1
|
Hsu CY, Mohammed MH, Sur D, Ballal S, Singh A, Krithiga T, Ray S, Ridha-Salman H, Almehizia AA. A DFT study of pure and Si-decorated boron nitride allotrope Irida monolayer as an effective sensor for hydroxyurea drug. J Mol Graph Model 2025; 136:108958. [PMID: 39883975 DOI: 10.1016/j.jmgm.2025.108958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/06/2025] [Accepted: 01/20/2025] [Indexed: 02/01/2025]
Abstract
Investigating effective nanomaterials for the detection of hydroxyurea anticancer drugs is essential for promoting human health and safeguarding environmental integrity. This research utilized first-principles estimations for examining the adhesion and electronic characteristics of hydroxyurea (HU) on both pristine and Si-decorated innovative two-dimensional boron nitride allotrope, known as Irida analogous (Ir-BNNS). Analyzing the adsorption energy revealed that the HU molecule has a significant interaction (Ead = -1.27 eV) with the Si@Ir-BNNS, whereas it has weak interaction P-Ir-BN. Moreover, the analysis of the electron density distributions was conducted to investigate the microcosmic interaction mechanism between HU and Ir-BNNS. The Si@Ir-BNNS was highly sensitive to HU due to the observable alterations in the electrical conductance and magnetism. At ambient temperature, the Si@Ir-BNNS had a recovery time of 5.96 ms towards HU molecules. The DFT estimations can be conducive to exploring the applications of Si@Ir-BNNS in effectively sensing HU.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, Arizona, 85004, USA
| | - Mohammed Hashim Mohammed
- Medical Laboratory Techniques Department, College of Health and Medical Technology, Al-Maarif University, Anbar, Iraq.
| | - Dharmesh Sur
- Marwadi University Research Center, Department of Chemical Engineering, Faculty of Engineering & Technology, Marwadi University, Rajkot, 360003, Gujarat, India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Abhayveer Singh
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - T Krithiga
- Department of Chemistry, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Subhashree Ray
- Department of Biochemistry, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
| | | | - Abdulrahman A Almehizia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
2
|
Đurišić-Mladenović N, Živančev J, Antić I, Rakić D, Buljovčić M, Pajin B, Llorca M, Farre M. Occurrence of contaminants of emerging concern in different water samples from the lower part of the Danube River Middle Basin - A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125128. [PMID: 39414068 DOI: 10.1016/j.envpol.2024.125128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/12/2024] [Accepted: 10/13/2024] [Indexed: 10/18/2024]
Abstract
This study intends to assess the extent of the occurrence of CECs in different water types based on the literature data reported for the countries from a lower part of the Middle Danube Basin, including those belonging to the Western Balkan (WB) region and two upstream neighboring EU Member States, Croatia and Slovenia. These countries share main freshwater courses important for drinking water supply, agriculture, industry, navigation, tourism, etc, but in some of them there are low rate of wastewater treatment, impacting the chemical status of water resources in the region and probably beyond, if downstream countries are considered. The literature survey revealed 38 investigative studies reporting data on CECs in water matrices sampled in the region in the period 2008-2022. Surface water was the most frequently studied water type in WB countries, while wastewater was the dominant water type studied in Slovenia and Croatia. The most often analyzed compounds in the studies dealing with surface water and wastewater were the anti-epileptic drug carbamazepine, some non-steroidal anti-inflammatory drugs, and antibiotics; pharmaceutically active compounds were also the most analyzed CECs in groundwater and drinking water. Additionally, similarities/dissimilarities among the experimental approaches in these studies were discussed in relation to the state-of-the-art research directions for the CECs surveillance in the European Union, resulting in summarized strengths and gaps in capacities for the wide-range surveillance of CECs in the lower part of the Middle Danube Basin. This is the first integral overview of the studies on CECs in waters from the countries belonging to this part of the Danube Basin, representing a valuable baseline for further enhancement of the relevant monitoring efforts and chemical status of the regional water resources, especially in countries with poor wastewater management.
Collapse
Affiliation(s)
- Nataša Đurišić-Mladenović
- University of Novi Sad, Faculty of Technology Novi Sad, Bulevar cara Lazara 1, 21000, Novi Sad, Serbia
| | - Jelena Živančev
- University of Novi Sad, Faculty of Technology Novi Sad, Bulevar cara Lazara 1, 21000, Novi Sad, Serbia.
| | - Igor Antić
- University of Novi Sad, Faculty of Technology Novi Sad, Bulevar cara Lazara 1, 21000, Novi Sad, Serbia
| | - Dušan Rakić
- University of Novi Sad, Faculty of Technology Novi Sad, Bulevar cara Lazara 1, 21000, Novi Sad, Serbia
| | - Maja Buljovčić
- University of Novi Sad, Faculty of Technology Novi Sad, Bulevar cara Lazara 1, 21000, Novi Sad, Serbia
| | - Biljana Pajin
- University of Novi Sad, Faculty of Technology Novi Sad, Bulevar cara Lazara 1, 21000, Novi Sad, Serbia
| | - Marta Llorca
- Institute of Environmental Assessment and Water Research (IDAEA), CSIC, C. Jordi Girona, 18-26, Barcelona, 08034, Spain
| | - Marinella Farre
- Institute of Environmental Assessment and Water Research (IDAEA), CSIC, C. Jordi Girona, 18-26, Barcelona, 08034, Spain
| |
Collapse
|
3
|
Queirós V, Leite C, Azeiteiro UM, Belloso MC, Soares AMVM, Santos JL, Alonso E, Barata C, Freitas R. Salinity influence on Mytilus galloprovincialis exposed to antineoplastic agents: a transcriptomic, biochemical, and histopathological approach. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125135. [PMID: 39426480 DOI: 10.1016/j.envpol.2024.125135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Nowadays, aquatic species face a variety of environmental risks associated with pharmaceutical consumption. More specifically, the increased number of cancer patients has been accompanied by an increased consumption of antineoplastic drugs, such as ifosfamide (IF) and cyclophosphamide (CP). These drugs have been found in aquatic ecosystems, raising concerns about their impact, especially on estuarine species, as marine waters are the final recipients of continental effluents. Simultaneously, predicted climatic changes, such as salinity shifts, may threaten organisms. Considering this, the present research aims to investigate the combined effects of IF and CP, and salinity shifts. For this, a transcriptomic, biochemical, and histopathological assessment was made using the bivalve species Mytilus galloprovincialis exposed for 28 days to IF and CP (500 ng/L), individually, at different salinity levels (20, 30, and 40). IF and CP up-regulated metabolism-related gene cyp3a1, with CP also affecting abcc gene, showing minimal salinity impact and highlighting the importance of these metabolic routes in mussels. Salinity shifts affected the transcription of genes related to apoptosis and cell cycle growth, such as p53, as well as the aerobic metabolism, the antioxidant and biotransformation mechanisms. These findings indicate mussels' high metabolic adaptability to osmotic stress. Under CP exposure and low salinity, mussels exhibited increased cellular damage and histopathological effects in digestive gland tubules, revealing detrimental effects towards M. galloprovincialis, and suggesting that a metabolic slowdown and activation of antioxidant mechanisms helped prevent oxidative damage at the control and high salinities. Overall, results reinforce the need for antineoplastics ecotoxicological risk assessment, especially under foreseen climate change scenarios.
Collapse
Affiliation(s)
- Vanessa Queirós
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Carla Leite
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Ulisses M Azeiteiro
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Marta Casado Belloso
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Jordi Girona 18, 08034, Barcelona, Spain
| | - Amadeu M V M Soares
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Juan Luis Santos
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, Spain
| | - Esteban Alonso
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, Spain
| | - Carlos Barata
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Jordi Girona 18, 08034, Barcelona, Spain
| | - Rosa Freitas
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
4
|
Liu T, Shang D, Tian W, Li Y, Xie R, Zhao J, Dong H. The concentration of dissolved organic matter impacts the neurobehavior in zebrafish larvae exposed to cyclophosphamide. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:61181-61190. [PMID: 39404950 DOI: 10.1007/s11356-024-34907-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 08/27/2024] [Indexed: 11/05/2024]
Abstract
Dissolved organic matter (DOM) occurs ubiquitously in various water matrices and affects the chemical speciation and toxicity of emerging contaminants, such as cyclophosphamide (CP). However, the effects of CP in aquatic organisms with the presence of DOM have been relatively less addressed. In this study, zebrafish eggs < 4 h post fertilization (hpf) were exposed to CP (0 and 50 μg/L) and humic acid (HA, a main component of DOM, 0, 3, 10, and 30 mg-C/L) until 7 days post fertilization, and its toxicity was evaluated by behavioral approaches and transcription of nervous-related genes. An increase in swimming velocity and anxiety was noticed in zebrafish larvae exposed to CP. The related genes of neurotransmitter (drd1, mao, thp1b, and gad2), neurodevelopment (gli2b, nrd, and gfap), and neuroinflammation (thfα, casp3, and il-6) were upregulated by CP. In the presence of HA (3 mg-C/L), the behaviors and gene transcripts of zebrafish larvae were enhanced, while at 10 mg-C/L, they were mitigated. This study has demonstrated that DOM at low concentration increases the toxicity of CP and at high concentration alleviates its toxicity. This study highlights the importance of emerging contaminant exposure with the presence of DOM on their toxicities in aquatic organisms.
Collapse
Affiliation(s)
- Tianming Liu
- China MCC20 Group Co., Ltd, Pangu Road 777, Shanghai, 325035, China.
| | - Dongshen Shang
- China MCC20 Group Co., Ltd, Pangu Road 777, Shanghai, 325035, China
| | - Weiqi Tian
- China MCC20 Group Co., Ltd, Pangu Road 777, Shanghai, 325035, China
| | - Yindong Li
- China MCC20 Group Co., Ltd, Pangu Road 777, Shanghai, 325035, China
| | - Rong Xie
- China MCC20 Group Co., Ltd, Pangu Road 777, Shanghai, 325035, China
| | - Jianxing Zhao
- China MCC20 Group Co., Ltd, Pangu Road 777, Shanghai, 325035, China
| | - Heru Dong
- China MCC20 Group Co., Ltd, Pangu Road 777, Shanghai, 325035, China
| |
Collapse
|
5
|
Pimentel-Almeida W, Testolin RC, Gaspareto P, Gerlach OMS, Pereira-Filho J, Sanches-Simões E, Corrêa AXR, Almerindo GI, González SYG, Somensi CA, Radetski CM. Degradation of cytostatics methotrexate and cytarabine through physico-chemical and advanced oxidative processes: influence of pH and combined processes on the treatment efficiency. ENVIRONMENTAL TECHNOLOGY 2024; 45:4053-4061. [PMID: 37482803 DOI: 10.1080/09593330.2023.2240488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 05/30/2023] [Indexed: 07/25/2023]
Abstract
Environmental release of wastewater that contains cytostatic drugs can cause genotoxic impact, since these drugs act directly on the genetic material of aquatic organisms. Thus, the aim of this study was to evaluate the removal of the cytostatic drugs cytarabine (CTR) and methotrexate (MTX) using different physico-chemical methods individually (i.e. US, O3, H2O2 and UV) and combined (i.e. O3/US, US/H2O2, O3/H2O2 and O3/US/H2O2) under different pH conditions (4, 7 and 10). In the degradation tests, the efficiency of the methods applied was found to be dependent on the pH of the solution, with the degradation of CTR being better at pH 4 and MTX at pH 7 and pH 10. The US, H2O2 and US + H2O2 methods were the least efficient in degrading CTR and MTX under the pH conditions tested. The highest MTX degradation rate after 16 min of treatment at pH 7 was achieved by the O3 + H2O2 method (97.05% - C/C0 = 0.0295). For CTR, the highest degradation rate after 16 min of treatment was achieved by the O3 process (99.70% - C/C0 = 0.0030) at pH 4. In conclusion, most of the treatment methods tested for the degradation of CTR and MTX are effective. Notably, ozonolysis is an efficient process applied alone. Also, in combination with other methods (US + O3, O3 + H2O2 and O3 + H2O2 + US) it increases the degradation performance, showing a rapid removal rate of 70-94% in less than 4 min of treatment.
Collapse
Affiliation(s)
- Wendell Pimentel-Almeida
- Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Universidade do Vale do Itajaí (UNIVALI), Itajaí, Brazil
| | - Renan C Testolin
- Laboratório de Remediação Ambiental, Universidade do Vale do Itajaí (UNIVALI), Itajaí, Brazil
| | - Patrick Gaspareto
- Universidade Federal de Santa Catarina, Hospital Universitário, Florianópolis, Brazil
| | - Otto M S Gerlach
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí (UNIVALI), Itajaí, Brazil
| | - Jurandir Pereira-Filho
- Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Universidade do Vale do Itajaí (UNIVALI), Itajaí, Brazil
| | - Eric Sanches-Simões
- Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Universidade do Vale do Itajaí (UNIVALI), Itajaí, Brazil
| | - Albertina X R Corrêa
- Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Universidade do Vale do Itajaí (UNIVALI), Itajaí, Brazil
| | - Gizelle I Almerindo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí (UNIVALI), Itajaí, Brazil
| | - Sergio Y G González
- Programa de Pós-Graduação em Engenharia Química, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Cleder A Somensi
- Instituto Federal Catarinense - Campus Araquari, Araquari, Brazil
| | - Claudemir M Radetski
- Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Universidade do Vale do Itajaí (UNIVALI), Itajaí, Brazil
| |
Collapse
|
6
|
Han D, Villanueva-Tagle ME, Peña-Icart M, López-Mesas M, Valiente M. Trace cisplatin adsorption by thiol-functionalized sponge (TFS) and Sn/SnO 2-coated TFS: Adsorption study and mechanism investigation. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134442. [PMID: 38688222 DOI: 10.1016/j.jhazmat.2024.134442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/22/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
To remove trace cisplatin from aqueous solution, commercial sponges were functionalized by esterification with 3-mercaptopropionic acid, followed by reduction with Na2S·9H2O or SnCl2·2H2O. The resulting thiol-functionalized sponges (TFSs), TFS_1 and TFS_2, were tested for the removal of cisplatin (235 μg L-1) achieving maximum removal of 95.5 ± 0.8% and 99.5 ± 0.1% respectively, which were significantly higher than the non-functionalized counterpart. The successful grafting of thiol groups, verified through FTIR, elemental analysis, SEM-EDS, and XPS characterization, facilitated Pt-S complexation during adsorption. The aqua-derivatives of cisplatin, formed through hydration, complexed with thiol sites through ligand displacement. Additionally, the presence of Sn/SnO2 coating on TFS_2 further enhanced the adsorption process. The rapid adsorption process conformed to pseudo-second-order kinetic model, involving both diffusion and chemisorption. While the Langmuir isotherm model generally described the monolayer adsorption behavior of cisplatin, the aggregation of Sn/SnO2 onto TFS_2 at 343 K introduced surface heterogeneity, rendering the Freundlich model a better fit for the adsorption isotherm. Differential pH dependence and the evaluation of mean free energy, derived from the Dubinin-Radushkevich isotherm model, indicated that cisplatin adsorption onto TFS_1 involved physisorption, including electrostatic attraction, while chemisorption predominated for TFS_2. Increasing the temperature notably promoted adsorption by facilitating the thermal-favored formation of Pt-S bonds.
