1
|
Sibiya A, Selvaraj C, Velusamy P, Nazar AKA, Vaseeharan B. Ecotoxicological effects of titanium dioxide nanoparticles on the freshwater mussel Lamellidens marginalis: physiological disruption, oxidative stress, and ecological implications. Sci Rep 2025; 15:13700. [PMID: 40259007 PMCID: PMC12012227 DOI: 10.1038/s41598-025-98715-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 04/11/2025] [Indexed: 04/23/2025] Open
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are widely distributed in aquatic environments due to their extensive industrial and commercial applications. Several studies have reported the adverse effects of TiO2 NPs on aquatic organisms; however, limited information is available regarding their impact on the freshwater mussel Lamellidens marginalis. The present study investigates the physiological and biochemical responses of L. marginalis following acute exposure (7 days) to varying concentrations of TiO2 NPs (Control, 5.0, 50, and 100 µg/L). Physiological parameters, including the condition index, filtration rate, and clearance rate, were assessed alongside hemocyte count, metabolic activity (electron transport system activity), and energy reserve content (glycogen, lipid, and protein levels). Additionally, oxidative stress biomarkers, including antioxidant enzyme activity, biotransformation enzyme activity, and lipid peroxidation levels, were evaluated. Results revealed a significant accumulation of TiO2 NPs in the gill tissues, accompanied by a marked decline in filtration rate and total hemocyte count, along with an increase in nitric oxide production. Exposure to higher concentrations of TiO2 NPs resulted in substantial alterations in energy reserve levels and oxidative stress biomarkers, indicative of metabolic disruption. Furthermore, mussels exposed to elevated TiO2 NP concentrations exhibited reduced feeding activity and energy expenditure, leading to impaired physiological performance, including potential consequences for growth and reproduction. Histopathological analysis demonstrated pronounced gill damage in mussels from the higher exposure groups. These findings emphasize the ecological risks associated with TiO2 NP contamination and underscore the need for stringent measures to mitigate their impact on freshwater bivalves.
Collapse
Affiliation(s)
- Ashokkumar Sibiya
- Nano Biosciences and Nanopharmacology Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Science Campus 6th Floor, Alagappa University, Karaikudi, 630004, Tamil Nadu, India
| | - Chandrabose Selvaraj
- CSRDD Lab, Bioinformatics Division, Department of Marine Biotechnology, AMET University (Deemed to Be University), Tamil Nadu, East Coast Road, Kanathur, Chennai, 603112, India.
| | - Palaniyandi Velusamy
- Innovation and Incubation Centre for Health Sciences, Sree Balaji Medical College and Hospital (SBMCH), Bharath Institute of Higher Education and Research (BIHER), Chromepet, Chennai 600 044, Tamil Nadu, India
| | | | - Baskaralingam Vaseeharan
- Nano Biosciences and Nanopharmacology Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Science Campus 6th Floor, Alagappa University, Karaikudi, 630004, Tamil Nadu, India.
| |
Collapse
|
2
|
Vannuccini ML, Della Torre C, Grassi G, Zambonin C, Cotugno P, Leaver MJ, Corsi I. nano-TiO 2 reduces bioavailability and biotransformation responses to crude oil WAF-associated PAHs in the European sea bass Dicentrachus labrax. MARINE POLLUTION BULLETIN 2024; 209:117265. [PMID: 39536376 DOI: 10.1016/j.marpolbul.2024.117265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/04/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
The present study investigates the potential interaction between nano‑titanium dioxide (nano-TiO2) and the water accommodated fraction (WAF) of crude oil and associated chemicals on bioavailability and biotransformation responses in the European sea bass (Dicentrarchus labrax). An in vivo (48-h) waterborne exposure with nano-TiO2 (10 mgL-1), crude oil WAF (0.068 gL-1), alone and in combination was performed. Combined exposure significantly reduced levels of polycyclic aromatic hydrocarbons (PAH) in either seawater and fish fillets compared to WAF alone. A significant reduction in the expression of several biotransformation genes (cyp1a, gsta, erβ2, elmod2, abcb1 and abcc1) when nano-TiO2 was combined with WAF was observed in fish liver, compared to WAF alone. EROD and GST enzyme activities were also significantly reduced. Nano-TiO2 can reduce PAHs bioavailability in seawater and biological responses in European sea bass, suggesting a potential safe application of nano-TiO2 for the remediation of crude oil WAF in the marine environment.
Collapse
Affiliation(s)
- M L Vannuccini
- Department of Ecological and Biological Sciences, Tuscia University, Largo dell'Università snc, Viterbo 01100, Italy.
| | - C Della Torre
- Department of Bioscience, University of Milano, Via Celoria 26, 20133 Milano, Italy
| | - G Grassi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy
| | - C Zambonin
- Department of Biosciences, Biotechnology and Environment, University of Bari "Aldo Moro", Via Orabona 4, Bari 70125, Italy
| | - P Cotugno
- Department of Chemistry, University of Bari "Aldo Moro", Via Orabona 4, Bari, 70125, Italy
| | - M J Leaver
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| | - I Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy.
| |
Collapse
|
3
|
Ale A, Andrade VS, Gutierrez MF, Ayech A, Monserrat JM, Desimone MF, Cazenave J. Metal-based nanomaterials in aquatic environments: What do we know so far about their ecotoxicity? AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 275:107069. [PMID: 39241467 DOI: 10.1016/j.aquatox.2024.107069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024]
Abstract
The wide range of applications of nanomaterials (NM) in different fields has led to both uncontrolled production and release into environmental compartments, such as aquatic systems, where final disposal occurs. Some efforts have been made to estimate their concentrations in environmental matrices; however, little is known about the actual effects of environmental NM concentrations on biota. The aims of the present review are to (i) expose the state of the art of the most applied NM and their actual concentrations regarding how much is being released to the aquatic environment and which are the predicted ones; (ii) analyze the current literature to elucidate if the aforementioned conditions were proven to cause deleterious effects on the associated organisms; and (iii) identify gaps in the knowledge regarding whether the actual NM concentrations are harmful to aquatic biota. These novel materials are expected to being released into the environment in the range of hundreds to thousands of tons per year, with Si- and Ti-based NM being the two most important. The estimated environmental NM concentrations are in the low range of ng to µg/L, except for Ti-based ones, which concentrations reach values on the order of mg/L. Empirical information regarding the ecotoxicity of environmental NM concentrations mainly focused on metal-based NM, however, it resulted poor and unbalanced in terms of materials and test species. Given its high predicted environmental concentration in comparison with the others, the ecotoxicity of Ti-based NM has been well assessed in algae and fish, while little is known regarding other NM types. While only a few marine species were addressed, the freshwater species Daphnia magna and Danio rerio accounted for the majority of studies on invertebrate and fish groups, respectively. Most of the reported responses are related to oxidative stress. Overall, we consider that invertebrate groups are the most vulnerable, with emphasis on microcrustaceans, as environmentally realistic metal-based NM concentration even caused mortality in some species. In the case of fish, we assumed that environmental concentrations of Ti-based NM represent a growing concern and threat; however, further studies should be carried out by employing other kinds of NM. Furthermore, more ecotoxicological information is needed in the case of carbon-based NM, as they are expected to considerably increase in terms of released amounts and applications in the near future.
Collapse
Affiliation(s)
- Analía Ale
- Cátedra de Toxicología, Farmacología y Bioquímica Legal (FBCB-UNL), CONICET, Santa Fe, Argentina.
| | - Victoria S Andrade
- Instituto Nacional de Limnología (INALI), UNL, CONICET, Santa Fe, Argentina
| | - María Florencia Gutierrez
- Instituto Nacional de Limnología (INALI), UNL, CONICET, Santa Fe, Argentina; Escuela Superior de Sanidad "Dr. Ramon Carrillo" (FBCB-UNL), Santa Fe, Argentina
| | - Alinne Ayech
- Universidade Federal do Rio Grande (FURG), Instituto de Ciências Biológicas (ICB), Programa de Pós-graduação em Ciências Fisiológicas (PPGCF), Rio Grande, RS, Brazil
| | - José M Monserrat
- Universidade Federal do Rio Grande (FURG), Instituto de Ciências Biológicas (ICB), Programa de Pós-graduação em Ciências Fisiológicas (PPGCF), Rio Grande, RS, Brazil
| | - Martín F Desimone
- Universidade Federal do Rio Grande (FURG), Instituto de Ciências Biológicas (ICB), Programa de Pós-graduação em Ciências Fisiológicas (PPGCF), Rio Grande, RS, Brazil; Universidad de Buenos Aires (UBA), CONICET, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Jimena Cazenave
- Instituto Nacional de Limnología (INALI), UNL, CONICET, Santa Fe, Argentina; Departamento de Ciencias Naturales, Facultad de Humanidades y Ciencias, Universidad Nacional del Litoral (FHUC-UNL), Santa Fe, Argentina
| |
Collapse
|
4
|
Moreira Morais J, da Silva Brito R, Saiki P, Cirqueira Dias F, de Oliveira Neto JR, da Cunha LC, Lopes Rocha T, Bailão EFLC. Ecotoxicological assessment of UV filters benzophenone-3 and TiO 2 nanoparticles, isolated and in a mixture, in developing zebrafish ( Danio rerio). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:687-700. [PMID: 38836411 DOI: 10.1080/15287394.2024.2362809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The increasing use of UV filters, such as benzophenone-3 (BP-3) and titanium dioxide nanoparticles (TiO2 NPs), has raised concerns regarding their ecotoxicological effects on the aquatic environment. The aim of the present study was to examine the embryo-larval toxicity attributed to BP-3 or TiO2 NPs, either alone or in a mixture, utilizing zebrafish (Danio rerio) as a model after exposure to environmentally relevant concentrations of these compounds. Zebrafish embryos were exposed to BP-3 (10, 100, or 1000 ng/L) or TiO2 NPs (1000 ng/L) alone or in a mixture (BP-3 10, 100, or 1000 ng/L plus 1000 ng/L of TiO2 NPs) under static conditions for 144 hr. After exposure, BP-3 levels were determined by high-performance liquid chromatography (HPLC). BP-3 levels increased in the presence of TiO2 NPs, indicating that the BP-3 degradation decreased in the presence of the NPs. In addition, in the presence of zebrafish, BP-3 levels in water decreased, indicating that zebrafish embryos and larvae might absorb BP-3. Data demonstrated that, in general, environmentally relevant concentrations of BP-3 and TiO2 NPs, either alone or in a mixture, did not significantly induce changes in heart and spontaneous contractions frequencies, levels of reactive oxygen species (ROS), morphological and morphometric parameters as well as mortality rates during 144 hr exposure. However, the groups exposed to TiO2 NPs alone and in a mixture with BP-3 at 10 ng/L exhibited an earlier significant hatching rate than the controls. Altogether, the data indicates that a potential ecotoxicological impact on the aquatic environment exists.
Collapse
Affiliation(s)
- Jéssyca Moreira Morais
- Laboratory of Biotechnology, Central Campus, State University of Goiás, Anápolis, Goiás, Brazil
| | - Rafaella da Silva Brito
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Patrícia Saiki
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Health, Federal University of Goiás, Goiânia, Goiás, Brazil
- Federal Institute of Education, Science and Technology of Goiás (IFG), Goiânia, Goiás, Brazil
| | - Felipe Cirqueira Dias
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | | | - Luiz Carlos da Cunha
- Center for Toxic-Pharmacological Studies and Research, Faculty of Pharmacy, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | | |
Collapse
|
5
|
Rondon R, Cosseau C, Bergami E, Cárdenas CA, Pérez-Toledo C, Alvarez D, Aldridge J, Font A, Garrido I, Santa Cruz F, Perrois G, Balbi T, Corsi I, González-Aravena M. Exposure to nanoplastics and nanomaterials either single and combined affects the gill-associated microbiome of the Antarctic soft-shelled clam Laternula elliptica. MARINE ENVIRONMENTAL RESEARCH 2024; 198:106539. [PMID: 38718522 DOI: 10.1016/j.marenvres.2024.106539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/23/2024] [Accepted: 05/01/2024] [Indexed: 06/11/2024]
Abstract
Nanoplastics and engineering nanomaterials (ENMs) are contaminants of emerging concern (CECs), increasingly being detected in the marine environment and recognized as a potential threat for marine biota at the global level including in polar areas. Few studies have assessed the impact of these anthropogenic nanoparticles in the microbiome of marine invertebrates, however combined exposure resembling natural scenarios has been overlooked. The present study aimed to evaluate the single and combined effects of polystyrene nanoparticles (PS NP) as proxy for nanoplastics and nanoscale titanium dioxide (nano-TiO2) on the prokaryotic communities associated with the gill tissue of the Antarctic soft-shell clam Laternula elliptica, a keystone species of marine benthos Wild-caught specimens were exposed to two environmentally relevant concentrations of carboxylated PS NP (PS-COOH NP, ∼62 nm size) and nano-TiO2 (Aeroxide P25, ∼25 nm) as 5 and 50 μg/L either single and combined for 96h in a semi-static condition.Our findings show a shift in microbiome composition in gills of soft-shell clams exposed to PS NP and nano-TiO2 either alone and in combination with a decrease in the relative abundance of OTU1 (Spirochaetaceae). In addition, an increase of gammaproteobacterial OTUs affiliated to MBAE14 and Methylophagaceae (involved in ammonia denitrification and associated with low-quality water), and the OTU Colwellia rossensis (previously recorded in polluted waters) was observed. Our results suggest that nanoplastics and nano-TiO2 alone and in combination induce alterations in microbiome composition by promoting the increase of negative taxa over beneficial ones in the gills of the Antarctic soft-shell clam. An increase of two low abundance OTUs in PS-COOH NPs exposed clams was also observed. A predicted gene function analysis revealed that sugar, lipid, protein and DNA metabolism were the main functions affected by either PS-COOH NP and nano-TiO2 exposure. The molecular functions involved in the altered affiliated OTUs are novel for nano-CEC exposures.
