1
|
Chen Y, Li D, Liu S, Song X, Li Z, Sun J, Xu Y, Hou J. Deposited dead algae influence the microbial communities and functional potentials on the surface sediment in eutrophic shallow lakes. ENVIRONMENTAL RESEARCH 2025; 271:121072. [PMID: 39922263 DOI: 10.1016/j.envres.2025.121072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/06/2025] [Accepted: 02/06/2025] [Indexed: 02/10/2025]
Abstract
Dead algae deposition will change the nutrient transformation on the sediment-water interface. However, the key factors that drive nutrient turnover, particularly the influence of sediment microbiota, remain poorly understood. As a result, this study conducted an 80-day simulated incubation to investigate the effect of different deposition of death algae on microbial communities and functional potentials in sediments. It was revealed that dead algae deposition changed the microbial communities and interactions. Changes in the bacteria are not only reflected in community composition and diversity but also in the interrelation among bacteria taxa, while changes in the fungi are mainly reflected in the interrelation among fungi taxa. Meanwhile, dead algae deposition increased the abundance of mostly functional genes related to the C, N, P, and S cycle processes and improved the function potentials of microorganisms. Both of them led to the increase of PO43-, NO3-, NH4+, and TOC content in the overlying water, influencing the nutrient cycle processes. Moreover, partial least squares path modeling indicated which key factors are to influence different nutrient cycle processes. Sediment nutrients directly influenced the P cycle process, whereas the C, N, and S cycle processes were directly affected by the changes in biological properties. These results provide a new perspective on the effects of dead algal deposition on the sediment nutrient cycle processes mediated by the sediment microbiota.
Collapse
Affiliation(s)
- Yanqi Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, PR China
| | - Dapeng Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, PR China.
| | - Songqi Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, PR China.
| | - Xinyu Song
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, PR China
| | - Ziyu Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, PR China
| | - Jingqiu Sun
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, PR China
| | - Yao Xu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, PR China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, PR China, 210098
| |
Collapse
|
2
|
He S, Guo X, Zhao M, Chen D, Fu S, Tian G, Xu H, Liang X, Wang H, Li G, Liu X. Ecological restoration reduces greenhouse gas emissions by altering planktonic and sedimentary microbial communities in a shallow eutrophic lake. ENVIRONMENTAL RESEARCH 2025; 275:121400. [PMID: 40090476 DOI: 10.1016/j.envres.2025.121400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 03/12/2025] [Accepted: 03/12/2025] [Indexed: 03/18/2025]
Abstract
Ecological restoration is a promising approach to alleviate eutrophication. However, its impacts on greenhouse gas (GHG) emissions and the underlying microbial mechanisms in different habitats of lakes remain unclear. To address this knowledge gap, we measured carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) fluxes at both water-air and sediment-water interfaces of eutrophic (Caohai) and restored area (Dapokou) of Dianchi Lake, a typical eutrophic lake in China. Meanwhile, we investigated the responses of planktonic and sedimentary bacterial and fungal communities by high-throughput sequencing. Our results indicated that 6 years of ecological restoration significantly reduced CO2 and N2O fluxes by 1.0-3.6 and 2.2-2.8 folds respectively, with more pronounced variations at the water-air interface than the sediment-water interface. Ecological restoration also shifted the structures of planktonic bacterial and fungal communities remarkably, leading to a significant reduction in the relative abundances of Actinobacteriota (by 70.94%), Bacteroidota (by 61.65%), Planctomycetota (by 74.18%) and Chytridiomycota (by 95.44%). Correlation analyses further suggested that GHG fluxes at the water-air interface were significantly correlated with planktonic microbial community composition (P < 0.05), and the significant reduction of CO2 and N2O fluxes under ecological restoration could be attributed to the decreased abundances of organic matter decomposers (such as hgcI_clade, Sporichthyaceae and Acidibacter) and increased abundances of autotrophs (such as Hydrogenophaga and Cyanobium_PCC-6307) in water. Collectively, our findings verify the importance of ecological restoration in reducing GHG emissions in inland lake ecosystems, providing new insights for addressing global climate change and advancing carbon neutrality.
Collapse
Affiliation(s)
- Songbing He
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; State Key Laboratory of Regional and Urban Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xue Guo
- State Key Laboratory of Regional and Urban Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Mengying Zhao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Dengbo Chen
- State Key Laboratory of Regional and Urban Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Shuai Fu
- State Key Laboratory of Regional and Urban Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Gege Tian
- State Key Laboratory of Regional and Urban Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Huihua Xu
- State Key Laboratory of Regional and Urban Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Ximing Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Hongtao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Guanghe Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China.
| |
Collapse
|
3
|
Li Z, Zhao C, Mao Z, Zhang F, Dong L, Song C, Chen Y, Fu X, Ao Z, Xiong Y, Hui Q, Song W, Penttinen P, Zhang S. Structure and metabolic function of spatiotemporal pit mud microbiome. ENVIRONMENTAL MICROBIOME 2025; 20:10. [PMID: 39833926 PMCID: PMC11748504 DOI: 10.1186/s40793-025-00668-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND Pit mud (PM) hosts diverse microbial communities, which serve as a medium to impart flavor and quality to Baijiu and exhibit long-term tolerance to ethanol and acids, resulting in a unique ecosystem. However, the ecology and metabolic functions of PM remain poorly understood, as many taxa in PM represent largely novel lineages. In this study, we used a combination of metagenomic analysis and chemical derivatization LC-MS analysis to provide a comprehensive overview of microbial community structure, metabolic function, phylogeny, horizontal gene transfer, and the relationship with carboxyl compounds in spatiotemporal PM samples. RESULTS Our findings revealed three distinct stages in the spatiotemporal changes of prokaryotic communities in PM: an initial phase dominated by Lactobacillus, a transitional phase, and a final state of equilibrium. Significant variations in α- and β-diversity were observed across different spatial and temporal PM samples. We identified 178 medium- and high-quality non-redundant metagenome-assembled genomes (MAGs), and constructed their phylogenetic tree, depicting their roles in the carbon, nitrogen, and sulfur cycles. The Wood-Ljungdahl pathway and reverse TCA cycle were identified as the main carbon fixation mechanisms, with both hydrogenotrophic and aceticlastic methanogens playing a major role in methane production, and methylotrophic pathway observed in older PM. Furthermore, we identified relationships between prokaryotes and 29 carboxyl metabolites, including medium- and long-chain fatty acids. Horizontal gene transfer (HGT) was widespread in PM, particularly among clostridia, Bacteroidota, Bacilli, and Euryarchaeota, and was shown to play critical roles in fermentation dynamics, carbon fixation, methane production, and nitrogen and sulfur metabolism. CONCLUSION Our study provides new insights into the evolution and function of spatiotemporal PM, as well as its interactions with carboxyl metabolites. Lactobacillus dominated in new PM, while methanogens and clostridia were predominant in older or deeper PM layers. The three distinct stages of prokaryotic community development in PM and HGT played critical roles in metabolic function of spatiotemporal PM. Furthermore, this study highlights the importance of α-diversity, β-diversity, methanogens, and Clostridium as useful indicators for assessing PM quality in the production of high-quality Baijiu.
Collapse
Affiliation(s)
- Zhihua Li
- Institute of Agro-Products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China.
- Luzhou Laojiao Co., Ltd., Luzhou, 646000, China.
- National Engineering Research Center of Solid-State Brewing, Luzhou, 646000, China.
| | - Chi Zhao
- Institute of Agro-Products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China
| | - Zhenyu Mao
- Luzhou Laojiao Co., Ltd., Luzhou, 646000, China
- National Engineering Research Center of Solid-State Brewing, Luzhou, 646000, China
| | - Fengju Zhang
- Institute of Agro-Products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China
| | - Ling Dong
- Institute of Agro-Products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China
| | - Chuan Song
- Luzhou Laojiao Co., Ltd., Luzhou, 646000, China
- National Engineering Research Center of Solid-State Brewing, Luzhou, 646000, China
| | - Yao Chen
- Luzhou Laojiao Co., Ltd., Luzhou, 646000, China
- National Engineering Research Center of Solid-State Brewing, Luzhou, 646000, China
| | - Xin Fu
- Luzhou Laojiao Co., Ltd., Luzhou, 646000, China
- National Engineering Research Center of Solid-State Brewing, Luzhou, 646000, China
| | - Zonghua Ao
- Luzhou Laojiao Co., Ltd., Luzhou, 646000, China
- National Engineering Research Center of Solid-State Brewing, Luzhou, 646000, China
| | - Yanfei Xiong
- Luzhou Laojiao Co., Ltd., Luzhou, 646000, China
- National Engineering Research Center of Solid-State Brewing, Luzhou, 646000, China
| | - Qin Hui
- Luzhou Laojiao Co., Ltd., Luzhou, 646000, China
- National Engineering Research Center of Solid-State Brewing, Luzhou, 646000, China
| | - Weizhi Song
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Petri Penttinen
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
- Faculty of Agriculture and Forestry, University of Helsinki, 00014, Helsinki, Finland
| | - Suyi Zhang
- Luzhou Laojiao Co., Ltd., Luzhou, 646000, China.
- National Engineering Research Center of Solid-State Brewing, Luzhou, 646000, China.
| |
Collapse
|
4
|
Urbano VA, Alves GHZ, Pompeu PS, Contieri BB, Benedito E. Fish acting as sinks of methane-derived carbon in Neotropical floodplains. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178231. [PMID: 39721522 DOI: 10.1016/j.scitotenv.2024.178231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/19/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Floodplains function as global hotspots for the natural production of methane. Some of this methane can be oxidized by methanotrophic bacteria and assimilated into their biomass before reaching the atmosphere. Consequently, aquatic invertebrates that feed on methanotrophic bacteria may transfer methane-derived carbon to higher trophic levels in the aquatic food chain. Our objective was to investigate the proportion of methane-derived carbon in the biomass of apex fish across 34 lakes from four major Neotropical floodplains (Amazon, Pantanal, Araguaia, and Paraná) using stable isotopes of carbon (δ13C). We found that methane-derived carbon contributed between 5 % and 16 % to the biomass of 37 apex fish species, providing, for the first time, evidence of the fish's role in the methane cycle in the Neotropics. Consumers in the Amazon and Pantanal floodplains, the largest and most significant regions for methane production, exhibited higher levels of methane-derived carbon in their biomass (11.06 ± 2.87 % and 9.84 ± 3.08 %, respectively). These results underscore the role of aquatic consumers in mitigating methane emissions in floodplains, as methane oxidation and assimilation are linked to reduced emissions. Therefore, conserving fish assemblages in floodplains through strategies that maintain the natural dynamics of these ecosystems is essential for controlling natural methane emissions.
Collapse
Affiliation(s)
- Vinícius Andrade Urbano
- Graduate Program in Applied Ecology, Department of Ecology and Conservation, Federal University of Lavras (UFLA), Campus Lavras, Lavras, MG 37203-202, Brazil; Department of Biology (DBI), State University of Maringá, Av. Colombo, 5790 - Zona 7, Maringá, PR 87020-900, Brazil.
| | - Gustavo Henrique Zaia Alves
- Department of General Biology, State University of Ponta Grossa (UEPG), Campus Uvaranas, Ponta Grossa, PR 84030-900, Brazil
| | - Paulo Santos Pompeu
- Graduate Program in Applied Ecology, Department of Ecology and Conservation, Federal University of Lavras (UFLA), Campus Lavras, Lavras, MG 37203-202, Brazil
| | - Beatriz Bosquê Contieri
- Graduate Program in Ecology of Inland Water Ecosystems (PEA), State University of Maringá (UEM), Av. Colombo, 5790 - Zona 7, Maringá, PR 87020-900, Brazil
| | - Evanilde Benedito
- Department of Biology (DBI), State University of Maringá, Av. Colombo, 5790 - Zona 7, Maringá, PR 87020-900, Brazil; Graduate Program in Ecology of Inland Water Ecosystems (PEA), State University of Maringá (UEM), Av. Colombo, 5790 - Zona 7, Maringá, PR 87020-900, Brazil; Nucleus of Limnology, Ictiology and Aquaculture (NUPELIA) of State University of Maringá (UEM). Av. Colombo, 5790 - Zona 7, Maringá, PR 87020-900, Brazil; Graduate Program Comparate Biology (PGB), State University of Maringá (UEM), Av. Colombo, 5790 - Zona 7, Maringá, PR 87020-900, Brazil
| |
Collapse
|
5
|
Luo C, Bai S, Sun J, Wang F, Ma S, Xu T, Ma J, Chen XP. Diversity and Distribution of Methane Functional Microorganisms in Sedimentary Columns of Hongfeng Reservoir in Different Seasons. Curr Microbiol 2024; 82:55. [PMID: 39715842 DOI: 10.1007/s00284-024-04038-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 12/12/2024] [Indexed: 12/25/2024]
Abstract
Freshwater ecosystem is a significant natural source of CH4 emission in the atmosphere. To fully understand the dynamics of methane emissions in reservoirs, it is essential to grasp the temporal and vertical distribution patterns, as well as the factors that influence the methanogenic bacterial communities within the sediments. This study investigates the methane dynamics, carbon isotope fractionation (δ13CH4), and abundance of functional microorganisms along the geochemical gradient in the in situ sedimentary column of Hongfeng Reservoir (China). Notably, the methane concentration in sediment in summer ranged in 15.39-127.22 µmol/L, which is twice as high as wintertime concentrations in the surface layer near the sediment-water interface (0-10 cm depth). Illumina sequencing of the sediments identified 11 genera affiliated with methanogenic archaea, with dominant genus Methanosaeta reaching a relative abundance of 34.95% in summer. The total carbon (TOC) content in sedimentary columns in different seasons is positively correlated with Methanosarcina (P < 0.05). In addition, seasonal discrepancies are observed in the sediment profiles for total nitrogen (TN), sulfate (SO42-), and ferrous iron (Fe2+) concentrations. The concentration of total nitrogen (TN) is higher in summer than in winter. In summer, sulfate accumulates in the middle layer of the sedimentary column, while in winter, the maximum concentration of sulfate in the surface layer reaches 0.65 mmol/L. These geochemical gradients drive the biological transformation of nitrogen, sulfur, and iron, may also be linked to the consumption of methane. Thus, it is established that the temporal and spatial dynamics of methanogenic communities in sediments significantly influence the fluctuations in methane release fluxes within reservoirs, highlighting the necessity to account for seasonal biological variations when assessing greenhouse gas emissions from reservoirs.