Collapse
Affiliation(s)
- Dong Han
- GTS-UAB Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, Bellaterra, (Cerdanyola del Vallès), 08193 Barcelona, Spain
| | | | - Mirella Peña-Icart
- Institute of Materials Science and Technology, University of Havana, Havana 10400, Cuba
| | - Montserrat López-Mesas
- GTS-UAB Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, Bellaterra, (Cerdanyola del Vallès), 08193 Barcelona, Spain.
| | - Manuel Valiente
- GTS-UAB Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, Bellaterra, (Cerdanyola del Vallès), 08193 Barcelona, Spain
| |
Collapse
|
7
|
Ma W, Zhang X, Han H, Shi X, Kong Q, Yu T, Zhao F. Biotoxicity dynamic change and key toxic organics identification of coal chemical wastewater along a novel full-scale treatment process. J Environ Sci (China) 2024; 138:277-287. [PMID: 38135395 DOI: 10.1016/j.jes.2023.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/20/2023] [Accepted: 04/13/2023] [Indexed: 12/24/2023]
Abstract
It is particularly important to comprehensively assess the biotoxicity variation of industrial wastewater along the treatment process for ensuring the water environment security. However, intensive studies on the biotoxicity reduction of industrial wastewater are still limited. In this study, the toxic organics removal and biotoxicity reduction of coal chemical wastewater (CCW) along a novel full-scale treatment process based on the pretreatment process-anaerobic process-biological enhanced (BE) process-anoxic/oxic (A/O) process-advanced treatment process was evaluated. This process performed great removal efficiency of COD, total phenol, NH4+-N and total nitrogen. And the biotoxicity variation along the treatment units was analyzed from the perspective of acute biotoxicity, genotixicity and oxidative damage. The results indicated that the effluent of pretreatment process presented relatively high acute biotoxicity to Tetrahymena thermophila. But the acute biotoxicity was significantly reduced in BE-A/O process. And the genotoxicity and oxidative damage to Tetrahymena thermophila were significantly decreased after advanced treatment. The polar organics in CCW were identified as the main biotoxicity contributors. Phenols were positively correlated with acute biotoxicity, while the nitrogenous heterocyclic compounds and polycyclic aromatic hydrocarbons were positively correlated with genotoxicity. Although the biotoxicity was effectively reduced in the novel full-scale treatment process, the effluent still performed potential biotoxicity, which need to be further explored in order to reduce environmental risk.
Collapse
Affiliation(s)
- Weiwei Ma
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Xiaoqi Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Hongjun Han
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Xueqing Shi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Qiaoping Kong
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Tong Yu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Fei Zhao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| |
Collapse
|
8
|
English CD, Kazi KJ, Konig I, Ivantsova E, Souders Ii CL, Martyniuk CJ. Exposure to the antineoplastic ifosfamide alters molecular pathways related to cardiovascular function, increases heart rate, and induces hyperactivity in zebrafish (Danio rerio). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 107:104427. [PMID: 38527598 DOI: 10.1016/j.etap.2024.104427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/17/2024] [Accepted: 03/21/2024] [Indexed: 03/27/2024]
Abstract
Ifosfamide is an alkylating antineoplastic drug used in chemotherapy, but it is also detected in wastewater. Here, the objectives were to (1) determine teratogenic, cardiotoxic, and mitochondrial toxicity potential of ifosfamide exposure; (2) elucidate mechanisms of toxicity; (3) characterize exposure effects on larval behavior. Survival rate, hatch rate, and morphological deformity incidence were not different amongst treatments following exposure levels up to 1000 µg/L ifosfamide over 7 days. RNA-seq reveled 231 and 93 differentially expressed transcripts in larvae exposed to 1 µg/L and 100 µg/L ifosfamide, respectively. Several gene networks related to vascular resistance, cardiovascular response, and heart rate were affected, consistent with tachycardia observed in exposed embryonic fish. Hyperactivity in larval zebrafish was observed with ifosfamide exposure, potentially associated with dopamine-related gene networks. This study improves ecological risk assessment of antineoplastics by elucidating molecular mechanisms related to ifosfamide toxicity, and to alkylating agents in general.
Collapse
Affiliation(s)
- Cole D English
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Kira J Kazi
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Isaac Konig
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; Department of Chemistry, Federal University of Lavras (UFLA), Minas Gerais, Brazil
| | - Emma Ivantsova
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Christopher L Souders Ii
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, FL, USA.
| |
Collapse
|
9
|
Chawla H, Singh SK, Haritash AK. Reversing the damage: ecological restoration of polluted water bodies affected by pollutants due to anthropogenic activities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:127-143. [PMID: 38044406 DOI: 10.1007/s11356-023-31295-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
Aquatic ecosystems provide a large number of cultural, regulating, and supporting services to humans and play a pivotal role in sustaining freshwater-dependent ecosystems. However, an increase in human population coupled with economic growth in the last few decades has severely affected their functioning and ecological health. This has led to an increase in concentrations of pollutants originating from anthropogenic activities such as heavy metals, plastics, semi-volatile organic compounds, and endocrine disruptors. These pollutants provoke deleterious impacts on aquatic biodiversity and affect the water quality and functioning. In this paper, we discuss the sources and impacts of such pollutants as well as restoration techniques for reducing their impact on aquatic ecosystems. Several physical and chemical ecological restoration techniques, such as dredging, sediment capping, water diversion, adsorption, aeration, and flushing, can be employed to improve the water quality of water bodies. Additionally, biological techniques such as phytoremediation, phycoremediation, the use of biomembranes, and the construction of ecological floating beds can be employed to increase the population of aquatic organisms and improve the overall ecological health of aquatic ecosystems. Restoration techniques can effectively reduce the concentrations of suspended solids and dissolved phosphorus and increase the levels of dissolved oxygen. The restoration techniques for improving the ecological health of water bodies should not be limited to simply improving the water quality but should also focus on improving the biological processes and ecosystem functioning since it is essential to mitigate the adverse effects of pollutants and restore the vital ecosystem services provided by water bodies for future generations.
Collapse
Affiliation(s)
- Harshit Chawla
- Department of Environmental Engineering, Delhi Technological University, Delhi, 110042, India.
| | - Santosh Kumar Singh
- Department of Environmental Engineering, Delhi Technological University, Delhi, 110042, India
| | - Anil Kumar Haritash
- Department of Environmental Engineering, Delhi Technological University, Delhi, 110042, India
| |
Collapse
|
10
|
Hyder A, Memon SS, Buledi JA, Memon S, Memon ZUA, Rajpar DB, Sirajuddin. A highly selective sensor based on p-tetranitrocalix[4]arene-capped copper nanoparticles for colorimetric and bare-eye detection of cyclophosphamide. ANAL SCI 2023; 39:1981-1992. [PMID: 37642921 DOI: 10.1007/s44211-023-00408-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023]
Abstract
In the current study, one of the outstanding facile and simple protocols is proposed for the synthesis of copper nanoparticles (CuNPs) using NaBH4 as a reducing agent and p-tetranitrocalix[4]arene (p-TNC4) as a capping agent. According to our knowledge, no such technique is available in the literature for colorimetric detection of cyclophosphamide (CPA) using CuNPs at the trace level. The well-organized synthesis was confirmed via advanced spectroscopic techniques. The crystallite size, shape, phase purity, and morphological characteristics were determined via XRD, AFM, FT-IR, and UV-visible spectroscopy. At the optimal conditions for CPA detection, the sensor reveals an excellent sensitivity, selectivity, as well as stability with LOD and LOQ 20 nM and 60 nM, respectively. However, the proposed sensor showed excellent potential and selectivity for the sensing of colorimetric detection of CPA that can be effectively applied to real blood serum samples. The proposed approach is better suited as compared to reported protocols in terms of handling, simplicity, economic, energy consumption, reproducibility, and excellent performance in a very short time.
Collapse
Affiliation(s)
- Ali Hyder
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan.
| | - Safia Sanam Memon
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan
| | - Jamil Ahmed Buledi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan
| | - Shahabuddin Memon
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan
| | - Zafar-Ul-Abdin Memon
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan
| | - Dhani Bux Rajpar
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan
| | - Sirajuddin
- International Center for Chemical and Biological Science, HEJ Research Institute of Chemistry, University of Karachi, Karachi, 75270, Pakistan
| |
Collapse
|
11
|
Kelbert M, Daronch NA, Pereira CS, Cesca K, Michels C, Soares HM. Inhibitory impact of the anticancer drug doxorubicin on anaerobic microbial community. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 264:106706. [PMID: 37837867 DOI: 10.1016/j.aquatox.2023.106706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/01/2023] [Accepted: 09/24/2023] [Indexed: 10/16/2023]
Abstract
The inhibitory effect of the anticancer drug doxorubicin (DOX) on biogas production was evaluated in short-term and long-term exposure assays. The short-term assays reached the DOX IC50 value on 648 ± 50 µg·L-1. In addition, it was found that inhibition caused by the exposure of 10×103 µg·L-1 was reversible after removing DOX from the feeding synthetic medium. Furthermore, DOX can be rapidly sorbed by the biomass (despite the low Kow), which might contribute to the inhibitory effect. The results of long-term exposure assays, when the DOX volumetric loading rate was increased from 100 µgDOX·L-1·day-1 to 200 µgDOX·L-1·day-1, showed that biogas production and COD removal decreased rapidly. However, the methanogenic Archaeas could recover from this exposure, corroborating the results on short-term exposure assays. In conclusion, DOX can play a key role in inhibiting biological wastewater treatment processes if its concentration in hospital wastewater treatment plants increases abruptly.
Collapse
Affiliation(s)
- Maikon Kelbert
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil.
| | - Naionara Ariete Daronch
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Camila Senna Pereira
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Karina Cesca
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Camila Michels
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Hugo Moreira Soares
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| |
Collapse
|
12
|
Klein MDO, Francisco LFV, Gomes INF, Serrano SV, Reis RM, Silveira HCS. Hazard assessment of antineoplastic drugs and metabolites using cytotoxicity and genotoxicity assays. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 892:503704. [PMID: 37973299 DOI: 10.1016/j.mrgentox.2023.503704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 09/23/2023] [Accepted: 10/04/2023] [Indexed: 11/19/2023]
Abstract
Antineoplastic drugs are among the most toxic pharmaceuticals. Their release into the aquatic ecosystems has been reported, giving rise to concerns about the adverse effects, including cytotoxicity and genotoxicity, that they may have on exposed organisms. In this study, we analyzed the cytotoxicity and genotoxicity of 5-fluorouracil (5-FU) and its metabolite alpha-fluoro-beta-alanine (3-NH2-F); gemcitabine (GEM) and its metabolite 2'-deoxy-2',2'-difluorouridine (2-DOH-DiF); as well as cyclophosphamide (CP) on the HepG2 cell line. Drug concentrations were based on those previously observed in the effluent of a major cancer hospital in Brazil. The study found that GEM, 2-DOH-DiF and 5-FU resulted in reduced cell viability. No reduction in cell viability was observed for CP and 3-NH2-F. Genotoxic assessment revealed damage in the form of nucleoplasmic bridges for CP and 3-NH2-F. The tested concentrations of all compounds resulted in significantly increased MNi and NBUDs. The results showed that these compounds induced cytotoxic and genotoxic effects in HepG2 cells at concentrations found in the environment. To the best of our knowledge, this study is the first to report on the cytogenotoxic impacts of the metabolites 3-NH2-F and 2-DOH-DiF in HepG2 cells. These findings may help in the development of public policies that could minimize potential environmental contamination.
