1
|
Du J, Zhan L, Zhang G, Zhou Q, Wu W. Antibiotic sorption onto MPs in terrestrial environment: a critical review of the transport, bioaccumulation, ecotoxicological effects and prospects. Drug Chem Toxicol 2025; 48:266-280. [PMID: 39686663 DOI: 10.1080/01480545.2024.2433075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/02/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024]
Abstract
Microplastics (MPs) and antibiotics are prevalent contaminants in terrestrial environment. MPs possess the ability to absorb antibiotics, resulting in the formation of complex pollutants. While the accumulation and fate of MPs and antibiotics in marine ecosystems have been extensively studied, their combined pollution behavior in terrestrial environments remains relatively underexplored. This paper describes the sources, migration, and compound pollution of MPs and antibiotics in soil. It reviews the mechanisms of compound toxicity associated with antibiotics and MPs, combining different biological classifications. Moreover, we highlight the factors that influence the effects of MPs as vectors and the critical elements driving the spread of antibiotic resistance genes (ARGs). These information suggests the potential mitigation measures for MPs contamination from different perspectives to reduce the impact of ARGs-carrying MPs on human health, specifically through transmission via plants, microbes, or terrestrial vertebrates. Finally, we identify gaps in scientific knowledge regarding the interaction between MPs and antibiotics in soil environments, including the need for standardized research methods, multi-dimensional studies on complex ecological effects, and more comprehensive risk assessments of other pollutants on human health. In summary, this paper provides foundational information for assessing their combined toxicity, offers insights into the distribution of these emerging pollutants in soil, and contributes to a better understanding of the environmental impact of these contaminants.
Collapse
Affiliation(s)
- Jia Du
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Lichuan Zhan
- Shengzhou Agricultural Technology Extension Center, Shengzhou, China
| | - Gengmiao Zhang
- Agricultural Technology Extension Center of Zhuji City, Zhuji, China
| | - Qingwei Zhou
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Weihong Wu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
| |
Collapse
|
2
|
Dogra K, Kumar M, Deoli Bahukhandi K, Zang J. Traversing the prevalence of microplastics in soil-agro ecosystems: Origin, occurrence, and pollutants synergies. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 266:104398. [PMID: 39032427 DOI: 10.1016/j.jconhyd.2024.104398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/17/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
The ubiquity of plastics in modern life has made them a significant environmental concern and a marker of the Anthropocene era. The degradation of plastics results in the formation of microplastics (MPs), which measure 5 mm or less. The coexistence of MPs with other pollutants found in sludge, water treatment plant effluents, surface water, and groundwater, shapes the environmental landscape together. Despite extensive investigation, the long-term implications of MPs in soils remain uncertain, underscoring the importance of delving into their transportation and interactions with soil biota and other contaminants. The present article provides a comprehensive overview of MPs contamination in soil, encompassing its sources, prevalence, features, and interactions with soil flora and fauna, heavy metals, and organic compounds. The sources of MPs in soil agroecosystems are mulching, composting, littering, sewage sludge, irrigation water, and fertilizer application. The concentration of MPs reported in plastic mulch, littering, and sewage sludge is 503 ± 2760 items per kg-1, 4483 ± 2315 MPs/kg, and 11,100 ± 570 per/kg. The transport of MPs in soil agroecosystems is due to their horizontal and vertical migration including biotic and abiotic mobility. The article also highlighted the analytical process, which includes sampling planning, collection, purification, extraction, and identification techniques of MPs in soil agroecosystems. The mechanism in the interaction of MPs and organic pollutants includes surface adsorption or adhesion cation bridging, hydrogen bonding, charge transfer, ligand exchange, van der Waals interactions, and ion exchange.
Collapse
Affiliation(s)
- Kanika Dogra
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun 248007, Uttarakhand, India
| | - Manish Kumar
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun 248007, Uttarakhand, India; Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Monterey, Monterrey 64849, Nuevo León, Mexico.
| | - Kanchan Deoli Bahukhandi
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun 248007, Uttarakhand, India
| | - Jian Zang
- Joint International Research Laboratory of Green Buildings and Built Environments, School of Civil Engineering, Chongqing University, Chongqing, China
| |
Collapse
|
3
|
Parolini M, De Felice B, Gazzotti S, Sugni M, Ortenzi MA. Comparison of the potential toxicity induced by microplastics made of polyethylene terephthalate (PET) and polylactic acid (PLA) on the earthworm Eiseniafoetida. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123868. [PMID: 38556148 DOI: 10.1016/j.envpol.2024.123868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/02/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
A growing number of studies have demonstrated that microplastic (MP) contamination is widespread in terrestrial ecosystems. A wide array of MPs made of conventional, fossil-based polymers differing in size and shape has been detected in soils worldwide. Recently, also MPs made of bioplastics have been found in soils, but there is a dearth of information concerning their toxicity on soil organisms. This study aimed at exploring the potential toxicity induced by the exposure for 28 days to irregular shaped and differently sized MPs made of a fossil-based (polyethylene terephthalate - PET) and a bioplastic (polylactic acid - PLA) polymer on the earthworm Eisenia foetida. Two amounts (1 g and 10 g/kg of soil, corresponding to 0.1% and 1% of soil weight) of both MP types were administered to the earthworms. A multi-level approach was used to investigate the MP-induced effects at sub-individual and individual level. Changes in the activity of antioxidant and detoxifying enzymes, as well as in lipid peroxidation levels, were investigated at specific time-points (i.e., 7, 14, 21 and 28 days) as sub-individual responses. Histological analyses were performed to assess effects at tissue level, while the change in digging activity was considered as a proxy of behavioral effects. Earthworms ingested MPs made of both the polymers. MPs made of PET did not induce any adverse effect at none of the biological levels. In contrast, MPs made of PLA caused the modulation of earthworms' oxidative status as showed by a bell-shaped activity of superoxide dismutase coupled with an increase in glutathione peroxidase activity. However, neither oxidative and tissue damage, nor behavioral alteration occurred. These findings suggest that the exposure to bio-based MPs can cause higher toxicity compared to fossil-based MPs.
Collapse
Affiliation(s)
- Marco Parolini
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, I-20133 Milan, Italy.
| | - Beatrice De Felice
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, I-20133 Milan, Italy
| | - Stefano Gazzotti
- Department of Chemistry, University of Milan, via Golgi 19, I-20133, Milan, Italy
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, I-20133 Milan, Italy
| | - Marco Aldo Ortenzi
- Department of Chemistry, University of Milan, via Golgi 19, I-20133, Milan, Italy
| |
Collapse
|
4
|
Zhang Y, Qin K, Liu C. Low-density polyethylene enhances the disturbance of microbiome and antibiotic resistance genes transfer in soil-earthworm system induced by pyraclostrobin. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133459. [PMID: 38219581 DOI: 10.1016/j.jhazmat.2024.133459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/16/2024]
Abstract
Non-antibiotic chemicals in farmlands, including microplastics (MPs) and pesticides, have the potential to influence the soil microbiome and the dissemination of antibiotic resistance genes (ARGs). Despite this, there is limited understanding of the combined effects of MPs and pesticides on microbial communities and ARGs transmission in soil ecosystems. In this study, we observed that low-density polyethylene (LDPE) microplastic enhance the accumulation of pyraclostrobin in earthworms, resulting in reduced weight and causing severe oxidative damage. Analysis of 16 S rRNA amplification revealed that exposure to pyraclostrobin and/or LDPE disrupts the microbial community structure at the phylum and genus levels, leading to reduced alpha diversity in both the soil and earthworm gut. Furthermore, co-exposure to LDPE and pyraclostrobin increased the relative abundance of ARGs in the soil and earthworm gut by 2.15 and 1.34 times, respectively, compared to exposure to pyraclostrobin alone. It correlated well with the increasing relative abundance of genera carrying ARGs. Our findings contribute novel insights into the impact of co-exposure to MPs and pesticides on soil and earthworm microbiomes, highlighting their role in promoting the transfer of ARGs. This knowledge is crucial for managing the risk associated with the dissemination of ARGs in soil ecosystems.
