1
|
Shi FJ, Feng SJ, Niu JG, Zheng QT, Zhang XL. A new in situ fracturing-enhanced oxidative remediation for various low-permeability phenanthrene-contaminated soils: Oxidation effectiveness and kinetics of potassium permanganate. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137335. [PMID: 39879768 DOI: 10.1016/j.jhazmat.2025.137335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/15/2024] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
A new in situ fracturing-enhanced oxidative remediation approach was recommended in this study to achieve rapid and efficient remediation of low-permeability contaminated sites. The objective of this study was to evaluate the effects of permeability and potassium permanganate (KMnO4) concentration on the oxidation effectiveness and kinetics of KMnO4 in phenanthrene (PHE)-contaminated soil through rigid-wall hydraulic conductivity tests and a series of laboratory experiments. The results indicate that for various low-permeability contaminated soils, there was a critical KMnO4 concentration to significantly reduce the remediation time and a critical Darcy velocity to meet remediation goals. A systematic research method was proposed to obtain the optimal design parameters. Furthermore, based on an equivalent batch test system, the reaction of KMnO4 migrating in the soil matrix between two adjacent parallel fracture layers followed piecewise first-order kinetics regardless of soil type. The piecewise judgment condition was a KMnO4 concentration ratio of exudate to infiltrate of ∼0.65. KMnO4 oxidation significantly reduced the ecotoxicity of various PHE-contaminated soils but had little effect on other physicochemical properties. Meanwhile, possible degradation pathways of PHE were proposed. Overall, this study provides important engineering and theoretical guidance for the widespread application of the new fracturing-enhanced oxidative remediation method.
Collapse
Affiliation(s)
- Fu-Jiang Shi
- Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China
| | - Shi-Jin Feng
- State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China; Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China.
| | - Jiu-Ge Niu
- Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China
| | - Qi-Teng Zheng
- Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Geotechnical and Underground Engineering of the Ministry of Education, Shanghai 200092, China
| | - Xiao-Lei Zhang
- Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Geotechnical and Underground Engineering of the Ministry of Education, Shanghai 200092, China
| |
Collapse
|
2
|
Rong Q, Zhang H, Li Y, Yan L, Luo J, Jones KC. Occurrence and distribution of PAHs in the Yangtze River and urban river waters of Nanjing, China: Insights from in situ DGT measurements. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 371:125921. [PMID: 40015442 DOI: 10.1016/j.envpol.2025.125921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/21/2025] [Accepted: 02/23/2025] [Indexed: 03/01/2025]
Abstract
The diffusive gradients in thin films (DGT) technique has been used for monitoring various organic pollutants in surface water in recent years. This article applies a novel DGT passive sampler to the Nanjing section of the Yangtze River and urban rivers to measure the in-situ concentrations of polycyclic aromatic hydrocarbons (PAHs), analyze their seasonal changes and determine their fate. PAH concentrations had marked seasonality. The concentration of individual PAH was 1.3-18 ng/L in summer and 4.2-161 ng/L in winter. Source inputs, flow differences and degradation/losses caused the seasonal differences. Inputs from Nanjing and tributary rivers were minor compared to the cumulative loads of PAHs in the main Yangtze river upstream of the city. Petrochemical enterprises along the Yangtze River, ship transportation, and upstream pollution were the main sources of pollution in this area. Source analysis indicated a mixed source with coal and biomass combustion inputs increasing significantly in winter. Risk assessment indicated that although the Yangtze River protection policy has reduced pollution in recent years, water quality still exceeded PAH ecological thresholds in the river and the chemical industry cluster areas during winter. Further measures are needed to reduce pollution and its associated risks from a catchment perspective.
Collapse
Affiliation(s)
- Qiuyu Rong
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom
| | - Hao Zhang
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom
| | - Yanying Li
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, Liaoning, 116023, PR China
| | - Liying Yan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, PR China
| | - Jun Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, PR China.
| | - Kevin C Jones
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom.
| |
Collapse
|
3
|
Xu F, Jiang C, Liu Q, Yang R, Li W, Wei Y, Bao L, Tong H. Source identification of polycyclic aromatic hydrocarbons (PAHs) in river sediments within a hilly agricultural watershed of Southwestern China: an integrated study based on Pb isotopes and PMF method. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:174. [PMID: 40232549 DOI: 10.1007/s10653-025-02481-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 03/25/2025] [Indexed: 04/16/2025]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) in sediments represent a pervasive environmental issue that poses significant ecological risks. This study employed a combination of geographic information systems, diagnostic ratios, correlation analysis, Pb isotope ratios, and positive matrix factorization (PMF) to elucidate the potential sources of 16 priority PAHs in river sediments from a hilly agricultural watershed in Southwestern China. The results indicated that PAHs concentrations ranged from 55.9 to 6083.5 ng/g, with a mean value of 1582.1 ± 1528.9 ng/g, reflecting high levels of contamination throughout the watershed. The predominant class of PAHs identified was high molecular weight (HMW) PAHs. Diagnostic ratios and correlation analysis suggested that the presence of PHAs is likely attributed primarily to emissions from industrial dust and combustion of coal and petroleum. Furthermore, correlation analysis revealed a significant association between Pb and PAHs, indicating potential shared sources for both pollutants. Additionally, Pb isotopic analysis demonstrated that aerosols may be the primary contributor to Pb accumulation within this environment. Given the similarity in origins between Pb and PAHs, it can be inferred that PAHs predominantly originate from aerosols associated with coal combustion, industrial dust emissions, and vehicle exhaust. This inference is further supported by PMF results which yielded consistent findings with those derived from Pb isotopes analysis. Moreover, PMF estimated three major sources contributing 57.63%, 23.57%, and 18.80%, respectively. These findings provide novel insights into identifying the sources of PAHs in river sediments within hilly agricultural watersheds in Southwest China, thereby establishing a scientific foundation for enhancing environmental quality in agricultural regions.
Collapse
Affiliation(s)
- Fen Xu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, People's Republic of China
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, People's Republic of China
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil and Water Pollution, Chengdu University of Technology, Chengdu, 610059, People's Republic of China
| | - Chunmei Jiang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, People's Republic of China
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, People's Republic of China
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil and Water Pollution, Chengdu University of Technology, Chengdu, 610059, People's Republic of China
| | - Qiang Liu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, People's Republic of China
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, People's Republic of China
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil and Water Pollution, Chengdu University of Technology, Chengdu, 610059, People's Republic of China
| | - Rui Yang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, People's Republic of China
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, People's Republic of China
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil and Water Pollution, Chengdu University of Technology, Chengdu, 610059, People's Republic of China
| | - Weiwei Li
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, People's Republic of China
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, People's Republic of China
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil and Water Pollution, Chengdu University of Technology, Chengdu, 610059, People's Republic of China
| | - Yao Wei
- College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu, 610059, People's Republic of China
- Sichuan Academy of Eco-Environmental Sciences, Chengdu, 610041, People's Republic of China
| | - Linlin Bao
- Sichuan Academy of Eco-Environmental Sciences, Chengdu, 610041, People's Republic of China
| | - Hongjin Tong
- Sichuan Academy of Eco-Environmental Sciences, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
4
|
Wei S, Zhang Z, Kamiya Y, Ohura T, Kameda T. Source analysis of the particle-associated oxidative potential and polycyclic aromatic compounds in Shenyang, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:6574-6588. [PMID: 39994122 DOI: 10.1007/s11356-025-36129-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 02/14/2025] [Indexed: 02/26/2025]
Abstract
In this study, a dithiothreitol (DTT) assay was performed to assess the oxidative potential (OP) induced by atmospheric particulate matter in Shenyang, China, in the winter and summer of 2015. OP sources were identified by using the positive matrix factorization (PMF) model, and the relationships between components of the total suspended particulate (TSP), including different types of polycyclic aromatic compounds, and the OP were investigated. The volume-based DTT consumption rate (DTTv) was used as an OP indicator. During sampling, the average daily TSP concentration and DTTv in Shenyang City were 142 µg/m3 and 1304 pmol/min/m3, respectively, and they markedly increased in the winter compared with the summer. The PMF model identified the following sources for the OP induced by TSP: automobile exhaust and road dust (5.0%), biomass burning (31.0%), coal combustion (10.6%), soil (21.1%), diesel combustion (13.4%), and secondary pollution (19.0%). Furthermore, the source analysis revealed that biomass burning was the largest source of oxygenated and nitrated polycyclic aromatic hydrocarbons and that coal combustion was the largest source of polycyclic aromatic hydrocarbons.
Collapse
Affiliation(s)
- Siwei Wei
- Graduate School of Energy Science, Kyoto University, Yoshida-Honmachi, Sakyo-Ku, Kyoto, 606-8501, Japan
| | - Zidan Zhang
- Graduate School of Energy Science, Kyoto University, Yoshida-Honmachi, Sakyo-Ku, Kyoto, 606-8501, Japan
| | - Yuta Kamiya
- Graduate School of Energy Science, Kyoto University, Yoshida-Honmachi, Sakyo-Ku, Kyoto, 606-8501, Japan
| | - Takeshi Ohura
- Graduate School of Agriculture, Meijo University, 1-501 Shiogamaguchi, Nagoya, 468-8502, Japan
| | - Takayuki Kameda
- Graduate School of Energy Science, Kyoto University, Yoshida-Honmachi, Sakyo-Ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
5
|
Liu W, Xing X, Zou Y, Li X, Gao Y, Liu Y, Zhu X, Qi S. Novel insights into PAHs accumulation and multi-method characterization of interaction between groundwater and surface water in middle Yangtze River: Hydrochemistry, isotope hydrology and fractionation effect. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178023. [PMID: 39693653 DOI: 10.1016/j.scitotenv.2024.178023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 12/20/2024]
Abstract
To meet the challenge of water quality protection and management in the middle Yangtze River and understand the accumulation mechanism of PAHs in aquatic complexity systems, caused by hydro-chemical changes, anthropogenic and geological activities, and intensive surface water-groundwater interaction, a comprehensive study is urgently needed. The study investigated the pollution levels, potential sources, accumulation mechanism, and groundwater- surface water interaction of polycyclic aromatic hydrocarbons (PAHs) in wet and dry seasons of the middle Yangtze River. There was no significant difference of PAHs accumulation between wet and dry seasons of the middle Yangtze River. PAHs occurrence in the middle Yangtze River was dominated by the input of tributary. Phenanthrene and Naphthalene were still the dominant species of PAHs. Coal combustion (CC) and biomass burning (BB) were the major contributor for the PAHs occurrence. However, the CC apportionment concentration increased by 6.18 ng·L-1 from wet to dry season, suggesting higher density of coal consumption in dry season. The potential mechanism of PAHs occurrence was demonstrated by the mantel test and structural equation model (SEM). Results revealed that the pollution of the middle Yangtze River could be mainly affected by primary emission in wet and dry seasons due to the significant positive effect between eutrophication levels and PAHs pollution sources. Meanwhile, the difference in redox conditions could directly affect the fate of pollutants (including the valence state transformation of nitrogen and phosphorus). The stronger interaction of groundwater and surface water in dry season was presented by hydrochemistry and isotope hydrology (δ18O and δ2H). The similar result was also evidenced by fractionation effect of PAHs, because more similar behaviors of characteristic pollutants were observed in dry season. Consequently, PAHs can be considered as an effective geochemical tracer and further expanded their toxic effects through the surface water-groundwater interaction.
Collapse
Affiliation(s)
- Weijie Liu
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Xinli Xing
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China.
| | - Yanmin Zou
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Xin Li
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Ying Gao
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Ying Liu
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | | | - Shihua Qi
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
6
|
Ying Z, Chen S, Zhang C, Liao Q, Yuan F, Feng D, Wang S, Liu Q, Hao Z. Vertical distribution and influencing factors of soil PAHs under different ecosystem habitats in the Liaohe River Estuary Wetlands, Northeastern China. MARINE POLLUTION BULLETIN 2025; 210:117289. [PMID: 39613515 DOI: 10.1016/j.marpolbul.2024.117289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/08/2024] [Accepted: 11/09/2024] [Indexed: 12/01/2024]
Abstract
The vertical distribution, sources and influencing factors of polycyclic aromatic hydrocarbons (PAHs) in soil across ecosystem habitats were investigated around the Liaohe River Estuary (LRE) Wetland. The concentration of Ʃ16PAHs ranged from 41.0 to 435.4 ng g-1 dw, with a predominance of low molecular weight PAHs. Overall, PAHs and physicochemical properties of soil decreased with depth. Vegetation was found to increase soil PAHs. Additionally, soil physicochemical properties also regulated PAHs concentration, particularly for PAHs with high molecular weight. Among the habitats, total organic carbon was the key influencing factor for Suaeda heteroptera, while specific surface area was crucial for Phragmites australis. Results of characteristic ratio method and principal component analysis revealed that PAHs in LRE primarily originate petroleum, coal and biomass combustion. In summary, vegetation colonization significantly affected the distribution, sources, and controlling factors of PAHs. These findings are meaningful for management of soil PAHs across various ecosystem habitats.
Collapse
Affiliation(s)
- Zeguo Ying
- Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China; Department of Environmental Science and Engineering, Fudan University, Shanghai 200441, China
| | - Shuyu Chen
- Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Chuchu Zhang
- School of Geographic and Oceanographic Sciences, Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing, 210093, China
| | - Qihang Liao
- School of Geographic and Oceanographic Sciences, Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing, 210093, China; Collaborative Innovation Center of South China Sea Studies, Nanjing University, Nanjing 210093, China
| | - Feng Yuan
- School of Geographic and Oceanographic Sciences, Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing, 210093, China
| | - Dawei Feng
- Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Siwen Wang
- Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Qing Liu
- Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China.
| | - Zhe Hao
- Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
7
|
Ou SP, Liao XL, Huang ZT, Hu YC, Cai Z, Chen ZF. Bioaccessibility and health risk assessment of hydrophobic organic pollutants in soils from four typical industrial contaminated sites in China. J Environ Sci (China) 2025; 147:282-293. [PMID: 39003047 DOI: 10.1016/j.jes.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 07/15/2024]
Abstract
There have been reports of potential health risks for people from hydrophobic organic pollutants, such as polycyclic aromatic hydrocarbons (PAHs), polychlorinated hydrocarbons (PCHs), and organophosphate flame retardants (OPFRs). When a contaminated site is used for residential housing or public utility and recreation areas, the soil-bound organic pollutants might pose a threat to human health. In this study, we investigated the contamination profiles and potential risks to human health of 15 PAHs, 6 PCHs, and 12 OPFRs in soils from four contaminated sites in China. We used an in vitro method to determine the oral bioaccessibility of soil pollutants. Total PAHs were found at concentrations ranging from 26.4 ng/g to 987 ng/g. PCHs (0.27‒14.3 ng/g) and OPFRs (6.30‒310 ng/g) were detected, but at low levels compared to earlier reports. The levels of PAHs, PCHs, and OPFRs released from contaminated soils into simulated gastrointestinal fluids ranged from 1.74% to 91.0%, 2.51% to 39.6%, and 1.37% to 96.9%, respectively. Based on both spiked and unspiked samples, we found that the oral bioaccessibility of pollutants was correlated with their logKow and molecular weight, and the total organic carbon content and pH of soils. PAHs in 13 out of 38 contaminated soil samples posed potential high risks to children. When considering oral bioaccessibility, nine soils still posed potential risks, while the risks in the remaining soils became negligible. The contribution of this paper is that it corrects the health risk of soil-bound organic pollutants by detecting bioaccessibility in actual soils from different contaminated sites.