Collapse
Affiliation(s)
- Rodolfo Rondon
- Departamento Científico, Instituto Antártico Chileno, Punta Arenas, Chile.
| | - Céline Cosseau
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, Perpignan, France
| | - Elisa Bergami
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - César A Cárdenas
- Departamento Científico, Instituto Antártico Chileno, Punta Arenas, Chile; Millenium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
| | | | - Diego Alvarez
- Centro Asistencial Docente y de Investigación, Universidad de Magallanes, Punta Arenas, Chile
| | - Jacqueline Aldridge
- Departamento de Ingeniería en Computación, Universidad de Magallanes, Punta Arenas, Chile
| | - Alejandro Font
- Departamento Científico, Instituto Antártico Chileno, Punta Arenas, Chile
| | - Ignacio Garrido
- Centro de Investigaciones Dinámica de Ecosistemas Marinos de Altas Latitudes, Valdivia, Chile; Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | | | - Garance Perrois
- Departamento Científico, Instituto Antártico Chileno, Punta Arenas, Chile; Tropical & Subtropical Research Center, Korea Institute of Ocean Science and Technology, Jeju, 63349, Republic of Korea
| | - Teresa Balbi
- Department of Earth Environment and Life Sciences, University of Genoa, Genoa, Italy
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | | |
Collapse
|
6
|
Yin-Yu C, Po-Kai P, Yu-Sheng W, Fan-Hua N. Transcriptome analysis reveal the effect of freshwater sediments containing 2,3,7,8-tetrachlorodibenzo-p-dioxin on the Macrobrachium rosenbergii hepatopancreas, intestine, and muscle. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109297. [PMID: 38110107 DOI: 10.1016/j.fsi.2023.109297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/20/2023]
Abstract
This research evaluated the hepatopancreas, intestine, and muscle transcriptome alternation of Macrobrachium rosenbergii, and to confirm the relative glycerophospholipid, cytochrome P450 system, and fatty acid metabolism gene expression in sediments containing 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) of 60 ng/sediment (g) and 700 ng/sediment (g) for 90 days of culture. Transcriptome analysis revealed that the TCDD sediment affected the hepatopancreatic metabolism of xenobiotics in M. rosenbergii via the cytochrome P450 system, drug metabolism-other enzymes, drug metabolism-cytochrome P450, chemical carcinogenesis, and lysosome function. Intestinal analysis also showed a similar phenomenon, but this finding was not observed in the muscle tissue. qPCR analysis indicated that the expression levels of APTG4, LPGAT1, ACHE, GPX4, ECHS1, ATP5B, FABP, and ACC in the hepatopancreatic and intestinal tissues decreased, but those in the muscle tissues did not. In summary, TCDD sediment induced tissue metabolism, especially in the hepatopancreas and intestine. TCDD sediment mainly affected the digestive enzyme gene expression with concentration. These results indicated that the presence of TCDD in the sediment played a major role in the hepatopancreatic and intestinal metabolism system of M. rosenbergii.
Collapse
Affiliation(s)
- Chen Yin-Yu
- Department of Aquaculture, National Taiwan Ocean University, Keelung, 202301, Taiwan
| | - Pan Po-Kai
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, 912301, Taiwan
| | - Wu Yu-Sheng
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, 912301, Taiwan.
| | - Nan Fan-Hua
- Department of Aquaculture, National Taiwan Ocean University, Keelung, 202301, Taiwan.
| |
Collapse
|
7
|
Leso V, Battistini B, Vetrani I, Reppuccia L, Fedele M, Ruggieri F, Bocca B, Iavicoli I. The endocrine disrupting effects of nanoplastic exposure: A systematic review. Toxicol Ind Health 2023; 39:613-629. [PMID: 37753827 DOI: 10.1177/07482337231203053] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Good mechanical properties and low costs have led to a global expansion of plastic production and use. Unfortunately, much of this material can be released into the environment as a waste product and cleaved into micro- and nanoplastics (NPs) whose impact on the environment and human health is still largely unknown. Considering the growing worldwide awareness on exposure to chemicals that can act as endocrine disruptors, a systematic review was performed to assess the impact of NPs on the endocrine function of in vitro and in vivo models. Although a limited number of investigations is currently available, retrieved findings showed that NPs may induce changes in endocrine system functionality, with evident alterations in reproductive and thyroid hormones and gene expression patterns, also with a trans-generational impact. Nanoplastic size, concentration, and the co-exposure to other endocrine disrupting pollutants may have an influencing role on these effects. Overall, although it is still too early to draw conclusions regarding the human health risks derived from NPs, these preliminary results support the need for further studies employing a wider range of plastic polymer types, concentrations, and time points as well as species and life stages to address a great variety of endocrine outcomes and to achieve a broader and shared consensus on the role of NPs as endocrine disruptors.
Collapse
Affiliation(s)
- Veruscka Leso
- Department of Public Health, Section of Occupational Medicine, University of Naples Federico II, Naples, Italy
| | - Beatrice Battistini
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Ilaria Vetrani
- Department of Public Health, Section of Occupational Medicine, University of Naples Federico II, Naples, Italy
| | - Liberata Reppuccia
- Department of Public Health, Section of Occupational Medicine, University of Naples Federico II, Naples, Italy
| | - Mauro Fedele
- Department of Public Health, Section of Occupational Medicine, University of Naples Federico II, Naples, Italy
| | - Flavia Ruggieri
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Beatrice Bocca
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Ivo Iavicoli
- Department of Public Health, Section of Occupational Medicine, University of Naples Federico II, Naples, Italy
| |
Collapse
|
8
|
De Silva WAPM, Pathiratne A. Nano-titanium dioxide induced genotoxicity and histological lesions in a tropical fish model, Nile tilapia (Oreochromis niloticus). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 98:104043. [PMID: 36565896 DOI: 10.1016/j.etap.2022.104043] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/09/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
This study evaluated potential genotoxic and histopathological effects of nano-TiO2 (0.1, 0.5 and 1 mg/L) in Nile tilapia over 7, 14 and 21 days of exposure. Bulk TiO2 (1 mg/L) along with controls was used for comparison. Comet assay revealed that nano-TiO2 can induce erythrocytic DNA damage in a concentration dependent manner. However, micronuclei induction was observed only at the lowest concentration. Elevated organ damage indices indicate nano-TiO2 induced histological alterations in liver and intestine. Severe histological alterations induced by nano-TiO2 in the fish were necrosis of hepatic parenchyma and intestinal mucosa. Bulk TiO2 exposure had no effect on the histological structure of the intestine but increased liver damage indices and erythrocytic DNA damage compared to the controls indicating dissolved form of TiO2 is not biologically inert. More research efforts are needed to generate in vivo toxicity data on realistic levels of nano-TiO2 and bulk TiO2 for environmental risk assessments.
Collapse
Affiliation(s)
- W A P M De Silva
- Department of Zoology and Environmental Management, Faculty of Science, University of Kelaniya, Kelaniya, GQ 11600, Sri Lanka
| | - A Pathiratne
- Department of Zoology and Environmental Management, Faculty of Science, University of Kelaniya, Kelaniya, GQ 11600, Sri Lanka.
| |
Collapse
|
9
|
Martin N, Wassmur B, Baun A, Lammel T. Availability and effects of n-TiO 2 and PCB77 in fish in vitro models of the intestinal barrier and liver under single- and/or co-exposure scenarios. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 253:106343. [PMID: 36327689 DOI: 10.1016/j.aquatox.2022.106343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Titanium dioxide nanoparticles (n-TiO2) and polychlorinated biphenyls (PCBs) can be present in the food of fish, leading to intestinal exposure uptake, and accumulation in inner organs. This study examined combination effects of n-TiO2 and PCB77 in vitro models of the fish intestinal epithelium and liver, i.e., RTgut-GC cell cultures grown in ThinCerts™ and RTL-W1 cell cultures grown in standard tissue culture plates. Mass spectrometry and microscopy techniques were used to obtain information on nanoparticle translocation across the intestinal barrier model. In addition, the substances' effect on intestinal barrier permeability, cell viability, expression of dioxin - and antioxidant response element -controlled genes, and induction of cytochrome P450 1a (Cyp1a)-dependent ethoxyresorufin-O-deethylase (EROD) activity were assessed. TiO2 nanoparticles were taken up by RTgut-GC cells and detected in the bottom compartment of the intestinal epithelial barrier model. It was not possible to conclude definitively if n-TiO2 translocation occurred via transcytosis or paracellular migration but observations of nanoparticles in the lateral space between adjacent epithelial cells were rare. PCB77 (1 and 10 µM, 24 h) did not affect barrier permeability, i.e., n-TiO2 translocation is probably not facilitated in case of co-exposure. Furthermore, previous and simultaneous exposure to n-TiO2 (1 and 10 mg/L, 24 h) did not have any influence on PCB77-induced Cyp1a mRNA and enzyme activity levels in RTL-W1 cells. Furthermore, there were no significant differences in expression of antioxidant response element-controlled genes comparing control, single substance, and mixture treatments, not even following long-term exposure (0.01-1 mg/L n-TiO2 + 1 nM PCB77, 4 weeks). While an underestimation of the effects of n-TiO2 and PCB77 cannot be fully excluded as concentration losses due to sorption to cell culture plastics were not measured, the results suggest that the test substances probably have a low potential to exhibit combination effects on the assessed endpoints when co-existing in fish tissues.
Collapse
Affiliation(s)
- Nicolas Martin
- Department of Biological and Environmental Sciences, University of Gothenburg, Medicinaregatan 18 A, Box 463, Göteborg 413 90, Sweden
| | - Britt Wassmur
- Department of Biological and Environmental Sciences, University of Gothenburg, Medicinaregatan 18 A, Box 463, Göteborg 413 90, Sweden
| | - Anders Baun
- Department of Environmental and Resource Engineering, Technical University of Denmark, Building 115, 2800 Kgs., Lyngby, Denmark
| | - Tobias Lammel
- Department of Biological and Environmental Sciences, University of Gothenburg, Medicinaregatan 18 A, Box 463, Göteborg 413 90, Sweden.
| |
Collapse
|
10
|
Ferrari E, Eliso MC, Bellingeri A, Corsi I, Spagnuolo A. Short-Term Exposure to Nanoplastics Does Not Affect Bisphenol A Embryotoxicity to Marine Ascidian Ciona robusta. Biomolecules 2022; 12:1661. [PMID: 36359011 PMCID: PMC9687932 DOI: 10.3390/biom12111661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 09/14/2023] Open
Abstract
Plastic pollution is recognized as a global environmental threat and concern is increasing regarding the potential interactions of the smallest fragments, nanoplastics (1 µm), with either physical and chemical entities encountered in the natural environment, including toxic pollutants. The smallest size of nanoplastics (<100nm) rebounds to their safety associated with remarkable biological, chemical and physical reactivity that allow them to interact with cellular machinery by crossing biological barriers and causing damage to living beings. Recent findings on nanoplastic occurrence in marine coastal waters, including the Mediterranean Sea, leave open the question on their ability to act as a vector of other contaminants of emerging concerns (CECs) concomitantly released by wastewater treatment plants and reaching marine coastal waters. Here, we assess for the first time the role of non-functionalized polystyrene nanoparticles (PS NPs, 20 nm) as a proxy for nanoplastics (1 and 10 µg/mL) alone and in combination with bisphenol A (BPA) (4.5 and 10 µM) on Ciona robusta embryos (22 h post fertilization, hpf) by looking at embryotoxicity through phenotypic alterations. We confirmed the ability of BPA to impact ascidian C. robusta embryo development, by affecting sensory organs pigmentation, either alone and in combination with PS NPs. Our findings suggest that no interactions are taking place between PS NPs and BPA in filtered sea water (FSW) probably due to the high ionic strength of seawater able to trigger the sorption surface properties of PS NPs. Further studies are needed to elucidate such peculiarities and define the risk posed by combined exposure to BPA and PS NPs in marine coastal waters.
Collapse
Affiliation(s)
- Emma Ferrari
- Department of Physical, Earth and Environmental Sciences, University of Siena, 53100 Siena, Italy
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy
| | - Maria Concetta Eliso
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy
| | - Arianna Bellingeri
- Department of Physical, Earth and Environmental Sciences, University of Siena, 53100 Siena, Italy
- Department of Sciences, Roma Tre University, 00146 Rome, Italy
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, 53100 Siena, Italy
| | - Antonietta Spagnuolo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy
| |
Collapse
|
11
|
Soloperto S, Nihoul F, Olivier S, Poret A, Couteau J, Halm-Lemeille MP, Danger JM, Aroua S. Effects of 17α-Ethinylestradiol (EE2) exposure during early life development on the gonadotropic axis ontogenesis of the European sea bass, Dicentrarchus labrax. Comp Biochem Physiol A Mol Integr Physiol 2022; 271:111260. [PMID: 35724955 DOI: 10.1016/j.cbpa.2022.111260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/27/2022] [Accepted: 06/14/2022] [Indexed: 10/18/2022]
Abstract
Exposure of young organisms to oestrogenic endocrine disrupting chemicals (EDCs) can elicit adverse effects, particularly on the reproductive function. In fish, as in other vertebrates, reproduction is controlled by the neuroendocrine gonadotropic axis, whose components are mainly regulated by sex steroids and may then be targets for EDCs. In the present study, we investigated the effects of a xenoestrogen exposure on the ontogenesis of the gonadotropic axis in European sea bass. After exposure of hatching larvae for 8 days to 17α-ethinylestradiol (EE2) (0.5 nM and 50 nM), gene expression for kisspeptins (kiss1, kiss2), gonadotropin-releasing hormones (gnrh1, gnrh2, gnrh3), gonadotropin beta subunits (lhβ and fshβ) and brain type aromatase (cyp19a1b) were measured using quantitative real-time PCR. Our results demonstrate that EE2 strongly stimulated the expression of brain type aromatase (cyp19a1b) in sea bass larvae. In addition, EE2 exposure also affected the mRNA levels of kiss1, gnrh1 and gnrh3 by inducing a downregulation of these genes during the early developmental stages, while no effect was seen in gnrh2, lhβ and fshβ. These results reinforce the idea that the larval development is a sensitive critical period in regard to endocrine disruption and that the gonadotropic axis in the developing sea bass is sensitive to xenoestrogen exposure.