Collapse
Affiliation(s)
- Yirong Zhang
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou 510642, China
| | - Kaikai Qin
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou 510642, China
| | - Chenglan Liu
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou 510642, China.
| |
Collapse
|
5
|
Huang P, Zhang Y, Hussain N, Lan T, Chen G, Tang X, Deng O, Yan C, Li Y, Luo L, Yang W, Gao X. A bibliometric analysis of global research hotspots and progress on microplastics in soil‒plant systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122890. [PMID: 37944892 DOI: 10.1016/j.envpol.2023.122890] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023]
Abstract
Plastic pollution has become a global and persistent challenge, posing threats to ecosystems and organisms. In recent years, there has been a rapid increase in scientific research focused on understanding microplastics in the soil‒plant system. This surge is primarily driven by the direct impact of microplastics on agricultural productivity and their association with human activities. In this study, we conducted a comprehensive bibliometric analysis to provide an overview of the current research on microplastics in soil‒plant systems. We systematically analysed 192 articles and observed a significant rise in research interests since 2017. Notably, China has emerged as a leading contributor in terms of published papers, closely followed by Germany and the Netherlands. Through co-authorship network analysis, we identified 634 different institutions that participated in publishing papers in this field, with the Chinese Academy of Sciences having the most collaborations. In the co-occurrence keyword network, we identified four clusters focusing on the diversity of microplastics within the agroecosystem, transportation, and quantification of microplastics in soil, analysis of plastic contamination type and impact, and investigation of microplastic phytotoxicity. Furthermore, we identified ten research priorities, categorized into the effects of microplastics in "soil" and "plant". The research hotspots were found to be the effect of microplastics on soil physicochemical properties and the synergistic phytotoxicity of microplastics with other pollutants. Overall, this bibliometric analysis holds significant value, serving as an important reference point and offering valuable suggestions for future researchers in this rapidly advancing field.
Collapse
Affiliation(s)
- Pengxinyue Huang
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yanyan Zhang
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, 211 Huimin Rd., Chengdu, 611130, China; College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, China
| | - Naseer Hussain
- School of Life Sciences, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, Tamil Nadu, 600048, India
| | - Ting Lan
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guangdeng Chen
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaoyan Tang
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ouping Deng
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chaorui Yan
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yang Li
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ling Luo
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wenyu Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, 211 Huimin Rd., Chengdu, 611130, China; College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xuesong Gao
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, China.
| |
Collapse
|
6
|
Ivy N, Bhattacharya S, Dey S, Gupta K, Dey A, Sharma P. Effects of microplastics and arsenic on plants: Interactions, toxicity and environmental implications. CHEMOSPHERE 2023; 338:139542. [PMID: 37474031 DOI: 10.1016/j.chemosphere.2023.139542] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 06/25/2023] [Accepted: 07/15/2023] [Indexed: 07/22/2023]
Abstract
Microplastics are emerging pollutants that are ubiquitously present in environment. Occurrence and dispersion of microplastics in the soil can pose a considerable risk to soil health and biodiversity, including the plants grown in the soil. Uptake and bioaccumulation of microplastics can have detrimental effects on different plant species. Additionally, the co-presence of microplastics and arsenic can cause synergistic, antagonistic, or potentiating toxic impacts on plants. However, limited studies are available on the combined effects of microplastics and arsenic on plants. This paper elucidates both the individual and synergistic effects of microplastics and arsenic on plants. At the outset, the paper highlighted the presence and degradation of microplastics in soil. Subsequently, the interactions between microplastics and plants, accumulation, and influences of microplastics on plant growth and metabolism were explained with underlying mechanisms. Combined effects of microplastics and arsenic on plant growth, metabolism, and toxicity were discussed thereafter. Combined toxic effects of microplastics and arsenic on plants can have detrimental implications on environment, ecosystems and biodiversity. Further investigations on food chain and human health are needed in the context of microplastic-arsenic interactions.
Collapse
Affiliation(s)
- Nishita Ivy
- School of Ecology and Environment Studies, Nalanda University, Rajgir, Bihar, India
| | - Sayan Bhattacharya
- School of Ecology and Environment Studies, Nalanda University, Rajgir, Bihar, India.
| | - Satarupa Dey
- Department of Botany, Shyampur Siddheswari Mahavidyalaya, Howrah, West Bengal, India
| | - Kaushik Gupta
- Belur High School (H.S.), Howrah, West Bengal, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| | | |
Collapse
|
7
|
Qiang L, Hu H, Li G, Xu J, Cheng J, Wang J, Zhang R. Plastic mulching, and occurrence, incorporation, degradation, and impacts of polyethylene microplastics in agroecosystems. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115274. [PMID: 37499389 DOI: 10.1016/j.ecoenv.2023.115274] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023]
Abstract
Polyethylene microplastics have been detected in farmland soil, irrigation water, and soil organisms in agroecosystems, while plastic mulching is suggested as a crucial source of microplastic pollution in the agroecosystem. Plastic mulch can be broken down from plastic mulch debris to microplastics through environmental aging and degradation process in farmlands, and the colonization of polyethylene-degrading microorganisms on polyethylene microplastics can eventually enzymatically depolymerize the polyethylene molecular chains with CO2 release through the tricarboxylic acid cycle. The selective colonization of microplastics by soil microorganisms can cause changes in soil microbial community composition, and it can consequently elicit changes in enzyme activities and nutrient element content in the soil. The biological uptake of polyethylene microplastics and the associated disturbance of energy investment are the main mechanisms impacting soil-dwelling animal development and behavior. As polyethylene microplastics are highly hydrophobic, their presence among soil particles can contribute to soil water repellency and influence soil water availability. Polyethylene microplastics have been shown to cause impacts on crop plant growth, as manifested by the effects of polyethylene microplastics on soil properties and soil biota in the agroecosystems. This review reveals the degradation process, biological impacts, and associated mechanisms of polyethylene microplastics in agroecosystems and could be a critical reference for their risk assessment and management.
Collapse
Affiliation(s)
- Liyuan Qiang
- College of Mechanical and Electrical Engineering, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Northwest Agricultural Equipment, Ministry of Agriculture and Rural Affairs, Xinjiang 832003, China
| | - Huibing Hu
- College of Mechanical and Electrical Engineering, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Northwest Agricultural Equipment, Ministry of Agriculture and Rural Affairs, Xinjiang 832003, China
| | - Guoqiang Li
- College of Mechanical and Electrical Engineering, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Northwest Agricultural Equipment, Ministry of Agriculture and Rural Affairs, Xinjiang 832003, China
| | - Jianlong Xu
- College of Mechanical and Electrical Engineering, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Northwest Agricultural Equipment, Ministry of Agriculture and Rural Affairs, Xinjiang 832003, China
| | - Jinping Cheng
- Department of Science and Environmental Studies, The Education University of Hong Kong, New Territories, Hong Kong SAR, China; The Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.
| | - Jiaping Wang
- Agricultural College, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Ruoyu Zhang
- College of Mechanical and Electrical Engineering, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Northwest Agricultural Equipment, Ministry of Agriculture and Rural Affairs, Xinjiang 832003, China.
| |
Collapse
|
8
|
Casella C, Sol D, Laca A, Díaz M. Microplastics in Sewage Sludge: A review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:63382-63415. [PMID: 37079238 DOI: 10.1007/s11356-023-27151-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Microplastics (MPs) represent a serious problem for the environment and for this reason they have been studied in many articles, especially their presence in aquatic environments and soils. MPs have been found in wastewater and sewage sludge from municipal wastewater treatment plants (WWTPs). Most part of the published works have focused on the detection and elimination of MPs in the water line and several reviews have been published in the last years. In addition, the application of sewage sludge produced from WWTPs for agricultural use is known to be a primary source of MPs in soils. However, in the scientific literature less attention has been paid to the sludge and little is known about MPs fate when it is applied in agriculture. This work aims to give a global revision on the most used techniques to identify and detect MPs in sludges, their characteristics and incidence, their effect on sludge treatments and their impact on the environment. As far as we know, there are no standardized protocols for MPs extraction from soil and the possible repercussions on the cultivation of plants are not known. This review evidences that more studies are necessary to stablished standardized protocols and decipher the main mechanisms and the effects of MPs from sewage sludge in the environment.
