was observed and the metabolic rate also increased according to the behavioral outcomes. The ATPase and GST activity showed a decrease in their activity, probably through osmoregulation changes related to the hypothetic adrenocorticotropic hormone downregulation. Overall, the acute vortex stimulation at low speed induced an early stress response independent of the HPI-cortisol pathway. In addition, this study shows zebrafish early life stages as a sensitive model to acute vortex stimulation, identifying altered parameters which can be used in future work to assess the effect on animal welfare in similar acute situations.
Collapse
Affiliation(s)
- Raquel S F Vieira
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-Os-Montes and Alto Douro (UTAD), Vila Real, Portugal.
- Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-Os-Montes and Alto Douro (UTAD), Vila Real, Portugal.
| | - Carlos A S Venâncio
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-Os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-Os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Department of Animal Science, School of Agrarian and Veterinary Sciences (ECAV), University of Trás-Os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Animal and Veterinary Research Centre (CECAV), University of Trás-Os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Luís M Félix
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-Os-Montes and Alto Douro (UTAD), Vila Real, Portugal.
- Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-Os-Montes and Alto Douro (UTAD), Vila Real, Portugal.
| |
Collapse
|
11
|
Carvalho WFD, Lima EDSP, de Castro WV, Thomé RG, Santos HB. Toxicological effect of acetaminophen, metamizole, and nimesulide cocktail on early development of zebrafish. Daru 2024; 32:585-597. [PMID: 38987508 PMCID: PMC11555034 DOI: 10.1007/s40199-024-00528-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 06/22/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Several countries' most incorrectly discarded medicines are acetaminophen (ACM), metamizole (MTZ), and nimesulide (NMS). These xenobiotics easily reach the aquatic environment; such contamination is very important for the health of humans and other species, yet little explored. OBJECTIVES To evaluate the cocktail effect of ACM, MTZ, and NMS during zebrafish's initial development. METHODS Zebrafish embryos 6-8 h post-fertilization (hpf) were exposed to different concentrations of ACM, MTZ, and NMS, separately, to obtain the 50% lethal concentrations (LC50). Next, the embryos were exposed to distinct concentrations of the cocktail (LC50/2, LC50/5, LC50/10, and LC50/20) in a semi-static system. Samples were analyzed 0, 24, 48, and 96 h after exposure, and the drugs' concentrations in E3 medium were assessed by high-performance liquid chromatography. For embryotoxicity evaluation, the mortality, hatching, and heart rates; total length; and pericardial and yolk sac areas were determined. In addition, body malformations, edemas, presence of pigmentation, and histopathological assessments were also recorded. RESULTS The LC50 values obtained for MTZ, ACM, and NMS were 4.69 mgmL-1, 799.98 μgmL-1, and 0.92 μgmL-1, respectively. No difference was observed between the drugs' nominal and observed concentrations at each time point. The cocktail significantly induced mortality and decreased hatching in the LC50/10, LC50/5, and LC50/2 groups. Additionally, body malformations, pigmentation loss, and yolk sac and pericardial edemas were observed in the cocktail groups. The cocktail groups' larvae had decreased total length and slower heart rates compared to the controls (p < 0.05). The histopathological assessment showed that yolk sac edema promoted severe histological changes in the esophageal-intestine junction and intestine in larvae treated with cocktails. Moreover, PAS-positive structures decreased in the esophageal-intestine junction, intestine, and liver in larvae exposed to pharmaceutical cocktails. CONCLUSION This study's findings suggest the cocktail of ACM, MTZ, and NMS may be hazardous to aquatic organisms in case of environmental contamination.
Collapse
Affiliation(s)
- Wellington Fernandes de Carvalho
- Laboratório de Processamento de Tecidos (Laprotec), Universidade Federal de São João del Rei, Campus Centro Oeste Dona Lindu, Avenida Sebastião Gonçalves Coelho, Divinópolis, MG, CEP, 40035501296, Brazil
| | - Ednalva de Souza Pereira Lima
- Laboratório de Controle de Qualidade e Farmacocinética, Universidade Federal de São João del Rei, Campus Centro Oeste Dona Lindu, Avenida Sebastião Gonçalves Coelho, Divinópolis, MG, CEP, 40035501296, Brazil
| | - Whocely Victor de Castro
- Laboratório de Controle de Qualidade e Farmacocinética, Universidade Federal de São João del Rei, Campus Centro Oeste Dona Lindu, Avenida Sebastião Gonçalves Coelho, Divinópolis, MG, CEP, 40035501296, Brazil
| | - Ralph Gruppi Thomé
- Laboratório de Processamento de Tecidos (Laprotec), Universidade Federal de São João del Rei, Campus Centro Oeste Dona Lindu, Avenida Sebastião Gonçalves Coelho, Divinópolis, MG, CEP, 40035501296, Brazil
| | - Hélio Batista Santos
- Laboratório de Processamento de Tecidos (Laprotec), Universidade Federal de São João del Rei, Campus Centro Oeste Dona Lindu, Avenida Sebastião Gonçalves Coelho, Divinópolis, MG, CEP, 40035501296, Brazil.
| |
Collapse
|
12
|
Dong B. Recent advances in the toxicological effects of difenoconazole: A focus on toxic mechanisms in fish and mammals. CHEMOSPHERE 2024; 368:143751. [PMID: 39547292 DOI: 10.1016/j.chemosphere.2024.143751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/17/2024]
Abstract
The toxicological study of pesticides at sub-lethal and environment-relevant concentrations has become increasingly crucial for human and environmental health. Toxic mechanisms of agrochemicals contribute to discovering green pesticides, assessing the hazards of pesticides comprehensively, and supporting legitimate regulatory decisions. However, the toxicological effects of difenoconazole are not yet fully understood despite being frequently detected in fruits, vegetables, waters, and soils and posing hazards to humans and the environment. This lack of knowledge could lead to flawed risk assessment and administrative oversight. Thus, the review aimed to provide some investigation perspectives for clarifying the toxicological effects of difenoconazole by synthesizing the toxic data of difenoconazole on various organisms, such as bees, Daphnia magna, fish, earthworms, mammals, and plants and summarizing the toxicological mechanisms of difenoconazole, especially in fish and mammals from peer-reviewed publications. Evidence revealed that difenoconazole caused multiple toxicological effects, including developmental toxicity, reproductive toxicity, endocrine disruption effects, neurotoxicity, and transgenerational toxicity. The toxic mechanisms involved in metabolic disturbance, oxidative stress, inflammation, apoptosis, and autophagy by activating reactive oxygen species-mediated signaling pathways and mitochondrial apoptosis routes, disturbing amino acids, lipid, and nucleotide metabolism, and regulating gene transcription and expression in mammals and fish. Based on the review, further studies better focus on the toxic differences of difenoconazole stereoisomers, the toxicological effects of transformation products of difenoconazole, and the mechanism of action of difenoconazole on sex-specific endocrine disruption effects, intestinal damage, and gut dysbacteriosis for its hazard assessment and management synthetically.
Collapse
Affiliation(s)
- Bizhang Dong
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, China.
| |
Collapse
|
13
|
Feng H, Ping K, Yang Y, Liu Z, Song Q, Chen S, Meng Y, He Q, Hu Y, Dong J. Quercetin alleviates difenoconazole-induced growth inhibition in carp through intestinal-brain axis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106066. [PMID: 39277382 DOI: 10.1016/j.pestbp.2024.106066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/01/2024] [Accepted: 07/29/2024] [Indexed: 09/17/2024]
Abstract
Difenoconazole (DIF) is frequently used for the management of fungal infections in fruit and vegetables and excessive residues in the aquatic environment can have adverse effects on fish such as growth inhibition. A treatment based on the dietary additive quercetin (QUE) is a promising approach to positively regulate the state of fish growth. This study focused on whether and how QUE alleviated DIF-induced growth inhibition in fish. In this study, carp were exposed to DIF (0.3906 mg/L) for consecutive 30 d, which showed growth inhibition. Disruption of the intestinal barrier led to elevated levels of intestinal lipopolysaccharide (LPS) and an inflammatory response. Through the intestinal-brain axis, LPS entered the brain where it disrupted the blood-brain barrier, triggered neuroinflammation, caused brain cell apoptosis, and damaged nerves in addition to other things. The dietary supplementation of QUE (400 mg/kg) reduced the levels of LPS in the intestinal and brain, while reducing inflammation and increasing the expression of appetite factors, thereby reducing growth inhibition in carp. This work provided evidence for QUE from the intestinal-brain axis perspective as a potential candidate for alleviating growth inhibition in fish.
Collapse
Affiliation(s)
- Huimiao Feng
- Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Kaixin Ping
- Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yue Yang
- Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zhijun Liu
- Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Qimei Song
- Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Si Chen
- Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yu Meng
- Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Qian He
- Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yuxuan Hu
- Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jingquan Dong
- Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
14
|
Gündüz S, Evren İnanan B. Effects of captan, mancozeb and azoxystrobin fungicides on motility, oxidative stress and fatty acid profiles in rainbow trout (Oncorhynchus mykiss) spermatozoa. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 273:107017. [PMID: 38964174 DOI: 10.1016/j.aquatox.2024.107017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/26/2024] [Accepted: 06/29/2024] [Indexed: 07/06/2024]
Abstract
An in vitro study using rainbow trout spermatozoa was designed to evaluate the toxic effects of different concentrations of captan (CPT), mancozeb (MCZ), and azoxystrobin (AZX) fungicides on motility parameters, lipid peroxidation, SOD activity, total antioxidant capacity (TAC), and DPPH inhibition. Moreover, changes in fatty acids profiles caused by the fungicides were determined for the first time. The results revealed that motility parameters, SOD activities, TAC values, and DPPH inhibitions decreased significantly while lipid peroxidation increased after ≥2 µg/L of CPT, ≥1 µg/L of MCZ, and ≥5 µg/L of AZX incubations for 2 h at 4 °C. Additionally, 10 µg/L CPT, 5 µg/L MCZ, and 200 µg/L AZX reduced motility to the 50 % level. Our results clearly demonstrated significant changes in the fatty acids profiles of spermatozoa exposed to these concentrations of the fungicides. The highest lipid peroxidation and the lowest monounsaturated and polyunsaturated saturated fatty acids (MUFA and PUFA, respectively) were detected in AZX. Even though the susceptibility of spermatozoa to oxidative damage is generally attributed to PUFA contents, the results of this study have represented that MUFA content could play a part in this tendency. Moreover, the lower concentration of MCZ reduced motility to the % 50 level while it deteriorated the fatty acids profile less than did AZX. Overall, the present study demonstrated that the detrimental effects of the fungicides on mitochondrial respiration and related enzymes have more priority than oxidative stress in terms of their toxicities on spermatozoa. It has also been suggested that fish spermatozoa are a good model for determining changes in the fatty acid profiles by fungicides, probably, by other pesticides and environmental contaminants as well.
Collapse
Affiliation(s)
- Sami Gündüz
- Department of Aquaculture and Diseases, Graduate School of Health Sciences, Aksaray University, Aksaray 68100, Türkiye
| | - Burak Evren İnanan
- Department of Aquaculture and Diseases, Graduate School of Health Sciences, Aksaray University, Aksaray 68100, Türkiye; Department of Fisheries and Diseases, Faculty of Veterinary Medicine, Aksaray University, Aksaray 68100, Türkiye.
| |
Collapse
|
15
|
Sanches ALM, da Silva Pinto TJ, Daam MA, Teresa FB, Vieira BH, Reghini MV, de Almeida EA, Espíndola ELG. Isolated and mixed effects of pure and formulated abamectin and difenoconazole on biochemical biomarkers of the gills of Danio rerio. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 273:106978. [PMID: 38870676 DOI: 10.1016/j.aquatox.2024.106978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/15/2024] [Accepted: 05/28/2024] [Indexed: 06/15/2024]
Abstract
Pesticides are released into the environment daily, and their effects on nontarget species in aquatic ecosystems have been widely reported. To evaluate the adverse effects caused in adults of Danio rerio species exposed to the pesticides abamectin, difenoconazole, and their commercial formulations (Kraft 36EC® and Score 250EC®), both isolated and in mixtures, biochemical biomarkers were analyzed in the gills of organisms exposed to sublethal concentrations. To this end, the activities of the enzymes 7-ethoxyresorufin-O-deethylase (EROD), glucuronosyltransferase (UDPGT), glutathione-S-transferase (GST), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), lipid hydroperoxide (LH), and malondialdehyde (MDA), which are indicative of oxidative stress, were measured after 48 h of exposure to the different pesticide treatments. The results showed a significant increase in EROD activity and MDA levels in the gills of fish exposed to the commercial formulation of abamectin. When the fish were exposed to difenoconazole and its commercial formulation, an increase in GST, GPx, and MDA levels and a decrease in GR activity were observed in the gills. Furthermore, the responses of the biomarkers were more pronounced in organisms exposed to mixtures of both active ingredients and commercial formulations. It is concluded that the commercial formulations Kraft 36EC® and Score 250EC® and their mixtures cause significant alterations in the detoxification metabolism of exposed organisms and induce oxidative stress in fish.