Collapse
Affiliation(s)
- Chai Luo
- Department of Environmental Science and Engineering, School of Environmental and Chemical Engineering, Shanghai University, 150#, 99 Shangda Road, Shanghai, 200444, China
| | - Shuang Bai
- Department of Environmental Science and Engineering, School of Environmental and Chemical Engineering, Shanghai University, 150#, 99 Shangda Road, Shanghai, 200444, China
| | - Jing Sun
- Department of Environmental Science and Engineering, School of Environmental and Chemical Engineering, Shanghai University, 150#, 99 Shangda Road, Shanghai, 200444, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Fushun Wang
- Department of Environmental Science and Engineering, School of Environmental and Chemical Engineering, Shanghai University, 150#, 99 Shangda Road, Shanghai, 200444, China
| | - Shuwen Ma
- Department of Environmental Science and Engineering, School of Environmental and Chemical Engineering, Shanghai University, 150#, 99 Shangda Road, Shanghai, 200444, China
| | - Tian Xu
- Department of Environmental Science and Engineering, School of Environmental and Chemical Engineering, Shanghai University, 150#, 99 Shangda Road, Shanghai, 200444, China
| | - Jing Ma
- Department of Environmental Science and Engineering, School of Environmental and Chemical Engineering, Shanghai University, 150#, 99 Shangda Road, Shanghai, 200444, China
| | - Xue-Ping Chen
- Department of Environmental Science and Engineering, School of Environmental and Chemical Engineering, Shanghai University, 150#, 99 Shangda Road, Shanghai, 200444, China.
| |
Collapse
|
6
|
Wang J, Wu D, Wu Q, Chen J, Zhao Y, Wang H, Liu F, Yuan Q. Vertical profiles of community and activity of methanotrophs in large lake and reservoir of Southwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177782. [PMID: 39626421 DOI: 10.1016/j.scitotenv.2024.177782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/15/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024]
Abstract
Microbial methane oxidation plays a significant role in regulating methane emissions from lakes and reservoirs. However, the differences in methane oxidation activity and methanotrophic community between lakes and reservoirs remain inadequately characterized. In this study, sediment and water samples were collected from the large shallow lake (Dianchi) and deep reservoirs (Dongfeng and Hongjiadu) located in karst area, Southwest China. The results indicated that the rates of aerobic oxidation of methane (AeOM) in lake sediment ranged from 7.1 to 27.7 μg g-1 d-1, which was higher than that in reservoirs sediment (1.92 to 11.56 μg g-1 d-1). Similarly, the average AeOM in the water column of lake (104.7 μg L-1 d-1) was much higher than that of reservoirs (46 μg L-1 d-1). The content of sediment organic carbon and dissolved inorganic carbon were important factors that influenced the rates of AeOM in sediment and water column, respectively. 16S rRNA genes sequencing revealed a higher relative abundance of methanotrophs in lake sediments compared to reservoir sediments. The dominant methanotrophic taxa in lake was Methylococcaceae (type Ib), while Methylomonadaceae (type Ia) was predominant in reservoirs. Meanwhile, anaerobic methane-oxidizing microorganisms Candidatus Methylomirabilis and Candidatus Methanoperedens were also abundant in sediments of reservoirs. However, metatranscriptomic analysis revealed that the type I methanotrophs, especially Methylobacter, was most active in the sediment of both lake and reservoir. Water depth and conductivity could be the key controlling factors of the structures of methanotrophic communities in sediment and water column, respectively. Metagenome-assembled genomes suggested that type I methanotrophs exhibited greater motility, as evidenced by a higher number of flagellar assembly genes, while type II methanotrophs demonstrated advantages in metabolic processes such as carbon, phosphorus, and methane metabolism.
Collapse
Affiliation(s)
- Jiayi Wang
- State Key Laboratory of Environment Geochemistry, Institute of Geochemistry, Chinese Academy of Science, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Debin Wu
- State Key Laboratory of Environment Geochemistry, Institute of Geochemistry, Chinese Academy of Science, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiusheng Wu
- State Key Laboratory of Environment Geochemistry, Institute of Geochemistry, Chinese Academy of Science, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingan Chen
- State Key Laboratory of Environment Geochemistry, Institute of Geochemistry, Chinese Academy of Science, Guiyang 550081, China; Guizhou Province Field Scientific Observation and Research Station of Hongfeng Lake Reservoir Ecosystem, Guiyang 551499, China
| | - Yuan Zhao
- State Key Laboratory of Environment Geochemistry, Institute of Geochemistry, Chinese Academy of Science, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heng Wang
- State Key Laboratory of Environment Geochemistry, Institute of Geochemistry, Chinese Academy of Science, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fukang Liu
- State Key Laboratory of Environment Geochemistry, Institute of Geochemistry, Chinese Academy of Science, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Quan Yuan
- State Key Laboratory of Environment Geochemistry, Institute of Geochemistry, Chinese Academy of Science, Guiyang 550081, China; Guizhou Province Field Scientific Observation and Research Station of Hongfeng Lake Reservoir Ecosystem, Guiyang 551499, China.
| |
Collapse
|
7
|
Liang W, Yan D, Zhang M, Wang J, Ni D, Yun S, Wei X, Zhang L, Fu H. Unraveling methanogenesis processes and pathways for Quaternary shallow biogenic gas in aquifer systems through geochemical, genomic and transcriptomic analyses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177189. [PMID: 39490825 DOI: 10.1016/j.scitotenv.2024.177189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Shallow biogenic gas is crucial in global warming and carbon cycling. Considering the knowledge gap in the understanding of methanogenesis and metabolic mechanisms within shallow groundwater systems, we investigated Quaternary shallow biogenic gas resources from the Hetao Basin in North China, which were previously underexplored. We systematically analyzed the genesis of gas and formation water, microbial communities, methanogenic processes, and pathways using geochemistry, genomics, and transcriptomics. Our findings indicated that active freshwater environments are conducive to microbial activity and the generation of primary microbial gases. A diverse range of microbes with functions, such as hydrolysis (e.g., Caulobacter), acidogenesis, and hydrogen production (e.g., Sediminibacterium), synergistically contributed to the methanogenic process. Methanogens predominantly comprised hydrogenotrophic methanogens (e.g., Methanobacteriales), although H2-dependent methylotrophic methanogens (e.g., Methanofastidiosa) were also prevalent. The metabolic processes of the different methanogenic pathways were revealed based on functional gene analysis and mapping results. Furthermore, the composition of the community structure, functional predictions, metagenomics, and metatranscriptomics underscored the contribution of the hydrogenotrophic pathway, which ranged from 52.22 % to 79.23 %. The aceticlastic pathway exhibited high gene abundance and was primarily associated with methylotrophs and other potential pathways. The H2-dependent methylotrophic methanogenesis pathway was constrained by low metabolic activity. By revealing the methane production mechanism of biogenic gas in shallow aquifer systems, this study provides a new perspective and profound comprehension of its ecological and environmental implications worldwide.
Collapse
Affiliation(s)
- Wanle Liang
- Key Laboratory of Tectonics and Petroleum Resources of Ministry of Education, China University of Geosciences, Wuhan 430074, China; Hubei Key Laboratory of Oil and Gas Exploration and Development Theory and Technology, China University of Geosciences, Wuhan 430074, China
| | - Detian Yan
- Key Laboratory of Tectonics and Petroleum Resources of Ministry of Education, China University of Geosciences, Wuhan 430074, China; Hubei Key Laboratory of Oil and Gas Exploration and Development Theory and Technology, China University of Geosciences, Wuhan 430074, China.
| | - Mingxuan Zhang
- Key Laboratory of Tectonics and Petroleum Resources of Ministry of Education, China University of Geosciences, Wuhan 430074, China; Hubei Key Laboratory of Oil and Gas Exploration and Development Theory and Technology, China University of Geosciences, Wuhan 430074, China
| | - Jikang Wang
- Key Laboratory of Tectonics and Petroleum Resources of Ministry of Education, China University of Geosciences, Wuhan 430074, China; Hubei Key Laboratory of Oil and Gas Exploration and Development Theory and Technology, China University of Geosciences, Wuhan 430074, China
| | - Dong Ni
- Inner Mongolia Geological Engineering Corporation Ltd., Hohhot 010010, China
| | - Suhe Yun
- Inner Mongolia Geological Engineering Corporation Ltd., Hohhot 010010, China
| | - Xiaosong Wei
- Key Laboratory of Tectonics and Petroleum Resources of Ministry of Education, China University of Geosciences, Wuhan 430074, China; Hubei Key Laboratory of Oil and Gas Exploration and Development Theory and Technology, China University of Geosciences, Wuhan 430074, China
| | - Liwei Zhang
- Key Laboratory of Tectonics and Petroleum Resources of Ministry of Education, China University of Geosciences, Wuhan 430074, China; Hubei Key Laboratory of Oil and Gas Exploration and Development Theory and Technology, China University of Geosciences, Wuhan 430074, China
| | - Haijiao Fu
- Key Laboratory of Tectonics and Petroleum Resources of Ministry of Education, China University of Geosciences, Wuhan 430074, China; Hubei Key Laboratory of Oil and Gas Exploration and Development Theory and Technology, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
8
|
Xia L, Wang Y, Yao P, Ryu H, Dong Z, Tan C, Deng S, Liao H, Gao Y. The Effects of Model Insoluble Copper Compounds in a Sedimentary Environment on Denitrifying Anaerobic Methane Oxidation (DAMO) Enrichment. Microorganisms 2024; 12:2259. [PMID: 39597648 PMCID: PMC11596795 DOI: 10.3390/microorganisms12112259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/29/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
The contribution of denitrifying anaerobic methane oxidation (DAMO) as a methane sink across different habitats, especially those affected by anthropogenic activities, remains unclear. Mining and industrial and domestic use of metals/metal-containing compounds can all cause metal contamination in freshwater ecosystems. Precipitation of metal ions often limits their toxicity to local microorganisms, yet microbial activity may also cause the redissolution of various precipitates. In contrast to most other studies that apply soluble metal compounds, this study investigated the responses of enriched DAMO culture to model insoluble copper compounds, malachite and covellite, in simulated sedimentary environments. Copper ≤ 0.22 µm from covellite appeared to cause immediate inhibition in 10 h. Long-term tests (54 days) showed that apparent methane consumption was less impacted by various levels of malachite and covellite than soluble copper. However, the medium-/high-level malachite and covellite caused a 46.6-77.4% decline in denitrification and also induced significant death of the representative DAMO microorganisms. Some enriched species, such as Methylobacter tundripaludum, may have conducted DAMO or they may have oxidized methane aerobically using oxygen released by DAMO bacteria. Quantitative polymerase chain reaction analysis suggests that Candidatus Methanoperedens spp. were less affected by covellite as compared to malachite while Candidatus Methylomirabilis spp. responded similarly to the two compounds. Under the stress induced by copper, DAMO archaea, Planctomycetes spp. or Phenylobacterium spp. synthesized PHA/PHB-like compounds, rendering incomplete methane oxidation. Overall, the findings suggest that while DAMO activity may persist in ecosystems previously exposed to copper pollution, long-term methane abatement capability may be impaired due to a shift of the microbial community or the inhibition of representative DAMO microorganisms.