Collapse
Affiliation(s)
- Shi-Ping Ou
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiao-Liang Liao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zi-Tao Huang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yan-Cong Hu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zongwei Cai
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Zhi-Feng Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
8
|
Xie Y, Guo J, Fan Q, Huang S, Qi W, Cao X, Peng J, Chen Y, Chen M. High-density sampling reveals the occurrence, levels and transport flux of 15 polycyclic aromatic hydrocarbons derivatives (PAHs-d) along the Yangtze River. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177907. [PMID: 39644634 DOI: 10.1016/j.scitotenv.2024.177907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/14/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
Polycyclic aromatic hydrocarbons derivatives (PAHs-d) have higher toxicity levels compared to its parent polycyclic aromatic hydrocarbons (PPAHs). Their partitioning in different media and large-scale transport patterns in rivers remain largely unknown. This study investigated the occurrence of 15 PAHs-d and 19 PPAHs in water and suspended particulate matter (SPM) of the Yangtze River between 2019 and 2020. The range of Σ15PAHs-d concentrations was 20.54 to 2010.03 ng·L-1 in water and 0.62 to 29.80 μg·g-1 in SPM. The primary PAHs-d components were 2,6-dimethylnaphthalene, 2-methylnaphthalene, and anthraquinone. The range of Σ19PPAHs concentrations in water and SPM was 34.89 to 739.53 ng·L-1 and 0.37 to 204.62 μg·g-1, respectively. And low-ring PAHs-d and PPAHs were more prevalent in water than SPM. Partitioning behaviors indicated that PAHs-d and PPAHs were more readily partitioned into water and SPM during normal and dry periods, respectively. The concentrations of PAHs-d saw significant changes in their spatial distribution, which rose in water and reduced in SPM in downstream of the Three Gorges Dam. This is due to the dam's blocking effect on sediment transport. Positive matrix factorization source analysis revealed biomass combustion upstream and vehicle emissions downstream as primary sources, shaped by the evolving energy consumption patterns of urban areas situated around the Yangtze River. The annual fluxes of PAHs-d in water and SPM of the Yangtze River were 90.40 t·yr-1 and 11.95 t·yr-1, representing 88.3 % and 11.7 % of the overall PAHs-d fluxes, respectively. The total fluxes of PAHs-d and PPAHs in water and SPM tended to increase spatially along the river, with growth rates exceeding 76 and 24 times, respectively. Interception within the Three Gorges Reservoir area has resulted in the differences in the concentration and transport distribution of PAHs-d and PPAHs upstream and downstream, which play important roles in reducing PAHs-d and PPAHs entry into the sea. Future studies on PAHs-d in Yangtze River basin tributaries and estuaries are essential.
Collapse
Affiliation(s)
- Yu Xie
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Yangtze Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing 100084, China
| | - Jiaxun Guo
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Qinya Fan
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shier Huang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Weixiao Qi
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Xiaofeng Cao
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jianfeng Peng
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yufeng Chen
- Yangtze Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing 100084, China
| | - Min Chen
- Yangtze Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing 100084, China
| |
Collapse
|
9
|
Liu Y, Ren J, Ma K, Li J, Fu P, Lin K, Wang H. Hydrocyclone-induced classification reduction and spin desorption of contaminated soil remediation with heavy metal and organics. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136456. [PMID: 39547036 DOI: 10.1016/j.jhazmat.2024.136456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/09/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
The correlation between soil pollutant concentration and particle size in multi-component contaminated soil containing Cadmium (Cd) and Polychlorinated biphenyls (PCBs) has been investigated. The hydrocyclone classification process has been utilized to reduce the amount of contaminated soil, followed by the application of the hydrocyclone leaching process for the remediation of residual contamination. The results of the hydrocyclone classification process revealed that smaller soil particles have higher concentrations of Cd and PCBs, consistent with the findings from the soil sieving process. For contaminated soil with Cd and PCB concentrations exceeding national standards by 1.1 and 1.7 times, a reduction efficiency of 33.9 % was achieved using five hydrocyclones in series. The spin of soil particles caused full desorption of some surface-positioned pollutants, resulting in a removal efficiency of 32.5 % for Cd and 21.3 % for PCBs in the hydrocyclone leaching process, independent of soil size. Furthermore, the addition of preferred chemicals exhibited remarkable removal efficiencies at 59.2 % for Cd and 40.1 % for PCBs in the hydrocyclone-induced integrated unit. The remediation cost of the hydrocyclone-induced coupled process was reduced by 33.3 % at an actual electrical dismantling site compared to the conventional soil remediation process.
Collapse
Affiliation(s)
- Yi Liu
- School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Jiahui Ren
- School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kai Ma
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jianping Li
- School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Pengbo Fu
- School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kuangfei Lin
- School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hualin Wang
- School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
10
|
Li R, Pang H, Guo Y, Zhou X, Fu K, Zhang T, Han J, Yang L, Zhou B, Zhou S. Distribution of Polycyclic Aromatic Hydrocarbons and Pesticides in Danjiangkou Reservoir and Evaluation of Ecological Risk. TOXICS 2024; 12:859. [PMID: 39771074 PMCID: PMC11680053 DOI: 10.3390/toxics12120859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/16/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025]
Abstract
The Danjiangkou Reservoir is the largest artificial freshwater lake in Asia. This study investigated the spatiotemporal distribution of pesticides and polycyclic aromatic hydrocarbons (PAHs) in the Danjiangkou Reservoir to assess the ecological and human health risks associated with these pollutants. Twenty-three sampling sites in the Danjiangkou Reservoir each collected 23 surface water samples and 23 sediment samples. These samples were analyzed using gas chromatography-mass spectrometry (GC-MS), combined with risk quotient methods and health risk assessment models. The results indicated that the total concentration of PAHs (ΣPAHs) in the surface water ranged from 64.64 to 868.23 ng/L (average 217.97 ± 184.97 ng/L), and they primarily consisted of low molecular weight PAHs, with the compounds with the highest concentrations being naphthalene (10.43-116.97 ng/L), fluorene (22.74-87.61 ng/L), and phenanthrene (26.54-162.86 ng/L). The total concentration of pesticides in the surface water varied between 2.62 and 72.89 ng/L (average 22.99 ± 18.27 ng/L). In the sediment samples, the ΣPAH concentration ranged from 0.01 to 2.93 ng/g (average 0.69 ± 0.94 ng/g), and these predominantly consisted of high molecular weight PAHs, while pesticide concentrations ranged from non-detectable (nd) to 28.46 ng/g (average 7.99 ± 8.53 ng/g), with higher concentrations of malathion (0.62-9.16 ng/g) and chlorpyrifos (10.01-21.38 ng/g). Through risk assessment, it was found that although the risks posed by PAHs and pesticides to human health are very low, the ecological risk assessment indicated that certain PAHs (such as phenanthrene) and organophosphate pesticides (such as malathion and chlorpyrifos) may pose potential threats to aquatic organisms.
Collapse
Affiliation(s)
- Ruiwen Li
- Ecology and Environment Monitoring and Scientific Research Center, Ecology and Environment Administration of Yangtze River Basin, Ministry of Ecology and Environment, Wuhan 430010, China; (R.L.); (Y.G.)
| | - Hao Pang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430074, China; (H.P.); (X.Z.)
| | - Yemin Guo
- Ecology and Environment Monitoring and Scientific Research Center, Ecology and Environment Administration of Yangtze River Basin, Ministry of Ecology and Environment, Wuhan 430010, China; (R.L.); (Y.G.)
| | - Xuan Zhou
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430074, China; (H.P.); (X.Z.)
| | - Kaiyu Fu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (K.F.); (J.H.); (B.Z.)
| | - Taotao Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China;
| | - Jian Han
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (K.F.); (J.H.); (B.Z.)
| | - Lihua Yang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (K.F.); (J.H.); (B.Z.)
| | - Bingsheng Zhou
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (K.F.); (J.H.); (B.Z.)
| | - Si Zhou
- Guizhou Institute of Environmental Science and Designing, Guiyang 550081, China
| |
Collapse
|
11
|
Adeniran JA, Ogunlade BT, Toluwalope Odediran E, Olasunkanmi Yusuf R, Ademola Sonibare J. Polycyclic aromatic hydrocarbons within the vicinity of a scrap-iron smelting plant: indoor-outdoor and seasonal pattern, source, and exposure risk assessment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024:1-19. [PMID: 39561051 DOI: 10.1080/09603123.2024.2431228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 11/14/2024] [Indexed: 11/21/2024]
Abstract
The growing demand for ferrous metals and abundant scrap materials has fueled Nigeria's scrap-iron smelting industry, leading to hazardous pollutant emissions. This study investigated the concentrations, seasonal and indoor-outdoor variations, origins, and health impacts of polycyclic aromatic hydrocarbons (PAHs) in dust samples around a scrap-iron smelting facility. Analyses of dust samples revealed that high molecular weight PAHs (HMWPAHs) dominated during both seasons, with 5-ring PAHs (34%) contributing most during the rainy season and 3-ring PAHs (36%) during the dry season. Carcinogenic PAHs were more prevalent in the rainy season compared to the dry season. Seven PAH sources were identified, with gasoline combustion being the dominant source during the rainy season and iron and steel production during the dry season. Incremental lifetime cancer risk (ILCR) assessments showed PAH concentrations within safe limits, with dermal contact identified as the primary exposure pathway for both children and adults in the study area.
Collapse
Affiliation(s)
| | | | | | | | - Jacob Ademola Sonibare
- Environmental Engineering Research Laboratory, Obafemi Awolowo University, Ile-Ife, Nigeria
| |
Collapse
|
12
|
Li S, Xu Z, Wu P, Zhu S, Liang H. Native polycyclic aromatic hydrocarbons (PAHs) in coal and its preparation products-A mixed source of environmental contamination. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124894. [PMID: 39243931 DOI: 10.1016/j.envpol.2024.124894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are environmental pollutants and inherent components of coal and coal gangue. The similarities and differences in PAH characteristics between these two source materials are largely unknown. In this study, raw coal, cleaned coal, slime, middlings, and gangue from the Wangjialing Coal Preparation Plant in China were analyzed to determine the concentration and distribution of extractable PAHs. The total concentrations of 41PAHs (∑41PAH), US EPA 16 priority parent PAHs (∑16PAH), and their alkylated derivatives (∑aPAH) ranged from 18.3 to 89.6, 8.70 to 34.5, and 8.40-48.0 mg/kg, respectively, and were ranked as raw coal > cleaned coal > slime > middlings > gangue. The PAH characteristics of raw coal and its preparation products were consistent, with predominant 2-3-ring PAHs and similar PAH isomer ratio distributions. The distribution of conventional PAH isomer ratios for different ranks of coal and coal gangue from different origins was compiled from the literature. The resulting distribution was consistent and overlapped with both petrogenic and pyrogenic sources defined by the ratios. Therefore, coal and coal gangue should be considered one category and classified as a mixed source (mixture of petrogenic and pyrogenic sources). To accurately identify environmental PAH sources, investigations of aPAHs in the environment and PAH characteristics in coal and coal gangue should be expanded.
Collapse
Affiliation(s)
- Shan Li
- State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources, Beijing, 100083, China
| | - Ziqi Xu
- Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100092, China
| | - Peng Wu
- Beijing GuodianFutong Science and Technology Development Company Limited, Beijing, 100070, China
| | - Shuquan Zhu
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Handong Liang
- State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources, Beijing, 100083, China.
| |
Collapse
|
13
|
Zhang M, Duan T, Luo Y, Zhang H, Li W, Wang X, Han J. Impact mechanisms of various surfactants on the biodegradation of phenanthrene in soil: Bioavailability and microbial community responses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175225. [PMID: 39098418 DOI: 10.1016/j.scitotenv.2024.175225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/11/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
The present study was conducted to systematically explore the mechanisms underlying the impact of various surfactants (CTAB, SDBS, Tween 80 and rhamnolipid) at different doses (10, 100 and 1000 mg/kg) on the biodegradation of a model polycyclic aromatic hydrocarbon (PAH) by indigenous soil microorganisms, focusing on bioavailability and community responses. The cationic surfactant CTAB inhibited the biodegradation of phenanthrene within the whole tested dosage range by decreasing its bioavailability and adversely affecting soil microbial communities. Appropriate doses of SDBS (1000 mg/kg), Tween 80 (100, 1000 mg/kg) and rhamnolipid at all amendment levels promoted the transformation of phenanthrene from the very slow desorption fraction (Fvslow) to bioavailable fractions (rapid and slow desorption fractions, Frapid and Fslow), assessed via Tenax extraction. However, only Tween 80 and rhamnolipid at these doses significantly improved both the rates and extents of phenanthrene biodegradation by 22.1-204.3 and 38.4-76.7 %, respectively, while 1000 mg/kg SDBS had little effect on phenanthrene removal. This was because the inhibitory effects of anionic surfactant SDBS, especially at high doses, on the abundance, diversity and activity of soil microbial communities surpassed the bioavailability enhancement in dominating biodegradation. In contrast, the nonionic surfactant Tween 80 and biosurfactant rhamnolipid enhanced the bioavailability of phenanthrene for degradation and also that to specific degrading bacterial genera, which stimulated their growth and increased the abundance of the related nidA degradation gene. Moreover, they promoted the total microbial/bacterial biomass, community diversity and polyphenol oxidase activity by providing available substrates and nutrients. These findings contribute to the design of suitable surfactant types and dosages for mitigating the environmental risk of PAHs and simultaneously benefiting microbial ecology in soil through bioremediation.