Collapse
Affiliation(s)
| | | | | | - Sergio V Serrano
- Barretos School of Health Sciences-FACISB, Barretos, São Paulo 14785-002, Brazil
| | - Rui M Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo 14784-400, Brazil; Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Guimarães, Braga, Portugal
| | - Henrique C S Silveira
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo 14784-400, Brazil; University of Cuiabá, Cuiabá, Mato Grosso, Brazil; University of Anhaguera, São Paulo, Brazil.
| |
Collapse
|
13
|
Tonhela MA, Almeida MEV, Granato Malpass AC, Motheo ADJ, Malpass GRP. Electrodegradation of cyclophosphamide in artificial urine by combined methods. ENVIRONMENTAL TECHNOLOGY 2023; 44:1782-1797. [PMID: 34842066 DOI: 10.1080/09593330.2021.2012270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
The degradation of the chemotherapeutic drug cyclophosphamide in artificial urine was evaluated by Electrochemical Advanced Oxidation Processes (EAOP). The system consisted of an electrochemical flow reactor with a commercial DSA® electrode (nominal composition Ti / Ru0,3Ti0,7O2) and Ti-mesh cathode. In order to assess the best parameters, the effect of current density, time and flow rate were analyzed using an initial 23 factorial design. The chosen response variable was the energy efficiency to produce free chlorine species (HClO/ClO-). After obtaining the most significant factors, the Central Composite Design (CCD) was performed, where the optimum conditions were determined for the current density range (11.714 mA cm-2 and 66.57 mA cm-2), flow rate (31.33 mL min-1) and time range (19 and 37 min). Under an optimized condition, the efficiency of other combined methods (photo-assisted electrochemical, photochemical, sonoelectrochemical and photo-assisted sonoelectrochemical) was evaluated. The efficiency of degradation processes was determined by removal of Chemical Oxygen Demand (COD), creatinine and urea. Analysis by HPLC demonstrates that the cyclophosphamide was substantially removed during the treatment process of ∼77%. Based on these results, it can be observed that the coupling between electrochemical and photochemical processes is a promising alternative for the treatment of this effluent, as a marked reduction of organic matter is observed (63, 94% of creatinine, 29.62% of urea, 39.1% of TOC) and a low treatment cost ratio.
Collapse
Affiliation(s)
- Marquele Amorim Tonhela
- Department of Chemical Engineering, Federal University of Triangulo Mineiro, Uberaba, Brazil
| | | | | | | | | |
Collapse
|
14
|
Hema T, Mohanthi S, Umamaheswari S, Ramesh M, Ren Z, Poopal RK. A study to assess the health effects of an anticancer drug (cyclophosphamide) in zebrafish ( Danio rerio): eco-toxicity of emerging contaminants. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:870-884. [PMID: 37010127 DOI: 10.1039/d2em00527a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Cyclophosphamide (CP) is widely used for treating various kinds of cancer. Because of its high intake, metabolism and excretion, these anticancer medications have been detected in the aquatic environment. There is very limited data on the toxicity and effects of CP on aquatic organisms. The present study aims to assess the toxic effect of CP on certain oxidative stress biomarkers (superoxide dismutase-SOD, catalase-CAT, glutathione peroxidase-GPx, glutathione-GSH, glutathione S-transferases-GST and lipid peroxidation-LPO), protein, glucose, metabolising enzymes (aspartate aminotransferase-AST, alanine aminotransferase-ALT), and ion-regulatory markers (sodium ions-Na+, potassium ions-K+, and chloride ions-Cl-), and histology in the gills and liver of Danio rerio at environmentally relevant concentrations (10, 100 and 1000 ng L-1). Exposure to CP for 42 days led to a significant decrease in SOD, CAT, GST, GPx and GSH levels in the gills and liver tissues of zebrafish. The level of lipid peroxidation in the gills and liver tissues of zebrafish was significantly increased compared to the control group. Chronic exposure significantly changes protein, glucose, AST, ALT, Na+, K+ and Cl- biomarkers. Fish exposed to different levels of CP showed necrosis, inflammation, degeneration and hemorrhage in the gills and hepatic tissues. The observed changes in the studied tissue biomarkers were proportional to both dose and time. In conclusion, CP at environmentally relevant concentrations causes oxidative stress, energy demand, homeostasis disturbances, and enzyme and histological alterations in the vital tissues of zebrafish. These alterations were similar to the toxic effects reported in mammalian models.
Collapse
Affiliation(s)
- Tamilselvan Hema
- Unit of Toxicology, Department of Zoology, Bharathiar University, Coimbatore, 641 046, TamilNadu, India.
| | - Sundaram Mohanthi
- Unit of Toxicology, Department of Zoology, Bharathiar University, Coimbatore, 641 046, TamilNadu, India.
| | - Sathisaran Umamaheswari
- Unit of Toxicology, Department of Zoology, Bharathiar University, Coimbatore, 641 046, TamilNadu, India.
| | - Mathan Ramesh
- Unit of Toxicology, Department of Zoology, Bharathiar University, Coimbatore, 641 046, TamilNadu, India.
| | - Zongming Ren
- Institute of Environment and Ecology, Shandong Normal University, Jinan 250358, People's Republic of China.
| | - Rama-Krishnan Poopal
- Institute of Environment and Ecology, Shandong Normal University, Jinan 250358, People's Republic of China.
| |
Collapse
|
15
|
Gouveia TIA, Silva AMT, Freire MG, Sousa ACA, Alves A, Santos MSF. Multi-target analysis of cytostatics in hospital effluents over a 9-month period. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130883. [PMID: 36731320 DOI: 10.1016/j.jhazmat.2023.130883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
The consumption of cytostatics, pharmaceuticals prescribed in chemotherapy, is increasing every year and worldwide, along with the incidence of cancer. The presence and the temporal evolution of cytostatics in wastewaters from a Portuguese hospital center was evaluated through a 9-month sampling campaign, comprising a total of one hundred and twenty-nine samples, collected from May 2019 to February 2020. Eleven cytostatics out of thirteen pharmaceuticals were studied, including flutamide, mycophenolate mofetil and mycophenolic acid, which have never been monitored before. Target analytes were extracted and quantified by solid-phase extraction coupled to liquid-chromatography-tandem mass spectrometry analysis; the method was fully validated. All pharmaceuticals were detected in at least one sample, bicalutamide being the one found with higher frequency (detected in all samples), followed by mycophenolic acid, which was also the compound detected at higher concentrations (up to 5340 ± 211 ng/L). Etoposide, classified as carcinogenic to humans, was detected in 60% of the samples at concentrations up to 142 ± 15 ng/L. The risk from exposure to cytostatics was estimated for aquatic organisms living in receiving bodies. Cyclophosphamide, doxorubicin, etoposide, flutamide, megestrol and mycophenolic acid are suspected to induce risk. Long-term and synergic effects should not be neglected, even for the cytostatics for which no risk was estimated.
Collapse
Affiliation(s)
- Teresa I A Gouveia
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Adrián M T Silva
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Mara G Freire
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana C A Sousa
- Comprehensive Health Research Centre (CHRC) and Department of Biology, School of Science and Technology, University of Évora, 7006-554 Évora, Portugal.
| | - Arminda Alves
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Mónica S F Santos
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
16
|
Castellano-Hinojosa A, Gallardo-Altamirano MJ, González-López J, González-Martínez A. Anticancer drugs in wastewater and natural environments: A review on their occurrence, environmental persistence, treatment, and ecological risks. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130818. [PMID: 36680899 DOI: 10.1016/j.jhazmat.2023.130818] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
The consumption of anticancer drugs (also known as chemotherapy drugs or antineoplastic drugs) has augmented over the last decades due to increased cancer incidence. Although there is an increasing concern about the presence of pharmaceutical compounds in natural environments and urban/domestic wastewater, anticancer drugs used in chemotherapy and anticancer medication have received less attention. In this review, the occurrence, environmental persistence, and known and potential ecological impacts of anticancer drugs is discussed. This review shows that these compounds are being increasingly detected in effluents of hospitals, influents and effluents of wastewater treatment plants, river surface water and sediments, groundwater, and even drinking water. Anticancer drugs can impact aquatic organisms such as algae, crustaceans, rotifers, and fish and may promote changes in soil and water microbial communities that may alter ecosystem functioning. Our knowledge of technologies for the removal of anticancer drugs is still limited, and these drugs can be dispersed in nature in a diffuse way in an uncontrolled manner. For this reason, an improved understanding of the presence, persistence, and ecological impacts of anticancer drugs in wastewater and natural environments is needed to help design management strategies, protect aquatic microorganisms, and mitigate potential ecological impacts.
Collapse
Affiliation(s)
| | | | - Jesús González-López
- Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, 18071 Granada, Spain
| | | |
Collapse
|
17
|
Hamza TA, Hussein ES, Kadhim MM, Rheima AM, Al-Marjani MF, Alattia LH, Mahdi ZM, Hachim SK, Adel M. Cyclophosphamide drug sensing characteristics by using pure and Ti-doped graphyne-like BN-yne. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
18
|
Venâncio C, Monteiro B, Lopes I, Sousa ACA. Assessing the risks of capecitabine and its active metabolite 5-fluorouracil to freshwater biota. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:58841-58854. [PMID: 36997780 PMCID: PMC10163094 DOI: 10.1007/s11356-023-26505-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/13/2023] [Indexed: 05/08/2023]
Abstract
Capecitabine (CAP, prodrug) and 5-fluorouracil (5-FU, its active metabolite) are two of the most prominent cytostatics, for which no clear picture can be drawn regarding potential concentrations of effect for freshwater biota, with CAP being grouped in the least studied cytostatic, whereas 5-FU has been classified as of no and of high environmental risk. Accordingly, the present work aimed to assess the ecotoxicity of CAP and 5-FU in three freshwater species, which included a 72-h assay with the producer Raphidocelis subcapitata; a 96-h assay with the invertebrate secondary consumer Hydra viridissima; and a 96-h assay with embryos of the vertebrate secondary consumer Danio rerio. The following endpoints were monitored: yield and population growth rate for the algae; mortality, morphological alterations, and post-exposure feeding rates for the cnidarian; and mortality, hatching, and malformations for the fish. Overall, organisms' sensitivity to CAP decreased in the following order: R. subcapitata > H. viridissima > D. rerio, whereas for 5-FU, it decreased in the following order: H. viridissima > D. rerio > R. subcapitata. For CAP, no median lethal effective concentrations (LC/EC50) were possible to compute for D. rerio, with no significant mortality or malformations registered in embryos exposed at concentrations up to 800 mg L-1. For R. subcapitata, the EC50s were 0.077 and 0.63 mg L-1 for yield and growth rate, respectively, and for H. viridissima, the EC50,30 min for feeding was 22.0 mg L-1. For 5-FU, no EC50s could be computed for R. subcapitata, whilst the EC50s for H. viridissima mortality and feeding were 55.4 and 67.9 mg L-1, respectively, and for D. rerio, the LC50,96 h and EC50,96 h (hatching and abnormalities) were 4546, 4100, and 2459 mg L-1, respectively. Assuming similar modes of action for both compounds and their co-occurrence, the combined risk quotient of the two chemicals was determined to be 7.97, which represents a risk for freshwater biota. Anticipating the increased consumption of these compounds and cancer development trends worldwide, these impacts may be further aggravated.
Collapse
Affiliation(s)
- Cátia Venâncio
- Department of Biology, University of Aveiro, Campus de Santiago, P-3810-193, Aveiro, Portugal
- CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | - Bruna Monteiro
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Isabel Lopes
- Department of Biology, University of Aveiro, Campus de Santiago, P-3810-193, Aveiro, Portugal.
- CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal.
| | - Ana C A Sousa
- Department of Biology and Comprehensive Health Research Centre (CHRC), University of Évora, Évora, Portugal
| |
Collapse
|
19
|
Ravele T, Fuku XG, Hlongwa NW, Nkambule TTI, Gumbi NN, Sekhosana KE. Advances in Electrochemical Systems for Detection of Anti‐Androgens in Water Bodies. ChemistrySelect 2023. [DOI: 10.1002/slct.202203768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Thompho Ravele
- Institute for Nanotechnology and Water Sustainability (iNanoWS) College of Science Engineering and Technology (CSET) University of South Africa Cnr Christiaan De Wet and Pioneer Avenue, Florida Roodepoort 1709 South Africa
| | - Xolile G. Fuku
- Institute for Nanotechnology and Water Sustainability (iNanoWS) College of Science Engineering and Technology (CSET) University of South Africa Cnr Christiaan De Wet and Pioneer Avenue, Florida Roodepoort 1709 South Africa
| | - Ntuthuko W. Hlongwa
- Institute for Nanotechnology and Water Sustainability (iNanoWS) College of Science Engineering and Technology (CSET) University of South Africa Cnr Christiaan De Wet and Pioneer Avenue, Florida Roodepoort 1709 South Africa
| | - Thabo T. I. Nkambule
- Institute for Nanotechnology and Water Sustainability (iNanoWS) College of Science Engineering and Technology (CSET) University of South Africa Cnr Christiaan De Wet and Pioneer Avenue, Florida Roodepoort 1709 South Africa
| | - Nozipho N. Gumbi
- Institute for Nanotechnology and Water Sustainability (iNanoWS) College of Science Engineering and Technology (CSET) University of South Africa Cnr Christiaan De Wet and Pioneer Avenue, Florida Roodepoort 1709 South Africa
| | - Kutloano E. Sekhosana
- Institute for Nanotechnology and Water Sustainability (iNanoWS) College of Science Engineering and Technology (CSET) University of South Africa Cnr Christiaan De Wet and Pioneer Avenue, Florida Roodepoort 1709 South Africa
| |
Collapse
|
20
|
Kološa K, Žegura B, Štampar M, Filipič M, Novak M. Adverse Toxic Effects of Tyrosine Kinase Inhibitors on Non-Target Zebrafish Liver (ZFL) Cells. Int J Mol Sci 2023; 24:ijms24043894. [PMID: 36835302 PMCID: PMC9965539 DOI: 10.3390/ijms24043894] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
Over the past 20 years, numerous tyrosine kinase inhibitors (TKIs) have been introduced for targeted therapy of various types of malignancies. Due to frequent and increasing use, leading to eventual excretion with body fluids, their residues have been found in hospital and household wastewaters as well as surface water. However, the effects of TKI residues in the environment on aquatic organisms are poorly described. In the present study, we investigated the cytotoxic and genotoxic effects of five selected TKIs, namely erlotinib (ERL), dasatinib (DAS), nilotinib (NIL), regorafenib (REG), and sorafenib (SOR), using the in vitro zebrafish liver cell (ZFL) model. Cytotoxicity was determined using the MTS assay and propidium iodide (PI) live/dead staining by flow cytometry. DAS, SOR, and REG decreased ZFL cell viability dose- and time-dependently, with DAS being the most cytotoxic TKI studied. ERL and NIL did not affect viability at concentrations up to their maximum solubility; however, NIL was the only TKI that significantly decreased the proportion of PI negative cells as determined by the flow cytometry. Cell cycle progression analyses showed that DAS, ERL, REG, and SOR caused the cell cycle arrest of ZFL cells in the G0/G1 phase, with a concomitant decrease of cells in the S-phase fraction. No data could be obtained for NIL due to severe DNA fragmentation. The genotoxic activity of the investigated TKIs was evaluated using comet and cytokinesis block micronucleus (CBMN) assays. The dose-dependent induction of DNA single strand breaks was induced by NIL (≥2 μM), DAS (≥0.006 μM), and REG (≥0.8 μM), with DAS being the most potent. None of the TKIs studied induced micronuclei formation. These results suggest that normal non-target fish liver cells are sensitive to the TKIs studied in a concentration range similar to those previously reported for human cancer cell lines. Although the TKI concentrations that induced adverse effects in exposed ZFL cells are several orders of magnitude higher than those currently expected in the aquatic environment, the observed DNA damage and cell cycle effects suggest that residues of TKIs in the environment may pose a hazard to non-intentionally exposed organisms living in environments contaminated with TKIs.