Collapse
Affiliation(s)
- Ana Letícia Madeira Sanches
- Department of Aquaculture and Fisheries Resources, São Paulo State University (UNESP), Registro, São Paulo, Brazil; NEEA/CRHEA/SHS, School of Engineering of São Carlos, Av. Trabalhador São Carlense, 400, 13.560-970 São Carlos, Brazil.
| | - Thandy Junio da Silva Pinto
- University of Campinas (UNICAMP), Institute of Chemistry, Campinas, Rua Josué de Castro, s/n - Cidade Universitária, 13083-970, São Paulo, Brazil
| | - Michiel Adriaan Daam
- NEEA/CRHEA/SHS, School of Engineering of São Carlos, Av. Trabalhador São Carlense, 400, 13.560-970 São Carlos, Brazil; CENSE - Center for Environmental and Sustainability Research & CHANGE - Global Change and Sustainability Institute, NOVA School of Science and Technology, NOVA University Lisbon, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Fabrício Barreto Teresa
- UEG State University of Goiás, Unit of Exact and Technological Sciences (UnUCET), Anápolis, Goiás, Brazil
| | - Bruna Horvath Vieira
- NEEA/CRHEA/SHS, School of Engineering of São Carlos, Av. Trabalhador São Carlense, 400, 13.560-970 São Carlos, Brazil
| | - Marina Vanderlei Reghini
- NEEA/CRHEA/SHS, School of Engineering of São Carlos, Av. Trabalhador São Carlense, 400, 13.560-970 São Carlos, Brazil
| | - Eduardo Alves de Almeida
- Department of Natural Science, Fundação Universidade Regional de Blumenau, Blumenau, Santa Catarina, Brazil
| | - Evaldo Luiz Gaeta Espíndola
- NEEA/CRHEA/SHS, School of Engineering of São Carlos, Av. Trabalhador São Carlense, 400, 13.560-970 São Carlos, Brazil
| |
Collapse
|
16
|
Pamanji R, Ragothaman P, Koigoora S, Sivan G, Selvin J. Network analysis of toxic endpoints of fungicides in zebrafish. Toxicol Res (Camb) 2024; 13:tfae087. [PMID: 38845614 PMCID: PMC11150978 DOI: 10.1093/toxres/tfae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/08/2024] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
Zebrafish being the best animal model to study, every attempt has been made to decipher the toxic mechanism of every fungicide of usage and interest. It is important to understand the multiple targets of a toxicant to estimate the toxic potential in its totality. A total of 22 fungicides of different classes like amisulbrom, azoxystrobin, carbendazim, carboxin, chlorothalonil, difenoconazole, etridiazole, flusilazole, fluxapyroxad, hexaconazole, kresoxim methyl, mancozeb, myclobutanil, prochloraz, propiconazole, propineb, pyraclostrobin, tebuconazole, thiophanate-methyl, thiram, trifloxystrobin and ziram were reviewed and analyzed for their multiple explored targets in zebrafish. Toxic end points in zebrafish are highly informative when it comes to network analysis. They provide a window into the molecular and cellular pathways that are affected by a certain toxin. This can then be used to gain insights into the underlying mechanisms of toxicity and to draw conclusions on the potential of a particular compound to induce toxicity. This knowledge can then be used to inform decisions about drug development, environmental regulation, and other areas of research. In addition, the use of zebrafish toxic end points can also be used to better understand the effects of environmental pollutants on ecosystems. By understanding the pathways affected by a given toxin, researchers can determine how pollutants may interact with the environment and how this could lead to health or environmental impacts.
Collapse
Affiliation(s)
- Rajesh Pamanji
- Department of Microbiology, Pondicherry University, R.V. Nagar, Kalapet, Puducherry 605014, India
| | - Prathiviraj Ragothaman
- Department of Microbiology, Pondicherry University, R.V. Nagar, Kalapet, Puducherry 605014, India
| | - Srikanth Koigoora
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research (Deemed to be University), Guntur -Tenali Rd, Vadlamudi 522213, AP, India
| | - Gisha Sivan
- Division of Medical Research, SRM SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, Potheri, SRM Nagar, Kattankulathur, Chennai 603203, India
| | - Joseph Selvin
- Department of Microbiology, Pondicherry University, R.V. Nagar, Kalapet, Puducherry 605014, India
| |
Collapse
|
17
|
Zhao X, Wang B, Song X, He L, Zhang W, Qian Y, Mu X, Qiu J. Synergistic developmental effects of zebrafish exposed to combined perfluorooctanoic acid and atrazine. CHEMOSPHERE 2024; 358:142080. [PMID: 38642773 DOI: 10.1016/j.chemosphere.2024.142080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/22/2024]
Abstract
Perfluorooctanoic acid (PFOA) and atrazine are two endocrine disruptors that are widely found in waters. Negative effects of PFOA and atrazine have been studied individually, but few data have focused on their combined effects. Here, zebrafish embryos were used as model to investigate the combined toxicity of PFOA and atrazine. The acute toxicity of atrazine (11.9 mg/L) to zebrafish embryos was much higher than that of perfluorooctanoic acid (224.6 mg/L) as shown by the 120h-LC50 value. Developmental effects, including delayed yolk sac absorption, spinal curvature, and liver abnormalities, were observed in both one- and two-component exposures. Notably, the rate of embryonic malformations in the co-exposure group was more than twice as high as that of single component exposure in the concentration range of 1/8-1/2 EC50, which indicated a synergistic effect of the binary mixture. The synergistic effect of PFOA-atrazine was further validated by combinatorial index (CI) modeling. In addition, changes of amino acid metabolites, reactive oxygen species and superoxide dismutase indicated that oxidative stress might be the main pathway for enhanced toxicity under co-exposure condition. Overall, co-exposure of PFOA and atrazine resulted in stronger developmental effects and more complicated amino acid metabolic response toward zebrafish, compared with single component exposure.
Collapse
Affiliation(s)
- Xiaoyu Zhao
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Beinan Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Xiao Song
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Linjuan He
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Wei Zhang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Yongzhong Qian
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Xiyan Mu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China.
| | - Jing Qiu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China.
| |
Collapse
|
18
|
Zhang M, Li H, Guo M, Zhao F, Xie Y, Zhang Z, Lv J, Qiu L. Vitamin E alleviates pyraclostrobin-induced toxicity in zebrafish (Danio rerio) and its potential mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171219. [PMID: 38408665 DOI: 10.1016/j.scitotenv.2024.171219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/17/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
Strobilurin fungicides (SFs) are commonly used in agriculture worldwide and frequently detected in aquatic environments. High toxicity of SFs to aquatic organisms has caused great concerns. To explore whether vitamin E (VE) can relieve the toxicity caused by pyraclostrobin (PY), zebrafish were exposed to PY with or without VE supplementation. When co-exposure with VE (20 μM), the 96 h-LC50 values of PY to zebrafish embryos, adult, and the 24 h-LC50 value of PY to larvae increased from 43.94, 58.36 and 38.16 μg/L to 64.72, 108.62 and 72.78 μg/L, respectively, indicating that VE significantly decreased the toxicity of PY to zebrafish at different life stages. In addition, VE alleviated the deformity symptoms (pericardial edema and brain damage), reduced speed and movement distance, and decreased heart rate caused by 40 μg/L PY in zebrafish larvae. Co-exposure of PY with VE significantly reduced PY-caused larval oxidative stress and immunotoxicity via increasing the activities of superoxide dismutase, catalase and level of glutathione, as well as reducing the malondialdehyde production and the expression levels of Nrf2, Ucp2, IL-8, IFN and CXCL-C1C. Meanwhile, the expression levels of gria4a and cacng4b genes, which were inhibited by PY, were significantly up-regulated after co-exposure of PY with VE. Moreover, co-exposure with VE significantly reversed the increased mitochondrial DNA copies and reduced ATP content caused by PY in larvae, but had no effect on the expression of cox4i1l and activity of complex III that reduced by PY, suggesting VE can partially improve PY-induced mitochondrial dysfunction. In conclusion, the potential mechanisms of VE alleviating PY-induced toxicity may be ascribed to decreasing the oxidative stress level, restoring the functions of heart and nervous system, and improving the immunity and mitochondrial function in zebrafish.
Collapse
Affiliation(s)
- Mengna Zhang
- College of Science, China Agricultural University, Beijing 100193, China
| | - Hui Li
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China
| | - Mengyu Guo
- College of Science, China Agricultural University, Beijing 100193, China
| | - Feng Zhao
- College of Agriculture, Guangxi University, Nanning 530004, China
| | - Yao Xie
- College of Science, China Agricultural University, Beijing 100193, China
| | - Zhongyu Zhang
- College of Science, China Agricultural University, Beijing 100193, China
| | - Jingshu Lv
- College of Science, China Agricultural University, Beijing 100193, China
| | - Lihong Qiu
- College of Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
19
|
Sun J, Xiao P, Yin X, Zhu G, Brock TCM. Aquatic and sediment ecotoxicity data of difenoconazole and its potential environmental risks in ponds bordering rice paddies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116135. [PMID: 38402793 DOI: 10.1016/j.ecoenv.2024.116135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/30/2024] [Accepted: 02/18/2024] [Indexed: 02/27/2024]
Abstract
Difenoconazole has a widespread agricultural use to control fungal diseases in crops, including rice. In edge-of-field surface waters the residues of this lipophilic fungicide may be toxic to both pelagic and benthic organisms. To allow an effect assessment we mined the regulatory and open literature for aquatic toxicity data. Since published sediment toxicity data were scarce we conducted 28 d sediment-spiked toxicity test with 8 species of benthic macroinvertebrates. Ecotoxicological threshold levels for effects were assessed by applying the species sensitivity distribution approach. Based on short-term L(E)C50's for aquatic organisms from water-only tests an acute Hazardous Concentration to 5% of the species (HC5) of 100 µg difenoconazole/L was obtained, while the HC5 based on chronic NOEC values was a factor of 104 lower (0.96 µg difenoconazole/L). For benthic macroinvertebrates the chronic HC5, based on 28d-L(E)C10 values, was 0.82 mg difenoconazole/kg dry weight sediment. To allow a risk assessment for water- and sediment-dwelling organisms, exposure concentrations were predicted for the water and sediment compartment of an edge-of-field pond bordering rice paddies treated with difenoconazole using the Chinese Top-Rice modelling approach, the Chinese Nanchang exposure scenario and the Equilibrium Partitioning theory. It appeared that in the vast majority of the 20 climate years simulated, potential risks to aquatic and sediment organisms cannot be excluded. Although the HC5 values based on laboratory toxicity data provide one line of evidence only, our evaluation suggests population- and community-level effects on these organisms due to chronic risks in particular.