Collapse
Affiliation(s)
- Sofia Soloperto
- UMR-I 02 INERIS-URCA-ULH SEBIO, Normandie Univ, UNIHAVRE, FR CNRS 3730 Scale, Le Havre, France
| | - Florent Nihoul
- UMR-I 02 INERIS-URCA-ULH SEBIO, Normandie Univ, UNIHAVRE, FR CNRS 3730 Scale, Le Havre, France
| | - Stéphanie Olivier
- UMR-I 02 INERIS-URCA-ULH SEBIO, Normandie Univ, UNIHAVRE, FR CNRS 3730 Scale, Le Havre, France
| | - Agnès Poret
- UMR-I 02 INERIS-URCA-ULH SEBIO, Normandie Univ, UNIHAVRE, FR CNRS 3730 Scale, Le Havre, France
| | | | | | - Jean-Michel Danger
- UMR-I 02 INERIS-URCA-ULH SEBIO, Normandie Univ, UNIHAVRE, FR CNRS 3730 Scale, Le Havre, France
| | - Salima Aroua
- UMR-I 02 INERIS-URCA-ULH SEBIO, Normandie Univ, UNIHAVRE, FR CNRS 3730 Scale, Le Havre, France.
| |
Collapse
|
12
|
Rosário F, Costa C, Lopes CB, Estrada AC, Tavares DS, Pereira E, Teixeira JP, Reis AT. In Vitro Hepatotoxic and Neurotoxic Effects of Titanium and Cerium Dioxide Nanoparticles, Arsenic and Mercury Co-Exposure. Int J Mol Sci 2022; 23:ijms23052737. [PMID: 35269878 PMCID: PMC8910921 DOI: 10.3390/ijms23052737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 02/04/2023] Open
Abstract
Considering the increasing emergence of new contaminants, such as nanomaterials, mixing with legacy contaminants, including metal(loid)s, it becomes imperative to understand the toxic profile resulting from these interactions. This work aimed at assessing and comparing the individual and combined hepatotoxic and neurotoxic potential of titanium dioxide nanoparticles (TiO2NPs 0.75–75 mg/L), cerium oxide nanoparticles (CeO2NPs 0.075–10 μg/L), arsenic (As 0.01–2.5 mg/L), and mercury (Hg 0.5–100 mg/L) on human hepatoma (HepG2) and neuroblastoma (SH-SY5Y) cells. Viability was assessed through WST-1 (24 h) and clonogenic (7 days) assays and it was affected in a dose-, time- and cell-dependent manner. Higher concentrations caused greater toxicity, while prolonged exposure caused inhibition of cell proliferation, even at low concentrations, for both cell lines. Cell cycle progression, explored by flow cytometry 24 h post-exposure, revealed that TiO2NPs, As and Hg but not CeO2NPs, changed the profiles of SH-SY5Y and HepG2 cells in a dose-dependent manner, and that the cell cycle was, overall, more affected by exposure to mixtures. Exposure to binary mixtures revealed either potentiation or antagonistic effects depending on the composition, cell type and time of exposure. These findings prove that joint toxicity of contaminants cannot be disregarded and must be further explored.
Collapse
Affiliation(s)
- Fernanda Rosário
- EPIUnit—Instituto de Saúde Pública, Universidade do Porto, 4050-600 Porto, Portugal; (F.R.); (J.P.T.); (A.T.R.)
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), 4050-600 Porto, Portugal
- Department of Environmental Health, Portuguese National Institute of Health, Rua Alexandre Herculano 321, 4000-055 Porto, Portugal
| | - Carla Costa
- EPIUnit—Instituto de Saúde Pública, Universidade do Porto, 4050-600 Porto, Portugal; (F.R.); (J.P.T.); (A.T.R.)
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), 4050-600 Porto, Portugal
- Department of Environmental Health, Portuguese National Institute of Health, Rua Alexandre Herculano 321, 4000-055 Porto, Portugal
- Correspondence:
| | - Cláudia B. Lopes
- Department of Chemistry and Aveiro Institute of Materials (CICECO), University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; (C.B.L.); (A.C.E.); (D.S.T.)
| | - Ana C. Estrada
- Department of Chemistry and Aveiro Institute of Materials (CICECO), University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; (C.B.L.); (A.C.E.); (D.S.T.)
| | - Daniela S. Tavares
- Department of Chemistry and Aveiro Institute of Materials (CICECO), University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; (C.B.L.); (A.C.E.); (D.S.T.)
- Department of Chemistry and Center of Environmental and Marine Studies (CESAM), University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Eduarda Pereira
- LAQV-REQUIMTE—Associated Laboratory for Green Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - João Paulo Teixeira
- EPIUnit—Instituto de Saúde Pública, Universidade do Porto, 4050-600 Porto, Portugal; (F.R.); (J.P.T.); (A.T.R.)
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), 4050-600 Porto, Portugal
- Department of Environmental Health, Portuguese National Institute of Health, Rua Alexandre Herculano 321, 4000-055 Porto, Portugal
| | - Ana Teresa Reis
- EPIUnit—Instituto de Saúde Pública, Universidade do Porto, 4050-600 Porto, Portugal; (F.R.); (J.P.T.); (A.T.R.)
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), 4050-600 Porto, Portugal
- Department of Environmental Health, Portuguese National Institute of Health, Rua Alexandre Herculano 321, 4000-055 Porto, Portugal
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| |
Collapse
|
13
|
Soloperto S, Aroua S, Jozet-Alves C, Minier C, Halm-Lemeille MP. Development of an exposure protocol for toxicity test (FEET) for a marine species: the European sea bass (Dicentrarchus labrax). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:15777-15790. [PMID: 34636016 DOI: 10.1007/s11356-021-16785-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Regulatory assessment of the effects of chemicals requires the availability of validated tests representing different environments and organisms. In this context, developing new tests is particularly needed for marine species from temperate environments. It is also important to evaluate effects that are generally poorly characterized and seldom included in regulatory tests. In this study, we designed an exposure protocol using European sea bass (Dicentrarchus labrax) larvae. We examined classical toxicological values (LCx) as well as behavioral responses. By comparing different hatching and breeding strategies, we defined the optimal conditions of exposure as non-agitated conditions in 24- or 48-well microplates. Our exposure protocol was then tested with 3,4-dichloroaniline (3,4-DCA), a recommended reference molecule. Based on our results, the 96 h LC50 for 3,4-DCA corresponded to 2.04 mg/L while the 168 h LC50 to 0.79 mg/L. Behavioral analyses showed no effect of 3,4-DCA at low concentration (0.25 mg/L). In conclusion, the present work established the basis for a new test which includes behavioral analysis and shows that the use of sea bass is suitable to early-life stage toxicity tests.
Collapse
Affiliation(s)
- Sofia Soloperto
- UMR-I 02 SEBIO - Stress Environnementaux et BIOsurveillance des milieux aquatiques, Université du Havre, 25, Rue Philippe Lebon, 76600, Le Havre, France.
| | - Salima Aroua
- UMR-I 02 SEBIO - Stress Environnementaux et BIOsurveillance des milieux aquatiques, Université du Havre, 25, Rue Philippe Lebon, 76600, Le Havre, France
| | - Christelle Jozet-Alves
- Unicaen, CNRS, Normandie Univ, 14000, Caen, France
- EthoS (Éthologie animale et humaine) - UMR 6552, Univ Rennes, CNRS, F-35000, Rennes, France
| | - Christophe Minier
- UMR-I 02 SEBIO - Stress Environnementaux et BIOsurveillance des milieux aquatiques, Université du Havre, 25, Rue Philippe Lebon, 76600, Le Havre, France
| | | |
Collapse
|
14
|
Shi J, Han S, Zhang J, Liu Y, Chen Z, Jia G. Advances in genotoxicity of titanium dioxide nanoparticles in vivo and in vitro. NANOIMPACT 2022; 25:100377. [PMID: 35559883 DOI: 10.1016/j.impact.2021.100377] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/24/2021] [Accepted: 12/10/2021] [Indexed: 06/15/2023]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are currently one of the most widely used nanomaterials. Due to an increasing scope of applications, the exposure of humans to TiO2 NP is inevitable, such as entering the body through the mouth with food additives or drugs, invading the damaged skin with cosmetics, and entering the body through the respiratory tract during the process of production and handling. Compared with TiO2 coarse particles, TiO2 NPs have stronger conductivity, reaction activity, photocatalysis, and permeability, which may lead to greater toxicity to organisms. Given that TiO2 was classified as a category 2B carcinogen (possibly carcinogenic to humans), the genotoxicity of TiO2 NPs has become the focus of attention. There have been a series of previous studies investigating the potential genotoxicity of TiO2 NPs, but the existing research results are still controversial and difficult to conclude. More than half of studies have shown that TiO2 NPs can cause genotoxicity, suggesting that TiO2 NPs are likely to be genotoxic to humans. And the genotoxicity of TiO2 NPs is closely related to the exposure concentration, mode and time, and experimental cells/animals as well as its physicochemical properties (crystal type, size, and shape). This review summarized the latest research progress of related genotoxic effects through in vivo studies and in vitro cell tests, hoping to provide ideas for the evaluation of TiO2 NPs genotoxicity.
Collapse
Affiliation(s)
- Jiaqi Shi
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, PR China
| | - Shuo Han
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, PR China
| | - Jiahe Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, PR China
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China
| | - Zhangjian Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, PR China.
| | - Guang Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, PR China
| |
Collapse
|
15
|
Huang G, Shen H, Chen X, Wu T, Chen Z, Chen Y, Song J, Cai Q, Bai Y, Pu H, Feng X. A Degradable, Broad-Spectrum and Resistance-Resistant Antimicrobial Oligoguanidine as Disinfecting and Therapeutic Agent in Aquaculture. Polym Chem 2022. [DOI: 10.1039/d2py00183g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The threat of antibiotic resistance to community healthcare and global economy has raised extensive concern, and the over-use of antibiotics in animal husbandry plays a significant role in the occurrence...
Collapse
|
16
|
Sunscreens’ UV Filters Risk for Coastal Marine Environment Biodiversity: A Review. DIVERSITY 2021. [DOI: 10.3390/d13080374] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Considering the rapid growth of tourism in recent years and the acknowledgement that exposure to solar UV radiation may cause skin cancer, sunscreens have been widely used by beachgoers in recent decades. UV filters contained in sunscreens, however, were recently identified as emerging pollutants in coastal waters since they accumulate in the marine environment with different adverse effects. In fact, exposure to these components was proven to be toxic to most invertebrate and vertebrate marine species. Some UV filters are linked to the production of significant amounts of reactive oxygen species (ROS), such as hydrogen peroxide, and the release of inorganic micronutrients that may alter the status of coastal habitats. Bioaccumulation and biomagnification have not yet been fully addressed. This review highlights recent progress in research and provides a comprehensive overview of the toxicological and ecotoxicological effects of the most used UV filters both on the abiotic and biotic compartments in different types of coastal areas, to gain a better understanding of the impacts on coastal biodiversity.
Collapse
|
17
|
Eco-Interactions of Engineered Nanomaterials in the Marine Environment: Towards an Eco-Design Framework. NANOMATERIALS 2021; 11:nano11081903. [PMID: 34443734 PMCID: PMC8398366 DOI: 10.3390/nano11081903] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/14/2021] [Accepted: 07/22/2021] [Indexed: 12/23/2022]
Abstract
Marine nano-ecotoxicology has emerged with the purpose to assess the environmental risks associated with engineered nanomaterials (ENMs) among contaminants of emerging concerns entering the marine environment. ENMs’ massive production and integration in everyday life applications, associated with their peculiar physical chemical features, including high biological reactivity, have imposed a pressing need to shed light on risk for humans and the environment. Environmental safety assessment, known as ecosafety, has thus become mandatory with the perspective to develop a more holistic exposure scenario and understand biological effects. Here, we review the current knowledge on behavior and impact of ENMs which end up in the marine environment. A focus on titanium dioxide (n-TiO2) and silver nanoparticles (AgNPs), among metal-based ENMs massively used in commercial products, and polymeric NPs as polystyrene (PS), largely adopted as proxy for nanoplastics, is made. ENMs eco-interactions with chemical molecules including (bio)natural ones and anthropogenic pollutants, forming eco- and bio-coronas and link with their uptake and toxicity in marine organisms are discussed. An ecologically based design strategy (eco-design) is proposed to support the development of new ENMs, including those for environmental applications (e.g., nanoremediation), by balancing their effectiveness with no associated risk for marine organisms and humans.
Collapse
|
18
|
Zhao X, Liu Z, Ren X, Duan X. Parental transfer of nanopolystyrene-enhanced tris(1,3-dichloro-2-propyl) phosphate induces transgenerational thyroid disruption in zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 236:105871. [PMID: 34058436 DOI: 10.1016/j.aquatox.2021.105871] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/12/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
Plastic is a globally recognized superwaste that can affect human health and wildlife when it accumulates and is amplified in the food chain. Microplastics (plastic particles < 5 mm) and nanoplastics (plastic particles < 100 nm) can interact with organic pollutants already present in the aquatic environment, potentially acting as carriers for pollutants entering organisms and thus influencing the bioavailability and toxicity of those pollutants. In this study, we investigated the transfer kinetics and transgenerational effects of exposure to tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) and polystyrene nanoplastics (PS-NPs) in F1 offspring. At 90 days postfertilization, zebrafish (Danio rerio) strain AB was exposed to either TDCIPP (0, 0.47, 2.64, or 12.78 μg/L) or PS-NPs (10 mg/L) or their combination for 120 days. The results showed that TDCIPP and PS-NPs accumulated in the gut, gill, head, and liver of the zebrafish in a sex-dependent manner. The presence of PS-NPs promoted the bioaccumulation of TDCIPP in the adult fish and increased the parental transfer of TDCIPP to their offspring. We demonstrate that parental exposure to TDCIPP alone or in combination with PS-NPs induces thyroid disruption in adults, and then leads to thyroid endocrine disruption in their larval offspring. Reduced thyroxine (T4) and 3,5,3'-triiodothyronine (T3) levels contributed to the observed transgenerational thyroid dysfunction, which inhibited developmental growth and disturbed the transcription of genes and expression of proteins involved in the hypothalamic-pituitary-thyroid (HPT) axis in the F1 larvae. The increased transfer of TDCIPP to the offspring in the presence of PS-NPs also enhanced transgenerational thyroid endocrine disruption, demonstrated by a further reduction in T4 and the upregulation of thyroglobulin (tg), uridine diphosphate-glucuronosyltransferase (ugt1ab), thyroid-stimulating hormone (tshβ), and thyroid hormone receptor (trα) expression in the F1 larvae compared with the effects of parental TDCIPP exposure alone. Overall, our results indicate that the presence of PS-NPs modifies the bioavailability of TDCIPP and aggravates transgenerational thyroid disruption in zebrafish.