Collapse
Affiliation(s)
- Katja Kološa
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna Pot 111, 1000 Ljubljana, Slovenia
| | - Bojana Žegura
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna Pot 111, 1000 Ljubljana, Slovenia
- Jozef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia
- Correspondence:
| | - Martina Štampar
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna Pot 111, 1000 Ljubljana, Slovenia
| | - Metka Filipič
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna Pot 111, 1000 Ljubljana, Slovenia
- Jozef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia
| | - Matjaž Novak
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna Pot 111, 1000 Ljubljana, Slovenia
| |
Collapse
|
21
|
Kadhim MM, Rheima AM, Hachim SK, Abdullaha SAH, Taban TZ, Malik SA. Theoretical Sensing Performance for Detection of Cyclophosphamide Drug by Using Aluminum Carbide (C 3Al) Monolayer: a DFT Study. Appl Biochem Biotechnol 2023:10.1007/s12010-022-04305-9. [PMID: 36656537 DOI: 10.1007/s12010-022-04305-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2022] [Indexed: 01/20/2023]
Abstract
Because nanomaterials are highly reactive and electronically sensitive towards a variety of drug molecules, they are thought of as efficient drug sensors. In the present research study, an aluminum carbide (C3Al) monolayer is employed and its interaction is examined with cyclophosphamide (CP) by performing DFT computations. The C3Al monolayer is highly reactive and sensitive towards CP according to the computations. CP interacts with the C3Al monolayer with the adsorption energy of -31.39 kcal/mol. A considerable charge transfer (CT) indicates an enhancement in the conductivity. Also, the charge density is explained based on the electron density differences (EDD). The decrease in CP/C3Al energy gap (Eg) by approximately 52.91% is due to the remarkable effect of adsorption on the LUMO and the HOMO levels. Therefore, due to the decrease in Eg which can generate an electrical signal, the electrical conductivity is considerably increased. These results suggest that the C3Al monolayer can be employed as a proper electronic drug sensor for CP. Also, the recovery time for the desorption process of CP form the surface of C3Al is 351 s at 598 K.
Collapse
Affiliation(s)
- Mustafa M Kadhim
- Medical Laboratory Techniques Department, Al-Farahidi University, 10022, Baghdad, Iraq
| | - Ahmed Mahdi Rheima
- Department of Chemistry, College of Science, Mustansiriyah University, Baghdad, Iraq
| | - Safa K Hachim
- College of Technical Engineering, The Islamic University, Najaf, Iraq.,Medical Laboratory Techniques Department, Al-Turath University College, Baghdad, Iraq
| | | | - Taleeb Zedan Taban
- Laser and Optoelectronics Engineering Department, Kut University College, Kut, Wasit, Iraq.
| | - Samir Azzat Malik
- Pharmacy Department, Al- Mustaqbal University College, 51001, Hilla, Iraq
| |
Collapse
|
22
|
Belay MH, Dal Bello F, Marengo E, Fabbri D, Medana C, Robotti E. Solar photodegradation of irinotecan in water: optimization and robustness studies by experimental design. Photochem Photobiol Sci 2022; 22:761-772. [PMID: 36478325 DOI: 10.1007/s43630-022-00350-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022]
Abstract
Irinotecan, a widely prescribed anticancer drug, is an emerging contaminant of concern that has been detected in various aquatic environments due to ineffective removal by traditional wastewater treatment systems. Solar photodegradation is a viable approach that can effectively eradicate the drug from aqueous systems. In this study, we used the design of experiment (DOE) approach to explore the robustness of irinotecan photodegradation under simulated solar irradiation. A full factorial design, including a star design, was applied to study the effects of three parameters: initial concentration of irinotecan (1.0-9.0 mg/L), pH (5.0-9.0), and irradiance (450-750 W/m2). A high-performance liquid chromatography coupled with a high-resolution mass spectrometry (HPLC-HRMS) system was used to determine irinotecan and identify transformation products. The photodegradation of irinotecan followed a pseudo-first order kinetics. In the best-fitted linear model determined by the stepwise model fitting approach, pH was found to have about 100-fold greater effect than either irinotecan concentration or solar irradiance. Under optimal conditions (irradiance of 750 W/m2, 1.0 mg/L irinotecan concentration, and pH 9.0), more than 98% of irinotecan was degraded in 60 min. With respect to irradiance and irinotecan concentration, the degradation process was robust in the studied range, implying that it may be effectively applied in locations and/or seasons with solar irradiance as low as 450 W/m2. However, pH needs to be strictly controlled and kept between 7.0 and 9.0 to maintain the degradation process robust. Considerations about the behavior of degradation products were also drawn.
Collapse
Affiliation(s)
- Masho Hilawie Belay
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Viale T. Michel 11, 15121, Alessandria, Italy
- Department of Chemistry, College of Natural and Computational Sciences, Mekelle University, P. O. Box 231, Mekelle, Ethiopia
| | - Federica Dal Bello
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Via P. Giuria 5, 10125, Turin, Italy.
| | - Emilio Marengo
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Viale T. Michel 11, 15121, Alessandria, Italy
| | - Debora Fabbri
- Department of Chemistry, University of Turin, Via P. Giuria 5, 10125, Turin, Italy
| | - Claudio Medana
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Via P. Giuria 5, 10125, Turin, Italy
| | - Elisa Robotti
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Viale T. Michel 11, 15121, Alessandria, Italy
| |
Collapse
|
23
|
Ulvi A, Aydın S, Aydın ME. Fate of selected pharmaceuticals in hospital and municipal wastewater effluent: occurrence, removal, and environmental risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:75609-75625. [PMID: 35655023 PMCID: PMC9162898 DOI: 10.1007/s11356-022-21131-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 05/23/2022] [Indexed: 05/12/2023]
Abstract
The concentrations and distribution of β-blockers, lipid regulators, and psychiatric and cancer drugs in the influent and effluent of the municipal wastewater treatment plant (WWTP) and the effluent of 16 hospitals that discharge into the wastewater treatment plant mentioned in this study at two sampling dates in summer and winter were examined. The pharmaceutical contribution of hospitals to municipal wastewater was determined. The removal of target pharmaceuticals was evaluated in a WWTP consisting of conventional biological treatment using activated sludge. Additionally, the potential environmental risk for the aquatic receiving environments (salt lake) was assessed. Beta-blockers and psychiatric drugs were detected in high concentrations in the wastewater samples. Atenolol (919 ng/L) from β-blockers and carbamazepine (7008 ng/L) from psychiatric pharmaceuticals were detected at the highest concentrations in hospital wastewater. The total pharmaceutical concentration determined at the WWTP influent and effluent was between 335 and 737 ng/L in summer and between 174 and 226 ng/L in winter. The concentrations detected in hospital effluents are higher than the concentrations detected in WWTP. The total pharmaceutical contributions from hospitals to the WWTP in summer and winter were determined to be 2% and 4%, respectively. Total pharmaceutical removal in the WWTP ranged from 23 to 54%. According to the risk ratios, atenolol could pose a high risk (risk quotient > 10) for fish in summer and winter. There are different reasons for the increase in pharmaceutical consumption in recent years. One of these reasons is the COVID-19 pandemic, which has been going on for 2 years. In particular, hospitals were operated at full capacity during the pandemic, and the occurrence and concentration of pharmaceuticals used for the therapy of COVID-19 patients has increased in hospital effluent. Pandemic conditions have increased the tendency of people to use psychiatric drugs. It is thought that beta-blocker consumption has increased due to cardiovascular diseases caused by COVID-19. Therefore, the environmental risk of pharmaceuticals for aquatic organisms in hospital effluent should be monitored and evaluated.
Collapse
Affiliation(s)
- Arzu Ulvi
- Department of Environmental Engineering, Necmettin Erbakan University, Konya, Turkey.
| | - Senar Aydın
- Department of Environmental Engineering, Necmettin Erbakan University, Konya, Turkey
| | - Mehmet Emin Aydın
- Department of Civil Engineering, Necmettin Erbakan University, Konya, Turkey
| |
Collapse
|
24
|
Trommetter G, Dumoulin D, Dang DH, Alaimo V, Billon G. On inorganic tracers of wastewater treatment plant discharges along the Marque River (Northern France). CHEMOSPHERE 2022; 305:135413. [PMID: 35750230 DOI: 10.1016/j.chemosphere.2022.135413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Increase of water quality in aquatic systems has become a hot button issue in recent decades. However, with the aim to implement an effective remediation strategy, the first step is to identify the sources of diffuse and point-source pollution using several tracers. In urban areas, B isotopes, Gd enrichment, Cl- or carbamazepine concentrations can be used as wastewater treatment plant tracers. In this study, a focus was made on the quantification of a wide variety of inorganic compounds (elements, ions, isotopic ratios) all along the Marque River, a small stream located in Northern France receiving effluents coming from seven wastewater treatment plants (WWTPs). The objectives were (i) to determine the importance of the WWTPs discharge during low water events, (ii) to assess the efficiency of conventional tracers in quantifying the contribution of the WWTPs and (iii) to investigate new potential tracers less commonly used. The results have shown, through statistical analyses ANOVA (Analysis Of Variance) tests, PCA (Principal Component Analysis) and contribution calculations, that the WWTPs discharges strongly impact the water composition of all the watercourse and particularly during the first 6 km. However, due to high discharges of wastewaters not always well treated, some classical indicators (e.g. B, Rb/Sr) have shown limitations when used alone. The use of a set of relevant tracers including alkali metals could therefore be one solution for overcoming such a problem. Finally, other indicators like Rb/B or Gd/Pt ratios may also be a way to tackle this issue; they are indeed promising to discriminate the source of wastewaters.
Collapse
Affiliation(s)
- G Trommetter
- Univ. Lille, CNRS, UMR 8516 - LASIRE, Laboratoire Avancé de Spectroscopie pour les Interactions, la Réactivité et l'Environnement F-59000 Lille, France
| | - D Dumoulin
- Univ. Lille, CNRS, UMR 8516 - LASIRE, Laboratoire Avancé de Spectroscopie pour les Interactions, la Réactivité et l'Environnement F-59000 Lille, France.
| | - D H Dang
- School of the Environment and Chemistry Department, Trent University, Peterborough, ON, Canada
| | - V Alaimo
- Univ. Lille, CNRS, UMR 8516 - LASIRE, Laboratoire Avancé de Spectroscopie pour les Interactions, la Réactivité et l'Environnement F-59000 Lille, France
| | - G Billon
- Univ. Lille, CNRS, UMR 8516 - LASIRE, Laboratoire Avancé de Spectroscopie pour les Interactions, la Réactivité et l'Environnement F-59000 Lille, France
| |
Collapse
|
25
|
Graumans MHF, van Hove H, Schirris T, Hoeben WFLM, van Dael MFP, Anzion RBM, Russel FGM, Scheepers PTJ. Determination of cytotoxicity following oxidative treatment of pharmaceutical residues in wastewater. CHEMOSPHERE 2022; 303:135022. [PMID: 35618071 DOI: 10.1016/j.chemosphere.2022.135022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Pharmaceutical residues are released in the aquatic environment due to incomplete removal from wastewater. With the presence of multiple chemicals in sewage waters, contaminants may adversely affect the effectiveness of a wastewater treatment plant (WWTP). In certain cases, discharged metabolites are transformed back into their pristine structure and become bioactive again. Other compounds are persistent and can withstand conventional wastewater treatment. When WWTP effluents are released in surface waters, pristine and persistent chemicals can affect the aquatic environment. To complement WWTPs and circumvent incomplete removal of unwanted chemicals or pharmaceuticals, on-site wastewater treatment can contribute to their removal. Advanced oxidation processes (AOPs) are very powerful techniques for the abatement of pharmaceuticals, however, under certain circumstances reactive toxic by-products can be produced. We studied the application of on-site AOPs in a laboratory setting. It is expected that treatment at the contamination source can eliminate the worst polluters. Thermal plasma and UV/H2O2 oxidation were applied on simulation matrices, Milli-Q and synthetic sewage water spiked with 10 different pharmaceuticals in a range of 0.1 up to 2400 μg/L. In addition, untreated end-of-pipe hospital effluent was also subjected to oxidative treatment. The matrices were activated for 180 min and added to cultured HeLa cells. The cells were 24 h and 48 h exposed at 37 °C and subsequently markers for oxidative stress and viability were measured. During the UV/H2O2 treatment periods no toxicity was observed. After thermal plasma activation of Milli-Q water (150 and 180 min) toxicity was observed. Direct application of thermal plasma treatment in hospital sewage water caused elimination of toxic substances. The low cytotoxicity of treated pharmaceutical residues is likely to become negligible if plasma pre-treated on-site wastewater is further diluted with other sewage water streams, before reaching the WWTP. Our study suggests that AOPs may be promising technologies to remove a substantial portion of pharmaceutical components by degradation at the source. Further studies will have to be performed to verify the feasibility of upscaling this technology from the benchtop to practice.