Collapse
Affiliation(s)
- Longfei Xia
- School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, 19-3027 iHarbour Campus, Xi’an 710115, China; (L.X.); (Y.W.); (P.Y.); (Z.D.); (C.T.); (S.D.); (H.L.)
- Shaanxi Provincial Land Engineering Construction Group, Xi’an 710075, China
| | - Yong Wang
- School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, 19-3027 iHarbour Campus, Xi’an 710115, China; (L.X.); (Y.W.); (P.Y.); (Z.D.); (C.T.); (S.D.); (H.L.)
- Institute of Global Environmental Change, Xi’an Jiaotong University, 19-3027 iHarbour Campus, Xi’an 710115, China
| | - Peiru Yao
- School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, 19-3027 iHarbour Campus, Xi’an 710115, China; (L.X.); (Y.W.); (P.Y.); (Z.D.); (C.T.); (S.D.); (H.L.)
- Institute of Global Environmental Change, Xi’an Jiaotong University, 19-3027 iHarbour Campus, Xi’an 710115, China
| | - Hodon Ryu
- United States Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA;
| | - Zhengzhong Dong
- School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, 19-3027 iHarbour Campus, Xi’an 710115, China; (L.X.); (Y.W.); (P.Y.); (Z.D.); (C.T.); (S.D.); (H.L.)
- Institute of Global Environmental Change, Xi’an Jiaotong University, 19-3027 iHarbour Campus, Xi’an 710115, China
| | - Chen Tan
- School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, 19-3027 iHarbour Campus, Xi’an 710115, China; (L.X.); (Y.W.); (P.Y.); (Z.D.); (C.T.); (S.D.); (H.L.)
- Institute of Global Environmental Change, Xi’an Jiaotong University, 19-3027 iHarbour Campus, Xi’an 710115, China
| | - Shihai Deng
- School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, 19-3027 iHarbour Campus, Xi’an 710115, China; (L.X.); (Y.W.); (P.Y.); (Z.D.); (C.T.); (S.D.); (H.L.)
- Institute of Global Environmental Change, Xi’an Jiaotong University, 19-3027 iHarbour Campus, Xi’an 710115, China
| | - Hongjian Liao
- School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, 19-3027 iHarbour Campus, Xi’an 710115, China; (L.X.); (Y.W.); (P.Y.); (Z.D.); (C.T.); (S.D.); (H.L.)
| | - Yaohuan Gao
- School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, 19-3027 iHarbour Campus, Xi’an 710115, China; (L.X.); (Y.W.); (P.Y.); (Z.D.); (C.T.); (S.D.); (H.L.)
- Institute of Global Environmental Change, Xi’an Jiaotong University, 19-3027 iHarbour Campus, Xi’an 710115, China
| |
Collapse
|
9
|
Liang ZH, Wang Y, Zhao HY, Fu TT, Liu YQ, Zhang K, Wang YN, Ouyang HL, Yin JN. Improving water quality and mitigating CH 4 and N 2O production in urban landscape water simultaneously by optimizing calcium peroxide dosage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172270. [PMID: 38583627 DOI: 10.1016/j.scitotenv.2024.172270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Recent studies show that greenhouse gas (GHG) emissions from urban landscape water are significant and cannot be overlooked, underscoring the need to develop effective strategies for mitigating GHG production from global freshwater systems. Calcium peroxide (CaO2) is commonly used as an eco-friendly reagent for controlling eutrophication in water bodies, but whether CaO2 can reduce GHG emissions remains unclear. This study investigated the effects of CaO2 dosage on the production of methane (CH4) and nitrous oxide (N2O) in urban landscape water under anoxic conditions during summer. The findings reveal that CaO2 addition not only improved the physicochemical and organoleptic properties of simulated urban landscape water but also reduced N2O production by inhibiting the activity of denitrifying bacteria across various dosages. Moreover, CaO2 exhibited selective effects on methanogens. Specifically, the abundance of acetoclastic methanogen Methanosaeta and methylotrophic methanogen Candidatus_Methanofastidiosum increased whereas the abundance of the hydrogenotrophic methanogen Methanoregula decreased at low, medium, and high dosages, leading to higher CH4 production at increased CaO2 dosage. A comprehensive multi-objective evaluation indicated that an optimal dosage of 60 g CaO2/m2 achieved 41.21 % and 84.40 % reductions in CH4 and N2O production, respectively, over a 50-day period compared to the control. This paper not only introduces a novel approach for controlling the production of GHGs, such as CH4 and N2O, from urban landscape water but also suggests a methodology for optimizing CaO2 dosage, providing valuable insights for its practical application.
Collapse
Affiliation(s)
- Zhen-Hao Liang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yi Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Hui-Ying Zhao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tian-Tian Fu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yong-Qiang Liu
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Kai Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yue-Ning Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hui-Long Ouyang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jia-Ni Yin
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
10
|
Wang B, Hu K, Li C, Zhang Y, Hu C, Liu Z, Ding J, Chen L, Zhang W, Fang J, Zhang H. Geographic distribution of bacterial communities of inland waters in China. ENVIRONMENTAL RESEARCH 2024; 249:118337. [PMID: 38325783 DOI: 10.1016/j.envres.2024.118337] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/08/2024] [Accepted: 01/27/2024] [Indexed: 02/09/2024]
Abstract
Microorganisms are integral to freshwater ecological functions and, reciprocally, their activity and diversity are shaped by the ecosystem state. Yet, the diversity of bacterial community and its driving factors at a large scale remain elusive. To bridge this knowledge gap, we delved into an analysis of 16S RNA gene sequences extracted from 929 water samples across China. Our analyses revealed that inland water bacterial communities showed a weak latitudinal diversity gradient. We found 530 bacterial genera with high relative abundance of hgcI clade. Among them, 29 core bacterial genera were identified, that is strongly linked to mean annual temperature and nutrient loadings. We also detected a non-linear response of bacterial network complexity to the increasing of human pressure. Mantel analysis suggested that MAT, HPI and P loading were the major factors driving bacterial communities in inland waters. The map of taxa abundance showed that the abundant CL500-29 marine group in eastern and southern China indicated high eutrophication risk. Our findings enhance our understanding of the diversity and large-scale biogeographic pattern of bacterial communities of inland waters and have important implications for microbial ecology.
Collapse
Affiliation(s)
- Binhao Wang
- School of Engineering, Hangzhou Normal University, Hangzhou, 310018, China
| | - Kaiming Hu
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Chuqiao Li
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yinan Zhang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Chao Hu
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Zhiquan Liu
- School of Engineering, Hangzhou Normal University, Hangzhou, 310018, China
| | - Jiafeng Ding
- School of Engineering, Hangzhou Normal University, Hangzhou, 310018, China
| | - Lin Chen
- Hangzhou Xixi National Wetland Park Ecology & Culture Research Center, Hangzhou, 310030, China; Zhejiang Xixi Wetland Ecosystem National Observation and Research Station, Hangzhou, 310030, China
| | - Wei Zhang
- Hangzhou Xixi National Wetland Park Ecology & Culture Research Center, Hangzhou, 310030, China; Zhejiang Xixi Wetland Ecosystem National Observation and Research Station, Hangzhou, 310030, China
| | - Jing Fang
- Hangzhou Xixi National Wetland Park Ecology & Culture Research Center, Hangzhou, 310030, China; Zhejiang Xixi Wetland Ecosystem National Observation and Research Station, Hangzhou, 310030, China
| | - Hangjun Zhang
- School of Engineering, Hangzhou Normal University, Hangzhou, 310018, China; Hangzhou International Urbanology Research Center and Center for Zhejiang Urban Governance Studies, Hangzhou, 311121, China.
| |
Collapse
|
11
|
Wang A, Zhang S, Liang Z, Zeng Z, Ma Y, Zhang Z, Yang Y, He Z, Yu G, Liang Y. Response of microbial communities to exogenous nitrate nitrogen input in black and odorous sediment. ENVIRONMENTAL RESEARCH 2024; 248:118137. [PMID: 38295972 DOI: 10.1016/j.envres.2024.118137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/30/2023] [Accepted: 01/05/2024] [Indexed: 02/10/2024]
Abstract
Since nitrate nitrogen (NO3--N) input has proved an effective approach for the treatment of black and odorous river waterbody, it was controversial whether the total nitrogen concentration standard should be raised when the effluent from the sewage treatment plant is discharged into the polluted river. To reveal the effect of exogenous nitrate (NO3--N) on black odorous waterbody, sediments with different features from contaminated rivers were collected, and the changes of physical and chemical characteristics and microbial community structure in sediments before and after the addition of exogenous NO3--N were investigated. The results showed that after the input of NO3--N, reducing substances such as acid volatile sulfide (AVS) in the sediment decreased by 80 % on average, ferrous (Fe2+) decreased by 50 %, yet the changing trend of ammonia nitrogen (NH4+-N) in some sediment samples increased while others decreased. High-throughput sequencing results showed that the abundance of Thiobacillus at most sites increased significantly, becoming the dominant genus in the sediment, and the abundance of functional genes in the metabolome increased, such as soxA, soxX, soxY, soxZ. Network analysis showed that sediment microorganisms evolved from a single sulfur oxidation ecological function to diverse ecological functions, such as nitrogen cycle nirB, nirD, nirK, nosZ, and aerobic decomposition. In summary, inputting an appropriate amount of exogenous NO3--N is beneficial for restoring and maintaining the oxidation states of river sediment ecosystems.
Collapse
Affiliation(s)
- Ao Wang
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Shengrui Zhang
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Ziyang Liang
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Zhanqin Zeng
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Yingshi Ma
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Zhiang Zhang
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Ying Yang
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Zihao He
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Guangwei Yu
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China.
| | - Yuhai Liang
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China.
| |
Collapse
|
12
|
Li X, Yu R, Wang J, Sun H, Liu X, Ren X, Zhuang S, Guo Z, Lu X. Greenhouse gas emissions from Daihai Lake, China: Should eutrophication and salinity promote carbon emission dynamics? J Environ Sci (China) 2024; 135:407-423. [PMID: 37778815 DOI: 10.1016/j.jes.2022.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 10/03/2023]
Abstract
Greenhouse gases (GHGs) emitted or absorbed by lakes are an important component of the global carbon cycle. However, few studies have focused on the GHG dynamics of eutrophic saline lakes, thus preventing a comprehensive understanding of the carbon cycle. Here, we conducted four sampling analyses using a floating chamber in Daihai Lake, a eutrophication saline lake in Inner Mongolia Autonomous Region, China, to explore its carbon dioxide (CO2) and methane (CH4) emissions. The mean CO2 emission flux (FCO2) and CH4 emission flux (FCH4) were 17.54 ± 14.54 mmol/m2/day and 0.50 ± 0.50 mmol/m2/day, respectively. The results indicated that Daihai Lake was a source of CO2 and CH4, and GHG emissions exhibited temporal variability. The mean CO2 partial pressure (pCO2) and CH4 partial pressure (pCH4) were 561.35 ± 109.59 µatm and 17.02 ± 13.45 µatm, which were supersaturated relative to the atmosphere. The regression and correlation analysis showed that the main influencing factors of pCO2 were wind speed, dissolved oxygen (DO), total nitrogen (TN) and Chlorophyll a (Chl.a), whereas the main influencing factors of pCH4 were water temperature (WT), Chl.a, nitrate nitrogen (NO3--N), TN, dissolved organic carbon (DOC) and water depth. Salinity regulated carbon mineralization and organic matter decomposition, and it was an important influencing factor of pCO2 and pCH4. Additionally, the trophic level index (TLI) significantly increased pCH4. Our study elucidated that salinity and eutrophication play an important role in the dynamic changes of GHG emissions. However, research on eutrophic saline lakes needs to be strengthened.