Collapse
Affiliation(s)
- Jian Sun
- Zhe Jiang Agriculture and Forestry University, College of Advanced Agriculture Science, 666 Wu Su Street, Lin'an, Hangzhou, Zhe Jiang 311300, China
| | - PengFei Xiao
- JiYang College of Zhe Jiang Agriculture and Forestry University, 77 Pu Yang road, Zhu Ji, Hang Zhou 311800, China
| | - XiaoHui Yin
- Zhe Jiang Agriculture and Forestry University, College of Advanced Agriculture Science, 666 Wu Su Street, Lin'an, Hangzhou, Zhe Jiang 311300, China.
| | - GuoNian Zhu
- Zhe Jiang Agriculture and Forestry University, College of Advanced Agriculture Science, 666 Wu Su Street, Lin'an, Hangzhou, Zhe Jiang 311300, China
| | - Theo C M Brock
- Wageningen Environmental Research, Wageningen University and Research, P.O. Box 47, Wageningen 6700 AA, the Netherlands
| |
Collapse
|
20
|
Vieira RSF, Venâncio C, Félix L. Cortisol Quantification for Assessing Stress-Induced Changes in Zebrafish Larvae. Methods Mol Biol 2024; 2753:483-493. [PMID: 38285361 DOI: 10.1007/978-1-0716-3625-1_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
The stress response, mainly mediated by cortisol, plays a critical role in the regulation of physiological and behavioral homeostasis through a variety of mechanisms. Different aquatic animal models have been widely employed to understand the pathobiology of stress and stress-related brain disorders. The early life stress can affect the hypothalamic-pituitary-interrenal (HPI) axis and induce cellular and molecular impairments that impact the brain functioning later in life. However, these alterations have been poorly explored mainly due to the lack of suitable models. In this chapter, the vortex flow stimulation, an acute stress that causes a forced swimming and activates the HPI axis, is described and its correlations with behavioral outputs reported. To this end, the early life stages of zebrafish are used as animal models for modeling stress disorders experimentally. The behavioral despair model can be employed as an initial screening tool for assessing neural circuit activation and motor alterations. Taken together, the implementation of this strategy in this animal model allows the analysis of stress responses in a simple manner and its correlation with neural circuitries and motor alterations.
Collapse
Affiliation(s)
- Raquel S F Vieira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), UTAD, Vila Real, Portugal.
| | - Carlos Venâncio
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), UTAD, Vila Real, Portugal
- Department of Animal Science, School of Agrarian and Veterinary Sciences (ECAV), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Luís Félix
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), UTAD, Vila Real, Portugal
| |
Collapse
|
21
|
Marghany F, Ayobahan SU, Salinas G, Schäfers C, Hollert H, Eilebrecht S. Transcriptomic and proteomic fingerprints induced by the fungicides difenoconazole and metalaxyl in zebrafish embryos. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 105:104348. [PMID: 38135202 DOI: 10.1016/j.etap.2023.104348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
In this study, we applied OMICs analysis to identify substance-specific biomarker candidates, which may act as early indicators for specific ecotoxic modes of actions (MoA). Zebrafish embryos were exposed to two sublethal concentrations of difenoconazole and metalaxyl according to a modified protocol of the OECD test guideline No. 236. At the end of exposure, total RNA and protein were extracted, followed by transcriptomics and proteomics analysis. The analysis of significantly differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) revealed a positive exposure-response correlation in all test concentrations for both fungicides. Similarly, also a positive correlation between the obtained transcriptome and proteome data was observed, highlighting the robustness of our approach. From the detected DEGs, candidate biomarkers specific for difenoconazole (apoa1b, gatm, mylpfb and acta1b) and metalaxyl (lgals2b, abat, fabp1b.1 and myh9a) were selected, and their biological functions were discussed to assess the predictive potential.
Collapse
Affiliation(s)
- Fatma Marghany
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany; Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University Frankfurt, Frankfurt, Germany; Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, Egypt
| | - Steve U Ayobahan
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Gabriela Salinas
- NGS-Services for Integrative Genomics, University of Göttingen, Göttingen, Germany
| | - Christoph Schäfers
- Department Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Henner Hollert
- Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University Frankfurt, Frankfurt, Germany; Department Environmental Media Related Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Sebastian Eilebrecht
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany.
| |
Collapse
|
22
|
Lu J, Zhang C, Xu W, Chen W, Tao L, Li Z, Cheng J, Zhang Y. Developmental toxicity and estrogenicity of glyphosate in zebrafish in vivo and in silico studies. CHEMOSPHERE 2023; 343:140275. [PMID: 37758082 DOI: 10.1016/j.chemosphere.2023.140275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/17/2023] [Accepted: 09/23/2023] [Indexed: 09/30/2023]
Abstract
As the most heavily used herbicide globally, glyphosate (GLY) has been detected in a variety of environments and has raised concerns about its ecological and health effects. There is debate as to whether GLY may disrupt the endocrine system. Here, we investigated the developmental toxicity of GLY in zebrafish based on deep learning-enabled morphometric analysis (DLMA). In addition, the estrogenic activity of GLY was assessed by endocrine disruption prediction, docking study and in vivo experiments. Results showed that exposure to environmental concentrations of GLY negatively impacted zebrafish development, causing yolk edema and pericardial edema. Endocrine disruption prediction suggested that GLY may target estrogen receptors (ER). Molecular docking analysis revealed binding of GLY to three zebrafish ER. In vivo zebrafish experiment, GLY enhanced the protein levels of ERα and the mRNA levels of cyp19a, HSD17b1, vtg1, vtg2, esr1, esr2a and esr2b. These results suggest that GLY may act as an endocrine disruptor by targeting ER, which warrants further attention for its potential toxicity to aquatic animals.
Collapse
Affiliation(s)
- Jian Lu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Cheng Zhang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, 75390, United States
| | - Wenping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Weidong Chen
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Liming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
23
|
Mu X, Liu Z, Zhao X, Chen L, Jia Q, Wang C, Li T, Guo Y, Qiu J, Qian Y. Bisphenol analogues induced social defects and neural impairment in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:166307. [PMID: 37586522 DOI: 10.1016/j.scitotenv.2023.166307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/24/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
There is evidence in humans that endocrine disrupting chemicals exposure, such as bisphenol A (BPA), is tied to social behavior impacts when evaluated in early life stage. However, the potential social impact of BPA alternatives and its association with central nervous system (CNS) is poorly understood. Here, we performed behavioral test for zebrafish that are continuously exposed to environmental relevant concentrations (5 and 500 ng/L) of BPA, BPF, and BPAF since embryonic stage. Surprisingly, significant social behavior defects, including increased social distance and decreased contact time, were identified in zebrafish treated by 500 ng/L BPAF and BPA. These behavioral changes were accompanied by apparent histological injury, microglia activation, enhanced apoptosis and neuron loss in brain. The gut-brain transcriptional profile showed that genes involved in neuronal development pathways were up-regulated in all bisphenol analogs treatments, indicating a protective phenotype of CNS; however, these pathways were inhibited in gut. Besides, a variety of key regulators in the gut-brain regulation were identified based on protein interaction prediction, such as rac1-limk1, insrb1 and fosab. These findings implicated that the existence of bisphenol analogues in water would influence the social life of fish, and revealed a potential role of gut-brain transcriptional alteration in mediating this effect.
Collapse
Affiliation(s)
- Xiyan Mu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Zaiteng Liu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Xiaoyu Zhao
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Lu Chen
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Qi Jia
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Chengju Wang
- College of Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Tiejun Li
- Zhejiang Marine Fisheries Research Institute, China
| | - Yuanming Guo
- Zhejiang Marine Fisheries Research Institute, China
| | - Jing Qiu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China.
| | - Yongzhong Qian
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| |
Collapse
|
24
|
Zhang Y, Li X, Liu Z, Zhao X, Chen L, Hao G, Ye X, Meng S, Xiao G, Mu J, Mu X, Qiu J, Qian Y. The neurobehavioral impacts of typical antibiotics toward zebrafish larvae. CHEMOSPHERE 2023; 340:139829. [PMID: 37598953 DOI: 10.1016/j.chemosphere.2023.139829] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/26/2023] [Accepted: 08/13/2023] [Indexed: 08/22/2023]
Abstract
Due to the widely usage in livestock, aquaculture and clinics, antibiotic residues are existed in aqueous environments and their potential toxicity to aquatic organisms is concerning. Here, we used zebrafish as the model to investigate the neurotoxicity and involved mechanism of seven antibiotics that were frequently detected in surface waters. The results revealed that the short-term exposure to clarithromycin (CLA), chlortetracycline (CTC) and roxithromycin (ROX) induced behavioral effects, with effective concentration of 1 μg/L (CTC and ROX) and 100 μg/L (CLA, CTC and ROX) respectively. A significant decrease in the travel distance and velocity as well as an increase in turn angle was measured. TUNEL assay identified increased cell apoptosis in brain sections of larvae exposed to three neurotoxic antibiotics, which raised the possibility that the behavioral symptoms were associated with neural damage. Transcriptome sequencing showed that the three antibiotics could affect the nervous system of zebrafish including the alteration of synaptogenesis and neurotransmission. Additionally, ROX and CTC affected pathways involved in mitochondrial stress response and endocrine system in zebrafish larvae. Besides, BDNF, ASCL1, and CREBBP are potential upstream regulatory factors that mediated these impacts. These findings indicated that exposure of CTC, ROX and CLA may cause abnormal behavior toward zebrafish larvae under environmental relevant concentration and revealed the potential role of neural cell apoptosis and synaptogenesis signaling in mediating this effect.
Collapse
Affiliation(s)
- Yining Zhang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xue Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China
| | - Zaiteng Liu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoyu Zhao
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lu Chen
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guijie Hao
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs; Key Laboratory of Fish Health and Nutrition of Zhejiang Province; Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Xueping Ye
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs; Key Laboratory of Fish Health and Nutrition of Zhejiang Province; Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Shunlong Meng
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Jiangsu Province, China.
| | - Guohua Xiao
- Hebei Ocean and Fisheries Science Research Institute, Qinhuangdao, China; Hebei Marine Living Resources and Environment Key Laboratory, Qinhuangdao, China
| | - Jiandong Mu
- Hebei Ocean and Fisheries Science Research Institute, Qinhuangdao, China; Hebei Marine Living Resources and Environment Key Laboratory, Qinhuangdao, China
| | - Xiyan Mu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Jing Qiu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongzhong Qian
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
25
|
Chowdhary AB, Dutta R, Singh J, Tikoria R, Quadar J, Angmo D, Singh A, Singh S, Vig AP. Physiological and behavioral assessment of Metaphire posthuma in response to clothianidin insecticide: Insights from molecular and biochemical analysis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105639. [PMID: 37945220 DOI: 10.1016/j.pestbp.2023.105639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 11/12/2023]
Abstract
In the present study, Clothianidin [(E) - 1-(2 - chloro-1,3 - thiazol - 5-ylmethyl) - 3-methyl - 2- nitroguanidine] (CLO) was selected as a soil pollutant and earthworm was employed as a test organism. The various responses like biochemical and detoxification process of earthworm Metaphire posthuma towards Clothianidin at lethal and sublethal doses were studied using OECD-standardized toxicological guidelines. The present study examined the toxicity of CLO to earthworms after 28 days of exposure at conc. 0, 1.5, 3, 6, 12 and 24 mg kg-1 in a soil mixture. Biochemical markers including Guaiacol peroxidase (POD), Superoxide dismutase (SOD), Catalase (CAT), Glutathione S-transferase (GST) and content of Malondialdehyde (MDA) in earthworms were measured. Acute toxicity tests revealed that CLO caused a concentration-dependent increase in mortality with LC50 (Lethal concentration) values of 10.960 and 8.201 mg kg-1 for 7th and 14th day respectively. The earthworms were exposed to CLO contaminated soil for 56 days and reflecting the significant decrease in earthworm growth, cocoon and hatchling production. Moreover, enzyme activities such as CAT, SOD, POD and MDA content were significantly enhanced with the increased concentration and exposure period of CLO. Molecular docking studies indicated that CLO primarily interacts to the junction site of SOD and in active centres of CAT, POD and GST. As a result, the current findings imply that the sub chronic CLO exposure can induce variations in physiology and avoidance behaviour of earthworms, oxidative stress as well as alterations in enzyme activities.