Collapse
Affiliation(s)
- Claudio Casella
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería S/N, 33006, Oviedo, Spain
| | - Daniel Sol
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería S/N, 33006, Oviedo, Spain
| | - Adriana Laca
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería S/N, 33006, Oviedo, Spain.
| | - Mario Díaz
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería S/N, 33006, Oviedo, Spain
| |
Collapse
|
9
|
Haldar S, Muralidaran Y, Míguez D, Mulla SI, Mishra P. Eco-toxicity of nano-plastics and its implication on human metabolism: Current and future perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160571. [PMID: 36471520 DOI: 10.1016/j.scitotenv.2022.160571] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/17/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
In the current scenario, plastic pollution has become one of the serious environmental hazard problems due to its improper handling and insufficiency in degradation. Nanoplastics (NPs) are formed when plastic fragments are subjected to ultraviolet radiation, natural weathering, and biodegradation. This review paper focuses on the source of origin, bioaccumulation, potential nanoplastics toxicity impact towards environment and human system and management strategies towards plastic pollution. Moreover, this study demonstrates that nanoplastics interfere with metabolic pathways and cause organ dysfunction. A wide range of studies have documented the alteration of organism physiology and behavior, caused by NPs exposure. A major source of NPs exposure is via ingestion because these plastics are found in foods or food packaging, however, they can also enter the human body via inhalation but in a less well-defined form. In recent literature, the studies demonstrate the mechanisms for NP uptake, affecting factors that have been discussed followed by cytotoxic mechanisms of NPs. However, study on challenges regarding NPs toxicity for the risk assessment of human health is limited. It is important to perform and focus more on the possible impacts of NPs on human health to identify the key challenges and explore the potential impacts of their environmental accumulation and its toxicity impacts.
Collapse
Affiliation(s)
- Shoumi Haldar
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka, India
| | - Yuvashree Muralidaran
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka, India
| | - Diana Míguez
- Latitud - Fundación LATU, Laboratorio Tecnológico del Uruguay (LATU), Edificio Los Abetos, Avenida Italia 6201, C.P. 11500, Montevideo, Uruguay
| | - Sikandar I Mulla
- Department of Biochemistry, School of Allied Health Sciences, REVA University, Bengaluru, Karnataka, India
| | - Prabhakar Mishra
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka, India.
| |
Collapse
|
10
|
Cui W, Gao P, Zhang M, Wang L, Sun H, Liu C. Adverse effects of microplastics on earthworms: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:158041. [PMID: 35973535 DOI: 10.1016/j.scitotenv.2022.158041] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Microplastics are widely distributed in terrestrial environments and have been known to adversely affect earthworms. Based on 65 publications, we summarized the effects of microplastics on the growth, behavior, oxidative responses, gene expression, and gut microbiota of earthworms. Since microplastics are often present simultaneously with other pollutants, especially heavy metals and hydrophobic organic chemicals (HOCs), the interactions and combined effects of microplastics and these pollutants on earthworms have also been discussed. It has been shown that earthworms can selectively ingest microplastics, preferring to those with smaller particle size (especially smaller than 50 μm) and biodegradable compositions. Generally, microplastics with higher concentrations (especially those > 0.5%, w/w) and smaller sizes (e.g., 100 nm) have greater adverse effects on earthworms. Additionally, microplastics can facilitate the accumulation of heavy metals and organic pollutants by earthworms and pose severer damages. Current knowledge gaps and perspectives for future work are pointed out.
Collapse
Affiliation(s)
- Weizhen Cui
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Panpan Gao
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Miaoyuan Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lei Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Chunguang Liu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
11
|
Yang H, Yumeng Y, Yu Y, Yinglin H, Fu B, Wang J. Distribution, sources, migration, influence and analytical methods of microplastics in soil ecosystems. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 243:114009. [PMID: 36030682 DOI: 10.1016/j.ecoenv.2022.114009] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/19/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Microplastics are ubiquitous in soil ecosystems all over the world through source and migration. It is even estimated that the content of microplastics in terrestrial ecosystems exceeds the number of microplastics entering sea ecosystems. However, compared with the research on microplastics in marine ecosystems, the research and discussion on microplastics in soil ecosystems are still less. Transportation, film mulching and sewage sludge are three main sources of soil microplastics. The abundance, polymer type, size and shape of the microplastics are related to the source and they help to clarify the source. The characteristics of microplastics, farming measures, soil animal activities and other factors promote the migration of microplastics, which bring new challenges to the soil ecosystems and humans. This article summarizes the latest research findings on the effects of soil microplasticity on soil properties, plants, animals and microorganisms. The analysis methods of microplastics in soil can refer to the analysis methods of microplastics of aquatic sediments, because soil and aquatic sediments are similar, both of which are complex solid substrates. At present, the development of analytical methods is limited due to the complex matrix of soil and the small volume of microplastics, which requires continuous development and innovation. Through the summary and analysis of related articles, this article reviews the distribution, sources, migration, influence and analysis methods of soil microplastics. This article also critically analyzes the deficiencies in the studies of microplastics in the soil ecosystems, and made some suggestions for future work. The microplastics in soil ecosystems need further research and summary, which will help people further understand the potential hazards of microplastics.
Collapse
Affiliation(s)
- Huirong Yang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Yan Yumeng
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Youkai Yu
- Institute for Innovation and Entrepreneurship, Loughborough University, London E20 3BS, UK
| | - He Yinglin
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Bing Fu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 528478, China; Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China.
| |
Collapse
|
12
|
Pelosi C, Bertrand C, Bretagnolle V, Coeurdassier M, Delhomme O, Deschamps M, Gaba S, Millet M, Nélieu S, Fritsch C. Glyphosate, AMPA and glufosinate in soils and earthworms in a French arable landscape. CHEMOSPHERE 2022; 301:134672. [PMID: 35472617 DOI: 10.1016/j.chemosphere.2022.134672] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/11/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Although Glyphosate-based herbicides are often marketed as environmentally friendly and easily biodegradable, its bioavailability and risks to wildlife raise significant concerns. Among non-target organisms, earthworms which live in close contact with the soil can be directly exposed to pesticides and harmed. We investigated soil contamination and the exposure of earthworms to glyphosate, its metabolite AMPA, and glufosinate in an arable landscape in France, both in treated (i.e. temporary grasslands and cereal fields under conventional farming), and nontreated habitats (i.e. hedgerows, permanent grasslands and cereal fields under organic farming) (n = 120 sampling sites in total). Glyphosate, AMPA and glufosinate were detected in 88%, 58% and 35% of the soil samples, and in 74%, 38% and 12% of the earthworm samples, respectively. For both glyphosate and AMPA, concentrations in soils were at least 10 times lower than predicted environmental concentrations. However, the maximum glyphosate soil concentration measured (i.e., 0.598 mg kg-1) was only 2 to 3 times lower than the concentrations revealed to affect earthworms (survival and avoidance) in the literature. These compounds were found both in conventional and organic farming fields, thus supporting a recent study, and for the first time they were detected in hedgerows and grasslands. However, glyphosate and AMPA were more frequently detected in soils from cereal fields and hedgerows than in grasslands, and median concentrations measured in soils from cereal fields were significantly higher than in the two other habitats. Bioaccumulation of glyphosate and AMPA in earthworms was higher than expected according to the properties of the molecules. Our findings raised issues about the high occurrence of glyphosate and AMPA in soils from cropped and more natural areas in arable landscapes. They also highlight the potential for transfer of these molecules in terrestrial food webs as earthworms are prey for numerous animals.