Collapse
Affiliation(s)
- Xiangwei Li
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010070, China
| | - Ruihong Yu
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010070, China; Key Laboratory of Mongolian Plateau Ecology and Resource Utilization, Ministry of Education, Hohhot 010070, China; Autonomous Region Collaborative Innovation Center for Integrated Management of Water Resources and Water Environment in the Inner Mongolia Reaches of the Yellow River, Hohhot 010018, China.
| | - Jun Wang
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010070, China
| | - Heyang Sun
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010070, China
| | - Xinyu Liu
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010070, China
| | - Xiaohui Ren
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010070, China
| | - Shuai Zhuang
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010070, China
| | - Zhiwei Guo
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010070, China
| | - Xixi Lu
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010070, China; Department of Geography, National University of Singapore, 117570, Singapore
| |
Collapse
|
13
|
Meier D, van Grinsven S, Michel A, Eickenbusch P, Glombitza C, Han X, Fiskal A, Bernasconi S, Schubert CJ, Lever MA. Hydrogen-independent CO 2 reduction dominates methanogenesis in five temperate lakes that differ in trophic states. ISME COMMUNICATIONS 2024; 4:ycae089. [PMID: 38988698 PMCID: PMC11235125 DOI: 10.1093/ismeco/ycae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/20/2024] [Accepted: 06/20/2024] [Indexed: 07/12/2024]
Abstract
Emissions of microbially produced methane (CH4) from lake sediments are a major source of this potent greenhouse gas to the atmosphere. The rates of CH4 production and emission are believed to be influenced by electron acceptor distributions and organic carbon contents, which in turn are affected by anthropogenic inputs of nutrients leading to eutrophication. Here, we investigate how eutrophication influences the abundance and community structure of CH4 producing Archaea and methanogenesis pathways across time-resolved sedimentary records of five Swiss lakes with well-characterized trophic histories. Despite higher CH4 concentrations which suggest higher methanogenic activity in sediments of eutrophic lakes, abundances of methanogens were highest in oligotrophic lake sediments. Moreover, while the methanogenic community composition differed significantly at the lowest taxonomic levels (OTU), depending on whether sediment layers had been deposited under oligotrophic or eutrophic conditions, it showed no clear trend in relation to in situ distributions of electron acceptors. Remarkably, even though methanogenesis from CO2-reduction was the dominant pathway in all sediments based on carbon isotope fractionation values, taxonomic identities, and genomes of resident methanogens, CO2-reduction with hydrogen (H2) was thermodynamically unfavorable based on measured reactant and product concentrations. Instead, strong correlations between genomic abundances of CO2-reducing methanogens and anaerobic bacteria with potential for extracellular electron transfer suggest that methanogenic CO2-reduction in lake sediments is largely powered by direct electron transfer from syntrophic bacteria without involvement of H2 as an electron shuttle.
Collapse
Affiliation(s)
- Dimitri Meier
- Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, Swiss Federal Institute of Technology, Zurich (ETH Zurich), Universitätstrasse 16, 8092 Zurich, Switzerland
- Ecological Microbiology, Bayreuth Center of Ecology and Environmental Research, University of Bayreuth, Dr. Hans-Frisch-Straße 1-3, 95448 Bayreuth, Germany
| | - Sigrid van Grinsven
- Department of Surface Waters-Research and Management, Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Seestrasse 79, 6047 Kastanienbaum, Switzerland
- Geomicrobiology, Department of Geosciences, Eberhard Karls Universität Tübingen (Tübingen University), Schnarrenbergstraße 94-96, 72076 Tübingen, Germany
| | - Anja Michel
- Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, Swiss Federal Institute of Technology, Zurich (ETH Zurich), Universitätstrasse 16, 8092 Zurich, Switzerland
| | - Philip Eickenbusch
- Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, Swiss Federal Institute of Technology, Zurich (ETH Zurich), Universitätstrasse 16, 8092 Zurich, Switzerland
| | - Clemens Glombitza
- Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, Swiss Federal Institute of Technology, Zurich (ETH Zurich), Universitätstrasse 16, 8092 Zurich, Switzerland
| | - Xingguo Han
- Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, Swiss Federal Institute of Technology, Zurich (ETH Zurich), Universitätstrasse 16, 8092 Zurich, Switzerland
| | - Annika Fiskal
- Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, Swiss Federal Institute of Technology, Zurich (ETH Zurich), Universitätstrasse 16, 8092 Zurich, Switzerland
| | - Stefano Bernasconi
- Department of Earth Sciences, Swiss Federal Institute of Technology, Zurich (ETH Zurich), Geological Institute, Sonneggstrasse 5, 8092 Zurich, Switzerland
| | - Carsten J Schubert
- Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, Swiss Federal Institute of Technology, Zurich (ETH Zurich), Universitätstrasse 16, 8092 Zurich, Switzerland
- Department of Surface Waters-Research and Management, Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Seestrasse 79, 6047 Kastanienbaum, Switzerland
| | - Mark A Lever
- Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, Swiss Federal Institute of Technology, Zurich (ETH Zurich), Universitätstrasse 16, 8092 Zurich, Switzerland
- Marine Science Institute, Department of Marine Sciences, University of Texas at Austin, 750 Channel View Drive, Port Aransas, TX 78373, United States
| |
Collapse
|
14
|
Wang D, Huang Y, Jia H, Yang H. Bacterial and Microeukaryotic Community Compositions and Their Assembly Processes in Lakes on the Eastern Qinghai-Tibet Plateau. Microorganisms 2023; 12:32. [PMID: 38257859 PMCID: PMC10821157 DOI: 10.3390/microorganisms12010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/11/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Bacterial and microeukaryotic community compositions and their assembly processes have remained challenging and remained unclear in lake ecosystems on the Qinghai-Tibet Plateau (QTP). We revealed the diversity and community compositions, driving factors, ecological assembly processes, and co-occurrence networks of bacterial and microeukaryotic communities in water bodies of the eight lake ecosystems across the Eastern QTP. The results demonstrated that the predominant bacteria in most samples were Proteobacteria, with an average relative abundance of 41.78%, whereas the most abundant of microeukaryotes differed among the sample sites. The redundancy analysis revealed that latitude and pH were the most important driving factors in shaping the bacterial and microeukaryotic community compositions. Homogeneous selection (56.40%) was the dominant process in assembling the bacterial communities, whereas dispersal limitation (67.24%) was the major process in governing the microeukaryotic communities. Furthermore, dissolved organic carbon and salinity were the major factors mediating the balance of deterministic and stochastic assembly processes in the bacterial and microeukaryotic communities. Both the bacterial and microeukaryotic community co-occurrence networks exhibited topological features of modularity and non-random topological features. The results offer insights into the mechanisms underpinning bacterial and microeukaryotic diversities and communities in the lake ecosystems on the QTP.
Collapse
Affiliation(s)
- Dandan Wang
- School of Civil Engineering and Water Resources, Qinghai University, Xining 810016, China; (D.W.); (H.J.); (H.Y.)
- Key Laboratory of Ecological Protection and High Quality Development in the Upper Yellow River, Qinghai University, Xining 810016, China
- Key Laboratory of Water Ecological Remediation and Protection at Headwater Regions of Big Rivers, Qinghai University, Xining 810016, China
| | - Yuefei Huang
- School of Civil Engineering and Water Resources, Qinghai University, Xining 810016, China; (D.W.); (H.J.); (H.Y.)
- Key Laboratory of Ecological Protection and High Quality Development in the Upper Yellow River, Qinghai University, Xining 810016, China
- Key Laboratory of Water Ecological Remediation and Protection at Headwater Regions of Big Rivers, Qinghai University, Xining 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Haichao Jia
- School of Civil Engineering and Water Resources, Qinghai University, Xining 810016, China; (D.W.); (H.J.); (H.Y.)
| | - Haijiao Yang
- School of Civil Engineering and Water Resources, Qinghai University, Xining 810016, China; (D.W.); (H.J.); (H.Y.)
- Key Laboratory of Ecological Protection and High Quality Development in the Upper Yellow River, Qinghai University, Xining 810016, China
- Key Laboratory of Water Ecological Remediation and Protection at Headwater Regions of Big Rivers, Qinghai University, Xining 810016, China
| |
Collapse
|
15
|
Fenibo EO, Selvarajan R, Wang H, Wang Y, Abia ALK. Untapped talents: insight into the ecological significance of methanotrophs and its prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166145. [PMID: 37579801 DOI: 10.1016/j.scitotenv.2023.166145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/06/2023] [Accepted: 08/06/2023] [Indexed: 08/16/2023]
Abstract
The deep ocean is a rich reservoir of unique organisms with great potential for bioprospecting, ecosystem services, and the discovery of novel materials. These organisms thrive in harsh environments characterized by high hydrostatic pressure, low temperature, and limited nutrients. Hydrothermal vents and cold seeps, prominent features of the deep ocean, provide a habitat for microorganisms involved in the production and filtration of methane, a potent greenhouse gas. Methanotrophs, comprising archaea and bacteria, play a crucial role in these processes. This review examines the intricate relationship between the roles, responses, and niche specialization of methanotrophs in the deep ocean ecosystem. Our findings reveal that different types of methanotrophs dominate specific zones depending on prevailing conditions. Type I methanotrophs thrive in oxygen-rich zones, while Type II methanotrophs display adaptability to diverse conditions. Verrumicrobiota and NC10 flourish in hypoxic and extreme environments. In addition to their essential role in methane regulation, methanotrophs contribute to various ecosystem functions. They participate in the degradation of foreign compounds and play a crucial role in cycling biogeochemical elements like metals, sulfur, and nitrogen. Methanotrophs also serve as a significant energy source for the oceanic food chain and drive chemosynthesis in the deep ocean. Moreover, their presence offers promising prospects for biotechnological applications, including the production of valuable compounds such as polyhydroxyalkanoates, methanobactin, exopolysaccharides, ecotines, methanol, putrescine, and biofuels. In conclusion, this review highlights the multifaceted roles of methanotrophs in the deep ocean ecosystem, underscoring their ecological significance and their potential for advancements in biotechnology. A comprehensive understanding of their niche specialization and responses will contribute to harnessing their full potential in various domains.
Collapse
Affiliation(s)
- Emmanuel Oliver Fenibo
- World Bank Africa Centre of Excellence, Centre for Oilfield Chemical Research, University of Port Harcourt, Port Harcourt 500272, Nigeria
| | - Ramganesh Selvarajan
- Laboratory of Extraterrestrial Ocean Systems (LEOS), Institute of Deep-Sea Science and Engineering (IDSSE), Chinese Academy of Sciences (CAS), Sanya, China; Department of Environmental Science, University of South Africa, Florida Campus, 1710, South Africa
| | - Huiqi Wang
- Laboratory of Extraterrestrial Ocean Systems (LEOS), Institute of Deep-Sea Science and Engineering (IDSSE), Chinese Academy of Sciences (CAS), Sanya, China
| | - Yue Wang
- Laboratory of Extraterrestrial Ocean Systems (LEOS), Institute of Deep-Sea Science and Engineering (IDSSE), Chinese Academy of Sciences (CAS), Sanya, China
| | - Akebe Luther King Abia
- Environmental Research Foundation, Westville 3630, South Africa; Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.
| |
Collapse
|
16
|
Zhang L, Li X, Yu R, Geng Y, Sun L, Sun H, Li Y, Zhang Z, Zhang X, Lei X, Wang R, Lu C, Lu X. Significant methane ebullition from large shallow eutrophic lakes of the semi-arid region of northern China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119093. [PMID: 37783080 DOI: 10.1016/j.jenvman.2023.119093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/13/2023] [Accepted: 08/30/2023] [Indexed: 10/04/2023]
Abstract
Eutrophic lakes are a major source of the atmospheric greenhouse gas methane (CH4), and CH4 ebullition emissions from inland lakes have important implications for the carbon cycle. However, the spatio-temporal heterogeneity of CH4 ebullition emission and its influencing factors in shallow eutrophic lakes of arid and semi-arid regions remain unclear. This study aimed to determine the mechanism of CH4 emission via eutrophication in Lake Ulansuhai, a large shallow eutrophic lake in a semi-arid region of China.To this end, monthly field surveys were conducted from May to October 2021, and gas chromatography was applied using the headspace equilibrium technique with an inverted funnel arrangement. The total CH4 fluxes ranged from 0.102 mmol m-2 d-1 to 59.296 mmol m-2 d-1 with an average value of 4.984 ± 1.82 mmol m-2 d-1. CH4 ebullition emissions showed significant temporal and spatial variations. The highest CH4 ebullition emission was observed in July with a grand mean of 9.299 mmol m-2 d-1, and the lowest CH4 ebullition emissions occurred in October with an average of 0.235 mmol m-2 d-1. Among seven sites (S1-S7), the maximum (3.657 mmol m-2 d-1) and minimum (1.297 mmol m-2 d-1). CH4 ebullition emissions were observed at S2 and S7, respectively. As the main route of CH4 emission to the atmosphere in Lake Ulansuhai, the CH4 ebullition flux during May to October accounted for 69% of the total CH4 flux. Statistical analysis showed that CH4 ebullition was positively correlated with temperature (R = 0.391, P < 0.01) and negatively correlated with air pressure (R = 0.286, P < 0.00). Temperature and air pressure were found to strongly regulate the production and oxidation of CH4. Moreover, nutritional status indicators such as TP and NH4+-N significantly affect CH4 ebullition emissions (R = 0.232, P < 0.01; R = -0.241, P < 0.01). This study reveals the influencing factors of CH4 ebullition emission in Lake Ulansuhai, and provides theoretical reference and data support for carbon emission from eutrophic lakes. Nevertheless, research on eutrophic shallow lakes needs to be further strengthened. Future research should incorporate improved flux measurement techniques with process-based models to improve the accuracy from regional to large-scale estimation of CH4 emissions and clarify the carbon budget of aquatic ecosystems. In this manner, the understanding and predictability of CH4 ebullition emission from shallow lakes can be improved.