Collapse
Affiliation(s)
- Anu Bala Chowdhary
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University Amritsar, Punjab 143005, India.
| | - Rahil Dutta
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University Amritsar, Punjab 143005, India
| | - Jaswinder Singh
- Department of Zoology, Khalsa College Amritsar, Punjab 143002, India.
| | - Raman Tikoria
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab 143005, India; Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Punjab 144411, India
| | - Jahangeer Quadar
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University Amritsar, Punjab 143005, India
| | - Deachen Angmo
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University Amritsar, Punjab 143005, India
| | - Atamjit Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Sharanpreet Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University Amritsar, Punjab 143005, India
| | - Adarsh Pal Vig
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University Amritsar, Punjab 143005, India.
| |
Collapse
|
26
|
Reis CG, Bastos LM, Chitolina R, Gallas-Lopes M, Zanona QK, Becker SZ, Herrmann AP, Piato A. Neurobehavioral effects of fungicides in zebrafish: a systematic review and meta-analysis. Sci Rep 2023; 13:18142. [PMID: 37875532 PMCID: PMC10598008 DOI: 10.1038/s41598-023-45350-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/18/2023] [Indexed: 10/26/2023] Open
Abstract
Pesticides are widely used in global agriculture to achieve high productivity levels. Among them, fungicides are specifically designed to inhibit fungal growth in crops and seeds. However, their application often results in environmental contamination, as these chemicals can persistently be detected in surface waters. This poses a potential threat to non-target organisms, including humans, that inhabit the affected ecosystems. In toxicologic research, the zebrafish (Danio rerio) is the most commonly used fish species to assess the potential effects of fungicide exposure, and numerous and sometimes conflicting findings have been reported. To address this, we conducted a systematic review and meta-analysis focusing on the neurobehavioral effects of fungicides in zebrafish. Our search encompassed three databases (PubMed, Scopus, and Web of Science), and the screening process followed predefined inclusion/exclusion criteria. We extracted qualitative and quantitative data, as well as assessed reporting quality, from 60 included studies. Meta-analyses were performed for the outcomes of distance traveled in larvae and adults and spontaneous movements in embryos. The results revealed a significant overall effect of fungicide exposure on distance, with a lower distance traveled in the exposed versus control group. No significant effect was observed for spontaneous movements. The overall heterogeneity was high for distance and moderate for spontaneous movements. The poor reporting practices in the field hindered a critical evaluation of the studies. Nevertheless, a sensitivity analysis did not identify any studies skewing the meta-analyses. This review underscores the necessity for better-designed and reported experiments in this field.
Collapse
Affiliation(s)
- Carlos G Reis
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Leonardo M Bastos
- Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Rafael Chitolina
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Matheus Gallas-Lopes
- Programa de Pós-Graduação em Farmacologia e Terapêutica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Laboratório de Neurobiologia e Psicofarmacologia Experimental (PsychoLab), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Brazilian Reproducibility Initiative in Preclinical Systematic Review and Meta-Analysis (BRISA) Collaboration, Rio de Janeiro, Brazil
| | - Querusche K Zanona
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Laboratório de Neurofisiologia e Neuroquímica da Excitabilidade Neuronal e Plasticidade Sináptica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Sofia Z Becker
- Programa de Pós-Graduação em Farmacologia e Terapêutica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Laboratório de Neurobiologia e Psicofarmacologia Experimental (PsychoLab), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Ana P Herrmann
- Programa de Pós-Graduação em Farmacologia e Terapêutica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Laboratório de Neurobiologia e Psicofarmacologia Experimental (PsychoLab), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Brazilian Reproducibility Initiative in Preclinical Systematic Review and Meta-Analysis (BRISA) Collaboration, Rio de Janeiro, Brazil
| | - Angelo Piato
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
- Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
- Programa de Pós-Graduação em Farmacologia e Terapêutica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
27
|
Paganotto Leandro L, Vitória Takemura Mariano M, Kich Gomes K, Beatriz Dos Santos A, Sousa Dos Anjos J, Rodrigues de Carvalho N, Eugênio Medina Nunes M, Farina M, Posser T, Luis Franco J. Permissible concentration of mancozeb in Brazilian drinking water elicits oxidative stress and bioenergetic impairments in embryonic zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122013. [PMID: 37369298 DOI: 10.1016/j.envpol.2023.122013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/03/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023]
Abstract
Mancozeb (MZ) is widely used as a fungicide in Brazil due to its effectiveness in combating fungal infections in plantations. However, its toxicity to non-target organisms, including aquatic organisms, has been reported in the literature. Recently, Brazilian legislation was updated to allow a concentration of 8 μg/L of MZ in drinking water (Ordinance GM/MS nº 888, of May 4, 2021). However, the safety of this concentration for aquatic organisms has not yet been put to the test. To address this gap, we conducted a study using zebrafish (Danio rerio) embryos at 4 hpf exposed to MZ at the concentration allowed by law, as well as slightly higher sublethal concentrations (24, 72, and 180 μg/L), alongside a control group. We evaluated various morphophysiological markers of toxicity, including survival, spontaneous movements, heart rate, hatching rate, body axis distortion, total body length, total yolk sac area, and total eye area. Additionally, we measured biochemical biomarkers such as reactive oxygen species (ROS) levels, lipid peroxidation, non-protein thiols (NPSH), and mitochondrial bioenergetic parameters. Our results showed that the concentration of 8 μg/L, currently permitted in drinking water according to Brazilian legislation, increased ROS production levels and caused alterations in mitochondrial physiology. Among the markers assessed, mitochondrial bioenergetic function appeared to be the most sensitive indicator of MZ embryotoxicity, as a decrease in complex I activity was observed at concentrations of 8 and 180 μg/L. Furthermore, concentrations higher than 8 μg/L impaired morphophysiological markers. Based on these findings, we can infer that the concentration of MZ allowed in drinking water by Brazilian environmental legislation is not safe for aquatic organisms. Our study provides evidence that this fungicide is a potent embryotoxic agent, highlighting the potential risks associated with its exposure.
Collapse
Affiliation(s)
- Luana Paganotto Leandro
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Federal University of Pampa, São Gabriel, RS, 97307-020, Brazil; Department of Molecular Biology and Biochemistry. Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Maria Vitória Takemura Mariano
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Federal University of Pampa, São Gabriel, RS, 97307-020, Brazil
| | - Karen Kich Gomes
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Federal University of Pampa, São Gabriel, RS, 97307-020, Brazil
| | - Ana Beatriz Dos Santos
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Federal University of Pampa, São Gabriel, RS, 97307-020, Brazil
| | - Jaciana Sousa Dos Anjos
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Federal University of Pampa, São Gabriel, RS, 97307-020, Brazil
| | | | - Mauro Eugênio Medina Nunes
- Department of Genetics and Exercise Metabolism. Graduate Program in Molecular Biology, Federal University of Sao Paulo, 1500 Sena Madureira St, São Paulo, SP, 04021-001, Brazil
| | - Marcelo Farina
- Department of Biochemistry, Center for Biological Sciences, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Thais Posser
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Federal University of Pampa, São Gabriel, RS, 97307-020, Brazil
| | - Jeferson Luis Franco
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Federal University of Pampa, São Gabriel, RS, 97307-020, Brazil.
| |
Collapse
|
28
|
Ma H, Meng Z, Zhou L, Feng H, Wu X, Xin Y, Dong J, Li Y. Ferulic acid attenuated difenoconazole-induced immunotoxicity in carp by inhibiting TRAF/TAK1/NF-κB, Nrf2 and p53 pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115339. [PMID: 37572622 DOI: 10.1016/j.ecoenv.2023.115339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/20/2023] [Accepted: 08/04/2023] [Indexed: 08/14/2023]
Abstract
Difenoconazole (DFZ) is a classical triazole fungicide that causes immunosuppression in non-target organisms. Ferulic acid (FA) is a polyphenolic molecule found in nature that has antioxidant and anti-inflammatory activities. The purpose of this investigation was to see if FA could prevent DFZ-induced immunosuppression and to identify the potential mechanisms. Carp were exposed to 1/10 LC50 of DFZ as well as fed normal feed or feed containing dietary additive FA for 30 d. It was found that DFZ-induced immunosuppression could be improved by FA, as evidenced by upregulation of Hb, C3 and IgM and downregulation of LDH. It was then investigated that FA could ameliorate DFZ-induced splenic injury through p53-mediated apoptosis. At the same time, enhancing the levels of CAT, GSH and T-AOC in spleen and transcription levels Nrf2 signaling pathway related genes indicated that FA reduced oxidative damage caused by DFZ by blocking the Nrf2 signaling pathway. In addition, FA inhibited the inflammatory response triggered by TRAF/TAK1/NF-κB signaling pathway, downregulated the transcript levels of pro-inflammatory factors (il-1β, tnf-α, il-6) and the level of NLRP3 inflammasome (NRLP3, ASC, Caspase 1), and upregulated the transcript levels of anti-inflammatory factors (tgf-β1, il-10). In conclusion, the above results suggested that FA mediated TRAF/TAK1/NF-κB, Nrf2, and p53 pathways to attenuate DFZ-induced inflammation, oxidative stress, and apoptosis thereby enhancing the immune capacity of carp.
Collapse
Affiliation(s)
- Haoming Ma
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China; School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Zihui Meng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Li Zhou
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Huimiao Feng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xinyu Wu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yue Xin
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jingquan Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Yanan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
29
|
Harshavarthini M, Pathan MA, Poojary N, Kumar S, Gurphale N, Varshini SVS, Kumari R, Nagpure NS. Assessment of toxicity potential of neglected Mithi River water from Mumbai megacity, India, in zebrafish using embryotoxicity, teratogenicity, and genotoxicity biomarkers. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:950. [PMID: 37450229 DOI: 10.1007/s10661-023-11542-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
The Mithi River begins at Vihar Lake and flows through the industrial hub of the city of Mumbai, India, and merges with the Arabian Sea at Mahim Creek. The current study was carried out to assess the ecotoxicological effects of the Mithi River surface water in zebrafish (Danio rerio) embryos. Water samples were collected from ten sampling sites (S1 to S10) located along the course of the Mithi River. The toxicity of water samples was assessed using a zebrafish embryo toxicity test (ZFET). Water samples were diluted from all sites at 1:0, 1:2, 1:4, 1:8, 1:16, 1:32, 1:64, and 1:128 times. The lowest and highest LDil 20 values for 96 h were estimated as 9.16 and 74.18 respectively for the S2 and S5 sites. The results of embryotoxicity and teratogenicity assays indicated a significant difference (p < 0.0001) between embryos exposed to control and sampling sites (except S1) for various endpoints such as mortality, egg coagulation, pericardial edema, yolk sac edema, tail bend, and skeletal deformities. The histopathological analysis revealed various lesions, ascertaining the toxic effects of water samples. The comet assay revealed significantly higher DNA damage (except S1) in embryos exposed to sites S5 and S6 with OTM values of 4.46 and 2.48 respectively. The results indicated that the Mithi River is polluted with maximum pollution load at the middle stretches. The study further indicated that the pollutants in the Mithi River (except S1) could potentially be hazardous to the aquatic organisms; therefore, continuous biomonitoring of the river is needed for its revival.
Collapse
Affiliation(s)
- M Harshavarthini
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Fisheries Education, Mumbai, 400061, India
| | - Mujahidkhan A Pathan
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Fisheries Education, Mumbai, 400061, India
| | - Nalini Poojary
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Fisheries Education, Mumbai, 400061, India
| | - Saurav Kumar
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Fisheries Education, Mumbai, 400061, India
| | - Nikita Gurphale
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Fisheries Education, Mumbai, 400061, India
| | - S V Sai Varshini
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Fisheries Education, Mumbai, 400061, India
| | - Riya Kumari
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Fisheries Education, Mumbai, 400061, India
| | - N S Nagpure
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Fisheries Education, Mumbai, 400061, India.
| |
Collapse
|
30
|
Ma L, Yin Z, Xie Q, Xu Y, Chen Y, Huang Y, Li Z, Zhu X, Zhao Y, Wen W, Xu H, Wu X. Metabolomics and mass spectrometry imaging reveal the chronic toxicity of indoxacarb to adult zebrafish (Danio rerio) livers. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131304. [PMID: 37043861 DOI: 10.1016/j.jhazmat.2023.131304] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 05/03/2023]
Abstract
Indoxacarb is a widely used insecticide in the prevention and control of agricultural pests, whereas its negative effects on non-target organisms remain largely unclear. Herein, we demonstrated the integrated metabolomics and mass spectrometry imaging (MSI) methods to investigate the chronic exposure toxicity of indoxacarb at environmentally relevant concentrations in adult zebrafish (Danio rerio) liver. Results showed that movement behaviors of zebrafish can be affected and catalase (CAT), glutamic oxalacetic transaminase (GOT), and glutamic pyruvic transaminase (GPT) activities were significantly increased after indoxacarb exposure for 28 days. Pathological analysis of zebrafish livers also showed that cavitation and pathological reactions occur. Metabolomics results indicated that metabolic pathways of zebrafish liver could be significantly affected by indoxacarb, such as tricarboxylic acid (TCA) cycle and various amino acid metabolisms. MSI results revealed the spatial differentiation of crucial metabolites involved in these metabolic pathways within zebrafish liver. Taken together, these integrated MSI and metabolomics results revealed that the toxicity of indoxacarb arises from metabolic pathways disturbance, which resulted in the decrease of liver detoxification ability. These findings will promote the current understanding of pesticide risks and metabolic disorders in zebrafish liver, which provide new insights into the environmental risk assessment of insecticides on aquatic organisms.