Collapse
Affiliation(s)
- C Pelosi
- INRAE, Avignon Université, UMR EMMAH, F-84000, Avignon, France.
| | - C Bertrand
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 78026, Versailles, France
| | - V Bretagnolle
- CEBC, UMR 7372, CNRS & La Rochelle Université, Villiers-en-Bois, 79360, France; LTSER « Zone Atelier Plaine & Val de Sèvre », CNRS, Villiers-en-Bois, 79360, France
| | - M Coeurdassier
- UMR 6249 Chrono-environnement CNRS - Université de Franche-Comté USC INRAE, 16 route de Gray 25030 Besançon cedex, France
| | - O Delhomme
- Université de Strasbourg, ICPEES - UMR 7515 CNRS, 67087, Strasbourg, France; Université de Lorraine, ICPEES - UMR 7515 CNRS, 57070, Metz, France
| | - M Deschamps
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 78850, Thiverval-Grignon, France
| | - S Gaba
- LTSER « Zone Atelier Plaine & Val de Sèvre », CNRS, Villiers-en-Bois, 79360, France; USC 1339 Centre d'Etudes Biologiques De Chizé, INRAE, 76390, Villiers-en-Bois, France
| | - M Millet
- Université de Strasbourg, ICPEES - UMR 7515 CNRS, 67087, Strasbourg, France
| | - S Nélieu
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 78850, Thiverval-Grignon, France
| | - C Fritsch
- UMR 6249 Chrono-environnement CNRS - Université de Franche-Comté USC INRAE, 16 route de Gray 25030 Besançon cedex, France
| |
Collapse
|
13
|
Yang H, Dong H, Huang Y, Chen G, Wang J. Interactions of microplastics and main pollutants and environmental behavior in soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153511. [PMID: 35101494 DOI: 10.1016/j.scitotenv.2022.153511] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Microplastics (MPs) are emerging global contaminants, attracting more and more attention because of their difficulty in degradation, extensive and persistent pollution. In freshwater environment, especially in the ocean, they have become a global, public and even political research hotspot. However, the distribution, fate and ecological hazards of MPs in agricultural land and other soils have not been explored fully. Although the occurrence of MPs in different habitats has been reviewed at home and abroad, little attention has been paid to its environmental behavior, ecotoxicology and interaction with biological and chemical pollutants in soil. This review summaries the research progress on the source, accumulation, degradation and migration of MPs in soil, the potential risks of ecological environment and food chain. In order to provide theoretical basis and practical suggestions for related research and regulatory countermeasures, the detection and treatment methods and mechanism of microplastics in soil need to be further explored.
Collapse
Affiliation(s)
- Huirong Yang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Han Dong
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yurou Huang
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Guanglong Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou 510006, China; Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China.
| |
Collapse
|
14
|
Masud N, Davies-Jones A, Griffin B, Cable J. Differential effects of two prevalent environmental pollutants on host-pathogen dynamics. CHEMOSPHERE 2022; 295:133879. [PMID: 35131271 DOI: 10.1016/j.chemosphere.2022.133879] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 01/15/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Chemical pollutants are a major factor implicated in freshwater habitat degradation and species loss. Microplastics and glyphosate-based herbicides are prevalent pollutants with known detrimental effects on animal welfare but our understanding of their impacts on infection dynamics are limited. Within freshwater vertebrates, glyphosate formulations reduce fish tolerance to infections, but the effects of microplastic consumption on disease tolerance have thus far not been assessed. Here, we investigated how microplastic (polypropylene) and the commercial glyphosate-based herbicide, Roundup®, impact fish tolerance to infectious disease and mortality utilising a model fish host-pathogen system. For uninfected fish, microplastic and Roundup had contrasting impacts on mortality as individual stressors, with microplastic increasing and Roundup decreasing mortality compared with control fish not exposed to pollutants. Concerningly, microplastic and Roundup combined had a strong interactive reversal effect by significantly increasing host mortality for uninfected fish (73% mortality). For infected fish, the individual stressors also had contrasting effects on mortality, with microplastic consumption not significantly affecting mortality and Roundup increasing mortality to 55%. When combined, these two pollutants had a moderate interactive synergistic effect on mortality levels of infected fish (53% mortality). Both microplastic and Roundup individually had significant and contrasting impacts on pathogen metrics with microplastic consumption resulting in fish maintaining infections for significantly longer and Roundup significantly reducing pathogen burdens. When combined, the two pollutants had a largely additive effect in reducing pathogen burdens. This study is the first to reveal that microplastic and Roundup individually and interactively impact host-pathogen dynamics and can prove fatal to fish.
Collapse
Affiliation(s)
- Numair Masud
- Cardiff University, School of Biosciences, Sir Martin Evans Building, CF10 3AX, UK.
| | - Alice Davies-Jones
- Cardiff University, School of Biosciences, Sir Martin Evans Building, CF10 3AX, UK
| | - Ben Griffin
- Cardiff University, School of Biosciences, Sir Martin Evans Building, CF10 3AX, UK
| | - Jo Cable
- Cardiff University, School of Biosciences, Sir Martin Evans Building, CF10 3AX, UK
| |
Collapse
|
15
|
Ren X, Yin S, Wang L, Tang J. Microplastics in plant-microbes-soil system: A review on recent studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151523. [PMID: 34748830 DOI: 10.1016/j.scitotenv.2021.151523] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/17/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Microplastics (MPs) and nanoplastics (NPs) have been widely studied, mostly focusing on the methods of separation, detection, and adsorption or the ecological effects in aquatic ecosystems. When different sources and types of MPs/NPs enter the soil, they can affect the biogeochemical cycle in terms of the direct impacts on soil physicochemical properties and soil organisms, and the indirect impact on soil biota through changes in soil material cycling. To date, a few studies have focused on the effects of MPs/NPs on soil ecosystems, including soil properties, microbial communities, soil fauna, and plants, as well as the potential or affirmed correlations among them. In this review, we summarized the recent literature on soil MPs/NPs focusing on their types, sources, separation, and ecological impacts on soil properties, microbes, and plants. We attempted to establish an overall relationship between MPs/NPs and soil plant system. Based on existing studies, we also highlight the research gaps and propose several directions for future studies.
Collapse
Affiliation(s)
- Xinwei Ren
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., Shanghai 200240, China
| | - Shan Yin
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., Shanghai 200240, China
| | - Lan Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Jingchun Tang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
16
|
Kiran BR, Kopperi H, Venkata Mohan S. Micro/nano-plastics occurrence, identification, risk analysis and mitigation: challenges and perspectives. RE/VIEWS IN ENVIRONMENTAL SCIENCE AND BIO/TECHNOLOGY 2022; 21:169-203. [PMID: 35103051 PMCID: PMC8792138 DOI: 10.1007/s11157-021-09609-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 12/29/2021] [Indexed: 04/14/2023]
Abstract
Micro/nanoplastics (MP/NPs) are emerging global pollutants that garnered enormous attention due to their potential threat to the ecosystem in virtue of their persistence and accumulation. Notably, United Nations Environment Programme (UNEP) yearbook in 2014 proposed MPs as one among ten emergent issues that the Earth is facing today. MP/NPs can be found in most regularly used products (primary microplastics) or formed by the fragmentation of bigger plastics (secondary microplastics) and are inextricably discharged into the environment by terrestrial and land-based sources, particularly runoff. They are non-degradable, biologically incompatible, and their presence in the air, soil, water, and food can induce ecotoxicological issues and also a menace to the environment. Due to micro size and diverse chemical nature, MP/NPs easily infiltrate wastewater treatment processes. This communication reviews the current understanding of MP/NPs occurrence, mobility, aggregation behavior, and degradation/assimilation in terrestrial, aquatic (fresh & marine), atmospheric depositions, wetlands and trophic food chain. This communication provide current perspectives and understanding on MP/NPs concerning (1) Source, occurrence, distribution, and properties (2) Impact on the ecosystem and its services, (3) Techniques in detection and identification and (4) Strategies to manage and mitigation.