Collapse
Affiliation(s)
- Meng Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Tianxin Duan
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Yaqi Luo
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Haiyun Zhang
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences; National Agricultural Experimental Station for Agricultural Environment in Fengxian, Key Laboratory of Low-carbon Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, Shanghai 201403, China
| | - Wei Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Xilong Wang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Jiangang Han
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China; School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213032, China
| |
Collapse
|
14
|
Li X, Qu B, Wang J, Zhao H. Photoformation of Environmentally Persistent Free Radicals During Phototransformation of Poly-Cyclic Aromatic Hydrocarbons (PAHs) on Particles in an Aqueous Solution: The Hydrogenation of PAHs and Effect of Co-Existing Water Matrix Factors. TOXICS 2024; 12:796. [PMID: 39590976 PMCID: PMC11597975 DOI: 10.3390/toxics12110796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/20/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024]
Abstract
Environmentally persistent free radicals (EPFRs) generated on particles under irradiation in water have attracted particular attention, and their formation mechanisms are not well understood. This study investigated the photoformation of EPFRs on both actual samples collected from an oil production plant in Panjin, Liaoning, China, and simulated Fe(III)-montmorillonite samples in water. The EPFRs detected on actual samples were not easily generated compared with those in the soil or in the air, based on the concentrations of identified PAHs. EPR signals in the range of 1017 to 1018 spin/g were detected on the simulated Fe(III)-montmorillonite samples. Their g factors were smaller than 2.0030, which indicated the generation of carbon-centered EPFRs. The primary byproducts were identified by chromatography-mass spectrometry (GC-MS), and a possible EPFR formation pathway during PAH degradation was proposed. Hydrogenation of PAHs during the photoformation of EPFRs was observed and might be due to the catalysis of the simulated particles and the interaction of the intermediates. Meanwhile, the effects of the typical anions (NO2- and Cl-) and the surfactant (TWEEN® 80 and sodium dodecyl sulfate) were investigated and indicated that the phototransformation process and adsorption process would affect the formation of EPFRs. Overall, our study provided useful information to understand the photoformation of EPFRs in aqueous environments.
Collapse
Affiliation(s)
- Xintong Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China; (X.L.); (J.W.)
| | - Baocheng Qu
- College of Marine Technology and Environment, Dalian Ocean University, Dalian 116023, China;
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian 116023, China
| | - Jingyao Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China; (X.L.); (J.W.)
| | - Hongxia Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China; (X.L.); (J.W.)
| |
Collapse
|
15
|
Tolopka JI, Svriz M, Ledesma TM, Lanari E, Scervino JM, Moreno JE. Environmental Pollutant Anthracene Induces ABA-Dependent Transgenerational Effects on Gemmae Dormancy in Marchantia polymorpha. PLANTS (BASEL, SWITZERLAND) 2024; 13:2979. [PMID: 39519898 PMCID: PMC11548294 DOI: 10.3390/plants13212979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Anthracene, a polycyclic aromatic hydrocarbon (PAH) from fossil fuel combustion, poses significant environmental threats. This study investigates the role of abscisic acid (ABA) in the anthracene tolerance of the liverwort Marchantia polymorpha using mutants deficient in ABA perception (Mppyl1) or biosynthesis (Mpaba1). In this study, we monitored the role of ABA in the anthracene tolerance response by tracking two ABA-controlled traits: plant growth inhibition and gemmae dormancy. We found that the anthracene-induced inhibition of plant growth is dose-dependent, similar to the growth-inhibiting effect of ABA, but independent of ABA pathways. However, gemmae dormancy was differentially affected by anthracene in ABA-deficient mutants. We found that gemmae from anthracene-exposed WT plants exhibited reduced germination compared to those from mock-treated plants. This suggests that the anthracene exposure of mother plants induces a transgenerational effect, resulting in prolonged dormancy in their asexual propagules. While Mppyl1 gemmae retained a dormancy delay when derived from anthracene-exposed thalli, the ABA biosynthesis mutant Mpaba1 did not display any significant dormancy delay as a consequence of anthracene exposure. These results, together with the strong induction of ABA marker genes upon anthracene treatment, imply that anthracene-induced germination inhibition relies on ABA synthesis in the mother plant, highlighting the critical role of MpABA1 in the tolerance response. These findings reveal a complex interplay between anthracene stress and ABA signaling, where anthracene triggers ABA-mediated responses, influencing reproductive success and highlighting the potential for leveraging genetic and hormonal pathways to enhance plant resilience in contaminated habitats.
Collapse
Affiliation(s)
- Juan I. Tolopka
- Instituto de Agrobiotecnología del Litoral, Centro Científico Tecnológico CONICET Santa Fe, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Colectora Ruta Nacional No. 168 km. 0, Paraje El Pozo, Santa Fe 3000, Argentina; (J.I.T.); (T.M.L.)
| | - Maya Svriz
- Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Universidad Nacional del Comahue-CONICET, SC Bariloche, Río Negro 8400, Argentina; (M.S.); (J.M.S.)
| | - Tamara M. Ledesma
- Instituto de Agrobiotecnología del Litoral, Centro Científico Tecnológico CONICET Santa Fe, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Colectora Ruta Nacional No. 168 km. 0, Paraje El Pozo, Santa Fe 3000, Argentina; (J.I.T.); (T.M.L.)
| | - Eugenia Lanari
- Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Universidad Nacional del Comahue-CONICET, SC Bariloche, Río Negro 8400, Argentina; (M.S.); (J.M.S.)
| | - José M. Scervino
- Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Universidad Nacional del Comahue-CONICET, SC Bariloche, Río Negro 8400, Argentina; (M.S.); (J.M.S.)
| | - Javier E. Moreno
- Instituto de Agrobiotecnología del Litoral, Centro Científico Tecnológico CONICET Santa Fe, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Colectora Ruta Nacional No. 168 km. 0, Paraje El Pozo, Santa Fe 3000, Argentina; (J.I.T.); (T.M.L.)
| |
Collapse
|
16
|
Liu H, Hu J, Tan Y, Zheng Z, Liu M, Lohmann R, Vojta S, Katz S, Liu Y, Li Z, Fang Z, Cai M, Zhao W. Identification of key anthropogenic and land use factors and ecological risk assessment of dissolved polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) in an urbanized estuary in China. MARINE POLLUTION BULLETIN 2024; 207:116876. [PMID: 39173474 DOI: 10.1016/j.marpolbul.2024.116876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 08/24/2024]
Abstract
This study investigated dissolved PAHs and OCPs in Quanzhou Bay estuaries, assessed their ecological risk, and examined anthropogenic impacts on contaminant distribution. Results showed that dissolved ∑24PAH concentrations ranged from 117 to 709 ng/L (mean: 358 ng/L), with dominance of 2-ring PAHs (Naphthalene, 1-Methylnaphthalene, and 2-Methylnaphthalene). Dissolved DDT levels ranged from 0.06 to 0.49 ng/L (mean: 0.28 ng/L), while HCBz concentrations varied from 0.02 to 0.44 ng/L (mean: 0.20 ng/L). PAHs were higher in the north due to urbanization and transport, while OCPs showed higher levels in the south due to historical agricultural use. Rural areas, water bodies, and wetlands significantly influenced the behavior of PAHs according to Spearman correlation and lasso regression analyses. Quanzhou Bay was categorized as a low to medium risk area based on dispersion simulation and ecological risk assessment, highlighting implications for future sustainable development and policy planning. CAPSULE: The coupled relationship between human activities and the distribution of dissolved PAHs and OCPs in urbanized estuaries was explored using statistical methods and GIS technology, providing valuable insights into environmental processes and pollutant control policies.
Collapse
Affiliation(s)
- Huijun Liu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Jiajie Hu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Yan Tan
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Zhong Zheng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Mengyang Liu
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Rainer Lohmann
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882, USA
| | - Simon Vojta
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882, USA
| | - Samuel Katz
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882, USA
| | - Yong Liu
- Zhejiang Institute of Hydraulics & Estuary (Zhejiang Institute of Marine Planning and Design), Hangzhou 310020, PR China
| | - Zhiheng Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Zhiguo Fang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Minggang Cai
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, PR China.
| | - Wenlu Zhao
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, PR China.
| |
Collapse
|
17
|
Li R, Luo Y, Zhu X, Zhang J, Wang Z, Yang W, Li Y, Li H. Anthropogenic impacts on polycyclic aromatic hydrocarbons in surface water: Evidence from the COVID-19 lockdown. WATER RESEARCH 2024; 262:122143. [PMID: 39067275 DOI: 10.1016/j.watres.2024.122143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/19/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
The lockdown restrictions against coronavirus disease 2019 (COVID-19) have led to unprecedented reductions in global anthropogenic activities. Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic combustion-induced pollutants, but the influence of anthropogenic responses to COVID-19 on PAH contamination remains largely unknown. Here we quantified the impacts of lockdown restrictions on 16PAH pollution based on the data in concentrations dissolved in the water phase and absorbed on the suspended particulate matter (SPM) in the Elbe River from 2015 to 2021 and determined the changes in source contributions classified by individual years and stations. Results show that the annual average PAH concentrations in water and SPM were determined as 0.055 μg·L-1 and 3.77 mg·kg-1 from 2015 to 2021, respectively. Pronounced declines in PAH on SPM (up to -18 %) were observed during the three lockdowns in Germany from 2020 to 2021. However, dramatic rebounds of anthropogenic activities during the removal of the lockdown led to increases (up to 29 %) in ∑16PAH concentrations compared to the same period in previous years. Through the source apportionment method, vehicle and coal emissions were the two most predominant sources of PAHs in the river. Vehicle contribution decreased during the lockdown, while coal emissions increased by 5 %. Health risks for three age groups were assessed as potential low risk and decreased by 18 % from 1.54 × 10-4 in 2015 to 1.27 × 10-4 in 2019, and rebounded to 1.40 × 10-4 in 2020-2021. The findings of this study highlight the strong consistency between PAH concentrations and anthropogenic intensity, implying that source control from improved cleaner production is an effective pathway for mitigating PAH contamination in the aquatic environment.
Collapse
Affiliation(s)
- Ruifei Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yu Luo
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xu Zhu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jin Zhang
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, China
| | - Zhenyu Wang
- Department of Hydrogeology, Helmholtz Centre for Environmental Research - UFZ, Leipzig 04318, Germany
| | - Wenyu Yang
- Department of Hydrogeology, Helmholtz Centre for Environmental Research - UFZ, Leipzig 04318, Germany
| | - Yu Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Hui Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
18
|
Zhang L, Li Y, Li J, Xing R, Liu X, Zhao J, Shen G, Pan B, Li X, Tao S. Pollutant Emissions and Oxidative Potentials of Particles from the Indoor Burning of Biomass Pellets. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16016-16027. [PMID: 39102498 DOI: 10.1021/acs.est.4c03967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Residential solid fuel combustion significantly impacts air quality and human health. Pelletized biomass fuels are promoted as a cleaner alternative, particularly for those who cannot afford the high costs of gas/electricity, but their emission characteristics and potential effects remain poorly understood. The present laboratory-based study evaluated pollution emissions from pelletized biomass burning, including CH4 (methane), NMHC (nonmethane hydrocarbon compounds), CO, SO2, NOx, PM2.5 (particulate matter with an aerodynamic diameter ≤2.5 μm), OC (organic carbon), EC (element carbon), PAHs (polycyclic aromatic hydrocarbons), EPFRs (environmentally persistent free radicals), and OP (oxidative potential) of PM2.5, and compared with those from raw biomass burning. For most targets, except for SO2 and NOx, the mass-based emission factors for pelletized biomass were 62-96% lower than those for raw biomass. SO2 and NOx levels were negatively correlated with other air pollutants (p < 0.05). Based on real-world daily consumption data, this study estimated that households using pelletized biomass could achieve significant reductions (51-95%) in emissions of CH4, NMHC, CO, PM2.5, OC, EC, PAHs, and EPFRs compared to those using raw biomass, while the differences in emissions of NOx and SO2 were statistically insignificant. The reduction rate of benzo(a)pyrene-equivalent emissions was only 16%, much lower than the reduction in the total PAH mass (78%). This is primarily attributed to the more PAHs with high toxic potentials, such as dibenz(a,h)anthracene, in the pelletized biomass emissions. Consequently, impacts on human health associated with PAHs might be overestimated if only the mass of total PAHs was counted. The OP of particles from the pellet burning was also significantly lower than that from raw biomass by 96%. The results suggested that pelletized biomass could be a transitional substitution option that can significantly improve air quality and mitigate human exposure.
Collapse
Affiliation(s)
- Lu Zhang
- Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
- Department of Civil & Environmental Engineering, Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Yaojie Li
- Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Jin Li
- Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Ran Xing
- Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Xinlei Liu
- Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Jinfeng Zhao
- Faculty of Environmental Science& Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Guofeng Shen
- Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
- Southwest United Graduate School, Kunming 650092, China
| | - Bo Pan
- Faculty of Environmental Science& Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiangdong Li
- Department of Civil & Environmental Engineering, Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Shu Tao
- Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
- Southwest United Graduate School, Kunming 650092, China
- College of Environmental Science and Technology, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
19
|
Du M, Hu T, Liu W, Shi M, Li P, Mao Y, Liu L, Xing X, Qi S. Chronological evaluation of polycyclic aromatic hydrocarbons in sediments of tangxun lake in central China and impacts of human activities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:54887-54904. [PMID: 39215914 DOI: 10.1007/s11356-024-34816-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
This study sheds light on the contamination of polycyclic aromatic hydrocarbons (PAHs) in Tangxun Lake sediments, an urban lake reflecting environmental changes in Central China. By analyzing sediment cores from both the inner and outer areas of the lake, we determined the historical trends and sources of PAHs over the past century. The results reveal a significant increase in PAHs concentrations, particularly since the 1980s, coinciding with China's rapid urbanization and industrialization. Using diagnostic ratios and Absolute principal component score-multivariate linear regression (APCS-MLR) methods, we identified petroleum combustion, coal combustion, and biomass combustion as the primary sources of PAHs in the lake sediments. The spatial analysis indicates higher PAHs levels in the inner lake, likely due to its closer proximity to industrial activities. Moreover, by comparing PAH trends in Tangxun Lake with those in other urban, suburban, and remote lakes across China, based on data from 49 sedimentary cores, we highlight the impact of regional socio-economic dynamics on PAH deposition. These insights are crucial for developing effective pollution mitigation strategies and promoting sustainable development in rapidly urbanizing regions.
Collapse
Affiliation(s)
- Minkai Du
- Hubei Key Laboratory of Yangtze River Basin Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Tianpeng Hu
- Hubei Key Laboratory of Yangtze River Basin Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Weijie Liu
- Hubei Key Laboratory of Yangtze River Basin Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Mingming Shi
- Hubei Key Laboratory of Yangtze River Basin Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Peng Li
- Hubei Key Laboratory of Yangtze River Basin Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
- Hubei Geological Survey, Wuhan, 430034, Hubei, China
| | - Yao Mao
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, Wuhan East Lake High-Tech Development Zone, Hubei Province, China
| | - Li Liu
- Hubei Geological Survey, Wuhan, 430034, Hubei, China
| | - Xinli Xing
- Hubei Key Laboratory of Yangtze River Basin Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China.