Collapse
Affiliation(s)
- Martien H F Graumans
- Department for Health Evidence, Radboud Institute for Health Sciences, Radboudumc, Nijmegen, the Netherlands.
| | - Hedwig van Hove
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands
| | - Tom Schirris
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands
| | - Wilfred F L M Hoeben
- Department of Electrical Engineering, Electrical Energy Systems Group, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Maurice F P van Dael
- Department for Health Evidence, Radboud Institute for Health Sciences, Radboudumc, Nijmegen, the Netherlands
| | - Rob B M Anzion
- Department for Health Evidence, Radboud Institute for Health Sciences, Radboudumc, Nijmegen, the Netherlands
| | - Frans G M Russel
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands
| | - Paul T J Scheepers
- Department for Health Evidence, Radboud Institute for Health Sciences, Radboudumc, Nijmegen, the Netherlands
| |
Collapse
|
26
|
Li D, Sun W, Lei H, Li X, Hou L, Wang Y, Chen H, Schlenk D, Ying GG, Mu J, Xie L. Cyclophosphamide alters the behaviors of adult Zebrafish via neurotransmitters and gut microbiota. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 250:106246. [PMID: 35917676 DOI: 10.1016/j.aquatox.2022.106246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Cyclophosphamide, one of the earliest prescribed alkylating anticancer drugs, has been frequently detected in aquatic environments. However, its effects on fish behavior and associated mechanisms remain largely unknown. In this study, the behaviors, neurochemicals, and gut microbiota of adult zebrafish were investigated after 2 months of exposure to CP at 0.05, 0.5, 5, and 50 µg/L. Behavioral assays revealed that CP increased locomotion and anxiety, and decreased the cognition of zebrafish. The alteration of neurotransmitters and related gene expressions in the dopamine and gamma-aminobutyric acid pathways induced by CP may be responsible for the observed changes in locomotion and cognition of adult zebrafish. Meanwhile, CP increased the anxiety of adult zebrafish through the serotonin, acetylcholine, and histamine pathways in the brain. In addition, increased abundances of Fusobacteriales, Reyanellales, Staphylococcales, Rhodobacterals, and Patescibateria in the intestine at the CP-50 treatment were observed. The study has demonstrated that CP affects the locomotion, anxiety, and cognition in zebrafish, which might be linked with the dysfunction of neurochemicals in the brain. This study further suggests that the gut-brain axis might interact to modulate fish behaviors upon exposure to CP (maybe other organic pollutants). Further research is warranted to test this hypothesis.
Collapse
Affiliation(s)
- Dan Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Weijun Sun
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Haojun Lei
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Xiao Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Liping Hou
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Yongzhuang Wang
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Nanning Normal University, Ministry of Education, Nanning 530001, China
| | - Hongxing Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California Riverside, Riverside, CA 92507, USA
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Jingli Mu
- College of Geography and Oceanography, Minjiang University, Fuzhou 350108, PR China
| | - Lingtian Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| |
Collapse
|
27
|
Wang A, Guo S, Zheng Z, Wang H, Song X, Zhu H, Zeng Y, Lam J, Qiu R, Yan K. Highly dispersed Ag and g-C3N4 quantum dots co-decorated 3D hierarchical Fe3O4 hollow microspheres for solar-light-driven pharmaceutical pollutants degradation in natural water matrix. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128905. [PMID: 35452983 DOI: 10.1016/j.jhazmat.2022.128905] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/17/2022] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
The efficient removal of pharmaceutical pollutants presents a great challenge for the conventional sewage treatment system. Herein, we document the nanosheets assembled 3D hierarchical Fe3O4 hollow microspheres co-modified by Ag and g-C3N4 quantum dots (Ag/CNQDs@Fe3O4) for efficient degradation of two classic anticancer drugs, i.e., capecitabine (CAP) and 5-fluorouracil (5-FLU) under visible light in 1 h. Benefiting from the unique hierarchically hollow structure, the intrinsic strengths of each component and their interactions, synergistic reinforcing mechanism is constructed, furnishing more accessible reactive places, promoting the diffusion of pollutants/oxidants, improving charge separation ability, and raising light utilization rate. Consequently, Ag/CNQDs@Fe3O4 can not only show superior photocatalytic properties, but also greatly boost PMS activation to yield sufficient oxidative radicals. More notably, the studied system also features excellent stability and strong tolerance to real water samples, and maintains appreciable performance even under natural sunlight illumination. The predominant active species, possible ADs decomposition pathways, and underlying reaction mechanism for the Ag/CNQDs@Fe3O4/PMS/vis system are thoroughly explored. This work presents significant advancement in enabling an integrated technology of PMS and photocatalysis to realize its great potential in environment restoration.
Collapse
Affiliation(s)
- Anqi Wang
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, China.
| | - Shuya Guo
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, China; College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhikeng Zheng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Hui Wang
- Institute of Chemistry, Humboldt University of Berlin, Berlin 12489, Germany
| | - Xiaolong Song
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Haida Zhu
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Yiqiu Zeng
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Jason Lam
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, 999077, Hong Kong Special Administrative Region of China
| | - Rongliang Qiu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Kai Yan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
28
|
González-Burciaga LA, Núñez-Núñez CM, Proal-Nájera JB. Challenges of TiO 2 heterogeneous photocatalysis on cytostatic compounds degradation: state of the art. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:42251-42274. [PMID: 34741739 DOI: 10.1007/s11356-021-17241-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
The following work provides a perspective on the degradation of cytostatic pollutants through TiO2 heterogeneous photocatalysis. Cytostatic drugs are emerging pollutants used for cancer treatment found in hospital and domestic wastewater. Small amounts of cytostatic pollutants may pose severe health problems in human beings, animals, and plants after prolonged contact. This research presents a general review of some water treatment methods, such as aerobic activated sludge, enzymatic degradation, nanofiltration and chlorination, that have been used for the degradation or elimination of cytostatic drugs in wastewater. In recent years, photocatalysis has become important to solve this problem; these advanced oxidation process uses pure and modified TiO2 to degrade cytostatic contaminants and convert them into non-harmful substances or to eliminate them completely. This work contains a comprehensive review of the heterogeneous photocatalysis process and mechanism, and its application on the removal of cytostatic pollutants. Even if research on the topic is still scarce, this literature review provides interesting highlights on the scope of the research field, and the path such research could follow.
Collapse
Affiliation(s)
- Luis A González-Burciaga
- Instituto Politécnico Nacional, CIIDIR-Unidad Durango, Calle Sigma 119, Fracc. 20 de Noviembre II, Durango, 34220, México
| | - Cynthia M Núñez-Núñez
- Universidad Politécnica de Durango, Carretera Durango-México km 9.5, Col. Dolores Hidalgo, Durango, 34300, México
| | - José B Proal-Nájera
- Instituto Politécnico Nacional, CIIDIR-Unidad Durango, Calle Sigma 119, Fracc. 20 de Noviembre II, Durango, 34220, México.
| |
Collapse
|
29
|
Liu J, Huang L, Wan M, Chen G, Su M, Han F, Liu F, Xiong G, Liao X, Lu H, Li W, Cao Z. Lenvatinib induces cardiac developmental toxicity in zebrafish embryos through regulation of Notch mediated-oxidative stress generation. ENVIRONMENTAL TOXICOLOGY 2022; 37:1310-1320. [PMID: 35119177 DOI: 10.1002/tox.23485] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/17/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Due to an increasing number of abused drugs dumped into the wastewater, more and more drugs are detected in the water environment, which may affect the survival of aquatic organisms. Lenvatinib is a multi-targeted tyrosine kinase inhibitor, and is clinically used to treat differentiated thyroid cancer, renal epithelial cell carcinoma and liver cancer. However, there are few reports on the effects of lenvatinib in embryos development. In this study, zebrafish embryos were used to evaluate the effect of lenvatinib on cardiovascular development. Well-developed zebrafish embryos were selected at 6 h post fertilization (hpf) and exposed to 0.05 mg/L, 0.1 mg/L and 0.2 mg/L lenvatinib up to 72 hpf. The processed embryos demonstrated cardiac edema, decreased heart rate, prolonged SV-BA distance, inhibited angiogenesis, and blocked blood circulation. Lenvatinib caused cardiac defects in the whole stage of cardiac development and increased the apoptosis of cardiomyocyte. Oxidative stress in the processed embryos was accumulated and inhibiting oxidative stress could rescue cardiac defects induced by lenvatinib. Additionally, we found that lenvatinib downregulated Notch signaling, and the activation of Notch signaling could rescue cardiac developmental defects and downregulate oxidative stress level induced by lenvatinib. Our results suggested that lenvatinib might induce cardiac developmental toxicity through inducing Notch mediated-oxidative stress generation, raising concerns about the harm of exposure to lenvatinib in aquatic organisms.
Collapse
Affiliation(s)
- Jieping Liu
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, Fujian, China
| | - Ling Huang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, Fujian, China
| | - Mengqi Wan
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jinggangshan University, Ji'an, Jiangxi, China
- Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi, China
| | - Guilan Chen
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jinggangshan University, Ji'an, Jiangxi, China
- Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi, China
| | - Meile Su
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jinggangshan University, Ji'an, Jiangxi, China
- Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi, China
| | - Fang Han
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, Fujian, China
| | - Fasheng Liu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jinggangshan University, Ji'an, Jiangxi, China
- Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi, China
| | - Guanghua Xiong
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jinggangshan University, Ji'an, Jiangxi, China
- Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi, China
| | - Xinjun Liao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jinggangshan University, Ji'an, Jiangxi, China
- Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi, China
| | - Huiqiang Lu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jinggangshan University, Ji'an, Jiangxi, China
- Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi, China
| | - Wanbo Li
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, Fujian, China
| | - Zigang Cao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jinggangshan University, Ji'an, Jiangxi, China
- Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi, China
| |
Collapse
|
30
|
Sanabria P, Wilde ML, Ruiz-Padillo A, Sirtori C. Trends in Fenton and photo-Fenton processes for degradation of antineoplastic agents in water matrices: current knowledge and future challenges evaluation using a bibliometric and systematic analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:42168-42184. [PMID: 34403053 DOI: 10.1007/s11356-021-15938-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Antineoplastic agents present potential hazards to human health and the environment. For this reason, these compounds have attracted a great deal of attention from researchers in the environmental sciences field. In order to help guide future research, it is important to understand the current state of investigation of the occurrence of these microcontaminants and methods for their removal, especially focusing on Fenton and photo-Fenton processes applied to various aqueous matrices in which this class of pharmaceuticals is present. For this purpose, a systematic review of these topics was performed by bibliometric analysis of articles published during the last decade and available in the Scopus and Web of Science databases. This study enables visualization of the current panorama and trends in this field, providing a guide for future collaborative research and exchange of knowledge. Various strategies have been suggested to improve the efficiency of Fenton and photo-Fenton processes, mainly by means of the application of multiples additions of iron, the use of heterogeneous catalysts, and/or the use of chelating agents. Some studies have evaluated different radiation sources employed for photo-Fenton processes, such as solar and/or artificial radiation. In turn, the identification of transformation products generated by Fenton and photo-Fenton treatments, together with their evaluation by in silico (Q)SAR predictions or experimental toxicological bioassays, are related subjects that have been less reported in published works and that should be studied in depth. These subjects can support treatment evaluations that are more realistic, considering their limitations or potentials.
Collapse
Affiliation(s)
- Pedro Sanabria
- Instituto de Química, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, Porto Alegre, RS, Brazil
| | - Marcelo L Wilde
- Instituto de Química, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, Porto Alegre, RS, Brazil
| | - Alejandro Ruiz-Padillo
- Mobility and Logistics Laboratory. Transportation Department, Federal Universityof Santa Maria, Roraima Av., 1000, Santa Maria, RS, Brazil
| | - Carla Sirtori
- Instituto de Química, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, Porto Alegre, RS, Brazil.
| |
Collapse
|
31
|
Parida VK, Sikarwar D, Majumder A, Gupta AK. An assessment of hospital wastewater and biomedical waste generation, existing legislations, risk assessment, treatment processes, and scenario during COVID-19. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 308:114609. [PMID: 35101807 PMCID: PMC8789570 DOI: 10.1016/j.jenvman.2022.114609] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 05/23/2023]
Abstract
Hospitals release significant quantities of wastewater (HWW) and biomedical waste (BMW), which hosts a wide range of contaminants that can adversely affect the environment if left untreated. The COVID-19 outbreak has further increased hospital waste generation over the past two years. In this context, a thorough literature study was carried out to reveal the negative implications of untreated hospital waste and delineate the proper ways to handle them. Conventional treatment methods can remove only 50%-70% of the emerging contaminants (ECs) present in the HWW. Still, many countries have not implemented suitable treatment methods to treat the HWW in-situ. This review presents an overview of worldwide HWW generation, regulations, and guidelines on HWW management and highlights the various treatment techniques for efficiently removing ECs from HWW. When combined with advanced oxidation processes, biological or physical treatment processes could remove around 90% of ECs. Analgesics were found to be more easily removed than antibiotics, β-blockers, and X-ray contrast media. The different environmental implications of BMW have also been highlighted. Mishandling of BMW can spread infections, deadly diseases, and hazardous waste into the environment. Hence, the different steps associated with collection to final disposal of BMW have been delineated to minimize the associated health risks. The paper circumscribes the multiple aspects of efficient hospital waste management and may be instrumental during the COVID-19 pandemic when the waste generation from all hospitals worldwide has increased significantly.