Collapse
Affiliation(s)
- Boda Ravi Kiran
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering (DEEE), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500007 India
| | - Harishankar Kopperi
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering (DEEE), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500007 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - S. Venkata Mohan
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering (DEEE), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500007 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
17
|
Zhou D, Cai Y, Yang Z. Key factors controlling transport of micro- and nanoplastic in porous media and its effect on coexisting pollutants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118503. [PMID: 34785290 DOI: 10.1016/j.envpol.2021.118503] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/03/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Environmental behavior of micro- and nanoplastics (M&NPs) pollution is an emerging topic in environmental research. The strong adsorption capacities of microplastics and nanoplastics to other substances is a concern. As a carrier, M&NPs probably transfer certain hazardous pollutants over long distance and pose risks to ecosystem and human health. Therefore, understanding the interaction and cotransport of M&NPs with coexisting pollutants is designed and becomes popular for many researchers. This paper introduced the carrier function of M&NPs firstly. Then literature on cotransport of M&NPs with potential coexisting contaminants has been reviewed and discussed. Interacting with micro and nanoplastics, the transport of coexisting matter may be facilitated or inhibited. In reverse, transport and deposition of M&NPs influenced by changed external environment and properties of plastics particles. Finally, limitations of existing studies on cotransport of M&NPs in porous media and directions for future studies were given. This review could serve as a useful reference for predicting the transport of microplastics and coexisting pollutants in natural porous media.
Collapse
Affiliation(s)
- Dan Zhou
- State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing, 100875, China
| | - Yanpeng Cai
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China.
| | - Zhifeng Yang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
18
|
Morphospecies Abundance of Above-Ground Invertebrates in Agricultural Systems under Glyphosate and Microplastics in South-Eastern Mexico. ENVIRONMENTS 2021. [DOI: 10.3390/environments8110130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Soil invertebrates are important for diverse soil ecosystem services, which are jeopardized by pesticides and microplastics. In the present study, we aimed to assess above-ground invertebrates’ morphospecies abundance in the presence of glyphosate (GLY), its main metabolite aminomethylphosphonic acid (AMPA), and microplastics (MPs). Three land-use systems were analyzed: agricultural systems with and without plastic mulch and pesticides (AwPM, AwoPM) and natural unmanaged farming systems (UF). Soil GLY, AMPA, MP concentrations and above-ground invertebrates were quantified. GLY concentrations were also assessed inside invertebrate tissues. GLY, AMPA and the highest concentration of GLY in invertebrates’ tissue were found only in AwoPM at 0.14–0.45 mg kg−1, 0.12–0.94 mg kg−1 and 0.03–0.26 mg kg−1, respectively. MPs were present as follows: AwPM system (100%, 400–2000 particles kg−1) > AwoPM (70.8%, 200–1000 particles kg−1) > UF (37.5%, 200–400 particles kg−1). No significant correlations were found between soil MPs, GLY and AMPA. There was a significant correlation between MPs and morphospecies from the order Entomobrymorpha (Collembola, R = 0.61, p < 0.05). Limnophila, Mesogastropoda (Gastropoda) and Siphonaptera morphospecies were only present in the UF system. GLY in invertebrate tissue was inversely correlated with soil GLY (R = −0.73, p < 0.05) and AMPA (R = −0.59, p < 0.05). Further investigations are required to understand these phenomena.
Collapse
|
19
|
Liwarska-Bizukojc E. Effect of (bio)plastics on soil environment: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148889. [PMID: 34328943 DOI: 10.1016/j.scitotenv.2021.148889] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 06/13/2023]
Abstract
The contribution of improperly disposed plastic wastes is globally evaluated at the level of 30% and these wastes make a particular threat to all living creatures. Thus, the evaluation of the possible impacts of plastic particles on the biotic part of ecosystems has become increasingly important in recent years. As a result, the growing number of publications concerning this subject has been observed since 2018. This paper aims to review the advances in studies on the effect of petroleum-derived plastic and bioplastic particles, taken together in the term (bio)plastics, on the terrestrial ecosystem, particularly on soil biota. It is the first review, in which both petroleum-derived plastics and bioplastics were analysed regarding their potential impacts on the soil compartment. Petroleum-derived plastics were more frequently studied than bioplastics and among analysed papers about 18% concern bioplastics. It was found that (bio)plastics did not affect the germination of seeds. However, they might contribute to the delay in germination processes. Both inhibitory and stimulating effects were observed in relation to the growth of roots and stems. (Bio)plastic microparticles did not inhibit the biochemical activity of nitrifiers and transformation of carbon compounds. Earthworms were predominantly used organisms to test the effect of petroleum-derived plastics on soil biota but there are hardly any data about bioplastics. Petroleum-derived microplastics present in soil at concentrations up to 1000 mg kg-1 usually neither cause to the mortality of earthworms nor affect their reproduction. Micro- and nanoparticles of petroleum-derived plastics could be accumulated in the earthworm intestine and transferred in the food chain. Summarizing, a high variability of results and often appearing lack of dose-dependence relationships hamper the final evaluation of the ecotoxicity of (bio)plastics simultaneously creating a need to develop the ecotoxicological studies on (bio)plastics, especially including these on the effect of bioplastics on soil animals.
Collapse
Affiliation(s)
- Ewa Liwarska-Bizukojc
- Lodz University of Technology, Institute of Environmental Engineering and Building Installations, Al. Politechniki 6, 90-924 Lodz, Poland.
| |
Collapse
|
20
|
Agathokleous E, Iavicoli I, Barceló D, Calabrese EJ. Micro/nanoplastics effects on organisms: A review focusing on 'dose'. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126084. [PMID: 34229388 DOI: 10.1016/j.jhazmat.2021.126084] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/13/2021] [Accepted: 04/26/2021] [Indexed: 05/17/2023]
Abstract
Microplastics have become predominant contaminants, attracting much political and scientific attention. Despite the massively-increasing research on microplastics effects on organisms, the debate of whether environmental concentrations pose hazard and risk continues. This study critically reviews published literatures of microplastics effects on organisms within the context of "dose". It provides substantial evidence of the common occurrence of threshold and hormesis dose responses of numerous aquatic and terrestrial organisms to microplastics. This finding along with accumulated evidence indicating the capacity of organisms for recovery suggests that the linear-no-threshold model is biologically irrelevant and should not serve as a default model for assessing the microplastics risks. The published literature does not provide sufficient evidence supporting the general conclusion that environmental doses of microplastics cause adverse effects on individual organisms. Instead, doses that are smaller than the dose of toxicological threshold and more likely to occur in the environment may even induce positive effects, although the ecological implications of these responses remain unknown. This study also shows that low doses of microplastics can reduce whereas high doses can increase the negative effects of other pollutants. The mechanisms explaining these findings are discussed, providing a novel perspective for evaluating the risks of microplastics in the environment.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Key Laboratory of Agrometeorology of Jiangsu Province, Department of Ecology, School of Applied Meteorology, Nanjing University of Information Science & Technology (NUIST), Nanjing 210044, China.
| | - Ivo Iavicoli
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Damià Barceló
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, C/ Jordi Girona 18-26, 08034 Barcelona, Spain; Catalan Institute for Water Research, ICRA-CERCA, Emili Grahit 101, 17003 Girona, Spain
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
21
|
Agathokleous E, Iavicoli I, Barceló D, Calabrese EJ. Ecological risks in a 'plastic' world: A threat to biological diversity? JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126035. [PMID: 33992919 DOI: 10.1016/j.jhazmat.2021.126035] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/28/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
Microplastics pollution is predicted to increase in the coming decades, raising concerns about its effects on living organisms. Although the effects of microplastics on individual organisms have been extensively studied, the effects on communities, biological diversity, and ecosystems remain underexplored. This paper reviews the published literature concerning how microplastics affect communities, biological diversity, and ecosystem processes. Microplastics increase the abundance of some taxa but decrease the abundance of some other taxa, indicating trade-offs among taxa and altered microbial community composition in both the natural environment and animals' gut. The alteration of community composition by microplastics is highly conserved across taxonomic ranks, while the alpha diversity of microbiota is often reduced or increased, depending on the microplastics dose and environmental conditions, suggesting potential threats to biodiversity. Biogeochemical cycles, greenhouse gas fluxes, and atmospheric chemistry, can also be altered by microplastics pollution. These findings suggest that microplastics may impact the U.N. Sustainability Development Goals (SDGs) to improve atmospheric, soil, and water quality and sustaining biodiversity.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Key Laboratory of Agrometeorology of Jiangsu Province, Department of Ecology, School of Applied Meteorology, Nanjing University of Information Science & Technology (NUIST), Nanjing 210044, China.
