1
|
Qiao JC, Sun LJ, Xie PP, Li ZY, Zhang MY, Gui SY, Wang XC, Yang JK, Hu CY. Association between ambient air pollution exposure and pregnancy outcomes in women treated with assisted reproductive technology: an updated systematic review and meta-analysis. BMC Public Health 2025; 25:1639. [PMID: 40316960 PMCID: PMC12046897 DOI: 10.1186/s12889-024-19301-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/28/2024] [Indexed: 05/04/2025] Open
Abstract
BACKGROUND Ambient air pollution has been recognized as a potential threat to reproductive system function. However, studies investigating the relationship between air pollutants and pregnancy outcomes, particularly in the context of assisted reproductive technology (ART), has yielded inconsistent findings. METHODS This study conducted an updated comprehensive search to identify observational studies published before October 14, 2023, that examined the associations between air pollution exposure and pregnancy outcomes among women undergoing ART. Meta-analysis using random effects models were employed to calculate pooled risk estimates of clinical pregnancy, biochemical pregnancy, and live birth. RESULTS A total of 20 studies were included in the systematic review and meta-analysis, with 12 studies included in the quantitative synthesis. The results revealed that exposure to carbon monoxide (CO) (RR = 0.949, 95% CI: 0.900, 0.999; I2 = 73%) and nitrogen dioxide (NO2) (RR = 0.976, 95% CI: 0.961, 0.992; I2 = 10%) during the period from ovarian stimulation to oocyte retrieval was associated with lower clinical pregnancy rates. Similarly, exposure to CO (RR = 0.985, 95% CI: 0.975, 0.996; I2 = 0%) and NO2 (RR = 0.978, 95% CI: 0.961, 0.996; I2 = 27%) during this period reduced biochemical pregnancy rates. CONCLUSIONS Our study highlights the potential association between air quality and ART outcomes, underscoring the need for improvements in air quality to enhance reproductive success.
Collapse
Affiliation(s)
- Jian-Chao Qiao
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Liang-Jie Sun
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Pin-Peng Xie
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Zhuo-Yan Li
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Meng-Yue Zhang
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Si-Yu Gui
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, China
| | - Xin-Chen Wang
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, China
| | - Jian-Kang Yang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, China
| | - Cheng-Yang Hu
- Department of Humanistic Medicine, School of Humanistic Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.
| |
Collapse
|
2
|
Li Y, Liu Z, Zhou T, Zhu X, Wu Q, Zeng Y, Yang J, Meng C, Deng Q. Integrating network toxicology and Mendelian randomization to uncover the role of AHR in linking air pollution to male reproductive health. Reprod Toxicol 2025; 135:108918. [PMID: 40239776 DOI: 10.1016/j.reprotox.2025.108918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/12/2025] [Accepted: 04/12/2025] [Indexed: 04/18/2025]
Abstract
BACKGROUND With the rapid advancement of global industrialization and urbanization, air pollution has emerged as a major public health concern. This study investigates the molecular mechanisms linking air pollutants (APs) to male reproductive health (MRH), providing a scientific foundation for disease prevention and treatment. METHODS APs-disease-related genes were retrieved from multiple network databases, followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. A protein-protein interaction (PPI) network was constructed to elucidate potential molecular interactions. Differentially expressed genes from two external Gene Expression Omnibus (GEO) sequencing datasets were selected for validation, and intersection analysis was performed to identify key genes. Mendelian randomization (MR)was then applied to assess the causal relationships between key genes and male infertility (MIF), erectile dysfunction (ED), total testosterone levels, and testicular dysfunction. Additionally, molecular docking analysis was conducted to evaluate the binding affinity between key genes and APs. RESULTS This study focused on seven common APs (Benzene, SO₂, NO, CO, NO₂, Toluene, and O₃) and two MRH conditions (ED and MIF). Through intersection analyses and external validation, Aryl Hydrocarbon Receptor (AHR) was identified as a key regulator. MR analysis suggested that AHR may contribute to MIF and ED by suppressing testosterone levels and impairing testicular function. CONCLUSION By integrating network toxicology, MR, and molecular docking analysis, this study highlights the critical role of AHR as a molecular bridge between air pollution and MRH. These findings provide novel molecular insights into the impact of Aps on MRH.
Collapse
Affiliation(s)
- Yuqi Li
- Department of Urology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Zhiyu Liu
- Department of Urology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Tao Zhou
- Department of Urology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xinyao Zhu
- Department of Urology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Qilong Wu
- Department of Urology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yang Zeng
- Department of Urology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jinghong Yang
- Department of Orthopedics, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Chunyang Meng
- Department of Urology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Qingfu Deng
- Department of Urology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
3
|
Tesarik J. Lifestyle and Environmental Factors Affecting Male Fertility, Individual Predisposition, Prevention, and Intervention. Int J Mol Sci 2025; 26:2797. [PMID: 40141439 PMCID: PMC11943017 DOI: 10.3390/ijms26062797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/16/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
Current lifestyles bring about an increasing prevalence of unhealthy habits that can negatively affect male fertility. Cigarette smoking, alcohol intake, stress, inadequate physical activity, an unequilibrated diet leading to obesity, and use of mobile telephones and portable electronic devices can affect the male reproductive system through multiple mechanisms. Moreover, the modern man is often exposed to environmental factors independent of his will, such as air pollution, exposure to heat or toxicants in his workplace, or the presence of harmful chemicals in food, beverages, agricultural and industrial products, etc. The susceptibility to these factors depends on genetic and epigenetic predisposition, potentially present systemic disease and medication, and local affections of the genitourinary system. The multifaceted nature of both the causative factors and the susceptibility background makes the resulting fertility disturbance highly individual and variable among different men exposed to the same conditions. This paper critically reviews the current knowledge of different causative and susceptibility factors with a special attention to the molecular mechanisms of their action. Finally, strategies for the prevention of abnormalities due to lifestyle and environmental factors and available treatment modalities for already-present abnormalities are exposed.
Collapse
Affiliation(s)
- Jan Tesarik
- MARGen (Molecular Assisted Reproduction and Genetics) Clinic, Calle Gracia 36, 18002 Granada, Spain
| |
Collapse
|
4
|
Margiana R, Odhar HA, Prasad K, Oghenemaro EF, M M R, Kumawat R, Uthirapathy S, Sharma S, Kumar MR, Nouri M. Does outdoor air pollution cause poor semen quality? A systematic review and meta-analysis. BMC Urol 2025; 25:50. [PMID: 40082868 PMCID: PMC11905585 DOI: 10.1186/s12894-025-01728-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 02/25/2025] [Indexed: 03/16/2025] Open
Abstract
INTRODUCTION It is hypothesized that air pollutants could be associated with semen parameters. This systematic review and meta-analysis of observational studies was conducted to reach a firm conclusion regarding the possible association between outdoor air pollution and semen parameters among the adult population. METHODS PubMed, Scopus, and ISI Web of Science were systematically searched using the text keywords and MeSH terms, including "air pollution" and "semen parameters,". The population, Intervention, Comparison, and Outcome (PICO) framework was used as follows: P (Adult men), I (Individuals with the highest exposure to the air pollutants), C (Individuals with the lowest exposure to the air pollutants), O [Semen parameters, including semen volume, total sperm count, sperm concentration, total motility, progressive motility, normal morphology rate, and DNA fragmentation index (DFI)]. The overall effect was presented as a weighted mean difference (WMD) and 95% confidence interval (CI) analyzed via a fixed (inverse-variance) or random (DerSimonian-Laird) weighted model. Low, moderate, and high heterogeneity were defined as I2 index < 40, 40-75, and > 75%, respectively. RESULTS Seventeen studies covering 24,065 participants were enrolled in this systematic review and meta-analysis. Higher exposure to outdoor air pollution was associated with significant decreases in semen volume (WMD: -0.13 mL; 95% CI, -0.21 to -0.05; P = 0.001; I2 = 32.1%), sperm concentration (WMD: -12.41 × 106/mL; 95% CI, -23.29 to -1.53; P = 0.03; I2 = 98.7%), total motility (WMD: -5.96%; 95% CI, -10.76 to -1.16; P = 0.01; I2 = 96.2%), progressive motility (WMD: -4.89%; 95% CI, -9.23 to -0.55; P = 0.03; I2 = 98.0%), normal morphology rate (WMD: -2.64%; 95% CI, -4.36 to -0.92; P = 0.003; I2 = 94.6%), and significant increases in DNA fragmentation index (WMD: 5.41%; 95% CI, 3.24 to 7.59; P < 0.001; I2 = 70.4%). CONCLUSION Based on the results, it can be stated that air pollution can impair sperm parameters. Further prospective cohort studies are needed to illuminate this issue and clarify the underlying mechanisms.
Collapse
Affiliation(s)
- Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Bocah Indonesia Fertility Center, Jakarta, Indonesia
| | | | - Kdv Prasad
- Symbiosis Institute of Business Management, Hyderabad, Symbiosis International (Deemed University), Pune, India
| | - Enwa Felix Oghenemaro
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Delta State University, Abraka, Delta State, Nigeria
| | - Rekha M M
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Rohit Kumawat
- Department of Neurology, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Subasini Uthirapathy
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Shilpa Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, 140307, India
| | - M Ravi Kumar
- Department of Basic Science & Humanities, Raghu Engineering College, Visakhapatnam, India
| | - Mehran Nouri
- Infertility and Reproductive Health Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
- Social Determinants of Health Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
5
|
Vaz C, Burton M, Kermack AJ, Tan PF, Huan J, Yoo TPX, Donnelly K, Wellstead SJ, Wang D, Fisk HL, Houghton FD, Lewis S, Chong YS, Gluckman PD, Cheong Y, Macklon NS, Calder PC, Dutta A, Godfrey KM, Kumar P, Lillycrop KA, Karnani N. Short-term diet intervention comprising of olive oil, vitamin D, and omega-3 fatty acids alters the small non-coding RNA (sncRNA) landscape of human sperm. Sci Rep 2025; 15:7790. [PMID: 40044751 PMCID: PMC11882820 DOI: 10.1038/s41598-024-83653-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 12/16/2024] [Indexed: 03/09/2025] Open
Abstract
Offspring health outcomes are often linked with epigenetic alterations triggered by maternal nutrition and intrauterine environment. Strong experimental data also link paternal preconception nutrition with pathophysiology in the offspring, but the mechanism(s) routing effects of paternal exposures remain elusive. Animal experimental models have highlighted small non-coding RNAs (sncRNAs) as potential regulators of paternal effects. Here, we characterised the baseline sncRNA landscape of human sperm and the effect of a 6-week dietary intervention on their expression profile. This study involves sncRNAseq profiling, that was performed on a subset (n = 17) of the participants enrolled in the PREPARE trial: 9 from the control group and 8 from the intervention group. 5'tRFs, miRNAs and piRNAs were the most abundant sncRNA subtypes identified; their expression was associated with age, BMI, and sperm quality. Nutritional intervention with olive oil, vitamin D and omega-3 fatty acids altered expression of 3 tRFs, 15 miRNAs and 112 piRNAs, targeting genes involved in fatty acid metabolism and transposable elements in the sperm genome. PREPARE Trial registration number: ISRCTN50956936, Trial registration date: 10/02/2014.
Collapse
Affiliation(s)
- Candida Vaz
- Institute for Human Development and Potential (IHDP), Agency for Science, Technology and Research (A*STAR), 30 Medical Drive, Singapore, 117609, Republic of Singapore.
| | - Mark Burton
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Alexandra J Kermack
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
- Complete Fertility, Princess Anne Hospital, Southampton, UK
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Pei Fang Tan
- Institute for Human Development and Potential (IHDP), Agency for Science, Technology and Research (A*STAR), 30 Medical Drive, Singapore, 117609, Republic of Singapore
- Agency for Science, Technology and Research (A*STAR), Bioinformatics Institute (BII), 30 Biopolis Street #07-01 Matrix, Singapore, 138671, Republic of Singapore
| | - Jason Huan
- Institute for Human Development and Potential (IHDP), Agency for Science, Technology and Research (A*STAR), 30 Medical Drive, Singapore, 117609, Republic of Singapore
| | - Tessa P X Yoo
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Kerry Donnelly
- Complete Fertility, Princess Anne Hospital, Southampton, UK
| | - Susan J Wellstead
- Complete Fertility, Princess Anne Hospital, Southampton, UK
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Dennis Wang
- Institute for Human Development and Potential (IHDP), Agency for Science, Technology and Research (A*STAR), 30 Medical Drive, Singapore, 117609, Republic of Singapore
- Agency for Science, Technology and Research (A*STAR), Bioinformatics Institute (BII), 30 Biopolis Street #07-01 Matrix, Singapore, 138671, Republic of Singapore
| | - Helena L Fisk
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
| | - Franchesca D Houghton
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Sheena Lewis
- Queen's University, Belfast, Northern Ireland, UK
- Examen Lab Ltd, Belfast, Northern Ireland, UK
| | - Yap Seng Chong
- Institute for Human Development and Potential (IHDP), Agency for Science, Technology and Research (A*STAR), 30 Medical Drive, Singapore, 117609, Republic of Singapore
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Peter D Gluckman
- Institute for Human Development and Potential (IHDP), Agency for Science, Technology and Research (A*STAR), 30 Medical Drive, Singapore, 117609, Republic of Singapore
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Ying Cheong
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
- Complete Fertility, Princess Anne Hospital, Southampton, UK
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Nicholas S Macklon
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
- London Women's Clinic, London, UK
| | - Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
| | - Anindya Dutta
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, Charlottesville, VA, USA
- Department of Genetics, U. Alabama, Birmingham, AL, 35294, USA
| | - Keith M Godfrey
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| | - Pankaj Kumar
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, Charlottesville, VA, USA
| | - Karen A Lillycrop
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - Neerja Karnani
- Institute for Human Development and Potential (IHDP), Agency for Science, Technology and Research (A*STAR), 30 Medical Drive, Singapore, 117609, Republic of Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Republic of Singapore.
- Agency for Science, Technology and Research (A*STAR), Bioinformatics Institute (BII), 30 Biopolis Street #07-01 Matrix, Singapore, 138671, Republic of Singapore.
| |
Collapse
|
6
|
Akhigbe R, Oyedokun P, Akhigbe T, Hamed M, Fidelis F, Omole A, Adeogun A, Akangbe M, Oladipo A. The consequences of climate change and male reproductive health: A review of the possible impact and mechanisms. Biochem Biophys Rep 2025; 41:101889. [PMID: 39717849 PMCID: PMC11664087 DOI: 10.1016/j.bbrep.2024.101889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/20/2024] [Accepted: 11/25/2024] [Indexed: 12/25/2024] Open
Abstract
A global decline in male fertility has been reported, and climate change is considered a major cause of this. Climate change refers to long-term shifts in temperatures and weather patterns, and results from greenhouse gas emissions like carbon dioxide and methane that act as a blanket wrapped around the earth, trapping heat and elevating temperatures. Sad to say, the consequences of climatic variation are beyond the dramatic elevated temperature, they include cold stress, increased malnutrition, air pollution, cardiovascular diseases respiratory tract infections, cancer, sexually transmitted infections, mental stress, and heat waves. These negative effects of climate change impair male reproductive function through multiple pathways, like ROS-sensitive signaling, suppression of steroidogenic markers, and direct damage to testicular cells. The present study aimed to describe the impact of the consequences of climate change on male reproductive health with details of the various mechanisms involved. This will provide an in-depth understanding of the pathophysiological and molecular basis of the possible climatic variation-induced decline in male fertility, which will aid in the development of preventive measures to abate the negative effects of climate change on male reproductive function.