Collapse
Affiliation(s)
- Xuesong Zhao
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Siping 136000, China; College of Environmental Science and Engineering, Jilin Normal University, Haifeng Street, Tiexi Dist, Siping 136000, China
| | - Zhibo Liu
- College of Environmental Science and Engineering, Jilin Normal University, Haifeng Street, Tiexi Dist, Siping 136000, China
| | - Xin Ren
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Siping 136000, China; College of Environmental Science and Engineering, Jilin Normal University, Haifeng Street, Tiexi Dist, Siping 136000, China.
| | - Xiaoyue Duan
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Siping 136000, China; College of Environmental Science and Engineering, Jilin Normal University, Haifeng Street, Tiexi Dist, Siping 136000, China
| |
Collapse
|
19
|
Miccoli A, Picchietti S, Fausto AM, Scapigliati G. Evolution of immune defence responses as incremental layers among Metazoa. EUROPEAN ZOOLOGICAL JOURNAL 2021. [DOI: 10.1080/24750263.2020.1849435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- A. Miccoli
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Largo dell’Università Snc, Viterbo, Italy
| | - S. Picchietti
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Largo dell’Università Snc, Viterbo, Italy
| | - A. M. Fausto
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Largo dell’Università Snc, Viterbo, Italy
| | - G. Scapigliati
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Largo dell’Università Snc, Viterbo, Italy
| |
Collapse
|
20
|
Adsorption of Cd to TiO 2-NPs Forms Low Genotoxic AGGREGATES in Zebrafish Cells. Cells 2021; 10:cells10020310. [PMID: 33546308 PMCID: PMC7913537 DOI: 10.3390/cells10020310] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 01/06/2023] Open
Abstract
The aquatic environment is involved in the pollutants spreading mechanisms, including nanomaterials and heavy metals. The aims of this study were to assess the in vivo genotoxicity of Cd (1 mg/L) and to investigate the genomic effects generated by its co-exposure with TiO2-NPs (10 µg/L). The study was performed using zebrafish as a model for 5, 7, 14, 21, and 28 days of exposure. The genotoxic potential was assessed by three experimental approaches: DNA integrity, degree of apoptosis, and molecular alterations at the genomic level by genomic template stability (% GTS) calculation. Results showed an increased in DNA damage after Cd exposure with a decrease in % GTS. The co-exposure (TiO2-NPs + Cd) induced a no statistically significant loss of DNA integrity, a reduction of the apoptotic cell percentage and the recovery of genome stability for prolonged exposure days. Characterization and analytical determinations data showed Cd adsorption to TiO2-NPs, which reduced free TiO2-NPs levels. The results of our study suggest that TiO2-NPs could be used for the development of controlled heavy metal bioremediation systems.
Collapse
|
21
|
Trinh TX, Kim J. Status Quo in Data Availability and Predictive Models of Nano-Mixture Toxicity. NANOMATERIALS 2021; 11:nano11010124. [PMID: 33430414 PMCID: PMC7826902 DOI: 10.3390/nano11010124] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 11/16/2022]
Abstract
Co-exposure of nanomaterials and chemicals can cause mixture toxicity effects to living organisms. Predictive models might help to reduce the intensive laboratory experiments required for determining the toxicity of the mixtures. Previously, concentration addition (CA), independent action (IA), and quantitative structure–activity relationship (QSAR)-based models were successfully applied to mixtures of organic chemicals. However, there were few studies concerning predictive models for toxicity of nano-mixtures before June 2020. Previous reviews provided comprehensive knowledge of computational models and mechanisms for chemical mixture toxicity. There is a gap in the reviewing of datasets and predictive models, which might cause obstacles in the toxicity assessment of nano-mixtures by using in silico approach. In this review, we collected 183 studies of nano-mixture toxicity and curated data to investigate the current data and model availability and gap and to derive research challenges to facilitate further experimental studies for data gap filling and the development of predictive models.
Collapse
Affiliation(s)
- Tung X. Trinh
- Chemical Safety Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea;
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Jongwoon Kim
- Chemical Safety Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea;
- Correspondence: ; Tel.: +82-(0)42-860-7482
| |
Collapse
|
22
|
Haghighat F, Kim Y, Sourinejad I, Yu IJ, Johari SA. Titanium dioxide nanoparticles affect the toxicity of silver nanoparticles in common carp (Cyprinus carpio). CHEMOSPHERE 2021; 262:127805. [PMID: 32750593 DOI: 10.1016/j.chemosphere.2020.127805] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 05/24/2023]
Abstract
The present study assessed the individual and combined toxicity effects of Ag- and TiO2- nanoparticles (NPs) on Ag bioaccumulation, oxidative stress, and gill histopathology in common carp as an aquatic animal model. The 96-h acute toxicity tests showed that TiO2NPs enhanced the toxicity of AgNPs deducted from the decreased LC50 in co-exposure to these NPs. Chronic toxicity tests included a 10-day exposure and a 10-day recovery period. In most cases, histological damages were more severe in co-exposure to Ag- and TiO2- NPs compared with the individual AgNPs however, they were reduced in some cases and also after the recovery period. In co-exposure to Ag- and TiO2- NPs, the Ag bioaccumulation was decreased in the gills but increased in the liver and intestine compared with the singular exposure. After the recovery period, Ag bioaccumulation decreased especially in the liver. Decreased levels of antioxidant enzymes were observed in the AgNPs exposed groups, which were partially alleviated by TiO2NPs. The reduction of condition factor (CF) and hepatosomatic index (HSI) and a severe decrease of weight gain (WG) were observed in co-exposure to Ag- and TiO2- NPs. After the recovery period, the CF and HSI increased but the WG decreased less compared with the exposure period. The present results emphasize the importance of considering the co-existence and interaction of NPs in realizing their bioavailability and toxicity in aquatic environments.
Collapse
Affiliation(s)
- Fatemeh Haghighat
- Department of Fisheries, Faculty of Natural Resources, University of Kurdistan, Sanandaj, Kurdistan, Iran
| | - Younghun Kim
- Chemicals Research Division, National Institute of Environmental Research, Incheon, Republic of Korea
| | - Iman Sourinejad
- Department of Fisheries, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Il Je Yu
- HCTm CO.,LTD., Icheon, Republic of Korea
| | - Seyed Ali Johari
- Department of Fisheries, Faculty of Natural Resources, University of Kurdistan, Sanandaj, Kurdistan, Iran; Department of Zrebar Lake Environmental Research, Kurdistan Studies Institute, University of Kurdistan, Sanandaj, Iran.
| |
Collapse
|
23
|
Luo Z, Li Z, Xie Z, Sokolova IM, Song L, Peijnenburg WJGM, Hu M, Wang Y. Rethinking Nano-TiO 2 Safety: Overview of Toxic Effects in Humans and Aquatic Animals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002019. [PMID: 32761797 DOI: 10.1002/smll.202002019] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Titanium dioxide nanoparticles (nano-TiO2 ) are widely used in consumer products, raising environmental and health concerns. An overview of the toxic effects of nano-TiO2 on human and environmental health is provided. A meta-analysis is conducted to analyze the toxicity of nano-TiO2 to the liver, circulatory system, and DNA in humans. To assess the environmental impacts of nano-TiO2 , aquatic environments that receive high nano-TiO2 inputs are focused on, and the toxicity of nano-TiO2 to aquatic organisms is discussed with regard to the present and predicted environmental concentrations. Genotoxicity, damage to membranes, inflammation and oxidative stress emerge as the main mechanisms of nano-TiO2 toxicity. Furthermore, nano-TiO2 can bind with free radicals and signal molecules, and interfere with the biochemical reactions on plasmalemma. At the higher organizational level, nano-TiO2 toxicity is manifested as the negative effects on fitness-related organismal traits including feeding, reproduction and immunity in aquatic organisms. Bibliometric analysis reveals two major research hot spots including the molecular mechanisms of toxicity of nano-TiO2 and the combined effects of nano-TiO2 and other environmental factors such as light and pH. The possible measures to reduce the harmful effects of nano-TiO2 on humans and non-target organisms has emerged as an underexplored topic requiring further investigation.
Collapse
Affiliation(s)
- Zhen Luo
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhuoqing Li
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhe Xie
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Inna M Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, 18051, Germany
- Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, 18051, Germany
| | - Lan Song
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, Leiden, RA, 2300, The Netherlands
- National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, P.O. Box 1, Bilthoven, BA, 3720, The Netherlands
| | - Menghong Hu
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Youji Wang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| |
Collapse
|
24
|
In Vitro Effects of Titanium Dioxide Nanoparticles (TiO 2NPs) on Cadmium Chloride (CdCl 2) Genotoxicity in Human Sperm Cells. NANOMATERIALS 2020; 10:nano10061118. [PMID: 32517002 PMCID: PMC7353430 DOI: 10.3390/nano10061118] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 12/26/2022]
Abstract
The environmental release of titanium dioxide nanoparticles (TiO2NPs) associated with their intensive use has been reported to have a genotoxic effect on male fertility. TiO2NP is able to bind and transport environmental pollutants, such as cadmium (Cd), modifying their availability and/or toxicity. The aim of this work is to assess the in vitro effect of TiO2NPs and cadmium interaction in human sperm cells. Semen parameters, apoptotic cells, sperm DNA fragmentation, genomic stability and oxidative stress were investigated after sperm incubation in cadmium alone and in combination with TiO2NPs at different times (15, 30, 45 and 90 min). Our results showed that cadmium reduced sperm DNA integrity, and increased sperm DNA fragmentation and oxidative stress. The genotoxicity induced by TiO2NPs-cadmium co-exposure was lower compared to single cadmium exposure, suggesting an interaction of the substances to modulate their reactivity. The Quantitative Structure-Activity Relationship (QSAR) computational method showed that the interaction between TiO2NPs and cadmium leads to the formation of a sandwich-like structure, with cadmium in the middle, which results in the inhibition of its genotoxicity by TiO2NPs in human sperm cells.
Collapse
|
25
|
Li M, Zhu J, Fang H, Wang M, Wang Q, Zhou B. Coexposure to environmental concentrations of cis-bifenthrin and graphene oxide: Adverse effects on the nervous system during metamorphic development of Xenopus laevis. JOURNAL OF HAZARDOUS MATERIALS 2020; 381:120995. [PMID: 31425913 DOI: 10.1016/j.jhazmat.2019.120995] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 08/06/2019] [Accepted: 08/10/2019] [Indexed: 06/10/2023]
Abstract
Despite the great concerns associated with the combined biological effects of nanoparticles and insecticides, the current understanding of the corresponding ecological risks remains limited. Xenopus laevis (X. laevis) tadpoles were exposed to various concentrations of typical pyrethroid (cis-bifenthrin; cis-BF), either alone or in combination with graphene oxide (GO), for 21 days. The presence of GO resulted in increased bioconcentration of cis-BF and a higher 1S-enantiomer fraction. Exposure to cis-BF and GO caused further reduction in pre-metamorphic developmental rates and activated dopaminergic, noradrenergic, and serotonergic neurotransmitter systems. Reduced tadpole activity and levels of genomic DNA methylation at cytosine nucleotides (5hmC) were observed in the coexposure groups. These results indicate that GO enhance the bioconcentration of cis-BF and promote the conversion of its 1R-enantiomer to the 1S form, which lead to disruption of neurotransmitter systems as well as interference in metamorphic development.
Collapse
Affiliation(s)
- Meng Li
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| | - Jiaping Zhu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| | - Hua Fang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| | - Mengcen Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| | - Qiangwei Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China.
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
26
|
Li X, Ma Q, Liu T, Dong Z, Fan W. Effect of TiO2-nanoparticles on copper toxicity to bacteria: role of bacterial surface. RSC Adv 2020; 10:5058-5065. [PMID: 35498301 PMCID: PMC9049159 DOI: 10.1039/c9ra08270k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/04/2020] [Indexed: 11/21/2022] Open
Abstract
The impact of titanium dioxide nanoparticles (nano-TiO2) on the aquatic environment is an important issue due to their increasing application. Although nano-TiO2 was reported to show an effect on heavy metal toxicity to aquatic organisms, the underlying mechanism is not well understood. In this study, two bacterial species (Bacillus thuringiensis (B. thuringiensis) and Bacillus megaterium (B. megaterium)) from sediment were selected to study the effects of nano-TiO2 on copper toxicity. Nano-TiO2 was found to inhibit the growth of B. thuringiensis and enhance the oxidative stress damage caused by copper, whereas these effects were not observed for B. megaterium. Transmission electron microscopy and flow cytometry showed that B. thuringiensis has stronger association ability to nano-TiO2 than B. megaterium. The existence of the S-layer on the surface of B. thuringiensis might be the possible reason, leading to the difference in copper toxicity. This indicates that the characteristics of bacterial surfaces might be important to the toxicity responses of nanoparticles. Different surface characteristics of bacteria, for example, S-layer or exopolysaccharides, might lead to different effects of nanomaterials on metal toxicity.![]()
Collapse
Affiliation(s)
- Xiaomin Li
- School of Space and Environment
- Beihang University
- Beijing 100191
- P. R. China
| | - Qingquan Ma
- School of Space and Environment
- Beihang University
- Beijing 100191
- P. R. China
| | - Tong Liu
- School of Space and Environment
- Beihang University
- Beijing 100191
- P. R. China
| | - Zhaomin Dong
- School of Space and Environment
- Beihang University
- Beijing 100191
- P. R. China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine
| | - Wenhong Fan
- School of Space and Environment
- Beihang University
- Beijing 100191
- P. R. China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine
| |
Collapse
|
27
|
Mieiro CL, Martins M, da Silva M, Coelho JP, Lopes CB, da Silva AA, Alves J, Pereira E, Pardal M, Costa MH, Pacheco M. Advances on assessing nanotoxicity in marine fish - the pros and cons of combining an ex vivo approach and histopathological analysis in gills. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 217:105322. [PMID: 31639587 DOI: 10.1016/j.aquatox.2019.105322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/30/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
The need to overcome logistic and ethical limitations of in vivo nanotoxicity evaluation in marine organisms is essential, mostly when dealing with fish. It is well established that medium/solvent conditions affect dispersion and agglomeration of nanoparticles (NPs), which represents a constraint towards a solid and realistic toxicity appraisal. In this way the pros and cons of an ex vivo approach, using a simplified exposure medium (seawater) and addressing gills histopathology, were explored. The nanotoxic potential of environmentally realistic concentrations of titanium dioxide NPs (TiO2 NPs) was also assessed, disclosing the morpho-functional effects on the gills and the possible uptake/elimination processes. Excised gills of the Senegalese sole (Solea senegalensis) were directly exposed in artificial seawater to 20 and 200 μg L-1 TiO2 NPs, for 2 h and 4 h. Semi-quantitative and quantitative histological analyses were applied. The normal morphology of the gill's epithelia was only slightly altered in the control, reflecting protective mechanisms against the artificiality of the experimental conditions, which, together with the absence of differences in the global histopathological index (Ih), corroborated that the gill's morpho-functional features were not compromised, thereby validating the proposed ex vivo approach. TiO2 NPs induced moderate severity and dissemination of histopathological lesions. After 2 h, a series of compensatory mechanisms occurred in NP treatments, implying an efficient response of the innate defense system (increasing number of goblet cells) and effective osmoregulatory ability (chloride cells proliferation). After 4 h, gills revealed signs of recovery (normalization of the number of chloride and goblet cells; similar Ih), highlighting the tissue viability and effective elimination and/or neutralization of NPs. The uptake of the TiO2 NPs seemed to be favored by the higher particle sizes. Overall, the proposed approach emerged as a high-throughput, reliable, accurate and ethically commendable methodology for nanotoxicity assessment in marine fish.