Collapse
Affiliation(s)
- Lianlian Ma
- National Key Laboratory of Green Pesticide and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Zhibin Yin
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Qingrong Xie
- National Key Laboratory of Green Pesticide and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Yizhu Xu
- National Key Laboratory of Green Pesticide and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Yingying Chen
- National Key Laboratory of Green Pesticide and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Yudi Huang
- National Key Laboratory of Green Pesticide and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Zhen Li
- National Key Laboratory of Green Pesticide and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Xinhai Zhu
- Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou 510275, China
| | - Yuhui Zhao
- National Key Laboratory of Green Pesticide and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Wenlin Wen
- National Key Laboratory of Green Pesticide and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Hanhong Xu
- National Key Laboratory of Green Pesticide and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China.
| | - Xinzhou Wu
- National Key Laboratory of Green Pesticide and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
31
|
Thrikawala S, Mesmar F, Bhattacharya B, Muhsen M, Mukhopadhyay S, Flores S, Upadhyay S, Vergara L, Gustafsson JÅ, Williams C, Bondesson M. Triazole fungicides induce adipogenesis and repress osteoblastogenesis in zebrafish. Toxicol Sci 2023; 193:119-130. [PMID: 36951524 PMCID: PMC10230286 DOI: 10.1093/toxsci/kfad031] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023] Open
Abstract
Triazoles are a major group of azole fungicides commonly used in agriculture, and veterinary and human medicine. Maternal exposure to certain triazole antifungal medication causes congenital malformations, including skeletal malformations. We hypothesized that triazoles used as pesticides in agriculture also pose a risk of causing skeletal malformations in developing embryos. In this study, teratogenic effects of three commonly used triazoles, cyproconazole, paclobutrazol, and triadimenol, were investigated in zebrafish, Danio rerio. Exposure to the triazole fungicides caused bone and cartilage malformations in developing zebrafish larvae. Data from whole-embryo transcriptomics with cyproconazole suggested that exposure to this compound induces adipogenesis while repressing skeletal development. Confirming this finding, the expression of selected bone and cartilage marker genes were significantly downregulated with triazoles exposure as determined by quantitative PCR. The expression of selected adipogenic genes was upregulated by the triazoles. Furthermore, exposure to each of the three triazoles induced adipogenesis and lipid droplet formation in vitro in 3T3-L1 pre-adipocyte cells. In vivo in zebrafish larvae, cyproconazole exposure caused lipid accumulation. These results suggest that exposure to triazoles promotes adipogenesis at the expense of skeletal development, and thus they expand the chemical group of bona fide bone to fat switchers.
Collapse
Affiliation(s)
- Savini Thrikawala
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Fahmi Mesmar
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, Indiana, USA
| | - Beas Bhattacharya
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, Indiana, USA
| | - Maram Muhsen
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, Indiana, USA
| | - Srijita Mukhopadhyay
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas, USA
| | - Sara Flores
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas, USA
| | | | - Leoncio Vergara
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, USA
| | - Jan-Åke Gustafsson
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas, USA
| | - Cecilia Williams
- Science for Life Laboratory, Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), KTH Royal Institute of Technology, Solna, Sweden
| | - Maria Bondesson
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
32
|
Chang Y, Fu H, Yu H, Mao L, Zhang L, Zhang Y, Zhu L, Yang J, Liu X, Jiang H. Developmental defects and potential mechanisms in F1 generation of parents exposed to difenoconazole at different life stages of zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163529. [PMID: 37068689 DOI: 10.1016/j.scitotenv.2023.163529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 05/05/2023]
Abstract
As a typical triazole fungicide, difenoconazole is extensively used to control plant diseases; however, its residue in environmental waters poses a risk to aquatic organisms. In this study, we investigated the acute toxicity of different life stages and sub-lethal toxicity in embryonic yolk sac stage of difenoconazole to zebrafish, and the developmental toxicity in F1 generation of parents exposed to difenoconazole at different life stages of zebrafish. Furthermore, we used transcriptomics to explore the potential mechanisms of difenoconazole on the F1 larvae of parents exposed to the chemical at the embryonic stage. The results of this study showed that developmental defects were observed in the F1 embryo/larvae of parents exposed to 3, 30, and 300 μg/L of difenoconazole at different (embryo, larval, juvenile, and adult) life stages, and exposure to difenoconazole at the embryonic stage caused more severe developmental toxicity than those at other life stages. Developmental defects (malformation, inhibition of heartbeat and body length) were observed in the F1 embryos and larvae of parents exposed to difenoconazole at the embryonic stage. In addition, the total cholesterol and triglyceride contents were significantly reduced in the F1 larvae, and RNA-seq analysis revealed significant alterations in the expression of nine genes (msmo1, hsd17b7, sc5d, tm7sf2, ebp, cyp2r1, lss, cyp51, and cyp27b1) in the steroid synthesis pathway. This is suggested that F1 larvae of parents exposed to difenoconazole at the embryonic stage show abnormalities in the steroid biosynthetic pathway. These results reveal the differences in toxicity of difenoconazole to zebrafish at different life stages, improve studies on difenoconazole toxicity to zebrafish, and provide a new perspective for assessing the risk of contaminants to aquatic organisms.
Collapse
Affiliation(s)
- Yiming Chang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Huimin Fu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Haitao Yu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Liangang Mao
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Lan Zhang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Yanning Zhang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Lizhen Zhu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Jin Yang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Xingang Liu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China.
| | - Hongyun Jiang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China.
| |
Collapse
|
33
|
Yang Q, Deng P, Xing D, Liu H, Shi F, Hu L, Zou X, Nie H, Zuo J, Zhuang Z, Pan M, Chen J, Li G. Developmental Neurotoxicity of Difenoconazole in Zebrafish Embryos. TOXICS 2023; 11:353. [PMID: 37112580 PMCID: PMC10142703 DOI: 10.3390/toxics11040353] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/02/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
Difenoconazole is a type of triazole fungicide that is widely used in the treatment of plant diseases. Triazole fungicides have been shown in several studies to impair the development of the nervous system in zebrafish embryos. There is still little known about difenoconazole-induced neurotoxicity in fish. In this study, zebrafish embryos were exposed to 0.25, 0.5, and 1 mg/L of difenoconazole solution until 120 h post-fertilization (hpf). The difenoconazole-exposed groups showed concentration-dependent inhibitory tendencies in heart rate and body length. Malformation rate and spontaneous movement of zebrafish embryos increased, and the locomotor activity decreased in the highest exposure group. The content of dopamine and acetylcholine was reduced significantly in difenoconazole treatment groups. The activity of acetylcholinesterase (AChE) was also increased after treatment with difenoconazole. Furthermore, the expression of genes involved in neurodevelopment was remarkably altered, which corresponded with the alterations of neurotransmitter content and AChE activity. These results indicated that difenoconazole might affect the development of the nervous system through influencing neurotransmitter levels, enzyme activity, and the expression of neural-related genes, ultimately leading to abnormal locomotor activity in the early stages of zebrafish.
Collapse
Affiliation(s)
- Qing Yang
- Institute of Hydroecology, Ministry of Water Resources & Chinese Academy of Sciences, Wuhan 430079, China
| | - Ping Deng
- Wuhan Academy of Agricultural Sciences, Wuhan 430072, China
| | - Dan Xing
- Dadu River Hydropower Development Co., Ltd., Chengdu 610016, China
| | - Haoling Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Fang Shi
- Institute of Hydroecology, Ministry of Water Resources & Chinese Academy of Sciences, Wuhan 430079, China
| | - Lian Hu
- Institute of Hydroecology, Ministry of Water Resources & Chinese Academy of Sciences, Wuhan 430079, China
| | - Xi Zou
- Institute of Hydroecology, Ministry of Water Resources & Chinese Academy of Sciences, Wuhan 430079, China
| | - Hongyan Nie
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Junli Zuo
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Zimeng Zhuang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Meiqi Pan
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Juan Chen
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
- Changsha Xinjia Bio-Engineering Co., Ltd., Changsha 410000, China
| | - Guangyu Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
34
|
Zheng X, Wei Y, Chen J, Wang X, Li D, Yu C, Hong Y, Shen L, Long C, Wei G, Wu S. Difenoconazole Exposure Induces Retinoic Acid Signaling Dysregulation and Testicular Injury in Mice Testes. TOXICS 2023; 11:328. [PMID: 37112555 PMCID: PMC10142862 DOI: 10.3390/toxics11040328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
Difenoconazole (DFZ) is a broad-spectrum triazole fungicide that is widely utilized in agriculture. Although DFZ has been demonstrated to induce reproductive toxicity in aquatic species, its toxic effects on the mammalian reproductive system have yet to be fully elucidated. In vivo, male mice were administered 0, 20 or 40 mg/kg/d of DFZ via oral gavage for 35 days. Consequently, DFZ significantly decreased testicular organ coefficient, sperm count and testosterone levels, augmented sperm malformation rates, and elicited histopathological alterations in testes. TUNEL assay showed increased apoptosis in testis. Western blotting results suggested abnormally high expression of the sperm meiosis-associated proteins STRA8 and SCP3. The concentrations of retinoic acid (RA), retinaldehyde (RE), and retinol (ROL) were increased in the testicular tissues of DFZ-treated groups. The mRNA expression level of genes implicated in RA synthesis significantly increased while genes involved in RA catabolism significantly decreased. In vitro, DFZ reduced cell viability and increased RA, RE, and ROL levels in GC-2 cells. Transcriptome analysis revealed a significant enrichment of numerous terms associated with the RA pathway and apoptosis. The qPCR experiment verified the transcriptome results. In conclusion, our results indicate that DFZ exposure can disrupt RA signaling pathway homeostasis, and induce testicular injury in mice testes.
Collapse
|
35
|
Du W, Wang X, Wang L, Wang M, Liu C. Avermectin induces cardiac toxicity in early embryonic stage of zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2023; 264:109529. [PMID: 36470398 DOI: 10.1016/j.cbpc.2022.109529] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/15/2022] [Accepted: 11/27/2022] [Indexed: 12/12/2022]
Abstract
Avermectin is a widely used insecticide, and it is mainly effective against animal parasites and insects. Given its extensive use in agriculture, a large amount of avermectin is accumulated in natural waters. Avermectin is a neurotoxin that affects the autonomous behavior of zebrafish and inhibits neurological responses in invertebrates via GABA-chloride channels. In this study, we used zebrafish as a model organism to explore the lethal teratogenic effects of different avermectin concentrations. We found that 50-μg/L avermectin could cause significant malformation abnormalities during the development of zebrafish heart, changes in heart rate, and significant reduction in hatching rate and body length. Transcriptome data revealed that 499 genes were upregulated and 877 genes were downregulated at 72 h post-fertilization (hpf), whereas 1805 genes were upregulated and 836 genes were downregulated at 120 hpf. According to gene ontology (GO) enrichment analysis, avermectin affected cardiac circulation and myocardial fiber development. KEGG analysis revealed that avermectin treatment significantly altered the activity of signal pathways associated with cardiac rhythm and vascular smooth muscle contraction. The main target of avermectin was identified as the heart, as it affected heart development and function by altering cardiac-related gene expression that led to a heart defect phenotype. Our findings indicate that developing zebrafish are sensitive to avermectin, which targets the heart.