Collapse
Affiliation(s)
- R.E. Akhigbe
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - P.A. Oyedokun
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - T.M. Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Department of Agronomy, Osun State Univeristy (Ejigbo Campus), Osogbo, Nigeria
| | - M.A. Hamed
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- The Brainwill Laboratory, Osogbo, Osun State, Nigeria
- Department of Medical Laboratory Science, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - F.B. Fidelis
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Department of Biochemistry, Faculty of Life Science, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - A.I. Omole
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Department of Health and Human Physiology, College of Liberal Arts and Sciences, University of Iowa, Iowa, USA
| | - A.E. Adeogun
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - M.D. Akangbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Department of Nursing, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - A.A. Oladipo
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| |
Collapse
|
7
|
Bellingham M, Evans NP, Lea RG, Padmanabhan V, Sinclair KD. Reproductive and Metabolic Health Following Exposure to Environmental Chemicals: Mechanistic Insights from Mammalian Models. Annu Rev Anim Biosci 2025; 13:411-440. [PMID: 39531389 DOI: 10.1146/annurev-animal-111523-102259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The decline in human reproductive and metabolic health over the past 50 years is associated with exposure to complex mixtures of anthropogenic environmental chemicals (ECs). Real-life EC exposure has varied over time and differs across geographical locations. Health-related issues include declining sperm quality, advanced puberty onset, premature ovarian insufficiency, cancer, obesity, and metabolic syndrome. Prospective animal studies with individual and limited EC mixtures support these observations and provide a means to investigate underlying physiological and molecular mechanisms. The greatest impacts of EC exposure are through programming of the developing embryo and/or fetus, with additional placental effects reported in eutherian mammals. Single-chemical effects and mechanistic studies, including transgenerational epigenetic inheritance, have been undertaken in rodents. Important translational models of human exposure are provided by companion animals, due to a shared environment, and sheep exposed to anthropogenic chemical mixtures present in pastures treated with sewage sludge (biosolids). Future animal research should prioritize EC mixtures that extend beyond a single developmental stage and/or generation. This would provide a more representative platform to investigate genetic and underlying mechanisms that explain sexually dimorphic and individual effects that could facilitate mitigation strategies.
Collapse
Affiliation(s)
- Michelle Bellingham
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom;
| | - Neil P Evans
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom;
| | - Richard G Lea
- University of Nottingham, Loughborough, United Kingdom
| | | | | |
Collapse
|
8
|
LaPointe S, Lee JC, Nagy ZP, Shapiro DB, Chang HH, Wang Y, Russell AG, Hipp HS, Gaskins AJ. Air pollution exposure in vitrified oocyte donors and male recipient partners in relation to fertilization and embryo quality. ENVIRONMENT INTERNATIONAL 2024; 193:109147. [PMID: 39547088 PMCID: PMC11890188 DOI: 10.1016/j.envint.2024.109147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Studies on air pollution and outcomes of in vitro fertilization (IVF) have focused on couples undergoing autologous IVF, in which it is challenging to disentangle maternal and paternal exposures during gametogenesis. We sought to evaluate the independent associations between air pollution exposure during oogenesis and spermatogenesis on fertilization and embryo quality in non-identified donor oocyte IVF cycles. METHODS Our study included 500 oocyte donors and 915 male recipient partners who contributed 1,095 oocyte thaw cycles (2008-2019). Daily ambient air pollutant exposure was estimated using spatio-temporal models based on residential address and averaged over folliculogenesis (i.e., three months prior to initiation of controlled ovarian stimulation), controlled ovarian stimulation, and spermatogenesis (i.e., 72 days prior to oocyte thaw). We used multivariable generalized estimating equations to estimate the adjusted odds ratios (aOR) and 95 % confidence intervals (CI) for an interquartile range increase in pollutant exposure in relation to the proportion of oocytes surviving thaw, oocytes fertilized, and usable embryos. RESULTS Oocyte donors with higher exposure to organic carbon (OC) (aOR = 0.86 95 %CI 0.79,0.94) and particulate matter < 10 µm (aOR = 0.69 95 %CI 0.54,0.90) during folliculogenesis had a lower proportion of oocytes surviving thaw. During ovarian stimulation, higher particulate matter < 2.5 µm (aOR = 0.78 95 %CI 0.66, 0.91), nitrate (aOR = 0.83 95 % CI 0.69,0.99), and OC (aOR = 0.86 95 % CI 0.80,0.93) exposure was associated with a lower proportion of surviving oocytes while nitrogen dioxide (aOR = 1.11 95 %CI 1.00,1.23) and ozone (aOR = 1.19 95 %CI 1.04,1.37) exposure was associated with a higher proportion of fertilized oocytes and usable embryos. Elemental carbon (aOR = 0.93 95 %CI 0.87,1.00) and OC (aOR = 0.95 95 %CI 0.90,1.00) exposure during spermatogenesis was associated with a slightly lower proportion of usable embryos. On the day of oocyte thaw, higher ambient OC at the IVF clinic was associated with lower oocyte survival and higher ozone was associated with lower fertilization. CONCLUSIONS Both maternal and paternal air pollution exposures during gametogenesis have independent, largely detrimental, effects on early embryological outcomes.
Collapse
Affiliation(s)
- Sarah LaPointe
- Department of Epidemiology, Emory University Rollins School of Public Heath, Atlanta, GA, USA.
| | - Jaqueline C Lee
- Division of Reproductive Endocrinology and Infertility, Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Zsolt P Nagy
- Reproductive Biology Associates, Sandy Springs, GA, USA
| | | | - Howard H Chang
- Department of Biostatistics and Bioinformatics, Emory University Rollins School of Public Heath, Atlanta, GA, USA
| | - Yifeng Wang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Armistead G Russell
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Heather S Hipp
- Division of Reproductive Endocrinology and Infertility, Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Audrey J Gaskins
- Department of Epidemiology, Emory University Rollins School of Public Heath, Atlanta, GA, USA
| |
Collapse
|
9
|
Shi Y, Zhang Y, Yuan K, Han Z, Zhao S, Zhang Z, Cao W, Li Y, Zeng Q, Sun S. Exposure to ambient ozone and sperm quality among adult men in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116753. [PMID: 39083872 DOI: 10.1016/j.ecoenv.2024.116753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Limited evidence exists regarding the association between ozone exposure and adverse sperm quality. We aimed to assess the association between ozone exposure and sperm quality, and identify susceptible exposure windows. METHODS We recruited 32,541 men aged between 22 and 65 years old attending an infertility clinic in Wuhan, Hubei Province, China from 2014 to 2020. Ozone data were obtained from a satellite-based spatiotemporal model. Generalized linear models were used to estimate the association between ozone exposure and sperm quality parameters, including sperm concentration, sperm count, sperm total motility, and sperm progressive motility during the entire stage of sperm development (0-90 days before ejaculation) and three crucial stages (0-9 days, 10-14 days and 70-90 days before ejaculation). Stratified analyses were performed to evaluate whether associations varied by age, body mass index, and education levels. RESULTS The final analysis included 27,854 adult men. A 10 μg/m3 increase in ozone concentrations during the entire stage of sperm development was associated with a -4.17 % (95 % CI: -4.78 %, -3.57 %) decrease in sperm concentration, -6.54 % (95 % CI: -8.03 %, -5.60 %) decrease in sperm count, -0.50 % (95 % CI: -0.66 %, -0.34 %) decrease in sperm total motility, and -0.07 % (95 % CI: -0.22 %, 0.09 %) decrease in sperm progressive motility. The associations were stronger during 70-90 days before ejaculation and among men with middle school and lower education for sperm concentration. CONCLUSIONS Ozone exposure was associated with decreased sperm quality among Chinese adult men attending an infertility clinic. These results suggest that ozone may be a risk factor contributing to decreased sperm quality in Chinese men.
Collapse
Affiliation(s)
- Yadi Shi
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yangchang Zhang
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Kun Yuan
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Ze Han
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Shi Zhao
- School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Zhenyu Zhang
- Department of Global Health, Peking University School of Public Health, Beijing, China; Institute for Global Health and Development, Peking University, Beijing 100191, China
| | - Wangnan Cao
- Department of Social Medicine and Health Education, School of Public Health, Peking University, Beijing 100191, China
| | - Yufeng Li
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue, Wuhan, Hubei 1095, China.
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Shengzhi Sun
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
10
|
Zhang X, Ji D, Zhang Y, Ge L, Xu S, Peng Y, Chen X, Ni J, Wang G, Ma Y, Pan F. Effects of environmental temperature extremes exposure on sperm quality - evidence from a prospective cohort study in Anhui Province, China. ENVIRONMENTAL RESEARCH 2024; 258:119462. [PMID: 38908664 DOI: 10.1016/j.envres.2024.119462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/26/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Extreme weather is becoming more frequent due to drastic changes in the climate. Despite this, the body of research focused on the association between temperature extreme events and sperm quality remains sparse. In this study, we elucidate the impact of exposure to environmental temperature extremes on sperm quality. Data for this investigation were derived from the Anhui Prospective Assisted Reproduction Cohort, encompassing the period from 2015 to 2020. Parameters such as sperm concentration, total sperm count, total motility, progressive motility, total motile sperm count, and progressive motile sperm count were quantified from semen samples. We assessed the exposure of participants to temperature extremes during the 0-90 days prior to sampling. This investigation encompassed 15,112 participants, yielding 28,267 semen samples. Our research findings indicate that exposure to low temperature extreme for three consecutive days (at the first percentile threshold) has a detrimental correlation with sperm count parameters and concentration. Similar trends were observed with the second percentile threshold, where significant adverse effects typically manifested after a four-day exposure sequence. Analysis of high temperature extreme showed that exposure at the 98th percentile had adverse effects on all six sperm quality parameters, and the sperm count parameter was particularly sensitive to high temperature, showing significant results immediately after three days of exposure. When considering even more temperature extreme (99th percentile), the negative consequences were more pronounced on the sperm count parameter. Additionally, progressive motility showed a stronger negative response. In summary, parameters associated with sperm count are particularly vulnerable to temperature extremes exposure. Exposure to high temperature extremes environments may also be associated with a decrease in sperm concentration and vitality. The findings of this study suggest that male population should pay attention to avoid exposure to temperature extreme environment, which has important significance for improving the quality of human fertility.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China;; The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Dongmei Ji
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China
| | - Ying Zhang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China
| | - Liru Ge
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China;; The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Siwen Xu
- School of Medicine, Tongji University, 500 Zhennan Road, Shanghai, 200333, China
| | - Yongzhen Peng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China;; The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Xuyang Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China;; The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Jianping Ni
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China;; The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Guosheng Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China;; The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Yubo Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China;; The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China;.
| | - Faming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China;; The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China;.
| |
Collapse
|
11
|
Sciorio R, Tramontano L, Adel M, Fleming S. Decrease in Sperm Parameters in the 21st Century: Obesity, Lifestyle, or Environmental Factors? An Updated Narrative Review. J Pers Med 2024; 14:198. [PMID: 38392631 PMCID: PMC10890002 DOI: 10.3390/jpm14020198] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
Semen quality represents a compelling factor for fertility, and delineating the normal values has proven difficult. In the last four decades, several authors have reported a noticeable decline in sperm parameters. Also, studies investigating 'time to pregnancy' have shown that fecundity begins to be reduced when sperm numbers decrease below 30 million, even though according to the 6th edition of the WHO manual, the normal value is currently 16 million/mL or 39 million per ejaculate. There exists sufficient data to suggest a decline in sperm counts over time, even though the clear reason for this adverse trend is not well established, but some associations have been hypothesised, such as maternal smoking during pregnancy. Additional potential factors have yet to be fully illustrated but involve poor diet, increased obesity, and exposure to environmental toxins. Moreover, the change in environmental conditions and more common exposure to endocrine-disrupting chemicals (EDCs), such as pesticides and herbicides, as well as bisphenol A, phthalates, polychlorinated biphenyls, and heavy metals, starting from prenatal life and continuing into adulthood, may exhibit probable features explaining the reduction in sperm parameters. Therefore, the main goal of this narrative review is to furnish an overview of the possible effects of exposure to EDCs on testicular function and spermatogenesis and, also, to summarise the evidence regarding a decrease in sperm quality and examine its potential consequences.
Collapse
Affiliation(s)
- Romualdo Sciorio
- Fertility Medicine and Gynaecological Endocrinology Unit, Department Woman-Mother-Child, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Luca Tramontano
- Department of Women, Infants and Adolescents, Division of Obstetrics, Geneva University Hospitals, 1211 Geneve, Switzerland
| | - Mohammed Adel
- Zoology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11651, Egypt
| | - Steven Fleming
- Discipline of Anatomy & Histology, School of Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
12
|
Saleem A, Awan T, Akhtar MF. A comprehensive review on endocrine toxicity of gaseous components and particulate matter in smog. Front Endocrinol (Lausanne) 2024; 15:1294205. [PMID: 38352708 PMCID: PMC10863453 DOI: 10.3389/fendo.2024.1294205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024] Open
Abstract
Smog is a form of extreme air pollution which comprises of gases such as ozone, sulfur dioxide, nitrogen and carbon oxides, and solid particles including particulate matter (PM2.5 and PM10). Different types of smog include acidic, photochemical, and Polish. Smog and its constituents are hazardaous to human, animals, and plants. Smog leads to plethora of morbidities such as cancer, endocrine disruption, and respiratory and cardiovascular disorders. Smog components alter the activity of various hormones including thyroid, pituitary, gonads and adrenal hormones by altering regulatory genes, oxidation status and the hypothalamus-pituitary axis. Furthermore, these toxicants are responsible for the development of metabolic disorders, teratogenicity, insulin resistance, infertility, and carcinogenicity of endocrine glands. Avoiding fossil fuel, using renewable sources of energy, and limiting gaseous discharge from industries can be helpful to avoid endocrine disruption and other toxicities of smog. This review focuses on the toxic implications of smog and its constituents on endocrine system, their toxicodynamics and preventive measures to avoid hazardous health effects.
Collapse
Affiliation(s)
- Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Tanzeela Awan
- Department of Pharmacy, The Women University Multan, Multan, Pakistan
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| |
Collapse
|
13
|
LaPointe S, Lee JC, Nagy ZP, Shapiro DB, Chang HH, Wang Y, Russell AG, Hipp HS, Gaskins AJ. Ambient traffic related air pollution in relation to ovarian reserve and oocyte quality in young, healthy oocyte donors. ENVIRONMENT INTERNATIONAL 2024; 183:108382. [PMID: 38103346 PMCID: PMC10871039 DOI: 10.1016/j.envint.2023.108382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Studies in mice and older, subfertile women have found that air pollution exposure may compromise female reproduction. Our objective was to evaluate the effects of air pollution on ovarian reserve and outcomes of ovarian stimulation among young, healthy females. We included 472 oocyte donors who underwent 781 ovarian stimulation cycles at a fertility clinic in Atlanta, Georgia, USA (2008-2019). Antral follicle count (AFC) was assessed with transvaginal ultrasonography and total and mature oocyte count was assessed following oocyte retrieval. Ovarian sensitivity index (OSI) was calculated as the total number of oocytes divided by total gonadotrophin dose × 1000. Daily ambient exposure to nitric oxide (NOx), carbon monoxide (CO), and particulate matter ≤ 2.5 (PM2.5) was estimated using a fused regional + line-source model for near-surface releases at a 250 m resolution based on residential address. Generalized estimating equations were used to evaluate the associations of an interquartile range (IQR) increase in pollutant exposure with outcomes adjusted for donor characteristics, census-level poverty, and meteorological factors. The median (IQR) age among oocyte donors was 25.0 (5.0) years, and 31% of the donors were racial/ethnic minorities. The median (IQR) exposure to NOx, CO, and PM2.5 in the 3 months prior to stimulation was 37.7 (32.0) ppb, 612 (317) ppb, and 9.8 (2.9) µg/m3, respectively. Ambient air pollution exposure in the 3 months before AFC was not associated with AFC. An IQR increase in PM2.5 in the 3 months before AFC and during stimulation was associated with -7.5% (95% CI -14.1, -0.4) and -6.4% (95% CI -11.0, -1.6) fewer mature oocytes, and a -1.9 (95% CI -3.2, -0.5) and -1.0 (95% CI -1.8, -0.2) lower OSI, respectively. Our results suggest that lowering the current 24-h PM2.5 standard in the US to 25 µg/m3 may still not adequately protect against the reprotoxic effects of short-term PM2.5 exposure.