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, Wuhan East Lake High-Tech Development Zone, Hubei Province, China.
| | - Shihua Qi
- Hubei Key Laboratory of Yangtze River Basin Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, Wuhan East Lake High-Tech Development Zone, Hubei Province, China
| |
Collapse
|
20
|
Jiang B, Lin J, Hua H, Liu Y, Yu S, Sun Y. Simultaneous removal of naphthalene and NO x over V-Ce/Ti catalyst: Design of separated active sites for naphthalene degradation and SCR reaction. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134788. [PMID: 38850934 DOI: 10.1016/j.jhazmat.2024.134788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
V-Ce/Ti catalysts were prepared for the removal of naphthalene and NOx in the flue gas. The adverse effects of NH3 and NO on the naphthalene degradation were weakened on V-Ce/Ti, resulting in a decrease of only 2.5 % in COx selectivity. The formation of high molecular weight byproducts was also reduced. Besides the acid sites on the catalysts, Ce introduced new Brønsted basic sites, which could also adsorb and degrade naphthalene into naphthol effectively. With the separated active sites for naphthalene degradation and NO removal, the reaction between NH3 and the intermediates during the naphthalene degradation was also inhibited, decreasing the formation and accumulation of phthalimide. The oxidation of the intermediates was promoted by active V5+ introduced by Ce, inhibiting the transformation of the intermediates to higher molecular weight byproducts. Nearly 100 % conversion of naphthalene and NO, as well as 40.1 % of the COx selectivity were obtained on V-Ce/Ti.
Collapse
Affiliation(s)
- Boqiong Jiang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China; Zhejiang Province Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, China
| | - Jianxiang Lin
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Hao Hua
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yue Liu
- Department of Environmental Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Shaocai Yu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China; Zhejiang Province Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, China
| | - Yuhai Sun
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China; Zhejiang Province Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, China.
| |
Collapse
|
21
|
Downham RP, Gannon B, Lozano DCP, Jones HE, Vane CH, Barrow MP. Tracking the history of polycyclic aromatic compounds in London through a River Thames sediment core and ultrahigh resolution mass spectrometry. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134605. [PMID: 38768537 DOI: 10.1016/j.jhazmat.2024.134605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/27/2024] [Accepted: 05/11/2024] [Indexed: 05/22/2024]
Abstract
Polycyclic aromatic compounds (PACs), including polycyclic aromatic hydrocarbons (PAHs) and heteroatom-containing analogues, constitute an important environmental contaminant class. For decades, limited numbers of priority PAHs have been routinely targeted in pollution investigations, however, there is growing awareness for the potential occurrence of thousands of PACs in the environment. In this study, untargeted Fourier transform ion cyclotron resonance mass spectrometry was used for the molecular characterisation of PACs in a sediment core from Chiswick Ait, in the River Thames, London, UK. Using complex mixture analysis approaches, including aromaticity index calculations, the number of molecular PAC components was determined for eight core depths, extending back to the 1930s. A maximum of 1676 molecular compositions representing PACs was detected at the depth corresponding to the 1950s, and a decline in PAC numbers was observed up the core. A case linking the PACs to London's coal consumption history is presented, alongside other possible sources, with some data features indicating pyrogenic origins. The overall core profile trend in PAC components, including compounds with oxygen, sulfur, nitrogen, and chlorine atoms, is shown to broadly correspond to the 16 priority PAH concentration profile trend previously determined for this core. These findings have implications for other industry-impacted environments.
Collapse
Affiliation(s)
- Rory P Downham
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Benedict Gannon
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | | | - Hugh E Jones
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Christopher H Vane
- British Geological Survey, Organic Geochemistry Facility, Keyworth NG12 5GG, UK
| | - Mark P Barrow
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
22
|
Liu Z, Mu L, Feng C, Li X, Liu T, Jiang X, Bai H, Liu X. Generation and emission mechanism of polycyclic aromatic hydrocarbon (PAHs) during the coking process in Shanxi, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174619. [PMID: 39002584 DOI: 10.1016/j.scitotenv.2024.174619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/15/2024]
Abstract
Although coking process is the important source of polycyclic aromatic hydrocarbons (PAHs) in the environment, the generation and emission of PAHs during this process is unclear. It is crucial to clarify the formation mechanism of PAHs in coal pyrolysis during the coking process for effectively identifying and controlling the emission of these organic pollutants. In this study, the combination of laboratory simulation and field sampling was used to analyze the mechanism of PAHs formation and emission in coking process. The release of PAHs from the pyrolysis process of coal blends used in coking plants was 1778.20 ± 111.95 μg · g-1, which was much higher than the content of free PAHs in raw coal (76.50 ± 12.46 μg · g-1). 3-ring PAHs were the most abundant components of free PAHs and pyrolysis-generated PAHs. PAH formation during pyrolysis of coal blends was primarily attributed to the cracking of the macromolecular structure of coal, with minimal influence of free PAHs in blended coal. The emission of PAHs from coal-charging was higher (62.93 ± 17.75 μg · m-3) than that from pushing of coke (11.79 ± 1.91 μg · m-3·, PC) and combustion of coke oven gas (5.53 ± 1.20 μg · m-3, CG), and was mainly related to free PAHs in coal. In contrast, the characteristics of PAHs in the flue gas of PC and CG were similar to those from blended coal pyrolysis. PAHs in fugitive emission from coke oven were primarily affected by flue gas leakage and were mainly related to coal pyrolysis and free PAHs in blended coal.
Collapse
Affiliation(s)
- Ziye Liu
- College of Environmental Science and Engineering, Laboratory of Compound Air Pollutions Identification and Control, Taiyuan University of Technology, Taiyuan,030024, China
| | - Ling Mu
- College of Environmental Science and Engineering, Laboratory of Compound Air Pollutions Identification and Control, Taiyuan University of Technology, Taiyuan,030024, China; Institute of Nuclear Environmental Science, China Institute for Radiation Protection, Taiyuan,030006, China.
| | - Chuanyang Feng
- College of Environmental Science and Engineering, Laboratory of Compound Air Pollutions Identification and Control, Taiyuan University of Technology, Taiyuan,030024, China
| | - Xiaofan Li
- College of Environmental Science and Engineering, Laboratory of Compound Air Pollutions Identification and Control, Taiyuan University of Technology, Taiyuan,030024, China
| | - Tian Liu
- College of Environmental Science and Engineering, Laboratory of Compound Air Pollutions Identification and Control, Taiyuan University of Technology, Taiyuan,030024, China
| | - Xin Jiang
- College of Environmental Science and Engineering, Laboratory of Compound Air Pollutions Identification and Control, Taiyuan University of Technology, Taiyuan,030024, China
| | - Huiling Bai
- College of Environmental Science and Engineering, Laboratory of Compound Air Pollutions Identification and Control, Taiyuan University of Technology, Taiyuan,030024, China
| | - Xiaofeng Liu
- College of Environmental Science and Engineering, Laboratory of Compound Air Pollutions Identification and Control, Taiyuan University of Technology, Taiyuan,030024, China
| |
Collapse
|
23
|
Yemele OM, Zhao Z, Nkoh JN, Ymele E, Usman M. A systematic review of polycyclic aromatic hydrocarbon pollution: A combined bibliometric and mechanistic analysis of research trend toward an environmentally friendly solution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171577. [PMID: 38521268 DOI: 10.1016/j.scitotenv.2024.171577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/28/2024] [Accepted: 03/06/2024] [Indexed: 03/25/2024]
Abstract
Pollution caused by polycyclic aromatic hydrocarbons (PAHs) is a significant concern. This concern has become more problematic given the rapid modification of PAHs in the environment during co-contamination to form substituted PAHs. This review aims to integrate bibliometric analysis with a rigorous study of mechanistic insights, resulting in a more comprehensive knowledge of evolving research trends on PAH remediation. The results show that research in this field has progressed over the years and peaked in 2022, potentially due to the redirection of resources toward emerging pollutants, hinting at the dynamic nature of environmental research priorities. During this year, 158,147 documents were published, representing 7 % of the total publications in the field between 2000 and 2023. The different remediation methods used for PAH remediation were identified and compared. Bioremediation, having >90 % removal efficiency, has been revealed to be the best technique because it is cost-effective and easy to operate at large scale in situ and ex-situ. The current challenges in PAH remediation have been detailed and discussed. Implementing innovative and sustainable technologies that target pollutant removal and valuable compound recovery is necessary to build a more robust future for water management.
Collapse
Affiliation(s)
- Olive Mekontchou Yemele
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Zhenhua Zhao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Jackson Nkoh Nkoh
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Public Service Platform for Collaborative Innovation of Marine Algae Industry, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China; Department of Chemistry, University of Buea, PO Box 63, Buea, Cameroon
| | - Ervice Ymele
- Department of Chemistry, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Muhammad Usman
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
24
|
Ting YC, Zou YX, Pan SY, Ko YR, Ciou ZJ, Huang CH. Sources-attributed contributions to health risks associated with PM 2.5-bound polycyclic aromatic hydrocarbons during the warm and cold seasons in an urban area of Eastern Asia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171325. [PMID: 38428604 DOI: 10.1016/j.scitotenv.2024.171325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/28/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
Despite the well-established recognition of the health hazards posed by PM2.5-bound PAHs, a comprehensive understanding of their source-specific impact has been lacking. In this study, the health risks associated with PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) and source-specific contributions were investigated in the urban region of Taipei during both cold and warm seasons. The levels of PM2.5-bound PAHs and their potential health risks across different age groups of humans were also characterized. Diagnostic ratios and positive matrix factorization analysis were utilized to identify the sources of PM2.5-bound PAHs. Moreover, potential source contribution function (PSCF), concentration-weighted trajectory (CWT) and source regional apportionment (SRA) analyses were employed to determine the potential source regions. Results showed that the total PAHs (TPAHs) concentrations ranged from 0.08 to 2.37 ng m-3, with an average of 0.69 ± 0.53 ng m-3. Vehicular emissions emerged as the primary contributor to PM2.5-bound PAHs, constituting 39.8 % of the TPAHs concentration, followed by industrial emissions (37.6 %), biomass burning (13.8 %), and petroleum/oil volatilization (8.8 %). PSCF and CWT analyses revealed that industrial activities and shipping processes in northeast China, South China Sea, Yellow Sea, and East China Sea, contributed to the occurrence of PM2.5-bound PAHs in Taipei. SRA identified central China as the primary regional contributor of ambient TPAHs in the cold season and Taiwan in the warm season, respectively. Evaluations of incremental lifetime cancer risk demonstrated the highest risk for adults, followed by children, seniors, and adolescents. The assessments of lifetime lung cancer risk showed that vehicular and industrial emissions were the main contributors to cancer risk induced by PM2.5-bound PAHs. This research emphasizes the essential role of precisely identifying the origins of PM2.5-bound PAHs to enhance our comprehension of the related human health hazards, thus providing valuable insights into the mitigation strategies.
Collapse
Affiliation(s)
- Yu-Chieh Ting
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan.
| | - Yu-Xuan Zou
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Shih-Yu Pan
- Institute of Environmental and Occupational Health Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Ru Ko
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Zih-Jhe Ciou
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Chuan-Hsiu Huang
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
25
|
Liu X, Tan X, Li X, Cheng Y, Wang K. Spatial distribution, environmental behavior, and health risk assessment of PAHs in soils at prototype coking plants in Shanxi, China: Stable carbon isotope and molecular composition analyses. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133802. [PMID: 38377909 DOI: 10.1016/j.jhazmat.2024.133802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/22/2024]
Abstract
To investigate the environmental behavior of and carcinogenic risk posed by 16 priority-controlled polycyclic aromatic hydrocarbons (PAHs), soil samples and air samples from the coke oven top were collected in two prototype coking plants (named PF and JD). The PF soils contained more PAHs than the JD soils because the PF plant employed the side-charging technique and had a lower coke oven height. The soils from both plants contained enough PAHs to pose a carcinogenic risk, and this risk was higher in the PF plant. Data were collected on the source characteristic spectrum of stable carbon isotopic composition (δ13C) of PAHs emitted from the coke oven top (δ13C values of -36.02‰ to -32.05‰ for gaseous PAHs and -34.09‰ to -25.28‰ for particulate PAHs), and these data fill a research gap and may be referenced for isotopic-technology-based source apportionment. Diagnostic ratios and isotopic technology revealed that the coking plant soils were mainly influenced by the coking process, followed by vehicle exhaust; the soils near the boundary of each plant were slightly affected by C3 plant burning. For most PAHs [excluding fluoranthene, benzo(k)fluoranthene, indeno(1,2,3-c,d)pyrene, and dibenzo(a,h)anthracene], the dominant migration process was the net volatilization of PAHs from soil to air. In the PF plant, 13C was depleted in gaseous PAHs during volatilization.
Collapse
Affiliation(s)
- Xiaofeng Liu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Xin Tan
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xinyang Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yuhuan Cheng
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Kun Wang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| |
Collapse
|
26
|
Ji Y, Wang C, He L, Chen X, Wang J, Zhang X, Du Q. Comparison of ozone-based AOPs on the removal of organic matter from the secondary biochemical effluent of coking wastewater. ENVIRONMENTAL TECHNOLOGY 2024; 45:1943-1955. [PMID: 36511617 DOI: 10.1080/09593330.2022.2158759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Advanced oxidation processes (AOPs) based on ozone are gaining continuously growing popularity in wastewater treatment. This study explored the treatment of coking wastewater using a combination of ozonation (O3), ultraviolet (UV), and hydrogen peroxide (H2O2) process expressed by % chemical oxygen demand (COD) removal, % total organic carbon (TOC), % UV254, % fluorescence intensity removal and its electrical energy consumption. The obtained results demonstrated that, the combination of O3, UV, and H2O2 which is denoted by O3/UV/H2O2 in this study achieved great success in COD removal (92.08%), TOC removal (78.25%), and reduction of fluorescence intensity (99.82%). Compared with the O3 and O3/UV processes, O3/UV/H2O2 improved the COD removal by approximately 54-69% and 38-51%, respectively. In addition, the energy consumption was reduced by 53-67%. The TOC removal rate in the effluent ranged 71% and 83%, while the UV254 removal rate was up to 90%. The fluorescence spectroscopy showed that the O3/UV/H2O2 combination process reduced the fluorescence intensity by almost 97% within 10 min. Furthermore, the total polycyclic aromatic hydrocarbons (PAHs) concentration in the effluent was less than 10μg/L (removal efficiency > 80%) and the most toxic benzo(a)pyrene (BaP) was less than 0.03 μg/L (0.018μg/L). In addition, the energy consumption of the O3/UV/H2O2 process was 53-67% lower than those of O3 and O3/UV processes. Furthermore, the energy consumption was 80.26 kWh m-3 after 60 min of reaction time when the COD (69.3 mg/L) met the standard discharge. Finally, the O3/UV/H2O2 process could be an effective method for improving the mineralisation of refractory organic matter.