Collapse
Affiliation(s)
- Linxiang Zhang
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Xiangwei Li
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Ruihong Yu
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China; Key Laboratory of Mongolian Plateau Ecology and Resource Utilization, Ministry of Education, Hohhot, 010021, China; Autonomous Region Collaborative Innovation Center for Integrated Management of Water Resources and Water Environment in the Inner Mongolia Reaches of the Yellow River, Hohhot, 010018, China.
| | - Yue Geng
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Liangqi Sun
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Heyang Sun
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China; Beijing Normal University, China
| | - Yuan Li
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Zhonghua Zhang
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Xiangyu Zhang
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Xue Lei
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Rui Wang
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Changwei Lu
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Xixi Lu
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China; Department of Geography, National University of Singapore, 117570, Singapore
| |
Collapse
|
17
|
Rissanen AJ, Jilbert T, Simojoki A, Mangayil R, Aalto SL, Khanongnuch R, Peura S, Jäntti H. Organic matter lability modifies the vertical structure of methane-related microbial communities in lake sediments. Microbiol Spectr 2023; 11:e0195523. [PMID: 37698418 PMCID: PMC10581051 DOI: 10.1128/spectrum.01955-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/17/2023] [Indexed: 09/13/2023] Open
Abstract
Eutrophication increases the input of labile, algae-derived, organic matter (OM) into lake sediments. This potentially increases methane (CH4) emissions from sediment to water through increased methane production rates and decreased methane oxidation efficiency in sediments. However, the effect of OM lability on the structure of methane oxidizing (methanotrophic) and methane producing (methanogenic) microbial communities in lake sediments is still understudied. We studied the vertical profiles of the sediment and porewater geochemistry and the microbial communities (16S rRNA gene amplicon sequencing) at five profundal stations of an oligo-mesotrophic, boreal lake (Lake Pääjärvi, Finland), varying in surface sediment OM sources (assessed via sediment C:N ratio). Porewater profiles of methane, dissolved inorganic carbon (DIC), acetate, iron, and sulfur suggested that sites with more autochthonous OM showed higher overall OM lability, which increased remineralization rates, leading to increased electron acceptor (EA) consumption and methane emissions from sediment to water. When OM lability increased, the abundance of anaerobic nitrite-reducing methanotrophs (Candidatus Methylomirabilis) relative to aerobic methanotrophs (Methylococcales) in the methane oxidation layer of sediment surface decreased, suggesting that Methylococcales were more competitive than Ca. Methylomirabilis under decreasing redox conditions and increasing methane availability due to their more diverse metabolism (fermentation and anaerobic respiration) and lower affinity for methane. Furthermore, when OM lability increased, the abundance of methanotrophic community in the sediment surface layer, especially Ca. Methylomirabilis, relative to the methanogenic community decreased. We conclude that increasing input of labile OM, subsequently affecting the redox zonation of sediments, significantly modifies the methane producing and consuming microbial community of lake sediments. IMPORTANCE Lakes are important natural emitters of the greenhouse gas methane (CH4). It has been shown that eutrophication, via increasing the input of labile organic matter (OM) into lake sediments and subsequently affecting the redox conditions, increases methane emissions from lake sediments through increased sediment methane production rates and decreased methane oxidation efficiency. However, the effect of organic matter lability on the structure of the methane-related microbial communities of lake sediments is not known. In this study, we show that, besides the activity, also the structure of lake sediment methane producing and consuming microbial community is significantly affected by changes in the sediment organic matter lability.
Collapse
Affiliation(s)
- Antti J. Rissanen
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Tom Jilbert
- Environmental Geochemistry Group, Department of Geosciences and Geography, Faculty of Science, Helsinki, Finland
| | - Asko Simojoki
- Department of Agricultural Sciences (Environmental Soil Science), Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Rahul Mangayil
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Sanni L. Aalto
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Ramita Khanongnuch
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Sari Peura
- Department of Forest Mycology and Plant Pathology, Science for Life Laboratory, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Helena Jäntti
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
18
|
Wang J, Qu YN, Evans PN, Guo Q, Zhou F, Nie M, Jin Q, Zhang Y, Zhai X, Zhou M, Yu Z, Fu QL, Xie YG, Hedlund BP, Li WJ, Hua ZS, Wang Z, Wang Y. Evidence for nontraditional mcr-containing archaea contributing to biological methanogenesis in geothermal springs. SCIENCE ADVANCES 2023; 9:eadg6004. [PMID: 37379385 DOI: 10.1126/sciadv.adg6004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/24/2023] [Indexed: 06/30/2023]
Abstract
Recent discoveries of methyl-coenzyme M reductase-encoding genes (mcr) in uncultured archaea beyond traditional euryarchaeotal methanogens have reshaped our view of methanogenesis. However, whether any of these nontraditional archaea perform methanogenesis remains elusive. Here, we report field and microcosm experiments based on 13C-tracer labeling and genome-resolved metagenomics and metatranscriptomics, revealing that nontraditional archaea are predominant active methane producers in two geothermal springs. Archaeoglobales performed methanogenesis from methanol and may exhibit adaptability in using methylotrophic and hydrogenotrophic pathways based on temperature/substrate availability. A five-year field survey found Candidatus Nezhaarchaeota to be the predominant mcr-containing archaea inhabiting the springs; genomic inference and mcr expression under methanogenic conditions strongly suggested that this lineage mediated hydrogenotrophic methanogenesis in situ. Methanogenesis was temperature-sensitive , with a preference for methylotrophic over hydrogenotrophic pathways when incubation temperatures increased from 65° to 75°C. This study demonstrates an anoxic ecosystem wherein methanogenesis is primarily driven by archaea beyond known methanogens, highlighting diverse nontraditional mcr-containing archaea as previously unrecognized methane sources.
Collapse
Affiliation(s)
- Jiajia Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Yan-Ni Qu
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Paul N Evans
- The Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia 4072, QLD, Australia
| | - Qinghai Guo
- MOE Key Laboratory of Groundwater Quality and Health, State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Fengwu Zhou
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
- College of Geography Science, Nanjing Normal University, Nanjing 210023, China
| | - Ming Nie
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai 200438, China
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200433, China
| | - Qusheng Jin
- Department of Earth Sciences, University of Oregon, Eugene, OR 97403, USA
| | - Yan Zhang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xiangmei Zhai
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Ming Zhou
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Zhiguo Yu
- School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Qing-Long Fu
- MOE Key Laboratory of Groundwater Quality and Health, State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Yuan-Guo Xie
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zheng-Shuang Hua
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zimeng Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200433, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yanxin Wang
- MOE Key Laboratory of Groundwater Quality and Health, State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| |
Collapse
|
19
|
Xu H, Tang Z, Liang Z, Chen H, Dai X. Neglected methane production and toxicity risk in low-frequency ultrasound for controlling harmful algal blooms. ENVIRONMENTAL RESEARCH 2023; 232:116422. [PMID: 37327839 DOI: 10.1016/j.envres.2023.116422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/25/2023] [Accepted: 06/13/2023] [Indexed: 06/18/2023]
Abstract
Algal blooms are regarded as a significant source of CH4 emissions. Ultrasound has been gradually employed as a fast and efficient algae removal technology in recent years. However, the changes in water environment and potential ecological effects caused by ultrasonic algae removal are not fully clear. Here, a 40-day microcosm study was performed to simulate the collapse of Microcystis aeruginosa blooms after ultrasonic treatment. The results showed that low-frequency ultrasound at 29.4 kHz for 15 min removed 33.49% of M. aeruginosa and contributed to the destruction of cell structure, but it intensified the leakage of intracellular algal organic matter and microcystins. The accelerated collapse of M. aeruginosa blooms after ultrasonication promoted the rapid formation of anaerobic and reductive methanogenesis conditions, and elevated dissolved organic carbon content. Moreover, the release of labile organics, including tyrosine, tryptophan, protein-like compositions, and aromatic proteins, was facilitated by the collapse of M. aeruginosa blooms after ultrasonic treatment, and they supported the growth of anaerobic fermentation bacteria and hydrogenotrophic Methanobacteriales. This was also demonstrated by the increase in methyl-coenzyme M reductase (mcrA) genes in sonicated algae added treatments at the end of incubation. Finally, the CH4 production in sonicated algae added treatments was 1.43-fold higher than that in non-sonicated algae added treatments. These observations suggested that ultrasound for algal bloom control potentially increased the toxicity of treated water and its greenhouse gas emissions. This study can provide new insights and guidance to evaluate environmental effects of ultrasonic algae removal.
Collapse
Affiliation(s)
- Haolian Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Zhenzhen Tang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Zixuan Liang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Hongbin Chen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
20
|
Wang T, Yang X, Li Z, Chen W, Wen X, He Y, Ma C, Yang Z, Zhang C. MeHg production in eutrophic lakes: Focusing on the roles of algal organic matter and iron-sulfur-phosphorus dynamics. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131682. [PMID: 37270963 DOI: 10.1016/j.jhazmat.2023.131682] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/20/2023] [Accepted: 05/21/2023] [Indexed: 06/06/2023]
Abstract
The mechanisms by which eutrophication affects methylmercury (MeHg) production have not been comprehensively summarized, which hinders accurately predicting the MeHg risk in eutrophic lakes. In this review, we first discussed the effects of eutrophication on biogeochemical cycle of mercury (Hg). Special attentions were paid to the roles of algal organic matter (AOM) and iron (Fe)-sulfur (S)-phosphorus (P) dynamics in MeHg production. Finally, the suggestions for risk control of MeHg in eutrophic lakes were proposed. AOM can affect in situ Hg methylation by stimulating the abundance and activities of Hg methylating microorganisms and regulating Hg bioavailability, which are dependent on bacteria-strain and algae species, the molecular weight and composition of AOM as well as environmental conditions (e.g., light). Fe-S-P dynamics under eutrophication including sulfate reduction, FeS formation and P release could also play crucial but complicated roles in MeHg production, in which AOM may participate through influencing the dissolution and aggregation processes, structural order and surface properties of HgS nanoparticles (HgSNP). Future studies should pay more attention to the dynamics of AOM in responses to the changing environmental conditions (e.g., light penetration and redox fluctuations) and how such variations will subsequently affect MeHg production. The effects of Fe-S-P dynamics on MeHg production under eutrophication also deserve further investigations, especially the interactions between AOM and HgSNP. Remediation strategies with lower disturbance, greater stability and less cost like the technology of interfacial O2 nanobubbles are urgent to be explored. This review will deepen our understanding of the mechanisms of MeHg production in eutrophic lakes and provide theoretical guidance for its risk control.
Collapse
Affiliation(s)
- Tantan Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Xu Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Zihao Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Wenhao Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Xin Wen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yubo He
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Chi Ma
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Zhongzhu Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Chang Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| |
Collapse
|
21
|
Li B, Wang H, Lai A, Xue J, Wu Q, Yu C, Xie K, Mao Z, Li H, Xing P, Wu QL. Hydrogenotrophic pathway dominates methanogenesis along the river-estuary continuum of the Yangtze River. WATER RESEARCH 2023; 240:120096. [PMID: 37229838 DOI: 10.1016/j.watres.2023.120096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/07/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
Rivers are considered as an important source of methane (CH4) to the atmosphere, but our understanding for the methanogenic pathway in rivers and its linkage with CH4 emission is very limited. Here, we investigated the diffusive flux of CH4 and its stable carbon isotope signature (δ13C-CH4) along the river-estuary continuum of the Yangtze River. The diffusive CH4 flux was estimated to 27.9 ± 11.4 μmol/m2/d and 36.5 ± 24.4 μmol/m2/d in wet season and dry season, respectively. The δ13C-CH4 values were generally lower than -60‰, with the fractionation factor (αc) higher than 1.055 and the isotope separation factor (εc) ranged from 55 to 100. In situ microbial composition showed that hydrogenotrophic methanogens accounts for over 70% of the total reads. Moreover, the incubation test showed that the headspace CH4 concentration by adding CO2/H2 to the sediment was orders of magnitude higher than that by adding trimethylamine and sodium acetate. These results jointly verified the river-estuary continuum is a minor CH4 source and dominated by hydrogenotrophic pathway. Based on the methanogenic pathway here and previous reported data in the same region, the historical variation of diffusive CH4 flux was calculated and results showed that CH4 emission has reduced 82.5% since the construction of Three Gorges Dam (TGD). Our study verified the dominant methanogenic pathway in river ecosystems and clarified the effect and mechanism of dam construction on riverine CH4 emission.