Collapse
Affiliation(s)
- Sarah LaPointe
- Department of Epidemiology, Emory University Rollins School of Public Heath, Atlanta, GA, United States
| | - Jaqueline C Lee
- Division of Reproductive Endocrinology and Infertility, Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Zsolt P Nagy
- Reproductive Biology Associates, Sandy Springs, GA, United States
| | - Daniel B Shapiro
- Reproductive Biology Associates, Sandy Springs, GA, United States
| | - Howard H Chang
- Department of Biostatistics and Bioinformatics, Emory University Rollins School of Public Health, Atlanta, GA, United States
| | - Yifeng Wang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Armistead G Russell
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Heather S Hipp
- Division of Reproductive Endocrinology and Infertility, Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Audrey J Gaskins
- Department of Epidemiology, Emory University Rollins School of Public Heath, Atlanta, GA, United States.
| |
Collapse
|
14
|
Arfin T, Pillai AM, Mathew N, Tirpude A, Bang R, Mondal P. An overview of atmospheric aerosol and their effects on human health. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:125347-125369. [PMID: 37674064 DOI: 10.1007/s11356-023-29652-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023]
Abstract
Epidemiologic investigations have previously been published in more than 200 papers, and several studies have examined the impacts of particle air pollution on health. The main conclusions now being made about the epidemiological evidence of particle pollution-induced health impacts are discussed in this article. Although there is no universal agreement, most reviewers conclude that particulate air pollution, particularly excellent combustion-cause contamination prevalent in many municipal and manufacturing environments, is a significant risk for cardiopulmonary sickness and mortality. Most epidemiological research has concentrated on the impacts of acute exposure, although the total public health implications of chronic acquaintance's outcome may be more extraordinarily significant. According to some reviewers, prolonged, repeated exposure raises the risk of cardiorespiratory death and chronic respiratory illness. A more general (but still universal) agreement is that short-term particle pollution exposure has been shown to aggravate pre-existing pulmonary and cardiovascular diseases and increase the number of community members who become sick, require medical treatment, or die. Several in-depth studies conducted in the global and Indian regions are addressed.
Collapse
Affiliation(s)
- Tanvir Arfin
- Air Pollution Control Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Anupama M Pillai
- Air Pollution Control Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, India
| | - Nikhila Mathew
- Air Pollution Control Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, India
| | - Abha Tirpude
- Air Pollution Control Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, India
| | - Roshani Bang
- Air Pollution Control Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pabitra Mondal
- Air Pollution Control Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, India
| |
Collapse
|
15
|
Lien HT, Tsai NC, Lin YJ, Lan KC. The effect of various air pollution and participants' age on semen quality in southern Taiwan. Taiwan J Obstet Gynecol 2023; 62:838-844. [PMID: 38008502 DOI: 10.1016/j.tjog.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2023] [Indexed: 11/28/2023] Open
Abstract
OBJECTIVE This study aimed to investigate the association between semen quality and air pollution in southern Taiwan. MATERIALS AND METHODS In this retrospective study, 4338 males aged 21-70 years were recruited between 2001 and 2018 from a reproductive medical center. Semen quality was assessed according to standardized methods outlined in the World Health Organization (WHO) Laboratory Manual 1999 and 2010, including total sperm count, progressive sperm motility (%), rapid progressive sperm motility (%), and sperm with normal morphology (%). All designated national air quality automatic continuous monitoring stations measured the levels of air pollution [particulate matter (PM10 and PM2.5), sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), ozone (O3)], and was documented by Environmental Protection Administration in Taiwan. We collected data on the levels of air pollution based on the participants' residential addresses. RESULTS In our study, we found that progressive and rapid progressive sperm motility significantly decreased annually (p < 0.05). In addition, increasing age influenced total sperm count, progressive sperm motility, rapid progressive sperm motility, and sperm with normal morphology (p < 0.05). Among different air pollution, we observed SO2 was associated with lower rapid progressive sperm motility and lower sperm with normal morphology (β = -0.103, p = 0.043; β = 0.118, p = 0.001, respectively). However, NO2 was associated with higher rapid progressive sperm motility and a high number of sperm with normal morphology (β = 0.129, p = 0.002; β = 0.127, p < 0.001, respectively). CONCLUSIONS The semen quality in southern Taiwan appears to have declined in recent years. The participant's age for semen analysis was most strongly associated with semen parameters, Moreover, a significant association between SO2 and NO2 levels and semen motility was observed, even after adjusting for multiple comparisons. Further study is required to analyze the dose-dependent effect of SO2 and NO2 on semen parameters.
Collapse
Affiliation(s)
- Hao-Ting Lien
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ni-Chin Tsai
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yu-Ju Lin
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kuo-Chung Lan
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Center for Menopause and Reproductive Medicine Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Department of Obstetrics and Gynecology, Jen-Ai Hospital, Taichung, Taiwan.
| |
Collapse
|
16
|
Yazdanpanah Ghadikolaei P, Ghaleno LR, Vesali S, Janzamin E, Gilani MAS, Sajadi H, Dizaj AVT, Shahverdi A, Drevet JR, Moghadam Masouleh AA. Epidemiology of sperm DNA fragmentation in a retrospective cohort of 1191 men. Andrology 2023; 11:1663-1672. [PMID: 37280171 DOI: 10.1111/andr.13472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/11/2023] [Accepted: 06/01/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND The scientific and clinical communities now recognize that sperm DNA integrity is crucial for successful fertilization, good embryo development, and offspring quality of life. Despite the apparent unanimity, this criterion is rarely evaluated in clinical practice. We evaluated the sperm DNA fragmentation index of nearly 1200 sperm samples and its connections based on the patient's age, body mass index, the season of sperm collection, geographical location, medical history, and addictive behaviors. METHODS A cohort of 1503 patients who were referred to the Royan Institute between July 2018 and March 2020 was examined. Only 1191 patient records with demographic data, complete semen analysis, and DNA fragmentation index measurements were included in the final cohort. Documents were classified, incorporated into statistical models, and analyzed. RESULTS The results confirmed previous findings that the sperm DNA fragmentation index was significantly higher in aging men. The sperm DNA fragmentation index and high DNA stainability levels were significantly higher in spring and summer samples than in those of other seasons. No correlation was found between semen DNA fragmentation index and patient body mass index, although the study cohort was significantly overweight. Contrary to what might be expected, we observed that the sperm DNA fragmentation index was higher in rural than in urban patients. Intriguingly, epileptic patients exhibited significantly higher sperm DNA fragmentation index levels. DISCUSSION AND CONCLUSION Age is the factor that is most strongly associated with sperm DNA fragmentation index levels. Our analysis of 1191 samples indicates that between the ages of 19 and 59, the sperm DNA fragmentation index increases by an average of 2% each year. Intriguingly, from an epidemiological perspective, the warm season (spring/summer) is associated with a higher sperm DNA fragmentation index in the study population, possibly due to the deleterious effect of temperature on sperm quality. Some neurological diseases, such as epilepsy, are associated with decreased sperm DNA integrity. This observation could be related to the iatrogenic effects of associated therapies. In the study cohort, body mass index did not appear to be correlated with the DNA fragmentation index.
Collapse
Affiliation(s)
- Parisa Yazdanpanah Ghadikolaei
- Department of Molecular and Cellular Biology, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Leila Rashki Ghaleno
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Samira Vesali
- Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Ehsan Janzamin
- SABA Biomedical Science -Based Company, Tehran, Iran
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mohammad Ali Sadighi Gilani
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Hesamoddin Sajadi
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Ahmad Vosough Taghi Dizaj
- Department of Reproductive Imaging, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Abdolhossein Shahverdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
- Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Joël R Drevet
- Faculty of Medicine, GReD Institute, Clermont-Ferrand, France
| | - AliReza Alizadeh Moghadam Masouleh
- Department of Molecular and Cellular Biology, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
- Gyn-medicum, Center for Reproductive Medicine, Göttingen, Germany
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
17
|
Harper T, Kuohung W, Sayres L, Willis MD, Wise LA. Optimizing preconception care and interventions for improved population health. Fertil Steril 2023; 120:438-448. [PMID: 36516911 DOI: 10.1016/j.fertnstert.2022.12.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/18/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
There is growing literature indicating that optimal preconception health is associated with improved reproductive, perinatal, and pediatric outcomes. Given that preconception care is recommended for all individuals planning a pregnancy, medical providers and public health practitioners have a unique opportunity to optimize care and improve health outcomes for reproductive-aged individuals. Knowledge of the determinants of preconception health is important for all types of health professionals, including policy makers. Although some evidence-based recommendations have already been implemented, additional research is needed to identify factors associated with favorable health outcomes and to ensure that effective interventions are made in a timely fashion. Given the largely clinical readership of this journal, this piece is primarily focused on clinical care. However, we acknowledge that optimizing preconception health for the entire population at risk of pregnancy requires broadening our strategies to include population-health interventions that consider the larger social systems, structures, and policies that shape individual health outcomes.
Collapse
Affiliation(s)
- Teresa Harper
- Division of Maternal and Fetal Medicine, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, Colorado.
| | - Wendy Kuohung
- Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, Boston University School of Medicine, Boston, Massachusetts
| | - Lauren Sayres
- Division of Maternal and Fetal Medicine, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, Colorado
| | - Mary D Willis
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts
| | - Lauren A Wise
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts
| |
Collapse
|
18
|
Liu J, Dai Y, Li R, Yuan J, Wang Q, Wang L. Does air pollution exposure affect semen quality? Evidence from a systematic review and meta-analysis of 93,996 Chinese men. Front Public Health 2023; 11:1219340. [PMID: 37601219 PMCID: PMC10435904 DOI: 10.3389/fpubh.2023.1219340] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
Background Air pollution may impair male fertility, but it remains controversial whether air pollution affects semen quality until now. Objectives We undertake a meta-analysis to explore potential impacts of six pollutants exposure during the entire window (0-90 days prior to ejaculation) and critical windows (0-9, 10-14, and 70-90 days prior to ejaculation) on semen quality. Methods Seven databases were retrieved for original studies on the effects of six pollutants exposure for 90 days prior to ejaculation on semen quality. The search process does not limit the language and search date. We only included original studies that reported regression coefficients (β) with 95% confidence intervals (CIs). The β and 95% CIs were pooled using the DerSimonian-Laird random effect models. Results PM2.5 exposure was related with decreased total sperm number (10-14 lag days) and total motility (10-14, 70-90, and 0-90 lag days). PM10 exposure was related with reduced total sperm number (70-90 and 0-90 lag days) and total motility (0-90 lag days). NO2 exposure was related with reduced total sperm number (70-90 and 0-90 lag days). SO2 exposure was related with declined total motility (0-9, 10-14, 0-90 lag days) and total sperm number (0-90 lag days). Conclusion Air pollution affects semen quality making it necessary to limit exposure to air pollution for Chinese men. When implementing protective measures, it is necessary to consider the key period of sperm development.
Collapse
Affiliation(s)
- Junjie Liu
- Henan Human Sperm Bank, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanpeng Dai
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Runqing Li
- The Neonatal Screening Center in Henan Province, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiayi Yuan
- The Neonatal Screening Center in Henan Province, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Quanxian Wang
- Henan Human Sperm Bank, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Linkai Wang
- Henan Human Sperm Bank, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
19
|
Xu R, Zhong Y, Li R, Li Y, Zhong Z, Liu T, Wang Q, Lv Z, Huang S, Duan YG, Zhang X, Liu Y. Association between exposure to ambient air pollution and semen quality: A systematic review and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161892. [PMID: 36731563 DOI: 10.1016/j.scitotenv.2023.161892] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/15/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Accumulating evidence has linked exposure to ambient air pollution to a reduction in semen quality; however, the exposure-response associations are yet to be synthesized. OBJECTIVE To summarize the exposure-response associations between air pollution and semen quality. METHODS We systematically searched PubMed, Embase, and Web of Science for relevant studies published before April 20, 2022. Studies investigating the exposure-response association of PM2.5, PM10, SO2, NO2, CO, and O3 with semen quality written in English were included. Semen quality parameters included semen volume, sperm concentration, total sperm number, total motility, progressive motility, and normal forms. Random-effects and fixed-effects models were performed to synthesize associations in the meta-analysis. RESULTS The search returned 850 studies, 11 of which were eligible for meta-analysis. Each 10 μg/m3 increase of exposure to PM10 and SO2 was respectively associated with a 2.18 % (95 % confidence interval [CI]: 0.10 %-4.21 %) and 8.61 % (1.00 %-15.63 %) reduction in sperm concentration, and a 2.76 % (0.10 %-5.35 %) and 9.52 % (5.82 %-13.93 %) reduction in total sperm number. Each 10 μg/m3 increase of exposure to PM2.5 and PM10 was respectively associated with a 1.06 % (95 % CI: 0.31 %-1.82 %) and 0.75 % (0.43 %-1.08 %) reduction in total motility, and a 0.55 % (0.09 %-1.01 %) and 0.31 % (0.06 %-0.56 %) reduction in progressive motility. No association was observed for PM2.5 or PM10 with semen volume; PM2.5, NO2, CO, or O3 with sperm concentration or total sperm number; and gaseous air pollutants with total or progressive motility. The association between air pollution and normal forms was not summarized due to insufficient number of studies. No significant publication bias was detected. CONCLUSIONS Exposure to ambient PM2.5, PM10, and SO2 was inversely associated with sperm concentration, total sperm number, total motility, and/or progressive motility. Our findings add to the evidence that air pollution may lead to adverse effects on male reproductive system and suggest that reducing exposure to air pollution may help maintain better semen quality.