Collapse
Affiliation(s)
- Vishal Kumar Parida
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Divyanshu Sikarwar
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Abhradeep Majumder
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Ashok Kumar Gupta
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
32
|
A Fully Automated Online SPE-LC-MS/MS Method for the Determination of 10 Pharmaceuticals in Wastewater Samples. TOXICS 2022; 10:toxics10030103. [PMID: 35324728 PMCID: PMC8955396 DOI: 10.3390/toxics10030103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023]
Abstract
The increasing use of pharmaceuticals, their presence in the aquatic environment, and the associated toxic effects, have raised concerns in recent years. In this work, a new multi-residue analytical method was developed and validated for the determination of 10 pharmaceuticals in wastewaters using online solid-phase extraction (online SPE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The compounds included in the method were antineoplastics (cabazitaxel, docetaxel, doxorubicin, etoposide, irinotecan, methotrexate, paclitaxel, and topotecan), renin inhibitors (aliskiren), and antidepressants (maprotiline). The method was developed through several experiments on four online SPE cartridges, three reversed phase chromatography columns, and four combinations of mobile phase components. Under optimal conditions, very low limits of detection (LODs) of 1.30 to 10.6 ng L−1 were obtained. The method was repeatable, with relative standard deviations (RSD, %) for intraday and interday precisions ranged from 1.6 to 7.8 and from 3.3 to 13.2, respectively. Recovery values ranged from 78.4 to 111.4%, indicating the reproducibility of the method. Matrix effects were mainly presented as signal suppression, with topotecan and doxorubicin being the two most affected compounds (31.0% signal suppression). The proposed method was successfully applied to hospital effluents, detecting methotrexate (4.7–9.3 ng L−1) and maprotiline (11.2–23.1 ng L−1). Due to the shorter overall run time of 15 min, including sample preparation, and reduced sample volume (0.9 mL), this on-line SPE-LC-MS/MS method was extremely convenient and efficient in comparison to the classical off-line SPE method. The proposed method was also highly sensitive and can be used for ultratrace quantification of the studied pharmaceuticals in wastewaters, providing useful data for effective environmental monitoring.
Collapse
|
33
|
Di Paola D, Capparucci F, Abbate JM, Cordaro M, Crupi R, Siracusa R, D’Amico R, Fusco R, Genovese T, Impellizzeri D, Cuzzocrea S, Spanò N, Gugliandolo E, Peritore AF. Environmental Risk Assessment of Oxaliplatin Exposure on Early Life Stages of Zebrafish ( Danio rerio). TOXICS 2022; 10:81. [PMID: 35202267 PMCID: PMC8880521 DOI: 10.3390/toxics10020081] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 12/04/2022]
Abstract
Pharmaceuticals are actually identified as a threat to the ecosystem. Nowadays, the growing consumption of antineoplastic agents has been related to their continuous input in natural environments. These substances can interfere with physiological and biochemical processes of aquatic species over their entire life cycle. Oxaliplatin (OXA) is a widely used chemotherapeutic agent to treat colon or rectal cancer. This study was aimed to evaluate the developmental toxicity of the OXA exposure. To this end, zebrafish embryos were incubated with 0.001, 0.1, 0.5 mg/L OXA. At different timepoints mortality rate, hatching rate, developmental abnormalities, histological analysis, oxidative stress and mRNA expression of gene related to oxidative stress were evaluated. Our results showed that OXA exposure can induce increased mortality and developmental abnormalities reducing the hatching rate. Histological analysis demonstrated that OXA induced liver, intestine, muscle and heart injury. Superoxide dismutase and catalase activities were significantly increased after OXA exposure demonstrating its oxidative effects. The mRNA expression levels of apoptosis-related genes (caspase-3, bax and bcl-2) were significantly upregulated by OXA exposure. In conclusion, we highlighted that OXA exposure led to a dose-related developmental toxicity, oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Davide Di Paola
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (F.C.); (R.S.); (R.D.); (R.F.); (T.G.); (D.I.); (A.F.P.)
| | - Fabiano Capparucci
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (F.C.); (R.S.); (R.D.); (R.F.); (T.G.); (D.I.); (A.F.P.)
| | - Jessica Maria Abbate
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy; (J.M.A.); (R.C.); (E.G.)
| | - Marika Cordaro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy;
| | - Rosalia Crupi
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy; (J.M.A.); (R.C.); (E.G.)
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (F.C.); (R.S.); (R.D.); (R.F.); (T.G.); (D.I.); (A.F.P.)
| | - Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (F.C.); (R.S.); (R.D.); (R.F.); (T.G.); (D.I.); (A.F.P.)
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (F.C.); (R.S.); (R.D.); (R.F.); (T.G.); (D.I.); (A.F.P.)
| | - Tiziana Genovese
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (F.C.); (R.S.); (R.D.); (R.F.); (T.G.); (D.I.); (A.F.P.)
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (F.C.); (R.S.); (R.D.); (R.F.); (T.G.); (D.I.); (A.F.P.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (F.C.); (R.S.); (R.D.); (R.F.); (T.G.); (D.I.); (A.F.P.)
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Nunziacarla Spanò
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy;
| | - Enrico Gugliandolo
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy; (J.M.A.); (R.C.); (E.G.)
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (F.C.); (R.S.); (R.D.); (R.F.); (T.G.); (D.I.); (A.F.P.)
| |
Collapse
|
34
|
Ivantsova E, Huang M, Wengrovitz AS, Souders CL, Martyniuk CJ. Molecular and behavioral assessment in larval zebrafish (Danio rerio) following exposure to environmentally relevant levels of the antineoplastic cyclophosphamide. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 90:103809. [PMID: 35033682 DOI: 10.1016/j.etap.2022.103809] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/26/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Antineoplastics treat cancers and enter aquatic ecosystems through wastewater and hospital effluent. Risks associated with antineoplastics are not well characterized in aquatic organisms. We conducted zebrafish embryo/larvae toxicity assays to evaluate responses to cyclophosphamide (0.01-50 µM). Zebrafish survival was affected by 5 µM cyclophosphamide and deformities were noted at > 1 µM. Oxidative respiration remained unchanged in embryos with exposure up to 200 µM. Reactive oxygen species were not increased by 50 µM cyclophosphamide exposure. More than 15 oxidative stress and immune-related transcripts were measured. Superoxide dismutase 2 and heat shock protein 70 and 90a were induced in larvae by cyclophosphamide. Immune-related transcripts were assessed due to immunosuppressive properties of cyclophosphamide, and mmp9 and myd88 levels were altered in expression. Hyperactivity of larvae was noted following 5 µM cyclophosphamide exposure. There was no change in anxiety-related endpoints (light-dark preference). Risks for larval fish exposed to cyclophosphamide in the environment may be low.
Collapse
Affiliation(s)
- Emma Ivantsova
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL 32611, USA
| | - Michelle Huang
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL 32611, USA
| | - Andrew S Wengrovitz
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL 32611, USA
| | - Christopher L Souders
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL 32611, USA
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
35
|
Van de Perre D, Li D, Yao KS, Lei HJ, Van den Brink PJ, Ying GG. The effects of the chemotherapy drug cyclophosphamide on the structure and functioning of freshwater communities under sub-tropical conditions: A mesocosm study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150678. [PMID: 34592290 DOI: 10.1016/j.scitotenv.2021.150678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/20/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Cyclophosphamide (CP) is a chemotherapy drug which is widely used in the treatment of neoplastic diseases and have often been detected in urban and hospital wastewater, and surface waters. However, at present the effects of CP on aquatic organisms and ecosystems are poorly understood. The main objective of the present study was to assess the effect of CP on the structure and functioning of a sub-tropical freshwater ecosystem (macroinvertebrates, zooplankton and phytoplankton) at environmental relevant concentrations. CP (0, 0.5, 5 and 50 μg/L) was applied weekly to 13,600 L mesocosms over a period of four weeks followed by a one month post exposure period. CP was found to dissipate much faster than previous reported in literature and the half-dissipation times were treatment dependent, being 2.2, 21.3 and 23.6 days in the lowest, middle and highest treatments respectively. Only treatment related effects were observed on the community structure at individual samplings with zooplankton (NOECcommunity = 0.5 μg/L) responding at lower concentrations than phytoplankton (NOECcommunity = 5 μg/L) and macroinvertebrates (NOECcommunity ≥ 50 μg/L). The dissolved organic carbon concentration was consistently higher in the 2 highest treatments, indicating a potential effect on food web interactions and/or the microbial loop. At the population level, consistent adverse effects were observed for the plankton taxa Pleuroxus laevis, Dissotrocha sp. and Oscillatoria sp. at all CP concentrations (NOEC <0.5 μg/L). Additionally, at the highest CP treatments 7% of all the taxa showed a clear short-term adverse effect. Based on comparison with literature data it can be concluded that these taxa have the highest CP sensitivity ever recorded and these findings indicate a potential CP risk to aquatic ecosystems at environmental relevant concentrations.
Collapse
Affiliation(s)
- Dimitri Van de Perre
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China; School of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Dan Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China; School of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Kai-Sheng Yao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China; School of Environment, South China Normal University, Guangzhou 510006, PR China; Wageningen University, Aquatic Ecology and Water Quality Management Group, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| | - Hao-Jun Lei
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China; School of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Paul J Van den Brink
- Wageningen University, Aquatic Ecology and Water Quality Management Group, P.O. Box 47, 6700 AA Wageningen, the Netherlands; Wageningen Environmental Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands.
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China; School of Environment, South China Normal University, Guangzhou 510006, PR China
| |
Collapse
|
36
|
Li D, Sun W, Chen H, Lei H, Li X, Liu H, Huang GY, Shi WJ, Ying GG, Luo Y, Xie L. Cyclophosphamide affects eye development and locomotion in zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150460. [PMID: 34818796 DOI: 10.1016/j.scitotenv.2021.150460] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Cyclophosphamide (CP) is a broad-spectrum anticancer drug and has been frequently detected in aquatic environments due to its incomplete removal by wastewater treatment facilities and slow degradation in waters. Its toxicity in fish remains largely unknown. In this study, zebrafish eggs <4 h post fertilization (hpf) were exposed to CP at the concentrations from 0.5 to 50.0 μg/L until 168 hpf, and its toxicity was evaluated by biochemical, transcriptomic, and behavioral approaches. The results showed that malformation and mortality rates increased with CP concentrations. The 7-day malformation EC50 and mortality (LC30) by CP were calculated to be 86.8 μg/L and 7.5 mg/L, respectively. Inhibited startle response (light to dark) (a minimal of 19%) and reduced swimming velocity (a minimal of 30%) were observed in the CP-exposed larvae. The thicknesses of retinal ganglion layer, inner plexiform layer, and inner nuclear layer in the retina were increased after exposure to CP. Meanwhile, exposure to CP increased karyorrhexis and karyolysis in the liver tissue. Transcriptomic analysis identified 607 differentially expressed genes (DEGs) (159 up-regulated and 448 down-regulated). A significant reduction in the transcripts of sgk1 (the FoxO pathway), jun (the MAPK pathway), and diabloa (apoptosis pathway) were observed in the CP-treated larvae. This study has demonstrated that low concentrations of CP cause malformation, reduced swimming capacity, histopathological alterations in the retina and liver tissues, and interference on transcriptional expressions of key genes associated with different pathways. The ecological risk of CP and other anticancer drugs to aquatic organisms merits future investigation.
Collapse
Affiliation(s)
- Dan Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Weijun Sun
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Hongxing Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Haojun Lei
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Xiao Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Hongsong Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guo-Yong Huang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Wen-Jun Shi
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Yongju Luo
- Guangxi Academy of Fishery Sciences, Nanning 530021, China.
| | - Lingtian Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| |
Collapse
|
37
|
Mazierski P, Wilczewska P, Lisowski W, Klimczuk T, Białk-Bielińska A, Zaleska-Medyska A, Siedlecka EM, Pieczyńska A. Ti/TiO 2 nanotubes sensitized PbS quantum dots as photoelectrodes applied for decomposition of anticancer drugs under simulated solar energy. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126751. [PMID: 34343880 DOI: 10.1016/j.jhazmat.2021.126751] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/12/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
One of the challenges in research into photoelectrocatalytic (PEC) degradation of pollutants is finding the appropriate photoanode material, which has a significant impact on the process efficiency. Among all others, photoelectrodes based on an ordered TiO2 nanotube arrays are a promising material due to well-developed surface area and efficient charge separation. To increase the PEC activity of this material, the SILAR method was used to decorate Ti/TiO2 nanotubes by PbS quantum dots (QD). The ifosfamide (IF) degradation rate constants was twice as higher for PbS-Ti/TiO2 (0.0148 min-1) than for Ti/TiO2 (0.0072 min-1). Our research showed the highest efficiency of PEC degradation of drugs using IIIPbS-Ti/TiO2 made with 3 SILAR cycles (PbS QD size mainly 2-4 nm). The 4 and 6 of SILAR cycles resulted in the aggregation of PbS nanoparticles on the Ti/TiO2 surface and decreased IF PEC degradation rate to 0.0043 and 0.0033 min-1, respectively. Research on PEC mechanism has shown that the drugs are degraded mainly by the activity of photogenerated holes and hydroxyl radicals. In addition, the identified drug intermediates made possible to propose a degradation pathways of anticancer drugs and the ecotoxicity test show no inhibition of Lemna minor growth of treated solutions.