Collapse
Affiliation(s)
- Yuxian Ji
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, People's Republic of China
| | - Chunrong Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, People's Republic of China
| | - Lei He
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, People's Republic of China
| | - Xiaoya Chen
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, People's Republic of China
| | - Jianbing Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, People's Republic of China
| | - Xian Zhang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, People's Republic of China
- Inner Mongolia University of Technology, Hohhot, People's Republic of China
| | - Qingbang Du
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, People's Republic of China
| |
Collapse
|
27
|
Li D, Zhu Z, Cao X, Yang T, An S. Ecological risk of polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) in the sediment of a protected karst plateau lake (Caohai) wetland in China. MARINE POLLUTION BULLETIN 2024; 201:116199. [PMID: 38422826 DOI: 10.1016/j.marpolbul.2024.116199] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 01/23/2024] [Accepted: 02/22/2024] [Indexed: 03/02/2024]
Abstract
Understanding PAH and OCP distributions and sources in lakes is necessary for developing pollutant control policies. Here, we assessed the occurrence, risk, and sources of PAHs and OCPs in the sediment of Caohai Lake. The PAHs were predominantly high-molecular-weight compounds (mean 57.5 %), and the diagnostic ratios revealed that coal, biomass burning, and traffic were the sources of PAHs. HCHs (6.53 ± 7.22 ng g-1) and DDTs (10.86 ± 12.16 ng g-1) were the dominant OCPs and were primarily sourced from fresh exogenous inputs. RDA showed that sediment properties explained 74.12 % and 65.44 % of the variation in PAH and OCP concentrations, respectively. Incremental lifetime cancer risk (ILCR) assessment indicated that hazardous PAHs in Caohai Lake sediment posed moderate risks to children and adults (ILCR>1.0 × 10-4), while the risk from OCPs was low; however, the recent influx of HCHs and DDTs requires additional attention.
Collapse
Affiliation(s)
- Dianpeng Li
- School of Life Sciences, Nanjing University, Nanjing 210046, Jiangsu, China
| | - Zhengjie Zhu
- School of Life Sciences, Nanjing University, Nanjing 210046, Jiangsu, China; Nanjing University Ecological Research Institute of Changshu, Suzhou 215500, Jiangsu, China
| | - Xuecheng Cao
- School of Life Sciences, Nanjing University, Nanjing 210046, Jiangsu, China
| | - Tangwu Yang
- School of Life Sciences, Nanjing University, Nanjing 210046, Jiangsu, China; Nanjing University Ecological Research Institute of Changshu, Suzhou 215500, Jiangsu, China
| | - Shuqing An
- School of Life Sciences, Nanjing University, Nanjing 210046, Jiangsu, China; Nanjing University Ecological Research Institute of Changshu, Suzhou 215500, Jiangsu, China.
| |
Collapse
|
28
|
Ni X, Liu Z, Wang J, Dong M, Wang R, Qi Z, Xu H, Jiang C, Zhang Q, Wang J. Optimizing the development of contaminated land in China: Exploring machine-learning to identify risk markers. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133057. [PMID: 38043429 DOI: 10.1016/j.jhazmat.2023.133057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/12/2023] [Accepted: 11/20/2023] [Indexed: 12/05/2023]
Abstract
Often available for use, previously developed land, which includes residential and commercial/industrial areas, presents a significant challenge due to the risk to human health. China's 2018 release of health risk assessment standards for land reuse aimed to bridge this gap in soil quality standards. Despite this, the absence of representative indicators strains risk managers economically and operationally. We improved China's land redevelopment approach by leveraging a dataset of 297,275 soil samples from 352 contaminated sites, employing machine learning. Our method incorporating soil quality standards from seven countries to discern patterns for establishing a cost-effective evaluative framework. Our research findings demonstrated that detection costs could be curtailed by 60% while maintaining consistency with international soil standards (prediction accuracy = 90-98%). Our findings deepen insights into soil pollution, proposing a more efficient risk assessment system for land redevelopment, addressing the current dearth of expertise in evaluating land development in China.
Collapse
Affiliation(s)
- Xiufeng Ni
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zeyuan Liu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jizhong Wang
- Zhejiang Ecological Civilization Academy, Anji 313300, China
| | - Mengting Dong
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ruwei Wang
- School of Environment, Jinan University, Guangzhou 511443, Guangdong, China
| | - Zhulin Qi
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Haolong Xu
- Center of Air Quality Simulation and System Analysis, Chinese Academy of Environmental Planning, Beijing 100012, China
| | - Chao Jiang
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qingyu Zhang
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Ecological Civilization Academy, Anji 313300, China.
| | - Jinnan Wang
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Key Laboratory of Environmental Pollution Control Technology, Hangzhou 310000, China; State Environmental Protection Key Laboratory of Environmental Planning and Policy Simulation, Chinese Academy of Environmental Planning, Beijing 100041, China.
| |
Collapse
|
29
|
Zhu J, Chen R, Feng Q, Huang C, Huang F, Du J, Wang J, Zhan X. Mechanistic insights into auxin-enhancing polycyclic aromatic hydrocarbon uptake by wheat roots: Evidence from in situ intracellular pH and root-surface H + flux. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133077. [PMID: 38035525 DOI: 10.1016/j.jhazmat.2023.133077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/17/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a group of extremely carcinogenic organic pollutants. Our previous findings have demonstrated that plant roots actively take up PAHs through co-transport with H+ ions. Auxin serves as a pivotal regulator of plant growth and development. However, it remains unclear whether the hormone can enhance the uptake of PAHs by plant roots. Hence, the wheat root exposed to PAHs with/without auxins was set to investigate how the auxin promotes the PAHs uptake by roots. In our study, auxin could significantly enhance the uptake of PAHs after 4 h of exposure. After the addition of auxin, the root tissue cytoplasmic pH value was decreased and the H+ influx was observed, indicating that the extracellular space was alkalinized in a short time. The increased H+ influx rate enhanced the uptake of PAHs. In addition, the H+-ATPase activity was also increased, suggesting that auxin activated two distinct and antagonistic H+ flux pathways, and the H+ influx pathway was dominant. Our findings offer important information for exploring the mechanism underlying auxin regulation of PAHs uptake and the phytoremediation of PAH-contaminated soil and water.
Collapse
Affiliation(s)
- Jiahui Zhu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Ruonan Chen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Qiurun Feng
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Chenghao Huang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Fei Huang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Jiani Du
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Jiawei Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Xinhua Zhan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China.
| |
Collapse
|
30
|
Lv N, Wang B, Wang H, Xiao T, Dong B, Xu Z. The occurrence characteristics, removal efficiency, and risk assessment of polycyclic aromatic hydrocarbons in sewage sludges from across China. CHEMOSPHERE 2024; 351:141033. [PMID: 38160951 DOI: 10.1016/j.chemosphere.2023.141033] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Sewage sludge is considered to be an important sink for polycyclic aromatic hydrocarbons (PAHs) in wastewater treatment plants and the potential risks from sludge contaminated with PAHs during land application has attracted attention. To identify the priority PAHs for control and enhance their removal from sludge, the occurrence characteristics, removal efficiency, and risk assessment of PAHs in sewage sludges from across China were analyzed. Data collection was from 2001 to 2023. Results showed that 16 PAHs were widely detected in Chinese sewage sludge with total amounts (∑16PAHs) between 0.06 and 34.93 mg kg dw-1. Fossil fuel, coal, and biomass combustion are main anthropogenic sources of PAHs in China. In general, phenanthrene (PHE), anthracene (ANT), fluorescein (FL), chrysene (CHR), pyrene (PYR), and benzo[b]fluoranthene (BbF) are regarded as the main components and PAHs with 3-5 rings dominate (84.01%-91.53%) sewage sludge in China. Although aerobic composting and anaerobic treatment significantly improve ∑16PAHs removal, sludge stabilization treatment only reduced the risk by a small amount, especially for high-molecular-weight (HMW) PAHs. The benzo[a]anthracene (BaA), benzo[a]pyrene (BaP), and dibenzo[a,h]anthracene (DahA) are proposed as the priority control contaminants for sewage sludge in China because they have consistently high-risk quotient (RQ) values of 2.42-7.47, 1.28-3.16, 1.06-1.83 before and after sludge stabilization, respectively. More attention should be paid to BaA, BbF, benzo[k]fluoranthene (BkF), BaP, DahA, and indeno[1,2,3-cd]pyrene (IcdP) in Beijing; ANT, BaA, and BaP in Shanghai; and BaA and BaP in Guanghzou. Although the toxic equivalent quotient (TEQ) for PAHs met the limit concentration requirements of the national standard, the potential health risks due to long-term exposure to HMW PAHs cannot be ignored because the incremental lifetime cancer risk (ILCR) was consistently in the risk threshold range (>1 × 10-6). Some suggestions on enhanced treatment approaches and land use standards are proposed to further alleviate the risk from HMW PAHs.
Collapse
Affiliation(s)
- Nan Lv
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Bingqing Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Hui Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Tingting Xiao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Bin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; YANGTZE Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing, 100038, China.
| | - Zuxin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
31
|
Xie T, Wang M, Jiang R, Li L, Chen X, Sarvajayakesavalu S, Chen W. Comparative study on anthropogenic impacts on soil PAHs: Accumulation and source apportionment in tourist and industrial cities in Hebei Province, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168435. [PMID: 38030005 DOI: 10.1016/j.scitotenv.2023.168435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/23/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous organic contaminants in urban soils. The accumulation and source identifications of PAHs within a city have been frequently studied. However, impacts of urbanization development modes on PAHs accumulation patterns by taking a city as a whole have been seldom reported. Four cities with two development modes in Hebei province, Chengde and Zhangjiakou (tourist cities) and Handan and Tangshan (industrial cities), were selected. The concentrations of 16 priority PAHs in soils in the study areas were investigated. The results showed that the average concentrations of Σ16PAHs in Handan (2517 μg/kg) and Tangshan (2256 μg/kg) were more than twice of those in Chengde (696 μg/kg) and Zhangjiakou (926 μg/kg) approximately. Lines of evidence, provided by a combination of diagnostic ratios, pairwise correlation, and PMF methods, revealed that the dominant sources of PAHs in either city were industrial emission, vehicle emission, and petrogenic/biogenic process but with different proportions. Linear fittings based on Bayesian kernel machine regression analysis (BKMR) were constructed to illustrate the impact of industrialization on PAHs accumulation. The probability of excessing the 10 % (376 μg/kg) and 50 % (1138 μg/kg) of current ∑16PAHs would be higher than 90 % given the gross industrial production per unit area >5.00 × 106 and 20.5 × 106 CNY/km2, respectively. The proposed threshold values of industrialization are of significance for determining industrial structure and proportion in urban management.
Collapse
Affiliation(s)
- Tian Xie
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Meie Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Rong Jiang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lei Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyue Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Suriyanarayanan Sarvajayakesavalu
- Vinayaka Missions Kirubananda Variyar Arts and Science College, Vinayaka Missions Research Foundation (Deemed to be University), Salem 636308, Tamilnadu, India
| | - Weiping Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
32
|
Shi D, Wu F, He J, Sun Y, Qin N, Sun F, Su H, Wang B. Spatiotemporal distributions and ecological risk of polycyclic aromatic hydrocarbons in the surface seawater of Laizhou Bay, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:12131-12143. [PMID: 38227259 DOI: 10.1007/s11356-023-31253-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/22/2023] [Indexed: 01/17/2024]
Abstract
The spatial-temporal distribution, source, and potential ecological risk of polycyclic aromatic hydrocarbons (PAHs) in surface seawater from Laizhou Bay were investigated. The total PAH (ΣPAH) concentrations ranged from 277 to 4393 ng/L with an average of 1178 ng/L, thereby suggesting a relatively moderate to high PAH exposure level in Laizhou Bay in comparison to other bays in the world. The composition patterns and source apportionment results revealed that the coal, biomass burning, diesel emissions, and petroleum combustion as well as the combination of these processes were the dominant sources of PAHs in the surface water, which were closely associated with sail process and sewage effluents. The ecological risk assessment indicated that benzo(a)pyrene (BaP), phenanthrene (Phe), luoranthene (Flua), and naphthalene (Nap) would exist ecological risks in most of surface seawater sites, but the probabilistic risk assessment (PRA) results showed that the current level of risk is not as severe as the risk quotient (RQ) results revealed.
Collapse
Affiliation(s)
- Di Shi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Jia He
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Yan Sun
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Ning Qin
- University of Science & Technology Beijing, Beijing, 100083, China
| | - Fuhong Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Hailei Su
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Beibei Wang
- University of Science & Technology Beijing, Beijing, 100083, China
| |
Collapse
|
33
|
Zhang M, Chen W, Chuan X, Guo X, Shen X, Zhang H, Wu F, Hu J, Wu Z, Wang X. Remediation of heavily PAHs-contaminated soil with high mineral content from a coking plant using surfactant-enhanced soil washing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168499. [PMID: 37977369 DOI: 10.1016/j.scitotenv.2023.168499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
This study investigated the effectiveness of various surfactants at different concentrations in removing high concentrations of polycyclic aromatic hydrocarbons (PAHs) from soil with high mineral content, focusing on the impact of surfactant treatment on the mobility of the residual PAHs in soil. The results revealed that the cationic surfactant (CTMAB) inhibited removal of PAHs in the whole tested concentration range of 0.1-8 g/L. In contrast, the non-ionic and anionic surfactants (Triton X-100 and SDBS) significantly enhanced removal of PAHs as their amendment concentrations reached 2 g/L and above. Triton X-100 exhibited steadily increased efficacy with increasing amendment concentrations and maintained favorable solubilization capability when continuously amended, making it the preferable choice for remediating PAHs-contaminated soil. Surfactant and water washing processes altered soil physicochemical properties by removing some clay minerals (e.g., faujasite) and organic matter that can bind or sequester PAHs, potentially increasing their extractability and bioavailability in the washed soil, thereby posing higher ecological risks compared to the original one. Although soil washing decreased retention of the remaining PAHs in soil, it did not significantly impact PAHs release from soil by flowing water. These findings provide insights into the long-term effectiveness and ecological impacts of surfactant-enhanced washing as a potential remediation technique for PAHs-contaminated soil.