Collapse
Affiliation(s)
- Ruijun Xu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yanling Zhong
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Rui Li
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yingxin Li
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zihua Zhong
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Tingting Liu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Qiling Wang
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute, Guangdong Provincial Fertility Hospital, Guangzhou, China
| | - Ziquan Lv
- Central laboratory of Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Suli Huang
- Department of Environment and Health, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yong-Gang Duan
- Shenzhen Key Laboratory of Fertility Regulation, Centre of Assisted Reproduction and Embryology, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| | - Xinzong Zhang
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute, Guangdong Provincial Fertility Hospital, Guangzhou, China
| | - Yuewei Liu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
20
|
Zhang F, Li H, Xu W, Song G, Wang Z, Mao X, Wei Y, Dai M, Zhang Y, Shen Q, Fu F, Tan J, Ge L, He X, Yin T, Yang S, Li S, Yang P, Jia P, Zhang Y. Sulfur dioxide may predominate in the adverse effects of ambient air pollutants on semen quality among the general population in Hefei, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161472. [PMID: 36638985 DOI: 10.1016/j.scitotenv.2023.161472] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/24/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Previous studies have reported potential adverse effects of exposure to ambient air pollutants on semen quality in infertile men, but studies on the general population have been limited and inconsistent, and the pollutants that play a major role remain unclear. This study aimed to explore the potential association between exposure to six air pollutants (PM2.5, PM10, NO2, SO2, O3 and CO) during different sperm development periods and semen quality among the general population, and to explore the interaction between different air pollutant exposures. We included 1515 semen samples collected from the Human Sperm Bank. We improved individuals' exposure level estimation by combining inverse distance weighting (IDW) interpolation with satellite remote sensing data. Multivariate linear regression models, restricted cubic spline functions and double-pollutant models were used to assess the relationship between exposure to six air pollutants and sperm volume, concentration, total sperm number and sperm motility. A negative association was found between SO2 exposure and progressive motility and total motility during 0-90 lag days and 70-90 lag days, and SO2 exposure during 10-14 lag days adversely affected sperm concentration and total sperm number. Sensitive analyses for qualified sperm donors and the double-pollutant models obtained similar results. Additionally, there were nonlinear relationships between exposure to PM, NO2, O3, CO and a few semen parameters, with NO2 and O3 exposure above the threshold showing negative correlations with total motility and progressive motility, respectively. Our study suggested that SO2 may play a dominant role in the adverse effects of ambient air pollutants on semen quality in the general population by decreasing sperm motility, sperm concentration and total sperm number. Also, even SO2 exposure lower than the recommended standards of the World Health Organization (WHO) could still cause male reproductive toxicity, which deserves attention.
Collapse
Affiliation(s)
- Feng Zhang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Hang Li
- Reproductive Medicine Center, Anhui Provincial Human Sperm Bank, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
| | - Wenting Xu
- School of Resource and Environmental Sciences, Wuhan University, Wuhan, Hubei, China; International Institute of Spatial Lifecourse Health (ISLE), Wuhan University, Wuhan, Hubei, China
| | - Ge Song
- School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, Hubei, China
| | - Zhanpeng Wang
- School of Resource and Environmental Sciences, Wuhan University, Wuhan, Hubei, China; International Institute of Spatial Lifecourse Health (ISLE), Wuhan University, Wuhan, Hubei, China
| | - Xiaohong Mao
- Reproductive Medicine Center, Anhui Provincial Human Sperm Bank, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
| | - Yiqiu Wei
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Mengyang Dai
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yuying Zhang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qunshan Shen
- Reproductive Medicine Center, Anhui Provincial Human Sperm Bank, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
| | - Feifei Fu
- Reproductive Medicine Center, Anhui Provincial Human Sperm Bank, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
| | - Jing Tan
- Reproductive Medicine Center, Anhui Provincial Human Sperm Bank, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
| | - Lei Ge
- Reproductive Medicine Center, Anhui Provincial Human Sperm Bank, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
| | - Xiaojin He
- Reproductive Medicine Center, Anhui Provincial Human Sperm Bank, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
| | - Tailang Yin
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Shujuan Yang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China; International Institute of Spatial Lifecourse Health (ISLE), Wuhan University, Wuhan, Hubei, China
| | - Siwei Li
- School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, Hubei, China; State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, Hubei, China.
| | - Pan Yang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong, China.
| | - Peng Jia
- School of Resource and Environmental Sciences, Wuhan University, Wuhan, Hubei, China; Hubei Luojia Laboratory, Wuhan, Hubei, China; International Institute of Spatial Lifecourse Health (ISLE), Wuhan University, Wuhan, Hubei, China; School of Public Health, Wuhan University, Wuhan, Hubei, China.
| | - Yan Zhang
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
21
|
Xu R, Li Z, Qian N, Qian Y, Wang Z, Peng J, Zhu X, Guo C, Li X, Xu Q, Wei Y. Air pollution exposure and the risk of macrosomia: Identifying specific susceptible months. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160203. [PMID: 36403833 DOI: 10.1016/j.scitotenv.2022.160203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Birth weight is an important indicator of future growth and development for newborns. Few studies investigated the potential effects of air pollutants on macrosomia and their susceptible windows. We included 38,971 singleton full-term births from Beijing HaiDian Maternal and Child Health Hospital between 2014 and 2018, and assessed the associations of air pollutants exposure during preconception and pregnancy with macrosomia as well as the corresponding susceptible windows. The concentrations of air pollutants (PM2.5, PM10, SO2, NO2, CO and O3) for participants were calculated by the data from the nearest monitoring stations. Distributed lag models (DLM) incorporating logistic regression models were used to estimate the associations between air pollutants exposure during the 3 months before conception and pregnancy period and the risk of macrosomia, identifying susceptible windows of air pollutants. Weighted quantile sum (WQS) regression was applied to estimate the joint effect of air pollutants. A 10 μg/m3 increase in PM2.5 exposure from 3rd to 8th gestational month was positively associated with the risk of macrosomia, with the strongest effect in the 6th month (OR = 1.010, 95 % CI: 1.002-1.019). For a 10 μg/m3 increase in SO2, the windows of significant exposure were from the 1st preconception month to the 3rd gestational month, with the strongest effect in the 2nd month (OR = 1.030, 95 % CI: 1.010-1.049). We also observed the significant positive associations were in the 5th-8th gestational months for PM10, the 8th-9th gestational months for NO2 and the 3rd-7th gestational months for CO respectively. WQS regression also indicated a positive association between co-exposure to air pollutants and macrosomia. Our results suggest air pollution exposure is associated with increased risk of macrosomia. The windows of exposure for susceptibility to the risk of macrosomia vary between air pollutants. The susceptible exposure windows were middle and late pregnancy for PM, CO and NO2, while for SO2, early pregnancy is the window of vulnerability. Our findings provide the evidence that air pollution exposure is an independent risk factor for macrosomia and a basis for targeted environment policy.
Collapse
Affiliation(s)
- Rongrong Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China; Center for Global Health, School of Public Health, Nanjing Medical University, China
| | - Zhigang Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Nianfeng Qian
- Hai Dian Maternal & Child Health Hospital, Beijing, China
| | - Yan Qian
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Zhanshan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Jianhao Peng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Xiaojing Zhu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Chen Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Xiaoqian Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Qiujin Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China; Center for Global Health, School of Public Health, Nanjing Medical University, China
| | - Yongjie Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China; Center for Global Health, School of Public Health, Nanjing Medical University, China.
| |
Collapse
|
22
|
Pedersen MK, Bräuner EV, Hansen AH, Hansen LS, Jensen TK, Jørgensen N, Priskorn L. Self-Reported Asthma Is Associated with Reduced Sperm Count-A Cross-Sectional Study of More than 6000 Young Men from the General Population. Life (Basel) 2023; 13:278. [PMID: 36836635 PMCID: PMC9966775 DOI: 10.3390/life13020278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Asthma is driven by an inflammatory response that may impact testicular function. In this cross-sectional study, we investigated the association between self-reported asthma and testicular function (semen parameters, reproductive hormone levels), and determined whether potential further inflammation due to self-reported allergy modified this association. A total of 6177 men from the general population completed a questionnaire including information on doctor-diagnosed asthma or allergy, had a physical examination, delivered a semen sample, and had a blood sample drawn. Multiple linear regression analyses were performed. A total of 656 (10.6%) men reported having ever been diagnosed with asthma. Generally, self-reported asthma was consistently associated with a poorer testicular function; however, few estimates were statistically significant. Specifically, self-reported asthma was associated with statistically significant lower total sperm count [median: 133 vs. 145 million; adjusted β (95% CI): -0.18 (-0.33 to -0.04) million on cubic-root-transformed scale] and borderline statistically significant lower sperm concentration compared with no self-reported asthma. The association between asthma and total sperm count was of similar magnitude among men with and without allergy. In conclusion, men with self-reported asthma had poorer testicular function than men without asthma. However, the cross-sectional design of the study limits ascertainment of causality.
Collapse
Affiliation(s)
- Marc K. Pedersen
- Department of Growth and Reproduction, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark
- International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark
| | - Elvira V. Bräuner
- Department of Growth and Reproduction, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark
- International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark
| | - Ann H. Hansen
- Department of Growth and Reproduction, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark
- International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark
| | - Laura S. Hansen
- Department of Growth and Reproduction, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark
- International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark
| | - Tina K. Jensen
- Department of Growth and Reproduction, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark
- International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark
- Research Unit of Clinical Pharmacology, Pharmacy and Environmental Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | - Niels Jørgensen
- Department of Growth and Reproduction, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark
- International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark
| | - Lærke Priskorn
- Department of Growth and Reproduction, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark
- International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark
| |
Collapse
|
23
|
Yu X, Wang Q, Wei J, Zeng Q, Xiao L, Ni H, Xu T, Wu H, Guo P, Zhang X. Impacts of traffic-related particulate matter pollution on semen quality: A retrospective cohort study relying on the random forest model in a megacity of South China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158387. [PMID: 36049696 DOI: 10.1016/j.scitotenv.2022.158387] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/17/2022] [Accepted: 08/25/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Emerging evidence shows the detrimental impacts of particulate matter (PM) on poor semen quality. High-resolution estimates of PM concentrations are conducive to evaluating accurate associations between traffic-related PM exposure and semen quality. METHODS In this study, we firstly developed a random forest model incorporating meteorological factors, land-use information, traffic-related variables, and other spatiotemporal predictors to estimate daily traffic-related PM concentrations, including PM2.5, PM10, and PM1. Then we enrolled 1310 semen donors corresponding to 4912 semen samples during the study period from January 1, 2019, and December 31, 2019 in Guangzhou city, China. Linear mixed models were employed to associate individual exposures to traffic-related PM during the entire (0-90 lag days) and key periods (0-37 and 34-77 lag days) with semen quality parameters, including sperm concentration, sperm count, progressive motility and total motility. RESULTS The results showed that decreased sperm concentration was associated with PM10 exposures (β: -0.21, 95 % CI: -0.35, -0.07), sperm count was inversely related to both PM2.5 (β: -0.19, 95 % CI: -0.35, -0.02) and PM10 (β: -0.19, 95 % CI: -0.33, -0.05) during the 0-90 days lag exposure window. Besides, PM2.5 and PM10 might diminish sperm concentration by mainly affecting the late phase of sperm development (0-37 lag days). Stratified analyses suggested that PBF and drinking seemed to modify the associations between PM exposure and sperm motility. We did not observe any significant associations of PM1 exposures with semen parameters. CONCLUSION Our results indicate that exposure to traffic-related PM2.5 and PM10 pollution throughout spermatogenesis may adversely affect semen quality, especially sperm concentration and count. The findings provided more evidence for the negative associations between traffic-related PM exposure and semen quality, highlighting the necessity to reduce ambient air pollution through environmental policy.
Collapse
Affiliation(s)
- Xiaolin Yu
- Department of Preventive Medicine, Shantou University Medical College, No. 22 Xinling Road, Shantou 515041, China
| | - Qiling Wang
- National Health Commission Key Laboratory of Male Reproduction and Genetics, Guangzhou, China; Department of Andrology, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), China
| | - Jing Wei
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing, China; Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
| | - Qinghui Zeng
- Department of Preventive Medicine, Shantou University Medical College, No. 22 Xinling Road, Shantou 515041, China
| | - Lina Xiao
- Department of Preventive Medicine, Shantou University Medical College, No. 22 Xinling Road, Shantou 515041, China
| | - Haobo Ni
- Department of Preventive Medicine, Shantou University Medical College, No. 22 Xinling Road, Shantou 515041, China
| | - Ting Xu
- Department of Preventive Medicine, Shantou University Medical College, No. 22 Xinling Road, Shantou 515041, China
| | - Haisheng Wu
- Department of Preventive Medicine, Shantou University Medical College, No. 22 Xinling Road, Shantou 515041, China
| | - Pi Guo
- Department of Preventive Medicine, Shantou University Medical College, No. 22 Xinling Road, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou 515041, China
| | - Xinzong Zhang
- National Health Commission Key Laboratory of Male Reproduction and Genetics, Guangzhou, China
- Department of Andrology, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), China
| |
Collapse
|
24
|
Liu H, Ding S, Nie H, Shi Y, Lai W, Liu X, Li K, Tian L, Xi Z, Lin B. PM 2.5 exposure at different concentrations and modes induces reproductive toxicity in male rats mediated by oxidative and endoplasmic reticulum stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114042. [PMID: 36087467 DOI: 10.1016/j.ecoenv.2022.114042] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/15/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
The molecular mechanisms of PM2.5 exposure in the male reproductive system, have scarcely been studied. Here, we demonstrate the possible relationship and molecular mechanisms between endoplasmic reticulum stress (ERS), oxidative stress, and reproductive toxicity caused by PM2.5. A "PM2.5 real-time online concentrated animal whole-body exposure system" was employed to expose male Wistar rats to PM2.5 for 12 weeks, which could induce sperm quality decline, apoptosis, inflammation, oxidative stress, ERS, and histopathological damage in the testis. In vitro study on cultured primary testicular spermatogonia and Leydig cells confirmed that treatment with PM2.5 (0-320 μg/mL) for 24 h decreased cell survival rate, increased reactive oxygen species, lactate dehydrogenase and 8-hydroxydeoxyguanosine levels, induced DNA damage, ERS and apoptosis, and inhibit the secretion and synthesis of testosterone in Leydig cells. These results clarified that ERS pathways triggered by oxidative stress could significantly induce CHOP and caspase-12 activation, which are significantly associated with cell apoptosis. However, oxidative stress and ERS inhibitors significantly inhibited the occurrence of these injuries. In conclusion, PM2.5 triggers the ERS pathway and induces DNA damage in rat testicular cells through oxidative stress, ultimately leading to cellular apoptosis. Furthermore, high-concentration intermittent inhalation was more harmful than low-concentration continuous inhalation when the total mass of PM2.5 exposure was the same.
Collapse
Affiliation(s)
- Huanliang Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Susu Ding
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Huipeng Nie
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Yue Shi
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Wenqing Lai
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Xuan Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Kang Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Lei Tian
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Zhuge Xi
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China.
| | - Bencheng Lin
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China.
| |
Collapse
|
25
|
Zheng P, Chen Z, Shi J, Xue Y, Bai Y, Kang Y, Xu H, Jia G, Wang T. Association between ambient air pollution and blood sex hormones levels in men. ENVIRONMENTAL RESEARCH 2022; 211:113117. [PMID: 35304116 DOI: 10.1016/j.envres.2022.113117] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Concerns are growing over time on the adverse health effects of air pollution. However, the association between ambient air pollution and blood sex hormones in men is poorly understood. We included 72,917 men aged 20-55 years from February 2014 to December 2019 in Beijing, China in this study. Blood testosterone, follicle stimulating hormone, luteinizing hormone, estradiol, and prolactin levels of each participant were measured. We collected exposure data of daily ambient levels of particulate matter ≤10 μm (PM10) and ≤2.5 μm (PM2.5), nitrogen dioxide, sulfur dioxide (SO2), carbon monoxide, and ozone. Generalized linear mixed models were used to analyze the potential association between ambient air pollution exposure and blood sex hormone levels. The results showed that both immediate and short-term cumulative PM2.5, PM10, and SO2 exposure was related to altered serum sex hormone levels in men, especially testosterone. An increase of 10 μg/m3 in PM2.5 and PM10 in the current day was related to a 1.6% (95% confidence interval [CI]: 0.9%-2.3%) and 1.1% (95% CI: 0.5%-1.6%) decrease in testosterone, respectively, and a decreasing tendency of accumulated effects persisted within lag 0-30 days. The present study demonstrated that it is important to control ambient air pollution exposure to reduce effects on the reproductive health of men.