Collapse
Affiliation(s)
- C L Mieiro
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; Centre for Functional Ecology - CFE, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal.
| | - M Martins
- MARE & Department of Environmental Sciences, Faculty of Sciences and Technology, University Nova of Lisbon, 2829-516 Caparica, Portugal; UCIBIO, REQUIMTE, Department of Chemistry, Faculty of Sciences and Technology, University Nova of Lisbon, 2829-516 Caparica, Portugal
| | - M da Silva
- MARE & Department of Environmental Sciences, Faculty of Sciences and Technology, University Nova of Lisbon, 2829-516 Caparica, Portugal
| | - J P Coelho
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - C B Lopes
- Department of Chemistry & CICECO, University of Aveiro, 3810-193 Aveiro, Portugal
| | - A Alves da Silva
- Centre for Functional Ecology - CFE, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - J Alves
- Centre for Functional Ecology - CFE, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - E Pereira
- Department of Chemistry & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - M Pardal
- Centre for Functional Ecology - CFE, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - M H Costa
- MARE & Department of Environmental Sciences, Faculty of Sciences and Technology, University Nova of Lisbon, 2829-516 Caparica, Portugal
| | - M Pacheco
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
28
|
Mottola F, Iovine C, Santonastaso M, Romeo ML, Pacifico S, Cobellis L, Rocco L. NPs-TiO 2 and Lincomycin Coexposure Induces DNA Damage in Cultured Human Amniotic Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1511. [PMID: 31652841 PMCID: PMC6915627 DOI: 10.3390/nano9111511] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/16/2022]
Abstract
Titanium dioxide nanoparticles (NPs-TiO2 or TiO2-NPs) have been employed in many commercial products such as medicines, foods and cosmetics. TiO2-NPs are able to carry antibiotics to target cells enhancing the antimicrobial efficiency; so that these nanoparticles are generally used in antibiotic capsules, like lincomycin, added as a dye. Lincomycin is usually used to treat pregnancy bacterial vaginosis and its combination with TiO2-NPs arises questions on the potential effects on fetus health. This study investigated the potential impact of TiO2-NPs and lincomycin co-exposure on human amniocytes in vitro. Cytotoxicity was evaluated with trypan blue vitality test, while genotoxic damage was performed by Comet Test, Diffusion Assay and RAPD-PCR for 48 and 72 exposure hours. Lincomycin exposure produced no genotoxic effects on amniotic cells, instead, the TiO2-NPs exposure induced genotoxicity. TiO2-NPs and lincomycin co-exposure caused significant increase of DNA fragmentation, apoptosis and DNA damage in amniocytes starting from 48 exposure hours. These results contribute to monitor the use of TiO2-NPs combined with drugs in medical application. The potential impact of antibiotics with TiO2-NPs during pregnancy could be associated with adverse effects on embryo DNA. The use of nanomaterials in drugs formulation should be strictly controlled in order to minimize risks.
Collapse
Affiliation(s)
- Filomena Mottola
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy.
| | - Concetta Iovine
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy.
| | - Marianna Santonastaso
- Department of Woman, Child and General and Special Surgery, University of Campania "Luigi Vanvitelli", 80138 Napoli, Italy.
| | - Maria Luisa Romeo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy.
| | - Severina Pacifico
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy.
| | - Luigi Cobellis
- Department of Woman, Child and General and Special Surgery, University of Campania "Luigi Vanvitelli", 80138 Napoli, Italy.
- Sant' Anna e San Sebastiano Hospital, 81100 Caserta, Italy.
| | - Lucia Rocco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy.
| |
Collapse
|
29
|
Lammel T, Wassmur B, Mackevica A, Chen CEL, Sturve J. Mixture toxicity effects and uptake of titanium dioxide (TiO 2) nanoparticles and 3,3',4,4'-tetrachlorobiphenyl (PCB77) in juvenile brown trout following co-exposure via the diet. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 213:105195. [PMID: 31203167 DOI: 10.1016/j.aquatox.2019.04.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 04/10/2019] [Accepted: 04/29/2019] [Indexed: 06/09/2023]
Abstract
Titanium dioxide nanoparticles (n-TiO2) are among the man-made nanomaterials that are predicted to be found at high concentrations in the aquatic environment. There, they likely co-exist with other chemical pollutants. Thus, n-TiO2 and other chemical pollutants can be taken up together or accumulate independently from each other in prey organisms of fish. This can lead to dietary exposure of fish to n-TiO2-chemical pollutant mixtures. In this study, we examine if simultaneous dietary exposure to n-TiO2 and 3,3',4,4'-Tetrachlorobiphenyl (PCB77) -used as a model compound for persistent organic pollutants with dioxin-like properties- can influence the uptake and toxicological response elicited by the respective other substance. Juvenile brown trout (Salmo trutta) were fed custom-made food pellets containing n-TiO2, PCB77 or n-TiO2+PCB77 mixtures for 15 days. Ti and PCB77 concentrations in the liver were measured by ICP-MS and GC-MS, respectively. Besides, n-TiO2 uptake was assessed using TEM. Combination effects on endpoints specific for PCB77 (i.e., cytochrome P450 1A (CYP1A) induction) and endpoints shared by both PCB77 and n-TiO2 (i.e., oxidative stress-related parameters) were measured in intestine and liver using RT-qPCR and enzyme activity assays. The results show that genes encoding for proteins/enzymes essential for tight junction function (zo-1) and ROS elimination (sod-1) were significantly upregulated in the intestine of fish exposed to n-TiO2 and PCB77 mixtures, but not in the single-substance treatments. Besides, n-TiO2 had a potentiating effect on PCB77-induced CYP1A and glutathione reductase (GR) expression/enzyme activity in the liver. This study shows that simultaneous dietary exposure to nanomaterials and traditional environmental pollutants might result in effects that are larger than observed for the substances alone, but that understanding the mechanistic basis of such effects remains challenging.
Collapse
Affiliation(s)
- Tobias Lammel
- Department of Biological and Environmental Sciences, Gothenburg University, Sweden.
| | - Britt Wassmur
- Department of Biological and Environmental Sciences, Gothenburg University, Sweden
| | - Aiga Mackevica
- TU Environment, Technical University of Denmark, Denmark
| | - Chang-Er L Chen
- Department of Environmental Sciences and Analytical Chemistry, Stockholm University, Sweden; Environmental Research Institute, South China Normal University, Guangzhou 510006, China
| | - Joachim Sturve
- Department of Biological and Environmental Sciences, Gothenburg University, Sweden
| |
Collapse
|
30
|
Dang J, Tian S, Zhang Q. Mechanism and kinetics studies of the atmospheric oxidation of p,p'-Dicofol by OH and NO 3 radicals. CHEMOSPHERE 2019; 219:645-654. [PMID: 30557720 DOI: 10.1016/j.chemosphere.2018.12.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/03/2018] [Accepted: 12/06/2018] [Indexed: 06/09/2023]
Abstract
As an effective organochlorine pesticide, Dicofol has been extensively applied in more than 30 countries for protecting over 60 different crops. Considering its large consumption and potential adverse effect on human health (endocrine disrupting and carcinogenicity), the fate of Dicofol sprayed into the air is of public concern. In this study, we conducted a comprehensive study on the reaction mechanisms of p,p'-Dicofol with OH and NO3 radicals using DFT method. Comparing the abstrations by OH and NO3 radical, OH and NO3 radical addition reactions are predominant due to the lower potential barriers and stronger heat release. The phenolic substances (P1P5), epoxides (P11 and P15), dialdehyde (P13) and other species (P8, P9, P10 and P14) are generated by OH additions and their subsequent reactions while OH abstraction reactions produce DCBP, P7 and chlorphenyl radical. Particularly, NO3 additions and their subsequent reactions yield dialdehydes (P16 and P17) and 2,8-DCDD, which is the first report of the generation of dioxin from atmospheric oxidation of p,p'-Dicofol. Additionally, based on the structure optimization and energy calculation, rate constants and Arrhenius formulas of the elementary reactions of p,p'-Dicofol with OH and NO3 radicals were obtained over the temperature range of 280-380 K and at 1 atm. The rate constants for the reactions of p,p'-Dicofol with OH and NO3 radicals are 1.51 × 10-12 and 8.88 × 10-14 cm3 molecule-1 s-1, respectively. The lifetime (τTotal) of p,p'-Dicofol determined by the reactions of OH and NO3 radical is 5.86 h, indicating a potential long-range transport in the atmosphere.
Collapse
Affiliation(s)
- Juan Dang
- Key Laboratory of Western China's Environmental Systems of the Ministry of Education, Key Laboratory of Environmental Pollution Prediction and Control of Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China; Environment Research Institute, Shandong University, Jinan, 250100, China.
| | - Shuai Tian
- School of Energy and Power Engineering, Shandong University, Jinan, Shandong, 250061, China.
| | - Qingzhu Zhang
- Environment Research Institute, Shandong University, Jinan, 250100, China
| |
Collapse
|
31
|
Torrealba D, More-Bayona JA, Wakaruk J, Barreda DR. Innate Immunity Provides Biomarkers of Health for Teleosts Exposed to Nanoparticles. Front Immunol 2019; 9:3074. [PMID: 30687312 PMCID: PMC6335578 DOI: 10.3389/fimmu.2018.03074] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/12/2018] [Indexed: 12/14/2022] Open
Abstract
In recent years, the unique properties of nanoparticles have fostered novel applications in various fields such as biology, pharmaceuticals, agriculture, and others. Unfortunately, their rapid integration into daily life has also led to environmental concerns due to uncontrolled release of nanoparticles into the aquatic environment. Despite increasing awareness of nanoparticle bioaccumulation in the aquatic environment, much remains to be learned about their impact on aquatic organisms and how to best monitor these effects. Herein, we provide the first review of innate immunity as an emerging tool to assess the health of fish following nanoparticle exposure. Fish are widely used as sentinels for aquatic ecosystem pollution and innate immune parameters offer sensitive and reliable tools that can be harnessed for evaluation of contamination events. The most frequent biomarkers highlighted in literature to date include, but are not limited to, parameters associated with leukocyte dynamics, oxidative stress, and cytokine production. Taken together, innate immunity offers finite and sensitive biomarkers for assessment of the impact of nanoparticles on fish health.
Collapse
Affiliation(s)
- Débora Torrealba
- Immunology and Animal Health Laboratory, Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Juan A. More-Bayona
- Immunology and Animal Health Laboratory, Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Jeremy Wakaruk
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Daniel R. Barreda
- Immunology and Animal Health Laboratory, Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
32
|
Shi W, Guan X, Han Y, Zha S, Fang J, Xiao G, Yan M, Liu G. The synergic impacts of TiO 2 nanoparticles and 17β-estradiol (E2) on the immune responses, E2 accumulation, and expression of immune-related genes of the blood clam, Tegillarca granosa. FISH & SHELLFISH IMMUNOLOGY 2018; 81:29-36. [PMID: 29981881 DOI: 10.1016/j.fsi.2018.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/28/2018] [Accepted: 07/04/2018] [Indexed: 06/08/2023]
Abstract
The extensive use of TiO2 nanoparticles (nTiO2) in industrial products has led to their release into the marine environment, thereby posing a potential risk to marine organisms. However, in addition to affecting marine organisms through its inherent properties, nTiO2 can also act as a vehicle for other toxic pollutants due to their strong adsorption ability through the "Trojan horse" effect. Due to their potential hazard, the endocrine disrupting chemicals (EDCs) such as 17β-estradiol (E2), have been considered as one of the most serious anthropogenic threats to biodiversity and ecosystem health. However, there is still a lack of knowledge regarding the possible synergistic effects of nTiO2 and endocrine disrupting chemicals (EDCs) on marine organisms to date. Therefore, the combined effects of nTiO2 and 17β-estradiol (E2) on the immune responses of the blood clam, Tegillarca granosa, were investigated in this study. After 10 days of treatment, the total number, phagocytic activity, red granulocytes ratio, and the phagocytosis of hemocytes were significantly reduced in almost all treatment groups. Furthermore, expressions of genes from NFκβ and Toll-like receptor signaling pathways were significantly altered after exposure to nTiO2 and/or E2, indicating a reduced sensitivity to pathogen challenges. In addition, compared to exposure to E2 alone, co-exposure to E2 and nTiO2 led to a significant increase in the content of alkali-labile phosphate (ALP) in hemolymph, suggesting an enhanced E2 bioconcentration in the presence of nTiO2. In general, the present study demonstrated that nTiO2 enhanced the immunotoxicity of E2 to the blood clam, which may be due to the increased E2 uptake in the presence of nTiO2.