Collapse
Affiliation(s)
- Paweł Mazierski
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland
| | - Patrycja Wilczewska
- Department of General and Inorganic Chemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland
| | - Wojciech Lisowski
- Institute of Physical Chemistry, Polish Academy of Science, Kasprzaka 44/52, 01-244 Warsaw, Poland
| | - Tomasz Klimczuk
- Department of Solid State Physics, Gdansk University of Technology, 80-233 Gdansk, Poland
| | - Anna Białk-Bielińska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland
| | - Adriana Zaleska-Medyska
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland
| | - Ewa M Siedlecka
- Department of General and Inorganic Chemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland
| | - Aleksandra Pieczyńska
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland.
| |
Collapse
|
38
|
Kenda M, Avsec D, Zore T, Kogovšek E, Pečar Fonović U, Kos J, Bozovičar K, Bratkovič T, Karas Kuželički N, Žegura B, Filipič M, Sollner Dolenc M. Effects of tyrosine kinase inhibitors on androgen, estrogen α, glucocorticoid and thyroid receptors. Toxicol Appl Pharmacol 2022; 434:115818. [PMID: 34890638 DOI: 10.1016/j.taap.2021.115818] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/24/2021] [Accepted: 12/02/2021] [Indexed: 11/25/2022]
Abstract
Modern anticancer therapies favor a targeted approach. Tyrosine kinase inhibitors (TKIs) are drugs that target molecular pathways involved in various types of malignancies. Although TKIs are safe and well tolerated, they remain not completely selective; e.g., endocrine-mediated adverse events have been observed with their use. In the present study, the effects of seven TKIs were determined on the activities of androgen receptor, estrogen receptor α (ERα), glucocorticoid receptor and thyroid receptor in vitro using stably transfected cell lines expressing firefly luciferase reporter gene: AR-EcoScreen, hERα-HeLa9903, MDA-kb2, and GH3.TRE-Luc cells, respectively. Antiandrogenic activity was seen for erlotinib, estrogenic activity for imatinib, antiestrogenic activity for dasatinib, erlotinib, nilotinib, regorafenib and sorafenib, glucocorticoid activity for erlotinib and ibrutinib, antiglucocorticoid activity for regorafenib and sorafenib, and antithyroid activity for ibrutinib. Additionally, synergism was seen for 1-5 μM dasatinib and 500 nM hydrocortisone combination for glucocorticoid activity in MDA-kb2 cells. The estrogenic activity of imatinib was confirmed as mediated through ERα, and interference of the TKIs with the reporter gene assays was ruled out in a cell-lysate-based firefly luciferase enzyme inhibition assay. Imatinib in combination with 4-hydroxytamoxifen showed concentration-dependent effects on the metabolic activity of ERα-expressing AN3CA, MCF-7, and SKOV3 cells, and on cell proliferation and adhesion of MCF-7 cells. These findings contribute to the understanding of the endocrine effects of TKIs, in terms of toxicity and effectiveness, and define the need to further evaluate the endocrine disrupting activities of TKIs to safeguard human and environmental health.
Collapse
Affiliation(s)
- Maša Kenda
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI-1000 Ljubljana, Slovenia.
| | - Damjan Avsec
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI-1000 Ljubljana, Slovenia.
| | - Taja Zore
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI-1000 Ljubljana, Slovenia.
| | - Eva Kogovšek
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| | - Urša Pečar Fonović
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI-1000 Ljubljana, Slovenia.
| | - Janko Kos
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI-1000 Ljubljana, Slovenia.
| | - Krištof Bozovičar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI-1000 Ljubljana, Slovenia.
| | - Tomaž Bratkovič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI-1000 Ljubljana, Slovenia.
| | | | - Bojana Žegura
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, Večna pot 111, SI-1000 Ljubljana, Slovenia.
| | - Metka Filipič
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, Večna pot 111, SI-1000 Ljubljana, Slovenia.
| | - Marija Sollner Dolenc
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
39
|
Espinosa A, Nélieu S, Lieben P, Skarbek C, Labruère R, Benoit P. Photodegradation of methotrexate in aqueous solution: degradation kinetics and identification of transformation products. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:6060-6071. [PMID: 34431057 DOI: 10.1007/s11356-021-15820-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
Methotrexate is an antineoplastic folate analog of high environmental concern, due to its low biodegradability and toxicological properties. This study focused on its photodegradation under two irradiation conditions, aiming to be representative of environment (300-450 nm) and drinking water treatment (254 nm). The photodegradation experiments were conducted at two pH, to vary the methotrexate ionization state and to produce a large variety of transformation products (TPs). The degradation kinetics determined through LC-UV monitoring were contrasted according to pH and irradiation wavelength. However, the quantum yields were independent of ionization state at 254 nm and the changes in kinetics at higher wavelengths were attributed to a change in the degradation mechanism. The TPs formed during the reactions were identified by UHPLC-MS/MS, using both the positive and negative modes. Among the eleven proposed structures, five were described as methotrexate TPs for the first time. The TPs result from N-demethylation, glutamic acid oxidation, and C-N cleavage, all of them leading to further degraded photoproducts presenting modified or lost glutamic acid part. This was made possible thanks to the negative mode, which allowed the exploration of the glutamic acid moiety modifications. Cytotoxicity assessment on A549 cancer cells demonstrated that all photoproducts formed at pH 7 were less toxic than the parent compound.
Collapse
Affiliation(s)
- Anaïs Espinosa
- AgroParisTech, UMR ECOSYS, Université Paris-Saclay, INRAE, 78850, Thiverval-Grignon, France
| | - Sylvie Nélieu
- AgroParisTech, UMR ECOSYS, Université Paris-Saclay, INRAE, 78850, Thiverval-Grignon, France.
| | - Pascale Lieben
- AgroParisTech, UMR SayFood, Université Paris-Saclay, INRAE, 78850, Thiverval-Grignon, France
| | - Charles Skarbek
- Institut de chimie moléculaire et des matériaux d'Orsay, Université Paris-Saclay, CNRS, 91405, Orsay, France
| | - Raphaël Labruère
- Institut de chimie moléculaire et des matériaux d'Orsay, Université Paris-Saclay, CNRS, 91405, Orsay, France
| | - Pierre Benoit
- AgroParisTech, UMR ECOSYS, Université Paris-Saclay, INRAE, 78850, Thiverval-Grignon, France
| |
Collapse
|
40
|
NOHARA M, IWASAKI M, NISHIO M, SUGIYAMA A. Histopathologic effect of in ovo exposure to methotrexate at early embryonic stage on optic tectum of Japanese quail (<i>Coturnix japonica</i>). J Toxicol Pathol 2022; 35:269-274. [PMID: 35832899 PMCID: PMC9256001 DOI: 10.1293/tox.2022-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/07/2022] [Indexed: 11/25/2022] Open
Abstract
The optic tectum of Japanese quail embryos with in ovo exposure to methotrexate 100 ng/g
egg on embryonic day 4 was examined from 3 to 24 hour after treatment. At 9 hour after
methotrexate exposure, several apoptotic neuroepithelial cells appeared in the ventricular
zone of the optic tectum; these increased in number and were diffusely distributed
throughout all layers of the ventricular zone of the optic tectum at 12 hour. At 24 hour,
neuroepithelial cells in the ventricular zone of the optic tectum were eliminated and
showed sparse cell density. Throughout the experimental period, proliferation of
neuroepithelial cells in the ventricular zone of the optic tectum of methotrexate-treated
embryos was inhibited. These results suggest that neuroepithelial cells in the ventricular
zone of the optic tectum in Japanese quail embryos can be affected by folic acid
antimetabolites, methotrexate, at an early embryonic stage.
Collapse
Affiliation(s)
- Masakatsu NOHARA
- Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoinooka, Imabari, Ehime 794-8555, Japan
| | - Mayo IWASAKI
- Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoinooka, Imabari, Ehime 794-8555, Japan
| | - Mahiro NISHIO
- Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoinooka, Imabari, Ehime 794-8555, Japan
| | - Akihiko SUGIYAMA
- Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoinooka, Imabari, Ehime 794-8555, Japan
| |
Collapse
|
41
|
Elersek T, Novak M, Mlinar M, Virant I, Bahor N, Leben K, Žegura B, Filipič M. Lethal and Sub-Lethal Effects and Modulation of Gene Expression Induced by T Kinase Inhibitors in Zebrafish (Danio Rerio) Embryos. TOXICS 2021; 10:toxics10010004. [PMID: 35051046 PMCID: PMC8781212 DOI: 10.3390/toxics10010004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 12/11/2022]
Abstract
Tyrosine kinase inhibitors (TKIs) are designed for targeted cancer therapy. The consumption of these drugs during the last 20 years has been constantly rising. In the zebrafish (Danio rerio) embryo toxicity test, we assessed the toxicity of six TKIs: imatinib mesylate, erlotinib, nilotinib, dasatinib, sorafenib and regorafenib. Imatinib mesylate and dasatinib induced lethal effects, while regorafenib, sorfenib and dasatinib caused a significant increase of sub-lethal effects, predominantly oedema, no blood circulation and formation of blood aggregates. The analyses of the changes in the expression of selected genes associated with the hormone system after the exposure to imatinib mesylate, dasatinib and regorafenib demonstrated that all three tested TKIs deregulated the expression of oestrogen receptor esr1, cytochrome P450 aromatase (cypa19b) and hydroxysteroid-dehydrogenase (hsd3b), regorafenib, and also thyroglobulin (tg). The expression of genes involved in the DNA damage response (gadd45 and mcm6) and apoptosis (bcl2) was deregulated only by exposure to regorafenib. The data indicate that common mechanisms, namely antiangiogenic activity and interference with steroidogenesis are involved in the TKI induced sub-lethal effects and potential hormone disrupting activity, respectively. The residues of TKIs may represent an environmental hazard; therefore, further ecotoxicological studies focusing also on the effects of their mixtures are warranted.
Collapse
Affiliation(s)
- Tina Elersek
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia; (T.E.); (M.N.); (M.M.); (N.B.); (K.L.); (B.Ž.)
| | - Matjaž Novak
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia; (T.E.); (M.N.); (M.M.); (N.B.); (K.L.); (B.Ž.)
| | - Mateja Mlinar
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia; (T.E.); (M.N.); (M.M.); (N.B.); (K.L.); (B.Ž.)
| | - Igor Virant
- Institute of Oncology Ljubljana, Zaloška 2, 1000 Ljubljana, Slovenia;
| | - Nika Bahor
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia; (T.E.); (M.N.); (M.M.); (N.B.); (K.L.); (B.Ž.)
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Karin Leben
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia; (T.E.); (M.N.); (M.M.); (N.B.); (K.L.); (B.Ž.)
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Bojana Žegura
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia; (T.E.); (M.N.); (M.M.); (N.B.); (K.L.); (B.Ž.)
| | - Metka Filipič
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia; (T.E.); (M.N.); (M.M.); (N.B.); (K.L.); (B.Ž.)
- Correspondence:
| |
Collapse
|
42
|
Tkalec Ž, Negreira N, López de Alda M, Barceló D, Kosjek T. A novel workflow utilizing open-source software tools in the environmental fate studies: The example of imatinib biotransformation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149063. [PMID: 34311367 DOI: 10.1016/j.scitotenv.2021.149063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/12/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
The aim of this study is to utilize novel and powerful workflows with publicly available tools to efficiently process data and facilitate rapid acquisition of knowledge on environmental fate studies. Taking imatinib (IMA) as an example, we developed an efficient workflow to describe IMA biodegradation with activated sludge (AS) from wastewater treatment plants (WWTP). IMA is a cytostatic pharmaceutical; a selective tyrosine kinase inhibitor used to treat chronic myeloid leukemia. Its reported ecotoxic, endocrine and genotoxic effects imply high risk for aquatic wildlife and human health, however its fate in the environment is not yet well known. The study was conducted in a batch biotransformation setup, at two AS concentration levels and in presence and absence of carbon source. Degradation profiles and formation of IMA transformation products (TPs) were investigated using UHPLC-QqOrbitrap-MS/MS which showed that IMA is readily biodegradable. TPs were determined using multivariate statistical analysis. Eight TPs were determined and tentatively identified, six of them for first time. Hydrolysis of amide bond, oxidation, demethylation, deamination, acetylation and succinylation are proposed as major biodegradation pathways. TP235, the product of amide bond hydrolysis, was detected and quantified in actual wastewaters, at levels around 1 ng/L. This calls for more studies on the environmental fate of IMA in order to properly asses the environmental risk and hazard associated to IMA and its TPs.
Collapse
Affiliation(s)
- Žiga Tkalec
- Jožef Stefan Institute, Department of Environmental Sciences, Jamova 39, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, Ljubljana, Slovenia
| | - Noelia Negreira
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish National Research Council (CSIC), Barcelona, Spain
| | - Miren López de Alda
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish National Research Council (CSIC), Barcelona, Spain.
| | - Damià Barceló
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish National Research Council (CSIC), Barcelona, Spain
| | - Tina Kosjek
- Jožef Stefan Institute, Department of Environmental Sciences, Jamova 39, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, Ljubljana, Slovenia.
| |
Collapse
|
43
|
Zhang S, Ye C, Li J, Yu X, Feng M. Treatment-driven removal efficiency, product formation, and toxicity evolution of antineoplastic agents: Current status and implications for water safety assessment. WATER RESEARCH 2021; 206:117729. [PMID: 34624659 DOI: 10.1016/j.watres.2021.117729] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/26/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Antineoplastic compounds, designed for chemotherapeutic anticancer therapy, have become emerging contaminants of global concern over the past decade due to their ubiquitous occurrence, environmental persistence, and multiple adverse effects on aquatic ecosystems. Increasing efforts have been devoted to developing efficient strategies for remediating water containing these micropollutants. In this study, the physicochemical properties, natural attenuation, and chemical reactivity with aqueous oxidizing species of five antineoplastic drugs with the highest environmental prevalence (i.e., tamoxifen, cyclophosphamide, ifosfamide, 5-fluorouracil, and methotrexate) were summarized. The removal performance, transformation products (TPs) of varying structures, overall reaction pathways, and toxicity evolution during different treatments were evaluated and discussed. Additionally, the biodegradability and multi-endpoint toxicity of each TP were predicted using in silico QSAR software. Depending on their distinct inherent structures, the reactivity of the antineoplastics with oxidizing species varied, with hydroxyl radicals exhibiting unparalleled merits in rapid oxidation. Complete elimination of these contaminants was observed during oxidative treatments, but with inadequate mineralization. Notably, the increase in toxicity within multiple processes was determined based on both experimental bioassays and theoretical predictions. This may be attributed to the adverse effects induced by the large number of identified and unknown TPs individually and in combination. Together with the environmental persistence and low biodegradability of most TPs, these results necessitate the application of efficient post-treatments in conjunction with a more thorough water safety evaluation (e.g., using high-throughput screening) of the mixtures of treated water and wastewater.