Collapse
Affiliation(s)
- Pai Zheng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Zhangjian Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Jiaqi Shi
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Yuting Xue
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Yi Bai
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Yulin Kang
- Institute of Environmental Information, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Huiyu Xu
- Center for Reproductive Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Guang Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China.
| | - Tiancheng Wang
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW Climate change is the biggest public health threat of the twenty-first century but its impact on the perinatal period has only recently received attention. This review summarizes recent literature regarding the impacts of climate change and related environmental disasters on pregnancy health and provides recommendations to inform future adaptation and mitigation efforts. RECENT FINDINGS Accumulating evidence suggests that the changing climate affects pregnancy health directly via discrete environmental disasters (i.e., wildfire, extreme heat, hurricane, flood, and drought), and indirectly through changes in the natural and social environment. Although studies vary greatly in design, analytic methods, and assessment strategies, they generally converge to suggest that climate-related disasters are associated with increased risk of gestational complication, pregnancy loss, restricted fetal growth, low birthweight, preterm birth, and selected delivery/newborn complications. Window(s) of exposure with the highest sensitivity are not clear, but both acute and chronic exposures appear important. Furthermore, socioeconomically disadvantaged populations may be more vulnerable. Policy, clinical, and research strategies for adaptation and mitigation should be continued, strengthened, and expanded with cross-disciplinary efforts. Top priorities should include (a) reinforcing and expanding policies to further reduce emission, (b) increasing awareness and education resources for healthcare providers and the public, (c) facilitating access to quality population-based data in low-resource areas, and (d) research efforts to better understand mechanisms of effects, identify susceptible populations and windows of exposure, explore interactive impacts of multiple exposures, and develop novel methods to better quantify pregnancy health impacts.
Collapse
Affiliation(s)
- Sandie Ha
- Department of Public Health, School of Social Sciences, Humanities and Arts, Health Science Research Institute, University of California, Merced, 5200 N Lake Rd, Merced, CA, 95343, USA.
| |
Collapse
|
27
|
Wu W, Chen Y, Cheng Y, Tang Q, Pan F, Tang N, Sun Z, Wang X, London SJ, Xia Y. Association between ambient particulate matter exposure and semen quality in fertile men. Environ Health 2022; 21:16. [PMID: 35034648 PMCID: PMC8762955 DOI: 10.1186/s12940-022-00831-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 01/07/2022] [Indexed: 05/05/2023]
Abstract
BACKGROUND Several studies have suggested adverse effects of particulate matter (PM) exposure on male reproductive health; few have investigated the association between PM exposure and semen quality in a large population of fertile men. METHODS We evaluated 14 parameters of semen quality in 1554 fertile men in Nanjing from 2014 to 2016. Individual exposure to particular matter ≤10 μm in diameter (PM10) and ≤ 2.5 μm in diameter (PM2.5) during key periods of sperm development (0-90, 0-9, 10-14, 15-69, and 70-90 days before semen collection) were estimated by inverse distance weighting interpolation. Associations between PM exposure and semen quality were estimated using multivariable linear regression. RESULTS Higher 90-days average PM2.5 was in association with decreased sperm motility (2.21% for total motility, 1.93% for progressive motility per 10 μg/m3 increase, P < 0.001) and four quantitative aspects of sperm motion (curvilinear velocity (VCL), straight line velocity (VSL), average path velocity (VAP), and amplitude of lateral head displacement (ALH), P < 0.01). The association between PM2.5 exposure and semen quality were generally stronger for the earlier exposure window (70-90 days prior to ejaculation) than for recent exposure (0-9, 10-14, or 15-69 days). In the subgroup of men who had normal sperm parameters (n = 1019), similar results were obtained. Ninety-days PM10 exposure was associated only with decreased VCL and VAP and was not related to sperm concentration. CONCLUSIONS Exposure to PM2.5 adversely affects semen quality, specifically lower sperm motility, in fertile men.
Collapse
Affiliation(s)
- Wei Wu
- State Key Laboratory of Reproductive Medicine, Institute of Applied Toxicology, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.
- Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, USA.
| | - Yiqiu Chen
- State Key Laboratory of Reproductive Medicine, Institute of Applied Toxicology, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yuting Cheng
- State Key Laboratory of Reproductive Medicine, Institute of Applied Toxicology, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qiuqin Tang
- Department of Obstetrics, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Feng Pan
- Department of Urology, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Naijun Tang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Zhiwei Sun
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, China
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Institute of Applied Toxicology, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Stephanie J London
- Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, USA
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Applied Toxicology, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
28
|
Li Y, Du J, Lin S, He H, Jia R, Liu W. Air pollution increased risk of reproductive system diseases: a 5-year outcome analysis of different pollutants in different seasons, ages, and genders. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:7312-7321. [PMID: 34476705 DOI: 10.1007/s11356-021-16238-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Air pollution remains a serious environmental problem worldwide, and the effects of air pollutants with reproductive system diseases have already attracted extensive attention. The present study investigated the risk of air pollutants on reproductive system diseases, based on daily medical visits (DMV) of the past 5 years in central China. Data of DMV outpatients with reproductive system diseases were obtained from a general hospital in Zhengzhou, October 28, 2013 to May 31, 2018, as well as atmospheric pollutants data. Correlation of air pollutants and DMV was analyzed with distributed lag nonlinear model (DLNM), including total cases of reproductive system diseases, and in different seasons (spring, summer, autumn, and winter), genders (male and female), and age groups (<26, 26-35, and >35 years old). A total of 374,558 visits were included. NO2 was most closely relevant to incidence risk of total cases analysis with each increased interquartile ranges (IQRs) in the 6 pollutants, with 30-day lag. Relationship to pollutants was more sensitive in fall, >35 years old, and male groups than in other seasons, ages, and females, and NO2 had the highest risk on reproductive diseases. Air pollution increased risk of reproductive system diseases, and different pollutants played different roles in different seasons, ages, and genders. The results of this study will provide evidence for effective air quality controlling and human reproductive protection.
Collapse
Affiliation(s)
- Ya Li
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, 156 East Jinshui Road, Zhengzhou, 450046, Henan, China.
- Central Laboratory & Respiratory Pharmacological Laboratory of Chinese Medicine, The First Affiliated Hospital, Henan University of Chinese Medicine, 19 Renmin Road, Zhengzhou, 450000, Henan, China.
- Respiratory Disease Institute & Department of Respiratory Disease, The First Affiliated Hospital, Henan University of Chinese Medicine, 19 Renmin Road, Zhengzhou, 450000, Henan, China.
| | - Juan Du
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, 156 East Jinshui Road, Zhengzhou, 450046, Henan, China
| | - Shanshan Lin
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, 156 East Jinshui Road, Zhengzhou, 450046, Henan, China
| | - Huihui He
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, 156 East Jinshui Road, Zhengzhou, 450046, Henan, China
| | - Rui Jia
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, 156 East Jinshui Road, Zhengzhou, 450046, Henan, China
| | - Weihong Liu
- Central Laboratory & Respiratory Pharmacological Laboratory of Chinese Medicine, The First Affiliated Hospital, Henan University of Chinese Medicine, 19 Renmin Road, Zhengzhou, 450000, Henan, China
| |
Collapse
|
29
|
Optimizing natural fertility: a committee opinion. Fertil Steril 2021; 117:53-63. [PMID: 34815068 DOI: 10.1016/j.fertnstert.2021.10.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/08/2021] [Accepted: 10/08/2021] [Indexed: 01/08/2023]
Abstract
This committee opinion provides practitioners with suggestions for optimizing the likelihood of achieving pregnancy in couples or individuals attempting conception who have no evidence of infertility. This document replaces the document of the same name previously published in 2013 (Fertil Steril 2013;100:631-7).
Collapse
Affiliation(s)
-
- The American Society for Reproductive Medicine, Birmingham, Alabama
| |
Collapse
|
30
|
Kleshchev M, Osadchuk A, Osadchuk L. Impaired semen quality, an increase of sperm morphological defects and DNA fragmentation associated with environmental pollution in urban population of young men from Western Siberia, Russia. PLoS One 2021; 16:e0258900. [PMID: 34679097 PMCID: PMC8535459 DOI: 10.1371/journal.pone.0258900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/08/2021] [Indexed: 01/01/2023] Open
Abstract
Poor sperm morphology and an elevated DNA fragmentation level are considered to be related to spermiogenesis malfunctions as a result of genetic mutations and effects of environmental factors, including industrial pollution. Standardized cross-sectional population studies of sperm morphology defects and sperm DNA fragmentation, especially in regions with increased environmental pollution may be helpful to investigate an influence of industrial pollution and other population-related factors on spermiogenesis process. The aim of present study was to estimate an influence industrial pollution on sperm morphogenesis and sperm DNA fragmentation in men from the general population of the Western Siberia. The Novosibirsk and Kemerovo cities are located to same climatic conditions in Western Siberia but the Kemerovo city is characterized by increased environmental pollution especially by particulate matter (PM). The male volunteers living in Novosibirsk (n = 278) and Kemerovo (n = 258) were enrolled. Percentages of sperm morphological defects are counted after staining native ejaculate smears by Diff-Quick kits. DNA fragmentation was estimated by a SCSA technique. The residents of Kemerovo were characterized by lowered sperm count and sperm motility, elevated DNA fragmentation, poor sperm morphology and increased incidence of morphological effects of head (pyriform, elongated, round, abnormal acrosome and vacuolated chromatine), asymmetrical neck insertion and excess residual cytoplasm. Moreover, elevated DNA fragmentation was associated with lowered sperm count, sperm motility and increased percentages of several sperm morphology defects, with the place of residence affecting the relationships between conventional semen parameters, sperm morphology and DNA fragmentations. Our study suggests that excessive sperm head elongation and impaired acrosome formation can contribute to sperm morphology deterioration in men from polluted areas. Regional features in the relationships between sperm morphology, sperm count and DNA fragmentation were shown, suggesting an importance of studying sperm morphology pattern in men from different regions.
Collapse
Affiliation(s)
- Maxim Kleshchev
- Department of Human Molecular Genetic, Federal Research Center ‘Institute of Cytology and Genetics’, the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- * E-mail:
| | - Alexander Osadchuk
- Department of Human Molecular Genetic, Federal Research Center ‘Institute of Cytology and Genetics’, the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Ludmila Osadchuk
- Department of Human Molecular Genetic, Federal Research Center ‘Institute of Cytology and Genetics’, the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
31
|
Gaskins AJ, Tang Z, Hood RB, Ford J, Schwartz JD, Jones DP, Laden F, Liang D. Periconception air pollution, metabolomic biomarkers, and fertility among women undergoing assisted reproduction. ENVIRONMENT INTERNATIONAL 2021; 155:106666. [PMID: 34116378 PMCID: PMC8292230 DOI: 10.1016/j.envint.2021.106666] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/06/2021] [Accepted: 05/24/2021] [Indexed: 05/05/2023]
Abstract
BACKGROUND Air pollution exposure has been linked with diminished fertility. Identifying the metabolic changes induced by periconception air pollution exposure among women could enhance our understanding of the potential biological pathways underlying air pollution's reproductive toxicity. OBJECTIVE To identify serum metabolites associated with periconception air pollution exposure and evaluate the extent to which these metabolites mediate the association between air pollution and live birth. METHODS We included 200 women undergoing a fresh assisted reproductive technology (ART) cycle at Massachusetts General Hospital Fertility Center (2005-2015). A serum sample was collected during stimulation, and untargeted metabolic profiling was conducted using liquid chromatography with ultra-high-resolution mass spectrometry. Exposure to nitrogen dioxide (NO2), ozone (O3), fine particulate matter <2.5 µm (PM2.5), and black carbon (BC) was estimated using validated spatiotemporal models. Multivariable linear regression models were used to evaluate the associations between the air pollutants, live birth, and metabolic feature intensities. A meet in the middle approach was used to identify overlapping features and metabolic pathways. RESULTS From the C18 and HILIC chromatography columns, 10,803 and 12,968 metabolic features were extracted. There were 190 metabolic features and 18 pathways that were significantly associated with both air pollution and live birth (P < 0.05) across chromatography columns. Eight features were confirmed metabolites implicated in amino acid and nutrient metabolism with downstream effects on oxidative stress and inflammation. Six confirmed metabolites fell into two intuitive clusters - "antioxidants" and "oxidants"- which could potentially mediate some of the association between air pollution and lower odds of live birth. Tryptophan and vitamin B3 metabolism were common pathways linking air pollution exposure to decreased probability of live birth. CONCLUSION Higher periconception air pollution exposure was associated with metabolites and biologic pathways involved in inflammation and oxidative stress that may mediate the observed associations with lower probability of live birth following ART.
Collapse
Affiliation(s)
- Audrey J Gaskins
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, United States.
| | - Ziyin Tang
- Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, United States
| | - Robert B Hood
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, United States
| | - Jennifer Ford
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Joel D Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Channing Division of Network Medicine, Brigham & Women's Hospital & Harvard Medical School, Boston, MA, United States
| | - Dean P Jones
- Division of Pulmonary, Allergy, & Critical Care Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Francine Laden
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Channing Division of Network Medicine, Brigham & Women's Hospital & Harvard Medical School, Boston, MA, United States
| | - Donghai Liang
- Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, United States
| |
Collapse
|
32
|
Chen Y, Liu C, Shang Y, Wang L, Li W, Li G. Adam21 is dispensable for reproductive processes in mice. PeerJ 2021; 9:e12210. [PMID: 34631320 PMCID: PMC8465997 DOI: 10.7717/peerj.12210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/05/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND As a group of membrane-anchored proteins, the proteins containing a disintegrin and metalloprotease domain (ADAMs) control many biological processes, especially for male fertility. Mouse Adam21 was previously found to be specifically expressed in the somatic cells and germ cells of testes, but its functional role during spermatogenesis and male reproductive processes is still unknown. METHODS Adam21-null mice were created using the CRISPR/Cas9 system. Quantitative real-time PCR was used for analyzing of gene expression. Histological, cytological and immunofluorescence staining were performed to analyze the phenotypes of mouse testis and epididymis. Intracellular lipid droplets (LDs) were detected by Oil red O (ORO) staining and BODIPY staining. Fertility and sperm characteristics were also detected. RESULTS Here, we successfully generated an Adam21 conventional knockout mouse model via CRISPR/Cas9 technology so that we can explore its potential role in male reproduction. We found that male mice lacking Adam21 have normal fertility without any detectable defects in spermatogenesis or sperm motility. Histological analysis of the seminiferous epithelium showed no obvious spermatogenesis difference between Adam21-null and wild-type mice. Cytological analysis revealed no detectable defects in meiotic progression, neither Sertoli cells nor Leydig cells displayed any defect compared with that of the control mice. All these results suggest that Adam21 might not be essential for male fertility in mice, and its potential function still needs further investigation.