| | - Ivo Iavicoli
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Damià Barceló
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, C/ Jordi Girona 18-26, 08034 Barcelona, Spain; Catalan Institute for Water Research, ICRA-CERCA, Emili Grahit 101, 17003 Girona, Spain
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
22
|
Wang Q, Hernández-Crespo C, Du B, Van Hulle SWH, Rousseau DPL. Fate and removal of microplastics in unplanted lab-scale vertical flow constructed wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146152. [PMID: 33714826 DOI: 10.1016/j.scitotenv.2021.146152] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/05/2021] [Accepted: 02/21/2021] [Indexed: 05/26/2023]
Abstract
Many studies have reported conventional wastewater treatment plants as one of the main sources of microplastics (MPs). However, constructed wetlands (CWs) as a nature-based wastewater treatment system have received little attention. This study investigated the influence of biofilm, media type and earthworms on the fate and removal of MPs in a short-term (45d) experiment with unplanted lab-scale vertical flow CWs (VFCWs). In sand-filled VFCWs, MPs were retained in the first 10 cm, and the removal efficiency was 100%, regardless of the presence of a biofilm. When gravel was used as filling material, the removal efficiency of MPs was stable at 96%, but the MPs were distributed throughout the 80 cm high VFCWs. In the presence of earthworms, the maximum depth that MPs reached within sand-filled VFCWs increased from 10 to 15 cm. Furthermore, the MPs concentration at a depth of 3-6 cm and 6-10 cm increased 2 and 10 fold respectively compared to the same VFCWs without earthworms. Although no MPs were detected in the sand from deep layers (15-80 cm), transport of MPs from top to the bottom by earthworms was found, and a few MPs were detected in the effluent, leading to a removal efficiency of 99.8%. This study indicated that both a higher media grain size and the presence of earthworms have a small effect on the removal efficiency of MPs in VFCWs, but the effect on the distribution of MPs was considerably. Longer-term studies in full-scale CWs are advised to perform under the influence of more practical factors.
Collapse
Affiliation(s)
- Qintong Wang
- Laboratory for Industrial Water and Ecotechnology (LIWET), Department of Green Chemistry and Technology, Ghent University Campus Kortrijk, Graaf Karel de Goedelaan 5, B-8500 Kortrijk, Belgium.
| | - Carmen Hernández-Crespo
- Laboratory for Industrial Water and Ecotechnology (LIWET), Department of Green Chemistry and Technology, Ghent University Campus Kortrijk, Graaf Karel de Goedelaan 5, B-8500 Kortrijk, Belgium; Research Institute of Water and Environmental Engineering (IIAMA), Instituto de Ingeniería del Agua y del Medio Ambiente, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.
| | - Benben Du
- Laboratory for Industrial Water and Ecotechnology (LIWET), Department of Green Chemistry and Technology, Ghent University Campus Kortrijk, Graaf Karel de Goedelaan 5, B-8500 Kortrijk, Belgium; Laboratory of Environmental Science and Engineering, College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China.
| | - Stijn W H Van Hulle
- Laboratory for Industrial Water and Ecotechnology (LIWET), Department of Green Chemistry and Technology, Ghent University Campus Kortrijk, Graaf Karel de Goedelaan 5, B-8500 Kortrijk, Belgium.
| | - Diederik P L Rousseau
- Laboratory for Industrial Water and Ecotechnology (LIWET), Department of Green Chemistry and Technology, Ghent University Campus Kortrijk, Graaf Karel de Goedelaan 5, B-8500 Kortrijk, Belgium.
| |
Collapse
|
23
|
Yu H, Peng J, Cao X, Wang Y, Zhang Z, Xu Y, Qi W. Effects of microplastics and glyphosate on growth rate, morphological plasticity, photosynthesis, and oxidative stress in the aquatic species Salvinia cucullata. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 279:116900. [PMID: 33744626 DOI: 10.1016/j.envpol.2021.116900] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/10/2021] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
Glyphosate and microplastics are widely found in marine, terrestrial, and freshwater environments due to their globally widespread application. Further, they have proved to have specific ecotoxicity effects on aquatic plants. However, few studies have focused on the effects of small plastic particles and glyphosate, or especially, their combined effect on vascular plants in freshwater ecosystems. This study aimed to conduct a simulated greenhouse experiment to investigate the ecotoxicity of polystyrene microplastics and glyphosate on the floating plant Salvinia cucullata by exposure to fluorescent polystyrene microplastics (1 μm; concentration, 3, 15, and 75 mg/L), glyphosate (5, 25, and 50 mg/L), and a mixture of the two (3 + 5, 15 + 25, and 75 + 50 mg/L) for seven days. Glyphosate significantly reduced the relative growth rate, photosynthetic capacity, and root activity of S. cucullata. Polystyrene microplastics did not significantly influence photosynthesis or leaf morphological characteristics but they significantly reduced relative growth rate and root activity in S. cucullata, indicating that the effects of microplastics on aquatic plants are potentially associated with different organs exposed to pollution. Polystyrene microplastics and glyphosate activated the plant antioxidant defense systems by increasing antioxidative enzyme activities including, superoxide dismutase, ascorbate peroxidase, and catalase to cope with oxidative stress. Synergistic effects (only observed in percent leaf yellowing) were observed when S. cucullata was exposed to a high concentrations (≥15 + 25 mg/L) of glyphosate and microplastics. Our results indicate that pervasive microplastics and herbicide contamination in freshwater may potentially affect the growth of aquatic plants.
Collapse
Affiliation(s)
- Hongwei Yu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China; The National Field Station of Freshwater Ecosystem of Liangzi Lake, Department of Ecology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jianfeng Peng
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xiaofeng Cao
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yajun Wang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Zhiqiang Zhang
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, Department of Ecology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yan Xu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Weixiao Qi
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
24
|
Koyuncuoğlu P, Erden G. Sampling, pre-treatment, and identification methods of microplastics in sewage sludge and their effects in agricultural soils: a review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:175. [PMID: 33751247 DOI: 10.1007/s10661-021-08943-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Microplastics are widely detected in wastewater treatment plants. They can remove microplastics from wastewaters with a high yield, but it means that microplastics are transferred and accumulated to sewage sludge. Lately, increasing attention has been paid to microplastics in raw and treated wastewaters. However, studies about quantification and identification of microplastics in sewage sludge are very scarce and need to be further investigated. Since the sludge-based microplastics are newly studied and are a challenging matrix due to high organic content, there is limited knowledge of sampling, pre-treatment methods, identification techniques, and expression units. Besides, treated sewage sludge is mostly used for soil amendment to improve soil fertility and it gives economic advantages. This situation creates a pathway for microplastics entering the soil environment with unknown consequences. To the best of our knowledge, microplastics have a large specific surface area, small size, and hydrophobicity which makes it a good adsorbent for other pollutants. Therefore, the combined effect of microplastics with adsorbed pollutants such as heavy metals, antibiotics, and persistent organic pollutants could give serious harm to soil safety and soil organisms. Herein, new developments in the methods for sampling, pre-treatment, and identification techniques of microplastics in sewage sludge were reviewed. Then, the abundance of microplastics, major polymer types, and shapes in sewage sludge were examined. Finally, the effects and ecological risks of microplastic pollution as a result of agricultural usage of sewage sludge in the soil environment have been summarized. Also, the main points for future research were highlighted.
Collapse
Affiliation(s)
- Pelin Koyuncuoğlu
- Engineering Faculty, Environmental Engineering Department, Pamukkale University, Kınıklı Campus, 20160, Denizli, Turkey.
| | - Gülbin Erden
- Engineering Faculty, Environmental Engineering Department, Pamukkale University, Kınıklı Campus, 20160, Denizli, Turkey
| |
Collapse
|
25
|
Okoffo ED, O'Brien S, Ribeiro F, Burrows SD, Toapanta T, Rauert C, O'Brien JW, Tscharke BJ, Wang X, Thomas KV. Plastic particles in soil: state of the knowledge on sources, occurrence and distribution, analytical methods and ecological impacts. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:240-274. [PMID: 33514987 DOI: 10.1039/d0em00312c] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Increased production and use of plastics has resulted in growth in the amount of plastic debris accumulating in the environment, potentially fragmenting into smaller pieces. Fragments <5 mm are typically defined as microplastics, while fragments <0.1 μm are defined as nanoplastics. Over the past decade, an increasing number of studies have reported the occurrence and potential hazards of plastic particles in the aquatic environment. However, less is understood about plastic particles in the terrestrial environment and specifically how much plastic accumulates in soils, the possible sources, potential ecological impacts, interaction of plastic particles with the soil environment, and appropriate extraction and analytical techniques for assessing the above. In this review, a comprehensive overview and a critical perspective on the current state of knowledge on plastic pollution in the soil environment is provided: detailing known sources, occurrence and distribution, analytical techniques used for identification and quantification and the ecological impacts of particles on soil. In addition, knowledge gaps are identified along with suggestions for future research.