Collapse
Affiliation(s)
- Shengqi Zhang
- College of the Environment & Ecology, Xiamen University, Xiamen, PR China
| | - Chengsong Ye
- College of the Environment & Ecology, Xiamen University, Xiamen, PR China
| | - Jianguo Li
- College of the Environment & Ecology, Xiamen University, Xiamen, PR China
| | - Xin Yu
- College of the Environment & Ecology, Xiamen University, Xiamen, PR China
| | - Mingbao Feng
- College of the Environment & Ecology, Xiamen University, Xiamen, PR China.
| |
Collapse
|
44
|
Queirós V, Azeiteiro UM, Barata C, Santos JL, Alonso E, Soares AMVM, Freitas R. Effects of the antineoplastic drug cyclophosphamide on the biochemical responses of the mussel Mytilus galloprovincialis under different temperatures. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117735. [PMID: 34271515 DOI: 10.1016/j.envpol.2021.117735] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
Cyclophosphamide (CP) is an antineoplastic drug widely used in chemotherapy treatments with high consumption rates and that has been detected in the aquatic environment. After being released into the aquatic environment, CP may cause adverse effects on aquatic organisms since antineoplastics are well-known cytotoxic, genotoxic, mutagenic and teratogenic drugs. Moreover, predicted environmental changes, such as the temperature rising, may alter the impacts caused by CP on organisms. Thus, the present study aimed to assess the effects caused by CP chronic exposure in the mussel Mytilus galloprovincialis, under actual and predicted warming scenarios. Organisms were exposed for 28 days to different concentrations of CP (10, 100, 500 and 1000 ng/L) at control (17 ± 1.0 °C) and increased (21 ± 1.0 °C) temperatures. Biochemical responses related to metabolic capacity, energy reserves, oxidative stress and neurotoxicity were assessed. The results showed that the organisms were able to maintain their metabolic capacity under all exposure conditions. However, their antioxidant defense mechanisms were activated mostly at higher CP concentrations being able to prevent cellular damage, even under the warming scenario. Overall, the present findings suggest that temperature rise may not alter the impacts of CP towards M. galloprovincialis.
Collapse
Affiliation(s)
- Vanessa Queirós
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Ulisses M Azeiteiro
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Carlos Barata
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Jordi Girona 18, 08034, Barcelona, Spain
| | - Juan Luis Santos
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, Spain
| | - Esteban Alonso
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, Spain
| | - Amadeu M V M Soares
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Rosa Freitas
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
45
|
Abstract
The uncontrolled release of pharmaceutical drugs into the environment raised serious concerns in the last decades as they can potentially exert adverse effects on living organisms even at the low concentrations at which they are typically found. Among them, platinum based cytostatic drugs (Pt CDs) are among the most used drugs in cancer treatments which are administered via intravenous infusion and released partially intact or as transformation products. In this review, the studies on environmental occurrence, transformation, potential ecotoxicity, and possible treatment for the removal of platinum cytostatic compounds are revised. The analysis of the literature highlighted the generally low total platinum concentration values (from a few tens of ng L−1 to a few hundred μg L−1) found in hospital effluents. Additionally, several studies highlighted how hospitals are sources of a minor fraction of the total Pt CDs found in the environment due to the slow excretion rate which is longer than the usual treatment durations. Only some data about the impact of the exposure to low levels of Pt CDs on the health of flora and fauna are present in literature. In some cases, adverse effects have been shown to occur in living organisms, even at low concentrations. Further ecotoxicity data are needed to support or exclude their chronic effects on the ecosystem. Finally, fundamental understanding is required on the platinum drugs removal by MBR, AOPs, technologies, and adsorption.
Collapse
|
46
|
Cristóvão MB, Bento-Silva A, Bronze MR, Crespo JG, Pereira VJ. Detection of anticancer drugs in wastewater effluents: Grab versus passive sampling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147477. [PMID: 33971591 DOI: 10.1016/j.scitotenv.2021.147477] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/14/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
The occurrence of six anticancer drugs was evaluated in wastewater effluents. Several grab samples from wastewater effluent were collected throughout a year. Capecitabine, cyclophosphamide and ifosfamide were detected at concentrations ranging from 8 to 46 ng·L-1. Capecitabine was detected in all the sampling events whereas cyclophosphamide and ifosfamide were detected less frequently. Additionally, the suitability of using pharmaceutical-polar organic chemical integrative samplers (POCIS) to monitor the target drugs in wastewater effluents was assessed. Capecitabine, ifosfamide and cyclophosphamide were detected with POCIS and showed a linear uptake over 15 days. The sampling rates, determined in situ, were used to estimate time-weighted average concentrations. A good correlation was found between the concentration of capecitabine detected with POCIS deployed during five days (32 ± 1 ng·L-1) and the average concentrations obtained in grab samples. The use of passive samplers has advantages over grab samples: easier analysis, less time and costs associated with the analytical method. Passive samplers also provide a time-weighted information about the concentration of pollutants in the aquatic environment. However, information may be lost when the concentration of the target compounds in wastewater effluents is low and the passive samplers are deployed for a short time.
Collapse
Affiliation(s)
- Maria B Cristóvão
- iBET - Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal; LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, Caparica, Portugal
| | | | - Maria R Bronze
- iBET - Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal; Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - João G Crespo
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Vanessa J Pereira
- iBET - Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| |
Collapse
|
47
|
Li D, Chen H, Liu H, Schlenk D, Mu J, Lacorte S, Ying GG, Xie L. Anticancer drugs in the aquatic ecosystem: Environmental occurrence, ecotoxicological effect and risk assessment. ENVIRONMENT INTERNATIONAL 2021; 153:106543. [PMID: 33813231 DOI: 10.1016/j.envint.2021.106543] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Anticancer drugs are a group of therapeutic agents used to enhance cell death in targeted cell types of neoplasia. Because of frequent use and eventual discharge, they have been often detected in wastewater from pharmaceutical factories and hospitals, domestic wastewater, and surface waters. The occurrence of these drugs in aquatic ecosystems and their effects on aquatic organisms have been poorly characterized. This review focuses on the global occurrence of major classes of anticancer drugs in water and sediments of freshwater ecosystems and their ecotoxicological effects at different biological levels. While the availability of data is fairly limited, concentrations of most anticancer drugs range from < 2 ng/L to 762 µg/L in receiving water, while levels in sediments and sludge vary from 0.25 to 42.5 µg/kg. Their detection frequencies were 58%, 52% (78%) and 59% in hospital wastewater, wastewater treatment plant effluents (influents) and surface water, respectively. Predicted log Kow values of vincristine, imatinib mesylate and tamoxifen are higher than 3 and have estimated half-lives>60 d in waters using quantitative structure-activity relationship models, indicating high potential for persistence and bioaccumulation. Based on a species sensitivity distribution evaluation of 9 compounds, crustaceans are most sensitive to anticancer drugs. The most hazardous compound is cisplatin which has a hazard concentration at the 5th percentile. For Daphnia magna, the acute toxicities of major classes of anticancer drugs are ranked as platinum complexes > endocrine therapy agents > antibiotics > antimetabolite agents > alkylating agents. Using hazard quotient analysis based primarily on the lowest observed effect concentrations (LOECs), cyclophosphamide, cisplatin, 5-fluorouracil, imatinib mesylate, bicalutamide, etoposide and paclitaxel have the highest hazard for aquatic organisms. Further research is needed to identify appropriate chronic endpoints for risk assessment thresholds as well as to better understand the mechanisms of action and the potential multigenerational toxicity, and trophic transfer in ecosystems.
Collapse
Affiliation(s)
- Dan Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Hongxing Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Hongsong Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California Riverside, Riverside, CA 92507, USA
| | - Jingli Mu
- Fujian Key Laboratory of Functional Marine Sensing Materials, Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| | - Silvia Lacorte
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| | - Lingtian Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| |
Collapse
|
48
|
Queirós V, Azeiteiro UM, Soares AMVM, Freitas R. The antineoplastic drugs cyclophosphamide and cisplatin in the aquatic environment - Review. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125028. [PMID: 33951853 DOI: 10.1016/j.jhazmat.2020.125028] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
Cyclophosphamide (CP) and Cisplatin (CDDP) are antineoplastic drugs widely used in the treatment of neoplastic diseases that have been detected in the aquatic environment. This review summarizes the current knowledge on the presence in the aquatic environment of these two drugs and their effects on freshwater and marine invertebrates, which includes good model species in ecotoxicology and risk assessment programs. The consumption levels, occurrence in freshwater and marine ecosystems, and the impacts exerted on aquatic organisms, even at low concentrations, justifies this review and the selection of these two drugs. Both pharmaceuticals were detected in different aquatic environments, with concentrations ranging from ng L-1 up to 687.0 μg L-1 (CP) and 250 μg L-1 (CDDP). The available studies showed that CP and CDDP induce individual and sub-individual impacts on aquatic invertebrate species. The most common effects reported were changes in the reproductive function, oxidative stress, genotoxicity, cytotoxicity and neurotoxicity. The literature used in this review supports the need to increase monitoring studies concerning the occurrence of antineoplastic drugs in the aquatic environment since negative effects have been reported even at trace concentrations (ng L-1). Furthermore, marine ecosystems should be considered as a priority since less is known on the occurrence and effects of antineoplastic drugs in this environment comparing to freshwater ecosystems.
Collapse
Affiliation(s)
- Vanessa Queirós
- Departamento de Biologia & CESAM, Universidade de Aveiro, Portugal
| | | | | | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, Portugal.
| |
Collapse
|
49
|
Martin MA, Sivaguru J, McEvoy J, Sonthiphand P, Khan E. Photolytic fate of (E)- and (Z)-endoxifen in water and treated wastewater exposed to sunlight. ENVIRONMENTAL RESEARCH 2021; 197:111121. [PMID: 33823193 DOI: 10.1016/j.envres.2021.111121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/16/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
Endoxifen is the main active metabolite of a common cytostatic drug, tamoxifen. Endoxifen has been recently detected in the final effluent of municipal wastewater treatment plants. The antiestrogenic activity of endoxifen could bring negative effects to aquatic life if released to the water environment. This study elucidated the fate and susceptibility of (E)- and (Z)-endoxifen (2 μg mL-1, 1:1 wt ratio between the two easily interchangeable isomers) in wastewater and receiving surface water to sunlight. Phototransformation by-products (PBPs) and their toxicity were determined. Sunlight reduced at least 83% of endoxifen concentration in wastewater samples, whereas in surface water samples, 60% of endoxifen was photodegraded after 180 min of the irradiation. In ultrapure water samples spiked with endoxifen, PBPs were mainly generated via con-rotatory 6π-photocyclization, followed by oxidative aromatization. These PBPs underwent secondary reactions leading to a series of PBPs with different molecular weights. Eight PBPs were identified and the toxicity analysis via the Toxicity Estimation Software Tool revealed that seven of these PBPs are more toxic than endoxifen itself. This is likely due to the formation of poly-aromatic core in the PBPs due to exposure to sunlight. Therefore, highly toxic PBPs may be generated if endoxifen is present in water and wastewater exposed to sunlight. The presence, fates and activities of these PBPs in surface water especially at locations close to treated wastewater discharge points should be investigated.
Collapse
Affiliation(s)
- Marina Ariño Martin
- Environmental and Conservation Sciences Program, North Dakota State University, Fargo, ND, 58108, USA; International Postgraduate Programs in Environmental Management, Graduate School Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Jayaraman Sivaguru
- Center for Photochemical Sciences and Department of Chemistry, Bowling Green State University, Bowling Green, OH, 43403, USA.
| | - John McEvoy
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, 58108, USA.
| | | | - Eakalak Khan
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA.
| |
Collapse
|
50
|
Afsa S, Sallem OF, Abdeljelil NB, Feriani A, Najjar MF, Mansour HB. In vivo toxicities of the hospital effluent in Mahdia Tunisia. JOURNAL OF WATER AND HEALTH 2021; 19:499-511. [PMID: 34152302 DOI: 10.2166/wh.2021.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hospital effluent (HE) is one of the most important sources of pharmaceuticals released into the environment. This kind of pollution is a recognized problem for both human health and aquatic life. Consequently, in the present study, we assessed the effects of untreated hospital effluent on mice via biochemical and histopathological determinations. Female mice were given free access to water bottles containing untreated HE at different dilutions for 21 days. Then clinical biochemistry and histopathology evaluation were conducted. Serum biochemistry analysis showed the presence of significant increase in cholesterol, triglycerides, glycaemia and total bilirubin. However, phosphatase alkaline and urea activities have been significantly decreased compared to the control group. No significant variation was observed for the rest of the studied parameters (high-density lipoproteins; low-density lipoproteins and uric acid). Additionally, multiple alterations, including cellular necrosis, leucocyte infiltration and congestion, were observed in different tissues of mice exposed to the tested HE.
Collapse
Affiliation(s)
- Sabrine Afsa
- Research Unit of Analysis and Process Applied to the Environment (APAE UR17ES32), Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Mahdia 5100, Tunisia E-mail:
| | - Ons Fekih Sallem
- Research Unit of Analysis and Process Applied to the Environment (APAE UR17ES32), Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Mahdia 5100, Tunisia E-mail:
| | - Nouha Ben Abdeljelil
- Department of Pathology, Fattouma Bourguiba University Hospital of Monastir, Monastir, Tunisia
| | - Anouar Feriani
- Research Unit of Analysis and Process Applied to the Environment (APAE UR17ES32), Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Mahdia 5100, Tunisia E-mail:
| | - Mohamed Fadhel Najjar
- Laboratory of Biochemistry and Toxicology, Fattouma Bourguiba University Hospital of Monastir, Monastir, Tunisia
| | - Hedi Ben Mansour
- Research Unit of Analysis and Process Applied to the Environment (APAE UR17ES32), Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Mahdia 5100, Tunisia E-mail:
| |
Collapse
|