Collapse
Affiliation(s)
- Meng Zhang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Weixiao Chen
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Xiuyun Chuan
- School of Earth and Space Sciences, Peking University, Beijing 100871, China
| | - Xiaoying Guo
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Xiaofang Shen
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Haiyun Zhang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Fan Wu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Jing Hu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Zhipeng Wu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Xilong Wang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
34
|
Zhou S, Wang X, Yang Y, Wang R, Liao J, Zhang P, Liu L, Zhao Y, Deng Y. Distribution and source identification of polycyclic aromatic hydrocarbons (PAHs) with PCA-MLR and PMF methods in the topsoil of Chengdu at SW, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168263. [PMID: 37926248 DOI: 10.1016/j.scitotenv.2023.168263] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
In spite of extensive studies on the features of polycyclic aromatic hydrocarbons (PAHs) as typical persistent organic pollutants (POPs) in cities, lack of understanding on the distribution and source characteristics of PAHs in big city with basin climate that can easily accelerate the pollution. Therefore, we sampled and analyzed PAHs from forty-five topsoil samples evenly distributed in Chengdu and the data shows that: (1) concentrations of ∑16PAHs in the study area ranged from 88.56 to 4448.34 ng/g, with a mean value of 739.07 ng/g, which is a lower level compared to similar cities, the distribution and proportion of LMW-PAHs show that the migration of pollution is blocked by the topography of the basin; (2) principal component analysis-multiple linear regression (PCA-MLR) and positive matrix factorization (PMF) indicated that combustion of fossil fuels and biomass is the most important source of PAHs in Chengdu; (3) the toxic equivalency factors of benzo[a]pyrene indicated a low risk of ∑16PAHs in all areas in Chengdu; (4) the inherited lifetime carcinogenic risk (ILCR) showed a relatively low level of potential risk in the region, while female inhabitants in several regions seem to suffer from higher health risks. Overall, our case study of PAHs in the topsoil at Chengdu city at SW China indicates that the PCA-MLR analysis is useful to identify the source of PAHs in the urban region with complicated pollution source.
Collapse
Affiliation(s)
- Sizhuo Zhou
- Department of Geochemistry and Applied Nuclear Technology in Geosciences Key Laboratory of Sichuan Province, Chengdu University of Technology, 610059, China
| | - Xinyu Wang
- Department of Geochemistry and Applied Nuclear Technology in Geosciences Key Laboratory of Sichuan Province, Chengdu University of Technology, 610059, China; State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, 610059, China.
| | - Ye Yang
- Department of Geochemistry and Applied Nuclear Technology in Geosciences Key Laboratory of Sichuan Province, Chengdu University of Technology, 610059, China
| | - Ruilin Wang
- Department of Applied Chemistry, Chengdu University of Technology, 610059, China.
| | - Jianghai Liao
- Department of Geochemistry and Applied Nuclear Technology in Geosciences Key Laboratory of Sichuan Province, Chengdu University of Technology, 610059, China
| | - Pu Zhang
- International Center for Planetary Science, College of Earth Sciences, Chengdu University of Technology, 610059, China
| | - Lei Liu
- Department of Geochemistry and Applied Nuclear Technology in Geosciences Key Laboratory of Sichuan Province, Chengdu University of Technology, 610059, China
| | - Yongcai Zhao
- Department of Geochemistry and Applied Nuclear Technology in Geosciences Key Laboratory of Sichuan Province, Chengdu University of Technology, 610059, China
| | - Yintian Deng
- Department of Geochemistry and Applied Nuclear Technology in Geosciences Key Laboratory of Sichuan Province, Chengdu University of Technology, 610059, China
| |
Collapse
|
35
|
Li S, Gao X, Zhu S, Liang H. Polycyclic aromatic hydrocarbons (PAHs) in coal preparation plant products: A contributor to environmental pollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167887. [PMID: 37852503 DOI: 10.1016/j.scitotenv.2023.167887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/06/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
Coal and coal gangue are petrogenic sources of polycyclic aromatic hydrocarbons (PAHs), which cause adverse impacts on the environment. Raw coal, cleaned coal, slime, slack gangue, and lump gangue from the Pingshuo No. 1 Coal Preparation Plant, China, were analyzed to determine the concentrations and compositions of 16 priority parent PAHs (16PAHs) and their alkylated derivatives (aPAHs). The ∑16PAH and ∑aPAH concentrations in the samples ranged from 18.7 to 139.2 mg/kg and 22.2 to 262.3 mg/kg, respectively, and ranked as follows: cleaned coal > raw coal > slime > lump gangue > slack gangue. Coal gangues had a higher proportion and lower degree of alkylation of 4-6-ring PAHs than coals. A summary analysis of references related to coal and coal gangue diagnostic ratios showed that their ratios could not be used to differentiate them from other PAH sources, indicating that the release of particulate coal and coal gangue would increase the uncertainty of environmental PAH identification results. The diagnostic ratios of coal gangue were relatively concentrated, and comparing the ratio distribution could reveal the coal gangue source PAHs. The toxicity risk of slack gangue was higher than that of lump gangue based on the benzo[a]pyrene-equivalent concentration; hence, more attention should be given to its escape to the environment.
Collapse
Affiliation(s)
- Shan Li
- State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources, Beijing 100083, China; School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Xiulong Gao
- State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources, Beijing 100083, China
| | - Shuquan Zhu
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Handong Liang
- State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources, Beijing 100083, China.
| |
Collapse
|
36
|
Kang L, Jiang Y, Tian Y, Zou J, Feng L, Liu Y, Han Q, Zhang L. Unveiling the enhancement mechanisms of algogenic extracellular organic matters on chlortetracycline photodegradation: Constitutive relationships of compound components and reactive oxygen species generation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167015. [PMID: 37734609 DOI: 10.1016/j.scitotenv.2023.167015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/08/2023] [Accepted: 09/10/2023] [Indexed: 09/23/2023]
Abstract
Algogenic extracellular organic matters (EOMs) have been found to play a crucial role in the photodegradation of antibiotics. However, the specific molecular structure compositions of EOMs have not been fully characterized, and the intrinsic association between the structure and the production of ROS remains unclear. In this study, EOMs from Chlorella Vulgaris were characterized using FT-ICR-MS. Based on the FT-ICR-MS results, nine representative model compounds (MCs, i.e., benzene, naphthalene, anthracene, phenanthrene, glucose, l-glutamic, triglyceride, tannic and lignin) were applied to investigate the physicochemical properties of EOMs and the ROS changes induced by the photoreaction of chlortetracycline (CTC). With the help of quenching assays, nine MCs were classified into prone-ROS and non-prone-ROS fractions. Prone-ROS compounds generate O2- upon electron transfer to 3O2, which then produces ·OH after disproportionation to generate hydrogen peroxide. The formation of 1O2 is attributed to energy transfer from prone-ROS to 3O2. Density functional theory revealed that prone-ROS exhibited higher reactivity compared to non-prone-ROS, this finding is as well supported by the result of steady-state photolysis measurement. Our study gives a new insight into photochemical fate of CTC in aquatic environments, providing theoretical basis for assessing antibiotics' ecological risk accurately.
Collapse
Affiliation(s)
- Longfei Kang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, China.
| | - Yixin Jiang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Yajun Tian
- College of Environment, Zhejiang University of Technology, Chaowang Road 18, Hangzhou 310014, China
| | - Jinru Zou
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Li Feng
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Yongze Liu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Qi Han
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Liqiu Zhang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, China.
| |
Collapse
|
37
|
Zhang X, Li Z. Co-PBK: a computational biomonitoring tool for assessing chronic internal exposure to chemicals and metabolites. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:2167-2180. [PMID: 37982278 DOI: 10.1039/d3em00396e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Toxic chemicals are released into the environment through diverse human activities. An increasing number of chronic diseases are associated with ambient pollution, thus posing a threat to people. Given the high consumption of resources for human biomonitoring, this study proposed coupled physiologically-based kinetic (co-PBK) modeling matrices as a biomonitoring tool for simplifying chronic internal exposure estimates of environmental chemicals and their metabolites using naphthalene (NAP) and its metabolites (i.e., 1-OHN and 2-OHN) as simulation examples. According to the simulation of the steady-state mass among various organs/tissues via the co-PBK modeling matrices, fat had the highest potential bioaccumulation of NAP and its metabolites. With respect to body fluids, 1-OHN and 2-OHN tended to bioaccumulate more in the bile than in the urine. According to the sensitivity analysis, the calculated sensitivity factors for the first-order kinetics-based rate constants imply that due to the biotransformation process, target organs/tissues (e.g., liver and kidneys) would be continuously exposed to more NAP metabolites under chronic exposure. Meanwhile, 1-OHN may be more stably transported to the urine than 2-OHN for further human biomonitoring during long-term internal exposure. According to the case study of simulating population chronic exposure to NAP in Shenzhen, the co-PBK modeling estimated the population exposure to NAP with an intake rate of 8.77 × 10-2 mg d-1 and the aggregated urinary concentration of NAP metabolites of 2.60 μg L-1. Furthermore, the accuracy of the urinary levels between the real-world data and the values simulated by the co-PBK modeling was assessed and the root-mean-square error of c1-OHN,urine was found to be lower than that of c2-OHN,urine.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
| | - Zijian Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
38
|
Sun N, Yang AP, Wang SM, Zhu GL, Liu J, Wang TY, Wang ZJ, Qi BW, Liu XY, Lv SX, Li MH, Fu Q. Mechanism of synergistic remediation of soil phenanthrene contamination in paddy fields by rice-crab coculture and bioaugmentation with Pseudomonas sp. ENVIRONMENT INTERNATIONAL 2023; 182:108315. [PMID: 37963424 DOI: 10.1016/j.envint.2023.108315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/30/2023] [Accepted: 11/07/2023] [Indexed: 11/16/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are persistent and harmful pollutants with high priority concern in agricultural fields. This work constructed a rice-crab coculture and bioaugmentation (RCM) system to remediate phenanthrene (a model PAH) contamination in rice fields. The results showed that RCM had a higher remediation performance of phenanthrene in rice paddy compared with rice cultivation alone, microbial addition alone, and crab-rice coculture, reaching a remediation efficiency of 88.92 % in 42 d. The concentration of phenanthrene in the rice plants decreased to 6.58 mg/kg, and its bioconcentration effect was efficiently inhibited in the RCM system. In addition, some low molecular weight organic acids of rice root increased by 12.87 %∼73.87 %, and some amino acids increased by 140 %∼1150 % in RCM. Bioturbation of crabs improves soil aeration structure and microbial migration, and adding Pseudomonas promoted the proliferation of some plant growth-promoting rhizobacteria (PGPRs), which facilitated the degradation of phenanthrene. This coupling rice-crab coculture with bioaugmentation had favorable effects on soil enzyme activity, microbial community structure, and PAH degradation genes in paddy fields, enhancing the removal of and resistance to PAH contamination in paddy fields and providing new strategies for achieving a balance between production and remediation in contaminated paddy fields.
Collapse
Affiliation(s)
- Nan Sun
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Efficient Use of Agricultural Water Resources, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Northeast Agricultural University, Harbin 150030, China; Northeast Agricultural University/Heilongjiang Academy of Environmental Science Joint Postdoctoral Mobile Station, Harbin 150030, China
| | - An-Pei Yang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Research Center for Ecological Agriculture and Soil-Water Environment Restoration, Northeast Agricultural University, Harbin 150030, China
| | - Si-Ming Wang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Research Center for Ecological Agriculture and Soil-Water Environment Restoration, Northeast Agricultural University, Harbin 150030, China
| | - Guang-Lei Zhu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Research Center for Ecological Agriculture and Soil-Water Environment Restoration, Northeast Agricultural University, Harbin 150030, China
| | - Jin Liu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Research Center for Ecological Agriculture and Soil-Water Environment Restoration, Northeast Agricultural University, Harbin 150030, China
| | - Tian-Yi Wang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Research Center for Ecological Agriculture and Soil-Water Environment Restoration, Northeast Agricultural University, Harbin 150030, China
| | - Zi-Jian Wang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Research Center for Ecological Agriculture and Soil-Water Environment Restoration, Northeast Agricultural University, Harbin 150030, China
| | - Bo-Wei Qi
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Research Center for Ecological Agriculture and Soil-Water Environment Restoration, Northeast Agricultural University, Harbin 150030, China
| | - Xin-Ying Liu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Research Center for Ecological Agriculture and Soil-Water Environment Restoration, Northeast Agricultural University, Harbin 150030, China
| | - Shao-Xuan Lv
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Research Center for Ecological Agriculture and Soil-Water Environment Restoration, Northeast Agricultural University, Harbin 150030, China
| | - Ming-Hang Li
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Research Center for Ecological Agriculture and Soil-Water Environment Restoration, Northeast Agricultural University, Harbin 150030, China
| | - Qiang Fu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
39
|
Qi A, Wang P, Lv J, Zhao T, Huang Q, Wang Y, Zhang X, Wang M, Xiao Y, Yang L, Ji Y, Wang W. Distributions of PAHs, NPAHs, OPAHs, BrPAHs, and ClPAHs in air, bulk deposition, soil, and water in the Shandong Peninsula, China: Urban-rural gradient, interface exchange, and long-range transport. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 265:115494. [PMID: 37742577 DOI: 10.1016/j.ecoenv.2023.115494] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/27/2023] [Accepted: 09/16/2023] [Indexed: 09/26/2023]
Abstract
A systematic study of the movement of PAHs (Polycyclic aromatic hydrocarbons) and their derivatives through air, soil, and water is key to understanding the exchange and transport mechanisms of these pollutants in the environment and for ultimately improving environmental quality. PAHs and their derivatives, such as nitrated PAHs (NPAHs), oxygenated PAHs (OPAHs), brominated PAHs (BrPAHs) and chlorinated PAHs (ClPAHs), were analyzed in air, bulk deposition, soil, and water samples collected from urban, rural, field, and background sites on the eastern coast of China. The goal was to investigate and discuss their spatiotemporal variations, exchange fluxes, and transport potential. The concentrations of PAHs and their derivatives in the air and bulk deposition displayed distinct seasonal patterns, with higher concentrations observed during the winter and spring and lower concentrations during the summer and autumn. NPAHs exhibited the opposite trend. Significant urban-rural gradients were observed for most of the PAHs and their derivatives. According to the air-soil fugacity calculations, 2-3 ring PAHs, BrPAHs, and ClPAHs were found to volatilize from the soil into the air, while 4-7 ring PAHs, OPAHs, and NPAHs deposited from the air into the soil. The air-water fugacity of the PAHs and their derivatives indicated that surface water was an important source for the ambient atmosphere in Qingdao. The characteristic travel distances (CTDs) and persistence (Pov) for atmospheric transport were much lower than that for the water samples, which may be due to the longer half-lives of PAHs and their derivatives in water. NPAHs and ClPAHs with long transport distances and strong persistence in water could lead to a significant impact on marine pollution.