Collapse
Affiliation(s)
- Yinghong Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chao Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, Beijing, China
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yongliang Shang
- Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Liying Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Guoping Li
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| |
Collapse
|
33
|
Chen J, Li PH, Fan H, Li C, Zhang Y, Ju D, Deng F, Guo X, Guo L, Wu S. Weekly-specific ambient fine particular matter exposures before and during pregnancy were associated with risks of small for gestational age and large for gestational age: results from Project ELEFANT. Int J Epidemiol 2021; 51:202-212. [PMID: 34432047 DOI: 10.1093/ije/dyab166] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 07/21/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Investigations on the potential effects of ambient fine particulate matter (PM2.5) on large for gestational age (LGA) are limited. Furthermore, no study has explored weekly-specific susceptible exposure windows for small for gestational age (SGA) and LGA. This study evaluated the associations of exposure to ambient PM2.5 over the preconception and entire-pregnancy periods with risks of SGA and LGA, as well as explored critical weekly-specific exposure windows. METHODS 10 916 singleton pregnant women with 24-42 completed gestational weeks from the Project Environmental and LifEstyle FActors iN metabolic health throughout life-course Trajectories between 2014 and 2016 were included in this study. Distributed lag models (DLMs) incorporated in Cox proportional-hazards models were applied to explore the associations of maternal exposure to weekly ambient PM2.5 throughout 12 weeks before pregnancy and pregnancy periods with risks of SGA and LGA after controlling for potential confounders. RESULTS For a 10-μg/m3 increase in maternal exposure to PM2.5, positive associations with SGA were observed during the 1st to 9th preconceptional weeks and the 1st to 2nd gestational weeks (P<0.05), with the strongest association in the 5th preconceptional week [hazard ratio (HR), 1.06; 95% confidential interval (CI), 1.03-1.09]. For LGA, positive associations were observed during the 1st to 12th preconceptional weeks and the 1st to 5th gestational weeks (P<0.05), with the strongest association in the 7th preconceptional week (HR, 1.10; 95% CI, 1.08-1.12). CONCLUSIONS Exposure to high-level ambient PM2.5 is associated with increased risks of both SGA and LGA, and the most susceptible exposure windows are the preconception and early-pregnancy periods.
Collapse
Affiliation(s)
- Juan Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Peng-Hui Li
- Department of Environmental Science, School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, China
| | - Haojun Fan
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China.,Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Chen Li
- Department of Occupational & Environmental Health, Tianjin Medical University, Tianjin, China
| | - Ying Zhang
- Medical Genetic Laboratory, Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin, China
| | - Duan Ju
- Medical Genetic Laboratory, Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin, China
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Liqiong Guo
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China.,Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| |
Collapse
|
34
|
Bahri H, Ben Khalifa M, Ben Rhouma M, Abidi Z, Abbassi E, Ben Rhouma K, Benkhalifa M. Decline in semen quality of North African men: a retrospective study of 20,958 sperm analyses of men from different North African countries tested in Tunisia over a period of 6 years (2013-2018). Ann Hum Biol 2021; 48:350-359. [PMID: 34286659 DOI: 10.1080/03014460.2021.1957501] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND According to numerous studies from around the world, semen quality seems to have declined dramatically over the last years. However, the data investigated on male fertility status and semen quality in North Africa is limited. AIM To investigate on the status of semen quality in North-African men and to understand its variations. SUBJECTS & METHODS 20,958 Sperm-analyses (Spermogram - Spermocytogram) of North-African men (19-77 years old) consulting for infertility, performed in a private laboratory of medical analyses (Tunis, Tunisia) over a period of six years (2013 - 2018), were investigated. All patients had at least one year of unprotected intercourse with their partners before the test. Statistical analyses were performed using SPSS 22.0 software for windows. RESULTS Libyan men presented a clear decline in all sperm parameters. A continuous decline in sperm morphology quality was shown in Tunisian and Algerian men. Mauritanian men presented a significant increase in sperm vitality with pseudo-stability in the rest of sperm parameters during the whole study period. CONCLUSION North-African men presented remarkable decreases of their semen quality over the last decade. This data could confirm possible global common-causes that need to be identified in order to limit their negative impact on sperm quality, and consequently on male-fertility.
Collapse
Affiliation(s)
- Hatem Bahri
- HB Clinical Laboratory for Medical Analyses, Tunis, Tunisia
| | - Mustapha Ben Khalifa
- Research laboratory LR99ES11, Department of Biochemistry, La Rabta Hospital, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia.,Laboratory of Integrated Physiology, Faculty of Science of Bizerte, University of Carthage Tunisia
| | - Maroua Ben Rhouma
- Laboratory of Integrated Physiology, Faculty of Science of Bizerte, University of Carthage Tunisia
| | - Zied Abidi
- HB Clinical Laboratory for Medical Analyses, Tunis, Tunisia
| | - Emna Abbassi
- HB Clinical Laboratory for Medical Analyses, Tunis, Tunisia
| | - Khémais Ben Rhouma
- Laboratory of Integrated Physiology, Faculty of Science of Bizerte, University of Carthage Tunisia
| | - Moncef Benkhalifa
- Reproductive Medicine, Reproductive Biology & Genetics. University Hospital & School of Medicine Jules Verne, 80054 Amiens France.,Peritox Laboratory, CURS. Picardie University Jules Verne, 80054 Amiens France
| |
Collapse
|
35
|
Cui J, Yang X, Wang F, Liu S, Han S, Chen B. Effects of ammonia on growth performance, lipid metabolism and cecal microbial community of rabbits. PLoS One 2021; 16:e0252065. [PMID: 34191811 PMCID: PMC8244895 DOI: 10.1371/journal.pone.0252065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/09/2021] [Indexed: 01/12/2023] Open
Abstract
This study was designed to investigate the effect of ammonia on growth performance, lipid metabolism and intestinal flora of rabbits. A total of 150 female IRA rabbits (35-days-old) were randomly divided into three groups including 0 ppm (CG), 10 ppm (LAC) and 30 ppm ammonia (HAC) groups for a period of 28 days. The average daily weight gain (ADG) of rabbits was significantly reduced in LAC (-17.11%; p < 0.001) and HAC groups (-17.46%; p < 0.001) as compared with the CG. Serum concentration of high density lipoprotein (HDL) and glucose (Glu) were increased in LAC (+80.95%; +45.99; p < 0.05) and HAC groups (+219.05%; +45.89; p < 0.001), while apolipoprotein A1 (apoA1) was decreased in LAC (-58.49%; p < 0.001) and HAC groups (-36.92%; p < 0.001). The structural integrity of cecum was damaged, and the thickness of mucosa and serosa were significantly decreased in LAC and HAC. The acetate, butyrate and propionate level of cecal chyme were reduced in HAC group (-21.67%; -19.82%; -30.81%; p < 0.05). Microbial diversity and burden of Firmicutes were significantly decreased, while that of pathogenic bacteria, such as Bacteroidetes, Clostridium and Proteobacteria were increased in ammonia treated groups. Spearman's correlation confirmed that burden of Ruminococcaceae_NK4A214_group showed significantly negative correlation with acetic acid (r = -0.67; p < 0.001) while Barnesiellaceae_unclassified showed significantly positive correlation with propionic acid (r = 0.50; p < 0.001). In conclusion, ammonia treatment was responsible for an imbalance of intestinal flora, which affected lipid metabolism and damaged intestinal barrier of rabbits, resulting in low growth performance due to lipid metabolism dysfunction.
Collapse
Affiliation(s)
- Jia Cui
- College of Animal Science and Technology, Hebei Agricultural University, Bao ding, China
| | - Xinyu Yang
- College of Animal Science and Technology, Hebei Agricultural University, Bao ding, China
| | - Fengxia Wang
- College of Animal Science and Technology, Hebei Agricultural University, Bao ding, China
| | - Shudong Liu
- College of Animal Science and Technology, Hebei Agricultural University, Bao ding, China
| | - Shuaijuan Han
- College of Animal Science and Technology, Hebei Agricultural University, Bao ding, China
| | - Baojiang Chen
- College of Animal Science and Technology, Hebei Agricultural University, Bao ding, China
| |
Collapse
|
36
|
Montano L, Donato F, Bianco PM, Lettieri G, Guglielmino A, Motta O, Bonapace IM, Piscopo M. Air Pollution and COVID-19: A Possible Dangerous Synergy for Male Fertility. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18136846. [PMID: 34202243 PMCID: PMC8297116 DOI: 10.3390/ijerph18136846] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/11/2022]
Abstract
Several studies indicate that semen quality has strongly declined in the last decades worldwide. Air pollution represents a significant co-factor with the COVID-19 impact and has negative effects on the male reproductive system, through pro-oxidant, inflammatory and immune-dysregulating mechanisms. It has recently been reported that chronic exposure to PM2.5 causes overexpression of the alveolar ACE2 receptor, the entry route of SARS-CoV-2 into the organism shared by the lungs and testis where expression is highest in the body. In the testis, the ACE2/Ang-(1-7)/MasR pathway plays an important role in the regulation of spermatogenesis and an indirect mechanism of testicular damage could be due to the blockade of the ACE2 receptor by SARS-CoV-2. This prevents the conversion of specific angiotensins, and their excess causes inflammation with the overproduction of cytokines. PM2.5-induced overexpression of the alveolar ACE2 receptor, in turn, could increase local viral load in patients exposed to pollutants, producing ACE2 receptor depletion and compromising host defenses. By presenting an overall view of epidemiological data and molecular mechanisms, this manuscript aims to interpret the possible synergistic effects of both air pollution and COVID-19 on male reproductive function, warning that the spread of SARS-CoV-2 in the fertile years may represent a significant threat to global reproductive health. All of this should be of great concern, especially for men of the age of maximum reproductive capacity, and an important topic of debate for policy makers. Altered environmental conditions, together with the direct and indirect short- and long-term effects of viral infection could cause a worsening of semen quality with important consequences for male fertility, especially in those areas with higher environmental impact.
Collapse
Affiliation(s)
- Luigi Montano
- Andrology Unit and Service of Lifestyle Medicine in UroAndrology, Local Health Authority (ASL) Salerno, Coordination Unit of the Network for Environmental and Reproductive Health (EcoFoodFertility Project), “Oliveto Citra Hospital”, 84020 Oliveto Citra, Italy
- PhD Program in Evolutionary Biology and Ecology, Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
- Correspondence: (L.M.); (I.M.B.); (M.P.); Tel.: +39-0331-339452 (I.M.B.); +39-0816-79081 (M.P.)
| | - Francesco Donato
- Unit of Hygiene, Epidemiology, and Public Health, Department of Medical and Surgical Specialties Radiological Sciences and Public Health, University of Brescia, 21100 Brescia, Italy;
| | - Pietro Massimiliano Bianco
- ISPRA, Italian Institute for Environmental Protection and Research, Via Vitaliano Brancati 60, 00144 Roma, Italy;
| | - Gennaro Lettieri
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy;
| | | | - Oriana Motta
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Salerno, Italy;
| | - Ian Marc Bonapace
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
- Correspondence: (L.M.); (I.M.B.); (M.P.); Tel.: +39-0331-339452 (I.M.B.); +39-0816-79081 (M.P.)
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy;
- Correspondence: (L.M.); (I.M.B.); (M.P.); Tel.: +39-0331-339452 (I.M.B.); +39-0816-79081 (M.P.)
| |
Collapse
|
37
|
Yang T, Deng L, Sun B, Zhang S, Xian Y, Xiao X, Zhan Y, Xu K, Buonocore JJ, Tang Y, Li F, Qiu Y. Semen quality and windows of susceptibility: A case study during COVID-19 outbreak in China. ENVIRONMENTAL RESEARCH 2021; 197:111085. [PMID: 33812874 PMCID: PMC8542995 DOI: 10.1016/j.envres.2021.111085] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/20/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND To evaluate the impact of air pollution exposure on semen quality parameters during COVID-19 outbreak in China, and to identify potential windows of susceptibility for semen quality. METHODS A retrospective observational study was carried out on 1991 semen samples collected between November 23, 2019 and July 23, 2020 (a period covering COVID-19 lock-down in China) from 781 sperm donor candidates at University-affiliated Sichuan Provincial Human Sperm Bank. Multivariate mixed-effects regression models were constructed to investigate the relationship between pollution exposure, windows of susceptibility, and semen quality, while controlling for biographic and meteorologic confounders. RESULT(S) The results indicated multiple windows of susceptibility for semen quality, especially sperm motility, due to ambient pollution exposure. Exposure to particulate matters (PM2.5 and PM10), O3 and NO2 during late stages of spermatogenesis appeared to have weak but positive association with semen quality. Exposure to CO late in sperm development appeared to have inverse relationship with sperm movement parameters. Exposure to SO2 appeared to influence semen quality throughout spermatogenesis. CONCLUSION(S) Potential windows of susceptibility for semen quality varied depending on air pollutants. Sperm motility was sensitive to pollution exposure. Findings from current study further elucidate the importance of sensitive periods during spermatogenesis and provide new evidence for the determinants of male fertility.
Collapse
Affiliation(s)
- Tingting Yang
- Department of Andrology/Sichuan Human Sperm Bank, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, 610041, PR China
| | - Li Deng
- Department of Environmental Sciences and Engineering, College of Architecture and Environment, Sichuan University, PR China
| | - Boyu Sun
- Wuyuzhang Honors College, Sichuan University, Chengdu, PR China
| | - Shifu Zhang
- Department of Environmental Sciences and Engineering, College of Architecture and Environment, Sichuan University, PR China
| | - Yang Xian
- Department of Andrology/Sichuan Human Sperm Bank, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, 610041, PR China
| | - Xiao Xiao
- Department of Andrology/Sichuan Human Sperm Bank, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, 610041, PR China
| | - Yu Zhan
- Department of Environmental Sciences and Engineering, College of Architecture and Environment, Sichuan University, PR China
| | - Kehui Xu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, 610041, PR China; Department of Reproductive Endocrinology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Johnathan J Buonocore
- Center for Climate, Health, and the Global Environment, Harvard T.H. Chan School of Public Health, USA
| | - Ya Tang
- Department of Environmental Sciences and Engineering, College of Architecture and Environment, Sichuan University, PR China
| | - Fuping Li
- Department of Andrology/Sichuan Human Sperm Bank, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, 610041, PR China.
| | - Yang Qiu
- Department of Environmental Sciences and Engineering, College of Architecture and Environment, Sichuan University, PR China.
| |
Collapse
|
38
|
Calogero AE, Fiore M, Giacone F, Altomare M, Asero P, Ledda C, Romeo G, Mongioì LM, Copat C, Giuffrida M, Vicari E, Sciacca S, Ferrante M. Exposure to multiple metals/metalloids and human semen quality: A cross-sectional study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 215:112165. [PMID: 33773149 DOI: 10.1016/j.ecoenv.2021.112165] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 05/22/2023]
Abstract
BACKGROUND Exposure to metals/metalloids, including essential and nonessential elements, has been associated to male reproductive health in animals. However, findings from human studies are inconsistent. OBJECTIVES To investigate the impact of exposure to multiple metals/metalloids at environmental levels on the conventional human semen-quality parameters. MATERIALS AND METHODS Men living in rural or industrial areas were recruited by personalized letters. No exclusion criteria were applied. Each man provided one semen sample and one blood sample. We analyzed the semen sample both to determine conventional sperm parameters (concentration, progressive motility and normal forms) and to quantify lead (Pb), cadmium (Cd), mercury (Hg), arsenic (As), nickel (Ni), vanadium (V) and selenium (Se) levels. The levels of these metals/metalloids were also quantified in venous blood and spermatozoa samples. Associations between the blood/seminal plasma metal/metalloid levels and semen quality parameters were assessed using confounder adjusted logistic regression models. Correlation and interactions between blood/seminal plasma and semen metal/metalloid levels were investigated using the Spearman's correlation. RESULTS We found a positive association of seminal plasma cadmium level with lower Total count (OR = 4.48, 95%CI 0.25-80); whereas lead (OR = 4.51, 95%CI 0.86-23) and cadmium (OR = 3.45, 95%CI 0.77-16) seminal plasma levels had a positive association with progressive sperm motility. Overall, these associations remained suggestive after adjustment, though statistically unstable risks. Finally, we found weak interactions between beneficial effects of Se and detrimental ones only for Cd and Pb blood level on sperm concentration, total sperm count and progressive sperm motility. CONCLUSIONS Our findings suggest that environmental exposure to Pb and Cd contributes to a decline in human semen quality, whereas Se can have beneficial effects. Measurements of metals/metalloids in the seminal fluid may be more predictable of semen quality than conventional blood measurements.