Collapse
Affiliation(s)
- Elvis D Okoffo
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia.
| | - Stacey O'Brien
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia.
| | - Francisca Ribeiro
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia. and College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, EX4 4QD, Exeter, UK
| | - Stephen D Burrows
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia. and College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, EX4 4QD, Exeter, UK
| | - Tania Toapanta
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia.
| | - Cassandra Rauert
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia.
| | - Jake W O'Brien
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia.
| | - Benjamin J Tscharke
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia.
| | - Xianyu Wang
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia.
| | - Kevin V Thomas
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia.
| |
Collapse
|
26
|
Santos JS, Pontes MS, Santiago EF, Fiorucci AR, Arruda GJ. An efficient and simple method using a graphite oxide electrochemical sensor for the determination of glyphosate in environmental samples. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 749:142385. [PMID: 33370922 DOI: 10.1016/j.scitotenv.2020.142385] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 06/12/2023]
Abstract
Excessive and indiscriminate use of the herbicide glyphosate (GLY) leaves the environment susceptible to its contamination. This work describes the development of a simple, inexpensive, and efficient electroanalytical method using graphite oxide paste electrode (GrO-PE) for the direct determination of GLY traces in groundwater samples, soybean extracts, and lettuce extracts. Under optimal experimental conditions, the developed sensor exhibited a linear response of the peak current intensity vs. the concentration, in the range of 1.8 × 10-5 to 1.2 × 10-3 mol L-1 for GLY. The limits of detection and quantification are 1.7 × 10-8 mol L-1 and 5.6 × 10-8 mol L-1, respectively. The methodology developed here demonstrated a strong analytical performance, with high reproducibility, repeatability, and precision. Moreover, it successfully avoided interference from other substances, showing high selectivity. The GrO-PE sensor was effectively applied to determine GLY traces in real samples with recovery rates ranging from 98% to 102%. Results showed that the GrO-PE is effective and useful for GLY detection, with the advantage of not involving laborious modifications and complicated handling, making it a promising tool for environmental analysis.
Collapse
Affiliation(s)
- Jaqueline S Santos
- Department of Plant Resources, Natural Resources Program (PGRN), Mato Grosso do Sul State University (UEMS), P.O. Box 351, Dourados, MS 7984-970, Brazil; Department of Analytical Chemistry, Natural Resources Program (PGRN), Mato Grosso do Sul State University (UEMS), P.O. Box 351, Dourados, MS 7984-970, Brazil
| | - Montcharles S Pontes
- Department of Plant Resources, Natural Resources Program (PGRN), Mato Grosso do Sul State University (UEMS), P.O. Box 351, Dourados, MS 7984-970, Brazil
| | - Etenaldo F Santiago
- Department of Plant Resources, Natural Resources Program (PGRN), Mato Grosso do Sul State University (UEMS), P.O. Box 351, Dourados, MS 7984-970, Brazil
| | - Antonio R Fiorucci
- Department of Analytical Chemistry, Natural Resources Program (PGRN), Mato Grosso do Sul State University (UEMS), P.O. Box 351, Dourados, MS 7984-970, Brazil
| | - Gilberto J Arruda
- Department of Analytical Chemistry, Natural Resources Program (PGRN), Mato Grosso do Sul State University (UEMS), P.O. Box 351, Dourados, MS 7984-970, Brazil.
| |
Collapse
|
27
|
Qi Y, Beriot N, Gort G, Huerta Lwanga E, Gooren H, Yang X, Geissen V. Impact of plastic mulch film debris on soil physicochemical and hydrological properties. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115097. [PMID: 32629308 DOI: 10.1016/j.envpol.2020.115097] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/28/2020] [Accepted: 06/23/2020] [Indexed: 05/09/2023]
Abstract
The plastic mulch films used in agriculture are considered to be a major source of the plastic residues found in soil. Mulching with low-density polyethylene (LDPE) is widely practiced and the resulting macro- and microscopic plastic residues in agricultural soil have aroused concerns for years. Over the past decades, a variety of biodegradable (Bio) plastics have been developed in the hope of reducing plastic contamination of the terrestrial ecosystem. However, the impact of these Bio plastics in agroecosystems have not been sufficiently studied. Therefore, we investigated the impact of macro (around 5 mm) and micro (<1 mm) sized plastic debris from LDPE and one type of starch-based Bio mulch film on soil physicochemical and hydrological properties. We used environmentally relevant concentrations of plastics, ranging from 0 to 2% (w/w), identified by field studies and literature review. We studied the effects of the plastic residue on a sandy soil for one month in a laboratory experiment. The bulk density, porosity, saturated hydraulic conductivity, field capacity and soil water repellency were altered significantly in the presence of the four kinds of plastic debris, while pH, electrical conductivity and aggregate stability were not substantially affected. Overall, our research provides clear experimental evidence that microplastics affect soil properties. The type, size and content of plastic debris as well as the interactions between these three factors played complex roles in the variations of the measured soil parameters. Living in a plastic era, it is crucial to conduct further interdisciplinary studies in order to have a comprehensive understanding of plastic debris in soil and agroecosystems.
Collapse
Affiliation(s)
- Yueling Qi
- Soil Physics and Land Management Group, Wageningen University & Research, P.O. Box 47, 6700, AA Wageningen, the Netherlands; Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6700 AB Wageningen, the Netherlands.
| | - Nicolas Beriot
- Soil Physics and Land Management Group, Wageningen University & Research, P.O. Box 47, 6700, AA Wageningen, the Netherlands; Gestión, Aprovechamiento y Recuperación de Suelos y Aguas, Universidad Politécnica de Cartagena, Spain
| | - Gerrit Gort
- Biometris, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, the Netherlands
| | - Esperanza Huerta Lwanga
- Soil Physics and Land Management Group, Wageningen University & Research, P.O. Box 47, 6700, AA Wageningen, the Netherlands; Agroecología, El Colegio de La Frontera Sur, Unidad Campeche, Campeche, Mexico
| | - Harm Gooren
- Soil Physics and Land Management Group, Wageningen University & Research, P.O. Box 47, 6700, AA Wageningen, the Netherlands
| | - Xiaomei Yang
- Soil Physics and Land Management Group, Wageningen University & Research, P.O. Box 47, 6700, AA Wageningen, the Netherlands; College of Natural Resources and Environment, Northwest A&F University, 712100 Yangling, China
| | - Violette Geissen
- Soil Physics and Land Management Group, Wageningen University & Research, P.O. Box 47, 6700, AA Wageningen, the Netherlands
| |
Collapse
|
28
|
Abstract
Microplastics, as an emerging contaminant, have been shown to threaten the sustainability of ecosystems, and there is also concern about human exposure, as microplastic particles tend to bioaccumulate and biomagnify through the food chain. While microplastics in marine environments have been extensively studied, research on microplastics in terrestrial ecosystems is just starting to gain momentum. In this paper, we used scientometric analysis to understand the current status of microplastic research in terrestrial systems. The global scientific literature on microplastics in terrestrial ecosystems, based on data from the Web of Science between 1986 and 2020, was explored with the VOSviewer scientometric software. Co-occurrence visualization maps and citation analysis were used to identify the relationship among keywords, authors, organizations, countries, and journals focusing on the issues of terrestrial microplastics. The results show that research on microplastics in terrestrial systems just started in the past few years but is increasing rapidly. Science of the Total Environment ranks first among the journals publishing papers on terrestrial microplastics. In addition, we also highlighted the desire to establish standards/protocols for extracting and quantifying microplastics in soils. Future studies are recommended to fill the knowledge gaps on the abundance, distribution, ecological and economic effects, and toxicity of microplastics.