Collapse
Affiliation(s)
- Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Xiaofan Guan
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Yu Han
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Shanjie Zha
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Jun Fang
- Mariculture Research Institute of Zhejiang Province, Wenzhou, PR China
| | - Guoqiang Xiao
- Mariculture Research Institute of Zhejiang Province, Wenzhou, PR China
| | - Maocang Yan
- Mariculture Research Institute of Zhejiang Province, Wenzhou, PR China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China.
| |
Collapse
|
33
|
Naasz S, Altenburger R, Kühnel D. Environmental mixtures of nanomaterials and chemicals: The Trojan-horse phenomenon and its relevance for ecotoxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 635:1170-1181. [PMID: 29710572 DOI: 10.1016/j.scitotenv.2018.04.180] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/13/2018] [Accepted: 04/13/2018] [Indexed: 06/08/2023]
Abstract
The usage of engineered nanomaterials (NM) offers many novel products and applications with advanced features, but at the same time raises concerns with regard to potential adverse biological effects. Upon release and emission, NM may interact with chemicals in the environment, potentially leading to a co-exposure of organisms and the occurrence of mixture effects. A prominent idea is that NM may act as carriers of chemicals, facilitating and enhancing the entry of substances into cells or organisms, subsequently leading to an increased toxicity. In the literature, the term 'Trojan-horse effect' describes this hypothesis. The relevance of this mechanism for organisms is, however, unclear as yet. Here, a review has been performed to provide a more systematic picture on existing evidence. It includes 151 experimental studies investigating the exposure of various NM and chemical mixtures in ecotoxicological in vitro and in vivo model systems. The papers retrieved comprised studies investigating (i) uptake, (ii) toxicity and (iii) investigations considering both, changes in substance uptake and toxicity upon joint exposure of a chemical with an NM. A closer inspection of the studies demonstrated that the existing evidence for interference of NM-chemical mixture exposure with uptake and toxicity points into different directions compared to the original Trojan-horse hypothesis. We could discriminate at least 7 different categories to capture the evidence ranging from no changes in uptake and toxicity to an increase in uptake and toxicity upon mixture exposure. Concluding recommendations for the consideration of relevant processes are given, including a proposal for a nomenclature to describe NM-chemical mixture interactions in consistent terms.
Collapse
Affiliation(s)
- Steffi Naasz
- Helmholtz Centre for Environmental Research - UFZ, Department Bioanalytical Ecotoxicology, Permoserstr. 15, 04318 Leipzig, Germany
| | - Rolf Altenburger
- Helmholtz Centre for Environmental Research - UFZ, Department Bioanalytical Ecotoxicology, Permoserstr. 15, 04318 Leipzig, Germany
| | - Dana Kühnel
- Helmholtz Centre for Environmental Research - UFZ, Department Bioanalytical Ecotoxicology, Permoserstr. 15, 04318 Leipzig, Germany.
| |
Collapse
|
34
|
Butrimavičienė L, Baršienė J, Greiciūnaitė J, Stankevičiūtė M, Valskienė R. Environmental genotoxicity and risk assessment in the Gulf of Riga (Baltic Sea) using fish, bivalves, and crustaceans. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:24818-24828. [PMID: 29926332 DOI: 10.1007/s11356-018-2516-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/06/2018] [Indexed: 06/08/2023]
Abstract
Environmental genotoxicity in the Gulf of Riga was assessed using different bioindicators (fish, clams, and isopods) collected from 14 study stations. Comparison of genotoxicity responses (micronuclei (MN) and nuclear buds (NB)) in blood erythrocytes of herring (Clupea harengus), eelpout (Zoarces viviparous), and flounder (Platichthys flesus) revealed the species- and site-specific differences. For the first time, the analysis of genotoxicity was carried out in gill cells of isopods Saduria entomon. The highest inductions of MN and NB in gill cells of investigated S. entomon and clams (Macoma balthica) were evaluated in specimens from station 111A (offshore zone). In fish, the highest incidences of MN were measured in eelpout and in herring collected in the southern part of Gulf of Riga (station GOR3/41S). Moreover, in the southern coastal area, the assessment of genotoxicity risk (according to micronuclei levels) indicated exceptionally high risk for flounder, eelpout, and clams.
Collapse
Affiliation(s)
- Laura Butrimavičienė
- Nature Research Centre, Institute of Ecology, Akademijos Str. 2, LT-08412, Vilnius, Lithuania.
| | - Janina Baršienė
- Nature Research Centre, Institute of Ecology, Akademijos Str. 2, LT-08412, Vilnius, Lithuania
| | - Janina Greiciūnaitė
- Nature Research Centre, Institute of Ecology, Akademijos Str. 2, LT-08412, Vilnius, Lithuania
| | - Milda Stankevičiūtė
- Nature Research Centre, Institute of Ecology, Akademijos Str. 2, LT-08412, Vilnius, Lithuania
| | - Roberta Valskienė
- Nature Research Centre, Institute of Ecology, Akademijos Str. 2, LT-08412, Vilnius, Lithuania
| |
Collapse
|
35
|
Corsi I, Fiorati A, Grassi G, Bartolozzi I, Daddi T, Melone L, Punta C. Environmentally Sustainable and Ecosafe Polysaccharide-Based Materials for Water Nano-Treatment: An Eco-Design Study. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1228. [PMID: 30018238 PMCID: PMC6073422 DOI: 10.3390/ma11071228] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/29/2018] [Accepted: 07/12/2018] [Indexed: 12/30/2022]
Abstract
Nanoremediation, which is the use of nanoparticles and nanomaterials for environmental remediation, is widely explored and proposed for preservation of ecosystems that suffer from the increase in human population, pollution, and urbanization. We herein report a critical analysis of nanotechnologies for water remediation by assessing their sustainability in terms of efficient removal of pollutants, appropriate methods for monitoring their effectiveness, and protocols for the evaluation of any potential environmental risks. Our purpose is to furnish fruitful guidelines for sustainable water management, able to promote nanoremediation also at European level. In this context, we describe new nanostructured polysaccharide-based materials obtained from renewable resources as alternative efficient and ecosafe solutions for water nano-treatment. We also provide eco-design indications to improve the sustainability of the production of these materials, based on life-cycle assessment methodology.
Collapse
Affiliation(s)
- Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy.
| | - Andrea Fiorati
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta" Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy.
| | - Giacomo Grassi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy.
| | - Irene Bartolozzi
- Sant'Anna School of Advanced Studies, Institute of Management, Piazza Martiri della Libertà 33, 56127 Pisa, Italy.
- Ergo S.r.l., c/o Technology Centre, Via Giuntini 25/29⁻int. 29, 56023 Pisa, Italy.
| | - Tiberio Daddi
- Sant'Anna School of Advanced Studies, Institute of Management, Piazza Martiri della Libertà 33, 56127 Pisa, Italy.
| | - Lucio Melone
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta" Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy.
| | - Carlo Punta
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta" Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy.
| |
Collapse
|
36
|
Chen L, Guo Y, Hu C, Lam PKS, Lam JCW, Zhou B. Dysbiosis of gut microbiota by chronic coexposure to titanium dioxide nanoparticles and bisphenol A: Implications for host health in zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 234:307-317. [PMID: 29190539 DOI: 10.1016/j.envpol.2017.11.074] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/23/2017] [Accepted: 11/23/2017] [Indexed: 05/26/2023]
Abstract
Gut microbiota is of critical relevance to host health. However, toxicological understanding of environmental pollutants on gut microbiota is limited, not to mention their combined effects. In the present study, adult zebrafish (Danio rerio) were exposed to titanium dioxide nanoparticles (nano-TiO2; 100 μg/L), bisphenol A (BPA; 0, 2, and 20 μg/L) or their binary mixtures for three months. Sequencing of 16S rRNA amplicons found that nano-TiO2 and BPA coexposure shifted the intestinal microbial community, interacting in an antagonistic manner when the BPA concentration was low but in a synergistic manner at a higher BPA concentration. Sex- and concentration-dependent responses to the coexposure regime were also observed for zebrafish growth and intestinal health (e.g. neurotransmission, epithelial barrier permeability, inflammation, and oxidative stress). Correlation analysis showed that oxidative stress after nano-TiO2 and BPA coexposure was tightly associated with the imbalanced ratio of pathogenic Lawsonia and normal metabolic Hyphomicrobium, where higher abundance of Lawsonia but lower abundance of Hyphomicrobium were induced concurrently. A positive relationship was observed between zebrafish body weight and the abundance of Bacteroides in the gut, which was also closely associated with the genera of Anaerococcus, Finegoldia, and Peptoniphilus. This study revealed, for the first time, the combined effects of nano-TiO2 and BPA coexposure on the dynamics of the gut microbiome, which proved to have toxicological implications for zebrafish host health.
Collapse
Affiliation(s)
- Lianguo Chen
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yongyong Guo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430072, China
| | - Paul K S Lam
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
| | - James C W Lam
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Department of Science and Environmental Studies, The Education University of Hong Kong, 10 Lo Ping Road, Tai Po, New Territories, Hong Kong, China.
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
37
|
Ren X, Zhao X, Duan X, Fang Z. Enhanced bio-concentration of tris(1,3-dichloro-2-propyl) phosphate in the presence of nano-TiO 2 can lead to adverse reproductive outcomes in zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 233:612-622. [PMID: 29107901 DOI: 10.1016/j.envpol.2017.10.101] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/24/2017] [Accepted: 10/25/2017] [Indexed: 06/07/2023]
Abstract
Interactions between organic toxicants and nano-particles in the aquatic environment may modify toxicant bioavailability and consequently the toxicant's fate and toxicity. To evaluate the potential impact of nano-titanium dioxide (TiO2) on the bio-concentration and reproductive endocrine disruption of tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) in fish, a comparative bioaccumulation study was conducted on zebrafish (Danio rerio, AB strain) treated with 0, 5.74, 23.6, or 90.7 μg L-1 TDCIPP alone or co-exposed to TDCIPP and 0.09 mg L-1 nano-TiO2 for 21 days. Nano-TiO2 can absorb TDCIPP and nano-TiO2 is taken up into zebrafish. Chemical measurements showed that TDCIPP was bio-concentrated in zebrafish, and the highest level was detected in the liver, followed by the brain and gonads. Compared with TDCIPP treatment, increased tissue burdens of both TDCIPP were observed in the liver, brain, and gonads suggesting that nano-TiO2 adsorbed TDCIPP and acted as a carrier facilitating the uptake and translocation of TDCIPP in tissues. Higher bio-concentration in the presence of nano-TiO2 resulted in a significant decrease in the hepatic-somatic index, gonad-somatic index and brain-somatic index in F0 females but not F0 males. Moreover, a further gender-dependent reduction in testosterone (T), estradiol (E2), follicle-stimulating hormone (FSH) and luteinizing hormone (LH), and induction of plasma vitellogenin (VTG) concentrations in adults were observed following co-exposure. Co-exposure also inhibited egg production and caused significant developmental toxicity in F1 larvae. The results obtained using this multi-marker approach suggested that nano-TiO2 is a carrier of TDCIPP and accelerated its bio-concentration in adult zebrafish, resulting in adverse reproduction outcomes.
Collapse
Affiliation(s)
- Xin Ren
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Siping, 136000, China; College of Environmental Science and Engineering, Jilin Normal University, Haifeng Street, Tiexi Dist, Siping, 136000, China
| | - Xuesong Zhao
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Siping, 136000, China; College of Environmental Science and Engineering, Jilin Normal University, Haifeng Street, Tiexi Dist, Siping, 136000, China.
| | - Xiaoyue Duan
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Siping, 136000, China
| | - Ziwei Fang
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Siping, 136000, China; College of Environmental Science and Engineering, Jilin Normal University, Haifeng Street, Tiexi Dist, Siping, 136000, China
| |
Collapse
|
38
|
Fan X, Wang C, Wang P, Hu B, Wang X. TiO 2 nanoparticles in sediments: Effect on the bioavailability of heavy metals in the freshwater bivalve Corbicula fluminea. JOURNAL OF HAZARDOUS MATERIALS 2018; 342:41-50. [PMID: 28822248 DOI: 10.1016/j.jhazmat.2017.07.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 06/07/2023]
Abstract
Most studies investigating the influence of TiO2 NPs on heavy metal bioavailability have focused on the aqueous phase; however, few have examined the sediments containing more nanoparticles. Here, we investigated the effects of TiO2 NPs on heavy metal bioavailability in C. fluminea in sediments. The interactions between the TiO2 NPs and metals in sediments, the influence of TiO2 NPs on metals levels in aqueous phase and geochemical speciation were also explored. The results indicated the large adsorption capacity of TiO2 NPs and the strong adsorption affinity to metals caused the metals adsorbed on nanoparticles, which decreased the metals concentrations in water phase. Changes in metal speciation caused by metals in EXC, CAR, and IMO partly transported from sediments to TiO2 NPs during the aging of sediments. Heavy metals contents in C. fluminea tissues were in the order of gill>visceral mass>mantle>foot and increased with the increasing TiO2 NPs contents in sediments. TiO2 NPs enhanced the bioavailability of metals in the speciation of EXC, CAR, and IMO in sediments by the Trojan horse effects. The results can facilitate a more realistic evaluation of the environmental risks of TiO2 NPs to benthic organisms in heavy metal-contaminated sediments.