Collapse
Affiliation(s)
- Aldo E Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Maria Fiore
- Department of Medical Sciences, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy.
| | - Filippo Giacone
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Maria Altomare
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Paola Asero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Caterina Ledda
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Giulietta Romeo
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Laura M Mongioì
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Chiara Copat
- Department of Medical Sciences, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
| | - Maria Giuffrida
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Enzo Vicari
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Salvatore Sciacca
- Cancer Registry of Catania, Messina, Syracuse and Enna, Via Santa Sofia 87, Catania, Italy
| | - Margherita Ferrante
- Department of Medical Sciences, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
| |
Collapse
|
39
|
Unraveling the Balance between Genes, Microbes, Lifestyle and the Environment to Improve Healthy Reproduction. Genes (Basel) 2021; 12:genes12040605. [PMID: 33924000 PMCID: PMC8073673 DOI: 10.3390/genes12040605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/08/2021] [Accepted: 04/17/2021] [Indexed: 12/16/2022] Open
Abstract
Humans’ health is the result of a complex and balanced interplay between genetic factors, environmental stimuli, lifestyle habits, and the microbiota composition. The knowledge about their single contributions, as well as the complex network linking each to the others, is pivotal to understand the mechanisms underlying the onset of many diseases and can provide key information for their prevention, diagnosis and therapy. This applies also to reproduction. Reproduction, involving almost 10% of our genetic code, is one of the most critical human’s functions and is a key element to assess the well-being of a population. The last decades revealed a progressive decline of reproductive outcomes worldwide. As a consequence, there is a growing interest in unveiling the role of the different factors involved in human reproduction and great efforts have been carried out to improve its outcomes. As for many other diseases, it is now clear that the interplay between the underlying genetics, our commensal microbiome, the lifestyle habits and the environment we live in can either exacerbate the outcome or mitigate the adverse effects. Here, we aim to analyze how each of these factors contribute to reproduction highlighting their individual contribution and providing supporting evidence of how to modify their impact and overall contribution to a healthy reproductive status.
Collapse
|
40
|
Torres-Arce E, Vizmanos B, Babio N, Márquez-Sandoval F, Salas-Huetos A. Dietary Antioxidants in the Treatment of Male Infertility: Counteracting Oxidative Stress. BIOLOGY 2021; 10:241. [PMID: 33804600 PMCID: PMC8003818 DOI: 10.3390/biology10030241] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023]
Abstract
Infertility affects about 15% of the population and male factors only are responsible for ~25-30% of cases of infertility. Currently, the etiology of suboptimal semen quality is poorly understood, and many environmental and genetic factors, including oxidative stress, have been implicated. Oxidative stress is an imbalance between the production of free radicals, or reactive oxygen species (ROS), and the capacity of the body to counteract their harmful effects through neutralization by antioxidants. The purpose of this review, by employing the joint expertise of international researchers specialized in nutrition and male fertility areas, is to update the knowledge about the reproductive consequences of excessive ROS concentrations and oxidative stress on the semen quality and Assisted Reproduction Techniques (ART) clinical outcomes, to discuss the role of antioxidants in fertility outcomes, and finally to discuss why foods and dietary patterns are more innocuous long term solution for ameliorating oxidative stress and therefore semen quality results and ART fertility outcomes. Since this is a narrative review and not a systematic/meta-analysis, the summarized information in the present study should be considered cautiously.
Collapse
Affiliation(s)
- Elizabeth Torres-Arce
- Center of Health Sciences, Institute of Translational Nutrigenetics and Nutrigenomics, Universidad de Guadalajara, 44340 Guadalajara, Mexico; (E.T.-A.); (B.V.)
- Andrology and IVF Laboratory, Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
| | - Barbara Vizmanos
- Center of Health Sciences, Institute of Translational Nutrigenetics and Nutrigenomics, Universidad de Guadalajara, 44340 Guadalajara, Mexico; (E.T.-A.); (B.V.)
| | - Nancy Babio
- Human Nutrition Unit, Biochemistry and Biotechnology Department, Universitat Rovira i Virgili, 43201 Reus, Spain;
- Institut d’Investigació Sanitària Pere i Virgili, 43204 Reus, Spain
- Consorcio CIBER, M.P., Fisiopatología de la Obesidad y Nutrición (ciBeRobn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Fabiola Márquez-Sandoval
- Center of Health Sciences, Institute of Translational Nutrigenetics and Nutrigenomics, Universidad de Guadalajara, 44340 Guadalajara, Mexico; (E.T.-A.); (B.V.)
| | - Albert Salas-Huetos
- Andrology and IVF Laboratory, Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
- Consorcio CIBER, M.P., Fisiopatología de la Obesidad y Nutrición (ciBeRobn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| |
Collapse
|
41
|
Wang L, Luo D, Liu X, Zhu J, Wang F, Li B, Li L. Effects of PM 2.5 exposure on reproductive system and its mechanisms. CHEMOSPHERE 2021; 264:128436. [PMID: 33032215 DOI: 10.1016/j.chemosphere.2020.128436] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 08/27/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
With the development of human society, haze has become an important form of air pollution. Haze is a mixture of fog and haze, and the main component of haze is fine particulate matter (PM2.5), which is the most important indicator of composite air pollution. Epidemiological studies proved that PM2.5 can break through the respiratory mucosal barrier and enter the human body, causing pathological effects on multiple systems of the body. In the past, people put more attention to PM2.5 in the respiratory system, cardiovascular system, nervous system, etc, and relatively paid less attention to the reproductive system. Recent studies have shown that PM2.5 will accumulate in the reproductive organs through blood-testis barrier, placental barrier, epithelial barrier and other barriers protecting reproductive tissues. In addition, PM2.5 can disrupt hormone levels, ultimately affecting fertility. Prior studies have shown that oxidative stress, inflammation, apoptosis, and the breakdown of barrier structures are now considered to contribute to reproductive toxicity and may cause damage at the molecular and genetic levels. However, the exact mechanism remains to be elucidated. Our review aims to provide an understanding of the pathological effects of PM2.5 on reproductive system and the existing injury mechanism.
Collapse
Affiliation(s)
- Lingjuan Wang
- Tianjin Medical University General Hospital, Tianjin, 300211, China; Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dan Luo
- Department of Cardiovascular Surgery, The 940th Hospital of Joint Logistics Support Force of People's Liberation Army, Lanzhou, 730000, China
| | - Xiaolong Liu
- Tianjin Medical University General Hospital, Tianjin, 300211, China
| | - Jianqiang Zhu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital, Tianjin Medical University, Tianjin, 300211, China
| | - Fengli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Bin Li
- Tianjin Medical University General Hospital, Tianjin, 300211, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Department of Urology, Tianjin Institute of Urology, The Second Hospital, Tianjin Medical University, Tianjin, 300211, China.
| | - Liming Li
- Tianjin Medical University General Hospital, Tianjin, 300211, China
| |
Collapse
|
42
|
Garolla A, Pizzol D, Carosso AR, Borini A, Ubaldi FM, Calogero AE, Ferlin A, Lanzone A, Tomei F, Engl B, Rienzi L, De Santis L, Coticchio G, Smith L, Cannarella R, Anastasi A, Menegazzo M, Stuppia L, Corsini C, Foresta C. Practical Clinical and Diagnostic Pathway for the Investigation of the Infertile Couple. Front Endocrinol (Lausanne) 2021; 11:591837. [PMID: 33542705 PMCID: PMC7851076 DOI: 10.3389/fendo.2020.591837] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/25/2020] [Indexed: 01/23/2023] Open
Abstract
Capsule This expert opinion summarizes current knowledge on risk factors for infertility and identifies a practical clinical and diagnostic approach for the male and female partners of an infertile couple aimed to improve the investigation and management of fertility problems. Background Infertility represents an important and growing health problem affecting up to 16% of couples worldwide. In most cases, male, female, or combined factor can be identified, and different causes or risk factors have been related to this condition. However, there are no standardized guidelines on the clinical-diagnostic approach of infertile couples and the recommendations concerning infertility are sometimes lacking, incomplete, or problematic to apply. Objective The aim of this work is to provide an appropriate clinical and diagnostic pathway for infertile couples designed by a multidisciplinary-team of experts. The rationale is based on the history and physical examination and then oriented on the basis of initial investigations. This approach could be applied in order to reduce variation in practice and to improve the investigation and management of fertility problems. Methods Prominent Italian experts of the main specialties committed in the ART procedures, including gynecologists, andrologists, embryologists, biologists, geneticists, oncologists, and microbiologists, called "InfertilItaly group", used available evidence to develop this expert position. Outcomes Starting from the individuation of the principal risk factors that may influence the fertility of females and males and both genders, the work group identified most appropriate procedures using a gradual approach to both partners aimed to obtain a precise diagnosis and the most effective therapeutic option, reducing invasive and occasionally redundant procedures. Conclusions This expert position provides current knowledge on risk factors and suggests a diagnostic workflow of infertile couples. By using this step-by-step approach, health care workers involved in ART, may individuate a practical clinical management of infertile couples shared by experts.
Collapse
Affiliation(s)
- Andrea Garolla
- Section of Andrology and Reproductive Medicine & Centre for Male Gamete Cryopreservation, Department of Medicine, University of Padova, Padova, Italy
| | - Damiano Pizzol
- Section of Andrology and Reproductive Medicine & Centre for Male Gamete Cryopreservation, Department of Medicine, University of Padova, Padova, Italy
- Italian Agency for Development Cooperation, Public Health, Jerusalem, Israel
| | - Andrea Roberto Carosso
- Department of Surgical Sciences, Gynecology and Obstetrics 1, Physiopathology of Reproduction and IVF Unit, S. Anna Hospital, University of Torino, Torino, Italy
| | - Andrea Borini
- 9.baby, Family and Fertility Center, Tecnobios Procreazione, Bologna, Italy
| | | | - Aldo Eugenio Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Alberto Ferlin
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Antonio Lanzone
- Department of Woman’s Health Sciences of the Child and Public Health, Unit of Obstetrics Pathology, University Clinic Foundation “A Gemelli” IRCCS, Rome, Italy
- Clinic of Obstetrics and Gynecology, Catholic University Sacro Cuore, Rome, Italy
| | - Francesco Tomei
- Assisted Reproductive Unit, Santa Maria degli Angeli Hospital, Pordenone, Italy
| | - Bruno Engl
- Donna Salus, Center for Women’s Health and Fertility, Bolzano, Italy
| | - Laura Rienzi
- GENERA Centre for Reproductive Medicine, Clinica Valle Giulia, Rome, Italy
| | - Lucia De Santis
- IVF Unit, Gynaecological-Obstetric Department, IRCCS San Raffaele Hospital, Vita-Salute University, Milan, Italy
- Italian Society of Embryology, Reproduction and Research (SIERR), Giarre, Italy
| | - Giovanni Coticchio
- 9.baby, Family and Fertility Center, Tecnobios Procreazione, Bologna, Italy
| | - Lee Smith
- The Cambridge Centre for Sport & Exercise Sciences, Anglia Ruskin University, Cambridge, United Kingdom
| | - Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Attilio Anastasi
- Center for Physiopathology of Human Reproduction, Delta Hospital, Lagosanto, Italy
| | - Massimo Menegazzo
- Section of Andrology and Reproductive Medicine & Centre for Male Gamete Cryopreservation, Department of Medicine, University of Padova, Padova, Italy
| | - Liborio Stuppia
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Christian Corsini
- Section of Andrology and Reproductive Medicine & Centre for Male Gamete Cryopreservation, Department of Medicine, University of Padova, Padova, Italy
| | - Carlo Foresta
- Section of Andrology and Reproductive Medicine & Centre for Male Gamete Cryopreservation, Department of Medicine, University of Padova, Padova, Italy
| |
Collapse
|
43
|
Pizzol D, Foresta C, Garolla A, Demurtas J, Trott M, Bertoldo A, Smith L. Pollutants and sperm quality: a systematic review and meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:4095-4103. [PMID: 33196997 DOI: 10.1007/s11356-020-11589-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/09/2020] [Indexed: 05/27/2023]
Abstract
Male fertility and semen quality have declined over recent decades. Among other causes, exposure to environmental and occupational pollution has been linked to adverse reproductive outcomes, but effects on male semen quality are still uncertain. Therefore, the aim of the present study was to conduct a systematic review and meta-analysis to assess current evidence regarding the impact of exposure to tobacco smoke and environmental and occupational pollution on sperm quality in humans. In the meta-analysis, 22 studies are included showing that environmental and occupational pollutants may affect sperm count, volume, concentration, motility, vitality and sperm DNA, and chromatin integrity. All included articles reported significant alterations in at least one of the outcomes studied in association with at least one of the pollutants studied. Considering that sperm quality can be considered a proxy for general health and that pollutants have a dramatic impact on climate change, it would be strongly recommended to better understand the role of pollutants on human, animal, and planetary health.
Collapse
Affiliation(s)
- Damiano Pizzol
- Italian Agency for Development Cooperation, 33 Street, Amarat, Khartoum, Sudan.
| | - Carlo Foresta
- Unit of Andrology and Reproductive Medicine, Department of Medicine, University of Padova, Padova, Italy
| | - Andrea Garolla
- Unit of Andrology and Reproductive Medicine, Department of Medicine, University of Padova, Padova, Italy
| | - Jacopo Demurtas
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Mike Trott
- The Cambridge Centre for Sport & Exercise Sciences, Anglia Ruskin University, Cambridge, UK
| | | | - Lee Smith
- The Cambridge Centre for Sport & Exercise Sciences, Anglia Ruskin University, Cambridge, UK
| |
Collapse
|
44
|
Najafpour A, Aghaz F, Roshankhah S, Bakhtiari M. The effect of air dust pollution on semen quality and sperm parameters among infertile men in west of Iran. Aging Male 2020; 23:272-278. [PMID: 29944060 DOI: 10.1080/13685538.2018.1482533] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background: Pollutants during haze and Asian dust storms are transported out of the Asian continent, affecting the regional climate and the hydrological and biogeochemical cycles. Nonetheless, no specific studies evaluated the dust particles influence on semen quality in a specific geographical area.Objective: In this article, we investigated the effect of dust particles on semen quality and sperm parameters among infertile men.Methods: A descriptive-analytic study was conducted among 850 infertile men between 2011 and 2015 years. Semen quality was assessed according to the WHO 2010 guidelines, including sperm concentration, progressive motility, and morphology. Four-year average dust particle concentrations were estimated at each participant's address using the Air Pollution Monitoring Station affiliated with the Department of Environment of Kermanshah city were gathered.Results: Dust particle levels were highest in the summer months, in Kermanshah province. Our results show that, dust pollution was found to be significantly negatively correlated with sperm morphology and sperm concentration before and after lab-processing, but sperm progressive motility is low sensitive to dust particles.Conclusions: Our findings showed that exposures to dust particle may influence sperm quantity in infertile men, consistent with the knowledge that sperm morphology and concentration are the most sensitive parameters of dust pollution.