Collapse
Affiliation(s)
- Wenxiao Du
- School of Biology & Basic Medical Sciences, Medical College of Soochow University, Suzhou 215123, China; College of life science, Yantai University, Laishan District Spring Road No. 30, Yantai, Shandong 264005, PR China
| | - Xuedong Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Lin Wang
- Children's Hospital Affiliated to Shandong University, Jinan 250022, China; Jinan Children's Hospital, Jinan 250022, China
| | - Mingyong Wang
- Murui Biological Technology Co., Ltd., Suzhou Industrial Park, No 11 Jinpu road, Suzhou, China.
| | - Chao Liu
- School of Biology & Basic Medical Sciences, Medical College of Soochow University, Suzhou 215123, China.
| |
Collapse
|
36
|
Nataraj B, Hemalatha D, Malafaia G, Maharajan K, Ramesh M. "Fishcide" effect of the fungicide difenoconazole in freshwater fish (Labeo rohita): A multi-endpoint approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159425. [PMID: 36244480 DOI: 10.1016/j.scitotenv.2022.159425] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/27/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Difenoconazole is widely used to protect crops, fruits, and vegetables. However, this fungicide can enter aquatic environments and cause harmful effects to non-target organisms and induce little-known biological disorders. Thus, aiming to expand our knowledge about the ecotoxicity of difenoconazole on freshwater ichthyofauna, we aimed to determine the median lethal concentration (LC50) of difenoconazole and evaluate its possible impacts from different toxicity biomarkers, using freshwater fish Labeo rohita as a model system. Using the probit analysis method, the 96 h LC50 value of difenoconazole in the fish was calculated as 4.5 mg L-1. Posteriorly, fish were exposed to two sublethal concentrations (0.45 mg L-1 1/10th and 0.9 mg L-1 1/5th LC50 value) for 21 days. A significant reduction of superoxide dismutase (SOD) and catalase (CAT) activity was noted in the gill, liver, and kidneys of fish compared to the control groups. The level of glutathione-S-transferase (GST) and lipid peroxidation (LPO) activity was higher in all vital tissues of difenoconazole-treated fish. Histological alterations in the gill include epithelial lifting, lamellar fusion, hypertrophy, and epithelial necrosis. At the same time, the liver showed pyknotic nucleus, vacuolation, cellular edema and tubular necrosis, shrinkage of glomeruli, vacuolation, and pyknotic nuclei in the kidney. DNA damage was increased significantly with tail formation based on the concentration and time-dependent manner. Therefore, our study confirms that the exposure of L. rohita to difenoconazole induces negative biological consequences and sheds light on the danger of this fungicide for freshwater fish species. We believe that studies like ours can support actions and strategies for the remediation/mitigation of aquatic pollution by difenoconazole and for the conservation of freshwater ichthyofauna.
Collapse
Affiliation(s)
- Bojan Nataraj
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, India
| | - Devan Hemalatha
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, India; Department of Zoology, PSG College of Arts & Science, Coimbatore, Tamil Nadu 641014, India
| | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil
| | - Kannan Maharajan
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, India; DRDO-BU Center for Life Sciences, Bharathiar University Campus, Coimbatore, India
| | - Mathan Ramesh
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, India.
| |
Collapse
|
37
|
Yedji RS, Sohm B, Salnot V, Guillonneau F, Cossu-Leguille C, Battaglia E. First Identification of a Large Set of Serine Hydrolases by Activity-Based Protein Profiling in Dibutyl Phthalate-Exposed Zebrafish Larvae. Int J Mol Sci 2022; 23:ijms232416060. [PMID: 36555700 PMCID: PMC9786740 DOI: 10.3390/ijms232416060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Despite the involvement of several serine hydrolases (SHs) in the metabolism of xenobiotics such as dibutyl phthalate (DBP), no study has focused on mapping this enzyme class in zebrafish, a model organism frequently used in ecotoxicology. Here, we survey and identify active SHs in zebrafish larvae and search for biological markers of SH type after exposure to DBP. Zebrafish were exposed to 0, 5, and 100 µg/L DBP from 4 to 120 h post-fertilization. A significant decrease in vitellogenin expression level of about 2-fold compared to the control was found in larvae exposed to 100 µg/L DBP for 120 h. The first comprehensive profiling of active SHs in zebrafish proteome was achieved with an activity-based protein profiling (ABPP) approach. Among 49 SHs identified with high confidence, one was the carboxypeptidase ctsa overexpressed in larvae exposed to 100 µg/L DBP for 120 h. To the best of our knowledge, this is the first time that a carboxypeptidase has been identified as deregulated following exposure to DBP. The overall results indicate that targeted proteomics approaches, such as ABPP, can, therefore, be an asset for understanding the mechanism of action related to xenobiotics in ecotoxicology.
Collapse
Affiliation(s)
- Rodrigue S. Yedji
- LIEC, UMR7360, Campus Bridoux, Université de Lorraine, 57070 Metz, France
| | - Bénédicte Sohm
- LIEC, UMR7360, Campus Bridoux, Université de Lorraine, 57070 Metz, France
| | - Virginie Salnot
- Plateforme Protéomique 3P5, Inserm U1016-Institut Cochin, MICUSPC, Université Paris Descartes, 75006 Paris, France
| | - François Guillonneau
- Plateforme Protéomique 3P5, Inserm U1016-Institut Cochin, MICUSPC, Université Paris Descartes, 75006 Paris, France
- Unité Protéomique Clinique, Institut de Cancérologie de l’Ouest, CRCI2NA-UMR INSERM 1307/CNRS 6075, team03, 15, rue André Boquel, 49055 Angers, France
| | | | - Eric Battaglia
- LIEC, UMR7360, Campus Bridoux, Université de Lorraine, 57070 Metz, France
- Correspondence:
| |
Collapse
|
38
|
Wang H, Qi S, Mu X, Yuan L, Li Y, Qiu J. Bisphenol F induces liver-gut alteration in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:157974. [PMID: 35963407 DOI: 10.1016/j.scitotenv.2022.157974] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/23/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
The unease of consumers with bisphenol A has led to the increased industrial usage of bisphenol F (BPF), which is a new hazard to environmental health. Here, zebrafish were exposed to three BPF concentrations (0.5, 5, and 50 μg/L) from the embryonic stage for 180 days. Results showed that zebrafish body length and weight decreased and hepatosomatic index values increased, even at environmentally relevant concentration. Histological analysis identified the occurrence of hepatic fibrosis and steatosis in 5 and 50 μg/L groups, which indicated the liver injury caused by BPF. Based on the untargeted metabolomics results, a dose-dependent variation in the effects of BPF on liver metabolism was found, and amino acids, purines and one carbon metabolism were the main affected processes in the 0.5, 5, and 50 μg/L treatments, respectively. At the same time, BPF induced a shift in intestinal microbiome composition, including decreased abundance of Erysipelotrichaceae, Rhodobacteraceae and Gemmobacter. In addition, the correlation analysis suggested an association between gut microbiome changes and affected hepatic metabolites after BPF exposure. These findings indicate that a liver-gut alteration is induced by long-term BPF exposure.
Collapse
Affiliation(s)
- Hui Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China; Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, China
| | - Suzhen Qi
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiyan Mu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China; Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, China.
| | - Lilai Yuan
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, China
| | - Yingren Li
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, China
| | - Jing Qiu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
39
|
Li C, Huang L, Zhang Y, Guo X, Cao N, Yao C, Duan L, Li X, Pang S. Effects of triazole plant growth regulators on molting mechanism in Chinese mitten crab (Eriocheir sinensis). FISH & SHELLFISH IMMUNOLOGY 2022; 131:646-653. [PMID: 36330873 DOI: 10.1016/j.fsi.2022.10.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Rice crab co-culture is a new integrated farming model in China. The application of triazole plant growth regulators (PRGs) is often used as an advantageous option to combat rice lodging. However, there is still a gap regarding the toxicity of these PRGs on the growth and development of the Chinese mitten crab (Eriocheir sinensis, E. sinensis). Here the effect of triazoles (paclobutrazol and uniconazole) on the molting mechanism of E. sinensis was investigated. Monitoring of regulatory genes associated with molting showed that the two PRGs were found to inhibit the expression of ecdysteroid hormone (EH), ecdysteroid receptors gene (EcR), and retinoid X receptors gene (RXR) and induce secretion of molt-inhibiting hormone (MIH) gene. In addition, the activities of chitinase (CHIA) and N-acetyl-β-d-aminoglucosidase (β-NAGase) were also inhibited by exposure to PRGs. Exposure to PRGs also elevated the mRNA expression of the growth-related myostatin gene (MSTN). These results revealed that there is a long-term risk of exposure to triazoles PRGs that may inhibit molting and affect normal development and immune system of E. sinensis.
Collapse
Affiliation(s)
- Changsheng Li
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China; Institute of Cultural Heritage and History of Science & Technology, University of Science and Technology Beijing, Beijing, China
| | - Lan Huang
- Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, 100125, China
| | - Yuting Zhang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Xuanjun Guo
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Niannian Cao
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Chunlian Yao
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Liusheng Duan
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Xuefeng Li
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Sen Pang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China.
| |
Collapse
|
40
|
Bai L, Shi P, Jia K, Yin H, Xu J, Yan X, Liao K. Triflumizole Induces Developmental Toxicity, Liver Damage, Oxidative Stress, Heat Shock Response, Inflammation, and Lipid Synthesis in Zebrafish. TOXICS 2022; 10:698. [PMID: 36422906 PMCID: PMC9699234 DOI: 10.3390/toxics10110698] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Triflumizole (TFZ) toxicity must be investigated in the aquatic environment to understand the potential risks to aquatic species. Accordingly, the adverse effects of TFZ exposure in zebrafish were investigated. Results demonstrate that, after TFZ exposure, the lethal concentration 50 (LC50) in 3 d post-fertilization (dpf) embryos and 6 dpf larvae were 4.872 and 2.580 mg/L, respectively. The development (including pericardium edema, yolk sac retention, and liver degeneration) was apparently affected in 3 dpf embryos. Furthermore, the alanine aminotransferase (ALT) activity, superoxide dismutase (SOD) activity, catalase (CAT) activity, and malondialdehyde (MDA) content in 6 dpf larvae were significantly increased. Additionally, the expression of heat shock response genes (including hsp70, grp78, hsp90, and grp94), inflammatory genes (including p65-nfκb, il-1β, and cox2a), and lipid synthetic genes (including srebp1, fas, acc, and ppar-γ) in 3 dpf embryos was significantly increased, which was also partially observed in the intestinal cell line form Pampus argenteus. Taken together, TFZ could affect the development of zebrafish, accompanied by disturbances of oxidative stress, heat shock response, inflammation, and lipid synthesis. Our findings provide an original insight into the potential risks of TFZ to the aquatic ecosystem.
Collapse
Affiliation(s)
- Lina Bai
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Peng Shi
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Kun Jia
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Hua Yin
- Ningbo No. 2 Hospital, Ningbo 315010, China
| | - Jilin Xu
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Xiaojun Yan
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Kai Liao
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| |
Collapse
|
41
|
Qiao Z, Li P, Tan J, Peng C, Zhang F, Zhang W, Jiang X. Oxidative stress and detoxification mechanisms of earthworms (Eisenia fetida) after exposure to flupyradifurone in a soil-earthworm system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 322:115989. [PMID: 36055090 DOI: 10.1016/j.jenvman.2022.115989] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/26/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Flupyradifurone (FLU) has great application potential in agricultural production as a new generation of neonicotinoid insecticide after imidacloprid. Nevertheless, the toxic effects of FLU on non-target soil organisms remain unclear, resulting in considerable environmental risks. We evaluated the acute and subchronic toxicities of FLU to earthworms. The results of acute toxicity show that the median lethal concentration (LC50) values (14 d) of FLU were 186.9773 mg kg-1 for adult earthworms and 157.6502 mg kg-1 for juveniles, respectively. The subchronic toxicity of FLU that focused on the activities of antioxidant and detoxication enzymes showed the superoxide dismutase (SOD), catalase (CAT), and glutathione-S transferase (GST) activities in earthworms increased while the peroxidase (POD) and acetylcholinesterase (AChE) activities decreased after exposure to FLU. Oxidative damage analyses revealed that the reactive oxygen species (ROS) level and malonaldehyde (MDA) content in earthworms were increased by FLU, resulting in DNA damage. Transcriptomics and RT-qPCR confirmed that FLU influenced the expression of genes related to antioxidant response and detoxification of earthworms. Ultimately detoxification metabolism, environmental information processing, cell processes, and immune system pathways are significantly enriched to respond jointly to FLU. Our study fills the gaps in the toxicity of FLU to earthworms, providing a basis for its risk assessment of soil ecosystems and non-target biological toxicity.