Collapse
Affiliation(s)
- Xiulei Fan
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China.
| | - Bin Hu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Xun Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| |
Collapse
|
39
|
Picchietti S, Bernini C, Stocchi V, Taddei AR, Meschini R, Fausto AM, Rocco L, Buonocore F, Cervia D, Scapigliati G. Engineered nanoparticles of titanium dioxide (TIO 2): Uptake and biological effects in a sea bass cell line. FISH & SHELLFISH IMMUNOLOGY 2017; 63:53-67. [PMID: 28159697 DOI: 10.1016/j.fsi.2017.01.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 01/26/2017] [Accepted: 01/28/2017] [Indexed: 06/06/2023]
Abstract
With the rapid development of nanotechnology there has been a corresponding increase in the application of titanium dioxide nanoparticles (TiO2-NPs) in various consumer and industrial products, consequently their potential health hazards and environmental effects are considered an aspect of great concern. In the present study, in order to assess the impact of TiO2-NPs in the marine environment, the biological effects of TiO2-NPs on a sea bass cell line (DLEC) were investigated. Cells were exposed for 24 h to different concentrations of TiO2-NPs (1, 8, 40, 200 and 1000 μg/ml) or co-exposed with CdCl2 (Cd). The effects of UV light irradiation were also investigated in cells treated with TiO2-NPs and/or Cd. The internalization of TiO2-NPs and the morphological cell modifications induced by the treatments were examined by transmission and scanning electron microscopy, this latter coupled with energy dispersive X-ray spectroscopy (EDS) for particle element detection. In addition, the effects of controlled exposures were studied evaluating the cytotoxicity, the DNA damage and the expression of inflammatory genes. Our study indicates that TiO2-NPs were localized on the cell surface mainly as agglomerates revealed by EDS analysis and that they were uptaken by the cells inducing morphological changes. Photoactivation of TiO2-NPs and/or co-exposure with Cd affects ATP levels and it contributes to induce acute cellular toxicity in DLEC cells dependent on Ti concentration. The inflammatory potential and the DNA damage, this latter displayed through a caspase-3 independent apoptotic process, were also demonstrated. Overall our data suggest that the interaction of TiO2-NPs with marine water contaminants, such as cadmium, and the UV irradiation, may be an additional threat to marine organisms.
Collapse
Affiliation(s)
- S Picchietti
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy.
| | - C Bernini
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy.
| | - V Stocchi
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy.
| | - A R Taddei
- Section of Electron Microscopy, Great Equipment Center, University of Tuscia, Viterbo, Italy.
| | - R Meschini
- Department of Environmental and Biological Sciences (DEB), University of Tuscia, Viterbo, Italy.
| | - A M Fausto
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy.
| | - L Rocco
- Department of Environmental, Biological and Pharmaceutical, Sciences and Technologies (DiSTABiF), Second University of Naples, Caserta, Italy.
| | - F Buonocore
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy.
| | - D Cervia
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy.
| | - G Scapigliati
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy.
| |
Collapse
|
40
|
Callaghan NI, MacCormack TJ. Ecophysiological perspectives on engineered nanomaterial toxicity in fish and crustaceans. Comp Biochem Physiol C Toxicol Pharmacol 2017; 193:30-41. [PMID: 28017784 DOI: 10.1016/j.cbpc.2016.12.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 12/01/2016] [Accepted: 12/20/2016] [Indexed: 12/25/2022]
Abstract
Engineered nanomaterials (ENMs) are incorporated into numerous industrial, clinical, food, and consumer products and a significant body of evidence is now available on their toxicity to aquatic organisms. Environmental ENM concentrations are difficult to quantify, but production and release estimates suggest wastewater treatment plant effluent levels ranging from 10-4 to >101μgL-1 for the most common formulations by production volume. Bioavailability and ENM toxicity are heavily influenced by water quality parameters and the physicochemical properties and resulting colloidal behaviour of the particular ENM formulation. ENMs generally induce only mild acute toxicity to most adult fish and crustaceans under environmentally relevant exposure scenarios; however, sensitivity may be considerably higher for certain species and life stages. In adult animals, aquatic ENM exposure often irritates respiratory and digestive epithelia and causes oxidative stress, which can be associated with cardiovascular dysfunction and the activation of immune responses. Direct interactions between ENMs (or their dissolution products) and proteins can also lead to ionoregulatory stress and/or developmental toxicity. Chronic and developmental toxicity have been noted for several common ENMs (e.g. TiO2, Ag), however more data is necessary to accurately characterize long term ecological risks. The bioavailability of ENMs should be limited in saline waters but toxicity has been observed in marine animals, highlighting a need for more study on possible impacts in estuarine and coastal systems. Nano-enabled advancements in industrial processes like water treatment and remediation could provide significant net benefits to the environment and will likely temper the relatively modest impacts of incidental ENM release and exposure.
Collapse
Affiliation(s)
- Neal Ingraham Callaghan
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Tyson James MacCormack
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada.
| |
Collapse
|
41
|
Du J, Cao L, Jia R, Yin G. Hepatoprotective and antioxidant effects of dietary Glycyrrhiza polysaccharide against TCDD-induced hepatic injury and RT-PCR quantification of AHR2, ARNT2, CYP1A mRNA in Jian Carp (Cyprinus carpio var. Jian). J Environ Sci (China) 2017; 51:181-190. [PMID: 28115129 DOI: 10.1016/j.jes.2016.06.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/17/2016] [Accepted: 06/22/2016] [Indexed: 06/06/2023]
Abstract
To evaluate the protective effects of Glycyrrhiza polysaccharide (GPS) against 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced hepatotoxicity in Jian carp, the fish were fed diets containing GPS at doses of 0.1, 0.5 and 1.0g/kg for 60days before an intraperitoneal injection of 0.6μg/kg TCDD at a volume of 0.05mL/10g body weight. At 72hr post-injection, blood and liver samples were taken for biochemical analysis and the fish liver samples were used for the preparation of pathological slices. The results showed that increases in alanine aminotransferase (GPT), aspartate aminotransferase (GOT), lactate dehydrogenase (LDH), and alkaline phosphatase (AKP) in serum induced by TCDD were significantly inhibited by pre-treatment with 1.0g/kg GPS. Following the 1.0g/kg GPS pre-treatment, total protein (TP), albumin (Alb), catalase (CAT), glutathione peroxidase (GPx), total antioxidant capacity (T-AOC) and superoxide dismutase (SOD) activities in liver tissue increased significantly, malondialdehyde (MDA) formation (P<0.05 or P<0.01) was significantly inhibited, and the expression of cytochrome P4501A (CYP1A), aryl hydrocarbon receptor 2 (AHR2) and aryl hydrocarbon receptor nuclear translocator 2 (ARNT2) mRNA (P<0.05) was significantly enhanced. Histological observations on fish liver were obtained by preparing paraffin tissue sections via HE staining, and the results showed that histological changes were obviously reduced by 0.5 and 1.0g/kg GPS. GPS significantly reduced liver tissue damage caused by TCDD. Overall, these results proved the hepatoprotective effect of GPS in protecting against fish liver injury induced by TCDD, and supported the use of GPS (1.0g/kg) as a hepatoprotective and antioxidant agent in fish.
Collapse
Affiliation(s)
- Jinliang Du
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Liping Cao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Rui Jia
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Guojun Yin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China.
| |
Collapse
|
42
|
Fan W, Peng R, Li X, Ren J, Liu T, Wang X. Effect of titanium dioxide nanoparticles on copper toxicity to Daphnia magna in water: Role of organic matter. WATER RESEARCH 2016; 105:129-137. [PMID: 27611640 DOI: 10.1016/j.watres.2016.08.060] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/16/2016] [Accepted: 08/28/2016] [Indexed: 05/29/2023]
Abstract
Inevitably released into natural water, titanium dioxide nanoparticles (nano-TiO2) may affect the toxicity of other contaminants. Ubiquitous organic matter (OM) may influence their combined toxicity, which has been rarely reported. This study investigated the effect of nano-TiO2 on Cu toxicity to Daphnia magna and the role of OM (dissolved or particle surface bound) in inducing combined effects. The effect of nano-TiO2 on heavy metal accumulation depended on the adsorption capacity for heavy metals of nano-TiO2 and the uptake of nano-TiO2-metal complexes by organisms. Nano-TiO2 significantly decreased Cu accumulation in D. magna, but the reducing effect of nano-TiO2 was eliminated in the presence of humic acid (HA, a model OM). In the Cu and HA solution, nano-TiO2 slightly affected the bioavailability of Cu2+ and Cu-HA complexes and thus slightly influenced Cu toxicity. The nanoparticle surface-bound HA reduced the effect of nano-TiO2 on the speciation of the accumulated Cu; therefore, the combined effects of nano-TiO2 and Cu on biomarkers similarly weakened. HA-altered Cu speciation may be the main factor responsible for the influence of HA on the combined effects of nano-TiO2 and Cu. This study provides insights into the combined effects of nano-TiO2 and heavy metals in natural water.
Collapse
Affiliation(s)
- Wenhong Fan
- Department of Environmental Science and Engineering, School of Space and Environment, Beihang University, Beijing 100191, PR China.
| | - Ruishuang Peng
- Department of Environmental Science and Engineering, School of Space and Environment, Beihang University, Beijing 100191, PR China
| | - Xiaomin Li
- Department of Environmental Science and Engineering, School of Space and Environment, Beihang University, Beijing 100191, PR China
| | - Jinqian Ren
- Department of Environmental Science and Engineering, School of Space and Environment, Beihang University, Beijing 100191, PR China
| | - Tong Liu
- Department of Environmental Science and Engineering, School of Space and Environment, Beihang University, Beijing 100191, PR China
| | - Xiangrui Wang
- Department of Environmental Science and Engineering, School of Space and Environment, Beihang University, Beijing 100191, PR China
| |
Collapse
|
43
|
Jang GH, Lee KY, Choi J, Kim SH, Lee KH. Multifaceted toxicity assessment of catalyst composites in transgenic zebrafish embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 216:755-763. [PMID: 27364464 DOI: 10.1016/j.envpol.2016.06.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 05/22/2016] [Accepted: 06/21/2016] [Indexed: 06/06/2023]
Abstract
Recent development in the field of nanomaterials has given rise into the inquiries regarding the toxicological characteristics of the nanomaterials. While many individual nanomaterials have been screened for their toxicological effects, composites that accompany nanomaterials are not common subjects to such screening through toxicological assessment. One of the widely used composites that accompany nanomaterials is catalyst composite used to reduce air pollution, which was selected as a target composite with nanomaterials for the multifaceted toxicological assessment. As existing studies did not possess any significant data regarding such catalyst composites, this study focuses on investigating toxicological characteristics of catalyst composites from various angles in both in-vitro and in-vivo settings. Initial toxicological assessment on catalyst composites was conducted using HUVECs for cell viability assays, and subsequent in-vivo assay regarding their direct influence on living organisms was done. The zebrafish embryo and its transgenic lines were used in the in-vivo assays to obtain multifaceted analytic results. Data obtained from the in-vivo assays include blood vessel formation, mutated heart morphology, and heart functionality change. Our multifaceted toxicological assessment pointed out that chemical composites augmented with nanomaterials can too have toxicological threat as much as individual nanomaterials do and alarms us with their danger. This manuscript provides a multifaceted assessment for composites augmented with nanomaterials, of which their toxicological threats have been overlooked.
Collapse
Affiliation(s)
- Gun Hyuk Jang
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Department of Biomedical Engineering, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Keon Yong Lee
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jaewon Choi
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Department of Biomedical Engineering, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Sang Hoon Kim
- Materials Architecturing Research Center, Future Convergence Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Kwan Hyi Lee
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Department of Biomedical Engineering, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea.
| |
Collapse
|
44
|
Banni M, Sforzini S, Balbi T, Corsi I, Viarengo A, Canesi L. Combined effects of n-TiO2 and 2,3,7,8-TCDD in Mytilus galloprovincialis digestive gland: A transcriptomic and immunohistochemical study. ENVIRONMENTAL RESEARCH 2016; 145:135-144. [PMID: 26687187 DOI: 10.1016/j.envres.2015.12.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/01/2015] [Accepted: 12/04/2015] [Indexed: 06/05/2023]
Abstract
Despite the growing concern over the potential biological impact of nanoparticles (NPs) in the aquatic environment, little is known about their interactions with other pollutants. In the marine mussel Mytilus galloprovincialis, exposure to nanosized titanium dioxide (n-TiO2), one of the most widespread type of NPs in use, in combination with and 2,3,7,8-tetrachlorodibenzo-p-dioxins (TCDD), chosen as model organic xenobiotic, was shown to induce significant changes in different biomarkers in hemocytes, gills and digestive gland, with distinct effects depending on cell/tissue and type of response measured. In this work, the interactive effects of n-TiO2 and TCDD at the tissue level were further investigated in mussel digestive gland using an integrated approach transcriptomics/immunohistochemistry. Mussels were exposed to n-TiO2 (100μgL(-1)) and TCDD (0.25μgL(-1)), alone and in combination, for 96h. Transcriptomic analysis identified 48-, 49- and 62 Differentially Expressed Genes (DEGs) in response to n-TiO2, TCDD and n-TiO2/TCDD, respectively. Gene Ontology (GO) term analysis revealed distinct biological processes affected in different experimental conditions. n-TiO2 mainly up-regulated cytoskeletal genes, while TCDD up-regulated endocrine and signal transduction related processes. Co-exposure induced transcriptional changes common to individual treatments, and identified a newly generated process, response to chemical stimulus. Transcription of selected genes was verified by qPCR. Moreover, expression of tubulin, as an example of target protein of interest identified by gene transcription data, was evaluated in tissue sections by immunolabelling. Tissue TCDD accumulation was evaluated by immunofluorescence with an anti-dioxins antibody. The results demonstrate both distinct and interactive effects of n-TiO2 and TCDD in mussel digestive gland at the molecular and tissue level, identify the main molecular targets involved, and underline how exposure to the n-TiO2/TCDD mixture does not result in increased TCDD accumulation and overall stressful conditions in the tissue. These represent the first data on transcriptional responses of marine invertebrates to exposure not only to n-TiO2 as a model of NP, but also to a legacy contaminant like TCDD.