Collapse
|
29
|
Soil Pollution from Micro- and Nanoplastic Debris: A Hidden and Unknown Biohazard. SUSTAINABILITY 2020. [DOI: 10.3390/su12187255] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The fate, properties and determination of microplastics (MPs) and nanoplastics (NPs) in soil are poorly known. In fact, most of the 300 million tons of plastics produced each year ends up in the environment and the soil acts as a log-term sink for these plastic debris. Therefore, the aim of this review is to discuss MP and NP pollution in soil as well as highlighting the knowledge gaps that are mainly related to the complexity of the soil ecosystem. The fate of MPs and NPs in soil is strongly determined by physical properties of plastics, whereas negligible effect is exerted by their chemical structures. The degradative processes of plastic, termed ageing, besides generating micro-and nano-size debris, can induce marked changes in their chemical and physical properties with relevant effects on their reactivity. Further, these processes could cause the release of toxic oligomeric and monomeric constituents from plastics, as well as toxic additives, which may enter in the food chain, representing a possible hazard to human health and potentially affecting the fauna and flora in the environment. In relation to their persistence in soil, the list of soil-inhabiting, plastic-eating bacteria, fungi and insect is increasing daily. One of the main ecological functions attributable to MPs is related to their function as vectors for microorganisms through the soil. However, the main ecological effect of NPs (limited to the fraction size < than 50 nm) is their capacity to pass through the membrane of both prokaryotic and eukaryotic cells. Soil biota, particularly earthworms and collembola, can be both MPs and NPs carriers through soil profile. The use of molecular techniques, especially omics approaches, can gain insights into the effects of MPs and NPs on composition and activity of microbial communities inhabiting the soil and into those living on MPs surface and in the gut of the soil plastic-ingesting fauna.
Collapse
|
30
|
Zhao W, Zhao P, Tian Y, Shen C, Li Z, Peng P, Jin C. Investigation for Synergies of Ionic Strength and Flow Velocity on Colloidal-Sized Microplastic Transport and Deposition in Porous Media Using the Colloidal-AFM Probe. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6292-6303. [PMID: 32423217 DOI: 10.1021/acs.langmuir.0c00116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Studies that explore the transport and retention behavior of colloidal-sized microplastic (MP) with focusing on the governing mechanisms for their attachment and detachment process using colloidal-atomic force microscopy (C-AFM) were still limited. In the present study, multiscale investigations ranging from pore-scale column test to microscale visualization and eventually to nanoscale interfacial and adhesive force measurement were conducted. Pore- and microscale tests were conducted at various flow velocity and over a broad range of IS values and found that IS and flow velocity could synergically impact the deposition of MPs during filtration, in particular under unfavorable condition at small flow velocity. The net difference between the highest and lowest deposition conditions became smaller while flow velocity was decreasing in porous media. However, the net difference between the high and low IS conditions in parallel plate chamber were not sensitive to the change of flow velocity. The measurement from C-AFM suggested that not only the interfacial force but also the adhesive forces changed while MP was approaching/retracting to the collector surface. Information related to the magnitude, location, and occurrence of interfacial/adhesive forces were analyzed. Comparisons of the interaction energy determined from the measured force and ones derived from surface energy components using DLVO theory were conducted to explain the synergies of IS and flow velocity on pathogenic size MPs transport and deposition during filtration.
Collapse
Affiliation(s)
- Weigao Zhao
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Peng Zhao
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yimei Tian
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Chongyang Shen
- Department of Soil and Water Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhipeng Li
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Peng Peng
- Department of Mechanics and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Chao Jin
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
31
|
Guo X, Hu G, Fan X, Jia H. Sorption properties of cadmium on microplastics: The common practice experiment and A two-dimensional correlation spectroscopic study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 190:110118. [PMID: 31881406 DOI: 10.1016/j.ecoenv.2019.110118] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 11/16/2019] [Accepted: 12/20/2019] [Indexed: 05/22/2023]
Abstract
Microplastics (MPs) that have accumulated in the environment are emerging as contaminating pollutants due to their interactions with metal ions. MPs change the migration and transformation of metal ions in the environment and afterward impact their environmental presence. Therefore, it is necessary to evaluate the interaction characteristics and mechanisms between Cd2+and MPs for assessing the ecological impacts of MPs. The traditional sequencing batch equilibrium test demonstrated that the sorption of Cd2+ onto MPs was related to the type of MPs present, the pH value of the solution, the ionic strength of the participants and the presence of humic acid. The sorption dynamics and isotherm experiment illustrated that the interactions were controlled by surface sorption and distribution effects. The specific surface area and surface charge were the main factors in managing the sorption process. FTIR spectra and a 2D-COS analysis showed that different functional groups played an important role in the sorption of Cd2+onto MPs. The results from this work afford new insights on how MPs may play an important role in the fate and transport of heavy metals and present a new analysis method for evaluating the environmental behavior of MPs and their role in transporting other contaminants.
Collapse
Affiliation(s)
- Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Guangdong Provincial Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Guilin Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaoyun Fan
- Guangdong Provincial Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Hanzhong Jia
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
32
|
Microplastics in Soil Ecosystem: Insight on Its Fate and Impacts on Soil Quality. THE HANDBOOK OF ENVIRONMENTAL CHEMISTRY 2020. [DOI: 10.1007/698_2020_458] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Wang J, Liu X, Li Y, Powell T, Wang X, Wang G, Zhang P. Microplastics as contaminants in the soil environment: A mini-review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 691:848-857. [PMID: 31326808 DOI: 10.1016/j.scitotenv.2019.07.209] [Citation(s) in RCA: 313] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/14/2019] [Accepted: 07/14/2019] [Indexed: 05/07/2023]
Abstract
Microplastics (MPs) have become a global environmental concern because of their ubiquitous presence. While extensive microplastic researches have focused on the marine environment, pervasive MPs contamination in soil and their detrimental impacts have been largely overlooked. Excessive concentrations of MPs and additives have been found in soil derived from the use of plastic mulches and the application of sewage sludge to fields. They may pose directly or indirectly as adverse effects on flora and fauna. The objectives of this review are (1) to summarize the abundance, sources, and properties of MPs in soil; (2) to analyze combined effects of MPs and various other environmental pollutants on soil system; and (3) to discuss the possible risks posed by MPs to soil biodiversity, food safety and human health. This review will highlight key future research areas for scientists and policymakers, and increase overall understanding of soil MPs pollution and its potential environmental impacts.
Collapse
Affiliation(s)
- Jiao Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, PR China
| | - Xianhua Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, PR China.
| | - Yang Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, PR China
| | - Trevor Powell
- Department of Microbiology, Miami University, Oxford, OH, 45056, USA
| | - Xin Wang
- Department of Microbiology, Miami University, Oxford, OH, 45056, USA
| | - Guangyi Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, PR China
| | - Pingping Zhang
- College of Food Science and Engineering, Tianjin Agricultural University, Tianjin 300384, PR China
| |
Collapse
|
34
|
Zhu F, Zhu C, Wang C, Gu C. Occurrence and Ecological Impacts of Microplastics in Soil Systems: A Review. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 102:741-749. [PMID: 31069405 DOI: 10.1007/s00128-019-02623-z] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Abstract
Microplastics, as a group of emerging contaminants, are receiving growing attention. During the last decade, their occurrence and toxicity in aquatic ecosystems have been intensively studied and reviewed, but less attention has been paid on soil ecosystems. Given the importance of soil ecosystems and the call for increasing research on soil from scientific communities, it is predicted that relevant studies will boom in the following years. The present review intends to provide a comprehensive overview of current knowledge on microplastic pollution in soil environments. We critically summarize the source, contamination level and fate of microplastics in (industrial and arable) soils. Then, we thoroughly describe what effects have been observed on soil microbes, animals and plants, and analyze what insights we can get from available information. Finally, we identify knowledge gaps that need to be filled and give suggestions for future research.
Collapse
Affiliation(s)
- Fengxiao Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Changyin Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Chao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|