Collapse
Affiliation(s)
- Zhihua Qiao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China; Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Taian, Shandong, 271018, PR China
| | - Peiyao Li
- College of Agriculture, Qingdao Agricultural University, Qingdao, Shandong, 266109, PR China
| | - Jiaqi Tan
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Fengwen Zhang
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Taian, Shandong, 271018, PR China; Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao, Shandong, 266101, PR China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Xingyin Jiang
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Taian, Shandong, 271018, PR China.
| |
Collapse
|
42
|
Wang K, Wang C, Wang J, Dong Y, Che W, Li X. Acute toxicity of broflanilide on neurosecretory system and locomotory behavior of zebrafish (Danio rerio). CHEMOSPHERE 2022; 305:135426. [PMID: 35752316 DOI: 10.1016/j.chemosphere.2022.135426] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Broflanilide, a novel meta-diamide insecticide, possesses moderate acute toxicity to zebrafish, with a 96-h median lethal concentration (96-LC50) of 0.76 mg/L. However, its effect on fish behavior and the underlying mechanisms are still unclear. The present study evaluated the effects of broflanilide on the zebrafish brain over a 96-h exposure by comparing the histopathological changes and relative expression of targeted genes with the behavioral metrics. The results of the toxicity test showed that broflanilide could cause deformities, such as deformation of the operculum and spinal curvature, at 0.6, 0.82 and 1.15 mg/L. Results also showed tissue damage and apoptosis in the cerebellum under 0.27 and 0.6 mg/L exposure. Additionally, broflanilide affected the neurotransmitters, metabolites and transcripts of genes associated with dopamine, gamma-aminobutyric acid expression. and the signaling pathways in zebrafish brains at 0.60 mg/L after 1 h and 96 h of exposure, while the levels of glutamate, glutamate decarboxylase, GABA transaminase, nicotinamide adenine dinucleotide (NADH) and adenosine triphosphate (ATP) were also inhibited at 0.27 mg/L after 96 h of exposure. The accumulated swimming distance was significantly longer and the average speed was significantly faster than the control at 0.27 and 0.6 mg/L after 1-h of exposure, while these metrics were lowered at 0.6 mg/L after 96 h of exposure. The study results demonstrates that broflanilide affects the zebrafish brain, neurotransmitters and associated fish behaviors. This study also provides deeper insight into the mechanistic understanding of the effects of broflanilide on the zebrafish brain.
Collapse
Affiliation(s)
- Kai Wang
- Plant Protection College, Shenyang Agricultural University, Shenyang, China.
| | - Chengju Wang
- College of Science, China Agricultural University, Beijing, China
| | - Jiahong Wang
- Plant Protection College, Shenyang Agricultural University, Shenyang, China
| | - Yufei Dong
- Plant Protection College, Shenyang Agricultural University, Shenyang, China
| | - Wunan Che
- Plant Protection College, Shenyang Agricultural University, Shenyang, China
| | - Xiuwei Li
- Plant Protection College, Shenyang Agricultural University, Shenyang, China.
| |
Collapse
|
43
|
Liu F, Wang Y, Chen L, Bello BK, Zhang T, Yang H, Li X, Pan E, Feng H, Dong J. Difenoconazole disrupts the blood-brain barrier and results in neurotoxicity in carp by inhibiting the Nrf2 pathway mediated ROS accumulation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114081. [PMID: 36113268 DOI: 10.1016/j.ecoenv.2022.114081] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/07/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
Excessive use of hard-to-degrade pesticides threatens the ecological health of aquatic systems. This study aimed to investigate difenoconazole (DFZ) residues in the environment induced neurotoxicity in carp and the underlying mechanisms. A total of thirty-six carps were divided into three groups and exposed to 0, 0.5, and 2.0 mg/L DFZ for 96 h, respectively. The alterations in behavior and blood-brain barrier (BBB) were examined, and potential mechanisms were explored using immunological assays and biochemical methods. The results showed that DFZ exposure caused behavioral freezing, reduced feeding, and neuronal necrosis in carp. Mechanistically, DFZ triggered ROS accumulation and destroyed the balance between oxidation and antioxidation with increased lipid peroxidation product MDA contents and reduced antioxidant enzymes SOD and CAT activities in the carp brain by inhibiting the NF-E2-related factor 2 (Nrf2) pathway. The activation of oxidative stress further reduced tight junction proteins and MMP levels, thereby destroying BBB and leading to DFZ leakage into the brain. Increased BBB permeability additionally led to DFZ activation of nuclear factor kappa-B signaling-mediated inflammatory cytokine storm, exacerbating neuroinflammation. Meanwhile, DFZ exposure activated mitochondria-associated apoptosis in the carp's brain by up-regulating Bcl-2 associated X protein, cleaved-caspase3, and cytochrome C and decreasing B-cell lymphoma-2 levels. Interestingly, the carp's brain initiated a protective autophagic response via the PI3K/AKT/TOR pathway intending to counteract the neurotoxicity of DFZ. Overall, we concluded that accumulation of DFZ at high concentrations in the aquatic systems disrupted the BBB and resulted in neurotoxicity in carp through inhibition of Nrf2 pathway-mediated ROS accumulation. This study provides a reference for monitoring DFZ residues in the environment and a new target for the treatment of DFZ-induced neurotoxicity in carp.
Collapse
Affiliation(s)
- Feixue Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yan Wang
- Department of Medicine Laboratory, The Second People's Hospital of Lianyungang City, Lianyungang Hospital Affiliated to Jiangsu University, The Second People's Hospital of Lianyungang Affiliated to Kangda College of Nanjing Medical University, Lianyungang 222000, China
| | - Li Chen
- Department of Medicine Laboratory, The Second People's Hospital of Lianyungang City, Lianyungang Hospital Affiliated to Jiangsu University, The Second People's Hospital of Lianyungang Affiliated to Kangda College of Nanjing Medical University, Lianyungang 222000, China
| | - Babatunde Kazeem Bello
- State Key Laboratory of Rice Biology, Lianyungang Academy of Agricultural Sciences, Lianyungang 222000, China
| | - Tianmeng Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Haitao Yang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xueqing Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Enzhuang Pan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Huimiao Feng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jingquan Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
44
|
Chen X, Zheng J, Zhang J, Duan M, Xu H, Zhao W, Yang Y, Wang C, Xu Y. Exposure to difenoconazole induces reproductive toxicity in zebrafish by interfering with gamete maturation and reproductive behavior. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155610. [PMID: 35504380 DOI: 10.1016/j.scitotenv.2022.155610] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/14/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
Difenoconazole (DCZ) is a triazole fungicide that negatively affects aquatic organisms and humans. However, data regarding the reproductive toxicity of DCZ are insufficient. In this study, we used zebrafish (from 2 h post-fertilization [hpf] to adulthood) as a model to evaluate whether DCZ at environmentally relevant concentrations (0.1, 1.0, and 10.0 μg/L) induces reproductive toxicity. After exposure to DCZ, egg production and fertilization rates were reduced by 1.0 and 10.0 μg/L. A significant decrease in gamete frequency (late vitellogenic oocytes and spermatozoa) was observed at 10.0 μg/L. The concentrations of 17β-estradiol (E2), testosterone (T), and vitellogenin (VTG) were disrupted in females and males by 1.0 and 10.0 μg/L. Exposure to 10.0 μg/L DCZ significantly inhibited the contact time between female and male fish, which was mainly achieved by affecting male fish. The transcription of genes involved in the hypothalamus-pituitary-gonad (HPG) axis was significantly changed after treatment with DCZ. Overall, these data show that the endocrine-disrupting effect of DCZ on the zebrafish HPG axis inhibited gamete maturation and disrupted reproductive behavior, reducing fertility.
Collapse
Affiliation(s)
- Xiangguang Chen
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Junyue Zheng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Jie Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Manman Duan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Hao Xu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Wentian Zhao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Yang Yang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chengju Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China.
| | - Yong Xu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
45
|
Chen C, Zheng Y, Li X, Zhang L, Liu K, Sun S, Zhong Z, Hu H, Liu F, Xiong G, Liao X, Lu H, Bi Y, Chen J, Cao Z. Cysteamine affects skeletal development and impairs motor behavior in zebrafish. Front Pharmacol 2022; 13:966710. [PMID: 36059963 PMCID: PMC9437517 DOI: 10.3389/fphar.2022.966710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/11/2022] [Indexed: 11/24/2022] Open
Abstract
Cysteamine is a kind of feed additive commonly used in agricultural production. It is also the only targeted agent for the treatment of cystinosis, and there are some side effects in clinical applications. However, the potential skeletal toxicity remains to be further elucidated. In this study, a zebrafish model was for the first time utilized to synthetically appraise the skeletal developmental defects induced by cysteamine. The embryos were treated with 0.35, 0.70, and 1.05 mM cysteamine from 6 h post fertilization (hpf) to 72 hpf. Substantial skeletal alterations were manifested as shortened body length, chondropenia, and abnormal somite development. The results of spontaneous tail coiling at 24 hpf and locomotion at 120 hpf revealed that cysteamine decreased behavioral abilities. Moreover, the level of oxidative stress in the skeleton ascended after cysteamine exposure. Transcriptional examination showed that cysteamine upregulated the expression of osteoclast-related genes but did not affect osteoblast-related genes expression. Additionally, cysteamine exposure caused the downregulation of the Notch signaling and activating of Notch signaling partially attenuated skeletal defects. Collectively, our study suggests that cysteamine leads to skeletal developmental defects and reduces locomotion activity. This hazard may be associated with cysteamine-mediated inhibition of the Notch signaling and disorganization of notochordal cells due to oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Chao Chen
- Birth Defects Group, Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Ophthalmology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yongliang Zheng
- Department of Hematology, Affiliated Hospital of Jinggangshan University, Ji’an, JX, China
- Department of Hematology, The Second Affiliated Hospital of Xian Jiaotong University, Xi’an, China
| | - Xue Li
- Birth Defects Group, Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Pediatrics, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Li Zhang
- Birth Defects Group, Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Pediatrics, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Kangyu Liu
- Birth Defects Group, Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Pediatrics, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Sujie Sun
- Birth Defects Group, Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Pediatrics, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zilin Zhong
- Birth Defects Group, Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Pediatrics, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hongmei Hu
- Birth Defects Group, Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Pediatrics, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fasheng Liu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji’an, JX, China
| | - Guanghua Xiong
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji’an, JX, China
| | - Xinjun Liao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji’an, JX, China
| | - Huiqiang Lu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji’an, JX, China
| | - Yanlong Bi
- Department of Ophthalmology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Zigang Cao, ; Jianjun Chen, ; Yanlong Bi,
| | - Jianjun Chen
- Birth Defects Group, Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Pediatrics, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Zigang Cao, ; Jianjun Chen, ; Yanlong Bi,
| | - Zigang Cao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji’an, JX, China
- *Correspondence: Zigang Cao, ; Jianjun Chen, ; Yanlong Bi,
| |
Collapse
|
46
|
Pitombeira de Figueirêdo L, Athayde DB, Pinto TJDS, Daam MA, Guerra GDS, Duarte-Neto PJ, Espíndola ELG. Influence of temperature on the toxicity of the elutriate from a pesticide contaminated soil to two cladoceran species. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:956-966. [PMID: 35672617 DOI: 10.1007/s10646-022-02560-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Brazil has become one of the largest consumers of pesticides in the world. However, there are still few studies evaluating pesticide toxicity integrating local aquatic and terrestrial environments. In addition, there is growing concern about the influence of temperature conditions related with climate change on contaminants toxicity. The aim of the present study was to evaluate the elutriate toxicity of the insecticide Kraft® 36 EC (a.i. abamectin), the fungicide Score® 250 EC (a.i. difenoconazole) and their mixture to the cladocerans Ceriodaphnia silvestrii and Daphnia similis, using model ecosystems (mesocosms). To this end, mesocosms were filled with natural soil and subjected to the following treatments: Control (Milli-Q water), Kraft (10.8 g abamectin ha-1), Score (20 g difenoconazole ha-1), and Kraft + Score (10.8 g abamectin ha-1 + 20 g difenoconazole ha-1). The experiment lasted 18 days, and the applications were made on days 1, 8, and 15; the occurrence of rainfall was simulated on days 1, 8, and 15 after applications and only rainfall simulation on days 4, 11, and 18. The experiment was conducted under two different temperatures: 23 °C and 33 °C. At 23 °C, single Kraft treatment and in combination with Score showed high toxicity to both cladocerans. At 33 °C, elutriate of the Kraft® and mixture treatments were highly toxic to D. similis but not to C. silvestrii. The results indicate that while Kraft had higher toxicity than Score to both cladocerans, this toxicity was counteracted at 33 °C only for the exotic species, D. similis. The results portray the complexity of pesticide toxicity when considering realistic experimental settings including different organisms and temperature treatments.