Collapse
Affiliation(s)
- Biao Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Hongwei Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Anxing Lai
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jingya Xue
- School of Geographical Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Qiong Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; College of Life Sciences, Hebei University, Baoding 071002, China
| | - Chunyan Yu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; College of Life Sciences, Hebei University, Baoding 071002, China
| | - Ke Xie
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Zhendu Mao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Huabing Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Peng Xing
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Qinglong L Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100039, China.
| |
Collapse
|
22
|
Wang B, Ma B, Stirling E, He Z, Zhang H, Yan Q. Freshwater trophic status mediates microbial community assembly and interdomain network complexity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120690. [PMID: 36403871 DOI: 10.1016/j.envpol.2022.120690] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/18/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Freshwater microorganisms and their interactions are important drivers of nutrient cycling that are in turn affected by nutrient status, causing shifts in microbial community diversity, composition, and interactions. However, the impact of water trophic status on bacterial-archaeal interdomain interactions remains poorly understood. This study focused on the impact of trophic status, as characterized by trophic state index (TSI), on the interdomain interactions of freshwater microbial communities from 45 ponds in Hangzhou. Our results showed that the mesotrophic wetland bordering on lightly eutrophic (Hemu: TSI of 49; lightly eutrophic is defined as 50 ≤ TSI <60) harbored a much more complex bacterial-archaeal interdomain network, which showed significantly (P < 0.05) higher connectivity than the wetlands with lower (TSI of 38) or higher (TSI of 57) trophic levels. Notably, light eutrophication strengthened the network modules' negative associations with organic carbon through some network hubs, which could trigger carbon loss in wetlands. We also detected a non-linear response of interdomain network complexity to the increasing of nutrients with a turning point of approximately TSI 50. Quantitative estimates of community assembly processes and structural equation modelling analysis indicated that chlorophyll-a, total nitrogen, and total phosphorus could regulate interdomain network complexity (50% of the variation explanation rate) by driving microbial community assembly. This study demonstrates that microbial interdomain network complexity could be used as a bioindicator for ecological changes, which would helpful for improving ecological assessment of the freshwater eutrophication.
Collapse
Affiliation(s)
- Binhao Wang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310058, China
| | - Bin Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Erinne Stirling
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China; Acid Sulfate Soils Centre, School of Biological Sciences, The University of Adelaide, Adelaide, 5005, Australia
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China; College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Hangjun Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Qingyun Yan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
23
|
Zhu Y, Chen X, Yang Y, Xie S. Impacts of cyanobacterial biomass and nitrate nitrogen on methanogens in eutrophic lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157570. [PMID: 35905968 DOI: 10.1016/j.scitotenv.2022.157570] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Methanogenesis is a key process in carbon cycling in lacustrine ecosystems. Knowledge of the methanogenic pathway is important for creating mechanistic models as well as predicting methane emissions. Due to low concentrations of methyl substrates in freshwater lakes, the proportion of methylotrophic methanogenesis is believed to be negligible in such environments. However, the high abundance of methylotrophic methanogens previously detected in Dianchi Lake suggests that methylotrophic methanogenesis may be underestimated in eutrophic lakes, whereas their influencing factors and mechanisms are not yet clear. In this study, the effects of cyanobacteria biomass (CB) or/and nitrate nitrogen on methanogenesis, especially methylotrophic pathway, in eutrophic lakes were investigated using microcosm simulation experiments combined with chemical analysis and high-throughput sequencing techniques. The results showed that either CB or nitrate nitrogen had significant effects on methane flux, the archaeal diversity and community structure of methanogens. Functional prediction, together with the result of chemical analysis, revealed that CB could promote methylotrophic methanogenesis by providing methyl organic substrates, while nitrate nitrogen increased the relative abundance of obligate methylotrophic methanogens by competitively inhibiting the other two methanogenic pathways. In eutrophic lake where both CB and nitrate present at a high concentration, methylotrophic methanogenesis could play a much more important role than previously believed.
Collapse
Affiliation(s)
- Ying Zhu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xiuli Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yuyin Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; South China Institute of Environmental Science, Ministry of Ecology and Environment, Guangzhou 510535, China.
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
24
|
Zhang L, He K, Wang T, Liu C, An Y, Zhong J. Frequent algal blooms dramatically increase methane while decrease carbon dioxide in a shallow lake bay. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 312:120061. [PMID: 36041568 DOI: 10.1016/j.envpol.2022.120061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Freshwater ecosystems play a key role in global greenhouse gas estimations and carbon budgets, and algal blooms are widespread owing to intensified anthropological activities. However, little is known about greenhouse gas dynamics in freshwater experiencing frequent algal blooms. Therefore, to explore the spatial and temporal variations in methane (CH4) and carbon dioxide (CO2), seasonal field investigations were performed in the Northwest Bay of Lake Chaohu (China), where there are frequent algal blooms. From the highest site in the nearshore to the pelagic zones, the CH4 concentration in water decreased by at least 80%, and this dynamic was most obvious in warm seasons when algal blooms occurred. CH4 was 2-3 orders of magnitude higher than the saturated concentration, with the highest in spring, which makes this bay a constant source of CH4. However, unlike CH4, CO2 did not change substantially, and river mouths acted as hotspots for CO2 in most situations. The highest CO2 concentration appeared in winter and was saturated, whereas at other times, CO2 was unsaturated and acted as a sink. The intensive photosynthesis of rich algae decreased the CO2 in the water and increased dissolved oxygen and pH. The increase in CH4 in the bay was attributed to the mineralization of autochthonous organic carbon. These findings suggest that frequent algal blooms will greatly absorb more CO2 from atmosphere and increasingly release CH4, therefore, the contribution of the bay to the lake's CH4 emissions and carbon budget will be major even though it is small. The results of this study will be the same to other shallow lakes with frequent algal bloom, making lakes a more important part of the carbon budget and greenhouse gases emission.
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, PR China.
| | - Kai He
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, PR China
| | - Tong Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Cheng Liu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, PR China
| | - Yanfei An
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, PR China
| | - Jicheng Zhong
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, PR China
| |
Collapse
|
25
|
Yang P, Tang KW, Tong C, Lai DYF, Wu L, Yang H, Zhang L, Tang C, Hong Y, Zhao G. Changes in sediment methanogenic archaea community structure and methane production potential following conversion of coastal marsh to aquaculture ponds. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119276. [PMID: 35405221 DOI: 10.1016/j.envpol.2022.119276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/08/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Widespread conversion of coastal wetlands into aquaculture ponds in coastal region often results in degradation of the wetland ecosystems, but its effects on sediment's potential to produce greenhouse gases remain unclear. Using field sampling, incubation experiments and molecular analysis, we studied the sediment CH4 production potential and the relevant microbial communities in a brackish marsh and the nearby aquaculture ponds in the Min River Estuary in southeastern China. Sediment CH4 production potential was higher in the summer and autumn months than in spring and winter months, and it was significantly correlated with sediment carbon content among all environmental variables. The mean sediment CH4 production potential in the aquaculture ponds (20.1 ng g-1 d-1) was significantly lower than that in the marsh (45.2 ng g-1 d-1). While Methanobacterium dominated in both habitats (41-59%), the overall composition of sediment methanogenic archaea communities differed significantly between the two habitats (p < 0.05) and methanogenic archaea alpha diversity was lower in the aquaculture ponds (p < 0.01). Network analysis revealed that interactions between sediment methanogenic archaea were much weaker in the ponds than in the marsh. Overall, these findings suggest that conversion of marsh land to aquaculture ponds significantly altered the sediment methanogenic archaea community structure and diversity and lowered the sediment's capacity to produce CH4.
Collapse
Affiliation(s)
- Ping Yang
- School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, PR China; Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, Fujian Normal University, Fuzhou, 350007, PR China; Research Centre of Wetlands in Subtropical Region, Fujian Normal University, Fuzhou, 350007, PR China.
| | - Kam W Tang
- Department of Biosciences, Swansea University, Swansea, SA2 8PP, UK
| | - Chuan Tong
- School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, PR China; Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, Fujian Normal University, Fuzhou, 350007, PR China; Research Centre of Wetlands in Subtropical Region, Fujian Normal University, Fuzhou, 350007, PR China
| | - Derrick Y F Lai
- Department of Geography and Resource Management, The Chinese University of Hong Kong, Hong Kong, China
| | - Lianzuan Wu
- Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, Fujian Normal University, Fuzhou, 350007, PR China
| | - Hong Yang
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, China; Department of Geography and Environmental Science, University of Reading, Reading, UK
| | - Linhai Zhang
- School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, PR China; Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, Fujian Normal University, Fuzhou, 350007, PR China; Research Centre of Wetlands in Subtropical Region, Fujian Normal University, Fuzhou, 350007, PR China
| | - Chen Tang
- Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, Fujian Normal University, Fuzhou, 350007, PR China
| | - Yan Hong
- Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, Fujian Normal University, Fuzhou, 350007, PR China
| | - Guanghui Zhao
- Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, Fujian Normal University, Fuzhou, 350007, PR China
| |
Collapse
|
26
|
Wang B, Stirling E, He Z, Ma B, Zhang H, Zheng X, Xiao F, Yan Q. Pollution alters methanogenic and methanotrophic communities and increases dissolved methane in small ponds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149723. [PMID: 34438138 DOI: 10.1016/j.scitotenv.2021.149723] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/07/2021] [Accepted: 08/12/2021] [Indexed: 05/28/2023]
Abstract
Small ponds have become a hotspot of greenhouse gas emissions, but our understanding of methane (CH4) cycling and its biological regulation in small polluted ponds remains limited. To assess how pollution affects CH4 content, we investigated dissolved CH4 concentrations, water and sediments properties, methanogenic and methanotrophic communities in two types of small polluted ponds. Compared with low pollution (LP) ponds, high pollution (HP) ponds showed significantly (P < 0.05) higher dissolved CH4 in water. Sequencing of methyl coenzyme M reductase (mcrA) and particulate methane monooxygenase (pmoA) genes showed that HP led to significant (P < 0.05) shifts of CH4-cycling microbial communities, with increased Shannon index of sediment methanogenic communities and water methanotrophic communities. There were also strong negative associations (P < 0.05) between dissolved CH4 concentrations and interdomain methanogen-methanotroph network connectivity in water and sediments, respectively. The partial least squares path modeling indicated that dissolved oxygen, total organic carbon, ammonium nitrogen and nitrate nitrogen of water, and total nitrogen and total carbon of sediment, and CH4-cycling microbes could regulate the CH4 content. This study clarified the effects of environmental deterioration on CH4 cycling in small ponds, highlighting the use of methanogen-methanotroph network connectivity to assess the CH4 production.
Collapse
Affiliation(s)
- Binhao Wang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Erinne Stirling
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Acid Sulfate Soils Centre, School of Biological Sciences, The University of Adelaide, Adelaide 5005, Australia
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China; College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Bin Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310058, China
| | - Hangjun Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Xiafei Zheng
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Fanshu Xiao
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Qingyun Yan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
27
|
Andreeva SV, Filippova YY, Devyatova EV, Nokhrin DY. Variability of the structure of winter microbial communities in Chelyabinsk lakes. BIOSYSTEMS DIVERSITY 2021. [DOI: 10.15421/10.15421/012139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Microorganisms form complex and dynamic communities that play a key role in the biogeochemical cycles of lakes. A high level of urbanization is currently a serious threat to bacterial communities and the ecosystem of freshwater bodies. To assess the contribution of anthropogenic load to variations in the structure of winter microbial communities in lakes, microorganisms of four water bodies of Chelyabinsk region were studied for the first time. We used cultural, chromatography-mass spectrometric, and modern methods of statistical data processing (particularly, multivariate exploratory analysis and canonical analysis of correspondences). The research showed that the composition of winter microbial communities in lakes Chebarkul’, Smolino, Pervoye, and Shershenevskoye Reservoir did not differ significantly between the main phyla of microorganisms. The dominant microorganisms were found to be of the Firmicutes phylum and Actinobacteria phylum. The structure of bacterial communities had special features depending on the characteristics of the water body and the sampling depths. Thus, in the lakes Smolino, Pervoye, and Shershenevskoye Reservoir, an important role was played by associations between microorganisms – indicators of fecal contamination: coliform bacteria and Enterococcus. On the contrary, in Chebarkul’ Lake, members of the genus Bacillus, which are natural bioremediators, formed stable winter associations. However, the differences between water bodies and sampling depths reflected 28.1% and 9.8% of the variability of the winter microbial communities, respectively. The largest contribution (about 60%) to the variability of the structure was made by intra-water processes, which determined the high heterogeneity of samples from different water areas. We assume that an important role in this variability was played by the high anthropogenic impact in a large industrial metropolis. In our opinion, this line of research is very promising for addressing key environmental issues.