Collapse
Affiliation(s)
- Mohamed Banni
- Laboratory of Biochemistry and Environmental Toxicology, ISA, Chott-Mariem, Sousse, Tunisia
| | - Susanna Sforzini
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "A. Avogadro", Alessandria, Italy
| | - Teresa Balbi
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa Corso Europa 26, 16132 Genoa, Italy
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences (DSFTA), University of Siena, Italy
| | - Aldo Viarengo
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "A. Avogadro", Alessandria, Italy
| | - Laura Canesi
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa Corso Europa 26, 16132 Genoa, Italy.
| |
Collapse
|
45
|
Fang Q, Shi Q, Guo Y, Hua J, Wang X, Zhou B. Enhanced Bioconcentration of Bisphenol A in the Presence of Nano-TiO2 Can Lead to Adverse Reproductive Outcomes in Zebrafish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:1005-13. [PMID: 26694738 DOI: 10.1021/acs.est.5b05024] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Titanium dioxide nanoparticles (n-TiO2) and bisphenol A (BPA) are widespread environmental contaminants in the aquatic environment. We hypothesized that n-TiO2 may adsorb BPA, and thus modify its bioavailability and toxicity to aquatic organisms. In this study, the bioavailability and toxicity of BPA (0, 2, 20, 200 μg/L) was investigated in the presence of n-TiO2 (100 μg/L). The n-TiO2 sorbed BPA and the resulting nanoparticles were taken up by zebrafish, where they translocated to the liver, brain, and gonad tissues. Increased tissue burdens of both BPA and n-TiO2 were observed following coexposure, and they also caused a reduction in plasma concentrations of estradiol (E2), testosterone (T), follicle-stimulating hormone (FSH), and luteinizing hormone (LH). Plasma vitellogenin (VTG) concentrations were significantly increased in males and females upon exposure to BPA. Histological examination of the ovary and testes did not show obvious morphological alterations; however, inhibition of egg production was noted in the presence of n-TiO2. The results indicated that n-TiO2 acts as a carrier of BPA and enhances its bioconcentration in zebrafish, leading to endocrine disruption and impairment of reproduction.
Collapse
Affiliation(s)
- Qi Fang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan 430072, China
- Laboratory of Quality and Safety Risk Assessment for Citrus Products, Ministry of Agriculture, Institute of Citrus Research, Southwest University , Chongqing 400712, China
| | - Qipeng Shi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan 430072, China
- Graduate University of Chinese Academy of Sciences , Beijing 100039, China
| | - Yongyong Guo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan 430072, China
| | - Jianghuan Hua
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan 430072, China
- Graduate University of Chinese Academy of Sciences , Beijing 100039, China
| | - Xianfeng Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan 430072, China
- Graduate University of Chinese Academy of Sciences , Beijing 100039, China
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan 430072, China
| |
Collapse
|
46
|
Nigro M, Bernardeschi M, Costagliola D, Della Torre C, Frenzilli G, Guidi P, Lucchesi P, Mottola F, Santonastaso M, Scarcelli V, Monaci F, Corsi I, Stingo V, Rocco L. n-TiO2 and CdCl2 co-exposure to titanium dioxide nanoparticles and cadmium: Genomic, DNA and chromosomal damage evaluation in the marine fish European sea bass (Dicentrarchus labrax). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 168:72-77. [PMID: 26448269 DOI: 10.1016/j.aquatox.2015.09.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 09/15/2015] [Accepted: 09/22/2015] [Indexed: 06/05/2023]
Abstract
Due to the large production and growing use of titanium dioxide nanoparticles (n-TiO2), their release in the marine environment and their potential interaction with existing toxic contaminants represent a growing concern for biota. Different end-points of genotoxicity were investigated in the European sea bass Dicentrarchus labrax exposed to n-TiO2 (1mgL(-1)) either alone and combined with CdCl2 (0.1mgL(-1)) for 7 days. DNA primary damage (comet assay), apoptotic cells (diffusion assay), occurrence of micronuclei and nuclear abnormalities (cytome assay) were assessed in peripheral erythrocytes and genomic stability (random amplified polymorphism DNA-PCR, RAPD assay) in muscle tissue. Results showed that genome template stability was reduced after CdCl2 and n-TiO2 exposure. Exposure to n-TiO2 alone was responsible for chromosomal alteration but ineffective in terms of DNA damage; while the opposite was observed in CdCl2 exposed specimens. Co-exposure apparently prevents the chromosomal damage and leads to a partial recovery of the genome template stability.
Collapse
Affiliation(s)
- M Nigro
- Department of Clinical and Experimental Medicine, Pisa University, Pisa, Italy
| | - M Bernardeschi
- Department of Clinical and Experimental Medicine, Pisa University, Pisa, Italy
| | - D Costagliola
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Caserta, Italy
| | - C Della Torre
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | - G Frenzilli
- Department of Clinical and Experimental Medicine, Pisa University, Pisa, Italy.
| | - P Guidi
- Department of Clinical and Experimental Medicine, Pisa University, Pisa, Italy
| | - P Lucchesi
- Department of Clinical and Experimental Medicine, Pisa University, Pisa, Italy
| | - F Mottola
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Caserta, Italy
| | - M Santonastaso
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Caserta, Italy
| | - V Scarcelli
- Department of Clinical and Experimental Medicine, Pisa University, Pisa, Italy
| | - F Monaci
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | - I Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | - V Stingo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Caserta, Italy
| | - L Rocco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Caserta, Italy
| |
Collapse
|
47
|
Della Torre C, Balbi T, Grassi G, Frenzilli G, Bernardeschi M, Smerilli A, Guidi P, Canesi L, Nigro M, Monaci F, Scarcelli V, Rocco L, Focardi S, Monopoli M, Corsi I. Titanium dioxide nanoparticles modulate the toxicological response to cadmium in the gills of Mytilus galloprovincialis. JOURNAL OF HAZARDOUS MATERIALS 2015; 297:92-100. [PMID: 25956639 DOI: 10.1016/j.jhazmat.2015.04.072] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 04/22/2015] [Accepted: 04/25/2015] [Indexed: 05/29/2023]
Abstract
We investigated the influence of titanium dioxide nanoparticles (nano-TiO2) on the response to cadmium in the gills of the marine mussel Mytilus galloprovincialis in terms of accumulation and toxicity. Mussels were in vivo exposed to nano-TiO2, CdCl2, alone and in combination. Several cellular biomarkers were investigated in gills: ABC transport proteins and metallothioneins at gene/protein (abcb1, abcc-like and mt-20) and functional level, GST activity, NO production and DNA damage (Comet assay). Accumulation of total Cd and titanium in gills as in whole soft tissue was also investigated. Significant responses to Cd exposure were observed in mussel gills as up-regulation of abcb1 and mt-20 gene transcription, increases in total MT content, P-gp efflux and GST activity, DNA damage and NO production. Nano-TiO2 alone increased P-gp efflux activity and NO production. When combined with Cd, nano-TiO2 reduced the metal-induced effects by significantly lowering abcb1 gene transcription, GST activity, and DNA damage, whereas, additive effects were observed on NO production. A lower concentration of Cd was observed in the gills upon co-exposure, whereas, Ti levels were unaffected. A competitive effect in uptake/accumulation of nano-TiO2 and Cd seems to occur in gills. A confirmation is given by the observed absence of adsorption of Cd onto nano-TiO2 in sea water media.
Collapse
Affiliation(s)
- Camilla Della Torre
- Department of Physical, Earth and Environmental Sciences, University of Siena, Italy
| | - Teresa Balbi
- Department of Earth, Environmental and Life Sciences-DISTAV, University of Genoa, Italy
| | - Giacomo Grassi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Italy
| | - Giada Frenzilli
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | | | - Arianna Smerilli
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Seconda Università di Napoli, Caserta, Italy
| | - Patrizia Guidi
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Laura Canesi
- Department of Earth, Environmental and Life Sciences-DISTAV, University of Genoa, Italy
| | - Marco Nigro
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Fabrizio Monaci
- Department of Physical, Earth and Environmental Sciences, University of Siena, Italy
| | - Vittoria Scarcelli
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Lucia Rocco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Seconda Università di Napoli, Caserta, Italy
| | - Silvano Focardi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Italy
| | - Marco Monopoli
- Centre for BioNanoInteractions, School of Chemistry and Chemical Biology, University College Dublin, Ireland
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Italy.
| |
Collapse
|
48
|
Rocco L, Santonastaso M, Nigro M, Mottola F, Costagliola D, Bernardeschi M, Guidi P, Lucchesi P, Scarcelli V, Corsi I, Stingo V, Frenzilli G. Genomic and chromosomal damage in the marine mussel Mytilus galloprovincialis: Effects of the combined exposure to titanium dioxide nanoparticles and cadmium chloride. MARINE ENVIRONMENTAL RESEARCH 2015; 111:144-148. [PMID: 26392349 DOI: 10.1016/j.marenvres.2015.09.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 08/31/2015] [Accepted: 09/01/2015] [Indexed: 06/05/2023]
Abstract
Titanium dioxide nanoparticles (TiO2-NPs) continuously released into waters, may cause harmful effects to marine organisms and their potential interaction with conventional toxic contaminants represents a growing concern for biota. We investigated the genotoxic potential of nanosized titanium dioxide (n-TiO2) (100 μg L(-1)) alone and in combination with CdCl2 (100 μg L(-1)) in Mytilus galloprovincialis after 4 days of in vivo exposure. RAPD-PCR technique and Micronucleus test were used to study genotoxicity. The results showed genome template stability (GTS) being markedly reduced after single exposure to n-TiO2 and CdCl2. Otherwise, co-exposure resulted in a milder reduction of GTS. Exposure to n-TiO2 was responsible for a significant increase of micronucleated cell frequency in gill tissue, while no chromosomal damage was observed after CdCl2 exposure as well as after combined exposure to both substances.
Collapse
Affiliation(s)
- L Rocco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Caserta, Italy.
| | - M Santonastaso
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Caserta, Italy
| | - M Nigro
- Department of Clinical and Experimental Medicine, Pisa University, Pisa, Italy
| | - F Mottola
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Caserta, Italy
| | - D Costagliola
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Caserta, Italy
| | - M Bernardeschi
- Department of Clinical and Experimental Medicine, Pisa University, Pisa, Italy
| | - P Guidi
- Department of Clinical and Experimental Medicine, Pisa University, Pisa, Italy
| | - P Lucchesi
- Department of Clinical and Experimental Medicine, Pisa University, Pisa, Italy
| | - V Scarcelli
- Department of Clinical and Experimental Medicine, Pisa University, Pisa, Italy
| | - I Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | - V Stingo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Caserta, Italy
| | - G Frenzilli
- Department of Clinical and Experimental Medicine, Pisa University, Pisa, Italy
| |
Collapse
|
49
|
Vannuccini ML, Grassi G, Leaver MJ, Corsi I. Combination effects of nano-TiO2 and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on biotransformation gene expression in the liver of European sea bass Dicentrarchus labrax. Comp Biochem Physiol C Toxicol Pharmacol 2015; 176-177:71-8. [PMID: 26235595 DOI: 10.1016/j.cbpc.2015.07.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 07/15/2015] [Accepted: 07/23/2015] [Indexed: 01/09/2023]
Abstract
The aim of present study was to investigate the influence of titanium dioxide nanoparticles (nano-TiO2, Aeroxide® P25) on 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) dependent biotransformation gene expression in liver of juvenile European sea bass Dicentrarchus labrax. An in vivo 7day waterborne exposure was performed with nano-TiO2 (1mg/L) and 2,3,7,8-TCDD (46pg/L), singly and in combination. The mRNA expression of aryl hydrocarbon receptor repressor (Ahrr), estrogen receptor (erβ2), ABC transport proteins as Abcb1, Abcc1-c2-g2, cytochrome P450 (cyp1a), glutathione-s-transferase (gsta), glutathione reductase (gr) and engulfment and motility (ELMO) domain-containing protein 2 (elmod2) was investigated. Ahrr, erβ2, abcc1 and abcg2 resulted down-regulated with respect to controls in all experimental groups. Co-exposure to nano-TiO2 and 2,3,7,8-TCDD caused a further significant down regulation of ahrr, erβ2, Abcb1 and Abcc2 compared to single chemical exposure (nano-TiO2 or 2,3,7,8-TCDD alone). No effects were observed for 2,3,7,8-TCDD and nano-TiO2 alone in abcb1 gene, while abcc2 was down-regulated by nano-TiO2 alone. Cyp1a, gst and elmod2 genes were up-regulated by 2,3,7,8-TCDD and to a similar extent after co-exposure. Overall the results indicate that nano-TiO2 is unlikely to interfere with 2,3,7,8-TCDD-dependent biotransformation gene expression in the liver of European sea bass, although the effects of co-exposure observed in ABC transport mRNAs might suggest an impact on xenobiotic metabolite disposition and transport in European sea bass liver.
Collapse
Affiliation(s)
- Maria Luisa Vannuccini
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | - Giacomo Grassi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | - Michael J Leaver
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy.
| |
Collapse
|
50
|
Rocco L, Santonastaso M, Mottola F, Costagliola D, Suero T, Pacifico S, Stingo V. Genotoxicity assessment of TiO2 nanoparticles in the teleost Danio rerio. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 113:223-230. [PMID: 25506637 DOI: 10.1016/j.ecoenv.2014.12.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 12/05/2014] [Accepted: 12/07/2014] [Indexed: 06/04/2023]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs), widely used in paints, pharmaceutical preparations and in many consumer products, have been shown to induce cytotoxicity, genotoxicity and carcinogenic responses both in vitro and in vivo. Numerous studies have shown the potential impact of nanoparticles on a series of aquatic organisms and their toxicity has been linked to their dissolution, surface properties and size. In vitro studies have raised concerns about the toxicity of TiO2 NPs, but there are very limited data on ecotoxicity to aquatic life. This in vivo study aimed to describe the genotoxicity of TiO2 NPs in the zebrafish Danio rerio. After 2 weeks of adaptation, groups of zebrafish were exposed to TiO2 NPs (1 and 10μg/L) for 5, 7, 14, 21 and 28 days. The genotoxic potential of TiO2 NPs was assessed by the Comet assay, the Diffusion assay and RAPD-PCR technique. The use of multi-biomarkers has become an important aspect of ecotoxicology to evaluate environmental quality through a wide panel of biological responses triggered by contaminants. The highest genotoxic effect was observed at the maximum concentrations of nanoparticles (10μg/L) with all three tests at 14 and 21 days of exposure. The results suggests the presence of mechanisms that can reduce the n-TiO2 genotoxicity. Future studies are necessary to analyze the DNA repairing capacity in zebrafish cells and so verify the role of the antioxidant defence system in modulating the response to exposure to n-TiO2 in fish.
Collapse
Affiliation(s)
- Lucia Rocco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, Caserta, Italy.
| | - Marianna Santonastaso
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, Caserta, Italy
| | - Filomena Mottola
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, Caserta, Italy
| | - Domenico Costagliola
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, Caserta, Italy
| | - Teresa Suero
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, Caserta, Italy
| | - Severina Pacifico
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, Caserta, Italy
| | - Vincenzo Stingo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, Caserta, Italy
| |
Collapse
|