Collapse
Affiliation(s)
- Anan Qi
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Pengcheng Wang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Jianhua Lv
- Qingdao Research Academy of Environmental Sciences, Qingdao 266003, China
| | - Tong Zhao
- Environment Research Institute, Shandong University, Qingdao 266237, China; Qingdao Research Academy of Environmental Sciences, Qingdao 266003, China
| | - Qi Huang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Yiming Wang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Xiongfei Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Miao Wang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yang Xiao
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lingxiao Yang
- Environment Research Institute, Shandong University, Qingdao 266237, China; Jiangsu Collaborative Innovation Center for Climate Change, Nanjing, Jiangsu, 210023, China.
| | - Yaqin Ji
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| |
Collapse
|
40
|
Zhao Z, Chen W, Cheng Y, Li J, Chen Z. Burkholderia cepacia immobilized onto rGO as a biomaterial for the removal of naphthalene from wastewater. ENVIRONMENTAL RESEARCH 2023; 235:116663. [PMID: 37451574 DOI: 10.1016/j.envres.2023.116663] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
As one of the polycyclic aromatic hydrocarbons (PAHs), naphthalene is of serious environmental concern due to its carcinogenicity, persistence and refractory degradation. In this study, a new functional biomaterial based on Burkholderia cepacia (BK) immobilized on reduced graphene oxide (rGO) was prepared, resulting in the removal of 99.0% naphthalene within 48 h. This was better than the 67.3% for free BK and 55.6% for rGO alone. Various characterizations indicated that reduced graphene oxide-Burkholderia cepacia (rGO-BK) was successfully synthesized and secreted non-toxic and degradable surfactants which participated in the degradation of naphthalene. The adsorption kinetics and degradation kinetics conformed best to non-linear pseudo-second-order and pseudo-first-order kinetic models, respectively. Demonstrated in this work is that removing naphthalene by rGO-BK involved both chemically dominated adsorption and biodegradation. As well, GC-MS analysis revealed two things: firstly, that the degraded products of naphthalene were dibutyl phthalate, diethyl phthalate, phthalic acid, and benzoic acid; and secondly, two potentially viable biodegradation pathways of naphthalene by rGO-BK could be proposed. Finally, for practical application experiment, the rGO-BK was exposed to river water samples and generated 99% removal efficiency of naphthalene, so this study offers new insights into biomaterials that can remove naphthalene.
Collapse
Affiliation(s)
- Zhihao Zhao
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350007, Fujian, China
| | - Wei Chen
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350007, Fujian, China
| | - Ying Cheng
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Jiabing Li
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350007, Fujian, China.
| | - Zuliang Chen
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350007, Fujian, China.
| |
Collapse
|
41
|
Chen Y, Song R, Li P, Wang Y, Tan Y, Ma Y, Yang L, Wu L, Du Z, Qi X, Zhang Z. Spatiotemporal distribution, sources apportionment and ecological risks of PAHs: a study in the Wuhan section of the Yangtze River. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:7405-7424. [PMID: 36788152 PMCID: PMC9928594 DOI: 10.1007/s10653-023-01500-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/30/2023] [Indexed: 06/17/2023]
Abstract
This study investigated the sources, contamination and ecological risks of polycyclic aromatic hydrocarbons (PAHs) based on their spatiotemporal distribution in aquatic environment in the Wuhan section of the Yangtze River (WYR). The fugacity ratio evaluation indicated that sediment was secondary release sources of two- and three-ring PAHs and sinks of four- and five-ring PAHs. The total concentrations of PAHs (Σ16PAHs) ranged from 2.51 to 102.5 ng/L in water with the dominant contribution of 47.8% by two-ring PAHs. Σ16PAHs in sediments varied from 5.90 to 2926 ng/g with the contribution of 35.4% by four-ring PAHs. The higher levels of PAHs occurred around developed industrial areas during the wet season, which was related to local industrial emissions and influenced by rainfall/runoff. Annual flux of Σ16PAHs was estimated of 28.77 t. The PMF model analysis revealed that petroleum and industrial emissions were the dominant sources in water accounting for 58.5% of the total pollution, although traffic emission was the main source for sediment accounting for 44.6%. Risk assessments showed that PAHs in water were at low risks, whereas about 44% of the sediments were identified as medium risks. Therefore, energy structure adjustment and further implement of regulation and monitoring are necessary to reduce PAH emissions.
Collapse
Affiliation(s)
- Yulin Chen
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Ranran Song
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Ping Li
- China-UK Water and Soil Resources Sustainable Utilization Joint Research Centre, Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, 453002, China
| | - Yile Wang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Yang Tan
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Yongfei Ma
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Lie Yang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Li Wu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Zhenjie Du
- China-UK Water and Soil Resources Sustainable Utilization Joint Research Centre, Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, 453002, China
| | - Xuebin Qi
- China-UK Water and Soil Resources Sustainable Utilization Joint Research Centre, Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, 453002, China
| | - Zulin Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China.
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK.
| |
Collapse
|
42
|
Qiu M, Tang L, Wang J, Xu Q, Zheng S, Weng S. SERS with Flexible β-CD@AuNP/PTFE Substrates for In Situ Detection and Identification of PAH Residues on Fruit and Vegetable Surfaces Combined with Lightweight Network. Foods 2023; 12:3096. [PMID: 37628095 PMCID: PMC10453087 DOI: 10.3390/foods12163096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/12/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
The detection of polycyclic aromatic hydrocarbons (PAHs) on fruit and vegetable surfaces is important for protecting human health and ensuring food safety. In this study, a method for the in situ detection and identification of PAH residues on fruit and vegetable surfaces was developed using surface-enhanced Raman spectroscopy (SERS) based on a flexible substrate and lightweight deep learning network. The flexible SERS substrate was fabricated by assembling β-cyclodextrin-modified gold nanoparticles (β-CD@AuNPs) on polytetrafluoroethylene (PTFE) film coated with perfluorinated liquid (β-CD@AuNP/PTFE). The concentrations of benzo(a)pyrene (BaP), naphthalene (Nap), and pyrene (Pyr) residues on fruit and vegetable surfaces could be detected at 0.25, 0.5, and 0.25 μg/cm2, respectively, and all the relative standard deviations (RSD) were less than 10%, indicating that the β-CD@AuNP/PTFE exhibited high sensitivity and stability. The lightweight network was then used to construct a classification model for identifying various PAH residues. ShuffleNet obtained the best results with accuracies of 100%, 96.61%, and 97.63% for the training, validation, and prediction datasets, respectively. The proposed method realised the in situ detection and identification of various PAH residues on fruit and vegetables with simplicity, celerity, and sensitivity, demonstrating great potential for the rapid, nondestructive analysis of surface contaminant residues in the food-safety field.
Collapse
Affiliation(s)
- Mengqing Qiu
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (M.Q.); (Q.X.)
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Le Tang
- National Engineering Research Center for Agro-Ecological Big Data Analysis & Application, Anhui University, Hefei 230601, China; (L.T.); (J.W.)
| | - Jinghong Wang
- National Engineering Research Center for Agro-Ecological Big Data Analysis & Application, Anhui University, Hefei 230601, China; (L.T.); (J.W.)
| | - Qingshan Xu
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (M.Q.); (Q.X.)
| | - Shouguo Zheng
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (M.Q.); (Q.X.)
- Anhui Institute of Innovation for Industrial Technology, Hefei 230088, China
| | - Shizhuang Weng
- National Engineering Research Center for Agro-Ecological Big Data Analysis & Application, Anhui University, Hefei 230601, China; (L.T.); (J.W.)
| |
Collapse
|
43
|
Santana AM, Arif S, Evteyeva K, Barbosa F, Campiglia AD. Investigation of the Effects of Dioctyl Sulfosuccinate on the Photodegradation of Benzo[a]Pyrene in Aqueous Solutions under Various Wavelength Regimes. Molecules 2023; 28:5797. [PMID: 37570768 PMCID: PMC10420635 DOI: 10.3390/molecules28155797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Due to the relatively high concentrations of polycyclic aromatic hydrocarbons (PAHs) in oil samples, oil spills in aquatic ecosystems release significant amounts of PAHs. Although remediation efforts often take place during or immediately after an oil spill incident, a portion of the released PAHs remains in the body of water. A natural phenomenon resulting from the direct exposure of PAHs to sunlight is photodegradation. This article investigates the effect of dioctyl sulfosuccinate (DOSS) on the photodegradation of benzo[a]pyrene (BaP), the most toxic PAH in the priority pollutants list of the US Environmental Protection Agency (EPA). DOSS is a surfactant typically used in the remediation of oil spills. Three lamps with maximum emission wavelengths at 350 nm, 419 nm, and 575 nm were individually and simultaneously used to irradiate aqueous solutions of BaP in the absence and the presence of DOSS. When irradiated with the 419 nm lamp or the 575 lamp, BaP showed no photodegradation. Upon irradiation with the 350 nm lamp and with the simultaneous use of the three lamps, the photodegradation of BaP followed first-order kinetics. Independent of the irradiation wavelength, the presence of DOSS increased the half-life of BaP in the aqueous solution. In the case of the 350 nm lamp, the rate constant of photodegradation in the absence and the presence of DOSS varied from (3.79 ± 0.97) × 10-3 min-1 to (1.10 ± 0.13) × 10-3 min-1, respectively. Under simultaneous irradiation with the lamps, the rate constant of photodegradation varied from (1.12 ± 0.35) × 10-3 min (no DOSS) to (3.30 ± 0.87) × 10-4 (with DOSS). Since the largest rate constants of photodegradation were observed in the absence of DOSS, the longer half-lives of BaP in the presence of surfactant were attributed to the incorporation of PAH molecules into the DOSS micelles.
Collapse
Affiliation(s)
- Anthony M. Santana
- Department of Chemistry, University of Central Florida, 4111 Libra Dr., Orlando, FL 32816, USA
| | - Sadia Arif
- Department of Chemistry, University of Central Florida, 4111 Libra Dr., Orlando, FL 32816, USA
| | - Kristina Evteyeva
- Department of Chemistry, University of Central Florida, 4111 Libra Dr., Orlando, FL 32816, USA
| | - Fernando Barbosa
- ASTox Lab—Analytical and System Toxicology Laboratory, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café s/n, Ribeirao Preto 14040-903, Brazil
| | - Andres D. Campiglia
- Department of Chemistry, University of Central Florida, 4111 Libra Dr., Orlando, FL 32816, USA
| |
Collapse
|
44
|
Sun N, Liu J, Qi BW, Lu LL, Du HL, Li S, Li CQ, Jiang SW, Wang ZJ, Yang AP, Zhu GL, Wang TY, Wang SM, Fu Q. Effect of humic acid-modified attapulgite on polycyclic aromatic hydrocarbon adsorption and release from paddy soil into the overlying water in a rice-crab coculture paddy ecosystem and the underlying process. CHEMOSPHERE 2023; 329:138555. [PMID: 37019394 DOI: 10.1016/j.chemosphere.2023.138555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/07/2023] [Accepted: 03/29/2023] [Indexed: 05/03/2023]
Abstract
Phenanthrene (Phe), a typical polycyclic aromatic hydrocarbon (PAH) pollutant, poses an enormous safety risk to rice-crab coculture (RC) paddy ecosystems. In this study, humic acid-modified purified attapulgite (HA-ATP) with a composite structure was successfully fabricated to adsorb PAHs released from paddy soil to overlying water in RC paddy ecosystems in Northeast China. The maximum crab bioturbation intensities for dissolved Phe and particulate Phe were 64.83nullng/L·(cm2·d) and 214.29nullng/L·(cm2·d), respectively. The highest concentration of dissolved Phe released from paddy soil to overlying water due to crab bioturbation reached 80.89nullng/L, while the corresponding concentration of particulate Phe reached 267.36nullng/L. The dissolved organic carbon (DOC) and total suspended solid (TSS) concentrations in overlying water increased correspondingly and were strongly correlated with dissolved Phe and particulate Phe concentrations, respectively (P < 0.05). When 6% HA-ATP was added to the surface layer of paddy soil, the efficiency of the adsorption of Phe release was 24.00%-36.38% for particulate Phe and 89.99%-91.91% for dissolved Phe. Because HA-ATP has a large adsorption pore size (11.33 nm) and surface area (82.41nullm2/g) as well as many HA functional groups, it provided multiple hydrophobic adsorption sites for dissolved Phe, which was conducive to competitive adsorption with DOC in the overlying water. In contrast to that adsorbed by DOC, the average proportion of dissolved Phe adsorbed by HA-ATP reached 90.55%, which reduced the dissolved Phe concentration in the overlying water. Furthermore, even though the particulate Phe was resuspended by crab bioturbation, HA-ATP immobilized particulate Phe due to its capacity to inhibit desorption, which achieved the goal of reducing the Phe concentration in the overlying water. This result was confirmed by research on the adsorption-desorption characteristics of HA-ATP. This research provides an environmentally friendly in situ remediation method for reducing agricultural environmental risks and improving rice crop quality.