Collapse
|
28
|
Andreeva SV, Filippova YY, Devyatova EV, Nokhrin DY. Variability of the structure of winter microbial communities in Chelyabinsk lakes. BIOSYSTEMS DIVERSITY 2021. [DOI: 10.15421/012139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Microorganisms form complex and dynamic communities that play a key role in the biogeochemical cycles of lakes. A high level of urbanization is currently a serious threat to bacterial communities and the ecosystem of freshwater bodies. To assess the contribution of anthropogenic load to variations in the structure of winter microbial communities in lakes, microorganisms of four water bodies of Chelyabinsk region were studied for the first time. We used cultural, chromatography-mass spectrometric, and modern methods of statistical data processing (particularly, multivariate exploratory analysis and canonical analysis of correspondences). The research showed that the composition of winter microbial communities in lakes Chebarkul’, Smolino, Pervoye, and Shershenevskoye Reservoir did not differ significantly between the main phyla of microorganisms. The dominant microorganisms were found to be of the Firmicutes phylum and Actinobacteria phylum. The structure of bacterial communities had special features depending on the characteristics of the water body and the sampling depths. Thus, in the lakes Smolino, Pervoye, and Shershenevskoye Reservoir, an important role was played by associations between microorganisms – indicators of fecal contamination: coliform bacteria and Enterococcus. On the contrary, in Chebarkul’ Lake, members of the genus Bacillus, which are natural bioremediators, formed stable winter associations. However, the differences between water bodies and sampling depths reflected 28.1% and 9.8% of the variability of the winter microbial communities, respectively. The largest contribution (about 60%) to the variability of the structure was made by intra-water processes, which determined the high heterogeneity of samples from different water areas. We assume that an important role in this variability was played by the high anthropogenic impact in a large industrial metropolis. In our opinion, this line of research is very promising for addressing key environmental issues.
Collapse
|
29
|
Lyautey E, Billard E, Tissot N, Jacquet S, Domaizon I. Seasonal Dynamics of Abundance, Structure, and Diversity of Methanogens and Methanotrophs in Lake Sediments. MICROBIAL ECOLOGY 2021; 82:559-571. [PMID: 33538855 DOI: 10.1007/s00248-021-01689-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/10/2021] [Indexed: 06/12/2023]
Abstract
Understanding temporal and spatial microbial community abundance and diversity variations is necessary to assess the functional roles played by microbial actors in the environment. In this study, we investigated spatial variability and temporal dynamics of two functional microbial sediment communities, methanogenic Archaea and methanotrophic bacteria, in Lake Bourget, France. Microbial communities were studied from 3 sites sampled 4 times over a year, with one core sampled at each site and date, and 5 sediment layers per core were considered. Microbial abundance in the sediment were determined using flow cytometry. Methanogens and methanotrophs community structures, diversity, and abundance were assessed using T-RFLP, sequencing, and real-time PCR targeting mcrA and pmoA genes, respectively. Changes both in structure and abundance were detected mainly at the water-sediment interface in relation to the lake seasonal oxygenation dynamics. Methanogen diversity was dominated by Methanomicrobiales (mainly Methanoregula) members, followed by Methanosarcinales and Methanobacteriales. For methanotrophs, diversity was dominated by Methylobacter in the deeper area and by Methylococcus in the shallow area. Organic matter appeared to be the main environmental parameter controlling methanogens, while oxygen availability influenced both the structure and abundance of the methanotrophic community.
Collapse
Affiliation(s)
- Emilie Lyautey
- Univ. Savoie Mont Blanc, INRAE, CARRTEL, 74200, Thonon-les-Bains, France.
| | - Elodie Billard
- Univ. Savoie Mont Blanc, INRAE, CARRTEL, 74200, Thonon-les-Bains, France
| | - Nathalie Tissot
- Univ. Savoie Mont Blanc, INRAE, CARRTEL, 74200, Thonon-les-Bains, France
| | - Stéphan Jacquet
- Univ. Savoie Mont Blanc, INRAE, CARRTEL, 74200, Thonon-les-Bains, France
| | - Isabelle Domaizon
- Univ. Savoie Mont Blanc, INRAE, CARRTEL, 74200, Thonon-les-Bains, France
| |
Collapse
|
30
|
Yang Y, Chen J, Chen X, Jiang Q, Liu Y, Xie S. Cyanobacterial bloom induces structural and functional succession of microbial communities in eutrophic lake sediments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117157. [PMID: 33892464 DOI: 10.1016/j.envpol.2021.117157] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 04/05/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Cyanobacterial blooms have considerable effects on lacustrine microbial communities. The current study explored the temporal pattern of sedimentary archaea and bacteria during cyanobacterial bloom in a eutrophic lake. With the sampling period divided into bloom phase, interval phase and end phase according to the variation of physicochemical parameters, the structures and functions of both kingdoms presented a significant difference among phases. Bloom phases could be characterized with the lowest diversity and up-regulated functions in biodegradation of cyanobacterial metabolites driven by bacteria. Archaeal community showed an increased metabolic function during interval phases, including active methanogenesis sensitive to carbon input. The highest diversity and an enrichment of hub genera in microbial network were both observed in end phase, allowing for closer cooperation among groups involved in cyanobacteria-derived organic matter transformation. Although the archaeal community was less variable or diverse than bacteria, methanogenic functions dramatically fluctuated with cyanobacterial dynamics. And microbial groups related to methane cycling played an important role in microbial network. The results provided new insights into temporal dynamics of lacustrine microbial communities and microbial co-occurrence, and highlighted the significant ecological role of methane cycling-related microbes in lake sediments under the influence of cyanobacterial blooms.
Collapse
Affiliation(s)
- Yuyin Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Jianfei Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Xiuli Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Qingsong Jiang
- Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Yong Liu
- Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
31
|
Lei P, Zhang J, Zhu J, Tan Q, Kwong RWM, Pan K, Jiang T, Naderi M, Zhong H. Algal Organic Matter Drives Methanogen-Mediated Methylmercury Production in Water from Eutrophic Shallow Lakes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:10811-10820. [PMID: 34236181 DOI: 10.1021/acs.est.0c08395] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Algal blooms bring massive amounts of algal organic matter (AOM) into eutrophic lakes, which influences microbial methylmercury (MeHg) production. However, because of the complexity of AOM and its dynamic changes during algal decomposition, the relationship between AOM and microbial Hg methylators remains poorly understood, which hinders predicting MeHg production and its bioaccumulation in eutrophic shallow lakes. To address that, we explored the impacts of AOM on microbial Hg methylators and MeHg production by characterizing dissolved organic matter with Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) and three-dimensional excitation-emission matrix (3D-EEM) fluorescence spectroscopy and quantifying the microbial Hg methylation gene hgcA. We first reveal that the predominance of methanogens, facilitated by eutrophication-induced carbon input, could drive MeHg production in lake water. Specifically, bioavailable components of AOM (i.e., CHONs such as aromatic proteins and soluble microbial byproduct-like materials) increased the abundances (Archaea-hgcA gene: 438-2240% higher) and activities (net CH4 production: 16.0-44.4% higher) of Archaea (e.g., methanogens). These in turn led to enhanced dissolved MeHg levels (24.3-15,918% higher) for three major eutrophic shallow lakes in China. Nevertheless, our model results indicate that AOM-facilitated MeHg production could be offset by AOM-induced MeHg biodilution under eutrophication. Our study would help reduce uncertainties in predicting MeHg production, providing a basis for mitigating the MeHg risk in eutrophic lakes.
Collapse
Affiliation(s)
- Pei Lei
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Jin Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Jinjie Zhu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Qiaoguo Tan
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology and Center for Marine Environmental Chemistry and Toxicology, Xiamen University, Xiamen, Fujian 361102, P. R. China
| | - Raymond W M Kwong
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | - Ke Pan
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, P. R. China
| | - Tao Jiang
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400716, China
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå SE-90183, Sweden
| | - Mohammad Naderi
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | - Huan Zhong
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
- Environmental and Life Science Program (EnLS), Trent University, Peterborough, Ontario K9L 0G2, Canada
| |
Collapse
|
32
|
Wu D, Zhao C, Bai H, Feng F, Sui X, Sun G. Characteristics and metabolic patterns of soil methanogenic archaea communities in the high-latitude natural forested wetlands of China. Ecol Evol 2021; 11:10396-10408. [PMID: 34367583 PMCID: PMC8328403 DOI: 10.1002/ece3.7842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/07/2021] [Accepted: 06/10/2021] [Indexed: 01/12/2023] Open
Abstract
Soil methanogenic microorganisms are one of the primary methane-producing microbes in wetlands. However, we still poorly understand the community characteristic and metabolic patterns of these microorganisms according to vegetation type and seasonal changes. Therefore, to better elucidate the effects of the vegetation type and seasonal factors on the methanogenic community structure and metabolic patterns, we detected the characteristics of the soil methanogenic mcrA gene from three types of natural wetlands in different seasons in the Xiaoxing'an Mountain region, China. The results indicated that the distribution of Methanobacteriaceae (hydrogenotrophic methanogens) was higher in winter, while Methanosarcinaceae and Methanosaetaceae accounted for a higher proportion in summer. Hydrogenotrophic methanogenesis was the dominant trophic pattern in each wetland. The results of principal coordinate analysis and cluster analysis showed that the vegetation type considerably influenced the methanogenic community composition. The methanogenic community structure in the Betula platyphylla-Larix gmelinii wetland was relatively different from the structure of the other two wetland types. Indicator species analysis further demonstrated that the corresponding species of indicator operational taxonomic units from the Alnus sibirica wetland and the Betula ovalifolia wetland were similar. Network analysis showed that cooperative and competitive relationships exist both within and between the same or different trophic methanogens. The core methanogens with higher abundance in each wetland were conducive to the adaptation to environmental disturbances. This information is crucial for the assessment of metabolic patterns of soil methanogenic archaea and future fluxes in the wetlands of the Xiaoxing'an Mountain region given their vulnerability.
Collapse
Affiliation(s)
- Di Wu
- Key Laboratory of Saline‐Alkali Vegetation Ecology Restoration (Northeast Forestry University)Ministry of EducationHarbinChina
- College of Life ScienceNortheast Forestry UniversityHarbinChina
| | - Caihong Zhao
- College of Life ScienceNortheast Forestry UniversityHarbinChina
| | - Hui Bai
- Key Laboratory of Fast‐Growing Tree Cultivating of Heilongjiang ProvinceForestry Science Research Institute of Heilongjiang ProvinceHarbinChina
| | - Fujuan Feng
- College of Life ScienceNortheast Forestry UniversityHarbinChina
| | - Xin Sui
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold RegionSchool of Life SciencesHeilongjiang UniversityHarbinChina
| | - Guangyu Sun
- Key Laboratory of Saline‐Alkali Vegetation Ecology Restoration (Northeast Forestry University)Ministry of EducationHarbinChina
- College of Life ScienceNortheast Forestry UniversityHarbinChina
| |
Collapse
|
33
|
Zemskaya TI, Bukin SV, Lomakina AV, Pavlova ON. Microorganisms in the Sediments of Lake Baikal, the Deepest and Oldest Lake in the World. Microbiology (Reading) 2021. [DOI: 10.1134/s0026261721030140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
34
|
Zhang L, Liu C, He K, Shen Q, Zhong J. Dramatic temporal variations in methane levels in black bloom prone areas of a shallow eutrophic lake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144868. [PMID: 33454611 DOI: 10.1016/j.scitotenv.2020.144868] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
Global lakes serve as a key natural source of methane (CH4) and suffer from increasing hypoxia due to unprecedented anthropogenic activities and climate change. A black bloom is a temporary hypoxia triggered by a longstanding algal bloom, which facilitates CH4 production by creating reducing conditions and abundant algae-sourced organic carbon. One-year investigations were conducted to examine temporal CH4 dynamics in the water and sediment pore water in black bloom prone areas (BBPAs) in Lake Taihu, China, where there had been at least two recorded black bloom events. The CH4 in the water changed significantly with time (p < 0.001), with the highest concentrations appearing in warm months when an abnormal lower dissolved oxygen content was observed at different sites, which were one to two orders of magnitude higher than other months. Compared with the control site, there were significantly higher CH4 concentrations in BBPA waters (p < 0.001), which was consistent with the higher CH4 in the sediment pore water. Methane dynamics in the water showed significant positive correlations with temperature, total phosphorus, total nitrogen, ammonia-N, and soluble reactive phosphorus (p < 0.05), but showed a significant inverse correlation with dissolved oxygen (p < 0.01). Redundancy analysis indicated dissolved oxygen made the largest contribution to CH4 dynamics in the BBPAs. A significant increase in the CH4 in water will turn BBPAs into temporary hot spots with substantial CH4 emissions with the appearance of black blooms. The results provide new insights into understanding future CH4 dynamics under globally prevailing algal blooms and climate change.