Collapse
Affiliation(s)
- Ali Najafpour
- Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Faranak Aghaz
- Fertility and Infertility Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shiva Roshankhah
- Department of Anatomical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mitra Bakhtiari
- Fertility and Infertility Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Anatomical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
45
|
Krzastek SC, Farhi J, Gray M, Smith RP. Impact of environmental toxin exposure on male fertility potential. Transl Androl Urol 2020; 9:2797-2813. [PMID: 33457251 PMCID: PMC7807371 DOI: 10.21037/tau-20-685] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 10/18/2020] [Indexed: 11/06/2022] Open
Abstract
Idiopathic infertility is the most common individual diagnosis in male infertility, representing nearly 44% of cases. Research studies dating over the last half-century consistently demonstrate a decline in male fertility that is incompletely explained by obesity, known genetic causes, or diet and lifestyle changes alone. Human exposures have changed dramatically over the same time course as this fertility decline. Synthetic chemicals surround us. Some are benevolent; however, many are known to cause disruption of the hypothalamic-pituitary-gonadal axis and impair spermatogenesis. More than 80,000 chemicals are registered with the United States National Toxicology Program and nearly 2,000 new chemicals are introduced each year. Many of these are known toxins, such as phthalates, polycyclic aromatic hydrocarbons, aromatic amines, and organophosphate esters, and have been banned or significantly restricted by other countries as they carry known carcinogenic effects and are reproductively toxic. In the United States, many of these chemicals are still permissible in exposure levels known to cause reproductive harm. This contrasts to other chemical regulatory legislature, such as the European Union's REACH (Registration, Evaluation, Authorization and Restriction of Chemicals) regulations which are more comprehensive and restrictive. Quantification of these diverse exposures on an individual level has proven challenging, although forthcoming technologies may soon make this data available to consumers. Establishing causality and the proportion of idiopathic infertility attributable to environmental toxin exposures remains elusive, however, continued investigation, avoidance of exposure, and mitigation of risk is essential to our reproductive health. The aim of this review is to examine the literature linking changes in male fertility to some of the most common environmental exposures. Specifically, pesticides and herbicides such as dichlorodiphenyltrichloroethane (DDT), dibromochloropropane (DBCP), organophosphates and atrazine, endocrine disrupting compounds including plastic compounds phthalates and bisphenol A (BPA), heavy metals, natural gas/oil, non-ionizing radiation, air and noise pollution, lifestyle factors including diet, obesity, caffeine use, smoking, alcohol and drug use, as well as commonly prescribed medications will be discussed.
Collapse
Affiliation(s)
- Sarah C. Krzastek
- Department of Urology, University of Virginia, Charlottesville, VA, USA
- Division of Urology, Virginia Commonwealth University, Richmond, VA, USA
- Division of Urology, Hunter Holmes McGuire VAMC, Richmond, VA, USA
| | - Jack Farhi
- Department of Urology, University of Virginia, Charlottesville, VA, USA
| | - Marisa Gray
- Department of Urology, University of Virginia, Charlottesville, VA, USA
| | - Ryan P. Smith
- Department of Urology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
46
|
Davis AP, Wiegers TC, Grondin CJ, Johnson RJ, Sciaky D, Wiegers J, Mattingly CJ. Leveraging the Comparative Toxicogenomics Database to Fill in Knowledge Gaps for Environmental Health: A Test Case for Air Pollution-induced Cardiovascular Disease. Toxicol Sci 2020; 177:392-404. [PMID: 32663284 PMCID: PMC7548289 DOI: 10.1093/toxsci/kfaa113] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Environmental health studies relate how exposures (eg, chemicals) affect human health and disease; however, in most cases, the molecular and biological mechanisms connecting an exposure with a disease remain unknown. To help fill in these knowledge gaps, we sought to leverage content from the public Comparative Toxicogenomics Database (CTD) to identify potential intermediary steps. In a proof-of-concept study, we systematically compute the genes, molecular mechanisms, and biological events for the environmental health association linking air pollution toxicants with 2 cardiovascular diseases (myocardial infarction and hypertension) as a test case. Our approach integrates 5 types of curated interactions in CTD to build sets of "CGPD-tetramers," computationally constructed information blocks relating a Chemical- Gene interaction with a Phenotype and Disease. This bioinformatics strategy generates 653 CGPD-tetramers for air pollution-associated myocardial infarction (involving 5 pollutants, 58 genes, and 117 phenotypes) and 701 CGPD-tetramers for air pollution-associated hypertension (involving 3 pollutants, 96 genes, and 142 phenotypes). Collectively, we identify 19 genes and 96 phenotypes shared between these 2 air pollutant-induced outcomes, and suggest important roles for oxidative stress, inflammation, immune responses, cell death, and circulatory system processes. Moreover, CGPD-tetramers can be assembled into extensive chemical-induced disease pathways involving multiple gene products and sequential biological events, and many of these computed intermediary steps are validated in the literature. Our method does not require a priori knowledge of the toxicant, interacting gene, or biological system, and can be used to analyze any environmental chemical-induced disease curated within the public CTD framework. This bioinformatics strategy links and interrelates chemicals, genes, phenotypes, and diseases to fill in knowledge gaps for environmental health studies, as demonstrated for air pollution-associated cardiovascular disease, but can be adapted by researchers for any environmentally influenced disease-of-interest.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Carolyn J Mattingly
- Department of Biological Sciences
- Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695
| |
Collapse
|
47
|
Sun S, Zhao J, Cao W, Lu W, Zheng T, Zeng Q. Identifying critical exposure windows for ambient air pollution and semen quality in Chinese men. ENVIRONMENTAL RESEARCH 2020; 189:109894. [PMID: 32678738 DOI: 10.1016/j.envres.2020.109894] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
Emerging studies documented the association between ambient air pollution exposure and semen quality, but the critical exposure windows have not been comprehensively studied. To identify susceptible windows for associations of exposure to ambient respirable particulate matter (PM10), nitrogen dioxide (NO2), sulfur dioxide (SO2), and ozone (O3) with sperm concentration, sperm count, total motility, and progressive motility, we recruited 1061 men attending an infertility clinic in Wuhan, China, between 2011 and 2013. We used a distributed lag multivariate linear regression to assess the exposure-lag-response relationship between semen quality and weekly air pollution exposure. The critical exposure windows were during the 6th to 12th sperm development weeks for PM10, 10th to 11th weeks for O3, and 0 to 5th weeks for SO2. Over the entire 12 weeks of spermatogenesis period, an interquartile range increase (IQR) increase in PM10 was associated with declined sperm concentration [-45.64% (95% CI: -59.97%, -26.18%) percent decrease], declined sperm count [-49.42% (95% CI: -64.42%, -28.09%) percent decrease], reduced total motility [-12.42 (95% CI: -20.47, -4.37)], and reduced progressive motility [-8.81 (95% CI: -16.00, -1.61)], SO2 per IQR increase was associated with reduced sperm concentration [-39.73% (95% CI: -55.96%, -17.51%) percent decrease] and total motility [-8.64 (95% CI: -16.90, -0.38)], but NO2 and O3 were not associated with any of the four sperm quality parameters. Our findings suggest that exposure to PM10 during spermatidogenesis period, exposure to SO2 during spermatocytogenesis period, and exposure to O3 during spermiogenesis period were associated with impaired semen quality, which implies air pollutants impair semen quality through varied pathways.
Collapse
Affiliation(s)
- Shengzhi Sun
- Department of Environmental Health, Boston University School of Public Health, 715 Albany Street, Boston, MA, 02118, USA
| | - Jinzhu Zhao
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, PR China
| | - Wangnan Cao
- Center for Evidence Synthesis in Health, Brown University School of Public Health, Providence, RI, 02912, USA
| | - Wenqing Lu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Tongzhang Zheng
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, 02906, USA
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Department of Epidemiology, Brown University School of Public Health, Providence, RI, 02906, USA.
| |
Collapse
|
48
|
Gaskins AJ, Hart JE. The use of personal and indoor air pollution monitors in reproductive epidemiology studies. Paediatr Perinat Epidemiol 2020; 34:513-521. [PMID: 31600011 PMCID: PMC7145751 DOI: 10.1111/ppe.12599] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 09/05/2019] [Accepted: 09/10/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND Personal and indoor air pollution monitors represent two ways to assess acute air pollution exposures; however, few reproductive epidemiology studies have incorporated these tools. OBJECTIVE To provide an overview of the unique challenges and opportunities that arise when measuring acute exposure to air pollution in two ongoing reproductive epidemiology studies. METHODS The Air Pollution, In Vitro Fertilization (IVF), and Reproductive Outcomes (AIR) Study recruits women undergoing IVF to wear a personal particulate matter (PM) air pollution monitor (AirBeam2©) for the 72-hour period following the start of controlled ovarian stimulation. The Reproductive Effects of Chemicals and Air Pollutants (RECAP) Study recruits men across the United States to place an air pollution monitor (emmET) in their home for 3 months, use a smartphone application, and provide a semen sample. We highlight the key issues identified in implementing exposure assessment for both studies. RESULTS The main advantages of using the AirBeam2© personal monitor are as follows: (a) the low cost, (b) the ability to collect multiple size fractions of PM data every second, (c) the portability, (d) its capability to track GPS location, and (e) the ability for the participant to observe their real-time exposure information. The limited battery life, incompatibility with iOS-based smartphones, and frequent connection issues that arise between the AirBeam2© and smartphone are the main disadvantages. The main advantages of the emmET are the ability to measure multiple air pollutants at a high level of accuracy, collect data for a long period of time without burdening the participant, and ship monitors to participants around the country without the need for in-person set-up by trained technicians; however, the monitor only measures the indoor home environment. CONCLUSIONS Novel methods can be utilised to characterise short-term air pollution exposure in reproductive epidemiology studies and represent an exciting area for future research.
Collapse
Affiliation(s)
- Audrey J. Gaskins
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Jaime E. Hart
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
49
|
Zhang HT, Zhang Z, Cao J, Tang WH, Zhang HL, Hong K, Lin HC, Wu H, Chen Q, Jiang H. Ambient ozone pollution is associated with decreased semen quality: longitudinal analysis of 8945 semen samples from 2015 to 2018 and during pollution-control period in Beijing, China. Asian J Androl 2020; 21:501-507. [PMID: 30688213 PMCID: PMC6732886 DOI: 10.4103/aja.aja_116_18] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Previous studies suggest that air pollution has a negative effect on semen quality. However, most studies are cross-sectional and the results are controversial. This study investigated the associations between air pollutants (PM2.5, PM10, SO2, NO2, CO, and O3) and semen quality among sperm donation candidates, especially when the air pollution was artificially controlled in Beijing, China. We analyzed 8945 semen samples in the human sperm bank of Peking University Third Hospital (Beijing, China) from October 2015 to May 2018. Air pollution data during the entire period (0–90 days prior) and key stages (0–9, 10–14, and 70–90 days prior) of sperm development were collected from the China National Environmental Monitoring Centre. The association between air pollutants and semen parameters (sperm concentration and progressive motility) was analyzed by a mixed model adjusted for age, abstinence duration, month, and average ambient temperature. Only O3 during key stages of 0–9 days and 10–14 days and the entire period was negatively associated with sperm concentration between 2015 and 2018 (P < 0.01). During the period of air pollution control from November 2017 to January 2018, except for the increase in O3 concentration, other five pollutants’ concentrations decreased compared to those in previous years. In this period, the sperm concentration decreased (P < 0.001). During the pollution-control period, O3 exposure 10–14 days prior was negatively associated with sperm concentration (95% CI: −0.399–−0.111; P < 0.001). No significant association was found between the other five pollutants and semen quality during that period. Our study suggested that only O3 exposure was harmful to semen quality. Therefore, O3 should not be neglected during pollution control operation.
Collapse
Affiliation(s)
- Hai-Tao Zhang
- Department of Urology, Peking University Third Hospital, Beijing 100191, China.,Department of Andrology, Peking University Third Hospital, Beijing 100191, China.,Department of Reproductive Medicine Center, Peking University Third Hospital, Beijing 100191, China
| | - Zhe Zhang
- Department of Urology, Peking University Third Hospital, Beijing 100191, China.,Department of Andrology, Peking University Third Hospital, Beijing 100191, China.,Department of Reproductive Medicine Center, Peking University Third Hospital, Beijing 100191, China
| | - Jia Cao
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University, Chongqing 400038, China
| | - Wen-Hao Tang
- Department of Urology, Peking University Third Hospital, Beijing 100191, China.,Department of Andrology, Peking University Third Hospital, Beijing 100191, China.,Department of Reproductive Medicine Center, Peking University Third Hospital, Beijing 100191, China.,Department of Human Sperm Bank, Peking University Third Hospital, Beijing 100191, China
| | - Hong-Liang Zhang
- Department of Andrology, Peking University Third Hospital, Beijing 100191, China.,Department of Reproductive Medicine Center, Peking University Third Hospital, Beijing 100191, China.,Department of Human Sperm Bank, Peking University Third Hospital, Beijing 100191, China
| | - Kai Hong
- Department of Urology, Peking University Third Hospital, Beijing 100191, China.,Department of Andrology, Peking University Third Hospital, Beijing 100191, China.,Department of Reproductive Medicine Center, Peking University Third Hospital, Beijing 100191, China
| | - Hao-Cheng Lin
- Department of Urology, Peking University Third Hospital, Beijing 100191, China.,Department of Andrology, Peking University Third Hospital, Beijing 100191, China.,Department of Reproductive Medicine Center, Peking University Third Hospital, Beijing 100191, China
| | - Han Wu
- Department of Urology, Peking University Third Hospital, Beijing 100191, China.,Department of Andrology, Peking University Third Hospital, Beijing 100191, China
| | - Qing Chen
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University, Chongqing 400038, China
| | - Hui Jiang
- Department of Urology, Peking University Third Hospital, Beijing 100191, China.,Department of Andrology, Peking University Third Hospital, Beijing 100191, China.,Department of Reproductive Medicine Center, Peking University Third Hospital, Beijing 100191, China.,Department of Human Sperm Bank, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
50
|
Chen R, Hong X, Yan S, Zha J. Three organophosphate flame retardants (OPFRs) reduce sperm quality in Chinese rare minnows (Gobiocypris rarus). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114525. [PMID: 32289612 DOI: 10.1016/j.envpol.2020.114525] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
Organophosphate flame retardants (OPFRs) are widespread in the aquatic environment, but the effects of these chemicals on reproductive toxicity are far from clear. In this study, sperm quality in adult male Chinese rare minnows after exposure to tris-(2-butoxyethyl) phosphate (TBOEP), tris-(1,3-dichloro-2-propyl) phosphate (TDCIPP), and triphenyl phosphate (TPHP) was investigated. No obvious change in sperm concentration and vitality was observed after treatments, whereas significant changes in sperm velocity and morphology were found following all treatments (P < 0.05). Moreover, OPFR exposure significantly increased the apoptosis ratios in testis cells. Analysis of the transcriptomic data revealed that Na+/K+ ATPase (NKA) related genes were significantly downregulated, and the NKA enzyme activities after all treatments were significantly inhibited (P < 0.05). However, no obvious change in hormone levels in the groups exposed to TBOEP and TDCIPP was observed. These findings indicate that the OPFR-induced reduction of sperm quality might be due to the effects of OPFRs on NKA enzyme instead of changes in hormone levels.
Collapse
Affiliation(s)
- Rui Chen
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Xiangsheng Hong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Saihong Yan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Jinmiao Zha
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|