Collapse
Affiliation(s)
- Nan Sun
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; Northeast Agricultural University/Heilongjiang Academy of Environmental Sciences Joint Postdoctoral Mobile Station, 150030, China
| | - Jin Liu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China
| | - Bo-Wei Qi
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China
| | - Li-Li Lu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China
| | - Hui-Ling Du
- Heilongjiang Academy of Environmental Sciences, Harbin, 150056, China
| | - Shuang Li
- Heilongjiang Academy of Environmental Sciences, Harbin, 150056, China
| | - Chang-Qing Li
- Heilongjiang Zhongke Engineering Management Consulting Co. Ltd, Harbin, 150000, China
| | - Si-Wen Jiang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China
| | - Zi-Jian Wang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China
| | - An-Pei Yang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China
| | - Guang-Lei Zhu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China
| | - Tian-Yi Wang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China
| | - Si-Ming Wang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China
| | - Qiang Fu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
45
|
Zhang X, Qi A, Wang P, Huang Q, Zhao T, Yan C, Yang L, Wang W. Spatial Distribution, Sources, Air-Soil Exchange, and Health Risks of Parent PAHs and Derivative-Alkylated PAHs in Different Functional Areas of an Oilfield Area in the Yellow River Delta, North China. TOXICS 2023; 11:540. [PMID: 37368640 DOI: 10.3390/toxics11060540] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
The knowledge of the spatial distribution, sources, and air-soil exchange of polycyclic aromatic compounds (PACs) in an oilfield area is essential to the development of effective control practices of PAC pollution. In this study, 48 passive air samples and 24 soil samples were collected during 2018-2019 in seven functional areas (e.g., urban, oil field, suburban, industrial, agricultural, near pump units, and background) in the Yellow River Delta (YRD) where the Shengli Oilfield is located, and 18 parent polycyclic aromatic hydrocarbons (PAHs) and five alkylated-PAHs (APAHs) were analyzed from all the air and soil samples. The ΣPAHs in the air and soil ranged from 2.26 to 135.83 ng/m3 and 33.96 to 408.94 ng/g, while the ΣAPAHs in the atmosphere and soil ranged from 0.04 to 16.31 ng/m3 and 6.39 to 211.86 ng/g, respectively. There was a downward trend of atmospheric ΣPAH concentrations with increasing the distance from the urban area, while both ΣPAH and ΣAPAH concentrations in the soil decreased with distance from the oilfield area. PMF analyses show that for atmospheric PACs, coal/biomass combustion was the main contributor in urban, suburban, and agricultural areas, while crude production and processing source contributes more in the industrial and oilfield area. For PACs in soil, densely populated areas (industrial, urban, and suburban) are more affected by traffic sources, while oilfield and near-pump unit areas are under the impact of oil spills. The fugacity fraction (ff) results indicated that the soil generally emitted low-molecular-weight PAHs and APAHs and act as a sink for high-molecular-weight PAHs. The incremental lifetime cancer risk (ILCR) of Σ(PAH+APAH) in both the air and soil, were below the threshold (≤10-6) set by the US EPA.
Collapse
Affiliation(s)
- Xiongfei Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Anan Qi
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Pengcheng Wang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Qi Huang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Tong Zhao
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Caiqing Yan
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Lingxiao Yang
- Environment Research Institute, Shandong University, Qingdao 266237, China
- Jiangsu Collaborative Innovation Center for Climate Change, Nanjing 210093, China
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| |
Collapse
|
46
|
Zhu FJ, Zhang ZF, Liu LY, Yao H, Jia HL, Zhang Z, Cui S, Meng B, Cao G, Su PH, Mao XX, Li BL, Ma WL, Li YF. Influence on the levels of PAHs and methylated PAHs in surface soil from pollution control in China: Evidence in 2019 data compared with 2005 and 2012 data. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162718. [PMID: 36914128 DOI: 10.1016/j.scitotenv.2023.162718] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 05/06/2023]
Abstract
To comprehensively clarify the pollution characteristics of persistent toxic substances, the Soil and Air Monitoring Program Phase III (SAMP-III) was conducted in 2019 in China. In total, 154 surface soil samples were collected across China, and 30 unsubstituted polycyclic aromatic hydrocarbons (U-PAHs) and 49 methylated PAHs (Me-PAHs) were analyzed in this study. The mean concentrations of total U-PAHs and Me-PAHs were 540 ± 778 and 82.0 ± 132 ng/g dw, respectively. Northeastern China and Eastern China are the two regions of concern with high PAH and BaP equivalency levels. Compared with SAMP-I (2005) and SAMP-II (2012), an obvious upward temporal trend followed by a downward trend of PAH levels was observed in the past 14 years for the first time. The mean concentrations of 16 U-PAHs were 377 ± 716, 780 ± 1010, and 419 ± 611 ng/g dw in surface soil across China for the three phases, respectively. Considering rapid economic growth and energy consumption, an increasing trend from 2005 to 2012 was expected. From 2012 to 2019, the PAH levels in soils across China decreased by 50 %, which was consistent with the decline in PAH emissions. The period of reduction of PAHs in surface soil coincided with the implementation of Air and Soil Pollution Control Actions in China after 2013 and 2016, respectively. Along with the pollution control actions in China, the pollution control of PAHs and the increase in soil quality can be expected in the near future.
Collapse
Affiliation(s)
- Fu-Jie Zhu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin 150090, China
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin 150090, China
| | - Li-Yan Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin 150090, China
| | - Hong Yao
- IJRC-PTS, Beijing Jiaotong University, Beijing 100044, China
| | - Hong-Liang Jia
- IJRC-PTS, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Zhi Zhang
- School of Advanced Manufacturing, Guangdong University of Technology, Jieyang 515231, China
| | - Song Cui
- IJRC-PTS, School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Bo Meng
- IJRC-PTS, School of Geography and Tourism, Harbin University, Harbin 150086, China
| | - Gang Cao
- IJRC-PTS, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Peng-Hao Su
- IJRC-PTS, Shanghai Maritime University, Shanghai 201306, China
| | - Xiao-Xuan Mao
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Bao-Long Li
- MNR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Science, Beijing 100037, China
| | - Wan-Li Ma
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin 150090, China.
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin 150090, China
| |
Collapse
|
47
|
Hou Z, Li Y, Zheng M, Liu X, Zhang Q, Wang W. Regioselective oxidation of heterocyclic aromatic hydrocarbons catalyzed by cytochrome P450: A case study of carbazole. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 258:114964. [PMID: 37121081 DOI: 10.1016/j.ecoenv.2023.114964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/11/2023] [Accepted: 04/26/2023] [Indexed: 05/22/2023]
Abstract
Recently there are increasing interests in accurately evaluating the health effects of heterocyclic PAHs. However, the activation mechanism and possible metabolites of heterocyclic PAHs catalyzed by human CYP1A1 is still elusive to a great extent. Here, leveraged to high level QM/MM calculations, the corresponding activation pathways of a representative heterocyclic PAHs, carbazole, were systematically explored. The first stage is electrophilic addition or hydrogen abstraction from N-H group. Electrophilic addition was evidenced to be more feasible and regioselectivity at C3 and C4 sites were identified. Correlations between energy barriers and key structural/electrostatic parameters reveal that O-Cα distance and Fe-O-Cα angle are the main origin for the catalytic regioselectivity. Electrophilic addition was determined as the rate-determining step and the subsequent possible reactions include epoxidation, NIH shift (the hydrogen migration from the site of hydroxylation to the adjacent carbon) and proton shuttle. The corresponding products are epoxides, ketones and hydroxylated carbazoles, respectively. The main metabolites (hydroxylated carbazoles) are estimated to be more toxic than carbazole. The regioselectivity of carbazole activated by CYP1A1 is different from the environmental processes (gas and aqueous phase). Collectively, these results will inform the in-depth understanding the metabolic processes of heterocyclic PAHs and aid the accurate evaluation of their health effects.
Collapse
Affiliation(s)
- Zexi Hou
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Yanwei Li
- Environment Research Institute, Shandong University, Qingdao 266237, PR China; Shenzhen Research Institute, Shandong University, Shenzhen 518057, PR China.
| | - Mingna Zheng
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Xinning Liu
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Qingzhu Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
48
|
Zheng H, Chen Z, Yang K, Xiao K, Zhu J, Gao Z, Han Z, Liu Y, Cai M. Spatiotemporal variations, surface inventory, and cross regional impact of current-use organoamine pesticides in Chinese Marginal Seas. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131213. [PMID: 36931216 DOI: 10.1016/j.jhazmat.2023.131213] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
Current-use Organoamine Pesticides (CUOAPs) are a growing concern as emerging pesticide pollutants that were initially discovered on a large scale in Chinese Marginal Seas (CMSs). The highest level was detected in the East China Sea in the late spring and decreased in the following order: East China Sea (early spring) > the South China Sea > the Bohai Sea. The crucial role played by the Yangtze and Yellow rivers as significant terrestrial sources were established. The fluctuations in the land application and riverine input led to variations in the source, distribution, and seasonal patterns of CUOAPs. Terrestrial-exported CUOAPs were transported and redistributed spatially by the surface ocean currents, resulting in significant regional disparities. The results displayed a pronounced terrestrial source signature and a cross-regional impact. By the ocean current transport, CMSs will likely become a secondary source region for the surrounding seas.
Collapse
Affiliation(s)
- Hongyuan Zheng
- Ministry of Natural Resources Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai 200136, China; Ocean Institute, Northwest Polytechnical University, Jiangsu 215400, China
| | - Zhiyi Chen
- Ministry of Natural Resources Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai 200136, China; College of Civil Engineering and Architecture, Zhejiang University of Water Resources and Electric Power, Zhejiang 310018, China
| | - Kunde Yang
- Ocean Institute, Northwest Polytechnical University, Jiangsu 215400, China
| | - Kaiyan Xiao
- Ministry of Natural Resources Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai 200136, China; Antarctic Great Wall Ecology National Observation and Research Station, Polar Research Institute of China, 1000 Xuelong Road, Shanghai 201209, China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jincai Zhu
- Ministry of Natural Resources Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai 200136, China; Antarctic Great Wall Ecology National Observation and Research Station, Polar Research Institute of China, 1000 Xuelong Road, Shanghai 201209, China; School of Oceanography, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Zhiwei Gao
- Ministry of Natural Resources Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai 200136, China; Antarctic Great Wall Ecology National Observation and Research Station, Polar Research Institute of China, 1000 Xuelong Road, Shanghai 201209, China
| | - Zheyi Han
- Ministry of Natural Resources Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai 200136, China; Antarctic Great Wall Ecology National Observation and Research Station, Polar Research Institute of China, 1000 Xuelong Road, Shanghai 201209, China
| | - Yanguang Liu
- Key Laboratory of Marine Geology and Metallogeny, First Institute of Oceanography, Ministry of Natural Resources (MNR), Qingdao 266061, China.
| | - Minghong Cai
- Ministry of Natural Resources Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai 200136, China; Antarctic Great Wall Ecology National Observation and Research Station, Polar Research Institute of China, 1000 Xuelong Road, Shanghai 201209, China; School of Oceanography, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China.
| |
Collapse
|
49
|
Montuori P, De Rosa E, Cerino P, Pizzolante A, Nicodemo F, Gallo A, Rofrano G, De Vita S, Limone A, Triassi M. Estimation of Polycyclic Aromatic Hydrocarbons in Groundwater from Campania Plain: Spatial Distribution, Source Attribution and Health Cancer Risk Evaluation. TOXICS 2023; 11:toxics11050435. [PMID: 37235250 DOI: 10.3390/toxics11050435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/23/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023]
Abstract
The aim of this study was to evaluate the concentrations of polycyclic aromatic hydrocarbons (PAHs) in 1168 groundwater samples of the Campania Plain (Southern Italy), taken using a municipal environmental pressure index (MIEP), and to analyze the distribution of these compounds to determine source PAHs using ratios of isomers diagnostic. Lastly, this study also aimed to estimate the potential health cancer risk in groundwaters. The data indicated that the highest concentration of PAHs was found in groundwater from Caserta Province and the contents of BghiP, Phe, and Nap were detected in the samples. The spatial distribution of these pollutants was evaluated using the Jenks method; moreover, the data indicated that incremental lifetime cancer risk ILCRingestion ranged from 7.31 × 10-20 to 4.96 × 10-19, while ILCRdermal ranged from 4.32 × 10-11 to 2.93 × 10-10. These research findings may provide information about the Campania Plain's groundwater quality and aid in the development of preventative measures to lessen PAH contamination in groundwater.
Collapse
Affiliation(s)
- Paolo Montuori
- Department of Public Health, "Federico II" University, Via Sergio Pansini No. 5, 80131 Naples, Italy
| | - Elvira De Rosa
- Department of Public Health, "Federico II" University, Via Sergio Pansini No. 5, 80131 Naples, Italy
| | - Pellegrino Cerino
- Department of Public Health, "Federico II" University, Via Sergio Pansini No. 5, 80131 Naples, Italy
| | - Antonio Pizzolante
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute No. 2, 80055 Naples, Italy
| | - Federico Nicodemo
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute No. 2, 80055 Naples, Italy
| | - Alfonso Gallo
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute No. 2, 80055 Naples, Italy
| | - Giuseppe Rofrano
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute No. 2, 80055 Naples, Italy
| | - Sabato De Vita
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute No. 2, 80055 Naples, Italy
| | - Antonio Limone
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute No. 2, 80055 Naples, Italy
| | - Maria Triassi
- Department of Public Health, "Federico II" University, Via Sergio Pansini No. 5, 80131 Naples, Italy
| |
Collapse
|
50
|
Cui Y, Xiao Q, Yuan Y, Zhuang Y, Hao W, Jiang J, Meng Q, Wei X. 1,4-Naphthoquinone-Coated Black Carbon, a Kind of Atmospheric Fine Particulate Matter, Affects Macrophage Fate: New Insights into Crosstalk between Necroptosis and Macrophage Extracellular Traps. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6095-6107. [PMID: 37018376 DOI: 10.1021/acs.est.2c08791] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
1,4-Naphthoquinone-coated BC (1,4 NQ-BC) is an important component of PM2.5 and a representative secondary particle. However, there is no research on the crosstalk mechanism between necroptosis and macrophage extracellular traps (METs) after 1,4 NQ-BC exposure. In this study, we treated RAW264.7 cells with 50, 100, and 200 mg/L 1,4 NQ-BC for 24 h, with 10 μM necrostatin-1 for 24 h, and with 2.5 μM phorbol 12-myristate 13-acetate (PMA) for 3 h. Our experiment revealed that under normal physiological conditions, when macrophages receive external stimuli (such as pathogens; in this experiment, PMA), they will form METs and capture and kill pathogens, thus exerting innate immune function. However, exposure to 1,4 NQ-BC can cause necroptosis in macrophages, accompanied by increased levels of reactive oxygen species (ROS) and cytosolic calcium ions, as well as the expression disorder of inflammatory factors and chemokines, prevent the formation of METs, lead to loss of the function of capturing and killing pathogens, and weaken the innate immune function. Notably, inhibition of necroptosis restored the formation of METs, indicating that necroptosis inhibited the formation of METs. Our study was the first to explore the crosstalk mechanism between necroptosis and METs. This experiment will enrich the mechanism of macrophage injury caused by 1,4 NQ-BC exposure.
Collapse
Affiliation(s)
- Yuan Cui
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, P. R. China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, P. R. China
| | - Qianqian Xiao
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, P. R. China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, P. R. China
| | - Yuese Yuan
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, P. R. China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, P. R. China
| | - Yimeng Zhuang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, P. R. China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, P. R. China
| | - Weidong Hao
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, P. R. China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, P. R. China
| | - Jianjun Jiang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, P. R. China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, P. R. China
| | - Qinghe Meng
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, P. R. China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, P. R. China
| | - Xuetao Wei
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, P. R. China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, P. R. China
| |
Collapse
|