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Cheng Liu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Kai He
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Qiushi Shen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; UFZ-Helmholtz Centre for Environmental Research, Department of Lake Research, Magdeburg 39114, Germany; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Jicheng Zhong
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
35
|
Zhang L, Liao Q, Gao R, Luo R, Liu C, Zhong J, Wang Z. Spatial variations in diffusive methane fluxes and the role of eutrophication in a subtropical shallow lake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:143495. [PMID: 33213906 DOI: 10.1016/j.scitotenv.2020.143495] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/25/2020] [Accepted: 10/25/2020] [Indexed: 06/11/2023]
Abstract
Shallow lakes account for most of the diffusive CH4 emissions from global lakes, and they also suffer from eutrophication worldwide. Determining the effect of eutrophication on diffusive CH4 fluxes is fundamental to understanding CH4 emissions in shallow lakes. This study aimed to investigate the spatial variations in diffusive CH4 fluxes and explore the role of eutrophication in Lake Chaohu, a large and shallow eutrophic lake in the lower reaches of the Yangtze River. A one-year field observation was carried out to examine CH4 concentrations in the sediment and water and the diffusive fluxes of CH4 across the sediment-water interface (Fs-w) and water-air interface (Fw-a). Both Fs-w (0.306-1.56 mmol m-2 d-1) and Fw-a (0.097-0.529 mmol m-2 d-1) were upward and showed significant spatial heterogeneity and were significantly positively correlated. Parameters related to eutrophication had significant positive relationships with Fw-a, and the total phosphorus distribution in the water explained the greatest proportion of the spatial variation in Fw-a. Distance to shore and water depth were inversely correlated with Fw-a and modified the effects of eutrophication. Overall, the results provide direct evidence of the key role of eutrophication in shaping the spatial distribution of diffusive CH4 fluxes and a scientific basis for predicting changes in CH4 emissions with future eutrophication changes in shallow lakes in subtropical zones.
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China.
| | - Qianjiahua Liao
- Department of Environmental Science, China Pharmaceutical University, Nanjing 211198, PR China
| | - Rui Gao
- Chaohu Lake Research Institute, Hefei 230601, PR China
| | - Ran Luo
- Department of Environmental Science, China Pharmaceutical University, Nanjing 211198, PR China
| | - Cheng Liu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Jicheng Zhong
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Zhaode Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China
| |
Collapse
|
36
|
Sagova-Mareckova M, Boenigk J, Bouchez A, Cermakova K, Chonova T, Cordier T, Eisendle U, Elersek T, Fazi S, Fleituch T, Frühe L, Gajdosova M, Graupner N, Haegerbaeumer A, Kelly AM, Kopecky J, Leese F, Nõges P, Orlic S, Panksep K, Pawlowski J, Petrusek A, Piggott JJ, Rusch JC, Salis R, Schenk J, Simek K, Stovicek A, Strand DA, Vasquez MI, Vrålstad T, Zlatkovic S, Zupancic M, Stoeck T. Expanding ecological assessment by integrating microorganisms into routine freshwater biomonitoring. WATER RESEARCH 2021; 191:116767. [PMID: 33418487 DOI: 10.1016/j.watres.2020.116767] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/14/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
Bioindication has become an indispensable part of water quality monitoring in most countries of the world, with the presence and abundance of bioindicator taxa, mostly multicellular eukaryotes, used for biotic indices. In contrast, microbes (bacteria, archaea and protists) are seldom used as bioindicators in routine assessments, although they have been recognized for their importance in environmental processes. Recently, the use of molecular methods has revealed unexpected diversity within known functional groups and novel metabolic pathways that are particularly important in energy and nutrient cycling. In various habitats, microbial communities respond to eutrophication, metals, and natural or anthropogenic organic pollutants through changes in diversity and function. In this review, we evaluated the common trends in these changes, documenting that they have value as bioindicators and can be used not only for monitoring but also for improving our understanding of the major processes in lotic and lentic environments. Current knowledge provides a solid foundation for exploiting microbial taxa, community structures and diversity, as well as functional genes, in novel monitoring programs. These microbial community measures can also be combined into biotic indices, improving the resolution of individual bioindicators. Here, we assess particular molecular approaches complemented by advanced bioinformatic analysis, as these are the most promising with respect to detailed bioindication value. We conclude that microbial community dynamics are a missing link important for our understanding of rapid changes in the structure and function of aquatic ecosystems, and should be addressed in the future environmental monitoring of freshwater ecosystems.
Collapse
Affiliation(s)
- M Sagova-Mareckova
- Dept. of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences, Kamýcká 129, Prague 6, 16500, Czechia.
| | - J Boenigk
- Biodiversity, University of Duisburg-Essen, Universitaetsstraße 5, 45141 Essen, Germany
| | - A Bouchez
- UMR CARRTEL, INRAE, UMR Carrtel, 75 av. de Corzent, FR-74203 Thonon les Bains cedex, France; University Savoie Mont-Blanc, UMR CARRTEL, FR-73370 Le Bourget du Lac, France
| | - K Cermakova
- ID-Gene Ecodiagnostics, Campus Biotech Innovation Park, 15, av. Sécheron, 1202 Geneva, Switzerland
| | - T Chonova
- UMR CARRTEL, INRAE, UMR Carrtel, 75 av. de Corzent, FR-74203 Thonon les Bains cedex, France; University Savoie Mont-Blanc, UMR CARRTEL, FR-73370 Le Bourget du Lac, France
| | - T Cordier
- Department of Genetics and Evolution, University of Geneva, Science III, 4 Boulevard d'Yvoy, 1205 Geneva, Switzerland
| | - U Eisendle
- University of Salzburg, Hellbrunnerstraße 34, 5020 Salzburg, Austria
| | - T Elersek
- National Institute of Biology, Vecna pot 111, SI-1000 Ljubljana, Slovenia
| | - S Fazi
- Water Research Institute, National Research Council of Italy (IRSA-CNR), Via Salaria km 29,300 - C.P. 10, 00015 Monterotondo St., Rome, Italy
| | - T Fleituch
- Institute of Nature Conservation, Polish Academy of Sciences, ul. Adama Mickiewicza 33, 31-120 Krakow, Poland
| | - L Frühe
- Ecology Group, Technische Universität Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - M Gajdosova
- Dept. of Ecology, Faculty of Science, Charles University, Viničná 7, 12844 Prague, Czechia
| | - N Graupner
- Biodiversity, University of Duisburg-Essen, Universitaetsstraße 5, 45141 Essen, Germany
| | - A Haegerbaeumer
- Dept. of Animal Ecology, Bielefeld University, Konsequenz 45, 33615 Bielefeld, Germany
| | - A-M Kelly
- School of Natural Sciences, Trinity College Dublin, University of Dublin, College Green, Dublin 2, D02 PN40, Ireland
| | - J Kopecky
- Epidemiology and Ecology of Microoganisms, Crop Research Institute, Drnovská 507, 16106 Prague 6, Czechia
| | - F Leese
- Biodiversity, University of Duisburg-Essen, Universitaetsstraße 5, 45141 Essen, Germany; Aquatic Ecosystem Resarch, University of Duisburg-Essen, Universitaetsstrasse 5 D-45141 Essen, Germany
| | - P Nõges
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 5, Tartu 51006, Estonia
| | - S Orlic
- Institute Ruđer Bošković, Bijenička 54, 10000 Zagreb, Croatia; Center of Excellence for Science and Technology Integrating Mediterranean, Bijenička 54,10 000 Zagreb, Croatia
| | - K Panksep
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 5, Tartu 51006, Estonia
| | - J Pawlowski
- ID-Gene Ecodiagnostics, Campus Biotech Innovation Park, 15, av. Sécheron, 1202 Geneva, Switzerland; Department of Genetics and Evolution, University of Geneva, Science III, 4 Boulevard d'Yvoy, 1205 Geneva, Switzerland; Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - A Petrusek
- Dept. of Ecology, Faculty of Science, Charles University, Viničná 7, 12844 Prague, Czechia
| | - J J Piggott
- School of Natural Sciences, Trinity College Dublin, University of Dublin, College Green, Dublin 2, D02 PN40, Ireland
| | - J C Rusch
- Norwegian Veterinary Institute, P.O. Box 750, Sentrum, NO-0106 Oslo, Norway; Department of Biosciences, University of Oslo, P.O. Box 1066, Blindern, NO-0316 Oslo, Norway
| | - R Salis
- Department of Biology, Faculty of Science, Lund University, Sölvegatan 37, 223 62 Lund, Sweden
| | - J Schenk
- Dept. of Animal Ecology, Bielefeld University, Konsequenz 45, 33615 Bielefeld, Germany
| | - K Simek
- Institute of Hydrobiology, Biology Centre CAS, Branišovská 31, 370 05 České Budějovice, Czechia
| | - A Stovicek
- Dept. of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences, Kamýcká 129, Prague 6, 16500, Czechia
| | - D A Strand
- Norwegian Veterinary Institute, P.O. Box 750, Sentrum, NO-0106 Oslo, Norway
| | - M I Vasquez
- Department of Chemical Engineering, Cyprus University of Technology, 30 Arch. Kyprianos Str., 3036 Limassol, Cyprus
| | - T Vrålstad
- Norwegian Veterinary Institute, P.O. Box 750, Sentrum, NO-0106 Oslo, Norway
| | - S Zlatkovic
- Ministry of Environmental Protection, Omladinskih brigada 1, 11070 Belgrade, Serbia; Agency "Akvatorija", 11. krajiške divizije 49, 11090 Belgrade, Serbia
| | - M Zupancic
- National Institute of Biology, Vecna pot 111, SI-1000 Ljubljana, Slovenia
| | - T Stoeck
- Ecology Group, Technische Universität Kaiserslautern, D-67663 Kaiserslautern, Germany
| |
Collapse
|
37
|
Feng D, Xia A, Liao Q, Nizami AS, Sun C, Huang Y, Zhu X, Zhu X. Carbon cloth facilitates semi-continuous anaerobic digestion of organic wastewater rich in volatile fatty acids from dark fermentation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:116030. [PMID: 33257151 DOI: 10.1016/j.envpol.2020.116030] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/16/2020] [Accepted: 09/30/2020] [Indexed: 06/12/2023]
Abstract
The anaerobic digestion of wastewater rich in volatile fatty acids (VFAs) provides a sustainable approach for methane production whilst reducing environmental pollution. However, the anaerobic digestion of VFAs may not be stable during long-term operation under a short hydraulic retention time. In this study, conductive carbon cloth was supplemented to investigate the impacts on the anaerobic digestion of VFAs in wastewater sourced from dark fermentation. The results demonstrated that the failure of anaerobic digestion could be avoided when carbon cloth was supplemented. In the stable stage, the methane production rate with carbon cloth supplementation was improved by 200-260%, and the chemical oxygen demand (COD) removal efficiency was significantly enhanced compared with that in the control without carbon cloth. The relative abundance of potential exoelectrogens on the carbon cloth was increased by up to 8-fold compared with that in the suspension. Electrotrophic methanogens on the carbon cloth were enriched by 4.2-17.2% compared with those in the suspension. The genera Ercella and Petrimonas along with the methanogenic archaea Methanosaeta and Methanosarcina on the carbon cloth may facilitate direct interspecies electron transfer, thereby enhancing methane production.
Collapse
Affiliation(s)
- Dong Feng
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Ao Xia
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China.
| | - Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Abdul-Sattar Nizami
- Sustainable Development Study Centre, Government College University, Lahore 54000, Pakistan
| | - Chihe Sun
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Yun Huang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Xianqing Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Xun Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|