Collapse
Affiliation(s)
- Livia Pitombeira de Figueirêdo
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, 13.560-970, São Carlos, Brazil.
| | - Danillo B Athayde
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, 13.560-970, São Carlos, Brazil
| | - Thandy Junio da Silva Pinto
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, 13.560-970, São Carlos, Brazil
| | - Michiel A Daam
- CENSE, Department of Environmental Sciences and Engineering, Faculty of Sciences and Technology, New University of Lisbon, Quinta da Torre, 2829-516, Caparica, Portugal
| | - Glauce da Silva Guerra
- PPGBEA, Department of Statistics and Informatics, Rural Federal University of Pernambuco, R. Dom Manoel de Medeiros, s/n, Dois Irmãos, 52171900, Recife, Brazil
| | - Paulo José Duarte-Neto
- PPGBEA, Department of Statistics and Informatics, Rural Federal University of Pernambuco, R. Dom Manoel de Medeiros, s/n, Dois Irmãos, 52171900, Recife, Brazil
| | - Evaldo L G Espíndola
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, 13.560-970, São Carlos, Brazil
| |
Collapse
|
47
|
Voiculescu DI, Roman DL, Ostafe V, Isvoran A. A Cheminformatics Study Regarding the Human Health Risks Assessment of the Stereoisomers of Difenoconazole. Molecules 2022; 27:4682. [PMID: 35897858 PMCID: PMC9332102 DOI: 10.3390/molecules27154682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 12/04/2022] Open
Abstract
Difenoconazole is a chemical entity containing two chiral centers and having four stereoisomers: (2R,4R)-, (2R,4S)-, (2S,4R)- and (2S,4S)-difenoconazole, the marketed product containing a mixture of these isomers. Residues of difenoconazole have been identified in many agricultural products and drinking water. A computational approach has been used to evaluate the toxicological effects of the difenoconazole stereoisomers on humans. It integrates predictions of absorption, distribution, metabolism, excretion and toxicity (ADMET) profiles, prediction of metabolism sites, and assessment of the interactions of the difenoconazole stereoisomers with human cytochromes, nuclear receptors and plasma proteins by molecular docking. Several toxicological effects have been identified for all the difenoconazole stereoisomers: high plasma protein binding, inhibition of cytochromes, possible hepatotoxicity, neurotoxicity, mutagenicity, skin sensitization potential, moderate potential to produce endocrine disrupting effects. There were small differences in the predicted probabilities of producing various biological effects between the distinct stereoisomers of difenoconazole. Furthermore, there were significant differences between the interacting energies of the difenoconazole stereoisomers with plasma proteins and human cytochromes, the spectra of the hydrogen bonds and aromatic donor-acceptor interactions being quite distinct. Some distinguishing results have been obtained for the (2S,4S)-difenoconazole: it registered the highest value for clearance, exposed reasonable probabilities to produce cardiotoxicity and carcinogenicity and negatively affected numerous nuclear receptors.
Collapse
Affiliation(s)
- Denisa Ioana Voiculescu
- Department of Biology-Chemistry, Faculty of Chemistry, Biology, Geography, West University of Timisoara, 16 Pestalozzi, 300115 Timisoara, Romania; (D.I.V.); (D.L.R.); (V.O.)
- Advanced Environmental Research Laboratories (AERL), 4 Oituz, 300086 Timisoara, Romania
| | - Diana Larisa Roman
- Department of Biology-Chemistry, Faculty of Chemistry, Biology, Geography, West University of Timisoara, 16 Pestalozzi, 300115 Timisoara, Romania; (D.I.V.); (D.L.R.); (V.O.)
- Advanced Environmental Research Laboratories (AERL), 4 Oituz, 300086 Timisoara, Romania
| | - Vasile Ostafe
- Department of Biology-Chemistry, Faculty of Chemistry, Biology, Geography, West University of Timisoara, 16 Pestalozzi, 300115 Timisoara, Romania; (D.I.V.); (D.L.R.); (V.O.)
- Advanced Environmental Research Laboratories (AERL), 4 Oituz, 300086 Timisoara, Romania
| | - Adriana Isvoran
- Department of Biology-Chemistry, Faculty of Chemistry, Biology, Geography, West University of Timisoara, 16 Pestalozzi, 300115 Timisoara, Romania; (D.I.V.); (D.L.R.); (V.O.)
- Advanced Environmental Research Laboratories (AERL), 4 Oituz, 300086 Timisoara, Romania
| |
Collapse
|
48
|
Jiang J, Zhang C, Wang L, Wang X, He H, Wu S, Zhao X. Insights into the combined effects of environmental concentration of difenoconazole and tebuconazole on zebrafish early life stage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154687. [PMID: 35314214 DOI: 10.1016/j.scitotenv.2022.154687] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Limited literature had focused on the combined effect of triazole fungicides on aquatic organisms at environmental concentrations. In this research, difenoconazole (DIF) and tebuconazole (TEB) mixture exhibited additive effect on the acute toxicity to zebrafish embryos. The transcriptomics and metabolomics demonstrated DIF and TEB mixtures at aquatic life benchmark and environmental concentration simultaneously influenced the lipid metabolism, arachidonic acid metabolism, steroid hormone biosynthesis and tryptophan metabolism, but showed diverse response patterns mediating the combined effects on zebrafish embryos after 120 h exposure. The DIF and TEB mixture at aquatic life benchmark caused combined effect on yolk sac resorption and metabolites, was less than the additive effect of individual DIF and TEB. It was found environmental concentration of DIF and TEB caused much lower levels of IFN and IL6, induced higher levels of PGE2, l-kynurenine and formylanthranilate in zebrafish larvae, and their binary mixture caused synergistic effect on the accumulation of metabolites in metabolic pathways, which might cause more negative effect and risk on growth in zebrafish later life stages. Results further demonstrated that adding arachidonic acid (AA) increased the transcripts of Pla2, Ptgs1, Cyp19a and Cxcl8b, allayed the accumulation of PLA2 and 17β-E2, and induced more PGF2α, IFN and IL6 levels in zebrafish larvae, indicated AA metabolism might play important regulatory roles on hormone synthesis and immune response caused by DIF and TEB mixtures. Current results indicated the risk assessment of mixtures based on single concentration may not precisely estimate the environmental risk and health effect, it is crucially important to consider the multi-concentration combinations, and more attention should be paid to the environmental concentration.
Collapse
Affiliation(s)
- Jinhua Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China.
| | - Changpeng Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Luyan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Xiangyun Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Hongmei He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Shenggan Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Xueping Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China.
| |
Collapse
|
49
|
Li Y, Ren B, Zhao T, Chen H, Zhao Y, Liang H, Liang H. Enantioselective toxic effects of mefentrifluconazole in the early life stage of zebrafish (Danio rerio). ENVIRONMENTAL TOXICOLOGY 2022; 37:1662-1674. [PMID: 35297557 DOI: 10.1002/tox.23515] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/22/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
The research on the enantioselective toxic effects of chiral pesticides on non-target aquatic organisms has attracted more and more attention. This study investigated the enantioselective toxic effects of mefentrifluconazole (MFZ) on acute toxicity, developmental toxicity, locomotor behaviors, and the mRNA relative expression levels of genes related to neurodevelopment and cardiac development in zebrafish embryos or larvae. The 96-h lethal concentration 50 (LC50 ) values (exposed to racemate and enantiomers of MFZ, that is, rac-MFZ/(-)-MFZ/(+)-MFZ) were 1.010, 1.552, and 0.753 mg/L for embryo, and 0.753, 1.187, and 0.553 mg/L for larvae. The rac-MFZ/(-)-MFZ/(+)-MFZ can affect the heart development of zebrafish embryos, accompanied by heart rate inhibition, yolk sac deformities, pericardial deformities, and down-regulation of genes related to cardiotoxicity in larvae in an enantioselective manner. Moreover, the rac-MFZ/(-)-MFZ/(+)-MFZ also can affect the neural development of zebrafish embryos, accompanied by autonomic movement inhibition, swimming speed and swimming distance abnormalities, and down-regulation of genes related to neurotoxicity in larvae in an enantioselective manner. For all toxicity endpoints, the effect of the (+)-MFZ to early-staged zebrafish were significantly greater than that of (-)-MFZ. These results will help distinguishing the difference of MFZ enantiomers to zebrafish, and provide scientific reference for improving the risk assessment of chiral pesticides MFZ.
Collapse
Affiliation(s)
- Yanhong Li
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Bo Ren
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Tingting Zhao
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Haiyue Chen
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Yuexing Zhao
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Hanlin Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Hongwu Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| |
Collapse
|
50
|
Liu F, Li X, Bello BK, Zhang T, Yang H, Wang K, Dong J. Difenoconazole causes spleen tissue damage and immune dysfunction of carp through oxidative stress and apoptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 237:113563. [PMID: 35487176 DOI: 10.1016/j.ecoenv.2022.113563] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/12/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
As the use of pesticides increases year after year, so does the level of residual pesticides in the aquatic environment, posing a serious threat to non-target organisms. Difenoconazole (DFZ), a class of long-lasting fungicides and residues in the marine environment, has been shown to cause damaging effects on different organs of aquatic organisms. However, there is no research on the damage of DFZ to carp spleen tissue. This study aimed to investigate the acute toxic effects of DFZ on the spleen tissue of carp (Cyprinus carpio) by exposing juvenile carp to environmentally relevant concentrations of DFZ. We randomly selected 30 carp, divided them into the Control, Low, and High groups, and then exposed the three groups to 0, 0.488 mg/L DFZ, and 1.953 mg/L DFZ for 96 h respectively. We then investigated the toxic effects caused by DFZ on carp and spleen tissues by detecting changes in spleen histopathologic damage, apoptosis, oxidative stress, inflammation, and blood biochemical parameters. We found that DFZ causes severe histopathology in spleen tissue, including ballooning, structural relaxation, and giant mitochondria. In addition, we found that DFZ caused excessive apoptosis in spleen tissue by TUNEL staining and expression levels of apoptosis-related genes (caspase3, caspase8, caspase9, fas, bax, bcl-2, and p53). The activities and transcript levels of the antioxidant enzymes SOD, CAT, and GSH-Px were significantly down-regulated. In addition, DFZ led to a significant increase in activation of the NF-κB signaling pathway and mRNA levels of pro-inflammatory cytokines il-6, il-1β, and tnf-α, and a substantial decrease in mRNA levels of anti-inflammatory cytokines il-10 and tgf-β1 in spleen tissue. Blood biochemical parameters showed that DFZ exposure significantly reduced erythrocyte, leukocyte, hemoglobin, C3, and IgM levels. Collectively, DFZ exposure induced apoptosis, immunosuppression, oxidative stress, and inflammatory responses in the spleen tissue of carp, resulting in spleen tissue damage.
Collapse
Affiliation(s)
- Feixue Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xueqing Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China; Department of Laboratory Medicine, The Second People's Hospital of Lianyungang City, Lianyungang 222000, China
| | - Babatunde Kazeem Bello
- State Key Laboratory of Rice Biology, Lianyungang Academy of Agricultural Sciences, Lianyungang 222000, China
| | - Tianmeng Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China
| | - Haitao Yang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China
| | - Kun Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China; Department of Laboratory Medicine, The Second People's Hospital of Lianyungang City, Lianyungang 222000, China.
| | - Jingquan Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|